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Abstract 

Maintenance management in wind energy industry has great impact on overall wind 

power cost. Optimizing maintenance strategies can substantially reduces the cost and 

makes wind energy more competitive among the energy resources. Due to the extreme 

conditions of remote or offshore sites where the wind turbines are installed, corrective 

maintenance and time-based preventive maintenance are the most adopted strategies in 

the wind industry in recent years. However, there is need to further reduce wind power 

cost via maintenance strategy improvement to increase its competitiveness. Industry and 

research community have been focusing on various maintenance strategies to save the 

maintenance cost.  

This thesis is devoted to developing cost-effective maintenance strategies for wind farms, 

focusing on conventional time-based maintenance optimization, and prognostics and 

condition-based maintenance (CBM) optimization within the CBM strategy framework.  

Studies are performed on improving corrective maintenance and time-based preventive 

maintenance strategies, which are currently widely adopted in wind industry. 

Opportunistic maintenance methods are proposed, which take advantage of economic 

dependencies existing among the wind turbines, and corrective maintenance chances, to 

implement preventive maintenance simultaneously. Imperfect preventive maintenance 

actions are considered as well. The methods demonstrate the immediate benefits of 

saving the overall maintenance cost for a wind farm. 
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In the more advanced CBM strategy, the health conditions of components are monitored 

and predicted, based on which maintenance actions are scheduled to prevent unexpected 

failures while reducing the maintenance costs. Prognostic techniques are essential in 

CBM. In particular, the wind direction and speed around wind turbines are changing over 

time, which leads to instantaneously time-varying load applied to the wind turbines 

rotors. With focus on gearbox failure due to the gear tooth crack, an integrated 

prognostics method is developed considering instantaneously varying load condition. The 

numerical examples demonstrate that the gearbox remaining useful life prediction 

considering time-varying load is more accurate compared to existing methods under 

constant-load assumption. In a subsequent extended study, uncertainty in gear tooth crack 

initiation time is further considered for wind turbine gearbox prognostics method 

development. The method provides more accurate gearbox remaining useful life 

prediction compared to the results without considering time-varying load condition. 

This thesis also proposes a CBM method considering different turbine types and lead 

times, as well as the production loss during the shutdown time. The capability to 

accurately estimate the average maintenance cost for a wind farm with diverse turbines is 

a key contribution of the proposed method. In addition, this thesis accounts for the 

inaccuracy in the simulation-based algorithms that most complex problems are solved 

with. A numerical method for CBM optimization of wind farms is developed to avoid the 

variations in CBM cost evaluation, which leads to a smooth cost function surface and 

benefits the optimization process. 

The research in this thesis provides innovative methods for maintenance management in 

the wind power industry. The developed methods will help to significantly reduce the 
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overall maintenance cost within either conventional maintenance or CBM strategies that 

the wind farm owners may apply. It will improve the competitive advantage of the wind 

energy, and promote a clean and sustainable energy future for the society in Canada and 

worldwide.  
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Chapter 1.  Introduction 

1.1   Background 

Renewable energy is playing more and more significant role globally in providing electricity to 

the world, e.g., solar energy, wind energy, geothermal energy, bioenergy, hydropower, and so 

on. The traditional energy such as coal, oil, and natural gas are non-renewable and will 

eventually dwindle, becoming too expensive or environmentally damaging to retrieve. In 

contrast, many types of renewable energy resources, e.g., wind and solar energy, are constantly 

replenished and will never run out. 

In particular, wind energy grows rapidly as one of the fastest growing renewable energy 

technologies around the world, and it produces very economical electricity among renewable 

energy sources [4]. The wind energy is captured by a facility so-called wind turbine. The wind 

turbines are commonly installed in the remote site or offshore to harvest wind power as much as 

possible. However, extreme weather conditions that the wind turbines suffer challenge the 

operation and maintenance (O&M) cost significantly worldwide, and Canadian asset owners are 

taking environmental challenges seriously. O&M for the turbines installed offshore or on remote 

locations accounts for about 25% of the levelized energy cost (LEC) [5]. Specifically, O&M 

costs are two to three times higher than those of land-based wind turbines [6]. Others reported 

that unscheduled breakdown shares about 70% of total wind turbine maintenance cost [7].  

In wind industry, typically there are three categories of maintenance strategies: failure-based 

maintenance or corrective maintenance, time-based maintenance, and condition-based 

maintenance (CBM). In failure-based maintenance, the maintenance activities are scheduled by 
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reacting to failures, which is the most costly strategy since failure may cause catastrophic 

damage to the whole wind power generation system. Another more recent maintenance strategy 

is time-based maintenance, which aims at preventing future failures by performing preventive 

maintenance on a regular basis, e.g., every six months. Age-based maintenance is also a type of 

time-based maintenance, where maintenance is performed when the component reaches a pre-

specified age. Obviously, performing maintenance at shorter intervals or younger age increases 

the overall maintenance cost while maintenance at longer intervals or older age would miss the 

chance to prevent the failures. Further to be improved, the time interval between maintenances or 

the age of the components can be optimized to minimize the total expected maintenance cost in 

the long term.   

Canadian Wind Farm O&M Market Survey Results reported that most of the installed wind 

farms (about 88%) are less than ten years old in Canada [8]. In this scenario, regular maintenance 

activities commonly applied in the warranty period, e.g., five years, may combine with corrective 

maintenance, which is so-called opportunistic maintenance. Opportunistic maintenance has great 

potential to bring immediate cost savings as it does not need any fault detection and prediction 

technologies. Opportunistic maintenance has been reported in many industries. It takes 

advantage of ease of the management for both failure-based maintenance and time-based 

maintenance. However, the existing studies on opportunistic maintenance for wind power 

systems are still very few. In this thesis, an opportunistic maintenance method is proposed to 

demonstrate its outstanding benefits and cost-effectiveness for a wind farm. 

CBM has become the most desired missions on maintenance strategies for wind power industry. 

The principle of CBM is to schedule maintenance activities according to the health condition of 

the system, which is analyzed based on the information collected from condition monitoring 
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system. In Canada, condition monitoring system and advanced operation & maintenance 

strategies contribute to 30% of overall profit increase of wind farms, which are ranked among 

top 3 opportunities according to the survey results [8]. However, the studies for wind power 

industry are still relatively new due to the application challenges of condition monitoring 

techniques regarding the extreme environment harshness.  

CBM commonly covers three areas. 1) Diagnostics: to detect, isolate and identify faults when 

they occur. 2) Prognostics: to predict the future failures to avoid unnecessary maintenance. 3) 

Maintenance decision making: to schedule maintenance based on detected early faults and 

predicted remaining useful life. Diagnostic information can help improve prognostics by 

preparing more accurate event data. A CBM process can involve both diagnostics and 

prognostics, or either one of them. In this thesis, the research work focuses on prognostics and 

CBM optimization.  

In prognostics, a health condition degradation model is usually applied to predict the critical 

degradation level representing a failure in the future. One way of modeling degradation process 

is to learn the relationship between the sensor measurement data and the real health condition, 

and the degradation process is therefore established, this is a so-called data-driven method.  

Another way to model the degradation process is to use physics in degradation process to predict 

the component health condition, which is called a physics-based method. Physics-based methods 

are significantly challenged when a component is complex to describe its physics and dynamic 

response, while data-driven methods are also not valid if there are not sufficient data. To benefit 

from both and exceed their limitations, a combined methodology termed as integrated 

prognostics method is applied in this thesis, the details are given in the following chapters. 



4 

 

According to the survey [8], gearbox failures cause the most of production loss at Canadian wind 

farms.  Besides, wind turbines work in wind turbulence from time to time, which leads to time-

varying torque suffered to the mechanical components of the hub. The torque is changing over 

time, even during one revolution period. To address this real problem, the study on prognostics 

in this thesis focuses on gearbox failure prediction under the instantaneously time-varying 

condition, which has not adequately been considered in the existing literature. 

1.2   Research Motivations 

The global wind O&M market has been growing at a compound annual rate of 20.6% in the past 

10 years, and it is forecasted the market will reach U.S.$27.4 billion by 2025 from U.S.$13.74 

billion in 2016 [9]. The huge demand draws the intensive attention of research community to 

devote on maintenance optimizations for the wind industry.  

Y. Sinha and J. A. Steel introduced Failure Modes Effects and Criticality Analysis (FMECA) 

tool and calculated the Risk Priority Number (RPN) for planning CBM [10]. G. Haddad et al. 

proposed a wait-to-maintain option maintenance method for wind farms based on prognostic 

indication value, which is determined using a model that quantifies the benefit from 

implementing prognostics [11]. [12] and [13] developed data-driven prognostics methods for the 

wind turbine gearbox using vibration signal data and temperature data respectively, while [14] 

applied a dynamic Bayesian network as prognostics tool to simulate the degradation of wind 

turbine gearbox using oil test bed data. [15] utilized statistical techniques and expert system to 

achieve prognostics and transfer into actionable intelligence. In addition to these most recent 

studies, reviews of maintenance practice and prognostics techniques for wind turbine systems 

were provided in [16]–[18]. [16] concluded that three most commonly used data-driven methods, 
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i.e., Hidden Markov model, Neural Network, and particle filter, are applicable for gearbox 

prognostics. [17] reviewed the maintenance practices for wind industry including conventional 

maintenance and CBM strategies. [18] particularly summarized the publications in the order of 

applied prognostic techniques, e.g., moving average, particle filtering, multivariate statistics, 

finite element method, etc. Based on the literature review, there are lack of studies of prognostics 

and CBM specifically considering the time-varying working condition, complex maintenance 

activities, diversity of wind turbines in a wind farm, and so on. Huge amount of research efforts 

are still required to solve the problems and reduce the maintenance cost, which can contribute to 

30% of overall profit increase of wind farms [8]. The capability of providing accurate failure 

prediction and considering the actual impact factors in the wind industry needs to improve in the 

maintenance management process. The conventional maintenance can also be potentially 

improved  to make it more cost-effective.    

Failure-based and time-based maintenance are still the primary strategies adopted in the wind 

power industry nowadays. There is a room for saving cost by implementing preventive 

maintenance simultaneously when a failure occurs in the farm since the economic dependency 

exists among components and systems. In this thesis, an opportunistic maintenance approach is 

proposed to demonstrate its immediate cost benefits to a wind farm. In practice, preventive 

maintenance does not always return components to the as-good-as new status. Therefore, multi-

level maintenance actions are introduced for failure turbines and working turbines respectively, 

where imperfect preventive maintenance actions are considered. The examples of imperfect 

preventive maintenance include the addition of a new part, exchange of parts, changes or 

adjustment to the settings, lubrication or cleaning, etc. 
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CBM is the most advanced maintenance approach as mentioned in the previous section. In the 

existing CBM studies for wind farms, many of them did not consider the diversity of wind 

turbines and their subsystems [19], e.g., they may have different capacity, or they are likely from 

different suppliers and thus have different lead times, etc. The diversity certainly has impacts on 

the CBM decisions. In the thesis, an improved CBM method considering various types of wind 

turbines and maintenance lead times is proposed, in which the power production loss that cannot 

be ignored is particularly addressed. 

In the literature, solving a CBM optimization problem mainly uses simulation method to evaluate 

the overall maintenance cost for a wind farm due to the complexity, e.g., [19]. The simulation-

based method is flexible in modeling the complex problems, but there are variations when it is 

used for CBM cost evaluation, and the resulting CBM cost function surface is not quite smooth 

due to its sampling mechanism. This could cause local minima or convergence problems in the 

optimization process. A numerical method is thus a preference since it is not based on sampling 

process. In this thesis, a numerical method is developed to solve a CBM optimization problem 

for a wind farm where multiple turbines are installed.   

Prognostics technique dedicates to predict the remaining useful life of a component by utilizing 

fault degradation model and condition monitoring data. Gearbox failures cause the most of 

production loss at Canadian wind farms according to Canadian Wind Farm O&M Market Survey 

Results [8], which is ranked at the highest score of 3.49 followed by blade damage at a score of 

3.21. Crack is a dominant fault among various failure modes of the gear. Gearbox in the wind 

turbine system is under time-varying external load condition because of varying wind speed and 

direction. This reality is mainly considered in the thesis, and an integrated prognostics approach 
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considering instantaneously time-varying load condition is developed to predict the gear tooth 

crack propagation. 

Another concern about gearbox prognostics under time-varying external load condition is that 

the uncertainty of initial crack detection cannot be ignored. In the study, prognostics starts when 

an initial crack is known. Therefore, prognostics starting at an early point will produce an 

underestimated remaining useful life (RUL), while prognostics starting at a late point will 

produce an overestimated RUL. The uncertainty of the crack initiation time certainly affects the 

prediction of gear remaining useful life. In this thesis, the integrated prognostic approach 

mentioned above is further improved by introducing the uncertainty of crack initiation time 

(CIT). 

1.3   Research Contributions 

In this thesis, we focus on the prognostics and maintenance management study for the wind 

power systems, the contributions are summarized as follows. 

 An opportunistic maintenance approach is developed for wind farms since there is 

economic dependency existing among components and systems. The preventive 

maintenance is performed on those components which meet decision-making criteria 

when there is a chance of failure replacement in the wind farm. Imperfect preventive 

maintenance actions are considered, which addresses the practical issue that preventive 

maintenance does not always return components to as-good-as-new status. The proposed 

opportunistic maintenance policies are defined by the component's age threshold values, 

and different age thresholds are introduced for failure turbines and working turbines 

respectively. The comparative study demonstrates that the proposed methods significantly 
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reduce the maintenance cost. The methods are expected to bring immediate benefits to 

wind power industry. 

 An integrated prognostic approach considering time-varying load condition is developed 

to predict RUL of wind turbine gearbox. The fatigue crack on the gear tooth is focused on 

in the study. The method integrates physical gear model and available health condition 

data. To improve the accuracy of health prediction, the uncertainty of material parameter 

is improved via Bayesian inference once the new health condition data become available 

at each inspection interval; thus the crack degradation model is adjusted more and more 

accurately. An example is provided to demonstrate the effectiveness of the proposed 

approach. Besides, a comparative study between the proposed varying-load approach and 

existing constant-load approximation method is conducted, and the results show that the 

proposed approach can provide a more accurate prediction. 

 We investigate the effects of the uncertainty of CIT on gear RUL prediction based on the 

previous approach. The existing fault detection and diagnostic techniques are limited so 

that a variation of CIT cannot be ignored. An additional new parameter, the uncertainty of 

CIT is introduced in the previous integrated prognostic model considering time-varying 

load condition for the gearbox. A numerical example and comparative study demonstrate 

the outstanding capability of the developed prognostic method to reflect the CIT 

uncertainty factor in predicting the RUL. 

 We develop a CBM approach considering different types of wind turbines in a wind farm, 

and various lead times for various turbine components. The method models CBM 

activities more accurately for wind farms in practice. In the approach, there are two 
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design variables for each turbine type, i.e., high-level and low-level conditional failure 

probability for determining a preventive maintenance action. A method for turbine failure 

probability evaluation considering different lead times is developed, as well as total 

maintenance cost evaluation method particularly taking production loss into account. 

Numerical examples are provided to demonstrate the effectiveness of the proposed CBM 

approach. 

 A numerical method to evaluate the overall CBM maintenance cost is developed based on 

a CBM policy presented in [19], in which the simulation method was applied to estimate 

the cost. The numerical method developed in this study demonstrates its significance in 

improving the accuracy, thus better schedule the maintenance activities.  

The research in this thesis provides innovative methods for maintenance management in the 

wind power industry. The developed methods will help to significantly reduce the overall 

maintenance cost within either conventional maintenance or condition-based maintenance 

strategies that the wind farm owners may apply. It will improve the competitive advantage of the 

wind energy, and promote a clean and sustainable energy future for the society in Canada and 

worldwide. 

1.4   Thesis Organization 

The thesis is prepared following the dissertation requirements from the Faculty of Graduate 

Studies and Research (FGSR) at the University of Alberta. The rest of this thesis is organized as 

follows: 



10 

 

Chapter 2 presents a detailed literature review on maintenance management, CBM, and current 

prognostics approaches for the gearbox in wind power industry with focusing on time-varying 

external load condition. This chapter also devotes to presenting fundamentals of wind turbine 

systems, some basics of the physical model of gear tooth fracture, and dynamics of gear tooth 

meshing that are essential in prognostics study for wind energy systems in the thesis.  

Chapter 3 presents an opportunistic maintenance method for wind farms considering multi-level 

imperfect maintenance thresholds. The materials have been published in the journal Renewable 

Energy [1].  

Chapter 4 presents an integrated prognostic method for RUL prediction of the gear with tooth 

crack, which particularly considers time-varying external load condition that wind turbines 

suffer. The materials have been published in the journal Renewable Energy [2]. 

 Chapter 5 presents a further study based on the method presented in Chapter 4 by introducing an 

additional parameter uncertainty, i.e., CIT.  

Chapter 6 presents a CBM approach for wind turbines considering different turbine types and 

lead times of components in a wind farm, as well as the production loss during the shutdown 

time. The materials have been published in the journal Strategic Engineering Asset Management 

[3]. 

Chapter 7 presents a numerical method for solving CBM maintenance cost evaluation problem in 

a wind farm. A simple case is considered in the chapter to explore the numerical method study.  

Chapter 8 concludes the thesis and suggests several future works.  
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Chapter 2.  Literature Review and Background Knowledge 

In this chapter, we review literature related to maintenance management for wind turbines, 

mainly focus on existing CBM approaches, as well as prognostic methods that are usually 

essential for CBM. In the prognostic study, we focus on the literature considering time-varying 

external load conditions. Gear tooth fracture is the primary damage mode in the selected 

literature of prognostic studies. Some essential background knowledge is given as well. 

2.1   Literature review 

2.1.1 Maintenance optimization for wind turbine systems  

2.1.1.1 Traditional corrective & regular maintenance approaches 

Primary maintenance strategies employed in the wind power industry are currently corrective 

maintenance and time-based maintenance. Within these categories, Jardine and Tsang presented 

many maintenance optimization approaches and their applications, e.g., optimizing the 

preventive replacement interval & age, spare parts provisioning, etc., to minimize the overall 

maintenance cost or downtime [20]. The application studies for wind industry have been 

receiving significant attention thus far; however individual maintenance optimization models 

were rarely developed mainly due to adverse accessibility and huge maintenance cost. Ding 

improved a corrective maintenance strategy by finding an optimal number of failures to be 

replaced together at a time for a wind farm, the expected average cost is then minimized [21]. 

Carlos et al. optimized the preventive maintenance interval for an onshore wind farm that the 

total cost is minimized and the annual energy production is maximized [22].  
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More and more researchers have been studying opportunistic maintenance for wind turbine 

systems since economic dependency exists among units in a wind farm, and a fixed cost for 

sending a crew to the wind farm is dominant. Numerous literature has shown the cost benefits by 

proposing various opportunistic maintenance models. Ding and Tian, Lu et al., Ko and Byon, 

and Sarker and Ibn Faiz proposed opportunistic maintenance methods to minimize the expected 

maintenance cost [23]–[26]. Zhang et al. further considered a joint optimization problem where 

spare parts inventory constraint is involved [27]. Abdollahzadeh et al. developed a multi-

objective opportunistic maintenance method that the expected rate of energy is maximized and 

the total expected cost is minimized as well [28]. 

2.1.1.2  CBM approaches 

CBM techniques have been growing very fast, Jardine et al., Peng et al., and Sikorska et al. 

provided the reviews about theoretical development and practical applications [29]–[31]. CBM 

has become an issue for wind farm's operation in recent years as more and more sensors are 

employed in modern wind turbines. The availability of health condition monitoring data, i.e., 

sensing signals, has then empowered CBM study to become a hot research area for the wind 

industry. Indeed, it is consistent with the findings of Alsyouf and El-Thalji (2008) that CBM has 

drawn much attention in wind power industry [32]. At present, CBM is the most advanced 

maintenance scheme as the performance of components can be actively tracked based on the 

condition monitoring (CM) apparatus. Hence an aging component can be pro-actively replaced 

before a failure occurs.  

A CBM program usually consists of three steps: data acquisition, data processing, and health 

diagnostics and prognostics [29]. Data related to the system health condition is a critical source 
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for CBM decision. The data can be acquired by optimally placing the sensors at the appropriate 

locations [33]. Data processing is to analyze the collected data or samples for better 

understanding the degradation signature. For details, readers are referred to [29]. Hameed et al. 

and Costinas et al. provided comprehensive reviews on the diagnostic and condition-monitoring 

techniques for wind turbines and subsystems [33], [34]. The advances in monitoring technology 

for turbine subsystems were later reviewed in [35]. Some studies only focused on the critical 

components such as gearbox [36], [37], generators [38], and blades [39].  

In CBM, the component health state should be predicted accurately based on the monitoring 

data. Some literature modeled the degradation process as a continuous stochastic process, e.g., 

failure probability distributions [19], [36], [3], [40], and [41], while others considered the 

degradation as a discrete aging process, e.g., multiple states subject to failures [42], [43]. Various 

maintenance decision rules were proposed in these studies, and the RUL is served as the basis for 

scheduling the inspection and parts replacement tasks. Instead of modeling degradation process, 

some studies leveraged the data-mining algorithms to predict the wind turbine degradation states 

[44] or trace the failure precursors of the bearing in wind turbines [45]. These studies are 

presented in details in the followings. 

For continuous degradation process, both physical models and data-driven models have been 

proposed in the literature. With the former, one requires detailed knowledge of the failure 

mechanisms while the latter needs comprehensive data to validate the model [46]. By monitoring 

the crack indicators of gearbox, Sørensen formulated an exponential damage model with 

calibration of a fracture mechanical model of the crack growth [40]. A probabilistic model was 

proposed to capture the damage state uncertainty, and the Bayesian rule was used to update the 

probability that the crack size exceeds the limit at a given inspection time. With the proposed 
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cost models and the specified damage level to prevent, the optimal inspection/service interval 

was determined when the total expected capitalized profit is maximized. One can refer to [41] to 

obtain more details on how Bayesian rule can aid the damage model update in offshore wind 

turbines maintenance decision. Based on [40] and [41], Nielsen and Sørensen gave a quick 

comment on the potential extension of Bayesian degradation model [47]. For instance, one shall 

consider multiple components, a turbine fleet within the farm, and weather factors, among 

others. However, the model complexity and the computational time will quickly increase with 

the problem size, yet no general insights were provided in  [47].  

Lucente proposed a CBM optimization approach using Proportional Hazards Model (PHM) for 

the wind industry [36]. PHM is the most widely used and cited model in a variety of industries. It 

extrapolates the component lifetime by combining the baseline hazard function with the actual 

operating condition data, or the so-called covariates. PHM improves the prediction of failure 

with the given values of covariates and corresponding parameters. The latter indicates the degree 

of influence that each covariate has on the hazard function. By solving an objective function for 

minimizing the expected average cost, the threshold hazard rate can be found. The optimal 

decision is to replace the component whenever the estimated hazard rate exceeds the threshold. 

Lucente discussed the PHM’s possible applications in wind turbine components [36]. According 

to their viewpoints, the limitation of this approach to wind industry is primarily due to the lack of 

data. Another issue is how to identify the significant covariates. 

Tian et al. proposed a CBM approach for managing the maintenance of a wind farm, where 

multiple components in each wind turbine were considered [19]. Artificial neural network 

(ANN) algorithm was used to predict components’ RUL at each inspection point for the wind 

farm. The prediction errors were calculated during ANN training and testing processes, and 
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therefore the predicted failure probability distribution at component and turbine levels were 

obtained. An optimal maintenance policy was determined such that preventive maintenance is 

performed if the turbine failure probability during the maintenance lead time exceeds the 

threshold, which results in the lowest overall maintenance cost. Amayri et al. proposed a CBM 

strategy considering different types of wind turbines and maintenance lead times in a wind farm 

[48], [49]. Later, Ding et al. optimized the CBM by considering both different maintenance lead 

times and turbine types, as well as inevitable production loss due to maintenance activities [3]. 

Pazouki et al. proposed a CBM for wind turbine systems consisting of multiple components that 

show independent stochastic deterioration process [50]. CBM tasks were scheduled through 

optimizing joint failure probability threshold and maintenance interval to minimize the total cost.   

Apart from the continuous failure process defined by literature mentioned above, discrete 

degradation modeling approach was also considered in many studies, for example, multi-state 

process. In practice, most mechanical components have more than two states, i.e., new and 

failed. For example, a generator may have reduced capacity between the new and the failed 

states; however, it is still functional. Another example is that a gearbox has multiple failure 

modes, which can also be considered as multi-states. For this reason, it is necessary to 

characterize the degradation process as a multi-state process, which accommodates different 

reliability requirements on the components at different states. Hence a more effective 

maintenance plan can be advised. Markov model is a powerful tool to characterize the 

degradation behavior for a multi-state system, and it has been used by several recent studies 

addressing the reliability of wind turbine components [42], [43], [51]. Markovian deterioration 

model can be formulated as a transition probability matrix, which is also capable of 

incorporating the associated detection uncertainty of degradation condition. Wu and Zhao  
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divided the gearbox lifetime equally into six states, and proposed several alternative maintenance 

actions and accordingly derived the transition probability matrix of each state with alternative 

maintenance actions [43]. An optimal inspection interval was found by using iterative algorithm 

to calculate maintenance costs for each combination of maintenance actions. However, the states 

are not stationary at the different age in reality. The state definition in the study did not take any 

advantage of condition monitoring, and therefore the resulting model confines its general 

applications. More practically, Byon and Ding defined normal, alert, alarm conditions and five 

different failure modes [42]. Initially, a 3×8 state transition matrix was constructed by 

aggregating a long-run historical operation data. The matrix was further validated with the 

industry data, and it was re-estimated at the beginning of each decision period using real-time 

sensory data. With the proposed season-dependent CBM actions, the expected cost was 

evaluated using backward dynamic programming to attain the optimal CBM policy. However, a 

Markovian modeling approach requires the precise initial state transition matrix, which is a 

significant challenge due to the lack of data as well as limited industry inputs.  

As mentioned earlier, some literature developed data-driven approaches to accurately predict 

specific failure index value (e.g., temperature) or turbine states (e.g., normal, faulty) without an 

explicit degradation model. Y. Sinha and J. A. Steel introduced Failure Modes Effects and 

Criticality Analysis (FMECA) tool and calculated the Risk Priority Number (RPN) for 

identifying failures, and used them as a basis for CBM [10]. G. Haddad et al. proposed a wait-to-

maintain option maintenance method for wind farms based on prognostic indication value, which 

is determined using a model that quantifies the benefit from implementing prognostics [11]. [12] 

collected vibration signals and used time series prediction techniques to predict the health related 

features trends for prognostics of wind turbine gearbox. Multivariate state estimation technique 
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was applied to estimate the health state of the unit gearbox bearing using temperature data, and a 

fault is predicted when the value of selected feature exceeds the threshold [13]. A dynamic 

Bayesian network was applied as prognostics tool to simulate the degradation of wind turbine 

gearbox using oil test bed data [14]. [15] utilized statistical techniques and expert system to 

achieve prognostics and transfer into actionable intelligence. Kusiak and Verma investigated the 

prediction accuracy using five data-mining algorithms: Neural Network, Support Vector 

Machine (SVM), Random Forest Algorithm (RFA), Boosting Tree Algorithm (BTA), and 

General Chi-square Automatic Interaction Detector (CHAID) [44]. The historical sensory data 

was used to train these models, based on which the turbine states were predicted. As a result, 

RFA has the best prediction performance, which ensures a better maintenance decision for wind 

turbines. Kusiak and Verma also built five neural networks with different structures and 

compared their prediction accuracy for over-temperature points of the bearing with abnormal 

behaviors [45]. Given a pre-determined error residual limit, on average the best NN model 

generated the alarm signal 1.5 hours prior to the actual fault. [16] reviewed prognostic 

approaches commonly used for wind turbine systems, and it concluded that three data-driven 

methods, i.e., Hidden Markov model, Neural Network, and particle filter, are applicable for 

gearbox prognostics. 

Cost is a crucial metric in maintenance project assessment. Several studies analyzed the trade-off 

between the CBM benefit and the investment cost to demonstrate the economic reality of CBM 

in the wind industry. Nilsson and Bertling conducted lifecycle cost analysis by comparing the 

effects of six different maintenance strategies for a single onshore wind turbine and an offshore 

wind turbine fleet, respectively [52]. CBM, corrective maintenance, and preventive maintenance 

were all implemented. The conclusion is that CBM is profitable as long as those maintenance 
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strategies are managed with specific efforts. However, they did not suggest the exact CBM plan. 

Andrawus et al. and McMillan and Ault made cost comparisons between a 6-month time-based 

maintenance strategy and a CBM [53], [54]. Andrawus et al. demonstrated that the overall cost 

savings of £180,152 over 18 years life cycle for a 26×600kW onshore wind farm was achieved 

by adopting CBM [53], while McMillan and Ault indicated that an amount of £225,000 

operational saving per turbine over 15 years is guaranteed using CBM [54]. 

There are some other approaches associated with CBM technology. For example, Haddad et al. 

suggested that the logistics lead time of a blade can be minimized using the health condition 

prediction information [55]. Byon and Ding, and Byon et al. investigated the weather influence 

on the management of CBM [42], [51]. [56] adopted power purchase agreement modeling to 

determine the optimum predictive maintenance opportunity for wind farms, and the uncertainties 

in the wind speed and the RUL predictions from PHM were considered. 

2.1.2 Prognostics considering time-varying load 

In the field, substantial wind fluctuations lead to instantaneously varying external load associated 

with wind turbine systems, which makes it become a big challenge to realize diagnosis and 

prognosis of components in the system and therefore appropriate CBM schedule.  

As the vital part in CBM, prognostics can provide the prediction of remaining useful life (RUL) 

based on the real-time health condition status of systems. CBM can then be scheduled to retain 

the system availability best and to reduce maintenance costs most. In prognostics, data-driven 

methods and physics-based methods are two main categories among the existing studies. Data-

driven methods apply machine learning techniques to the historical condition data to empower 

the capability of predicting future condition. Physics-based methods use physical models such as 
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Finite Element (FE) model, fault propagation model based on fatigue mechanics to predict the 

component health condition. The significant challenges exist for physics-based methods when a 

component is complex to describe its physics and dynamic response,  while data-driven methods 

are not effective either if there are not sufficient data. Noticing these drawbacks an integrated 

prognostics method is a preference in the thesis, which combines two methods to exceed the 

limitations. Detailed information about integrated prognostics will be provided in Chapter 4. 

Particularly, the consideration of time-varying external load in prognostics is one of the key 

contributions in this study. The review focusing on fault propagation process studies under time-

varying external load condition is then given as follows.  

A fault propagation model is essential to describe the fault evolution process and used to predict 

the future health conditions. However, the variations of operating conditions, e.g., varying 

external load, can greatly challenge the accuracy of fault degradation modeling. [57] developed a 

frequency-domain fatigue assessment method for a wind turbine gearbox, where the wind 

turbulence impacts to gearbox dynamic response was modeled as a non-Gaussian loading 

process. Chen et al. developed a new prognostics model to accommodate varying factors by 

using incremental learning approach, and battery degradation case is studied to validate their 

method [58]. Li et al. employed a continuous time hidden semi-Markov model (HSMM) to 

derive the remaining useful life prediction under varying load for a helicopter gearbox [59]. Al-

Tubi et al. studied gear micropitting propagation subject to varying torque loads under a constant 

rotational speed [60]. Experimental test and analytical evaluation were employed to demonstrate 

the effects of excessive load, surface roughness and lubricant film thickness on a micropitting 

process. However, in the study, they considered step-up torque levels rather than time-varying 

torques. Gəsperin et al. presented a model-based prognostic approach for mechanical drives 
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under non-stationary operating conditions [61]. A linear state-space model was developed to 

model the relationship between variable operating conditions and fault status. Therefore, the 

future features representing the health condition can be predicted if the future profile of the load 

is known. The authors also claimed that the further experiments were required to conduct the 

study properly. 

In addition, several fault propagation physics models under varying load condition are found in 

the literature. The failure mode of mechanical components, e.g., gear, in the existing study is 

mainly crack. Crack growth has been actively studied under constant loading condition taking 

advantage of well-recognized propagation model, based on which researchers further 

investigated and improved the models under varying load condition. Some studies considered the 

varying load by differing under-load and over-load cases. However, this is not the case for the 

working environment of wind turbines that usually suffer time-varying even non-stationary 

external load. 

The time-varying load studied in the literature is mostly so-called variable amplitude loading, 

under which two branches are identified: stationary and non-stationary load. In simple words, 

stationary load means that the magnitude of load randomly changes over time, but the frequency 

is constant, while non-stationary load changes over time in either magnitude or frequency. A 

recent review [62] presented the reliability assessment of fatigue under variable amplitude 

loading. However, it limited the discussion to the stationary load processes as they claimed that 

the assumption of stationarity is sufficient for most relevant applications. In this case, the 

amplitude of loading was sampled with a certain distribution, e.g., lognormal, and the crack 

propagation process was modeled as Basic Paris' Law shown in Equation (2-1). Paris' Law is one 
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of the first and most widely used fatigue crack propagation model presented by Paris and 

Erdogan [63]. 

  

  
                                                                             (2-1) 

where c and n are material constants,    is the range of stress intensity factor. 

However, consider the working environment of wind turbine systems, the load is always non-

stationary due to wind turbulence. For the crack propagation under non-stationary loading, a few 

old studies in the 1980s and 1990s are found, but there are not much new findings recently. 

These studies mainly worked on aerospace problems and materials, e.g., Aluminum Alloys. 

Couples of modified crack propagation models were proposed but need to be justified.  Sobczyk 

presented a form of crack growth rate under randomly varying load [64]: 

  

  
                

 , L(  )=                                            (2-2) 

k is stress intensity factor (SIF), L is crack length.      has the form of  

      
 

 
   

  
                                                                             (2-3) 

In the case of random loading, a new stress ratio Q characterizing the mean stress effect was used. 

It was defined as: 

  
   

    
                                                                           (2-4) 

In Equation (2-2),      describes the average number of 'cycles' of a stress process per unit time. 

In the conventional analysis, crack growth rate is usually expressed as da/dN as indicated in 

Equation (2-1), N denotes the number of cycles. When the load is randomly varying in time, a 
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cycle is not straightforward and not unique, and a possible definition can be the load history 

between two consecutive local maxima. 

[65]–[67] presented the crack propagation process in the form of  

  

  
         

                                                           (2-5) 

RMS is a prevailing statistics of a continuously varying quantity. Some studies considering 

varying load concluded that there exists a correlation between       and the rate of fatigue 

crack growth. However, [66] found that this approach failed to model the fatigue crack growth 

data by tested specimens. In other words, the experiment results showed the nature of scattering 

by plotting       vs. da/dN, and it was not possible to present the data in an analytical form as 

Equation (2-5). In another study [67], it was suggested that, for material parameter n ≤2,       

could be appropriate but for n >2,       is underestimated.  

Another modified model was studied in [68] and [69], which is given by  

  

  
             ,  where                                             (2-6) 

     signifies that the crack size growth is a random process due to random loading (stress)     , 

and random process      accounts for the random material resistance. Besides,   denotes the 

average number of cycles per unit time, and it is assumed as a constant. Assuming that      is a 

slowly varying random process compared with the stress range process      , it is approximately 

a diffusive Markov process according to the Stratonovich-Khasminski limit theorem. The drift 

and diffusion coefficients can be determined given that the probability distribution of initial 

crack, the covariance of       at two different times, and the mean and covariance of      are 
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known. Hence, a Fokker-Planck equation for      is obtained and solved. The Fokker-Planck 

equation is  

  

  
   

  

  
 
 

 
  

   

   
                                                  (2-7) 

where m and   are drift and diffusion coefficients, a denotes the crack size, and q is the transition 

probability density of     . The information on the covariance of       was not available for a 

general stationary stress process based on the author's knowledge up to date, and a particular case 

that the random stress was modeled as a Gaussian random process was considered to solve 

Equation (2-7) for     .  

A review provided by [62] also presented a fatigue propagation model under variable amplitude 

loading: 

  

  
                                                                        (2-8) 

where    is the function describing the crack growth rate,   is a set of parameters describing 

material properties, e.g., C and n in Equation (2-5),   is a set of parameters describing the 

geometry of the component containing the crack. R and    are stress ratio and stress range, 

respectively. They are presented as random processes and functions of N.  

Apart from above mentioned modified models, some literature directly used the basic Paris' Law 

to represent the crack growth process under variable loading condition, e.g., [70]. Though the 

study treated the random loading and crack growth rate as random variables, the random time-

varying feature was ignored. 

Even though the researchers developed multiple models in the case the load is time-varying, but 
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these models have not straight forward evolvement relationship, and they did not give the details 

of how to implement them. In addition, the hypothesis about the random processes involved are 

limited in the real applications. In this thesis, we propose another modified model to address the 

crack propagation problem under time-varying external load condition, and case studies are 

given to demonstrate its effectiveness. 

Except for the approach of applying fatigue crack propagation model to predict RUL of gear, it 

should be noted that there is another approach dealing with high cycle fatigue assessment under 

variable amplitude loading, which is defined as an S-N damage accumulation approach in the 

review by Altamura and Straub [62]. This approach is based on empirically determined S-N 

curves and fatigue damage criteria, i.e., Palmgren-Miner's rule. According to Sutherland and 

Burwinkle, American Gear Manufacturers Association (AGMA) Standard (1976) adopted 

Miner's Rule "to ascertain the effects of variable loading on the life of the gearing" for the design 

of spur and helical gears [71]. The varying load sequences are typically extracted to a series of S-

stress range and corresponding N-number of cycles using cycle counting techniques. Rainflow 

counting is the best cycle counting method used in the industry. In this scenario, [72] quantified 

short-time gearbox fatigue damage using the data from Supervised Control and Data Acquisition 

system (SCADA). Fatigue damage d of a certain amplitude of load i is calculated by 

                                                                           (2-9) 

where, n is the applied load cycles of the specific load amplitude i, N is the number of cycles to 

failure when the applied load equals to i,  Si is the stress corresponding to load i. Regarding the 

relationship between load and stress, Sutherland and Burwinkle simply suggested a linear 

multiplier for converting gear shaft torque (load) to the stress in a gear tooth based on AGMA 
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Standard (1976).  Miner's rule then summarizes the accumulated damage from each cycle for all 

different load amplitudes as 

   
  

  
                                                                  (2-10) 

Theoretically, the component is failed when D is larger than 1.  

S-N curve damage accumulation approach will not be given many insights in this thesis since the 

prediction results are usually inaccurate or conservative if S-N curve information is not 

appropriately determined. In addition, D values need to be very carefully selected in reality as 

they may be as low as far from 1. 

2.2   Background knowledge 

In this section, a brief introduction to the basics of wind turbine systems including the critical 

components and their major failure modes is given, as well as the typical maintenance research 

challenges regarding wind turbine working conditions. Some basics about physics of gear tooth 

crack and dynamic process of gear tooth meshing follow. 

2.2.1 Introduction of WT system  

2.2.1.1 Typical configuration of a WT system and major failures of critical 

components 

Wind turbines are stand-alone machines which are typically installed and formed as a group in a 

place named as a Wind Farm or Wind Park. Generally speaking, a wind turbine system is a 

rotary device that extracts energy from the wind and converts to electricity.  
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Wind turbine systems are basically classified into horizontal axis wind turbines and vertical axis 

wind turbines according to the axis of rotation of the wind rotor. Some old design of wind rotors 

have the feature of the vertical rotation axis, and it can work well in wind turbulence but less 

efficient than horizontal-axis-turbine, which can generate more electricity by increasing the rotor 

height up to hundreds of meters where the wind is much stronger. Nowadays horizontal-axis 

wind turbine is the dominant type in global wind projects because of its outstanding power 

production. Nevertheless, this form of turbines suffers severely in turbulent wind conditions and 

therefore challenges the research on maintenance significantly. In this thesis, we focus on 

horizontal-axis wind turbines.  

Typical configurations of a horizontal-axis wind turbine system are shown in Figure 1. The 

followings present details on four critical components in a wind turbine: the rotor blades, the 

main bearing, the gearbox and the generator [73].  

 Rotor Blades 

Wind turbine blades collect energy from the wind and then transmit the rotational energy to the 

gearbox via the hub and main shaft. The number of blades and their sweeping area affects wind 

turbine performance. Most wind turbines have only two or three blades on their rotors. The 

reason is that the space between blades should be big enough to avoid turbulence so that one 

blade will not encounter the disturbed and weaker air flow caused by the blade which passed 

before it. In an offshore environment where corrosion is a critical factor, blade material often 

prefers the ones that are corrosion resistant, also that have the possibility of achieving high 

strength and stiffness-to-weight ratio. 

Blade Failures and Causes 
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Rotor blades are highly stressed due to the constant wind contact, as well as environmental 

conditions such as ice, UV radiation, lightning, etc. Crack arising from fatigue and materials 

deficiency, impacts on the blade surface because of ice build-up, lightning strikes and rain 

erosion and so on are known to cause failures. 

 

Figure 1. Components of a horizontal-axis wind turbine [74] 
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 Main Bearing 

All modern wind turbines have spherical roller bearings as main bearings. The main bearing is 

mounted in the bearing housing bolted to the mainframe, and it reduces the frictional resistance 

between the blades, the main shaft, and the gearbox while it undergoes relative motion. The 

designs of different types of wind turbines vary regarding the number of bearings and bearing 

seats. 

Main Bearings Failures and Causes 

National Renewable Energy Laboratory (NREL) of USA conducted a series of investigations of 

wind turbine failures [75]. According to the study results, axial cracks formed on the bearings 

due to overloading during high- and intermediate-speed stages dominantly causes bearing 

failures, which eventually causes the majority of wind turbine gearbox failures (76%). This 

information was given in 2015 and can be retrieved online titled "Statistics Show Bearing 

Problems Cause the Majority of Wind Turbine Gearbox Failures". Poor lubrication, wear, 

pitting, deformation of the outer race and rolling elements may also cause bearing failures.   

 Gearbox 

The gearbox is typically placed in a wind turbine drive train to increase speed from a low-speed 

rotor to high-speed generator. Some designs of so-called direct-drive machines do not have a 

gearbox, the generator turns at the same speed as the turbine rotor. There is a trade-off between 

the reliability and the cost of slower generators. Besides, wind turbines usually need more than 

one gear stage to achieve an overall high gear ratio, among which planetary gear outperform 

parallel-shaft-gear taking advantage of its high gear ratio of up to 1:12, typically [74]. In the 
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megawatt power class, the multi-stage planetary gearbox prevails while in smaller power classes 

parallel-shaft gears are preferred because of cost. 

Gearbox Failures and Causes 

Fractures, scuffing, micropitting on gear tooth surface and bearing failures are mostly reported 

failure problems. Torque from the rotor is very high to drive the power generation system, and 

this challenges the wind turbine gearbox due to the excessive loading. A poor design would 

make the gearbox poorly support these loads, and thus internal components can become 

misaligned, which eventually causes failures. In addition, unreliable seals and lubrication 

systems, as well as manufacturing errors, are also considerable causes.  

 Generator 

The generator transforms mechanical energy into electrical energy. The blades transfer the 

kinetic energy from the wind into rotational energy, and then the generator supplies the energy 

from the wind turbine to the electrical grid. The generator produces either alternating current 

(AC) or direct current (DC), and they are available in a broad range of output power ratings. The 

generator's rating or size depends on the length of wind turbine blades, longer blades capture 

more energy. 

Generator Failures and Causes 

The generator is a very critical component of the wind turbine with high failure rates,  which 

follows the gearbox and the rotor blades as the 3rd top-ranked component causes production loss 

at Canadian wind farms [8]. The main reason is that the generator works with a highly 

fluctuating mechanical power. Early bearing fatigue may result from poor lubrication contributes 
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to the mechanical failure of the generator, while poor insulation systems create an increase of the 

leakage currents and then arises the safety issue of goods and persons as well as production loss. 

2.2.1.2 Maintenance research challenges regarding wind turbine working 

Conditions  

The external environment of erected wind turbines is complex and uncontrollable,  e.g., time-

varying wind speed and direction, wind shear, wind veer, temperature, ice, humidity and so on. 

All these significantly affect the reliability of the components. Modeling and analysis of the 

component failure process become very challenging. For example, gear tooth crack propagation 

is apparently different under time-varying external load condition comparing to the constant load 

condition. Therefore, developing an appropriate fault growth model with knowledge of the 

impacts of such conditions is essential for predicting the failure in wind turbines. Another 

example is that, to evaluate the reliability of power production not only an accurate power 

generation model is required, but a local wind distribution around the wind turbine needs to be 

appropriately determined, which is usually difficult. In addition, condition monitoring data are 

essential to implement fault diagnostics, prognostics, and schedule CBM; however, these data 

are generally not accessible or proprietary in the wind industry, and they may not stand in good 

quality. Van Kuik and Peinke presented the long-term research challenges in wind energy in a 

whole scenario, which includes materials and structures, design, aerodynamics environmental 

aspects and so on [76].  Followings list some significant challenges or limitations of maintenance 

study, in particular, considering the external working conditions of wind turbines, but not 

limited. 
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 Acquiring accurate condition monitoring data well indicates the working and healthy 

condition of the study object; 

 Reliability analysis and uncertainty modeling for accurate failure prediction; 

 Accurate cost model especially for offshore wind power due to limited accessibility and more 

severe consequences of a failure. It is more critical for economic-oriented maintenance 

optimization; 

 Comprehensive knowledge about external conditions; 

 High demand for data mining techniques in case of an incomplete or limited data source; 

 Require appropriate fault degradation models addressing the issue of time-varying external 

conditions. 

2.2.2 Introduction of Dynamics of gear tooth meshing and physics of tooth 

fracture 

2.2.2.1 Physics of Fracture 

As one of the common and severe failure modes of mechanical components, the fracture has 

been given much research efforts to control and predict its occurrence. Fracture mechanics is an 

important tool in modern materials science, and it applies the theories of elasticity and plasticity 

to the microscopic defects in real materials to predict the further mechanical behavior. In this 

thesis, we focus on the theory of linear elastic fracture mechanics. 
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Crack propagation causes the fracture. There are three forms of enabling a crack to propagate 

according to the loading modes, which are shown in Figure 2. 

Mode Ⅰ - Opening mode: tensile stress normal to the plane of the crack, 

Mode Ⅱ - Sliding mode: shear stress acting parallel to the plane of the crack and perpendicular to 

the crack front, 

Mode Ⅲ - Tearing mode: shear stress acting parallel to the plane of the crack and parallel to the 

crack front. 

 

Figure 2. Three modes of loading applying to a crack [77] 

A cracked object can be in any one of these modes, or a combination of two or three modes. To 

predict the crack process, stress should be the first to analyze. The stress intensity factor (SIF), 

denoted by K, is a quantity to describe the stress field in the area near the crack tip, and it is 

usually given a subscript to denote the loading mode, i.e., opening mode   , sliding mode    

and tearing mode   . The solution of the stress field near the crack tip in any linear elastic 

cracked body exhibits a 1/   singularity, the normal stress    ,    and shear stress     for mode 
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Ⅰ and Mode Ⅱ in a linear elastic and isotropic material, which are expressed as follows. Figure 3 

schematically shows an element near the tip of a crack together with the in-plane stresses on this 

element.  

Crack
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σxy

 

Figure 3. Two-dimensional stresses near the tip of a crack in an elastic material [77] 

If K is known, it is possible to solve for all stress components as a function of r and  [77]. In the 

part of solving the problem of gear prognostic in this thesis, FRANC2D is used for the gear FE 

model, which is a widely used numerical method to obtain solutions for the stresses and strains 

when a body is subject to complex loading conditions. The method adopted in FE model to 

calculate K employs a singular element to model stress singularity near the crack tip [78], the 

idea is to correlate the local displacements with their theoretical asymptotic values. The stress 

intensity factors, K, therefore can be expressed as functions of the nodal displacements, the 

details can refer to  [79]. 

The crack propagation direction can then be estimated after    and    are obtained under 

mixed-mode loading. There are several criteria for mixed mode fracture on the basis of stress-
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strain field, for example, maximum tangential stress criterion, maximum strain criterion, and 

strain energy density criterion, and so on [80]. In this study, the maximum tangential stress 

energy criterion is applied to determine the crack propagation direction, which is given by the 

angle   that maximizes the effective stress intensity factor with respect to   [81]. The crack 

extends from the crack tip and grows in the direction normal to the maximum tangential tensile 

stress, and the propagation angle   can be written as [78].  

         
 

 
 
 Ⅰ

 Ⅱ
   

 Ⅰ

 Ⅱ
 
 
                                             (2-11) 

In addition, the thickness of the gear rim, represented by the backup ratio (m), has great impact 

on the crack propagation path according to [79]. If the rim is thin (m is small), the crack tends to 

grow towards to the rim, the failure is very harmful, and the consequence is more severe than the 

case that the crack grows across the tooth thickness, where the rim is thick (m is large).  

The crack propagation model is another important topic in fracture mechanics. In the prognostic 

study for a mechanical component suffering crack fracture, a crack propagation prediction model 

is always essential. The overall fatigue life of the mechanical component having a failure mode 

of crack has three stages: crack initiation, crack propagation and crack acceleration. Crack 

prediction study commonly targets the crack propagation stage to prevent the catastrophic failure 

before the crack goes to the final stage. As mentioned in Section 2.1.2, the fundamental crack 

propagation model is expressed as Equation (2-1), which is well known as Paris' law proposed 

by [63]. As we can see, Paris' law describes that the crack evolution process with loading cycles 

is linear with the stress intensity factor in a log-log scale. In this scenario, a critical crack size is 

usually defined as a threshold value representing an actual failure, the remaining loading cycles, 

in other words, the RUL, can be evaluated at each crack level.  
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2.2.2.2 Dynamics of a one-stage gearbox and gear tooth meshing 

Vibration signal of the mechanical system is the most used data source to diagnose and predict 

the faults since the fault will be reflected in the overall vibration of the system. As one of the 

major failure modes, tooth crack on a spur gear of a one-stage gearbox is studied in this thesis for 

prognostics. The crack affects the tooth meshing stiffness, which is time-varying and one of the 

vibration excitation sources. Dynamic models of gear meshing process help to understand and 

identify the vibration sources in gear transmission.  

Crack usually happens close to the tooth root where the highest bending stress exists due to 

cyclic loading. The total mesh stiffness varies when the cracked tooth comes into meshing. Thus, 

the force acting on the tooth is affected because it is determined by the mesh stiffness and the 

tooth deflection. Accordingly, the crack changes the dynamic load on the tooth. There are many 

types of gear, e.g., spur gear, helical gear, bevel gear, etc., among which spur gears are the most 

common type of gears. They are cylindrical shaped gear, and the teeth are parallel to the axis of 

the rotating shaft. The advantage of the spur gear is that it is easy to design and produce, and the 

cost of manufacture and maintenance is relatively low. In this thesis, we focus on the spur gear.  

Assuming the mating tooth is an isotropic elastic body in this thesis, the tooth with a crack is 

considered as a cantilevered beam, and the beam does not experience any deflection. Potential 

energy is the stored energy when a body is deformed. The total potential energy stored in a 

meshing spur gear pair includes four parts: Hertzian energy, bending energy, axial compressive 

energy and shear energy. All these types of energy are proven to be significant contributions to 

the total effective mesh stiffness [82]. Tian assumed the crack growth path as a straight line. 

However, as illustrated in Section 2.2.2.1,    and    determine crack propagation direction in a 
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mixed-loading mode fracture, the crack therefore actually grows at a varying intersection angle 

to upright vertical due to the variability of    and   . The details of potential energy and 

stiffness calculation with a curved crack was introduced in [78] and [83].   

An example of calculated total effective mesh stiffness with a crack of 3.0mm over one rotation 

period is shown in Figure 4. As we can see, the mesh stiffness is substantially reduced when the 

cracked tooth is in meshing. 

 
Figure 4.  Total effective mesh stiffness for the 48-teeth gear with a crack of 3.0mm 

Wu at al. developed a 6-degree-of-freedom dynamic model for a one-stage gearbox to describe 

its motions, which is so-called a lumped parameter model [84]. In this thesis, this model is used 

to simulate the vibration signals considering a cracked tooth. Further, the formulas given by Lin 

et al. [85] are used to calculate the dynamic load F to drive the crack propagation, which is 

implemented in FE model. The 6-DOF one-stage gearbox system is shown in Figure 5.  
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Figure 5. The one-stage gearbox system [84], [86]  

The modeled vibrations include torsional and lateral motions. The pinion and the gear are 

perfectly mounted on the shafts that are coupled with the motor shaft and the output shaft on 

both sides respectively. The system is driven by a motor with the torque    and loaded with the 

torque   . The bearings support the shafts. Stiffness and damping are involved in the model. 

The friction is ignored for simplicity, so the vibration in the x-direction is free and disappears 

due to the damping [84]. The details of the mathematical dynamic model refer to [84] and [86], 

the dynamic load over one mesh period is then calculated and shown in Figure 6 as an example. 
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The static load shared by the tooth pairs is crucial in a load transmission [87], and it is also 

shown in the figure as blue dash line for comparison. The method of calculating the static load 

can be found in [87]–[89]. [89] gave the calculation process using the variable "tooth pair 

compliance", while the other two solved the problem using the variable "tooth mesh stiffness".  

The tooth carries the full load when the tooth pair is in single-tooth-meshing, while the tooth 

shares the load when they are in double-tooth-meshing. 

As shown in Figure 6, the maximum dynamic load is larger than the maximum static load, which 

has to be considered in the crack propagation process since the larger load accelerates the crack 

growth. Therefore, to prevent the critical crack an actual larger dynamic load is selected to apply 

in FE model to drive the crack propagates.  

 

Figure 6. Static and dynamic load on the cracked tooth 
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2.3   Summary 

In this chapter, literature is reviewed in the field of maintenance optimization for wind power 

industry. Traditional maintenance and the most advanced maintenance CBM are first studied. In 

CBM, prognostics is essential to predict the remaining useful life of a studied object. Therefore, 

a review of prognostics, of which particularly the existing methods of modeling the crack 

propagation of a gearbox focusing on time-varying external load condition are introduced. The 

typical wind turbine configurations and critical components are introduced, as well as the 

fracture mechanism and dynamic models of a gearbox for better understanding the whole study.  
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Chapter 3.  Opportunistic Maintenance for Wind Farms 

Considering Multi-level Imperfect Maintenance Thresholds   

3.1   Overview 

Nowadays wind industry mainly adopts regularly scheduled maintenance strategy, e.g., every 6 

months, to prevent catastrophic loss and hence reduce overall investment cost. Advanced 

condition-based maintenance faces significant challenges of lack of availability of condition 

monitoring data and knowledge of failure modes. The study on appropriate and practical 

maintenance strategies without implementation difficulty has drawn increasing interests. Fixed-

interval maintenance can prevent severe failures but is also costly due to excessive or 

unnecessary maintenance activities, particularly in the case of extreme conditions and high load 

associated with offshore wind farms. Corrective maintenance and time-based preventive 

maintenance, which are widely used in wind power industry because of its ease of management, 

have not been studied adequately, and few methods were developed to optimize the maintenance 

policies.  

Four maintenance strategies for European offshore wind farms were proposed in Europe Wind 

Energy Report (2001), among which one is opportunistic maintenance. In opportunistic 

maintenance,  whenever a failure occurs in the wind farm, the maintenance team is sent onsite to 

perform corrective maintenance, and take this opportunity to simultaneously perform preventive 

maintenance on the other components in the failed turbines and the running turbines that show 

relatively high risks. There are typically multiple wind turbines in a wind farm, and a wind 

turbine has multiple components. Economic dependencies exist among various components and 
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systems in the farm. When the failed components create a failure replacement opportunity, 

maintenance team may perform preventive maintenance for other components satisfying pre-

specified decision conditions, such as certain age thresholds. As a result, a substantial cost can be 

saved compared to separate maintenance for the components.  

In the general maintenance engineering field, various opportunistic maintenance policies and 

applications have been reported. Laggoune et al. considered hydrogen compressors with different 

component failure distributions, and made maintenance decisions based on if performing 

replacements can lower the expected costs [90]. An age-based policy was used by Crocker and 

Kumar to optimize the maintenance of a military aero-engine, and they concluded that 

opportunistic maintenance should be performed on relatively cheap components in their 

application [91]. Mohamed-Salah et al. proposed an opportunistic maintenance policy for ball 

bearings based on the time difference between expected preventive maintenance time and failure 

instant [92]. Haque et al. assumed that the components are identical and follow the same Weibull 

distribution, and presented a maintenance method for multi-unit systems [93]. However, very 

few studies were reported on opportunistic maintenance for wind power systems. Besnard et al. 

proposed an opportunistic maintenance method for off-shore wind turbine systems based on both 

failure probability and real wind data [94]. They presented an optimization model with a series of 

constraints aiming at minimizing the cost, and an optimal maintenance schedule for a 5 turbines 

wind farm was obtained. Tian et al. developed a CBM method for wind farms by considering the 

economic dependencies among components, and determined the maintenance actions based on 

the optimized failure probability threshold values and the condition monitoring data [19].  

In most existing studies on preventive maintenance for wind turbines, one disadvantage is that 

preventive maintenance actions were generally considered to be the replacement, which is the 
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perfect action to return a component to the as-good-as-new state. In practice, however, 

preventive maintenance does not always return components to the as-good-as-new status. 

According to [95], repair actions for wind turbine components may include addition of a new 

part, exchange of parts, removal of a damaged part, changes or adjustment to the settings, 

software update, lubrication or cleaning, etc. Ding and Tian developed opportunistic 

maintenance methods for wind farms considering imperfect maintenance actions [23]. However, 

they did not distinguish between the failed turbines and working turbines, and used the same 

maintenance thresholds for all the wind turbines.  

In this chapter, opportunistic maintenance approaches are developed for wind farms to take 

advantage of the maintenance opportunities and consider imperfect maintenance actions. In the 

proposed methods, opportunistic maintenance policies are defined by the component’s age 

threshold values, and different imperfect maintenance thresholds are introduced for failure 

turbines and working turbines, respectively. Three types of preventive maintenance actions are 

considered, including perfect, imperfect and two-level action. Simulation methods are developed 

to evaluate the costs of proposed opportunistic maintenance policies. Numerical examples are 

provided to illustrate the proposed approaches.  

This chapter is organized as follows. Section 3.2 introduces the proposed opportunistic 

maintenance approaches. In Section 3.3, numerical examples are given to demonstrate the 

effectiveness of the developed method, and comparative study among different proposed 

strategies as well as corrective maintenance strategy are conducted. Conclusions are presented in 

Section 3.4. The materials in this chapter have been published in [1].  
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Nomenclature:  

   : the variable preventive replacement cost 

    : the fixed preventive maintenance cost 

   : failure replacement cost 

        : the access cost to a wind turbine 

     : the fixed cost of sending a maintenance crew to wind farm 

CE: the total expected maintenance cost per turbine per day 

     : mean time to failure of Component i 

q: ratio of age reduction 

p: ratio of mean time to failure 

      : the lifetime of a new one by a replacement 

    : the original lifetime prior to the maintenance 

3.2   The Proposed Opportunistic Maintenance Approaches 

In this study, three opportunistic maintenance strategies for wind farms are proposed, where a 

preventive maintenance action is considered as perfect, imperfect, and two-level action, 

respectively. At each failure instant in the wind farm, a preventive maintenance task for a 

specific operational component is determined based on whether its age exceeds the age 

threshold, which is defined to be different between the components in the failed turbine and 
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running turbines. Simulation methods are developed to evaluate the maintenance cost of each 

proposed maintenance strategy. The optimal age thresholds corresponding to the lowest average 

cost can be found by solving the optimization problems.    

In the case of an imperfect maintenance action, a ratio of age reduction, q (0 ≤ q ≤ 1), is defined. 

The component’s failure age after maintenance is updated, and the imperfect action cost varies 

according to different age reduction effort. In practice, a maintenance represented by age 

reduction is usually an estimate, and the occurrence time of next failure after this maintenance is 

also an expected value but not deterministic. In this scenario, we formulate an updated lifetime 

because of a maintenance action as                   . This is not arbitrary and 

especially describes well two extreme cases: 100% age reduction maintenance, i.e., perfect 

maintenance, is equivalent to preventive replacement so the lifetime is completely updated as of 

a new one       , while 0% age reduction maintenance means there is no maintenance and the 

lifetime remains the same as its original value     . In general, an example is provided to 

illustrate how the maintenance effort,  , affects the age and lifetime in this study. Suppose a 

generator has original lifetime,     , of 20 years, and a replaced new one also has lifetime, 

      , of 20 years. The current age right before maintenance is 8 years, the maintenance is 

defined as 80% age reduction. Therefore, after the maintenance, the age of this generator will be 

8×20%=1.6 years, the lifetime will be 20×20%+20×0.8=20 years. The remaining useful life 

(RUL)=20-1.6=18.4 years with maintenance while RUL is 20-8=12 years without maintenance. 

In addition, the cost of imperfect action is defined as a function of q, which is given by                

                         
                                  

                                      
                                        (3-1) 
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where,     is the variable preventive replacement cost, and     is the fixed maintenance cost. 

The total preventive replacement cost is        , which corresponds to 100% age reduction 

(q=1).     is incurred as long as an imperfect action is required for the component. The more the 

age of component is reduced, the faster the cost increases, and this leads to an increasing 

nonlinear feature of the maintenance cost.  

3.2.1 Overview of the Proposed Approaches 

As mentioned earlier, the proposed opportunistic maintenance actions are determined by the age 

threshold values, which are proposed to be different between the failed turbines and running 

turbines. Figure 7 generally illustrates the proposed policy. Suppose there is a failure occurring 

in the farm at present. The maintenance crew is sent to perform failure replacement, and take this 

opportunity to perform preventive maintenance on other qualified components. For example, 

component i and j are in the same wind turbine with a failed component, which is defined as the 

failed turbine, while component k is in one of the running (working) turbines. Component i will 

be performed a preventive maintenance action because its age reaches the threshold, which is a 

ratio of its mean time to failure, denoted by   ×      at this moment. The age of component j 

does not reach the threshold   ×      so that a maintenance task will not be performed and it 

will continue to work till the next opportunity, or it may fail first in the farm.  

For all the rest components in the running turbines (e.g., component k), a different age threshold 

  ×     is applied, which is expected to take fewer actions on running wind turbine such that 

the cost could be lower. In two-level action method, similarly, four age thresholds    ,     (for 

the failed turbine) and    ,     (for the running turbines) are applied (   >   ,    >   ). A 
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preventive replacement is to be performed if the current age reaches the large age threshold    

×     for the components in the failed turbine or    ×     for the components in the 

running turbines. Otherwise, an imperfect maintenance action is to be performed since the age 

reaches the small age threshold    ×     or    ×    .  

 

 

 

 

 

 

 

 

 

Figure 7. The proposed opportunistic maintenance concept 

The proposed policies are based on the following assumptions or properties. (1). All components 

follow the Weibull distribution, and the failure rate increases over time (i.e., β >1); (2). All wind 

turbines in the farm are identical, and the deterioration process of each component is 

independent; (3). Any component failure leads to turbine system failure; (4). The maintenance 

time is negligible comparing the long lifetime of components. 
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Suppose there are M wind turbines in the wind farm, and K critical components are considered 

for each turbine. The related costs are defined as following:   ,    , and     are the failure 

replacement cost, the variable preventive maintenance cost and the fixed preventive maintenance 

cost for a component, respectively.         is the access cost to a wind turbine, and      is the 

fixed cost of sending a maintenance team to wind farm. 

Regarding preventive maintenance actions, three proposed strategies are discussed in the 

following subsections.  

3.2.2 Construction of Models and The Solution Methods 

3.2.2.1 Strategy 1: Opportunistic Maintenance with Perfect Action Only  

The maintenance policy is described as follows. 1. Perform failure replacement if a component 

fails. 2. At the moment of failure, this opportunity is taken to perform preventive replacement 

(i.e., perfect action) on component k (k   … K) in wind turbine m (m   … M) if        ≥ 

     ×p. p=   if the components are in the failed turbine, and p=   if the components are in 

the running turbines. 3. If the component is not performed preventive maintenance on, it will 

continue working until the next failure occurs in the wind farm. 

The brief objective function is given by: 

            min CE (   ,   )                                                          (3-2) 

where, CE is the total expected maintenance cost per turbine per day, and   and    are design 

variables corresponding to the failed turbine and running turbines, respectively. The objective is 
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to determine the optimal age threshold   and    to minimize the total expected maintenance cost 

per turbine per day. 

Due to the complexity of optimization problems, it is extremely hard to develop accurate 

numerical methods for cost evaluation of different maintenance policies. Thus, in this work, 

simulation methods are developed to evaluate the average cost   . Suppose the failure 

distribution of components are known, the age values of each component at each failure instant 

can be obtained, and thus the optimal policy can be decided when the corresponding average 

maintenance cost    is the lowest.  Figure 8 shows the flowchart of the simulation procedure in 

general. Strategy 2 and 3 are also included, and the detailed descriptions for them are given in 

the related subsequent subsections.   

The simulation process of strategy 1 is explained in detail as follows. 

Step 1: Initialize the simulation. Specify all of the parameters used in the simulation process, 

which includes the maximum simulation iterations I, the number of wind turbines M,  the number 

of components K in a system, and the upper bound of design variables,   and   . Specify all of 

the related cost mentioned previously in Section 3.2.1:   ,    , and     for each component in 

the turbine,      and         as well. The total cost    at the beginning is set to be 0 and is 

updated during the simulation process. The Weibull distribution parameters    and     of each 

component are given, which are presented in Section 3.3.1. The absolute time,      , is defined 

as the accumulative time of every failure for that component k in turbine m. In the beginning, 

generate the lifetimes       for each component in each turbine by sampling the Weibull 

distribution for component k with parameter    and     . Thus, the age values for all components 
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are zero at the beginning, that is,       =0, and ,      =      at the moment of the first 

failure. 

 

Figure 8. Simulation process for cost evaluation 

Step 2: Replace the failed component and cost update. The failure of the  th iteration occurs at 

  , and   = min (     ).     represents the time to failure of the  th iteration,     =   -    , and 

   =0. Once there is a failed component in the wind farm, for instance, component k in turbine m 

fails, the failure replacement cost     and the fixed cost of sending a maintenance team to the 
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wind farm,     , are incurred simultaneously. The total cost due to failure replacement is updated 

as:  

   =  +    +                                                                    (3-3) 

Regenerate a new lifetime       by sampling the Weibull distribution for this component with 

parameter    and    , and reset its age to 0. Its absolute time is moved to next failure, i.e., 

     =   +      . 

Step 3: Make the decision on maintenance activities for the rest of the components in the wind 

farm. According to the policy described earlier in this section, at the moment of failure instant, a 

perfect action (i.e., preventive replacement) is determined to perform on component k in turbine 

M if        ≥      ×  .  =   for the components in the failed turbine, and  =  for the 

components in the running turbines. Regenerate a new lifetime       for this component with 

parameter    and    , and reset its age to 0. Its absolute time will be moved to next failure, i.e., 

      =    +      .  

Step 4: Cost update. The total cost due to perfect preventive maintenance action is updated as: 

  =  = +       
 
   

 
   ×     + CAccess×    )                                   (3-4) 

where      =1 if preventive maintenance is to be performed on component k in turbine m; 

Otherwise it equals 0.     =1 if any preventive maintenance is to be performed on turbine m, 

and otherwise it equals 0. Note that     represents the total preventive maintenance cost, and it 

equals to         in this strategy.  
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Step 5: After performing perfect maintenance on all qualified components, set i=i+1. If i does 

not exceed the maximum simulation iteration I, repeat step 2, 3 and 4. 

Step 6: Total expected average cost calculation. The simulation process with current variable 

value is completed when the maximum simulation iteration is reached, which is i =I. The total 

expected cost per wind turbine per day can be calculated as:  

CE = 
  

    
                                                                             (3-5) 

If variable’s upper bound is not reached, repeat step 2, 3, 4, 5 and 6. 

With the method for cost evaluation and the general optimization model described in Equation 

(3-2), the optimal variable value can be searched which corresponds to the minimal expected 

total cost per turbine per day CE. The optimal maintenance strategy is determined once the 

optimal values of variables   ,    are found. 

3.2.2.2 Strategy 2: Opportunistic Maintenance Considering Imperfect Actions 

The maintenance policy is described as follows. 1. Perform failure replacement if a component 

fails. 2. At the moment of failure, this opportunity is taken to perform an imperfect preventive 

maintenance action (i.e., reducing the component age by q) on component k (k=1,…,K) in wind 

turbine m (m=1,…,M) if        ≥      ×  .  =   for the components in the failed turbine, and 

 =   for the components are in the running turbines. 3. If the component is not performed 

preventive maintenance, it will continue working until the next failure occurs in the wind farm. 

The brief objective function is 

            min CE (  ,  , )                                                               (3-6) 
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where,   ,  ,and   are design variables. Similarly,   and    represent the age thresholds of the 

components in the failed turbine and running turbine, respectively, and   is the percentage of age 

reduction. The objective is to determine the optimal age threshold   ,    and age reduction ratio 

  to minimize the total expected maintenance cost per turbine per day. 

The simulation process is much similar to the Strategy 1. Only the differences in the procedure in 

the related steps are described. 

Step 1: Initialize the simulation. In addition to the all of parameters specified in Strategy 1, one 

more design variable  , the ratio of age reduction requires specifying. Moreover, the other term 

      is applied in Strategy 2, which denotes the new failure age of the component k in turbine 

m after imperfect maintenance action, and      =      at the beginning. 

Step 3: Make the decision on maintenance activities for the rest of the components in the wind 

farm. If        ≥      ×  , where  =  for the component in the failed turbine, and  =   for 

the component in the running turbines, imperfect maintenance is performed on component k in 

turbine m. Regenerate a new lifetime      , and its age, failure age and absolute time are 

updated as: 

          =       ×(1- )                                                         (3-7) 

      =  ×     +(1- )×                                                                              (3-8) 

     =   +       -                                                         (3-9) 
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Step 4: Cost update. Note that in this strategy, Equation (3-4) is also applicable. However, 

   varies with different ratio   according to Equation (3-1), where q can be considered to be 

maintenance effort. 

Step 2, 5, 6 and 7 are similar to those in Strategy 1. 

3.2.2.3 Strategy 3: Opportunistic Maintenance with Two-level Actions 

The maintenance policy is described as follows. 1. Perform failure replacement if a component 

fails. 2. At the moment of failure in the wind farm, perform imperfect preventive maintenance 

action, which reduces the age by q on component k (k=1,…,K) in wind turbine m (m=1,…,M) if 

     ×   ≥      ≥     ×    when the components are in the failed turbine, and if 

     ×   ≥      ≥     ×    when the components are in the running turbines. Perform 

preventive replacement on this component if       ≥     ×    (for the failed turbine) and 

      ≥     ×    (for the running turbines). This policy implies that the older a component 

is, the more it tends to be replaced. Note that in this policy, "   ", described as the maintenance 

effort, is a certain value rather than a variable. 3. If the component is not performed preventive 

maintenance on, it will continue working until the next failure occurs in the wind farm.  

The brief objective function is 

min CE (   ,    ,    ,    ,  )                                                        (3-10) 

                     s.t. 

                                             0<   <   <1 and 0<   <   <1 
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where,    ,    , and    ,     are design variables corresponding to two age thresholds of the 

components in the failed turbine and running turbines, respectively. The objective is to determine 

the optimal variable values to minimize the total expected maintenance cost per turbine per day. 

Similarly, only the differences from Strategy 1 are described. 

Step 1: Initialize the simulation. In addition to the all of parameters specified in Strategy 1, the 

design variables are modified since more design variables are introduced. The term       is also 

applied in Strategy 3, which denotes the new failure age of the component k in turbine m after 

imperfect maintenance action, and      =     at the beginning. 

Step 3: Make the decision on maintenance activities for the rest of the components in the wind 

farm:   

If      ×   ≥       ≥     ×    for the component in the failed turbine and if 

     ×   ≥      ≥     ×    for the component in the running turbines, imperfect 

maintenance is performed on the component. Regenerate a new failure time      . Age, failure 

age and absolute time are updated similarly according to Equations (3-7), (3-8) and (3-9). 

If       ≥     ×    for the component in the failed turbine and if       ≥     ×    for 

the component in the running turbines, preventive replacement is performed on the component. 

Regenerate a new lifetime      , and reset its age to 0. Its failure age is updated as      , 

denoted by      =      . The absolute time is updated as:      =   +      .     

Step 4: Cost update. In this strategy, Equation (3-4) is applicable, and     varies with different 

ratio q according to Equation (3-1).  
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Step 2, 5, 6 and 7 are similar to those in Strategy 1. 

For all three proposed maintenance strategies, once the minimum cost is find out, the algorithm 

outputs the optimal values of the design variables simultaneously. 

3.3   Numerical Examples 

In this section, examples are provided to illustrate the proposed approach. A comparative study is 

conducted with the policy using the same age threshold for failed turbines and operational 

turbines, and with the corrective maintenance strategy as well. The comparison results 

demonstrate the advantage of proposed approaches, and significant cost savings are achieved.    

3.3.1 Optimization Results with the Proposed Approaches 

Consider ten 2MW turbines in a wind farm at a remote site. Four key components in each 

component are studied to simplify the discussion: the rotor, the main bearing, the gearbox and 

the generator (National instruments products for wind turbine condition monitoring, 2010). 

Assume all components follow Weibull distributions with increasing failure rates (β>1), and all 

components and turbines are identical and independently deteriorate. The related cost and failure 

distribution parameters α (scale parameter) and β (shape parameter) are given in Table 1 based 

on the data in [19] and [74]. Note that     in Table 1 is the fixed preventive maintenance cost for 

a wind turbine, and it is shared by all the components in the turbine. 

The total maintenance cost can be evaluated using the proposed simulation method presented in 

Section 3.2.2. The optimization results for each proposed opportunistic maintenance strategy are 

presented as follows. Note that due to more than two design variables in each proposed strategy, 
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it is impossible to show the cost versus all variables in one figure. Thus the following figures are 

the cost versus one variable while the other variables are kept at the optimal values. 

Table 1.  Failure distribution parameters and cost data for major components ($k) 

Component α (days) β (days)                         

Rotor 3000 3 112 28 

40 50 7 Bearing 3750 2 60 15 

Gearbox 2400 3 152 38 

Generator 3300 2 100 25 

 

Strategy 1. Perfect maintenance only  

As shown in Figure 9, the optimal average maintenance cost per unit time is $167.2/day. The 

corresponding policy is that, when there is a requirement of failure replacement in the wind farm, 

the preventive replacement is performed on the components in the failed turbine if its age 

exceeds 50% of the mean lifetime, and on the components in the running turbines if its age 

exceeds 60% of the mean lifetime. Note that the optimal values are rounded to integer percentage 

values.  

Strategy 2. Considering imperfect maintenance  

As can be seen in Figure 10, when there is a failure occurs, the 50% age reduction maintenance 

actions are performed on the component reach 30% of its mean lifetime in the failed turbine, and 

on the component reach 40% of its mean lifetime in the running turbine. This optimal 

maintenance policy leads to the minimum cost of $123.4/day.  
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Figure 9. Cost versus    and    respectively 

 

Figure 10. Cost versus   ,   , and q 
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Strategy 3. Two-level maintenance  

Two-level maintenance defines that the low-level maintenance is imperfect and the high level is 

perfect, and they are supposed to be performed at different age thresholds. A replacement will be 

considered when a component is older, while the imperfect action tends to be performed at the 

younger age. There are 4 age thresholds, two for the components in the failed turbine, denoted by 

    and    , while the other two for the components in the running turbines which are denoted 

by     and    . Based on the optimization result of strategy 2, the imperfect maintenance action 

of reducing the component’s age by 50% is applied to this optimization problem.  

 

 

 

 

 

 

 

 

 

Figure 11. Cost versus    ,    ,    ,     respectively 
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As can be seen in Figure 11, the two-level maintenance optimization model leads to the 

minimum cost of $122.7/day. The optimal policy shows that at the moment of a failure in the 

farm, imperfect preventive maintenance action is taken on the component whose age is between 

40% and 100% of its mean lifetime in the failed turbine, and on the component whose age is 

between 50% and 120% in the running turbines. Otherwise, preventive replacement is performed 

on the component whose age exceeds 100% and 120% of its mean lifetime in the failed and 

running turbines respectively. 

3.3.2 Comparative study  

As mentioned earlier, [23] developed opportunistic maintenance methods for wind farms 

considering imperfect maintenance actions without distinguishing the age thresholds between the 

failed turbines and working turbines. In this section, the average maintenance cost is investigated 

considering only one age threshold for all components in the farm, regardless the failure turbine 

or working turbines. The advantage of the proposed methods is also investigated compared to the 

corrective maintenance policy, where only failure replacement is performed when a component 

fails in the wind farm. A comparison table is given to show the significant cost-saving of 

proposed approaches in this paper.  

3.3.2.1 Optimization Results of The Same Threshold for All Turbines  

Perfect maintenance only:   

The minimum cost is $168.8/day, and a preventive replacement will be performed on all 

components older than 60% of their mean lifetime. The results are shown in Figure 12.  
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Figure 12. Cost versus preventive replacement age threshold value (p) 

Considering imperfect maintenance:   

The minimum cost is $125.1/day, and the 40% age reduction maintenance actions will be 

performed on all components older than 40% of their mean lifetime.  

Two-level maintenance:   

In the optimal policy, 40% age reduction maintenance action is performed on the components 

according to the optimal result in Strategy 2A. The optimal cost is $123.6/day, and all the 

components with age between 50% and 120% will be performed the imperfect action, while the 

components with age above 120% will be performed the preventive replacement.  

3.3.2.2  Corrective Maintenance Cost Result   

The total average cost of corrective maintenance policy is calculated for the same wind farm 

studied in previous examples. By applying the corrective maintenance policy, the optimal total 

average cost per turbine per unit time is found to be $237/day.  
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3.3.2.3 Comparison Results 

The optimal cost results of each proposed strategy are given in Table 2. In Section 3.3.1, the 

optimization results show the optimal average cost of $167.2/day, $123.4/day, and $122.7/day 

for the proposed strategies with perfect action only, imperfect action and two-level action 

policies, respectively. Thus, significant cost savings of 29.4%, 47.9%, and 48.2% can be 

achieved compared to the corrective maintenance policy, and the two-level action method 

produces the lowest cost. It is found that the optimal results considering the same age thresholds 

are close to those distinguishing the failed turbines and running turbines. Thus, if the wind farm 

operators want to be accurate in wind farm performance evaluation and optimization, the 

accurate models considering the difference between failed turbines and running turbines should 

be preferred.  

Table 2. Optimal cost of proposed opportunistic maintenance strategies 

Corrective Maintenance $237/day 

Proposed 

Methods 

 Perfect 

Action Only 

Considering 

Imperfect Action 

Two-Level 

Action Minimum Cost $167.2 $123.4 $122.7 

Cost-savings 29.4% 47.9% 48.2% 

Same Age Threshold for Failed and 

Operational Turbines 

$168.8 $125.1 $123.6 

Fixed Imperfect 

Actions (Age 

Reduction) 

25% / $144.2 $144.9 

50% / $123.4 $122.7 

75% / $143.2 $142.1 
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Also, imperfect maintenance actions, i.e., variable q,  are considered as discrete values rather 

than continuous variable, where only specific ratios of age reduction actions can be implemented 

in an imperfect maintenance task. In many real-world applications, a particular age reduction 

level corresponds to a particular preventive maintenance technology or routine, and it also takes 

into account the ease of control and administration of imperfect maintenance actions. For this 

specific example, it is assumed that there are three possible age reduction options, 25%, 50%, 

and 75%. In this example with the specific settings, the 50% age reduction imperfect action is 

found to be the most cost-effective, while 25% and 75% age reduction actions cost 16.6% more. 

3.4   Conclusions 

In this chapter, opportunistic maintenance optimization approaches are developed for wind farms 

to take advantage of the maintenance opportunities to perform preventive maintenance actions. 

Imperfect maintenance actions are considered, which addresses the practical issue that preventive 

maintenance does not always return components to as-good-as-new status. The proposed 

opportunistic maintenance policies are defined by the component’s age threshold values, and 

different imperfect maintenance thresholds are introduced for failure turbines and working 

turbines, respectively. Three types of preventive maintenance actions are considered, including 

perfect, imperfect and two-level action. Simulation methods are developed to evaluate the costs 

of proposed opportunistic maintenance policies. The numerical examples illustrate the proposed 

approaches. The comparative study with the widely used corrective maintenance policy 

demonstrates the advantage of the proposed opportunistic maintenance methods in significantly 

reducing the maintenance cost. The developed methods have great potential to bring immediate 

benefits to wind power industry.  
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One should be noted that, the variable values, q and p, in the study are considered as discrete 

values with interval of 10%. This is to reduce the computation burden, and besides, an integer 

times of 10% would be easy to implement regarding an age reduction maintenance and 

evaluation of component's age compared to its mean lifetime by the maintenance crew in 

practice. However, there is a limitation of finding the global optimal solution without 

considering the continuity of the variable values. It is suggested that future work could consider 

continuous variables in the optimization procedure by means of more efficient optimization 

algorithm, if the precise maintenance cost is extremely concerned by the industry. 
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Chapter 4. Integrated prognostics study for the gearbox in wind 

turbines considering instantaneously varying load condition 

4.1   Overview 

There are many studies on CBM of wind turbines. In this study, we focus on the fatigue crack 

damage in wind turbine gearboxes, which are critical components and can lead to high failure 

and maintenance costs. Fatigue crack propagation is generally governed by the Paris’ law, where 

the stress intensity factor (SIF) plays a key role in crack propagation. Many existing approaches 

developed for wind turbine component prognostic problems mainly assume constant loading 

condition. In reality, many engineering systems work under unstable environment, e.g., time-

varying speed, load, temperature, etc. Specifically, wind turbines work under varying wind 

conditions in terms of wind speed and direction, which leads to varying torque applied to the 

mechanical components in the hub. The torque is changing over time, even during one revolution 

period. The existing approaches are generally not accurate representations of the problems in 

such an instantaneously time-varying environment. Using constant load over time as an 

approximation of the time-varying load case is not accurate since the crack propagation process 

is affected by the loading condition. This is reflected by different SIF values when different loads 

are applied, and thus the crack growth rate is affected according to crack propagation law. 

Stepwise time-varying load was considered by Zhao et al. [96], but the load is still assumed to be 

constant in each operation period. Such load condition approximation is usually not the case of 

wind turbine operating condition, since the rotor torque caused by the wind keeps changing 

instantaneously. In addition, the instant of load change was mapped to a certain cycle to 
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represent the varying load process in [96]. However, the exact number of cycles of that change 

occurs is very likely unknown in practice, and load changes happen on a continuous basis. 

Considering the instantaneous time-varying load, Alawi and Shaban, Altamura and Straub, 

Huang and Hancock, Khan et al., Lei and Zhu, Sobczyk, Zhao et al., and Zhu et al. proposed 

various modified crack propagation process based on the basic Paris' law[62], [64], [66]–[70], 

[78]. Material constant C and Δk were expressed as the functions of load cycle N in the model 

proposed in [62]. In [64], the growth rate of fatigue crack was denoted by crack length growth 

per unit of time, rather than increasing number of load cycles, because a cycle is not 

straightforward and unique when the load is randomly varying in time. [66] claimed that there 

exists a correlation between the root mean square of SIF range ( k) and growth rate of a fatigue 

crack, but they concluded that       vs.       approach fail to model the experimental data. 

However, [67] suggested that if the constant in the model, m, is less than 2,        can be 

appropriate. An extra random process Y(t) accounting for the random material resistance were 

considered in the model [67], [68]. In [70], The basic Paris' model was applied, and treated the 

random loading and crack growth rate were treated as random variables, but the random time-

varying feature was ignored. In this study, we do not apply any mentioned approaches due to 

their limitations and lack of implementation details. Instead, a new scaling method is proposed to 

model the crack propagation process, where  k at each crack level is represented by a scaled 

distribution corresponding to the varying external load profile. More details are given in Section 

4.3. 

Model-based prognosis and Data-driven prognosis are well-known methods in CBM study. Data-

driven methods generally apply machine learning techniques or statistical models to the 

historical condition data to empower the capability of predicting future condition. Model-based 
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methods, however, use physical models, such as finite element (FE) models and fatigue 

propagation models based on fatigue mechanics, to predict the component health condition. 

Significant challenges exist for model-based methods when a component is complex for 

modeling its physics and dynamic response,  while data-driven methods are not effective when 

data are not sufficient, or the data-driven models are not suitable. In this study, an integrated 

prognostics method based on the framework in [78] is developed to fuse the condition 

monitoring data via Bayesian inference to update the physical model in an integrated way, and 

improve the prediction with limited available historical data.  

Considering the drawbacks and challenges of existing works mentioned above, in this study, an 

integrated varying-load approach is proposed for predicting wind turbine gearbox reliability by 

explicitly considering instantaneously varying external load. The damage propagation process 

under instantaneously time-varying external load condition is explicitly considered. We focus on 

the prognosis for a spur gear with a crack at the tooth root. FE model is built to calculate the SIF, 

and it is used in a modified Paris’ propagation model proposed in this study to deal with time-

varying load conditions. Material parameter distribution in the crack propagation model is 

updated by means of Bayesian inference method by fusing new available condition monitoring 

data at each inspection interval, and the predicted failure time of the cracked gear is then updated 

accordingly. An example will be used to demonstrate the effectiveness of the proposed method.  

This chapter is organized as follows. Section 4.2 presents the framework of the proposed 

prognostics approach, which is adapted from the existing study but considers time-varying 

loading conditions. Section 4.3 gives the analysis details about varying external load profile for 

the gearbox in a wind turbine, and introduces a useful load simulation tool FAST which produces 

a dataset of the instantaneously varying load applied for the examples in this study. In Section 
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4.4, the proposed integrated prognostic approach consider time-varying load condition is 

introduced. Section 4.5 gives a numerical example to demonstrate the developed method. A 

comparative study between the proposed time-varying load method and constant load 

approximation method with two different crack measurement error cases is conducted in Section 

4.6. Conclusions are given in Section 4.7. The materials in this chapter has been published in [2]. 

Nomenclature:  

  : the wind power passes through the turbine 

  : mechanical power generated by the rotor 

  : the turbine angular velocity  

Cp:  the power coefficient 

R:  the maximum radius of blade sweeping area (blade tip) 

 : wind speed 

c and m: gear material parameters  

  : the range of stress intensity factor 

Δa/ΔN: crack growth rate 

     : posterior distribution in Bayesian updating process 

      : prior distribution in Bayesian updating process 
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4.2   Framework of the proposed integrated prognostics approach 

The framework of the proposed integrated prognostics approach is presented in this section, and 

the flowchart of the framework is shown in Figure 13. The framework is adapted from the 

existing one presented in [78] by considering time-varying loading conditions. There are two 

parts in the prognosis process, the data-driven part and model-based part. Data-driven part 

processes the collected condition monitoring data and applies the crack estimation techniques to 

evaluate the crack length with uncertainty. In the model-based part, the crack at the gear tooth 

root affects the mesh stiffness significantly, and thus the dynamic load applied to the cracked 

tooth. The dynamic model is used to determine the dynamic load accounting for the load change 

due to crack growth by solving a set of dynamic motion equations. FE model is used to perform 

stress analysis corresponding to a specific crack length and load, and produces the SIF value at 

the crack tip. SIF is then used in the proposed crack propagation model dealing with varying 

external load condition. The failure time and the remaining useful life (RUL) distribution can be 

predicted through the degradation model at the current crack length, which is described in 

Section 4.4. Bayesian inference is used to update the distributions of the material parameter, one 

of the major uncertainty factors in this work, and thus achieve a more accurate RUL prediction.  

The wind turbine modeling and consideration of varying external load are described in Section 

4.3. The degradation model and crack propagation prediction are presented in Section 4.4. For 

related information such as FE model performing stress analysis, gear dynamic model, etc., one 

can refer to [78]. Uncertainty factors considered in this prognostic study include material 

parameter uncertainty, crack propagation model uncertainty Ɛ, and measurement uncertainty τ.  
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Figure 13. Flowchart of the integrated prognostics framework 

4.3   Wind turbine and varying load profile modeling  

Wind turbines can generally be in operational or parked status. When the wind speed is below 

cut-in speed or above cut-out speed, wind turbines stop through its control strategy. Jiang et al. 

considered both operational and parked cases in contact fatigue analysis of a planetary bearing in 

a wind turbine drive train, and they concluded that the parked cases have negligible contributions 

to the fatigue life while the operational cases are the dominant case [97]. We consider only the 

operational cases in this study for RUL prediction. The time-varying torque applied to the low-

speed shaft (LSS) connected to the gearbox is the key input in this study, called LSS torque. A 
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brief explanation is given as follows to understand the varying torque profile. Wind turbines are 

typically designed to work at two kinds of operational modes, working in a constant rotor speed 

regardless of the wind speed fluctuations, or variable rotor speed which is proportional to the 

wind speed. Some studies use a proportion of wind power to represent the aerodynamic load 

applied to the rotor in the wind. Note that this method can only be applied to variable rotation 

speed wind turbines, which is designed to operate at a rotor speed proportional to the wind speed. 

This is because changes in the aerodynamic power are absorbed as changes in the angular 

velocity of the rotor, while assuming the turbine is well controlled with the power optimized, i.e., 

the pitch angle θ and the tip speed ratio λ are kept constant at optimal values [98]. The 

followings illustrate the load calculation in the case that a wind turbine works at variable rotor 

speed. 

4.3.1 Time-varying torque applied to the transmission system 

Figure 14 shows the power conversion system of a wind turbine (WT), and we can consider a 

gearbox system as a transmission unit [99]. After the wind power    passes through the turbine, 

mechanical power    at the turbine angular velocity    is then supplied to the transmission 

system.         .  

 

Figure 14. Wind Electric System [99] 
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The power in the wind Pw is  

    
 

 
    

 ,                                                       (4-1) 

and Pm=Cp·Pw. So 

       
 

 
     

    
 

 
       

        ,                               (4-2) 

where Cp is the power coefficient, i.e., the ratio of the extractable mechanical power to the power 

contained in the air stream [74], which is a function of tip speed ratio λ and blade pitch angle β 

(degree) [100]. λ is formulated as:  

   
   

 
                                                          (4-3) 

where    is angular velocity of wind turbine rotor (revolution per time), R is the maximum 

radius of blade sweeping area (blade tip), and   is wind speed. 

Thus, the aerodynamic torque applied to the rotor is [101]: 

torque = Pm/  ,       is angular velocity (arc/s).                                 (4-4) 

However, when the wind speed is above the designed rated wind speed corresponding to the 

rated power (say, 2MW), the power is not a function of wind speed but remains a fixed value. 

The torque calculation described above is not applicable any more, and aerodynamic load, which 

is a main role of the torque, varies by means of power control mechanism.  
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4.3.2 The relationship between load and power control 

Wind turbines are in general designed to yield a maximum power output, rated power, at a 

certain rated speed. To prevent damage to the wind turbine due to excessive winds, the rotor 

speed is designed to remain constant in order to shed part of the excess energy, and stall when 

wind velocity exceeds cut-out speed.  Thus, wind turbines need power control. Basically, there 

are three control strategies: yaw control, generator torque control and pitch control [98], [101]. 

Control methods optimize the power output by adjusting the relevant angle, e.g., yaw angle and 

pitch angle of the blade, in response to the time-varying wind speed and direction. These all 

affect the load applied to the rotor. Thus, the load change is a very complex and dynamic 

process. 

The varying cyclic load, which dominantly leads to fatigue, consists of a deterministic part due 

to gravity loads and a stochastic part due to aerodynamic loads [98]. Gravity load is given as:        

                                                                                            (4-5) 

Aerodynamic loads are based on the blade element momentum method. The rotor swept plane is 

divided into a number of ring elements, the torque on the ring element is 

                 
   ,                                                (4-6) 

where r is the radius of the ring element, a and a
'
 are the axial and tangential induction factors, 

respectively, and are mainly related to pitch angle θ and inflow angle α, which vary by means of 

pitch in response to the varying wind speed and direction. 

As we can see, when a turbine has constant rotation speed, the aerodynamic load due to the wind 

speed fluctuations is certainly varying due to the working mechanism of power control system, 
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e.g., blade pitch θ adaptation. The varying load applied to the rotor can be thus calculated by 

summing the load over the blades using Equation (4-6), and it will be induced to the gearbox 

transmission system. However, there is almost no way to get the parameter values of θ and α 

analytically. The existing studies usually use FEM and modeling software, e.g., FAST, to 

simulate the instantaneous loading. Given these issues on quantifying the varying load, FAST is 

used in this study to generate the varying torque data. A brief introduction of FAST is given in 

the following subsection. 

4.3.3 FAST simulation tool 

As mentioned earlier, the varying load applied to the wind turbine rotor due to varying wind 

speed and its complicated control mechanism is very hard to be presented by analytical model 

only, as the parameters involved are not in steady state over time and their values almost cannot 

be captured analytically. No mathematical models are found in existing studies on modeling the 

varying load in wind turbine thus far.  

However, FAST, simulation tool developed by NWTC/NREL, was found to be very helpful to 

provide simulated instantaneously varying load outputs, which resolve this vital issue in our 

prognosis study for WT application. [102] Used FAST to address dynamic conditions in the 

study of gear contact fatigue analysis for a wind turbine drive train. FAST archive is free for 

download online, and a set of 17 sample models are provided including all pertinent input files, 

such as tower, blade, turbine control, aerodynamics parameters, mass, wind profiles, etc., [103]. 

In this study, sample model "test13" is selected, Table 3 gives a general description of this wind 

turbine based on the provided input file in the open accessed FAST archive. 
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Table 3. General configuration of the wind turbine (Model-Test13)  

Type                         Three-blade 

Rated Power  1.5MW 

Rotor Diameter 70m 

Rated Rotor Speed 20rpm 

Power Control  Simple variable speed & pitch control 

Hub Height 84.2876m 

Gearbox Ratio 87.965 

Wind Condition Wind speed at the hub height  

Min=10.16m/s, Max=24.90m/s, Mean=18.2m/s 

 

Given the specific wind data profile and wind turbine model, 700s time-series of torque on the 

main shaft is simulated in FAST, and the first 100s is discarded due to possible transient effects 

in the simulation. The generated torque time-series data is plotted in Figure 15. Such torque is 

then transmitted to the input shaft for the high-speed stage gear pair, by introducing a linear 

factor considering the gear transmission ratio in between and the energy loss. The output shaft 

for the high-speed gearbox stage is the high-speed shaft (HSS). Thus the focus of this study is on 

the integrated prognostics study for the faulty gear in the high-speed gearbox stage. The torque is 

then applied as the input to gear dynamic model, which describes the dynamics of the studied 

high-speed gearbox stage, for calculating the load applied on gear tooth and subsequently the SIF 

to be used in crack propagation calculation [78].   
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Figure 15. FAST simulated varying torque 

4.4   Gear degradation and parameter updating considering time-varying load 

The gear degradation model proposed in this study is for predicting crack propagation in a gear 

tooth over time considering the time-varying external load condition. Experimental results of 

fatigue crack tests have shown that the crack propagation has three distinct regions. Most of the 

existing crack propagation models are based on the Paris’ law [63], which is one of the first and 

most widely used fatigue crack propagation models and work at the stable region where the log-

log plots of crack growth rate versus cycles are linear. 

In this study, a scaling method is proposed to model the crack propagation process based on the 

basic Paris’ law, and the form is given by 

  

  
           ,                                                            (4-7) 
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where da/dN is crack growth rate, c and m are material parameters and generally experimentally 

estimated by fitting fatigue test data, and E is the expectation of       at a certain crack level 

considering the time-varying load condition. With the integrated prognostics framework, SIF 

with respect to a certain load can be obtained by scaling the pre-calculated SIF with respect to a 

baseline load, and thus    can be obtained in an efficient way [96]. Equation (4-7) can also be 

reformatted in a discrete form as  

                
         

           
  ,                      (4-8) 

where pi is the PDF value when       . 

Considering the time-varying load, the sampled real time-varying external torque data set is used 

as input for the tooth meshing dynamic process and dynamic load calculation, and stress analysis 

will be subsequently conducted in FRANC2D physical model. The resulting Δk over one 

revolution of gear meshing can reflect the varying load impact. In addition, during each crack 

level, the load keeps changing. In this case, the varying load over one revolution is to be sampled 

multiple times from same varying torque data pool, which is simulated by FAST with a given 

common wind sample. Note that we assume these simulated varying torque values can reflect 

typical patterns, which is reasonable since wind profile in a certain location usually is same over 

a period of time. By sampling load data with appropriate times and applying these data sets 

repeatedly at each crack level, we can properly model a gear subject to consistent varying input 

torque condition during its damage propagation process.   

Suppose that during each crack increment         , the same 100 sets of time-varying 

external torque over one gear revolution are sampled, and these samples represent the consistent 

external condition that the gear suffers at each crack level. Suppose    values at initiation stage 
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        are obtained given 100 data sets of sampled varying torque, we can easily find the 

distribution of            by normal fitting, with a significant reduction of computation 

complexity.  

In addition, it is found that    monotonously increases as the crack grows when the constant 

external load is considered in the FE model, which is briefly described in Section 5.2. The larger 

the crack is, the faster    increases. In this study, the mean of 100 sets of sampled external 

torque data is applied as the constant load to the FE model first,    is then analyzed at each 

crack level by applying the method developed in [78]. Thus, the pairs of calculated        vs. crack 

length are obtained and then fitted by polynomial approximation. The distribution of    at each 

crack level is thus be obtained N(rate   ,         ), where rate=    at current crack level/   

at initial crack level (0.2mm).     

The process of calculating crack increment using the proposed damage propagation model is 

illustrated as follows.  

Step1:  Initiate crack at  =0.2mm.  Sample 100 external torque data sets from the simulated 

torque pool. 

Step 2: Calculate    values corresponding to the 100 mean torques for crack length =0.2mm, 

and fit them to get   and   of    distribution, which is assumed to be normal. 

Step 3: Divide the    over the range (  -3  ,   3  ) with n data points, and here we set n =500. 

Step 4: For each    in [ -3  ,   3  ], calculate its PDF, denoted by p.  

Step 5: Calculate    using Equation (4-8), and        
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E(   =       
 

 
                                                     (4-9) 

Step 6: With the growth random variable     and the current crack length, the predicted crack 

length distribution at the next inspection interval can be obtained, denoted by    , which is used 

for updating material uncertainty parameter m, based on the observed crack length at the next 

inspection interval    . Bayesian inference is used:    

             
                  

                    
                                               (4-10) 

where          is the likelihood function, which is determined based on crack length random 

variable at the next inspection point    .     is the observed crack length at the next inspection 

point.  

Step 7: Go to Step 2.            

The uncertainties in the model are the major causes of inaccurate failure time prediction, and 

these are the consequences of variations in the production process as well as human errors. In 

this degradation model, material uncertainty, model uncertainty, and measurement uncertainty 

are considered. Condition monitoring data are the unit-specific information that can be used to 

determine and update the material parameter distributions for the specific unit. In this chapter, 

the gear at the high-speed stage in a wind turbine is studied. Bayesian updating method will be 

used to update material parameter distributions at every inspection interval as long as the crack 

length is estimated with available condition monitoring data.  
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4.5   Numerical Examples 

In this section, numerical examples are presented on gear life prediction using the proposed 

integrated prognostics approach considering time-varying load. Simulated degradation paths are 

generated by considering the various uncertainty factors. A degradation path contains the 

information on inspection time and the associated crack length. The generated degradation paths 

are divided into two sets: the training set used to obtain the prior distribution for parameters, and 

the test set to test the prediction performance of the proposed prognostics approach. 

4.5.1 Introduction 

In the examples, a 2D FE model of a single cracked tooth is built in the FRANC2D software 

program. The singular mesh near the crack tip will be generated automatically. Based on the 

stress analysis, the crack will be propagated, and the associated        at each crack length will be 

recorded accordingly since the mean torque is used representing the varying load profile in FE 

model. The material and geometry properties of this specific spur gear used in this example are 

listed in Table 4 [78], [86]. In a wind turbine, the gearbox is configured to increase rotation 

speed at the output shaft for power generation by the generator. Thus, the driving gear size is 

supposed to be bigger than the driven gear size. The tooth number of the studied gear with crack, 

the driving gear, is 48, while the driven gear in the gear pair has 19 teeth. 

In a wind turbine, the fixed axis gear pairs are usually applied at the intermediate and high-speed 

stages after planetary gear stage, which is at low-speed stage directly connected to the rotor 

shaft. An overview of a typical gearbox with internal components of many megawatt-sized wind 

turbines is shown in Figure 16 [104], and this is also the configuration of gearbox we considered 

in this study. There are three gear stages: the low-speed planetary gear stage, the intermediate 
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and high-speed parallel gear stages. In this case, we consider the driving gear at the high-speed 

stage. The varying rotor torque applied to the low-speed shaft (simulated by FAST) is 

transmitted to the input shaft at the high-speed stage by introducing a linear factor based on gear 

ratio and energy transmission loss. 

Table 4. Material properties, and main geometry parameters [78], [86] 

Young's 

modulus 

(Pa) 

Poisson's 

ratio 

Module 

(mm) 

Diametral 

pitch 

(in
-1

) 

Base 

circle 

radius 

(mm) 

Outer 

circle 

(mm) 

Pressure 

angle 

(degree) 

Teeth No. 

2.068e11 0.3 3.2 8 71.6 79.4 20 48 

 

Suppose the critical crack length is 5.8mm, which is about 70% of the full base tooth thickness. 

Beyond this failure threshold, the crack will propagate very fast, and the tooth break is imminent. 

The FE model is shown in Figure 17. 

The gear dynamic system model is used to calculate the dynamic load on this cracked tooth [78]. 

The varying input torque during one revolution period is sampled from the FAST simulated 

RotTorq output shown in Figure 15. At each crack level, the load is constantly changing. 100 

varying torque datasets are periodically sampled within 600s simulation duration, and these same 

100 datasets are used at each crack level, which represents the gear under consistent varying 

input torque profile during one crack degradation unit period (0.2mm). SIF values are calculated 

in FRANC2D. The mean of 100 sampled torque data sets is applied as a constant load for stress 

analysis in FE model to get the curve of         vs. crack length, as mentioned in Section 4. This 
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curve is to be used as a baseline in evaluating crack growth with the proposed damage 

propagation model. During the crack propagation process, at each crack level, to drive the crack 

to propagate at an appropriate direction under time-varying external load, it is also reasonable 

that we consider the calculated maximum dynamic load under that mean torque as the load 

applied at the contact point. 0.2 mm crack increment is then implemented in FRANC2D model.  

 

Figure 16. Wind turbine gearbox configuration [104] 

 

Figure 17. 2D FE model for spur gear tooth, critical crack length=5.8mm 
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Besides the torque, other values for the parameters in the dynamic system can be found in [86]. 

The crack is introduced at the root of the second tooth on the driving gear, and the crack growth 

will end when it reaches the critical length of 5.8 m. Crack greatly reduces the mesh stiffness, as 

can be seen in Figure 18 showing the crack of 3.6mm, and the total mesh stiffness is represented 

by the solid blue line while the mesh stiffness of the gear pair with the cracked tooth is 

represented by the mauve dash line. The details of calculation for time-varying stiffness at 

different crack length can be found in [78].  

 

Figure 18. Meshing stiffness of gear pair with a cracked tooth, crack length=3.6mm 

MATLAB's ODE15s function is used to solve the dynamic equations listed in [78] with time-

varying mesh stiffness at different crack lengths calculated. Dynamic loads at every contact 

points, in other words, at every rotation angle, can then be obtained. Figure 19 shows the static 

load and dynamic load on the cracked tooth when it has a crack of 3.6mm meshes. There appears 
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the maximum dynamic load at the rotation angle of 5.6 degrees, and it is higher than the 

maximum static load.   

 

Figure 19. Dynamic load on gear tooth with a crack of 3.6mm 

By conducting the experiments for the entire crack path, it is found that the position of maximum 

dynamic load only moves forward a little bit with the movement of less than 1 degree as the 

crack grows. It is not arbitrary that we consider the maximum load is always applied at a fixed 

position for the whole crack path, which corresponds to the rotation angle of around 6 degrees.   

As mentioned earlier in Section 4.4, the time-varying external torque over one revolution is 

sampled multiple times, and same data sets are used for each crack level to represent the 

consistent varying load profile applied to the wind turbine. The mean of the varying torque is 

applied using the constant-load approach developed in [78] to find out SIF vs. crack length 

curve. The result is shown in Figure 20, which is        vs. crack length. As can be seen in Figure 
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20, the mode I’s SIF is dominant comparing to the mode   stress intensity factor, so only KI is 

used to calculate the crack growth rate. As we can see,    equals KI that is obtained with the 

input of the maximum dynamic load, since the minimum dynamic load during the cracked tooth 

mesh period is zero. In addition, the maximum dynamic load is larger than the static load, which 

results in a larger    compared to that obtained with the static load, and thus the crack grows 

faster that will lead to a relatively shorter RUL.  

As mentioned previously, the curve KI vs. crack length in Figure 20 represents        vs. crack 

length when the mean of time-varying torque is applied, and it will serve as the baseline to 

estimate the crack increment    using the proposed damage propagation model described in 

Section 4.3.2.  

 

Figure 20.         vs. crack length (the unit of    is Mpa   )
 

K1 

K2 
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To validate the proposed integrated approach, a set of crack degradation paths P are generated 

using the modified Paris’ law described in Equation (4-7), and it can be formed as follows: 

a((i+1) N)=a(i N)+( N)C E[ k(a(i N))]
m
ε, i=0, 1, 2, ..., λ-1 

                            a mea (λ N)= a (λ N)+e 

a(0)=0.2                                                                                                         (4-11) 

where                       
         

           
 ,  pi is the PDF of        

when the crack length       , and amea is the measured crack length at every inspection time. To 

generate degradation path i, parameter mi is randomly sampled once from its population 

distribution, and the value is kept constant until crack grows to the critical length. At each 

propagation step, model error ε sampled from its distribution is introduced, and a random 

measurement error e is added to the generated measured crack length at each inspection time as 

well.  All generated crack paths i and values of sampled mi, termed as real mi, are used in the 

training process to obtain a prior distribution of parameter m and validating the approach. The 

following values and distributions for the parameters are used in this example to generate the 

degradation paths: C = 9.12e-19, e ~ N(0, 0.2
2
), i.e., τ = 0.2, m ~ N(3.2354, 0.2

2
), and ε ~ N(2.5, 

0.5
2
). 

Ten degradation paths are generated according to Equation (4-9), until the critical crack length of 

5.8mm, as shown in Figure 21. Table 5 shows the ten real values of m for generating these ten 

paths. They are divided into two sets: #(H)=7, #(R)=3, of which #5, #7, #9 are the three test 

paths. Thus, for each path i belongs to H, the optimal mi_op value, i=1,2,3,4,6,8,10 satisfying 

minimum least square (MLS) criteria can be found. 7 Trained mi are then used to obtain a prior 
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distribution m by fitting with the normal distribution. Finally, the prior distribution for m is fprior 

(m) ~ N (3.1255, 0.0535
2
).  

 

Figure 21.  10 Simulated degradation paths 

4.5.2 Results 

To validate the proposed prognostics approach, we take paths #5, #7, and #9 for testing. At each 

inspection cycle for updating, the posterior distribution of m will be the prior distribution for the 

next updating time. Here, Path #7 is given as an example to demonstrate the updated posterior 

distribution of m. In path #7, the updating history is shown in Table 6. The Bayesian updates 

adjusted the mean value of m from the initial value 3.1255 to its real value gradually at every 

inspection interval of 1.9 × 10
4
 cycles, as the condition monitoring data on the crack length are 

available. Because the RUL is very sensitive to the value of m, the distribution adjustment for m 

9                  7                                       5 
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is critical for maintenance optimization. Moreover, the standard deviation of m is reduced, which 

means that the uncertainty in m is reduced through Bayesian updating given the measured crack 

length. To demonstrate this, Figure 22 shows the updated distribution of for path #7, from which 

we can see that with the updates for distribution of m at certain inspection times, the predicted 

failure time distribution becomes narrower, and the mean is approaching the real failure time. 

The updated RUL distribution at each inspection time for path #7 is also computed as shown in 

Figure 23.  

Table 5.  Real and trained m of each degradation path 

Path # Real m Trained m 

1 3.1434 3.1437 

2 3.2353 3.2330 

3 3.1279 3.1283 

4 3.0803 3.0816 

5 2.9427 - 

6 3.1088 3.1117 

7 2.9993 - 

8 3.1096 3.1085 

9 3.0581 - 

10 3.1305 3.0718 
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Table 6.  Test for Path #7 (real m=2.9993) 

Inspection cycle Crack length (mm)       

0 0.2     3.1255     0.0535 

1.9*10
4 

1.4621     3.0219     0.0123 

3.8*10
4 

1.9521     2.9953     0.0067 

5.7*10
4 

3.6476     3.0014     0.0060 

7.6*10
4 

5.6214     3.0028     0.0042 

 

 

Figure 22.  Updated distribution of m for path #7 
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Figure 23. Updated failure time distribution for path #7 

4.6   Comparative Study 

In this section, based on 10 degradation paths shown in Figure 21, the constant-load approach 

presented in [78] is applied to update the uncertain parameter m and the predicted RUL at each 

inspection interval, which is an approximated way to deal with time-varying external load 

problem. In this approximation, the form of the basic Paris' Law, as shown in Equation (4-12), is 

directly used to estimate the crack increments.    with respect to a certain crack level is now a 

deterministic value, obtained at the mean torque value. 

  

  
                                                                (4-12) 

Following the same process, the results obtained using the constant-load approach are compared 

with the previous results by the proposed varying-load approach. Figure 24 shows one sample 

real failure time 

Initial 

prediction              

1
st
 update                                         
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nd 

update                                 
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rd 

update                                  

4
th

 update 
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crack degradation path using varying-load approach and constant-load approach respectively, 

where parameters are all set to be the same values. The results show that the crack propagates 

faster under varying load conditions.  

Next, we conduct the comparisons for two different cases: one considers measurement 

uncertainty τ=0.2, that is, the measured crack length follows a normal distribution 

                    
  ; and the other considers a larger measurement error τ=0.3. Measurement 

error cannot be avoided, and these measured condition data have a significant impact on the 

prediction result.  

Case 1.  τ =0.2 

This case is the one presented in Section 5.5. Taking Path #7 as an example, the updated m at 

each inspection interval applying constant-load approach is listed in Table 7, and the plots of m 

distribution are shown in Figure 25. As we can see, updating m using constant-load approach 

gives a bigger bias to the real m compared to the updated m values using the proposed varying-

load approach shown in Table 6. Consequently, the estimated mean lifetime at each inspection 

interval using varying-load approach shows a discrepancy between two sets of updated m values. 

The one using the updated m generated by constant-load method gives the larger error to the 

actual failure time. The plots of predicted lifetime distribution are shown in Figure 26. Table 8 

shows the differences of the updated predicted lifetimes at each inspection interval between the 

two approaches. Similarly, the comparison for Path #5 and Path #9 in Figure 21 are conducted, 

the failure time prediction results are shown in Table 9 and Table 10 respectively. As we can see, 

the accuracy of the average of failure time prediction results is improved significantly compared 

to the constant-load approximation method. It is noted that there are few negative accuracy 
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improvement at some inspection points occasionally, these may due to the variations of sampled 

model parameter value which are given certain distributions in the study. Overall, the prediction 

accuracy are apparently improved. 

 

Figure 24.  Sample simulated degradation paths for the two approaches with same parameters  

 

Table 7.  Test for Path #7 (real m=2.9993) 

Inspection cycle Crack length (mm)       

0 0.2     3.2823     0.0514 

1.9*10
4 

1.4621     3.1669     0.0122 

3.8*10
4 

1.9521     3.1400     0.0065 

5.7*10
4 

3.6476     3.1452     0.0059 

7.6*10
4 

5.6214     3.1444     0.0039 

Constant-load  

approach 

Varying-load  

approach 
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Figure 25. Updated distribution of m for path #7 (Constant-load approach) 

 

Figure 26. Updated failure time distribution for path #7 (Constant-load approach) 
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Table 8. Predicted RUL results comparison for path #7 (Actual failure time = 77400cycles) 

 
Constant-load approach 

Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection cycle µ (cycles) ׀µ-actual׀ µ (cycles) ׀µ-actual׀  

0 21342 56058 22795 54605 3.6% 

1.9*10
4 

60136 17264 62030 15370 11% 

3.8*10
4 

84172 6772 86880 9480 -39% 

5.7*10
4 

76857 543 77596 196 64% 

7.6*10
4 

76860 540 76898 502 7% 

 

Table 9. Predicted RUL results comparison for path #5 (Actual failure time = 139400cycles) 

 
Constant-load approach 

Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection cycle µ (cycles) ׀µ-actual׀ µ (cycles) ׀µ-actual׀  

0 22630 116770 25120 114280 2.13% 

3.4*10
4 

91360 48040 106340 33060 31.18% 

6.8*10
4 

109060 30340 120220 19180 36.78% 

10.2*10
4 

127660 11740 134440 4960 57.75% 

13.6*10
4 

137200 2200 137460 1940 11.82% 

 

Table 10. Predicted RUL results comparison for path #9 (Actual failure time = 42200cycles) 

 
Constant-load approach 

Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection cycle µ (cycles) ׀µ-actual׀ µ (cycles) ׀µ-actual׀  

0 21577 20623 24545 17655 14.39% 

10000
 

59112 16912 62116 19916 -17.76% 

20000
 

46501 4301 45952 3752 12.76% 

30000
 

38102 4098 38334 3866 5.7% 

40000
 

43347 1147 43230 1030 10.2% 

 



94 

 

Case 2.  τ =0.3 

Ten new degradation paths are generated according to the method, and they are shown in Figure 

27. Table 11 shows ten real values of m for generating these ten paths, and the seven trained 

values for the seven paths in the training set. 

Similarly, we take path #9 as an example to compare the updated m and predicted lifetime results 

between the proposed varying-load approach and constant-load approach. Figures 28 and 29, and 

Tables 12 and 13, show the updated m distributions and values at each inspection interval, by 

applying the proposed varying-load method and the constant-load approximation method, 

respectively. Figures 30 and 31 show the updated predicted failure time distributions by applying 

two methods, respectively. Table 14 shows the differences of the updated predicted lifetime at 

each inspection intervals. Table 15 and Table 16 show the comparison results of predicted 

lifetime for Path #4 and Path #6 respectively. As can be seen, the accuracy of the average of the 

failure time prediction results is improved compared to the constant-load approximation method 

in the case of τ =0.3, where the measurement error is larger. In both cases, the varying-load 

approach always gives smaller errors comparing to the constant-load approach for failure time 

estimation at each inspection interval.  
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Figure 27. Ten simulated degradation paths ( =0.3) 

Table 11. Real and trained m of each degradation path 

Path # Real m Trained m                                     

(varying-load approach) 

Trained m                                                

(constant-load approach) 

1 3.2178 3.2135 3.3722 

2 3.2129 3.2088 3.3601 

3 3.2511 3.2562 3.3988 

4 2.8702 - - 

5 3.1787 3.1800 3.3287 

6 2.9021 - - 

7 3.4239 3.4272 3.5828 

8 3.0643 3.0664 3.2087 

9 2.9759 - - 

10 3.3587 3.3611 3.5060 

 

 

     9                           6                    4    
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Table 12.  Test for Path #9 by the proposed varying-load approach (real m=2.9759) 

Inspection cycle Crack length (mm)       

0 0.2 3.2447 0.1192 

24000 0.8905 2.9551 0.0267 

48000 2.5471 2.9864 0.0178 

72000 3.4851 2.9713 0.0129 

96000 5.3763 2.9785 0.0088 

 

Figure 28. Updated distribution of m for path #9 (Proposed varying-load approach) 
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Figure 29. Updated distribution of m for path #9 (Constant-load approach) 

Table 13.  Test for Path #9 by the constant-load approach(real m=2.9759) 

Inspection cycle Crack length (mm)       

0 0.2     3.3939     0.1214 

24000 0.8905     3.0963     0.0270 

48000 2.5471     3.1271     0.0184 

72000 3.4851     3.1114     0.0133 

96000 5.3763     3.1181     0.0089 
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Table 14. Predicted RUL results comparison for path #9 (Actual failure time = 99100cycles) 

 Constant-load approach Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection cycle µ (cycles) 

 

  ׀µ-actual׀ µ (cycles) ׀µ-actual׀

0 9880 89220 14030 85070 4.6% 

24000 128160 29060 129920 30820 -6% 

48000 89490 9610 91390 7710 20% 

72000 105220 6120 103630 4530 26% 

96000 98920 180 99130 30 83% 

 

 

Figure 30. Updated failure time distribution for path #9 (Proposed varying-load approach) 
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Figure 31. Updated failure time distribution for path #9 (Constant-load approach) 

Table 15. Predicted RUL results comparison for path #4 (Actual failure time = 295500cycles) 

 
Constant-load approach 

Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection cycle µ (cycles) ׀µ-actual׀ µ (cycles) ׀µ-actual׀  

0 11080 284420 9910 285590 -0.4% 

7.3*10
4 

221670 73830 228360 67140 9.06% 

14.6*10
4 

251820 43680 257890 37610 13.9% 

21.9*10
4 

314860 19360 310080 14580 24.69% 

29.2*10
4 

294460 1040 294670 830 20.19% 
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Table 16. Predicted RUL results comparison for path #6 (Actual failure time = 212400cycles) 

 
Constant-load approach 

Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection cycle µ (cycles) ׀µ-actual׀ µ (cycles) ׀µ-actual׀  

0 9500 202900 12190 200210 13.3% 

5.21*10
4 

250800 38400 250370 37930 12.2% 

10.42*10
4 

238670 26270 232590 20190 23.14% 

15.63*10
4 

223890 11490 223100 10700 6.88% 

20.84*10
4 

212060 340 212220 180 47.06% 

 

4.7   Conclusions 

Wind power is a significant clean energy source, which provides great promise in protecting the 

environment while meeting electricity demand. Cost is a key factor to increase the 

competitiveness of wind energy comparing to other energy sources. Improving reliability 

through prognostics and CBM provides great potential for cost reduction. In this chapter, an 

integrated varying-load approach is proposed for predicting the fatigue crack propagation and 

remaining life of the wind turbine gearbox by specifically considering instantaneously varying 

external load, which is more realistic. The method integrates physical gear model by taking 

advantage of stress analysis in finite element modeling and available health condition data. In 

order to improve the accuracy of RUL prediction, the distribution of the uncertain material 

parameter modeled in crack degradation process is updated once the new health condition data 

become available via Bayesian inference. The examples demonstrate the effectiveness of the 

proposed varying-load approach and its advantages versus the existing constant-load 

approximation method. Even though gearboxes in wind turbines are considered in this chapter, 
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the proposed method is also applicable to other systems and structures subject to the 

instantaneously time-varying load.  

One should discuss is the possible impact of varying load on production loss. Wind power 

production is directly related to the wind speed, and the wind speed does have impact on the 

external time-varying load as presented in Equation (4-1) to (4-4). However, the varying load 

simulated by FAST has put the wind profile into consideration, and the power production is well 

controlled by the power control system in the wind turbines. The power loss during the period of 

wind speed being between the cut-in and cut-out values is very difficult to quantified, and there 

is not significance to consider production loss in the prognostics study for the components in a 

wind turbine. In addition, parked cases in which production is completely zero has negligible 

contributions to the fatigue life of the gearbox as stated in Section 4.3. In this scenario, we do not 

consider the production loss in this study, however, it may be considered in the future work in 

optimizing CBM by minimizing production loss. 
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Chapter 5.   Integrated prognosis for the gearbox in wind turbines 

under time-varying external load condition considering crack 

initiation time uncertainty 

5.1   Overview 

In Chapter 4, a study is conducted where wind turbines suffer from varying environment 

conditions from time to time, e.g., time-varying wind speed and direction, temperature, etc., 

which leads to time-varying torque applied to the mechanical components in the hub. Hence, the 

gearbox fails in a different manner from the one under constant load condition. The prognosis 

starts at the point when an initial crack is detected, and the crack initiation time is typically 

considered as an exact value in the previous study. However, the existing fault detection and 

diagnostic techniques are limited so that a large variation in the accuracy of initial crack 

detection cannot be ignored.  

As illustrated in Figure 32, five crack degradation paths are generated considering both the 

uncertainty in CIT and the physical model parameters. a0 and aC are the initial crack size and the 

critical crack size, respectively. Two black vertical dash lines represent the CIT and the failure 

time if the crack propagates on Path 1, respectively. The black dash curve represents CIT 

distribution due to the variation of CIT which goes on the x-axis, and the y-axis represents the 

probability density function (PDF). As a result, the failure time, i.e., the time of crack size a 

reaches aC, shows a variation as distributed as the red dash curve, of which the x-axis is used as 

the variable failure time and the y-axis represents the PDF. To reduce the variation, in this 

chapter, a new parameter, uncertainty of crack initiation time (CIT), is introduced in the 
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previously developed prognostics model for the gearbox in a wind turbine under time-varying 

external load condition. The objective is to update the distribution of both CIT and the physical 

model parameters at each inspection time by applying the new observations into Bayesian 

inference, so that the means of CIT and the physical model parameters approaches the true value, 

and thus the prediction of failure is more accurate. 

 

 

 

 

 

 

 

Figure 32. Degradation paths generated by varying CIT and physical model parameters  

There is limited literature considered CIT uncertainty in gear prognostics. Lewicki  investigated 

the effects of initial crack angle and position on the gear tooth crack propagation path [105]. 

Zhao et al. considered CIT uncertainty in their developed prognostics method for a gear but only 

addressed the problem under the constant load condition [106]. In this chapter, the varying load 

condition is considered in the gear crack propagation model as introduced in Chapter 4. 

Therefore, the RUL prediction for the gearbox in Wind Turbines under time-varying external 

load condition is more rational and accurate. 
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This chapter is organized as follows. Section 5.2 presents the framework of the integrated 

prognostics method and the details specifically focusing on CIT consideration. In Section 5.3, an 

example is given to demonstrate the effectiveness of the method. A comparative study between 

the proposed varying load model and constant load approximation method is given in Section 

5.4. The results show that CIT and material parameters are updated more accurately at each 

inspection interval compared to the constant load approximation method, and the results of RUL 

prediction for the gearbox in Wind Turbines are more accurate accordingly. Section 5.5 provides 

the conclusions. 

Nomenclature:  

     : posterior distribution in Bayesian updating process 

        prior distribution in Bayesian updating process 

    : the observed crack size 

  : crack initiation time 

L: time-varying load 

C and m: material parameters 

5.2   The proposed integrated prognostic method considering crack initiation 

time uncertainty 

The principle and framework of the integrated prognostic method are illustrated in Section 4.2. 

The main idea in this study is that, for a gear working in the wind turbine under time-varying 

load condition, the RUL prediction is better by introducing a variable t0, i.e., crack initiation time. 
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Bayesian updating, therefore, adjusts both the distribution of  0 and m at each inspection interval 

when a new observation data is available. In this study, we consider another material parameter 

C as a constant. The posterior distributions of  0 and m are then applied in Paris' law to predict 

the crack size at the next inspection interval until the crack reaches the threshold. RUL of the 

gearbox is then calculated. A general case of Bayesian updating process is shown in Figure 33.  

 

 

Figure 33. A general Bayesian update process 

Specifically, in this study, there are two random variables,  0 & m, which represent the 

uncertainty of CIT and model material parameter, respectively. The material parameter C in 

Paris' model is considered as a fixed value. Suppose that several failure histories are available, 

which provide the information of inspection times and the associated crack sizes. Then a prior 

distribution      ( 0, m) can be obtained by applying least-square regression and statistical fitting 

techniques. Assume the crack measurement error follows a zero-mean Gaussian distribution with 

  as the standard deviation. Under the time-varying load condition, crack growth is modeled as 

Equation (4-7) to account for the time-varying load effects. In this scenario, we denote the crack 

size   by a function of the load L, i.e.,  (L). At a certain inspection time   , the likelihood of 

observing a crack size of   
                  is [106]: 

     
             

 

    
     

   
                  

 

   
                                 (5-1) 

In the Bayesian inference framework, a posterior distribution      ( 0,  ) can be obtained by 

[106]: 

Prior Density: 

     (p) 

Posterior Density : 

 posterior(p/x)= 
                 

                    
 

Observe data x; 

Estimate its conditional 

distribution on p:  (x/p) 
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                            (5-2) 

The updating process is implemented when a new observation of crack size is available. The 

posterior distribution of the parameters will serve as the prior distribution for the next update 

process. Importance sampling technique is used to obtain samples which follow the posterior 

distribution.  

In this thesis, Bayesian updating aims at adjusting the distributions of uncertain parameters that 

affect the crack degradation process, and thus the RUL of the cracked gear can be predicted more 

accurately. A predicted failure time is the time when the observed crack size reaches the critical 

length   , and the RUL is the time from current inspection point to the predicted failure time. 

The RUL prediction result can be updated at each inspection time after the parameter 

distributions are adjusted via Bayesian updating. A modified Paris’ law to model crack 

propagation under time-varying load condition can be written in its reciprocal form as in 

Equation (5-3),  

  

  
                                                                    (5-3)         

In Equation (5-3),    represents the crack increment and it can be expressed in the following 

way,    

                
         

           
                        (5-4) 

where pi is the PDF value when       . Let  C( 0) be the current inspection cycle. The RUL 

is then the summation       from the current inspection cycle to the failure instant, i.e., the time 

when       ≥    . Therefore, the failure time is given by   
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F( 0,m)=  C( 0)+Σi    (m| 0)                                               (5-5) 

5.3   Numerical Examples 

It is not arbitrary to consider that the crack initiation time does not affect the FE modeling 

process of the gear tooth crack propagation. Hence the 2D FE model used in Chapter 4 is directly 

applied in this study. The history of SIF is adopted from Chapter 4 shown in Figure 20 is 

considered, as well as the main gear geometry and properties listed in Table 4.  

Suppose CIT of a spur gear tooth described in Chapter 4 follows a normal distribution N(2e6, 

2e5) cycles, and material parameter m~ N(3.0354, 0.2). Another measurement error is similarly 

considered as in Chapter 4, and it follows a normal distribution N(0, 0.2).   

First, a real crack degradation path is generated with CIT of 1.7e6 cycles as shown in Figure 34. 

Each red circle point denotes the real crack size every after an inspection interval of 1e4 cycles. 

Blue star points are actual observed crack size with the sampled measurement error. These data 

are to be used as the observations to update CIT and m distributions at each inspection interval. 

Based on the updating process illustrated in the previous section, the updating history of CIT and 

m are shown in Table 17. Figure 35 and 36 show the updated distribution of CIT and m, 

respectively. As can be seen, under the time-varying load condition, the Bayesian updates 

adjusted the mean value of m and CIT gradually to its real value as the new crack length 

observations are used. Moreover, the distributions of the updated variables become narrower and 

narrower, which means that the uncertainty is reduced. 

The updated failure time prediction results are listed in Table 18, and Figure 37 shows the 

lifetime distribution at each inspection interval. As can be seen, lifetime prediction result 
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becomes more and more accurate, the mean is approaching the real failure time, and the 

uncertainty is much reduced.  

 

Figure 34. One real crack propagation path 

Table 17. Updating history of crack initiation time and m at each inspection time 

(real m=3.2354,   =1.7e7 cycles) 

Inspection               

1 2.0005e6 2.0544e5 3.0465 0.1938 

2 1.5826e6 1.0410e5 3.0289 0.1120 

3 1.6917e6 0.0977e5 3.1965 0.0177 

4 1.6918e6 0.0295e5 3.2061 0.0103 

5 1.6924e6 0.0212e5 3.2104 0.0062 

6 1.6932e6 0.0145e5 3.2176 0.0037 
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Figure 35. Updated distribution of CIT  

 

Figure 36. Updated distribution of m 
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Table 18. Updated failure time prediction at each inspection time (real failure time=1753890) 

Inspection                     

1 2867261 15155610 

2 2272654 733065 

3 1771620 9464 

4 1765121 3579 

5 1760957 1271 

6 1756613 487 

 

Figure 37. Updated distribution of failure time 

5.4   Comparison Study 

In this section, constant load approach presented by [78] is again applied as an approximation 

way to deal with the time-varying external load. The comparison study is performed to 

demonstrate the effectiveness of the proposed method. 
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To make a fair comparison, the same crack propagation observations shown in Figure 34 is 

consistently used in the Bayesian updating process using the constant load approximation 

method. As a result, the updated t0 and m at each inspection interval are listed in Table 19. 

Compared to the results with the proposed method, the values in Table 13 show the larger error 

in the actual parameter value. The plots of the predicted lifetime distribution are shown in Figure 

38. Table 20 shows the difference of updated predicted lifetime at each interval between the two 

approaches. As can be seen, the varying load approach always results in smaller error compared 

to the constant load approach regarding failure time estimation at each inspection interval. 

Moreover, Table 20 also shows that the proposed time-varying load approach benefits more the 

prognostics considering the uncertainty of CIT as the accuracy improvement is larger.  

Table 19. Updating history of crack initiation time and m at each inspection time 

(real m=3.2354,   =1.7e7 cycles) 

Inspection               

1 2.0005e6     2.0544e5     3.0465     0.1938 

2 1.5917e6     1.4304e5     3.0851     0.1334 

3 1.5966e6     0.0444e5     3.0472     0.0007 

4 1.5906e6     0.0347e5     3.0474     0.0006 

5 1.5823e6     0.0240e5     3.0477     0.0005 

6 1.5734e6     0.0092e5     3.0486     0.0001 



112 

 

 

Figure 38. Updated distribution of failure time applying constant load approximation method 

Table 20.Comparison of updated failure time prediction between two methods 

(real failure time=1753890) 

 Constant-load approach Proposed varying-load         

approach 

Accuracy                           

improvement 

Inspection  µ (cycles) 

 

  ׀µ-actual׀ µ (cycles) ׀µ-actual׀

1   5332071   

5332071 

3578181 2867261 1113371 68.9% 

2  2239699    

2239699     

2239699 

485809 2272654 518764 -6.8% 

3 2027711     

2027711 

273821 1771620 17730 93.5% 

4 1960548     

1960548 

206658 1765121 11231 94.6% 

5 1882469     

1882469 

128579 1760957 7067 94.5% 

6 1795000     

1795000 

41110 1756613 2723 93.4% 
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5.5   Conclusions 

The time-varying load is a real problem that has to be dealt with in the prognostics study for 

wind turbine systems. The crack initiation time of a gear is usually uncertain under complex and 

time-varying stress conditions. The key contributions of the proposed approach are its 

outstanding capability to directly relate the time-varying load to the crack propagation, and the 

significance of considering the CIT uncertainty factor in RUL prediction.  

The uncertainty of CIT certainly affects the accuracy of the RUL prediction. In this study, we 

extend the method presented in the previous study to further consider CIT factor in prognostics 

for the gearbox. As the new condition monitoring observations are available, the distribution of 

both material parameter and CIT are updated via Bayesian reference, and the prediction of 

failure time is updated accordingly. An example is provided to demonstrate that the proposed 

method has the advantage versus the existing constant load approximation method. Also, it 

shows that the proposed time-varying load approach benefits more the prognostics considering 

the uncertainty of CIT, because the accuracy improvement is larger than the one does not 

consider CIT. 
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Chapter 6.   Condition-based maintenance of wind power generation 

systems considering different turbine types and lead times 

6.1   Overview 

In Chapter 3, the developed opportunistic maintenance methods provide cost-effective solutions 

for wind power systems to schedule maintenance activities, and they bring immediate benefits 

without further techniques. As the most advanced maintenance strategy, condition-based 

maintenance (CBM) always deserves more study since it can reduce the most catastrophic loss 

by preventing failure occurrence, which is achieved by fault diagnosis and accurate failure 

prediction. Currently, the wind energy industry is switching from corrective maintenance and 

time-based preventive maintenance strategies to CBM strategy that effectively utilize condition 

monitoring information. In CBM, condition monitoring measurements such as vibration data, 

acoustic emission data, oil analysis data, power voltage and current data, etc., can be obtained 

from the sensors mounted on the wind turbine components. These measurements are utilized to 

evaluate and predict the health conditions of the components and the turbines [107]–[112]. The 

objective of CBM is to optimize the maintenance schedule based on the condition monitoring 

and prediction information to minimize the overall costs of wind power generation systems. 

Newly deployed turbines are typically equipped with condition monitoring sensors. For legacy 

turbines, operators and manufacturers are also trying to install such sensors on many of these 

turbines. There is a significant and growing need to develop effective methods for optimizing 

maintenance activities by fully utilizing the available condition monitoring information. Nilsson 

and Bertling  proposed a life cycle cost approach for evaluating the financial benefits using 

condition monitoring system, a tool required in CBM [52]. Byon and Ding  applied a multi-state 
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Markov decision mechanism in estimating the wind turbine degradation process, based on which 

the optimal maintenance scheme is determined [42]. They also investigated the operations and 

maintenance of a wind farm using discrete event simulation (DEVS) [113]. Sørensen 

investigated the framework for risk-based planning of operation and maintenance for offshore 

wind turbines, which are typically difficult to access [40]. 

There are typically multiple wind turbines in a wind farm, which is typically located at a remote 

site. A wind farm can be considered to be a system consisting of multiple wind turbines, and 

there are multiple components including main bearing, gearbox, generator, shafts, etc., in each 

wind turbine. Thus, there are economic dependencies among wind turbines and their components 

in the wind farm. More specifically, there are fixed costs for sending a maintenance team to the 

wind farm. Thus, it may be cheaper to take the opportunities to maintain multiple turbines and 

multiple components in a turbine at the same time, based on the evidence presented in the 

condition monitoring data. Tian et al. developed a CBM approach for wind energy systems 

considering such economic dependencies [19]. In their work, they focused on a homogeneous 

wind turbine fleet made by the same manufacturer and assuming a constant lead time for all 

turbine components. However, it is very likely a wind farm owner acquires different capacities of 

wind turbines from the same manufacturer or different brands from different manufacturers. 

Different types of wind turbines have different capacities and typically different types of turbine 

components. Thus, the CBM decision making criteria are expected to be different for different 

types of turbines. In addition, various turbine components are likely from various suppliers and 

thus have different lead times. Amayri et al. developed a CBM method considering different 

types of turbines [48], and also jointly considered different lead time in [49]. In their work 

production loss due to shut down for maintenance activities was not considered in the proposed 
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cost evaluation algorithm. In practice, the production loss is not negligible for cost evaluation 

especially when different lead times and turbine types are given high values in a maintenance 

optimization problem.  

In this chapter, we extend the approach developed in [49] to further involve production loss. The 

key contribution in the study is that cost evaluation considers production loss due to maintenance 

activities that stop the turbines, as well as the downtime before the maintenance occurs. 

Examples are provided to demonstrate the improved CBM approach. This chapter is organized as 

follows. Section 6.2 introduces the proposed CBM approaches considering both different types 

and lead times. In Section 6.3 numerical examples are given to demonstrate the effectiveness of 

the developed method, and the cases of constant lead times and constant-interval preventive 

maintenance strategy are also investigated for comparison. Conclusions are given in Section 6.4. 

The materials in this chapter have been published in [3].  

Nomenclature:  

         : the conditional failure probability of turbine n of type k during the lead time   L  

  
        

     
        

  …    
  and   

 : two level failure thresholds of type 1,2,…, K, respectively. 

  : the total expected maintenance cost per unit time per turbine 

       : the mean of the predicted failure time of component m in turbine n of type k  

   : the obtained standard deviations of ANN prediction results 

  : the distribution of the predicted failure time 

    : the lead time of component m in turbine of type k 



117 

 

       : the conditional failure probability of component m in turbine n of type k during its lead 

time       

     : the power production loss 

      : the preventive replacement cost of component m in turbine of type k 

      : the fixed preventive maintenance cost of turbine of type k 

      : the failure replacement cost of component m in turbine of type k 

      : the cost increase due to failure replacements 

     : the cost increase due to preventive replacements 

        : the cost due to the loss of productivity 

      : the total preventive maintenance cost of the constant-interval (CI) maintenance policy 

6.2   The proposed condition-based maintenance approach 

The applied CBM policy is presented first. The evaluation of conditional failure probability at a 

specific inspection interval is then explained, and the algorithm of maintenance cost evaluation is 

given at last. 

6.2.1 The CBM policy 

As mentioned earlier, the CBM policy presented in [49] is consistently applied in this study. To 

make it clear the policy is briefly explained again as follows.  
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Suppose wind turbine components are continuously monitored in the wind farm. At a certain 

inspection point, condition monitoring data are collected and analyzed for the health condition 

prediction. Suppose there are K types of turbines in the wind farm.  

 Perform failure replacement if a component fails.  

 Send a maintenance team to the wind farm if any wind turbine in the wind farm is 

determined to be maintained.  

 Perform preventive replacements on components in wind turbine        if          

  
 , where          is the conditional failure probability of the wind turbine n of type k 

during  the lead time L given that it is still working at the current inspection point, and   
  

is the pre-specified level-1 failure probability threshold value at the turbine level for 

turbine type k. Note that Lϵ        ,        denotes the lead time of component m in 

turbine n of type k, and same components in all turbine n have the same lead time. The 

calculation of           is explained in Section 6.2.2.                                                     

 If turbine       is to be performed preventive replacement on, perform preventive 

replacement on its components to bring the turbine failure probability down to below   
 , 

which is called the level-2 failure probability threshold value at the turbine level for 

turbine type k. 

 If a turbine has a failed component, perform all the possible failure and preventive 

replacements for the turbine at the same time.  
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For each turbine type k, two failure probability thresholds   
  and   

  need to be determined. 

Thus, there are 2K failure probability thresholds in total to define the CBM policy. Let    denote 

the total expected maintenance cost per unit time per turbine, an optimal CBM then satisfy [49] :   

min       
    

    
    

  …    
    

   

                                                     s.t.                                                                               (6-1) 

    
    

    

where   
        

     
        

  …    
  and   

  represent two level failure thresholds of type 1,2,…, 

K, respectively. 

In this policy, the criterion of decision making for scheduling maintenance is the conditional 

failure probability of the turbine         at the inspection time. The conditional failure 

probability is determined by the predicted failure time distribution through learning historical 

condition data. The health prediction method is explained in next subsection. 

6.2.2  Health prediction and conditional failure probability calculation 

As mentioned earlier, condition monitoring data are used to obtain a prediction model. In this 

study, the artificial neural network (ANN)-based prognostics method developed by [114] is 

applied. The inputs of the ANN model are the component age values at the current inspection 

time and the previous inspection time, as well as the selected condition monitoring 

measurements at these inspection times. The output of the ANN model is the life percentage at 

the current inspection time. Therefore, the failure time can be calculated by dividing the 

component's age by the predicted life percentage. The uncertainty associated with the predicted 
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failure time can be estimated based on the prediction errors obtained during the ANN training 

and testing processes. Thus, the predicted failure time distribution for components can be 

obtained. In this work, it is assumed that at a certain inspection point, the prediction uncertainty 

(error) follows the normal distribution, hence the predicted failure time for a component also 

follows normal distribution given a known lifetime. The original lifetime can be generated by 

sampling Weibull distribution [19]. For component m in turbine n of type k, the mean of the 

predicted failure time is denoted by        . The corresponding standard deviation is denoted by 

       = p        , where    is the obtained standard deviations of ANN prediction results for 

each type of system. Thus, at a certain inspection point, the distribution of the predicted failure 

time, denoted by   , can be represented by [19]: 

~pT  mnkpmnk TPTPN ,,,,  ,  .                                                  (6-2) 

For component m in turbine n of type k, the conditional failure probability during its lead time, 

denoted by        , can then be formulated as [49]: 

        
 

 

 
  
          

 
 
 
  
         
         

 

 

           
      

   

 
 

 
  
          

 
 
 
  
         
         

 

 

  
 
      

                               (6-3) 

where        is the age of the component at the current inspection point.      is the lead time of 

component m in type k turbine, and it is defined as the interval between the time maintenance 

decision is made and the time when the maintenance is complete.         is the predicted 

conditional probability that the component fails during the lead time given that it is still working 

at the current inspection point.  
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At the turbine level, the turbine is considered to be a series system. That is, a wind turbine fails if 

any of its components fail. At a certain inspection point, the conditional failure probability of a 

wind turbine can be calculated as follows:  

                     
  
                                            (6-4) 

where    is the total number of components in the turbine of type k.  

6.2.3 Cost evaluation for the CBM policy 

Cost estimation is one of the main contributions in this study, which considers the production 

loss due to either failure or maintenance that stops the turbine. The production loss certainly 

cannot be ignored in practice. To emphasis the work devoted in this extended approach, the 

details about the existing method can refer to [49]. The procedure of the cost evaluation is 

outlined in Figure 39.   

Step 1: Specify all the parameters, e.g., cost data, lead times, the number of components in a 

wind turbine, the number of the turbines in the farm and the number of the types of turbines. 

Step 2: Simulation initialization. In this step, all components are new and their next failure time 

       is generated by sampling predefined failure distribution. The total cost and the 

component's age will be updated during the simulation process.      is set to be the time index at 

current inspection point. At time       , the age         . 

Step 3: CBM decision making. At a certain inspection point, make the decision for either failure 

replacement or preventive maintenance according to CBM policy, which is described in Section 

6.2.1.  
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Figure 39. The cost evaluation procedure for the proposed CBM policy 

Step 4: Update cost. The cost evaluation algorithm in this study particularly considers the 

production loss in addition to the existing factors presented in [49]. Thus, the detailed process is 

given in the followings.  
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At each inspection point, the CBM decisions can be made based on different situations:   

(1) If               , it indicates that a component has failed, and a failure replacement will be 

performed on the component. Note that the production loss occurs whenever the turbine stops. 

As the inspection interval is set to be certain days that can be approximately a CBM, a possible 

shutdown may occur between the two inspections. This is less likely to happen with a CBM 

policy but still cannot be ignored especially for a large size wind turbine. The production loss 

occurs before the inspection point, which can be calculated as follows: 

                         
   

  
                                      (6-5) 

As a wind turbine system is considered as a series system in this study, any component failure 

causes system failure. Therefore, the number of stop days right after a turbine shut down is 

determined by the earliest failed component in the turbine. For the wind turbine with failed 

components, the number of stop days before the inspection point is then given as: 

                                        , for all m                              (6-6) 

Using above two equations, we can obtain                 for the failed turbine n of type k. The 

cost increase due to failure replacements can be formulated as: 

                           
  
   

  
   

 
                                             (6-7) 

where           if the component m fails, otherwise it equals 0. The cost due to loss of 

productivity will be added later. er  

(2) For wind turbine n, if         
 , perform preventive replacement on its components with 

higher conditional failure probabilities until the turbine failure probability is lower than   
 , 
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which is the lower level failure probability threshold. Accordingly, the preventive replacement 

costs are incurred. The cost increase due to preventive replacements can be formulated as:  

                        
  
   

  
   

 
                                               (6-8) 

where           if a preventive replacement is to be performed on the component m, otherwise 

equals 0;       if preventive replacements are performed, but no failure replacements are 

performed in the turbine n.  

(3). For a wind turbine with failed components, it is assumed that the turbine will not start to 

work until all the failed components have been replaced and all the required preventive 

replacements have been performed. Thus, the number of the stop days after the current 

inspection point is equal to the maximum of the lead times of the components that are to be 

replaced. 

                        ,  for all components ms that are to be replaced          (6-9) 

where      denotes the lead times of all the components to be maintained in the turbine n of type 

k, including preventive maintenance and failure maintenance. Thus, we can calculate the cost due 

to the loss of productivity as follows:  

                                  
   

  
                          (6-10) 

where                                         , representing the total number of stop days for 

the turbine. Suppose the capacity factor of the wind turbine is 30%, and the price of electricity is 

$50/MW. 

(4) In addition, there is the fixed cost of sending  a maintenance team to the wind farm:  
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                                                                        (6-11) 

where          if preventive replacements or failure replacements are to be performed in the 

wind farm, otherwise equals 0. 

Note that after all incurred cost at current inspection point is considered, the next inspection 

interval will be updated as: 

                                                                         (6-12) 

where        denotes all the lead time values of the components to be determined for 

maintenance in the wind farm. The next inspection time will move to the point when       has 

passed, i.e., 

                                                                          (6-13) 

Otherwise, the next inspection point will move to the time after the regular inspection interval, 

i.e., 

                                                                            (6-14) 

At the new inspection time, if a failure or preventive replacement is decided to be performed on 

component m in turbine n of type k, regenerate a new real failure time by sampling Weibull 

distribution with parameters      and     .  

If          , repeat Step 3 and 4.      is the maximum number of simulation iterations. 
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Step 5:  The total expected maintenance cost calculation. When it goes to the maximum 

simulation iteration     , i.e., when          , the simulation procedure is completed. The 

total expected maintenance cost per unit time per turbine for the wind farm is therefore: 

   
  

         
 
   

                                                                   (6-15)                                                                     

6.3   Numerical Examples 

In this section, we use some examples to demonstrate the proposed CBM approach for a wind 

farm, where two types of turbines are installed. In total, 6 turbines are considered in the wind 

farm. Three turbines belong to type 1, low capacity, and the other three turbines belong to type 2, 

high capacity. To simplify the discussion, we study four key components in series in each wind 

turbine: rotor, main bearing, gearbox, and generator. We also compare the proposed approach 

with the widely used constant-interval (CI) preventive maintenance method, and the method 

considering an approximate constant lead time for all the turbine components.  

6.3.1 Example Introduction  

In the example, two types of turbines are installed in the wind farm, i.e., low capacity turbines at 

2MW and high capacity turbines at 5MW respectively. Thus, the costs and failure distribution 

parameter values, as well as the lead times of components vary with the different type of wind 

turbine. Weibull distributions are used to present the component failures of the populations, and 

the Weibull parameters and maintenance lead times corresponding to each type of turbines are 

given in Table 21. The cost data are given in Table 22, including the failure replacement costs 

for the components, the fixed and variable preventive replacement costs for each type, and the 

fixed cost of sending a maintenance team to the wind farm [49]. The standard deviations of the 
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ANN life prediction errors, as described in Section 6.2.3, are required to establish the associated 

prediction uncertainties [114] [115], and their values for each type system are given in Table 23.  

All data used in this example are specified based on the data given in our previous study [19], 

[49], [116]–[118]. [49] collected all required data in this study. Besides, the inspection interval is 

set to be 10 days. 

Table 21 .Weibull failure time distribution parameters and maintenance lead times for major 

components [49] 

Component Scale parameter   (days) 
Shape parameter 

  

Lead time 

Type 1 Type 2 Type 1 Type 2 

Rotor 3,000 6000 3.0 30 45 

Main bearing 3,750 7500 2.0 10 15 

Gearbox 2,400 4800 3.0 25 30 

Generator 3,300 6600 2.0 15 20 

 

Table 22. Failure replacement and preventive maintenance costs for major components [49] 

 
Component 

Failure 
replacement 
cost ($k) 

Variable 
preventive 
maintenance 
cost ($k) 

Fixed 
preventive 
maintenance 
cost ($k) 

Fixed cost to 
the wind 
farm   ($k) 

Type 
1 

Type 
2 

Type 
1 

Type 
2 

Type 
1 

Type 
2 

Type 
1 

Type 
2 

Rotor 112 224 28 56 

25 50 50 

Main bearing 60 120 15 30 

Gearbox 152 304 38 76 

Generator 100 200 25 50 
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Table 23. ANN life percentage prediction error standard deviation                                                         

values for major components [49] 

Component Standard deviation 

Type 1 Type 2 

Rotor 0.12 0.15 

Main bearing 0.10 0.13 

Gearbox 0.10 0.13 

Generator 0.12 0.15 

6.3.2 The CBM optimization results  

The total maintenance cost can be evaluated using the proposed simulation method described in 

Section 6.2.3. After all the cost being calculated, we search and find the minimum cost and the 

corresponding variable values, which are the optimal results. The optimal CBM policy can be 

obtained when the optimization problem is solved. There are 4 design variables in this 

optimization, and the optimal threshold failure probability values for Type-1 turbines are: 

  
        ,   

           , and the optimal threshold failure probability values for Type-2 

turbines are:   
        ,   

          . The minimal expected maintenance cost per unit of 

time per turbine is $84.8/day/turbine, and thus for the whole farm with 6 turbines, the optimal 

maintenance cost per unit of time is $508. 8/day.  

6.3.3 Comparison with the CBM approach considering the constant lead time 

The CBM approach developed by [19] assumes constant lead time for all the turbine 

components. When the constant lead time is determined, the maximum lead time among all the 

components is used, and thus the maintenance work can be considered completed at the end of 



129 

 

the lead time for any component. For a wind farm with different types of turbines and different 

components, the constant lead time assumption is of course approximate. The CBM approach 

developed in this work provides more practical insights of the wind farm, and the optimal 

maintenance cost is 84.8$/day/turbine, as described in Section 6.3.2. If we apply the constant 

lead time assumption to this example, the lead time would be 45 days, which is the maximum of 

all the lead time values according to Table 21. At the optimal solution obtained in Section 6.3.2, 

where   
        ,   

           , and   
        ,   

          , the cost value 

obtained under the constant lead time assumption is 90.02$ /day/turbine. As a result, there is 

approximately 6.2% deviation from the real cost value if we use the constant lead time 

assumption. Besides, the results of expected maintenance cost between both cases of varying 

lead times and constant lead time do not show an outstanding difference if the production loss 

during the turbine stop days is not taken into account [49], which offsets the benefits of the 

developed method.  

6.3.4 Comparative study with the constant-interval policy 

In this section, we compare the proposed CBM approach with the constant-interval (CI) policy, 

which is a type of time-based preventive maintenance policy and is currently widely used in the 

wind energy industry. The main objective of the CI method is to determine the optimal 

preventive replacement interval, denoted by    , to minimize the total expected cost per unit 

time. In this section, we investigate the CI maintenance policy using the same lifetime 

distributions for the components, as given in Table 21. The total expected maintenance cost per 

unit time for the wind farm can be obtained based on the method in [20], and the equation is 

given as: 
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where,        denotes the total preventive maintenance cost, CI

mnkfC ,,,  is the total cost of a failure 

replacement for component m in turbine n of type k, and CI

mnkpC ,,, is the total cost of a preventive 

replacement for component m in turbine n of type k. )(, CIkm tH is the expected number of failures 

for component m in type k turbine in interval (0,   ), which can be evaluated using the recursive 

procedure outline in [20]. Thus, the total expected maintenance cost per unit time per turbine, 

denoted by         , can be obtained as:  

          
       

   
 
   

                                                      (6-17) 

The optimal interval CIt can be obtained using the optimization tool, and it minimizes the 

expected maintenance cost per unit time.  

The cost data is reconstructed based on those in Section 6.3.1 to ensure a fair comparison. The 

fixed cost of sending the maintenance team to the wind farm,      , is incurred at each time of 

failure occurrence, so it is regarded as a part of the failure replacement cost. The production loss 

is also considered. Thus, the failure replacement cost for component m in turbine n of type k can 

be given as : 

        
               +                    

   

  
                   (6-18) 

At each time of the preventive replacement,  the individual component’s preventive maintenance 

cost shares the fixed cost at the farm level       and the fixed preventive maintenance cost at the 



131 

 

turbine level shown in Table 22. Besides, the production loss is incurred and is distributed 

among all the components in the turbine since the components are replaced simultaneously. 

Therefore, the preventive replacement cost for component m in turbine n of type k can be 

calculated as: 

        
          

                        
   

  
              

  
 

     

     
 
   

           (6-19) 

The calculated failure replacement and preventive maintenance costs data using Equations (6-18) 

and (6-19) are shown in Table 24.  

Table 24. Cost data for the constant-interval maintenance policy 

 

Component 

Failure replacement cost 

($1000) 

Preventive replacement 

cost ($1000) 

Type 1 Type 2 Type 1 Type 2 

Rotor 378 1,084 90.33 273.08 

Main bearing 182 440 77.33 247.08 

Gearbox 382 894 100.33 293.08 

Generator 258 610 87.33 267.08 

 

The total expected maintenance cost per unit of time can be calculated using Equation (6-17). 

The cost versus preventive maintenance interval is plotted and shown in Figure 40. By 

performing optimization, the optimal replacement interval is found to be 3,340 days, and the 

corresponding optimal cost is 471.89$/day/turbine. Comparing to the optimal cost 84.8 
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$/day/turbine obtained using the proposed CBM approach, it can be seen that about 82% cost 

savings are achieved using the proposed CBM approach.  

 

Figure 40. Cost versus preventive maintenance interval for the CI policy 

6.4   Conclusions 

Currently, the wind energy industry is switching from failure-based maintenance and time-based 

preventive maintenance strategies to CBM strategy by utilizing condition monitoring information 

more effectively. In this chapter, we extend the CBM approach presented in [49] to further 

involve the production loss in the overall maintenance cost evaluation. In practice, the 

production loss cannot be ignored in cost evaluation especially when different lead times and 

turbine types are given high values in a maintenance optimization problem. The key contribution 

of the study is that the cost of production loss during turbine stop days due to failure and 

maintenance activities is taken into consideration. The optimization results applying the same 

CBM policy presented in [19] [49] show an outstanding benefit compared to the case of constant 
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lead time consideration. Without considering the cost of power production loss during the turbine 

stop days, the results do not show notable average cost difference between the cases of different 

lead time and constant lead time as shown in [49]. The numerical examples demonstrate the 

effectiveness  
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Chapter 7. A numerical method for condition-based maintenance 

optimization of wind farms 

7.1   Overview 

Condition-based maintenance (CBM) optimization for wind farms considers multiple turbines in 

a wind farm, while each turbine involves multiple components. In [19], economic dependency 

among multiple turbines and multiple components in a turbine were considered, and a 

simulation-based method was developed for wind farm CBM policy cost evaluation. The 

simulation-based method was flexible in modeling various scenarios and factors, but due to its 

sampling-based nature, there are variations in CBM cost evaluation, and the resulting CBM cost 

function surface is not quite smooth. This could lead to challenge in the optimization process and 

cause local minima or convergence problems. Thus, an accurate numerical method is desired, 

which is not based on sampling process, and it could lead to smooth CBM cost function surface 

and benefit the optimization process. In this chapter, a numerical method is developed to 

estimate the overall maintenance cost of the CBM policy presented in [19]. Therefore, the 

optimal maintenance policy corresponding to the minimum maintenance cost is more accurately 

determined compared to the simulation method. An example of two turbines with two 

components in each is studied.  

 Nomenclature:  

   : matrix describing the RUL probability distribution of component m in turbine n, with input 

       .  

        …    : vector indicating the possible RUL values 
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  : matrix indicating the combination of all wind turbine component RULs 

       : the transition probability matrix that indicates the probability transitions from the 

current combination of all wind turbine component RULs,   , to different component RUL 

intervals.  

         : the matrix recording the incremental cost incurred when the state of the wind farm 

transit from RUL combination   .  

   : the predicted failure probability of the wind turbine n. 

  : the pre-specified high-level failure probability threshold at the turbine level. 

  : the pre-specified low-level failure probability threshold at the turbine level.      . 

7.2   The proposed numerical method  

Tian et al. proposed a CBM policy by defining two-level turbine failure probability    and    

[19]. The policy is briefly explained as follows: 

(1). Perform failure replacement if there is a failed component in the wind farm. 

(2). At each inspection interval, perform preventive replacement on components in wind turbine 

n if        in order to bring the turbine failure probability down to below   . The predicted 

failure probability of the wind turbine is estimated based on the prediction results obtained by the 

prognosis approach.  

According to the CBM policy, the cost rate can be denoted by          , an optimal CBM 

satisfy [19], 
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min            

                                                        s.t.                                                                       (7-1) 

                            

As can be seen, the best CBM policy is determined when          is minimized, which 

requires an accurate method to evaluate the value. The proposed numerical method for 

evaluating    is presented in this section.   

Consider a wind farm involving N wind turbines, with M critical components considered in each 

turbine. In this study, assume all turbines are of the same type, and component m in a turbine 

follows Weibull distribution with parameters    and   . For each component, the possible age 

is discretized into K intervals, and the same K is applied to all component types in this study. The 

first K-1 intervals are constant intervals, and the interval length is denoted by   . The last interval 

covers component age            .  

Let            denotes the remaining useful life (RUL) probability distribution of component 

m in turbine n. k is the RUL vector, and its elements can take values from         …    . 

The first element in vector    covers age            , or the last age interval, which means 

the RUL is 1 unit. The second element corresponds to age K-1, …, and the last element 

corresponds to age interval 1. Matrix     will be updated at each inspection point based on the 

CBM policy, where probability transitions will occur, and the costs incurred will be calculated at 

the same time.  
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7.2.1 Main cost evaluation process  

The procedure of the cost evaluation is outlined in Figure 41.  The details of the process are 

explained in the following. 

Step 1.  Determine transition matrices         and            

For this numerical method, first RUL probability transition matrix         and cost transition 

matrix           for all components in the wind farm at each inspection point need to be 

determined, and then they will be used in the following relevant updating process. The procedure 

details is given in Section 7.2.2.       

Step 2. Initialization 

At time 0, matrix             needs to be initialized by specifying the RUL distributions for 

each of the turbine components. Assume all components are new. The probability is initialized as 

the probability of the component RUL is in that corresponding interval, based on its Weibull 

lifetime distribution.  

Step 3. Update the RUL probability distribution at intervals 

At each inspection time, matrix             will be updated to account for the probability 

transitions, i.e., probability transitions from each RUL interval to other RUL intervals due to 

aging and component replacements. The incremental costs will also be calculated.  

Let         denotes the transition probability matrix that indicate the probability transitions from 

the current RUL combination of all wind turbine components to different component RUL 

intervals.  
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Figure 41. Flowchart of the overall numerical method for cost evaluation 

    
         
   
    …     

 ,                                               (7-2) 

where      represents the RUL interval value for component m in turbine n, and it can take 

values from         …    . The evaluation of         will be presented in the next section. 

Step 2: Initialization 

         ? 

Step 3: At each inspection 

interval, update     based on 

the pre-determined probability 

transition matrix         

Step 4: Update the  total cost 

       based on     and the pre-

determined incremental cost 

matrix           

Step 5: Calculate the cost 

rate           

Y 

N 

Step 1. Determine RUL probability 

transition matrix          and cost 

transition matrix          . 
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    will be updated at each inspection point, by applying the probability transition matrix 

        to     obtained at the previous inspection point. The updated probability distributions 

matrix             is   

                                                                            (7-3) 

The “ ” is not the product for 2-dimensional matrix, since all the matrices involved in the 

equation above are multi-dimensional. As another way to put it, for each RUL combination   , 

the resulting change in matrix     can be obtained by multiplying matrix         by the 

probability of the combination   , that is 

                                                                      (7-4) 

where  

                                                                (7-5) 

Step 4. Update the  total cost        at the current inspection point 

The total cost up to the current inspection point, denoted by       , will be updated too:  

                                                                (7-6) 

where           is the matrix represents the cost generation due to the maintenance actions, 

including preventive replacements and failure replacements, and the determination of this matrix 

will be explained in the next section as well.  

Step 5. Calculate the cost rate            
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For each set of variable values   and   , eventually,       will be updated following the above 

process until the maximum iteration time     .  Thus, the cost rate is 

          
      

    
                                           (7-7) 

As can be seen above, the probability transition matrix         and the cost transition matrix 

          need to be determined first, before being used in the computation described in this 

section. The algorithm for determining the transition matrixes will be presented in next section.  

7.2.2 Determination of transition matrices 

As we mention earlier, the proposed cost evaluation algorithm needs to have transition matrices 

determined first. A flowchart for the procedure of determining matrices         and           is 

shown in Figure 42.  

The critical parts in the procedure are described in the followings. 

As indicated in Section 7.2.1, the matrix     will be initialized first, indicating the initial RUL 

distributions for all the wind turbine components, and it will be updated at each inspection point 

by applying the transition matrix        . The probability transition for each    is determined 

for the matrix, i.e. the change in           .  

        is initialized as 0. First probability transitions occur due to the RUL reduction when 

moving from the previous inspection point to the current inspection point. The RUL for each 

component will be reduced by 1 unit. The following two cases are considered.  

Case 1: Failure replacement when        =0, i.e.,         . In this case, the probability of 

the component in previous RUL state           will be reduced by 1:  
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                                                        (7-8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. The flow chart of determining transition matrixes 

In addition, a new component will be generated:  
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Perform preventive replacement, 
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Update the total cost incurred 

by failure maintenance 
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                                            for each     .            (7-9) 

where          is the initial life distribution for component m.  

Costs will be incurred too, which may include fixed cost to the farm,      , and failure 

replacement cost for each failed component:    

                                                                      (7-10) 

          if the component fails, and           otherwise.  

Case 2: failure does not occur when        >0, i.e.,         . In this case, the probability of 

the component in previous RUL state           will be reduced by 1, and the probability of 

the component in current RUL state         will be certainly increased by 1. 

                                                            (7-11) 

                                                                  (7-12) 

Probability transition will occur in the case of preventive replacement for each   . For a certain 

  , for each of the components, the predicted RUL distribution can be obtained based on the 

prediction accuracy of the prediction tools, such as ANN prediction tool. With this, the failure 

probability for each component and thus each wind turbine can be obtained. Refer to Tian et al 

(2011) for more details. Based on the CBM policy defined by        , for a certain component 

m in turbine n that is not failed, if preventive replacement is to be performed on the component 

according to the CBM policy, the following probability transitions will occur:  

                                                               (7-13) 

                                for each                       (7-14) 
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Cost will be updated as follows:  

                                                                      (7-15) 

          if preventive replacement is performed, and           otherwise.          is 

the fixed turbine level PR cost, and will be incurred only once for a turbine.  

With the algorithm presented above, the probability transition matrix         and the cost 

transition matrix           can be determined.  

7.3   A numerical example 

We consider an example that there are two turbines installed, each turbine has two critical 

components, i.e. rotor and main bearing. The parameters of failure distribution of each 

component, the related maintenance cost, and the prediction error standard deviation values for 

the component using ANN prognosis approach are given in Table 25 [19].  

Table 25. Parameter values for major components 

Parameters Rotor Main bearing 

Scale parameter   (days) 3,000 3,750 

Shape parameter    3.0 2.0 

Failure replacement cost   ($k) 112 60 

Variable preventive maintenance 

cost ($k) 

28 15 

Fixed preventive maintenance cost 

($k) 

25 

Fixed cost to the wind farm           

($k) 

50 

Failure prediction error          

(standard deviation) 

0.12 0.10 
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Suppose the maintenance lead time for all components is 30 days. The inspection interval is set 

to be 1.5 years, and there are in total 20 inspections for a component during a typical lifetime of 

30 years. 

The total maintenance cost can be evaluated using the proposed numerical method described in 

Section 7.2. The 3D plot of cost vs. failure probability threshold values   and    is shown in 

Figure 43.   and    values are denoted in the logarithmic scale. It can be seen the average 

maintenance cost decreases when   and    are selected as certain small values. In the 

experiments given a range of   and   , the lower cost is found to be $22.7985/day, and the 

corresponding failure probability threshold values are           ,            
   . As 

this partial result, more tests need to be done since there is no optimal point achieved yet given 

the current range of   and   . 

 

Figure 43. Cost vs.   and    in the log-scale 
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Figure 44 and Figure 45 show 2D plot when each one of variables is remained at the value 

corresponding to the lower cost previously, respectively. Figure 46 shows a curve of cost rate vs. 

number of iterations, it can be observed that the cost rate approaches a steady value after a 

certain number of iterations.  From the results obtained in the example, the threshold values of 

  and    are expected to extend the range so that a concave point of the 3D surface shown in 

Figure 43  may appear.  

 

Figure 44. Cost vs.          (   is kept at            ) 
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Figure 45. Cost vs.          (   is kept at       ) 

 

Figure 46. Cost rate vs. number of iterations (           ,            
    ) 
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7.4   Conclusions 

In the existing studies, simulation methods are commonly used to solve the optimization 

problems for the complex processes. However, the simulation method could lead to variations in 

estimating the objective values. In particular, for wind power industry the maintenance cost is 

affected significantly by the selections of decision criterion. A more accurate method is desired 

regarding the maintenance cost evaluation. In this chapter, a numerical method has been 

developed to estimate the overall maintenance cost for CBM of wind farms. The CBM policy is 

defined by two failure probability thresholds, which are low-level threshold    and high-level 

threshold   ,1         0. A numerical example is given to examining the proposed method 

and the computation results are presented. It demonstrates the effectiveness of the method by a 

relatively smooth surface of the cost function. Future research will be focusing on the 

comparative study with the simulation method given the same example, and the improvement of 

computing efficiency.  
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Chapter 8. Conclusions and future work 

Nowadays a large size wind turbine can be over 150m hub height, and has about 80m rotor blade 

length. An unexpected failure may cause catastrophic losses. The O&M of a wind farm is an 

urgent area to call for research on optimization. There is great value to keep making huge efforts 

in this area. In this chapter, we conclude the study in the thesis, and suggest several potential 

works in the future. 

8.1   Conclusions 

Maintenance management has significant impact on overall cost in wind power industry. 

Optimizing maintenance strategies is a very vast research area which can benefits the overall cost  

for wind energy and make it more competitive among the energy resources. Corrective 

maintenance and time-based preventive maintenance strategies are currently widely adopted in 

the wind industry due to the worse accessibility of wind turbines, especially for those located 

remotely or offshore. However, there is a huge demand to reduce wind power cost via 

maintenance strategy improvement. In this thesis, the objective is to developing cost-effective 

maintenance strategies for wind farms. Conventional time-based maintenance optimization, and 

prognostics and CBM optimization within the CBM strategy framework are focused on.  

We first improve corrective maintenance and time-based preventive maintenance strategies. 

Opportunistic maintenance strategies are proposed, which take advantage of economic 

dependencies existing among the wind turbines, and implement preventive maintenance 

simultaneously at the instant of performing corrective maintenance. Imperfect preventive 

maintenance is considered, which deals with the common inspection and maintenance activities 
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that do not always replace the failed parts in reality. The method can bring immediate benefits of 

saving the overall maintenance cost for a wind farm. 

Prognostics and condition-based maintenance have outstanding advantages of predicting and 

preventing the failures, which is a relatively new but promising research area to be explored in 

the wind industry [18]. CBM is the more advanced maintenance strategy, in which the health 

status of components are continuously monitored and predicted so the unexpected failures can be 

the most avoided. Prognostics is essential in CBM. Wind turbines work with time-varying wind 

direction and velocity, which leads to the instantaneously time-varying load applied to the wind 

turbine load. In this thesis, we focus on gearbox failure due to the gear tooth crack, an integrated 

prognostics method is developed considering instantaneously time-varying load condition. In a 

subsequent extended study, uncertainty in gear tooth crack initiation time is further considered 

for prognostics method development. The numerical examples in both studies demonstrate that 

the developed methods provide more accurate gear RUL prediction compared to existing 

methods under constant-load assumption.  

A CBM method considering different types and lead times of the installed wind turbines in a 

farm, as well as the production loss during the shutdown time is also developed. The method is 

capable of accurately estimate the average maintenance cost for a wind farm with diverse 

turbines. In addition, we also develop a numerical algorithm for CBM optimization of wind 

farms that accounts for the inaccuracy in the simulation-based algorithms, which most studies 

use for solving complex problems. The developed method can avoid the variations in CBM cost 

evaluation, and the cost rate approaches a steady value after a certain number of iterations in a 

provided example. The method needs to be studied for higher efficiency in the future work. 
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From the results in this thesis, we conclude that the research provides several innovative methods 

for maintenance management in the wind power industry, where some practical issues in the real 

world are well addressed. The developed methods are able to significantly reduce the overall 

maintenance cost within either conventional maintenance or condition-based maintenance 

strategies that the wind farm owners may apply. They are expected to improve the 

competitiveness of the wind energy among the renewable resources, and contribute to a clean 

and sustainable energy future.  

8.2   Future work 

Specifically, with standing on my current research stage, the following works are suggested in 

the future. 

 In prognostics for the wind turbines, the varying rotating speed of the gearbox can be 

jointly considered with varying load together, which addresses the problem that the 

variable speed turbines face. The gear crack propagation process under varying speed and 

varying load condition need to be well modeled. 

 In the physical model part of the developed integrated prognostics approach, a 

mathematical model is used to calculate the contact force on the gear tooth profile when 

the gear pair are meshing. In the next step, an advanced multi-body simulation tool, 

SIMPACK, can be employed for studying the complex dynamic behavior of gearboxes. 

Moreover, taking advantage of complex system dynamics modeling capability within 

SIMPACK, prognosis for planetary gearboxes in the wind turbine can be studied under 

time-varying load condition.  
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 The developed numerical method for evaluating CBM cost in this thesis provides the 

more accurate result compared to the simulation method. However, the capability of 

computing the cost for larger size wind farm and more components in a wind turbine is 

greatly challenged in the current study. The efficiency of the method needs to be 

improved in the future work.  

 Validation of the current developed approaches. More experiments need to be conducted 

to test the proposed methods, such as the integrated prognostics methods for gearboxes 

under time-varying external load. Moreover, several proposed optimal maintenance 

methods in this thesis are expected for applications in the industry projects. 

Although prognostic techniques and CBM optimization for wind power industry are very 

challenging tasks, these suggested future works will be carried out at a positive pace based on the 

current collected information, and provide the state of the art of wind farm maintenance. In 

addition, there is also significance to develop the suggested works to achieve robustness.    
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