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ABSTRACT 

 

Long term mineral resources modeling is done to predict tonnage and grade of ore 

that may be mined and represents a key feature in the development of any mining 

project. The most common approach used in the mining industry is to estimate the 

grades using ordinary kriging and report the recoverable resources based on this 

deterministic estimated model. Mineral resources calculated with kriging are a smooth 

representation of the actual distribution of grades and they do not provide an 

assessment of uncertainty. Other approaches include probabilistic estimation and 

geostatistical simulation, that provide an assessment of uncertainty. Unlike kriging, 

simulation reproduces the variability of the mineral deposit. Reporting mineral 

resources directly on high resolution simulation results would assume perfect 

knowledge of the grade at the time of mining and selectivity at the scale of the data, 

without considering mining practice constraints. There will always be uncertainty left 

at the time of mining because even the grade control sampling is imperfect, so 

assuming perfect knowledge of the grade in the future is not correct. In addition, 

mineral resources are evaluated at a specific time considering only the information 

available at that time. There are two concerns when geostatistical simulation is used 

for resources modeling: the information and the mining selectivity effects. The 

information effect is the decrease in uncertainty from the resources model to the time 

of mining, as more or better information becomes available. The mining selectivity 

effect is the selectivity or scale that would match future mining practice and geological 

constraints. The determination of ore (and mineable dig limits) must consider mining 

selectivity and the information available at the time of mining. A new framework for 

resource calculations is proposed with two separate modules to address those 

concerns. The information effect is accounted for by anticipating the additional 

production data that will be available at the time mining to guide the destination for 
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the mined material. The mining selectivity effect is addressed by mimicking the grade 

control procedure to get mineable dig limits at a chosen selectivity, represented by a 

minimum mineable unit size. The proposed methodology is mainly designed for open 

pit mining. An adaptation to underground mining, more specifically to sublevel stoping 

of a tabular vein deposit, is also developed. In addition to a prediction of recoverable 

resources that will be closer to the material mined in the future, the framework 

proposed provides an assessment of local and global uncertainty for risk management. 
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Chapter 1. Introduction 

 

There are three main complementary and sequential tasks that are essential to any 

mining project: long term mineral resources and reserves modeling, mine planning 

and grade control. They are performed at different stages of the mine life, in different 

contexts and with distinct objectives and techniques. They must be successfully 

integrated in order to achieve balance between what has been planned and the 

material that is actually mined. Each company has a different procedure for updating 

those models, but they must be updated with a certain regularity to maintain the 

integration between the plan and the result. There is a variety of geostatistical 

techniques available; it is the practitioner’s responsibility to identify the appropriate 

one in each context. To name a few, Isaaks and Srivastava (1989), Goovaerts (1997), 

Deutsch and Journel (1998), Sinclair and Blackwell (2002) and Rossi and Deutsch 

(2014) present an overview of the many different geostatistical techniques available 

for grade estimation and evaluation of mineral resources and reserves. 

 

The context and focus of this research is on recoverable resources evaluation. Mineral 

resources and reserves evaluation is done to predict tonnage and grade of ore in the 

ground and that may be mined. The grade, location and tonnage of material must be 

forecast with the greatest accuracy possible to justify the large investment associated 

with a mining project. The recoverable resources and reserves calculations are done 

by adding up blocks of different tonnages – due to different specific gravities of the 

host rocks – to get total tonnes and grades. It is a tonnes-weighted average of different 

grades. The calculations are generally done within deposit subsets or for different types 

of material and for different destinations for the mined material, such as different 

treatment options.  

 

Section 1.1. Current Practice in Mineral Resources Evaluation 

 

The most traditional approach used in the mining industry for mineral resources 

evaluation is to estimate the grades of all variables of interest within blocks through a 

deterministic block model and report the recoverable resources on those estimates. 

Long term resources are typically reported directly from numerical models calculated 

from delineation drilling, with no special post processing. The most used estimation 

technique is ordinary block kriging, but inverse distance interpolation is also popular. 
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Rossi and Deutsch (2014) present details on minimum, good, and best practices for 

calculating, managing and reporting ore resource models under a deterministic 

approach. Although its use is widespread, the estimated results provided by kriging 

are a smooth representation of the actual distribution of grades on the estimated 

blocks (Journel & Kyriakidis, 2004). The local accuracy provided by block kriging is 

fundamental for final selection at the time of mining/grade control, when it is necessary 

to minimize misclassification of ore and waste blocks. On the other hand, the resources 

computed with estimation are not the correct representation of the grades at block 

scale (Journel & Kyriakidis, 2004). Moreover, this approach does not assess the 

uncertainty related to the mineral resource.  

 

In addition to the deterministic approach, there are alternatives to calculate 

recoverable resources, such as probabilistic estimation and geostatistical simulation. 

Probabilistic estimations techniques directly predict the variability and uncertainty in 

grade variables using a probability distribution model. We compute conditional 

distribution functions from which we can extract a range of possible values for the 

estimated grade (Rossi & Deutsch, 2014). Gaussian-based probabilistic estimation is 

the most commonly applied due to the simplicity of the Gaussian distribution. The 

disadvantage of probabilistic estimation is that, by not accounting for the variability 

from one location to another, it does not provide a joint model of uncertainty between 

multiple realizations. 

 

The third and more complete approach is geostatistical simulation. As opposed to the 

deterministic approach through estimation, simulation is particularly useful because it 

includes an assessment of uncertainty. Building a long term resource model using 

geostatistical simulation provides a way of assessing a complete model of uncertainty 

for the mineral deposit. Even though the application of simulation has been subject of 

extensive research, its use is still limited in the mining industry, and its results are not 

typically used for resources reporting and mine planning. Accounting for the 

uncertainty assessment in a resources evaluation workflow and transferring this 

uncertainty to further engineering calculations, such as mine planning and production 

scheduling, is fundamental to the understanding of a mineral deposit. It is highly 

recommended to adopt an approach where the mineral resource report accounts for 

the degree of uncertainty. 
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Simulation provides a joint model of uncertainty between multiple locations. 

Realizations from geostatistical simulation are constructed at high resolution and 

grades (or a distribution of grades) are assigned to each block. Simulation attempts 

to reproduce the data histogram and variogram model, so the spatial variability of the 

deposit is going to be represented by the simulated realizations (Journel & Kyriakidis, 

2004). At the time of assessing the recoverable resources and reserves, it is important 

that the histogram of estimated block values shows the same proportion of ore as the 

histogram of the true grades. This can be achieved by simulation. Unlike the traditional 

estimation approach, simulation provides estimated block grades that are not 

smoothed (Journel & Kyriakidis, 2004). On average, the results from simulation are 

close to the values provided by estimation, with the addition of uncertainty 

assessment.  

 

The common practice when geostatistical simulation is used to assess the recoverable 

resources is to summarize the simulated realizations into one model, but the simulated 

grade distribution should be summarized as late as possible. All resource and reserve 

calculations that can be computed on a single block model can also be computed on a 

number of realizations of the same block model. After performing the necessary 

calculations over all realizations and not over one particular realization or a summary 

model, the response variables could be summarized (Deutsch, 2015). At the end, the 

expected value of all realizations can be retained as a single value. Resources 

calculated on an average model or on one specific realization is different from the 

average resource. Resources calculated on one single model do not carry the 

underlying uncertainty in grade and tonnage. One should always go back to 

realizations to perform other calculations, instead of calculating for expected values. 

All realizations should be used all the time (Deutsch, 2015), as well as in mineral 

resource reporting.  

 

Post-processing the simulation results is critical because of the point scale resolution 

at which the realizations are computed, that is, the data scale. The application of the 

concept of a Selective Mining Unit (SMU) is necessary to report resources from the 

high resolution simulated geostatistical realizations. When simulation is performed, the 

traditional approach is to average the grades at high resolution to the chosen SMU 

scale. Many factors are considered when choosing the SMU block size. The paradigm 

conventionally adopted is that the SMU block size must be related to the selectivity of 
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the mining equipment, the availability of grade control data that is used to classify the 

material as ore or waste, the practicality of the dig limits that will be generated from 

these blocks and the geological boundaries of the deposit (Sinclair & Blackwell, 2002; 

Rossi & Deutsch, 2014). 

 

Direct block simulation can be an alternative to computing high resolution simulated 

realizations and averaging up to the chosen SMU scale. Journel and Huijbregts (1978) 

first proposed a direct block simulation approach where the conditioning would happen 

at the block support after computing the simulated realization. This approach would 

be valid for properties that average linearly from point to block support, such as grade. 

Gómez-Hernández (1992) proposed a different approach, in the context of hydraulic 

conductivity simulation in hydrogeology and petroleum engineering, a property that 

do not average linearly. This approach uses synthetic point and block training images 

to characterize the joint spatial variability model of the property. Gómez-Hernández 

(1992) provides implementation details. The problem with direct block simulation is 

that assumptions have to be made to compute a local change of support model. The 

point support is recommended because it assures consistency between the simulated 

high resolution grades and the block-averaged values at any larger support (Journel & 

Kyriakidis, 2004). 

 

Volume-variance correction methods can also be used to create a target SMU grade 

distribution to be computed in the resources evaluation workflow (Journel & Huijbregts, 

1978; Isaaks & Srivastava, 1989; Rossi & Deutsch, 2014). They provide a very quick 

assessment of the recoverable resources. By applying a change of support model to 

drill hole information it is possible to calculate grade-tonnage curves to check and 

calibrate the resource models. The most common change of support models are the 

Affine Correction, the Indirect Lognormal and the Discrete Gaussian methods; where 

the latter is considered the most robust option because it does not make any 

assumption of permanence of the shape of the variable distribution. The references 

mentioned above provide further details on each volume-variance correction method. 
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Section 1.2. Current Practice in Mineral Resources and Reserves 

Reporting 

 

Public mining companies have the obligation to regularly inform their investors, 

government and regulators about their assets through annual reports and others 

means of communication. Professional regulating codes were developed to set 

minimum standards for public reporting and guidance for the public disclosure of 

mineral resources and mineral reserves. The mineral resources reporting formats 

generally adopted by the mining industry do not include any information with respect 

to the uncertainty in the evaluated resources. Besides assessing uncertainty during 

the mineral resources evaluation and transferring this uncertainty to further 

engineering calculations, disclosing it is fundamental. The requirements for mineral 

resources reporting demanded by three of the main regulating codes, NI 43-101, JORC 

and Industry Guide 7, were investigated and are presented here. 

 

The National Instrument 43-101: Standards of Disclosure for Mineral Projects (NI 43-

101, 2011) was developed by the Canadian Securities Administrators (CSA) to 

establish standards and guidelines for all public disclosures of mineral properties and 

projects of companies listed on exchanges within Canada. Similarly, the JORC Code 

(JORC, 2012) is a product of the Australasian Joint Ore Reserves Committee that 

provides a mandatory set of standards for public reporting of exploration targets, 

mineral resources and ore reserves for companies listed in Australia and New Zealand 

stock exchanges. The SEC Industry Guide 7 (SEC, 2016), contained in the Securities 

Act Industry Guides and published by the United States Securities and Exchange 

Commission, is the equivalent of those documents in the United States and provides a 

set of instructions on disclosure of “significant mining operations”. 

 

The NI 43-101 and the JORC Code state specific requirements for disclosure of any 

information about ore resources and reserves; alternatively, the SEC Industry Guide 

7 foresees exclusively the report of reserves; resources reporting is not allowed under 

its guidelines. The NI 43-101 and the JORC Code were reviewed to identify the main 

requirements for resources reporting.  

 

The NI 43-101 and the JORC Code make explicit requirements on the resources 

categories that must be reported, namely: inferred, indicated and measured – 
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considering an increasing level of geological knowledge and confidence. In addition, 

both documents state that each of these categories must be reported individually, 

clearly indicating the grade (or quality) and the quantity existent in each category. The 

issuer must also indicate the key assumptions, parameters, and methods used in the 

mineral resources estimate. 

 

Neither of those documents state any recommendation towards the need for a 

deterministic resources model for reporting. In fact, they encourage a discussion 

regarding the uncertainty involved in the resources estimation, including geostatistical 

procedures to quantify it. Table 1.1, extracted from the JORC Code, shows guidelines 

on how this discussion can be approached by the issuer. 

 

Table 1.1 – Guidelines on the discussion of uncertainty (modified from the JORC Code, 2012) 

 

 

Geostatistical simulation will be used to obtain the final probabilistic resources in the 

workflow that will be proposed in this thesis. Including the uncertainty assessment in 

the resources report is straightforward. This information is substantial to further 

evaluations of every project and extremely valuable to shareholders. 

 

Section 1.3. Problem and Motivation 

 

The resource model is constructed at a specific time of the mine life and considers only 

the information available at that time. Geostatistical simulation is normally calculated 

at high resolution and quantifies the uncertainty in the truth at the scale of the data 

used, not at the scale that the mining process will take place. Reporting resources 

directly on high resolution simulation results would assume selectivity at the scale of 
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the data and perfect knowledge of the grade at the time of mining. The resources 

reporting and the determination of ore and waste limits must consider the selectivity 

of future mining and the information available at the time of mining. 

 

Even though the uncertainty reduces as more or better information becomes available 

during the exploration and mining processes, there will still be remnant uncertainty 

that is not fully resolved at the time of mining because even the grade control sampling 

is incomplete and imperfect. The remnant uncertainty can be explained by small scale 

geological variability, mining practice, location errors, among other factors. The 

decrease in uncertainty from the resources model to the time of mining can be referred 

to as information effect. The information effect reflects the potential for 

misclassification of ore/waste material because the long term resource models do not 

account for future information that will be available at the time of mining. Anticipating 

information to try and minimize ore/waste classification errors is critical. The economic 

performance of any mining operation will be impacted by misclassification of material. 

 

The other concern when calculating recoverable resources is referred to as the mining 

selectivity effect. The maximum profit available in a mining project would be the one 

given by free selection of high resolution blocks of ore and waste, without accounting 

for any mining practice and equipment limitations. The mining selectivity effect can be 

defined as how selective the resource model can be to incorporate both mining practice 

and equipment selectivity restrictions and geological characteristics of the deposit, 

while trying to retain most of the profit available at free selection of high resolution 

blocks of ore and waste. The mining selectivity effect reflects the fact that the 

resources evaluation is done at a scale orders of magnitude larger than the core sample 

data used to estimate the grades (Journel & Kyriakidis, 2004). 

 

In the traditional framework for resource calculation, the SMU size alone accounts for 

the information effect, mining selectivity considerations (e.g., the mining practice and 

equipment limitations and geological variability) and remnant uncertainty at the time 

of mining. All these factors are normally combined into one parameter: the SMU size. 

The traditional framework combines information effect, remnant uncertainty and 

mining selectivity considerations, trying to address all factors by using an SMU size 

that is larger than the final grade control data spacing (Leuangthong, Neufeld, & 

Deutsch, 2003). In the conventional geostatistical simulation approach for long term 
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resource modeling, by using a large SMU size, it is being assumed that there is no 

remnant uncertainty at the time of mining, resulting in a long term model that carries 

a profit that is not attainable.  

 

In the practice of mainstream mining industry procedures, Deraisme and Roth (2000) 

had already anticipated that there are no significant advances towards trying to 

address the information effect for estimating recoverable reserves, even though the 

information effect has been widely discussed in geostatistical theory. Even eighteen 

years later, not much have changed from the above statement. In the latest version 

of software ISATIS, Geovariances (2018) released a new tool called “Information Effect 

for Simulations”. This tool helps optimize the grade control sampling spacing by 

evaluating its impact on grade-tonnage curves, but it can also be applied to mimic ore 

loss/dilution at the time of mining. The idea of this new tool is similar to what will be 

proposed in this thesis to assess the information effect: sample high resolution 

simulated grids at the anticipated grade control spacing and use the samples to re-

estimate the grids. Nevertheless, the entire workflow proposed here is different 

because it includes an additional module to address the mining selectivity effect in 

resources modeling. 

 

Some advances have been made in research. Journel and Kyriakidis (2004) identified 

the concern on the evaluation of mineral reserves due to the information effect and 

proposed a simulation approach to anticipate the production data. This approach is 

also similar to the one implemented in the latest release of software ISATIS. In 

addition, Journel and Kyriakidis (2004) proposed to address the difference in the data 

quality from the long term resources modeling and grade control. For example, if the 

present data (resources modeling) is drill hole data and the future data (grade control 

sampling) is blast hole data, according to Journel and Kyriakidis (2004), the possible 

error in the future data should be modeled. The statistics between the two types of 

data and the correlation between the error and the present data should be inferred by 

prior experience on similar mining operations. 

 

Leuangthong et al. (2003) and Neufeld, Leuangthong, and Deutsch (2007) also 

proposed the sampling of simulated realizations and re-estimation of the grids using 

those samples. Leuangthong et al. (2003) proposed this simulation approach to 

determine the optimal SMU size that would give ore and waste tonnages and grades 
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of ore to match the actual production at the time of mining. The framework is 

somewhat similar since the actual production is simulated by sampling simulation 

realizations at the production sampling spacing and using this information to predict 

the recoverable resources/reserves. Neufeld et al. (2007) proposed it to account for 

the information effect in recoverable resources and reserves estimation. Neufeld et al. 

(2007) compared the results of the simulation approach to incorporating an 

assumption about the information effect into a change of support model. In the change 

of support approach, the information effect is accounted for by reducing the variance 

of the block scale distribution. The change of support model and the simulation based 

approach showed the predicted results. In the change of support model, as the block 

size increases and the block variance decreases, the block distribution becomes 

smoother (less selective) and the final profit decreases. In the simulation approach, 

the ore and waste classification quality decreases as the grade control sampling 

increases resulting in less profit. The results of both approaches can be combined to 

help choosing the SMU size for resources and reserves evaluation. Both papers are 

important because, besides raising awareness towards the effect of information on 

recoverable resources estimation, they both present the simulation approach to 

account for it. Nonetheless, there is still a mix of concepts between information and 

mining selectivity effects. This thesis develops a framework to specifically account for 

the information and mining selectivity aspects separately.  

 

Cuba, Boisvert, and Deutsch (2012) used a similar framework to target the evolution 

of the degree of knowledge of a deposit and its dynamic behaviour due to the 

acquisition of new data in the design of the long term mine plan. In the proposed 

paradigm, the mining sequence is continuously adapted to information sampled from 

simulated realizations. 

 

The remnant uncertainty at the time of mining must be considered for long term 

mineral resource reporting and the information and mining selectivity effects must be 

anticipated at the time of resources modeling. The goal of this research is to correctly 

predict recoverable resource estimates by explicitly accounting for the information and 

mining selectivity effects. By doing so, the recoverable resources forecast at the time 

of resources modeling will be closer to the material actual mined in the future. A 

framework consisting of separate modules to address these two concerns is proposed.  
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Section 1.4. Proposed Methodology 

 

This thesis proposes a framework to address the two concerns in long term models for 

probabilistic resources reporting: (1) the information effect, that is, anticipating the 

additional data that will be available in the future to direct the choice of destinations 

of the mined material, and (2) the selectivity effect, that is, how selective the model 

can be to incorporate both mining equipment and practice selectivity restrictions and 

geological characteristics of the deposit, while trying to retain most of the profit 

available at free selection of high resolution of blocks of ore/waste. The steps of the 

proposed procedure are described below: 

 

1. Simulate high resolution realizations of all necessary variables considering the 

data available. Parameter and data uncertainty could also be taken into account. 

This step is no different from the traditional simulation paradigm. 

 

2. (a) Sample the realizations at the anticipated production data spacing to mimic 

the production data planned in the future. (b) Interpolate all variables of interest 

that are required for grade control for every set of sampled final data. Use the 

best possible set up for ordinary kriging. Sampled data from each realization and 

the existing exploration data are considered in the estimation. This step will 

account for the information effect. 

 

3. (a) Assign expected profit values to every grid cell of estimated final data for at 

least two different destinations (i.e. ore and waste), depending on its grade. (b) 

Simulate the mining selectivity considerations by applying the mining selectivity 

calculations for each estimated grid of final data at a chosen selectivity. An 

algorithm is developed to flag each set of grid cells within the chosen minimum 

mineable unit size to its most profitable destination. This algorithm visits the set 

of grid cells that falls inside the mineable block size and assigns the most profitable 

destination to it. The idea of this step is to mimic the grade control practice to get 

mineable dig limits at a chosen selectivity. 

 

4. (a) The mineable dig limits at the desired selectivity resulted from the previous 

step are transferred to the high resolution reference simulated model from the 

first step. (b) Based on these dig limits, we can now calculate the probabilistic 
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resources for the long term model to be reported, that is available as the 

distribution over all realizations from the original reference simulated model.  

 

By following the proposed workflow, recoverable resources are calculated accounting 

for the information and mining selectivity effects explicitly and assessing the degree 

of uncertainty associated with it. Any summary models required for mine planning can 

be calculated on the long term resources model: the probability to be above or below 

the cutoff grade, the average grade above the cutoff grade, the tonnes of ore and 

waste, the grade of ore, and so on. The estimates done in step two are exclusively for 

determining the destinations; all resources are calculated based on the original 

simulated realizations. 

 

Section 1.5. Thesis Outline 

 

Chapter 2 defines and illustrates the information effect on mineral resource modeling, 

discusses its impact on resource evaluation and presents with examples the module to 

account for the information effect of the proposed framework. In Chapter 3 the module 

designed to address the mining selectivity effect is presented and illustrated with 

practical examples. An algorithm developed to assess different mining selectivities in 

ore/waste classification is also described in Chapter 3. In Chapter 4 an implementation 

of the complete workflow in open pit mining is presented and different factors that 

influence on the mineral resource assessment are discussed, such as the variogram, 

grade control data spacing, mining selectivity and the cutoff grade relative to the 

grades distribution. Chapter 5 presents an adaptation of the proposed workflow to 

underground mining, specifically to sublevel stoping of a tabular vein deposit. The 

underground mining application is illustrated with a case study from a real data set in 

the same chapter. The conclusion and other remarks, such as possible avenues of 

future work, are presented in Chapter 6. 
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Chapter 2. Methodology – Information Effect 

 

Section 2.1. Introduction 

 

In the context of mineral resources and reserves modeling, probabilistic estimates and 

geostatistical realizations are constructed at a specific time of the mine life and 

consider the information available at that time. Geostatistical simulation leads to high 

resolution block models and quantifies uncertainty at the scale of the data used. 

Assessing and reporting recoverable resources directly on high resolution simulated 

realizations would assume perfect knowledge of the grade at the time of mining and 

perfect selectivity at the scale of drilling.  

 

In the simplest context of resources and reserves evaluation, the mined material is 

classified as ore or waste. Sinclair and Blackwell (2002) define the term ore as the 

material that is “mined at a profit”, and waste, that contains “insufficient value to earn 

a profit”. Ore and waste are separated from each other in mining practice by a cutoff 

grade.  

 

The uncertainty reduces as more information becomes available during the exploration 

and mining process. However, there will still be remnant uncertainty that is not 

resolved at the time of mining because even the final sampling is incomplete. There 

are many factors that contribute to the remnant uncertainty at the time of mining, 

including small scale geological variability, mining practice, incomplete grade control 

sampling and location errors. The decrease in uncertainty from the resources model to 

the time of mining is referred to as the information effect. Figure 2.1 illustrates the 

information effect. 

 

There will be classification errors of ore and waste due to incomplete information 

during the mining process. There are two types of classification errors: Type I and 

Type II. The Type I error refers to the material that is classified as ore, but in fact is 

waste, that is, a false positive, while the Type II error is a false negative, the material 

that is thought to be waste but is actually ore (Rossi & Deutsch, 2014). Both of these 

errors reduce the profit of an area being mined. These ore/waste classification errors 

should be minimized. 



13 

 

Figure 2.1 – The information effect: the decrease in uncertainty from the resources model to 

the time of mining. 

 

Even though more data is available at the time of mining, the true grade within a 

production volume is not known; only an estimate of that grade is calculated using the 

grade control sampling (Deraisme & Roth, 2000). The ore and waste selection is 

imperfect because there will always be an estimation error. Some misclassification of 

ore and waste blocks will inevitably happen. As mentioned in Deraisme and Roth 

(2000), the amount of misclassification can be due to, along with other reasons, the 

lack of complete sampling before mining takes place.  

 

The remnant uncertainty at the time of mining should be considered for long term 

models reporting and the information effect should be anticipated. The distribution of 

grades represented in geostatistical realizations for resources reporting relates to the 

distribution of the true values; not the values at the time of mining. The conventional 

geostatistical simulation approach used for long term modeling and resources 

reporting uses only the data available at the time of modeling, pending including more 

or better information that will be available in the future. Thus, there is no remnant 

uncertainty included in the modeling. The traditional simulation framework results, 

then, in a long term resource model that carries a profit that is not achievable. 

Calculating resources directly on the simulated realizations would be too optimistic. 

 

Reporting resources from geostatistical realizations simulated with widely spaced 

exploration data is only reasonable because we use the concept of a production volume 

or Selective Mining Unit (SMU) that is larger than the final grade control data spacing 

(Leuangthong et al., 2003). Choosing an SMU size that is larger than the final data 
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spacing results in a small remnant uncertainty at the SMU scale. The large SMU size 

would account for the remnant uncertainty at the time of mining. It is common to 

increase the SMU size to account for imperfect information in the future. It is also a 

common approach to assign a fixed dilution factor that would account for the 

information effect and selectivity of mining practice and equipment on the recoverable 

resources evaluation (Neufeld et al., 2007). Both solutions combine the information 

effect and selectivity considerations into one general parameter, but the information 

effect in long term resources evaluation is related to the smoothing effect of kriging 

with widely spaced exploration data, while the selectivity and SMU size are closely 

related to dilution (internal, contact and operational). Combining these considerations 

into one general parameter is not the best approach. 

 

Section 2.2. Proposed Framework for Information Effect 

 

Addressing these concerns in probabilistic resources modeling requires two separate 

modules to be added to the traditional simulation workflow. The first module is 

designed to address the information effect by anticipating the additional production 

data that will be available in the future to direct the choice of destinations for the 

mined material. This module is presented in detail later in this section. The second 

module accounts for the mining selectivity effect and will be presented in the next 

Chapter.  

 

Prior to applying the proposed workflow, high resolution realizations of all necessary 

variables using the available exploration data are simulated. This is no different from 

the traditional simulation paradigm. Parameter and data uncertainty could be 

considered in order to more fully assess the uncertainty.  

 

The proposed workflow to account for the information effect starts by sampling each 

of the realizations at the anticipated production data spacing. The goal of this step is 

to mimic the production data planned in the future. Then, it is necessary to estimate 

all variables that are required for grade control for every set of sampled final data. As 

shown by Vasylchuk (2016), the recommended grade control grid resolution is 25 to 

40% of the (anticipated) production data spacing to minimize the amount of 

misclassified ore and waste on the grade control model. 
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Anticipating the information that will be available at the time of mining by sampling 

the reference simulation realizations is a critical step of the proposed procedure. The 

existing exploration data could be considered together with the sampled data from 

each realization in the estimation. Sampled data that is too close to the original drill 

holes from delineation/exploration campaigns can be rejected because production 

sampling is of lower quality than exploration sampling in practice. 

 

By sampling each realization at the anticipated final grade control data spacing we will 

have a different dataset for each realization. This is the case unless the exploration 

drilling is at the final production data spacing and there will be no additional grade 

control sampling forthcoming. The majority of mining operations gather additional 

production data. Sampling the realizations from geostatistical simulation will provide 

an approximation of the final data that will be acquired at the time of mining.  

 

An important detail to consider is the expected quality of grade control data that will 

be available in the future. Dedicated grade control drilling samples would have higher 

quality and better precision than regular production sampling coming from blast holes. 

The practitioner can make a decision on whether or not to add some reasonable error 

to the grade values sampled from the reference simulation realizations (Journel & 

Kyriakidis, 2004). 

 

A small example is used to illustrate the information effect impact on the evaluation of 

a mineral deposit. In this example, exploration data is sampled from a dense grid of 

production data. The full set of production data will be the future information we would 

get at the time of mining. The dataset used in the example consists of 2,278 blast 

holes on one bench of an open-pit disseminated gold deposit. The blast holes dataset 

contains the X, Y, and Z locations of each blast hole collar and gold grades.  

 

The exploration data would be the only data available at the time of resources 

modeling, that is, the “now”. To mimic it, the production data was sampled at an 

exploration data spacing of 30 x 30 m. The gold grades histograms of the sampled 

exploration data (the “now”) and the actual production data (the “future”) are then 

compared. The histograms are very similar: both show a highly positively skewed 

lognormal-like distribution, characteristic of gold grades. The average gold grade on 

the exploration dataset is 0.626 with a variance of 1.64, while the average gold grade 
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on the production dataset is 0.615 with a variance of 1.96. Figure 2.2 shows the 

sampled exploration data and the bench production dataset as well as their gold grades 

histograms. 

 

 

Figure 2.2 – Sampled exploration data (top left) and bench production dataset (top right) and 
their gold grades histograms (bottom). 

 

Following the proposed workflow to assess the information effect, the gold grades were 

estimated by ordinary kriging using the best possible set up. First, considering only 

the exploration data sampled from the production data, and later, using the full set of 

actual blast holes. The variograms used for ordinary kriging were calculated along the 

azimuth 150° and perpendicular to it, 60°, for both cases. The variogram models fitted 

are as follows: 
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1. Exploration data: 

𝛾(𝐡) = 0.1 + 0.25 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=50
𝑎ℎ𝑚𝑖𝑛=20

(𝐡) +  0.65 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=145
𝑎ℎ𝑚𝑖𝑛=68

(𝐡) 

 

2. Production data: 

𝛾(𝐡) = 0.1 + 0.45 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=12
𝑎ℎ𝑚𝑖𝑛=9

(𝐡) +  0.45 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=45
𝑎ℎ𝑚𝑖𝑛=15

(𝐡) 

 

Figure 2.3 presents the kriged estimates for both data sets and their histograms. The 

data sets histograms from Figure 2.2 and estimates histograms are different because 

of the change of support from the raw data to the estimated grid (i.e., from points to 

blocks) and the smoothing effect of kriging. We can expect a decrease in the variance 

of the estimates compared to the data histograms. On the other hand, the limited 

information at the time of resources modeling leads to an excessive smoothing of the 

exploration data estimates. The information effect is reflected on the histograms of the 

estimated exploration data (dashed red line on the bottom of Figure 2.3) and the 

estimated blast holes data (dashed blue line), that has a higher variance.  

 

The information effect influence can also be seen on the classification of ore and waste 

blocks. A cutoff grade of 0.6 g/t of gold was used to separate ore and waste on the 

exploration data estimates and blast holes estimates. The two ore and waste maps 

generated were then compared (Figure 2.4). Final classification will be based on the 

estimated production data. The precise location of ore and waste predicted from the 

exploration model is not critical since the assignment will be changed at the time of 

mining. The errors and smoothing are still relevant on the overall resources in the 

large production volume. Every grid cell misclassified as ore with the exploration data 

will be dilution during the mining practice and every grid cell misclassified as waste on 

the estimated exploration data grid will be an ore loss. The cutoff grade plotted on the 

estimates histograms in Figure 2.4 illustrates that the proportion of exploration data 

estimates above the cutoff grade is larger than the proportion of production data 

estimates above the cutoff grade. Considering a fixed density value of 2.7 g/cm3, the 

total ore tonnage calculated on the exploration data estimates is 603,450 t while the 

total ore tonnage calculated on the production data estimates is 490,134 t. The ore 

tonnes calculated only with exploration data are not attainable at the time of mining. 

This result is sensitive to the cutoff grade relative to the grade distribution on the 

specific case, but the smoothing of kriging with widely spaced exploration data will 
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always have an impact. The ore tonnes are over estimated in this case because the 

cutoff grade is below the mean and the excessive smoothing places more material 

closer to the mean, that is, above the cutoff grade. 

 

 

Figure 2.3 – Estimated exploration (top left) and blast holes (top right) datasets and 
histograms of the estimates (bottom). 

 

The long term model and the grade control model show significant differences. The 

change is mainly due to the acquisition of new information at the time of mining. There 

is still remnant uncertainty at the time of mining due to incomplete grade control 

sampling. The grade control model still has potential for misclassification because of 

the imperfect production sampling. Nevertheless, the significant differences shown 

between the two models justify the need for anticipating this change at the time of 

resources modeling through a framework that will account for the information effect. 
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Figure 2.4 – Ore and waste maps on the exploration (top left) and production data (top right) 
estimates, ore loss and dilution map (bottom left) and estimates histograms (bottom right). 

 

Section 2.3. Implementing the Proposed Framework for 

Information Effect 

 

A 2-D example of the proposed methodology to account for the information effect in 

resources modeling is presented. Unlike the previous example, where we had access 

to the final grade control sampling for comparison, the current example illustrates 

exactly the proposed procedure at the time of resources modeling, when only 

exploration data is available. This 2-D example represents one bench of an open pit 

gold deposit. A reference gold grade model was generated through one realization of 
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an unconditional simulation. The major direction of anisotropy is along the azimuth 

90° and the following variogram model was used to simulate: 

 

𝛾(𝐡) = 0.0 + 0.5 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=150
𝑎ℎ𝑚𝑖𝑛=100

(𝐡) +  0.5 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=300
𝑎ℎ𝑚𝑖𝑛=200

(𝐡) 

 

The unconditional simulated realization was transformed to original units following a 

positively skewed reference distribution characteristic of gold deposits. The reference 

model is 500 x 500 blocks and each block is 2.5 x 2.5 x 1 m. This 2-D reference model 

will be sampled to mimic exploration drilling. The maximum total profit in the bench 

will be calculated on this reference model as well as reference ore and waste maps for 

comparisons and total resources in terms of grade, ore tonnage and quantity of metal. 

Figure 2.5 shows the reference grade distribution used for transformation to original 

units and the reference gold grade model. 

 

 

Figure 2.5 – Reference grade distribution (left) and reference gold model (right). 

 

The only information available at the time of resources modeling would be the 

exploration drilling. To mimic this situation, the reference model was sampled at a 100 

x 100 m spacing, generating 169 “drill holes”. The traditional resources modeling 

approach is to estimate the grades by ordinary kriging, so the gold grades were 

estimated using only the exploration dataset to compare with the proposed workflow. 

Figure 2.6 shows the sampled exploration data from the reference model and the 

estimated grades by ordinary kriging. 
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Figure 2.6 – Exploration data sampled from reference model (left) and estimates (right). 

 

The exploration dataset is also used to simulate a hundred high resolution realizations 

of gold grades. No parameter and data uncertainty are considered in this example. 

Each realization is sampled at the anticipated production data spacing to mimic the 

production data planned in the future. In this example, a typical hard rock mining data 

configuration is considered, where the blast holes sampling is normally done at a 

closely spaced grid, so there will be a significant number of additional data available 

at the time of mining compared to the time when the long term model was constructed. 

For this reason, a production data spacing of 10 x 10 m was used. One hundred unique 

datasets are sampled consisting of 169 drill holes and 15,207 production data. Figure 

2.7 shows one simulated realization of the exploration data and the production dataset 

sampled from the same realization. 

 

The next step is to estimate the gold grades using the sampled production datasets. 

The existing exploration data was considered in the estimation with the production 

data. The sampled production data too close to the exploration drilling were rejected 

because the exploration data is the only actual data available and production sampling 

is of lower quality in practice. Experimental variograms were calculated for each 

dataset along azimuth 90º and perpendicular to it. Variogram models were 

automatically fit. Ordinary kriging was used to estimate the grades. Figure 2.8 shows 

the experimental variogram calculated and the fitted variogram model as well as the 

production data estimates for the same sampled realization shown in Figure 2.7. 

Although the computational effort to perform the estimation of a hundred grids seems 
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demanding, by setting up a simple Jupyter notebook embedded with a Python script 

the workflow is straightforward. 

 

 

Figure 2.7 – One exploration simulated realization (left) and the sampled production dataset 

(right). 

 

 

Figure 2.8 – Production data variograms and their estimates. 

 

The results of the proposed workflow will be compared with the reference model and 

the kriging estimates calculated only with exploration data. The comparisons will be 

done in terms of total profit given by the bench, ore and waste maps, lost profit due 

to misclassification of ore and waste and total resources (grade, ore tonnage and 

quantity of metal). It is important to mention that selectivity at the time of mining is 

not yet being accounted for. The idea is to isolate the information effect and its impact 
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on the overall resources. The total profits shown here assume high resolution mining 

selectivity and free selection of blocks of ore and waste. 

 

The profit of each grid cell was calculated as: 

 

{

 𝐸𝑃𝑜𝑟𝑒(𝐮) = ∝ ∗ 𝑔𝑟𝑎𝑑𝑒 (𝐮) + 𝐶0 ($ 𝑡⁄ )

𝐸𝑃𝑤𝑎𝑠𝑡𝑒(𝐮) =  −2 ($/𝑡), 𝐮 ∈ 𝐴
 

 

Where EP refers to expected profit if that grid cell is classified as ore or waste for all 

locations u within the area to be mined A, ∝ is the slope of the grade x profit graph 

and C0 is the cost of a material at zero grade to the processing plant. If available, all 

costs could have been considered on the expected profit calculation: costs of mining 

ore, mining waste, processing ore, gold price and recovery and so on. The total profits 

that will be used for comparison are the sum of each grid cell profits within the models. 

The values used for expected profit calculations are usual for current open pit mining: 

∝ = 30 and C0 = - 15 $/t. The cutoff grade to separate ore and waste is 

straightforwardly calculated from the expected profits formulas given above. When 

EPore = 0, the cutoff grade is 0.5 g/t. 

 

The total profit given by the reference model, that is, the “truth”, is 2.61 million dollars. 

Without considering ore/waste classification errors, the total profit given by the kriged 

exploration data is 90% of the reference model, 2.35 million dollars. The average total 

profit calculated for the production data grids going through the proposed framework 

is 99.50% of the reference model, 2.60 million dollars. Neither of these profits will be 

attainable at the time of mining without considering the mining selectivity. The 

interesting point here is that, even though actual data is not being acquired by 

mimicking production sampling on the proposed workflow, the average total profit 

assessing the information effect is closer to the reference total profit. Similarly, we can 

compare the profit distribution given by the simulated realizations with exploration 

data only and with resampling and reestimation of the grids. Figure 2.9 compares both 

profit distributions and the reference and kriged values. This comparison shows that 

there is no bias being introduced by following the proposed workflow, with resampling 

and reestimation. No new real data is added with resampling, so the results are still 

unbiased. 
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Figure 2.9 – Profit distributions from the simulated realizations with exploration data and 
following the proposed workflow, the reference and kriged values. 

 

Each grid cell was classified as ore or waste by applying the cutoff grade (0.5 g/t) to 

generate ore and waste maps on the reference model, the kriged exploration data and 

blast holes estimates. Figure 2.10 illustrates the ore and waste maps generated. The 

last two models were then compared to the reference model and lost ore and dilution 

were calculated. Every grid cell misclassified as ore will be processed in the processing 

plant with the actual ore and will end up costing  𝐸𝑃𝑜𝑟𝑒 = 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑔𝑟𝑎𝑑𝑒 + 𝐶0 ($ 𝑡⁄ ). Every 

grid cell misclassified as waste will end up costing the waste mining cost, 𝐸𝑃𝑤𝑎𝑠𝑡𝑒. The 

lost profit due to misclassification of ore and waste cells was then calculated. The 

exploration data model estimated by ordinary kriging has a lost profit of 798 thousand 

dollars, that represents 30% of the total profit given by the reference model. The 

average lost profit of the production data models in the proposed workflow is 589 

thousand dollars, that represents 22% of the total reference profit. The ore and waste 

classification errors will be minimized by sampling the simulated realizations and 

anticipating the production data because of the excessive smoothing associated with 

the exploration data kriging. The exact location of ore and waste blocks is not relevant 

at the time of resources modeling because the classification will be changed at the 
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time of mining. On the other hand, minimizing the classification errors translates to 

more accurate resources reporting. 

 

 

Figure 2.10 – Ore and waste maps calculated on the reference model (left), exploration data 
kriged estimates (center) and one realization of production data estimates (right). 

 

The mineral resources were calculated for the bench studied in the three cases: the 

reference model, the exploration data kriged model and the resources distribution 

given by the proposed workflow to account for the information effect. A fixed density 

value of 2.7 g/cm3 was considered and the volume of each grid cell is 6.25 m3. The 

metal content is calculated in troy ounces by multiplying the tonnage of each grid cell 

by its gold grade and dividing everything by 31.10345. Figure 2.11 presents the 

resources calculated. The dashed blue line represents the distribution of resources 

assessed by the proposed workflow, the dashed red line corresponds to the results 

from the exploration data kriging and the solid black line is the reference model. We 

can see that the smoothing effect associated with kriging widely spaced exploration 

data impact the overall resources of the bench. The errors and smoothing are critical 

to the overall resources in the large production volume. The results are sensitive to 

the position of the cutoff grade relative to the original grade distribution: due to the 

smoothing effect of kriging and because the cutoff grade is lower than the average 

grade of the bench, the ore tonnes given by kriging and by the proposed workflow are 

greater than the truth. In this example, the total profit (bottom right graph in the 

figure) can also be greater than the reference profit (that is the maximum profit and 

it is not attainable in the mining practice) because we are not yet considering the 

selectivity at the time of mining. 
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Figure 2.11 – Mineral resources for the entire bench: mean grade (top left), tonnes of ore (top 
right), metal content (bottom left) and total profit (bottom right). 

 

Provided that additional information will almost always be available at the time of 

mining, the key idea of the proposed approach to account for the information effect is 

to show that, by resampling a set of realizations at the anticipated grade control data 

spacing, there will be a more accurate prediction of the resources. In the figure shown 

above, the reference values are always within the distribution of resources given by 

the proposed workflow, which is not true for the kriged model. The proposed workflow 

also carries a measure of uncertainty for risk management, that is available as the 

resources distribution calculated. It is also important to mention that none of the 

realizations within the framework is locally accurate; in fact, the kriged model with 

exploration data only is locally more accurate than any of the resampled and 

reestimated models, regardless of its smoothing, because kriging minimizes the error 
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variance (as discussed in many classic geostatistics references, such as Journel and 

Huijbregts (1978) and Isaaks and Srivastava (1989)).  

 

In the next Chapter, the mining selectivity effect will be presented, as well as the 

developed code to account for this factor in mineral resource evaluation. 
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Chapter 3. Methodology – Mining Selectivity Effect 

 

Section 3.1. Introduction 

 

During the mining process, the material is classified and sent to a destination that 

could include a processing plant, waste dump, leach pad or stockpile. Depending on 

the complexities of the mining process and of the deposit itself, there can be many 

other different destinations, such as stockpiles of different grade groups, different 

processing types and so on. The scale at which material can be separated during the 

mining process is referred to as mining selectivity and represents a key feature for 

long term resources reporting, mine planning and design. Mining selectivity depends 

on a series of factors intrinsic to the deposit type and operation. It depends on the 

amount of information available at the time of mining, geological variability of the 

deposit, mining equipment and mining practice constraints, and other factors. In this 

Chapter, concepts and solutions associated with open pit mining will be presented and 

discussed; underground mining will be explored in Chapter 5. 

 

Selectivity can be represented by a number of different approaches in practice. 

Conventionally, in open pit mining, dig limit polygons are drawn using information from 

blast hole samples, that maybe refined by adding information of visual inspections 

made on-site.  In the approach used here, selectivity is represented by a minimum 

mineable size unit, instead of dig limits polygons. Research has been done towards 

assessing the final selectivity for grade control models and determining the exact dig 

limits for actual mining. Vasylchuk and Deutsch (2017) developed a system called 

“Intelligent Grade Control” to automate the grade control practice (selection of 

ore/waste) while maximizing the total profit given by a mine bench, requiring a 

minimum level of user input. The IGC system consists of three modules: the Expected 

Profit module (IGC-EP), the Blast Movement module (IGC-BM) and the Dig Limits 

module (IGC-DL). The last module, IGC-DL, delineates the dig limits polygons on a 

bench that will maximize profit, based on the results provided by the previous modules. 

Maptek (2017) released a new grade control optimizer tool within Vulcan software. 

This tool evaluates thousands of scenarios and chooses the one with the optimized 

mineable polygons in terms of economic value. As opposed to having a single dig limit 

digitised by an engineer, that generally is not easily reproducible or auditable, this 

process of generating optimized mineable dig limits is fully repeatable. These two 
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approaches shown have different contexts than the research presented in this thesis. 

They are both aimed at drawing/calculating the exact dig limits for the actual mining 

practice. Here, the concern is to accurately predict the recoverable resources by 

accounting for the information and mining selectivity effects at the time of resources 

modeling. 

 

In addition, the concept of a Selective Mining Unit (SMU) is commonly used to 

determine the mining selectivity in an operation. Sinclair and Blackwell (2002) define 

the SMU as “the smallest block on which selection as ore or waste is commonly made”. 

The decision on the SMU size is traditionally based on restrictions and conditions 

derived from the chosen mining method and the scale of operations (Sinclair & 

Blackwell, 2002), but other factors must also be taken into account when deciding the 

SMU size. Rossi and Deutsch (2014) commented on the importance of anticipating the 

grade control practices and the data available at the time of mining for the SMU size 

selection.  

 

Leuangthong et al. (2003) defined the SMU as “the block model size that would 

correctly predict the tonnes of ore, tonnes of waste, and diluted head grade that the 

mill will receive with anticipated grade control practice”. They developed a framework 

for choosing the optimal SMU size that would give ore and waste tonnages and grades 

of ore to match actual production at the time of mining. Likewise the framework to 

assess the information effect proposed in the previous Chapter of this thesis, in the 

procedure proposed by Leuangthong et al. (2003), the actual production is also 

simulated by sampling simulated realizations at the anticipated production sampling 

spacing and using this information to predict the recoverable resources/reserves. 

 

Calculating the profit assuming free selection of high resolution blocks of ore and 

waste, without accounting for any mining practice and equipment limitations, would 

overstate achievable profit. The ore/waste selection process should not be free, each 

high resolution block should not be selected as ore or waste independently of other 

locations in the surrounding area. Geometrical or mining constraints may limit access 

to a specific location. The volumes considered should incorporate mining practice, 

equipment selectivity restrictions and geological characteristics of the deposit and, at 

the same time, try to retain the maximum profit possible. The actual profit realized at 
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the time of mining will be less than the maximum profit available with free selection 

of high resolution blocks. 

 

As discussed above, following the standard practice of choosing an SMU size that is 

larger than the final data spacing results in a small remnant uncertainty at the SMU 

scale. It is the normal approach to increase the SMU size to account for the fact that 

there will not be perfect information in the future. Assigning a fixed dilution factor in 

the hope to account for the information effect and selectivity of mining practice and 

equipment is also a common approach (Neufeld et al., 2007). Both solutions combine 

the information effect and selectivity considerations into one general parameter. In 

this thesis, both factors are accounted for separately. 

 

A large SMU size can also impact the construction of the operational grade control 

model. The grade control model is generally constructed at a much higher resolution 

than the SMU size used for long term resources reporting because the actual mining 

typically occurs with dig lines at a much more detailed scale than the SMU size used 

in the long term model. Figure 3.1 illustrates a typical situation in hard rock mining 

where resources reporting is normally done using a large SMU size to account for the 

remnant uncertainty and for the fact that there will not be perfect information in the 

future and the operational grade control model is constructed at the scale that the 

actual mining will take place, that is smaller than SMU used for resources reporting. 

This concern is part of the selectivity effect. The mining limits must, at the same time, 

capture geological variations in grade and keep the practically of the mining volumes 

for the mine operation. On the other hand, considering an SMU block size smaller than 

the final grade control data spacing and assuming no remnant uncertainty will likely 

provide too optimistic resource estimates. The practitioner must target estimates in 

the high resolution grade control model and in the long term resources model that 

reconcile. 

 

Selectivity is also closely related to dilution. There are three basic types of dilution 

associated with a resources block model (Rossi & Deutsch, 2014): internal dilution, 

contact dilution and operational dilution. The internal dilution is related to the support 

difference between the composites used to estimate blocks and the actual blocks. The 

contact dilution is related to the mining that occurs near geological contacts and will 

result in mixing of grade populations. The operational dilution is the one that will 
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inevitably happen during the mining practice. The choice of SMU size needs to reflect 

future dilution. In general, the larger the SMU, the larger the expected dilution. 

 

 

Figure 3.1 – Contrasting SMU sizes used for resources reporting (left) and operational grade 
control model (right). The anticipated final grade control data spacing is presented in blue. 

 

Calculating resources directly on high resolution simulation results with no post 

processing would assume selectivity at the scale of the data, that is, free selection, 

not considering the mining equipment and practical limitations. The determination of 

ore must consider the information available at the time of mining, as presented in the 

previous Chapter, and the mining selectivity. However, anticipating the mining 

selectivity is a step not directly considered in long-range resource modeling. The 

mining selectivity effect can be assessed by mimicking the grade control practice and 

getting mineable dig limits for the anticipated selectivity. The algorithm developed for 

anticipating mining selectivity is described in the following section. 

 

Section 3.2. Proposed Framework for Mining Selectivity Effect 

and Developed Algorithm 

 

Consider two or more destinations d for the mined material within an area A; at a 

minimum, ore and waste. Calculate the expected profit value associated with each 

different destination d for each location u within the area to be mined A as: 

 

𝐸𝑃 (𝐮; 𝑑), 𝑑 = 1, … , 𝐷, 𝐮 ∈ 𝐴 
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One can consider as many factors as necessary for the definition and calculation of the 

expected profit values. Normally, these values depend on the destination and are 

generally a function of the grade of the material, recovery and value (selling price), 

and all costs associated with it: mining, processing, selling and overhead. The 

maximum total profit for the area to be mined would be given by free selection of high 

resolution blocks of ore and waste (and any other destination being considered in the 

scenario) based on their expected profit values that would maximize the total profit. 

 

In reality, free selection of high resolution blocks should not be assumed. There are 

operational limitations that are intrinsic to the mining practice. It is unfeasible for the 

mining equipment to mine small isolated blocks. The cost associated with mining at a 

high resolution is generally impractical. There is a nominal selectivity that is inherent 

to the deposit type and operation. Mineable dig limits, based on a minimum mineable 

unit size, should be defined. The main concern addressed here is identifying and 

managing isolated or narrow areas surrounded by different destination(s) material that 

would not match the required selectivity.  

 

For practical purposes we will define a square or rectangular minimum mineable unit 

size to represent the mining selectivity. The developed algorithm considers this size 

and visits the set of grid cells that falls inside this chosen selectivity scale. Based on 

the expected profit expecs calculated earlier, 𝐸𝑃 (𝐮; 𝑑), the most profitable destination 

is assigned to the set of grid cells within the chosen window size as: 

  

𝑑𝑚𝑎𝑥𝐸𝑃(𝐮) = max 𝑑 𝑜𝑓 (𝐸𝑃 (𝐮; 𝑑), 𝑑 = 1, … , 𝐷), 𝐮 ∈ 𝐴 

 

The total profit is calculated as the sum of the expected profits of all maximum profit 

destinations at the chosen selectivity over the area mined: 

 

𝑃𝑚𝑎𝑥𝐸𝑃 =  ∑ 𝐸𝑃 (𝐮; 𝑑𝑚𝑎𝑥𝐸𝑃(𝐮)) , 𝐮 ∈ 𝐴 

 

The mineable unit is translated over five different origin points of the block model. The 

procedure described above is followed five times considering five different origins. 

Finally, the most profitable case is chosen and the final block destinations are assigned 

to the grid cells and the mineable dig limits are calculated.  
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The idea behind this algorithm is very similar to the one developed by Deutsch (2017). 

The algorithm developed by Deutsch (2017) will assign the maximum profit destination 

onto locations that meet the mineability criteria from the beginning and will flag the 

locations that do not attend the mineability criteria. By revisiting the problematic 

locations and enforcing the mineable unit size onto them, the mineability criteria is 

almost guaranteed to be met over the entire grid. The main concern involved with this 

algorithm is the computational time. At the time of long term resources modeling, it is 

not crucial to have the exact locations of ore/waste blocks, since this classification will 

inevitably change at the time of mining. Rather, it is necessary to have a faster 

procedure that will anticipate the expected profit given the mining selectivity.  

 

The algorithm developed in this thesis is remarkably fast compared to algorithms 

intended for final grade control within relatively small blast volumes. It will not be 

exact given interactions between the different origin offsets. Adjacent mineable 

areas/units do not necessarily need to have the same origin and small volumes may 

be created between the mineable ones. Nevertheless, it is reasonable and practical to 

support the probabilistic resources workflow proposed here. The developed algorithm 

is also flexible with the edges of the block model. There will be cases where the edges 

do not meet the mineability criteria. This is not a concern. In a real situation, there 

would not be ore close to the limits of the block model. The limits would be large 

enough to include all profitable areas within the bench that will be mined. 

 

Developing an algorithm in a full optimization fashion would be recommended for final 

grade control procedures and classification of ore/waste blocks. The tools developed 

by Vasylchuk and Deutsch (2017) and Maptek (2017) and presented here are 

examples of what should be applied in the context of final classification. The algorithm 

developed in this thesis is a less time-demanding option appropriate to anticipate the 

mining selectivity at the time of recoverable resources modeling. In the following 

section, an example of an implementation of the algorithm is presented. 

 

Section 3.3. Implementing the Proposed Framework for Mining 

Selectivity Effect 

 

Building on the example shown in Section 2.3 on the previous Chapter, the proposed 

module to account for the mining selectivity effect is demonstrated. The 2-D example 



34 

represents one bench of an open pit gold deposit. A reference gold grade model was 

generated with an unconditional simulation. One hundred high resolution realizations 

of grade were simulated. An anticipated grade control data spacing of 10 x 10 m was 

considered to sample the simulated realizations. The gold grades were estimated using 

a set of sampled final data and the original exploration data. Figure 3.2 shows two 

production data estimated grids from Chapter 2. Up to this step, the workflow has 

accounted for the information effect only. Section 2.3 on the previous Chapter can be 

referred for details on each step followed to assess the information effect.  

 

 

Figure 3.2 – Two realizations of production data estimated grids. 

 

In this example, there are two possible destinations for the mined material: ore or 

waste, but others could be considered. The first step in the proposed framework to 

account for the mining selectivity effect in resources evaluation is to calculate the 

expected profit value EP for each different destination d for all locations u within the 

area to be mined A, in this case, the bench. This is done for the estimated grids with 

the production data sampled from each realization. A simple expression to calculate 

the expected profit is being used here, but, if available, all costs would be considered: 

costs of mining ore, mining waste, processing ore, gold price and recovery. If the final 

destination of the grid cell is ore, its expected profit is calculated following the 

expression below: 

 

𝐸𝑃(𝐮; 𝑑) = ∝ ∗ 𝑔𝑟𝑎𝑑𝑒 (𝐮) +  𝐶0 ($/𝑡), 𝑑 = 𝑜𝑟𝑒, 𝐮 ∈ 𝐴 
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Where ∝ is the slope of the grade x profit graph (Figure 3.3) and C0 is the cost of 

sending material at zero grade to the processing plant. The values used for expected 

profit calculations are usual for current open pit mining: ∝ = 30 and C0 = - 15 $/t. If 

the final destination of the grid cell is waste, the expected profit is a fixed cost of $2/t 

and it does not depend on the grade value: 

 

𝐸𝑃(𝐮; 𝑑) = −2 ($/𝑡), 𝑑 = 𝑤𝑎𝑠𝑡𝑒, 𝐮 ∈ 𝐴 

 

Figure 3.3 illustrates the expressions used to calculate the expected profits. Mining 

companies set a cutoff grade with the intent that material above the cutoff grade is 

ore and material below the cutoff is waste. Additionally, the intent is that ore will 

generate a profit. The notch in the profit response is to be consistent with the 

conventional usage of cutoff grades in the mining industry, even though, numerically, 

material that will lose less money than the waste mining cost should be called ore. The 

profits of each grid cell will be used to calculate the maximum profit destinations at 

the chosen selectivity. 

 

 

Figure 3.3 – Expected profits for ore and waste grid cells. 

 

After calculating the expected profits for both destinations, the next step is to mimic 

the grade control practice and get mineable dig limits at the chosen selectivity. The 

mining selectivity calculations are applied to each estimated grid of final data. The 
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minimum mineable unit size considered for this example is 15 x 15 m. The developed 

algorithm is used to calculate the most profitable destination for each mineable unit: 

 

𝑑𝑚𝑎𝑥𝐸𝑃(𝐮) = max 𝑑 𝑜𝑓 (𝐸𝑃 (𝐮; 𝑑), 𝑑 = 𝑜𝑟𝑒/𝑤𝑎𝑠𝑡𝑒), 𝐮 ∈ 𝐴 

 

Figure 3.4 shows the maximum profit destinations for the same realizations of 

production data estimates shown on Figure 3.2 at high resolution and after going 

through the proposed mining selectivity module.  

 

 

Figure 3.4 – High resolution maximum profit destinations (left side) and mineable destinations 
maps (right side). 

 

In order to calculate the probabilistic resources for the long term resources model, we 

need to transfer the mineable dig limits at the desired selectivity from the previous 
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step to the high resolution simulated realizations with only exploration data. This is 

necessary because the actual data available at the time of resources modeling is the 

exploration data only. The resampling from the simulated realizations and reestimates 

of production data done in Chapter 2 are exclusively for determining the destinations; 

all resources must be calculated on the original simulated realizations to honour the 

actual data, not the resampled data that mimic production data. The mine will achieve 

the "true" grade from the deposit and not the estimated. 

 

Based on the dig limits transferred to the high resolution simulated realizations with 

only exploration data, the probabilistic resources for the long term model to be 

reported can be calculated, that is available as the distribution over all realizations 

from the original simulated model. For comparison, the total resources were also 

calculated directly on the high resolution simulated results, without applying selectivity 

considerations, and on the reference model that was used to generate the data in the 

first place. Figure 3.5 illustrates the distributions of resources calculated. The 

distributions of profits calculated prove that high resolution simulated realizations 

deliver a maximum profit that is not attainable at the time of mining. The total profit 

distribution calculated as a result of the framework proposed is the actual mineable 

profit; both the information and mining selectivity effects are being accounted for. The 

selectivity at the time of mining must be considered to report the recoverable 

resources. Reporting resources directly on high resolution simulated results would be 

too optimistic. 

 

Any summary models required for mine planning can be calculated on the final 

resource models: the probability to be above or below a cutoff grade, the average 

grade above the cutoff grade and so on. In the example, the probabilities of grid cells 

to be ore have been calculated. The mineable dig limits were used in this calculation, 

so the probabilities are achievable at the time of mining. Figure 3.6 shows the 

probability map calculated. The probability map on the right presents the grid cells 

where the probability to be ore is greater than 60%. This summary is very useful for 

mine planning. It can also be applied to mineral resources classification purposes. 

Different confidence thresholds for a grid cell to be ore could be assumed for each 

mineral resource category: measured, indicated and inferred.  
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Figure 3.5 – Distributions of maximum, mineable and reference resources. 

 

 

Figure 3.6 – Ore probability map (left) and the grid cells where the ore probability is greater 
than 60% (right). 
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By following the proposed framework, long term recoverable resources are calculated 

explicitly accounting for the information and mining selectivity effects and assessing 

the degree of uncertainty. The sensitivity of the resources on different mining 

selectivities and different grade control data spacing will be explored in the next 

Chapter, as well as other factors that can influence the recoverable resources 

evaluation.  
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Chapter 4. Implementation 

 

Section 4.1. Introduction 

 

This thesis proposes a framework to address two concerns in long term mineral 

resources evaluation: the information effect and the selectivity effect. The steps 

proposed to address each concern have been presented individually so far. In this 

Chapter, the combined workflow will be presented and implemented in a case study. 

First, the information effect will be addressed by anticipating the final grade control 

data that will be available at the time of mining to direct the choice of destinations of 

the mined material. Afterwards, the selectivity at the time of mining will be anticipated, 

trying to retain the most profit with a practical mining plan. The steps of the proposed 

procedure are as follows: 

 

1. Simulate high resolution realizations using the exploration drilling available at the 

time of resources modeling. This step corresponds to the traditional simulation 

paradigm. 

 

2. (a) Sample the realizations at the anticipated production data spacing to mimic 

the production data planned in the future. (b) Interpolate the variables required 

for grade control for every set of sampled final data, using the best possible set 

up for ordinary kriging. Consider the sampled data from each realization and the 

existing exploration data in the estimation. This step accounts for the information 

effect. 

 

3. (a) Calculate expected profit values for every grid cell for at least two different 

destinations of the mined material (i.e. ore and waste), depending on the final 

estimated grade. (b) Apply the mining selectivity calculations for each estimated 

grid at a chosen selectivity to anticipate future mining. This step mimics the grade 

control practice to get a different mineable dig limit for each estimated grid of 

anticipated final data. 

 

4. (a) Apply each mineable dig limit at the anticipated selectivity from the previous 

step to the corresponding high resolution simulated realization from step one. (b) 

Calculate the probabilistic resources for the long term model using these mineable 
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dig limits, that is available as the distribution over all realizations from the original 

reference simulated model. 

 

The expected profits calculated on step three of the workflow are a way of summarizing 

a value for each grid cell for different destinations of the mined material to provide a 

quantification for mineable dig limits calculation. These values do not necessarily 

reflect the actual profit that the mining practice will process at the time of mining. The 

actual profit calculation should involve more variables than the ones considered here. 

  

Figure 4.1 summarizes the steps in the proposed framework in a flowchart: 

 

 

Figure 4.1 – Flowchart that illustrates the steps in the proposed framework. 
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Section 4.2. Combined Workflow 

 

The proposed methodology to evaluate long term mineral resources is demonstrated 

through an example that represents one bench of an open pit gold deposit. This 

synthetic example provides access to the “truth”, that is, the reference model created 

to generate a dataset. The truth can be used for comparisons that can help validate 

the proposed framework. Since one bench is being considered, the example is 2-D. A 

reference model is generated via one unconditional simulated realization. The 

variogram is arbitrary and its maximum continuity direction is along azimuth 45° with 

the following model: 

 

𝛾(𝐡) = 0.05 + 0.45 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=400
𝑎ℎ𝑚𝑖𝑛=200

(𝐡) +  0.5 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=500
𝑎ℎ𝑚𝑖𝑛=300

(𝐡) 

 

The reference model is 1000 x 1000 blocks and each block is 1 x 1 x 5 m. The block 

height is equivalent to a nominal bench height of 5 m. A positively skewed  distribution 

characteristic of gold deposits is used for back transformation of grades from Gaussian 

to original units. Figure 4.2 presents the reference grade distribution and the reference 

gold grade grid model generated. 

 

 

Figure 4.2 – Reference grade distribution (left) and reference gold gridded model (right). 

 

In order to mimic exploration data, the reference unconditional simulated realization 

is sampled at a 100 x 100 m spacing. The exploration dataset created has 100 drill 

holes. The traditional long term resources evaluation paradigm is to simply estimate 
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the grades by ordinary kriging. Experimental variograms were calculated for the 

exploration dataset created in original units. The major direction of anisotropy is at 

45° azimuth. A variogram model was fitted and ordinary kriging was used to estimate 

the grades. The variogram model fitted is as follows:  

 

𝛾(𝐡) = 0.05 + 0.95 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=500
𝑎ℎ𝑚𝑖𝑛=150

(𝐡) 

 

These estimates and the resources assessed by them will be used for comparison to 

the resources evaluated by following the proposed methodology. Figure 4.3 presents 

the exploration data sampled from the simulated realization in original units and their 

estimates by ordinary kriging. 

 

 

Figure 4.3 – Location map of exploration data (left) and kriging estimated grid (right). 

 

The first step in the proposed workflow is to generate high resolution simulated 

realizations of grade using the exploration data. The exploration data was transformed 

to normal scores to simulate a hundred realizations. Normal scores experimental 

variograms were calculated following the major direction of anisotropy at 45° azimuth 

and perpendicular to it, 135°. The normal scores variogram model fitted to perform 

the simulation is: 

 

𝛾(𝐡) = 0.05 + 0.95 ∙ 𝑆𝑝ℎ𝑎ℎ𝑚𝑎𝑥=420
𝑎ℎ𝑚𝑖𝑛=160

(𝐡) 
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In order to account for the information effect, the simulated realizations are sampled 

at the anticipated production data spacing at the time of mining. To mimic a typical 

hard rock gold deposit, where the production data (dedicated grade control drilling or 

blast holes) is usually done at a closely spaced grid, the simulated realizations are 

sampled at 10 x 10 m. The one hundred datasets generated consist of 100 drill holes 

and 9,701 data that mimic production data. Figure 4.4 shows one simulated realization 

of exploration data and a location map of the production data sampled from the same 

realization. 

 

 

Figure 4.4 – Simulated realization with exploration drill holes (left) and blast holes sampled 
from it (right). 

 

Still in the information effect module of the workflow, the next step is to interpolate 

the gold grades. Blast hole sampling is normally of lower quality than exploration 

drilling and the exploration data is the only actual data available at the time of 

resources modeling. The production data too close to the exploration data is, then, 

rejected. The remaining production data and the existing exploration dataset are used 

in the gold grades estimation. Following the recommendation to minimize the amount 

of misclassified ore and waste on the grade control model proposed by Vasylchuk 

(2016), the grade control grid resolution is 4 x 4 x 5m, that is, 40% of the anticipated 

production data spacing.  

 

Experimental variograms were calculated for each dataset consisting of exploration 

and sampled production data. The major direction of anisotropy is at 45° azimuth. 

Variogram models were automatically fit and ordinary kriging was used to estimate 
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the grades. The experimental variograms calculated and the fitted variogram model 

for one dataset are shown on Figure 4.5 together with the estimated grid. 

 

 

Figure 4.5 - Experimental variograms calculated with production data and fitted variogram 
model (left) and their estimates (right). 

 

Proceeding to the mining selectivity module of the proposed framework, the expected 

profit values EP were calculated for two different destinations for the mined material, 

ore and waste, for all locations u on the bench. Expected profits were calculated for 

each grid of final data estimated previously. If the final destination for a grid cell is 

ore, its expected profit is calculated as: 

 

𝐸𝑃(𝐮; 𝑑) = ∝ ∗ 𝑔𝑟𝑎𝑑𝑒 (𝐮) +  𝐶0 ($/𝑡), 𝑑 = 𝑜𝑟𝑒, 𝐮 ∈ 𝐴 

 

Where ∝ is the slope of the grade x profit graph and C0 is the cost of sending material 

at zero grade to the processing plant. In this example, ∝ = 30 and C0 = - 15 $/t. The 

expression to calculate expected profit if the final destination of a grid cell is waste 

does not depend on the grade value, it is a fixed cost of $2/t: 

 

𝐸𝑃(𝐮; 𝑑) = −2 ($/𝑡), 𝑑 = 𝑤𝑎𝑠𝑡𝑒, 𝐮 ∈ 𝐴 

 

Expected profit calculations are done using a specified cutoff grade. A precise 

calculation could include all the costs and prices associated with the final product. The 

profits calculated for both destinations for each grid cell of estimated final data will be 
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used to calculate the maximum profit destinations at high resolution and at the chosen 

selectivity.  

 

Moving forward to the mining selectivity module of the proposed workflow, the next 

step is to get mineable dig limits at a chosen mining selectivity. The idea of this step 

is to mimic the actual grade control practice. The minimum mineable unit size 

considered for this example is 12 x 12 m, that seems to be a reasonable dimension for 

the deposit type represented here. The developed algorithm for mining selectivity 

explained in Chapter 3 is used to calculate the most profitable destination for each 

mineable unit. The mining selectivity calculations are applied to each estimated grid of 

final data. A high resolution ore and waste map of the same estimated grid of final 

data shown on Figure 4.5 is show in the left side of Figure 4.6. This high resolution 

map is purely the maximum profit destination available for each grid cell without 

accounting for selectivity at the time of mining. The mineable ore and waste map is 

showcased in the right side of Figure 4.6, after applying the selectivity calculations 

using the algorithm developed in this thesis. 

 

 

Figure 4.6 – Maximum profit destinations maps at high resolution (left) and considering mining 
selectivity (right). 

 

The proposed workflow is completed by transferring the mineable dig limits calculated 

in the mining selectivity module to the high resolution realizations simulated with 

exploration data only. This step is needed to ensure that all resources calculations are 

done over the simulated grid that uses the actual data available at the time of 

resources modeling. The resampling from the simulated realizations and reestimates 
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of final data are exclusively for determining the destinations of the mined material. No 

final resources calculations are done on the reestimated grids.  

 

Finally, the probabilistic mineral resources can be calculated. They are available as the 

distribution over all realizations from the original simulated grid with exploration data 

and considering the mineable dig limits. For comparison, the resources were also 

calculated directly on the high resolution simulated results, without applying selectivity 

considerations, on the reference model that was used to generate the exploration data 

and on the kriged grid with exploration data. A fixed density value of 2.7 g/cm3 was 

considered. The tonnage is calculated as the volume of each grid cell multiplied by the 

density. The metal content is calculated in troy ounces by multiplying the tonnage of 

each grid cell by its gold grade and dividing everything by 31.10345. Figure 4.7 shows 

the probabilistic resources distributions calculated.  

 

The cutoff grade is lower than the average grade on the bench. The smoothing effect 

of kriging leads to ore tonnes that are greater than the truth – represented by the 

reference model (black solid lines in the graphs) – in the kriged exploration data 

(orange solid lines). The larger support of the model following the proposed workflow 

(blue dashed lines) leads to ore tonnes that are greater than the ore tonnes calculated 

from the high resolution simulated realizations. The average ore tonnes given by the 

model that follows the proposed workflow is closer to the true value. Regarding the 

total profit calculated, note that high resolution simulated realizations yield a maximum 

profit that is not attainable at the time of mining. The selectivity and the data available 

at the time of mining must be considered to report the recoverable resources.  

 

Ore and waste location maps were generated for the reference model and ore loss and 

dilution maps were generated for the kriged exploration data and for all realizations 

going through the proposed workflow. The results are shown on Figure 4.8. As 

mentioned before, the precise location of ore and waste blocks is not relevant at the 

time of resources modeling. The ore and waste classification and decision will change 

at the time of mining based on real production data. One goal here is to minimize the 

classification errors to have more accurate resources reporting. 
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Figure 4.7 – Distributions of resources calculated on the reference model (black), the kriged 
estimates of exploration data (orange), the high resolution simulated realizations (red) and 

going through the proposed workflow (blue).  

 

 

Figure 4.8 – Ore, waste, ore loss and dilution location maps. 
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Summary probabilities models can also be calculated following the results of this 

workflow. For example, the probability of a grid cell to be above the cutoff grade, that 

is, to be ore, is shown on Figure 4.9. 

 

 

Figure 4.9 – Ore probability map of simulated model going through the proposed workflow. 

 

Figure 4.10 shows an overview of all steps and results of the proposed workflow for 

the case studied.
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Figure 4.10 – Overview of steps and results of the proposed workflow for the case studied.
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Section 4.3. Sensitivity Analysis 

 

4.3.1. Production Sampling Spacing 

 

In open pit mining, grade control data generally consists of blast holes or dedicated 

grade control drilling. At the time of mining, there will also normally be other types of 

additional data available to direct the choice of destinations of the mined material, 

such as face mapping of the bench being mined. In order to understand how the final 

data change the recoverable resources, the simulated realizations with exploration 

data were sampled at varied anticipated production data spacing: 10 x 10 m, 15 x 15 

m, 20 x 20 m, 25 x 25 m, 30 x 30 m, 40 x 40 m and 50 x 50 m. This grade control 

data is then used to interpolate the grade variable and generate estimated grids to go 

through the mining selectivity effect module of the framework. Figure 4.11 presents 

ore, waste, ore loss and dilution location maps of one realization of the workflow for 

increasing final data spacing to illustrate the exercise realized. 

 

The deposit is subject to more ore/waste classification errors with wide production data 

spacing, increasing ore loss and dilution. The cumulative distributions of the 

percentages of ore loss and dilution for all realizations in the proposed workflow are 

shown in Figure 4.12 for varying production data spacing. This graph shows the 

increasing degree of misclassification of ore and waste blocks for decreasing 

information. There will always be a certain amount of uncertainty left at the time of 

mining because the grade control sampling is imperfect and the selection of ore and 

waste will always be done with limited information. Nevertheless, the ore and waste 

classification errors are minimized by sampling the simulated realizations at finer grids. 

The ore and waste selection errors are critical to the overall resources in the large 

production volume. The information effect is related to the spacing of grade control 

data: closely spaced blast hole drilling provides more information about the deposit 

and improved selection, and widely spaced production sampling results in worse 

classification, compromising the mineral resources assessment. 
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Figure 4.11 – Ore, waste, ore loss and dilution location maps of one realization of the workflow 
for increasing grade control data spacing. 

 

Figure 4.12 – Percentages of dilution and lost ore for varying production data spacing. 
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The total profit of all realizations for each grade control data spacing is calculated and 

compared to the maximum profit. The maximum profit is with high resolution 

simulated realizations with exploration data. As an effect of increasing misclassification 

of ore and waste, profit decreases as less information is available. Figure 4.13 shows 

the decrease in the profit that is achievable at the time of mining for widely spaced 

production sampling as a proportion of the maximum profit. The actual cost of 

acquiring the information is not being considered here. How the information available 

changes the resources and profit are being assessed. 

 

 

Figure 4.13 – Decrease in total profit for widely spaced production data. 

 

4.3.2. Mining Selectivity 

 

The anticipated selectivity at the time of mining is represented by a mineable size unit 

in the proposed workflow. In practice, selectivity depends on a series of factors that 

can include, but are not limited to: the equipment dimensions, mining practice, other 

operational factors and the geological variability of the deposit. The influence of 

changing anticipated mining selectivity on the overall resources of the bench studied 
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is analyzed. The base case scenario shown on Section 4.2 considers a minimum 

mineable unit size of 12 x 12 m. Six increasing minimum mineable unit sizes were 

tested: 20 x 20 m, 28 x 28 m, 36 x 36 m, 44 x 44 m, 52 x 52 m and 60 x 60 m. The 

selectivity along the height of the mineable unit is the bench height, 5 m, and is not 

changed in this study. Figure 4.14 presents the mineable ore and waste location maps 

for the selectivities tested. A high resolution ore and waste map of the same estimated 

grid of final data is also shown in Figure 4.14. 

 

 

Figure 4.14 – Ore and waste location maps for one realization for increasing minimum 

mineable unit size. 

 

In general, increasing the mineable unit size leads to an increase of lost ore and 

dilution at the time of mining. In order to mine larger volumes, the mining operation 
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is forced to take more waste together with ore or to leave more ore as waste. Figure 

4.15 presents cumulative distributions of the percentages of dilution and ore loss for 

a hundred realizations generated in the selectivities evaluated. Dilution and ore loss 

are larger for larger volumes mined. It is also interesting to point out that the common 

practice of assigning a fixed dilution factor in the hope to account for the information 

effect and selectivity of mining practice does not represent the truth. In reality, the 

dilution can vary a lot and the choice of a minimum mineable size needs to incorporate 

this variation and the allowable dilution at the time of mining. 

 

 

Figure 4.15 – Percentages of dilution and lost ore for varying mineable unit sizes. 

 

The larger percentages of dilution and ore loss reflect on the total profit given by the 

bench. The total expected profit given by all realizations for each mining selectivity 

was calculated compared to the maximum profit. The maximum profit is given by the 

high resolution simulated realizations with exploration data. Figure 4.16 presents the 

percentages of the maximum profit that is achievable at the time of mining for each 

mineable unit size analyzed. This shows that calculating the profit assuming free 

selection of high resolution blocks of ore and waste, without accounting for any mining 

practice and equipment limitations, overstates the profit achievable at the time of 

mining. 
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Figure 4.16 – Percentages of maximum profit achievable at the time of mining and the 
minimum mineable unit sizes. 

 

By anticipating the final data spacing and the selectivity at the time of mining, it is 

possible to predict and quantify the percentage decrease relative to the maximum 

profit that can be expected at the time of mining. The approximate actual profit that 

will be attainable at the time of mining given the final production data spacing and the 

future selectivity can be calculated and the mineral resources can be assessed and 

reported accordingly. 

 

4.3.3. Exploration Data Variogram 

 

The ore and waste classification is also sensitive to the normal scores exploration data 

variogram used in simulation. Using the same data histogram as before, the entire 

workflow was tested for three different configurations of the normal scores exploration 

data variogram model. The exploration data and production data spacing are the same 

as the base case scenario being used for this exercise (100 x 100 m and 10 x 10 m 

respectively) as well as the mineable unit size, 12 x 12 m. The exploration data 

variogram models are isotropic and have one spherical structure, with varying ranges 
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and nugget effect. A range three times the exploration data spacing, that is 300 m, 

considered a long range and zero nugget effect; a range twice the exploration data 

spacing, 200 m, that is a short range, and no nugget effect, and, finally, a short range 

and 50% of nugget effect. The variogram models are presented in the equations below 

and in Figure 4.17. 

 

𝛾(𝐡) = 0.0 + 1.0 ∙ 𝑆𝑝ℎ𝑎ℎ=300(𝐡) 

 

𝛾(𝐡) = 0.0 + 1.0 ∙ 𝑆𝑝ℎ𝑎ℎ=200(𝐡) 

 

𝛾(𝐡) = 0.5 + 0.5 ∙ 𝑆𝑝ℎ𝑎ℎ=200(𝐡) 

 

 

Figure 4.17 – Exploration data variogram models used in the workflow. 

 

In order to understand the behaviour of the ore and waste classification for different 

exploration data variograms, histograms and location maps of the probabilities of a 

grid cell to be ore after going through the entire workflow were generated for the three 

exploration data variograms tested. Figure 4.18 presents the ore probabilities location 

maps and distributions. 
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Figure 4.18 – Ore probabilities locations maps and histograms for three different exploration 
data variogram models: long range variogram (top), short range variogram (center) and high 

nugget effect variogram (bottom). Note that the Y axis scale is the same for all histograms of 
ore probabilities to showcase their differences. 

 

Figure 4.18 shows how the ore and waste classification changes as the exploration 

data variograms change for a fixed data histogram. It is possible to note, especially in 
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the histograms of ore probabilities, that there is more material being mixed for higher 

nugget effects, whereas for long range variograms it is easier to correctly classify the 

material. These results are expected. The more continuous the variogram, the more 

certainty there is in the ore and waste selection process. The higher the nugget effect, 

there is more uncertainty in the definition of ore and waste contacts.  

 

The ore and waste selection affects the total profit of the bench. Figure 4.19 shows 

how much the total profit is being affected by the changes in the exploration data 

variograms relative to the maximum profit available as high resolution blocks. It is 

possible to notice that the high nugget effect situation is especially critical to the bench 

profit. In fact, realizations show only loss, no profit is being achieved by mining the 

bench. Knowing the characteristics of the exploration data variogram, it is possible to 

anticipate how hard the selection process of ore and waste can be at the time of mining 

and to more correctly evaluate the long term resources. 

 

 

Figure 4.19 – Percentages of maximum profit achievable at the time of mining for changes in 
the exploration data variogram. 

 

4.3.4. Cutoff Grade Relative to the Grades Distribution 

 

The impact of the cutoff grade relative to the estimated grades distribution on the 

overall resources for the bench is also investigated. The same reference distribution is 

used with a mean grade of 0.493 g/t. The workflow was adapted for a cutoff grade 

above the reference distribution mean grade, 0.73 g/t. Figure 4.20 illustrates the 
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reference grade distribution and the expressions used to calculate the expected profits 

giving a cutoff grade of 0.73 g/t. 

 

 

Figure 4.20 – Reference grade distribution (left) and expected profits for ore and waste. 

 

The recoverable mineral resources in the bench are sensitive to the cutoff grade 

relative to the grade distribution, combined with the smoothing effect present in the 

production data kriging. Figure 4.21 presents the resources calculated in the base case 

scenario, where the cutoff grade is below the mean grade of the bench, and the 

resources calculated in this scenario, where the cutoff grade is above the mean grade 

of the bench. The smoothing associated with kriging the production data places more 

material closer to the mean, that is, below the cutoff grade. Because the cutoff grade 

in this case is above the mean grade, the mineable ore tonnes are less than the base 

case scenario, but the mean grade is higher. That is, less ore tonnes may be mined, 

with a higher mean grade.  
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Figure 4.21 – Distributions of resources calculated on the base case scenario (cutoff below 
mean grade of the bench – blue) and for the cutoff above the mean grade (orange). 

 

Section 4.4. Conclusion 

 

There are a large number of factors that can influence the calculation of recoverable 

resources and the results of this workflow. The factors shown here represent a few 

that could have a large impact on the recoverable resources of the bench. In practice, 

a sensitivity study is not straightforward and should include the interactions between 

the isolated factors chosen here. Nevertheless, the importance of the assessment of 

the impact of these factors on the resources is clearly shown, as well as the importance 

of anticipating their impact at the time of resources modeling with exploration data 

only. 

 



62 

Besides a prediction of recoverable mineral resources closer to what will be mined in 

the future, the results of the workflow provide assessments of both local and global 

uncertainty on the resources. The local model of uncertainty is represented by ore 

probability maps, easily achievable using the results of the workflow, as shown in 

Figure 4.9. The global model of uncertainty is represented by the uncertainty in the 

global recoverable resources assessed in the workflow. The distribution of resources 

calculated using the mineable dig limits resulted from the workflow were shown in 

Figure 4.7. These results can be used for reporting purposes, disclosing a degree of 

uncertainty, as recommended by the JORC Code (Table 1.1). Using the mineable dig 

limits to calculate the resources would be equivalent to using an economic cutoff grade 

in a traditional approach. Then, the global resources are presented in terms of tonnes 

of ore, ore grade and metal content. Table 4.1 shows an example of how the 

uncertainty could be disclosed in a mineral resources evaluation. It consists of the 

average value of each element calculated and other two values that correspond to the 

P10 (10th percentile) and P90 (90th percentile) of the distribution derived from the 

realizations and represent low and high “boundaries” for the resources. Although these 

percentiles are most commonly used in the petroleum field, they provide a valuable 

understanding of the distribution of uncertainty. 

 

Table 4.1 – Overall mineral resources of the bench studied and the uncertainty on it. 

 

 

Other values could also be retained to assess the uncertainty in the overall resources, 

such as the probability of the reported values to be within the plus or minus 15% 

interval of the average value. The important point here is that, in the proposed 

approach, by not summarizing the simulated realizations into one model, the 

uncertainty can be assessed. 
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Chapter 5. Underground Mining Considerations 

 

Section 5.1. Introduction 

 

According to the “Mine Employment” report from the U.S. Department of Labor's Mine 

Safety and Health Administration (MSHA, 2016), in 2015, of all employees within the 

mining industry in the United States territory, there were approximately 78% 

employees working in surface mining operations (excluding office workers) compared 

to 22% in underground mining. These numbers can be extrapolated to mining 

operations worldwide: the majority of operations is within a surface mining context. 

The lower costs and lesser safety constraints compared to underground mining make 

surface mining generally more attractive to mining companies. On the other hand, as 

large lower grade and low cost operations become more rare and environmental 

constraints more strict, the proportion of underground mining operations will likely 

increase in the future. The framework developed to account for the information and 

mining selectivity effects in long term mineral resources evaluation could be extended 

to an underground mining context. 

 

There are a large number of underground mining methods available. A specific deemed 

representative underground mining method was chosen for the application of the 

framework proposed in this thesis. Consider the context of sublevel conventional stope 

mining of a tabular vein deposit. Sublevel stoping is a mining method where ore is 

extracted and the stope is, generally, left empty. It is applied to vertical or steeply 

dipping regular-shaped orebodies composed by competent rock that require little or 

no support (Gertsch & Bullock, 1998; Haycocks, Aelick, & Hartman, 1992). In large 

orebodies, there can be two or more stopes separated by part of the ore that is left in 

place to serve as support and prevent the stopes from collapsing (Gertsch & Bullock, 

1998). In some cases, these pillars can be partially or fully recovered at the final stage 

of the mining operation. The actual mining takes place at levels at predetermined 

vertical intervals, hence the name sublevel stoping. The ore is drilled and blasted from 

the sublevels, falling to the bottom of the stope, where it is transported out of the 

mine (Gertsch & Bullock, 1998). Typically, stoping mining starts at the bottom of the 

stope and moves upwards to facilitate the ore flow in the stope and transportation. 
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Underground mines present a different challenge in grade control than open pits; the 

production drilling spacing is usually less than in open pit mining (blast holes) and the 

ore/waste decision is typically made under larger uncertainty. The production drilling 

in sublevel stoping consists of longhole drilling. The longholes can be drilled as ring 

drilling from sublevels, where the entire cross section of the stope is drilled following 

a ring pattern. In narrow orebodies/veins, parallel holes or fan drilling is normally used 

instead of ring drilling (Gertsch & Bullock, 1998). Longhole blasting is more efficient 

for orebodies at least 6 m wide (Haycocks et al., 1992). The concept of an SMU cannot 

be applied to sublevel stoping; the ore/waste selection process happens at the scale 

of the stope. The stope boundaries must be regular, since there is no easy way of 

avoiding dilution caused by waste inclusions and irregular orebodies in sublevel stoping 

(Haycocks et al., 1992). The production drilling data is the basis to define which stopes 

are going to be mined and normally the entire stope is classified as ore or left as waste.  

 

The most common approach used for resource calculation in sublevel stoping is to 

design the stopes on an estimated deterministic model and to assign a fixed dilution 

factor to account for the selectivity of the mining practice (Neufeld et al., 2007). As 

discussed in Chapter 2, this approach combines information and selectivity 

considerations into one general parameter. This is known to be optimistic. Another 

approach could be to use geostatistical simulation with exploration data to assess the 

uncertainty in the grades, design a fixed stope and report the resources inside this 

fixed stope. This would consider the uncertainty only on grade values, but not on the 

stope location, that depends essentially on the grade values and on the orebody 

location and would yield a pessimistic resource assessment. A third approach could be 

to adapt perfectly each stope location to a simulated grade/vein realization. By not 

considering the influence of future information on the stope location, this would be too 

optimistic. The framework proposed in this research addresses the information and the 

mining selectivity effects. 

 

The framework developed for long term resources reporting in underground mining 

also consists of two modules, one designed to address the information effect and the 

other to account for the mining selectivity effect. As in open pit mining, the only 

information available at the time of resources modeling is exploration drilling. For the 

application of the proposed framework in the context of underground mining, 

anticipating the final data configuration that will be available at the time of mining to 
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guide the ore/waste classification is also necessary. The final data available for sublevel 

stoping is summarized into two categories in this research: openings (or sublevels) for 

stope development and additional drilling. The selectivity aspect of the framework, 

since the concept of an SMU cannot be applied to sublevel stoping, is represented 

entirely by the configuration of the stope itself, its size and orientation. Figure 5.1 

presents schematic cross section views that illustrate typical initial and final data 

configurations of a region to be mined by sublevel stoping in a tabular vein deposit. 

The extension of the framework to the sublevel stoping context considers one stope at 

a time and predicts the recoverable resources within that stope individually, accounting 

for the information and mining selectivity effects. Interactions between the mineable 

areas within the mineralized vein are not considered and represent an area of future 

work. 

 

 

Figure 5.1 – Schematic cross section views illustrating typical initial (left) and final (right) data 
configurations of a subvertical tabular vein deposit. 

 

In order to characterize the uncertainty in the geological representation of a tabular 

vein, the workflow for vein geometry modeling under uncertainty developed by 

Carvalho and Deutsch (2017) is used here. This work consists on computing multiple 
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simulated realizations of vein boundaries and surfaces. The methodology starts by 

creating a local coordinates system to match the vein geometry and anisotropy to the 

Cartesian grid system. Geometry data need to be imputed where inclined drill holes 

make it difficult to correctly calculate the vein thickness. Then, surface simulation is 

carried out using an unstructured tetrahedron grid that produces accurate surfaces to 

efficiently match the vein geometry. This workflow for vein geometry modeling creates 

multiple realizations of the vein geometry (hangingwall and thickness) and grade. 

Carvalho and Deutsch (2017) can be referred to for further details on the 

implementation of the modeling workflow. The results from this workflow are the 

starting point of the underground application of the framework developed in this thesis. 

The multiple realizations of vein surfaces and boundaries generated by the workflow 

proposed by Carvalho and Deutsch (2017) will serve as the input data in this thesis. 

 

Section 5.2. Proposed Framework for Information Effect in 

Sublevel Stoping 

 

Prior to applying the proposed workflow, multiple realizations of surfaces and 

boundaries of a mineralized tabular vein were generated through the workflow 

proposed by Carvalho and Deutsch (2017). These realizations use only the exploration 

drilling data that is available at the time of modeling. The next step is to choose a 

location of the vein that has a potential to be mined, that is, a location where a stope 

could be placed. The stope dimensions need to be specified: the length along the strike 

of the orebody, the height between sublevels and the elevations of the sublevels. These 

parameters are based on dimensions that would be chosen based on other engineering 

studies.  

 

With these parameters fixed, to account for the information effect, it is necessary to 

sample one vein realization at a time, from the ones computed through the vein 

uncertainty workflow, at the stope location chosen before. The sampling takes place 

at the anticipated production drilling spacing to mimic the production data planned in 

the future. Typically, the production drilling will follow a ring or fan-shaped pattern. 

The openings/sublevels provide additional information at the time of mining.  

 

The intersections from the production (drilling and openings) and exploration data with 

the vein surface in each surface realization are used to account for the information 
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effect. New vein surfaces will be interpolated using all data in the area being studied. 

This step is equivalent to kriging the anticipated production data in benches of open 

pit mining. This will provide a different vein surface for each realization with anticipated 

final data at the location considered. Figure 5.2 presents schematic cross section views 

of a subvertical vein deposit illustrating the intercepts acquired by sampling one 

surface simulated realization and the interpolation of those intercepts.  

 

 

Figure 5.2 – Schematic cross section views of a mineralized vein illustrating the data 
intercepts with a vein surface realization (left) and the interpolated vein surface (right). 

 

Sampling the surface realizations and interpolating the sampled data will provide an 

approximation of the final vein geometry that would be found at the time of mining. 

The key idea of the proposed application in underground mining is to show that, by 

resampling a set of surface realizations at the final data spacing, there will be a more 

accurate prediction of the resources extracted and dilution for the stope 

parametrization. Additionally, the proposed workflow provides a measure of 

uncertainty for risk management. 
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Section 5.3. Proposed Framework for Mining Selectivity Effect in 

Sublevel Stoping 

 

As explained above, the concept of an SMU is not normally applied to sublevel stoping. 

Typically, the ore/waste classification takes place at the scale of the stope, that is, the 

entire stope is classified as ore or left as waste. Thus, the configuration of the stope 

itself, its size and orientation, defines the selectivity aspect of the framework proposed 

in this thesis. The mining selectivity module on this variation of the resources modeling 

framework consists, then, in optimizing the boundaries of the stope. The stope must 

be parameterized in a way that will minimize ore loss and dilution.  

 

Because neither stope sequencing nor the interactions between the mineable areas 

within the mineralized vein are being considered, part of the dimensions/locations that 

define a stope are predefined. They are the length along the strike of the orebody, the 

height between two sublevels and the elevations of the sublevels. The stope 

boundaries must be regular given drilling and blasting constraints, that is, the 

longholes are drilled for the entire stope height at once. A stope is defined, then, by 

eight 3-D location points. Figure 5.3 presents a schematic perspective view of a stope 

in a steeply dipping vein and illustrates the specified dimensions of the stope (L - 

length along the strike, H - height between two sublevels, Zupper and Zbottom - sublevels 

elevations) and the eight 3-D points that define it, numbered from 1 to 8. 

 

It is convenient to discretize the interpolated vein in grid cells for a regular volume 

surrounding the vein, the bounding box in Figure 5.3. The grid cells inside and outside 

the vein are assigned an indicator value (i.e. 1 is inside the vein and 0 is outside). The 

starting point of the stope configuration is a determination of points 1 to 8. The grid 

cells inside and outside this stope configuration are identified. The goal of the stope 

optimization is to minimize ore loss and dilution. That is, the objective is to maximize 

the proportion of grid cells inside the vein and inside the stope and to minimize, at the 

same time, the proportion of grid cells inside the vein and outside the stope and outside 

the vein and inside the stope. These categories of material are illustrated in Figure 5.4. 
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Figure 5.3 – A schematic perspective view of a stope in a steeply dipping mineralized vein. 

 

 

Figure 5.4 – Categories of material identified for stope optimization. The plus sign indicates 
the category that needs to be maximized and minus signs indicate categories to be minimized.  
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Since the sublevel elevations and the stope height and length are fixed, the 

optimization varies the location of the key eight points along the vein thickness. The 

only locations being varied are perpendicular to the vein. Figure 5.5 shows a schematic 

perspective view of a stope that illustrates a case where the stope orientation is 

consistent with the original coordinates system.  

 

 

Figure 5.5 – A schematic perspective view of a stope optimization where the stope orientation 
is consistent with the original coordinates system. The key eight points that define the stope 

vary along the X axis only. 

 

In this case, the eight points vary along the X axis only, Y and Z locations are fixed. 

Consider small increments (i.e. the size of the grid resolution) in the location of each 

point, from 1 to 8, in the X axis. For each change in a point location, the stope 

hangingwall and footwall are triangulated again, as shown in Figure 5.5. After each 

new stope triangulation, the value of the objective function is recalculated as: 

 

𝑂 =  𝑃𝑖𝑛,𝑖𝑛 −  𝑃𝑖𝑛,𝑜𝑢𝑡 − 𝑃𝑜𝑢𝑡,𝑖𝑛 
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Where the subscript follows the format stope/vein and 𝑃𝑠𝑡𝑜𝑝𝑒,𝑣𝑒𝑖𝑛 is the proportion of 

grid cells inside or outside the stope and the vein. The recalculated value of the 

objective function is stored every time it is larger than the last one stored. Due to the 

impractical number of possible combinations between the possible locations of each of 

the eight points, a maximum number of iterations is chosen to retriangulate the stope 

and recalculate the value of the objective function. 

 

At the end of this workflow, there will be L optimized stope boundaries, L being the 

number of surface realizations generated as the input of the workflow. The extension 

of the framework to the sublevel stoping context considers one stope at a time and 

predicts the recoverable resources within that stope individually, accounting for the 

information and mining selectivity effects. Interactions between the mineable areas 

within the mineralized vein are not considered and represent an area of future work. 

 

Section 5.4. Implementing the Proposed Framework in Sublevel 

Stoping 

 

An example is used to illustrate the proposed framework to account for the information 

and mining selectivity effects in sublevel stope geometry. The example consists of an 

epithermal vein mineralization of a silver deposit. The orebodies in this deposit are 

characterized for being largely confined to sub-vertical structures, which correspond 

to a typical use of sublevel stope mining. For convenience, a local coordinates system 

that matches the vein geometry is used. The dataset consists of 14 exploration 

drillholes that intersect the main vein structure. The drillholes dataset contains the X, 

Y, and Z locations of each drillhole collar, survey measurements of the sampled 

intervals and silver grades. Figure 5.6 shows perspective and section views of the main 

vein structure and the exploration data. 
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Figure 5.6 – Perspective (left) and section (right) views of the vein and exploration data.  

 

Following the workflow for vein geometry modeling proposed by Carvalho and Deutsch 

(2017), a hundred realizations of surfaces and boundaries of the tabular vein were 

generated. These realizations use only the exploration drilling data that is available 

now, at the time of modeling. The application of the workflow proposed in this thesis 

is particularly interesting for deposits in an exploration stage and with little exploration 

data such as the one used in this example. A region of the vein that has a potential to 

be mined and where a stope could be placed was chosen. Based on typical stope 

dimensions for tabular vein deposits, the stope dimensions were defined as: 50 m 

along the vein strike, 30 m height between the two sublevels with sublevel elevations 

of 720 m and 750 m. Figure 5.7 shows cross section views of two surface realizations 

generated and the area chosen for stope placement in perspective. The region chosen 

for stope placement does not have any exploration data that intersects it. This region 

of the vein is associated with a large uncertainty, so it is of particular interest to have 

the framework applied to help understand the possible stope variations in geometry 

and volume. 
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Figure 5.7 – Cross section views of two surface realizations and stope bounding box in 
perspective. 

 

The next step is to sample a vein surface realization at the anticipated production data 

spacing to mimic the production drilling and openings for stope development planned 

in the future. The sampling takes place at the front face and at the back of the possible 

stope location. Three production drillholes were “drilled” following a fan-shaped pattern 

and the openings for stope development, the sublevels, are horizontal. One hundred 

unique datasets are sampled consisting of the intersections between the production 

(drilling and openings) and exploration data with the hangingwall and footwall of the 

vein surface in each surface realization. The hangingwall and footwall intercepts were 

then interpolated to form new vein surfaces. Following these steps, there will be a 

different vein surface for each simulated realization with anticipated final data at the 

location considered. Figure 5.8 presents a perspective view of one production dataset 

sampled from a vein surface realization and the interpolations of the hangingwall and 

footwall for the same realization. 
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Figure 5.8 – Perspective view of production data intercepts and vein surface interpolation. 

 

The intersections between the sublevels and the vein hangingwall and footwall surfaces 

were identified. There are four points at the stope front and four points at the back. A 

bounding box surrounding the vein volume was generated and its volume was 

discretized with high resolution grid cells of 1 x 1 x 1 m. An indicator column was 

created to identify the grid cells inside the vein (1) and the grid cells outside the vein 

(0). Another indicator column was created to identify the grid cells inside (1) and 

outside (0) the stope. The first stope configuration tested is the one formed by 

triangulating the eight intersection points between the sublevels and the vein 

hangingwall and footwall. The goal is to minimize ore loss and dilution, that is, to 

maximize the proportion of grid cells inside the vein and inside the stope (both 

indicator columns with a value of 1) and to minimize the proportion of grid cells inside 

the vein (vein indicator column as 1) and outside the stope (stope indicator column as 

0) and outside the vein and inside the stope. A fixed value is assigned to the grid cells 
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inside both the vein and the stope, in this example 10 units, whereas the grid cells 

inside the vein and outside the stope or vice versa are assigned a value of -1 units. 

These values are arbitrary and their only role is to quantify the value of the objective 

function. They are equivalent to the expected profit value of different destinations for 

the mined material assigned to the grid cells in the open pit mining application of the 

framework. As mentioned before, the problem of stope placement is related to 

geometrical constraints derived from the vein shape and not to a minimum mineable 

unit size, so the expected profit values are not applied for sublevel stoping in this 

research. An area of future research would be to directly account for the value of the 

ore and the costs incurred by taking dilution. 

 

Keeping the sublevel elevations and the stope height and length fixed, small 

increments on the size of the grid resolution were applied to the location of each stope 

definition point along the vein thickness. The only dimension being varied is 

perpendicular to the vein. For each change in a point location, the stope hangingwall 

and footwall are retriangulated. Following each new stope triangulation, the new value 

of the objective function is calculated. The final objective function value is updated 

every time it is larger than the last one stored. A maximum number of iterations and 

increments for the points locations is chosen as 6000 to maintain reasonable 

computational time. The stope configuration that returns the largest value for the 

objective function among the 6000 iterations is the optimized stope for that realization. 

Figure 5.9 shows a graph of the objective function value every time it is updated versus 

the iteration number for two realizations. It is possible to see that the number of 

iterations chosen achieves a stable high value of the objective function. 

 

The stope optimization is done individually for each reinterpolated vein surface with 

the anticipated production data. At the end, there are a hundred optimized stope 

boundaries. Figure 5.10 shows a perspective view and a cross section of one final stope 

configuration for a reinterpolated vein surface. As shown by this stope configuration, 

the stope optimization is a compromise between avoiding dilution and leaving behind 

as little ore as possible. Depending on the complexity of the vein shape, this 

compromise is more easily achieved or not. 
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Figure 5.9 – Objective function value versus iteration number for two realizations. 

 

 

Figure 5.10 – Perspective view (left) and cross section (right) of optimized stope boundaries 
for one reinterpolated vein surface. 
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The volumes of the optimized stopes vary depending on the reinterpolated vein 

surface. This variation corresponds to the degree of uncertainty in the stope volumes. 

In order to quantify it, the tonnage of each stope is calculated, considering a fixed 

density value of 2.7 g/cm3. Figure 5.11 presents the stopes tonnage distribution for all 

reestimated vein surfaces. The stope tonnage can be as low as 14,400 t and as large 

as 86,100 t. The average tonnage of the stopes is 34,600 t.  

 

 

Figure 5.11 – Stopes tonnage distribution for all reestimated vein surfaces. 

 

A summary of all expected ore loss and dilution within the optimized stopes is also 

calculated. Ore losses and dilution are calculated as a proportion relative to the total 

volume of the optimized stope for each realization, so the values are expressed as 

percentages of stope volume. Figure 5.12 presents the distributions of proportions of 

ore loss and dilution relative to the stopes volume. This calculation can assist the 

identification and minimization of ore loss and dilution at the time of mining. 
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Figure 5.12 – Ore loss (left) and dilution (right) relative to the optimized stope volume for 
each realization. 

The probability of a grid cell to be within the optimized stopes generated is also 

calculated. Figure 5.13 shows perspective and cross section views of the probabilities 

of every grid cell of being inside the optimized stopes generated for each realization of 

the proposed framework. In general, the probabilities are low. The maximum value is 

0.35. This is expected due to the scale dependency of uncertainty. The region being 

studied is a small portion of the entire mineralized vein. This summary is useful for 

mine planners to identify critical areas that require further investigation (i.e. more 

data) before placing a stope. 

 

 

Figure 5.13 – Perspective (left) and cross section (right) views of the probability of a grid cell 
to be inside the optimized stopes for a hundred realizations. 
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The large variability in the tonnages of the stopes generated and presented in Figure 

5.11 indicates that the stope height used for this exercise is probably not the most 

appropriate choice considering the configuration of this deposit at this specific location. 

Further investigation is suggested in order to make a final decision, but this constitutes 

an important measure of uncertainty for any mineral deposit, especially tabular veins 

in exploration stages. As with the open pit mining implementation, this workflow is not 

intended for final grade control. The ore losses and dilutions assessed here are not 

final. The framework is proposed to assess the uncertainty in the resources at the time 

of resources modeling, when only exploration data is available. In most cases, this is 

the time when crucial decisions generally need to be made, such as the continuation 

(or not) of investment in a mining asset. 

  



80 

Chapter 6. Conclusions and Future Work 

 

Section 6.1. Problem Review 

 

The most common approach used in the mining industry to evaluate mineral resources 

is to estimate the grades at a block scale using ordinary kriging and report estimates 

from this deterministic model. Kriging is locally accurate, which is fundamental for final 

selection during grade control. At the time of mining, there must be a minimization of 

misclassification of ore and waste blocks. However, the mineral resources calculated 

with kriging are a smooth representation of the actual distribution of grades at block 

scale (Journel & Kyriakidis, 2004). Besides, there is no uncertainty assessment on 

resource models reported with kriging. 

 

Geostatistical simulation is an alternative to kriging. It provides a complete model of 

uncertainty, but its use is still not widespread in the mining industry. Unlike kriging, 

simulation reproduces the variability of the mineral deposit (Journel & Kyriakidis, 

2004). In order to properly assess the recoverable resources and reserves, the block 

estimates should show the same tonnes of ore, tonnes of waste and grade of ore as 

will be encountered at the time of mining. The common practice when simulation is 

used is to summarize the simulated realizations into one model, but the uncertainty is 

lost by following this approach. To account for resource uncertainty, it has been 

proposed (Deutsch, 2015) that the simulated realizations be summarized as late as 

possible. 

 

Simulated realizations are calculated at high resolution and quantify the uncertainty at 

the data scale, not at the actual mining scale. Mineral resources are evaluated at a 

specific time considering only the information available at that time. Selectivity at the 

scale of the data and perfect knowledge of the grade at the time of mining would be 

assumed by reporting resources directly on high resolution simulated realizations. The 

assumption of perfect knowledge of the grade in the future is not correct because there 

will always be uncertainty left at the time of mining since even the grade control 

sampling is imperfect. As more or better information becomes available at the time of 

mining, the uncertainty reduces. The decrease in uncertainty from the resources model 

to the time of mining is known as the information effect. In addition to the anticipated 

information that will be available at the time of mining, a well calibrated long term 
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mineral resources model should account for the selectivity of future mining. The mining 

selectivity effect can be defined as the scale or support that would match future mining 

practice and geological constraints. The greatest profit is available with free selection 

of high resolution blocks of ore and waste, but this is unrealistic.  

 

The traditional framework for mineral resources evaluation considers the SMU size 

alone to account for the information effect, the selectivity of future mining and the 

remnant uncertainty at the time of mining. It is a common practice to increase the 

SMU size to account for imperfect final data and to assume no remnant uncertainty in 

the future (Leuangthong et al., 2003). The long term model generated as a result of 

using a large SMU size and assuming no remnant uncertainty at the time of mining 

may be too optimistic. In contrast, if the actual mining practice can achieve higher 

selectivity, the model may be too pessimistic. Assigning a fixed dilution factor is also 

common to try to account for selectivity of future mining and imperfect future 

information (Neufeld et al., 2007). The problem is that both solutions combine the 

information effect and selectivity of future mining into one general parameter. This is 

not the best approach because the information effect is closely related to the 

smoothing effect of kriging with widely spaced exploration data and the selectivity and 

SMU size strongly depends on dilution. 

 

Reconciliation between the long term resources model and the grade control model 

will be a key feature at the time of mining. It should be considered when generating 

the long term resources model. Reporting resources using a large SMU size creates a 

disconnection between the two models. The actual mining takes place at a more 

detailed resolution than the large SMU size normally used for resources reporting. The 

motivation behind this research is the fact that anticipating the information available 

at the time of mining and the selectivity of future mining is not directly considered in 

mainstream long term recoverable resources modeling.  

 

Section 6.2. Contributions 

 

The main contribution of this thesis is a framework that will properly forecast 

recoverable resource estimates by explicitly accounting for the information and mining 

selectivity effects. By following the proposed framework, the prediction of recoverable 

resources at the time of resources modeling will be closer to the material that will be 
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actually mined in the future. In order to explicitly address these two concerns, the 

proposed framework consists of two separate modules. The first module is designed 

to account for the information effect and the second for the mining selectivity effect. 

 

The information effect is accounted for by anticipating the additional production data, 

represented by blast holes or dedicated grade control drilling, that will be available at 

the time mining to guide the destination for the mined material (i.e. ore or waste). 

Further details on the steps of this module of the methodology are presented in 

Chapter 2. The selectivity effect is addressed by mimicking the grade control procedure 

to get mineable dig limits at a chosen selectivity, represented by a minimum mineable 

unit size. This module is presented in Chapter 3, including a description of the 

algorithm developed for mining selectivity calculations in open pit mining. The 

proposed methodology does not introduce any bias in the resources calculations, is 

effective at anticipating information and selectivity considerations and can be 

straightforwardly applied as a resources modeling workflow. 

 

The proposed methodology was mainly designed for open pit mining. Nevertheless, 

underground mining has become increasingly relevant in worldwide mining. For this 

reason, the proposed methodology was adapted to underground mining in Chapter 5, 

more specifically to sublevel stoping of a tabular vein deposit. This extension also 

consists of two modules to account for the information and mining selectivity effects. 

The final data to be anticipated in the context of sublevel stoping are openings (or 

sublevels) for stope development and additional drilling. The selectivity aspect is 

represented by the configuration of the stope itself, defined by its size and orientation 

relative to the mineralized vein. Then, the mining selectivity module consists of 

optimizing the boundaries of the stope in a way that will minimize ore loss and dilution. 

Details of the procedure are presented in Chapter 5. An application of the methodology 

for sublevel stoping for a real data set of a tabular vein deposit is shown in Chapter 5. 

 

Another important result of the proposed methodology is a model of uncertainty in the 

recoverable mineral resources assessed. In addition to a prediction of long term 

resources that will be closer to the mined material in the future, there is an uncertainty 

assessment for risk management by following the framework proposed. The case study 

presented in Chapter 4 follows the complete framework for open pit mining and shows 

how the uncertainty is assessed by successfully accounting for the information and 
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mining selectivity effects in the long term resources evaluation. The multiple 

realizations generated at the beginning of the proposed framework are used as an 

ensemble; they are not summarized into one model as with the traditional approach. 

The workflow is set in a way that each step is repeated for each realization and 

uncertainty is carried all the way to the end.  

 

The proposed framework allows the practitioner to assess local and global uncertainty. 

The local model of uncertainty is represented by ore probability maps, that are easily 

achievable using the results of the workflow. Ore probability maps are generated by 

visiting one location at a time over all realizations to determine local distributions of 

uncertainty. The average value of the ore and waste flags (1 or 0, respectively) is then 

calculated for the location. This is done at all locations. A map of probabilities of ore 

can then be plotted. The same technique could also be used for classification of 

resources. For example, one could decide what should be the minimum probability of 

a grid cell to be ore for it to be considered measured resource and so on. The global 

model of uncertainty is represented by the uncertainty in the global recoverable 

resources assessed in the workflow. The global resources are calculated for each 

realization of the workflow using the mineable dig limits resulted, that are equivalent 

to using an economic cutoff grade in a traditional approach. The global resources can 

be presented in terms of ore grade, metal content, tonnes of ore and profit, as shown 

in Chapter 4. After calculating the recoverable resources for each realization, the 

uncertainty in the resources can be found. The mineral resources can then be reported 

as an expected resource (the average value of each relevant measure calculated) with 

uncertainty (plus or minus an interval). 

 

Section 6.3. Limitations and Future Work 

 

Applying the proposed probabilistic resources workflow can be computationally 

expensive. As the final grid spacing becomes tighter when anticipating the grade 

control data or the minimum mineable unit size increases in the mining selectivity 

module, there are larger computational costs. Although, the gain in knowledge of the 

recoverable resources in place is a reasonable trade off. It is, indeed, possible to keep 

the computer time manageable by choosing reasonable combinations of mineable unit 

sizes and production data sampling spacing. Nonetheless, in the future, improvements 
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could be made to the algorithms used in the workflow to make them less 

computationally costly. 

 

Even though this research targets probabilistic resources evaluation and the ore and 

waste selection is not final as it would be in the actual grade control practice, it would 

be useful to have an algorithm that would optimize the selection of ore and waste 

blocks based on different minimum mineable unit sizes as well as different levels of 

anticipated grade control information. The workflow is pending an algorithm that would 

find the optimal configuration of grade control data and minimum mineable unit size 

to retain the most possible profit from the high resolution reference model. This 

algorithm could also consider the cost to obtain the final data information. This is an 

avenue of future research.  

 

A certain degree of free selection is still being assumed in the mining selectivity 

module. Blocks of ore or waste are selected without fully accounting for geometrical 

or mining practice constraints that may limit the access to a specific location. This 

module also assumes a fixed origin for blocks of adjacent mineable areas/units that 

do not necessarily need to have the same origin; small volumes could be created 

between the mineable ones. These details could be added to the algorithm for mining 

selectivity calculation. 

 

The applications shown in this thesis consider two destinations only for the mined 

material, ore or waste. Reality is often more complex. There can be multiple stockpiles 

of different grade ranges, multiple processing options and so on. This workflow could 

be extended to consider multiple destinations. The calculation of expected profits itself 

could consider all costs associated: costs of mining ore, mining waste, processing ore, 

gold price and recovery. This calculation could also consider the grades of 

contaminants that could interfere in the value of the commodity being mined. 

 

In the open pit application, because the problem is being dealt with essentially as 2-

D, data from upper or previous mined benches are not being considered. These data 

can be important, especially for steeply dipping structures. 

 

The underground mining extension is a demonstration of how the same concepts 

applied to the open pit context can be expanded to underground mining. This extension 
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of the framework to sublevel stoping considers one stope at a time and predicts the 

recoverable resources within that stope individually, accounting for the information 

and mining selectivity effects. Interactions between the mineable areas within the 

mineralized vein and stope sequencing are not considered. Parameters such as 

minimum allowable dip and minimum stope width are also not being considered. 

Accounting for variations of grade within each optimized stope, together with the other 

factors described, represent areas of future work. 

 

In the stope optimization procedure described in Chapter 5, the same value is being 

considered for ore loss and dilution. Another area of future research would be to 

directly account for the value of ore losses and the costs related to dilution. It is 

common in metal mining to have a higher cost associated with sending ore to the 

waste dump as opposed to processing waste material. This is expected because small 

volumes of ore generally have a high value. In contrast, there can be cases where the 

opposite is true (especially in high-volume open pit mining). High costs associated with 

shipping, for example, can lead to dilution having a higher cost than ore loss. These 

nuances can be incorporated to reflect each specific case. 

 

Section 6.4. Conclusion 

 

A framework to properly forecast recoverable resources by individually accounting for 

the information and mining selectivity effects was developed. By following the 

proposed framework, the prediction of long term recoverable resources will be closer 

to the material mined in the future. In addition, by not summarizing the simulated 

realizations into one model, the framework proposed provides an assessment of local 

and global uncertainty for risk management. The importance of assessing the impact 

of different factors on mineral resources evaluation was also shown, as well as the 

importance of anticipating their impact at the time of resources modeling with 

exploration data only. These factors include: the exploration data variogram, grade 

control data spacing, mining selectivity and the cutoff grade relative to the grades 

distribution. There are a few avenues of future research to improve the mineable dig 

limits calculation in the proposed workflow. Nevertheless, the proposed workflow is 

reasonable to anticipate the information effect and selectivity at the time of mining for 

long term resources evaluation.  
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