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Abstract

Skin moles are one of the most commonly occurring dermatological conditions preva-

lent nowadays. Early identification and diagnosis of moles are absolutely crucial since

they often turn out to be precursors to serious conditions such as melanoma, a dan-

gerous type of skin cancer. Therefore, to ensure an efficient treatment of cases based

on their severity, they need to be assessed systematically. In this thesis, we present an

artificial intelligence (AI)-enabled triage tool to identify moles from images uploaded

by patients to a teledermatology platform. The proposed approach employs NesT,

one of the latest state-of-the-art transformer-based network for classification. Our

system acts as a filter by sending a warning flag if a mole is detected. This can be

used to help dermatologists set up consultation appointments in a physical setting by

giving priority if the patient has a mole on their image.

A comparative study of the prediction performance of the different neural network

models has been provided for different performance metrics of interest. The results

presented in this thesis have been obtained from two sets of data, consisting of more

than 26,000 clinical pictures with combined different dermatological conditions. Mul-

tiple experiments using different models yielded a macro-average recall value as high

as 0.955, along with overall accuracy and macro-average precision values of 0.962 and

0.958, respectively.
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Chapter 1

Introduction

1.1 Overview

The skin is the largest organ of the human body, covering our entire frame. It performs

the vital functions of protecting our internal organs from external physical, chemical,

and biological agents, as well as helping in thermoregulation. However, because of

its large surface area, bacteria, viruses, allergies, or inflammatory reactions cause

diseases to spread. Aging, environmental, and genetic factors, as well as trauma,

can lead to various skin-related conditions with over 3000 different entities identified

in the literature [1][2]. Studies indicate that in 2013, about 85 million Americans

had consulted a physician for at least one skin condition [3]. In the same year, skin

conditions contributed to direct health care costs of $75 billion and lost opportunity

costs of $11 billion. With a reference age of 75 years, it was found that on average,

the number of years of potential life lost was 10.8 and a total of 22,953 deaths were

recorded. Therefore, early detection and diagnosis of skin conditions are extremely

crucial in the present day.

The focus of this thesis is primarily on the detection of moles. When pigmented

cells or melanocytes start to grow in clusters, they usually lead to the development of

a mole on the skin. Most adults have 10 to 40 moles on average. Although commonly

occurring moles are not generally cancerous, individuals with small or several large

moles have an increased risk of developing melanoma, one of the deadliest forms of
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cancer [4]. It has a high mortality rate since it can easily spread to other parts of the

body if it is not treated in its early stages. The American Cancer Society estimates

that in 2023, 97,610 new melanomas will be diagnosed and 7,990 people are expected

to die. From 2015 to 2019, the melanoma rate was found to have increased by 1%

per year for women but had stabilized in men. Moles that persist into old age are

found to have elevated chances of malignant degeneration [5]. Therefore, it is highly

crucial for newly appeared moles to be detected, properly diagnosed, and treated as

early as possible to ensure a successful treatment.

1.2 Challenges and goal

Moles, in general, can range from harmless common moles to atypical moles, and, in

the worst-case scenario, melanoma. Due to such a wide range of conditions, it becomes

difficult and concerning for patients without adequate knowledge to understand the

severity of their conditions without consulting a dermatologist. However, there is a

long wait time for the time period between when a referral is initiated by a primary

care provider (PCP) and when a dermatologist sees the patient in Canada [6]. It

was found that dermatology was the second most common type of specialty referral

constituting about 9.3% of the total number of referrals just after general surgery

[6]. However, it has a median wait time of 92 days (75th percentile = 174) [6]. This

prolongs physical consultation with a dermatologist, which must be minimized in

critical cases. Figure 1.1 shows a bar graph of wait times for different specializations

in Canada.

The advent of telemedicine has given us the opportunity to solve this problem in a

much more efficient way. With the help of teledermatology, patients can now directly

get access to fast and reliable treatment of their conditions. Furthermore, the COVID

pandemic played a vital role in promoting and popularizing the use of teledermatology,

as many types of skin conditions can potentially be treated without much physical

interaction with doctors. Patients can upload images taken by their mobile phones of

2



Figure 1.1: The wait time between a family doctor’s referral to a specialist and the
visit with the specialist, also called median wait time 1, for different specializations.
Source: [6]
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the affected skin region to an online platform and receive the corresponding diagnosis

and treatment. However, unlike normal conditions, it becomes totally different when

it comes to moles. Due to the potential risks associated with melanoma, they are

preferably treated in person. It is absolutely necessary to minimize false negatives in

such cases.

Hence, to mitigate these problems, it becomes necessary to make the system more

efficient so that patients can first get a preliminary assessment of their skin condi-

tion, and if it turns out they have a mole, they should have an efficient way to get

appointments with a dermatologist. This is possible by introducing a system in an

online teledermatology platform that detects cases with moles. When a patient up-

loads pictures to the platform, the filter immediately sends a warning signal stating

the potential presence of a mole and recommends that they consult a dermatologist.

This would greatly help the triaging process and make the diagnosis and treatment

procedure much more efficient.

1.3 Thesis contributions

In this thesis, we propose a fully automated deep learning-based Computer-Aided

Diagnosis (CAD) system that identifies the presence of moles from patient-uploaded

images. The entire workflow can be divided into the following two parts:

1. The first part of this thesis mainly concerns the application of a transformer-

based mole filtering algorithm that helps to flag moles if they are present in

uploaded images so that patients can be directed to book appointments for

further procedures. We conduct extensive research and robust experiments [7]

on latest state-of-the-art (SOTA) models such as Vision Transformers (ViT) [8],

Big Transfer ResNetV2 (BiT) [9], Inception-v4 [10] and NesT [11] since they are

found to perform much better than traditional machine learning-based models

due to their more complex structures and highly optimized learning capabilities.
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If a mole is found in an image, the patient can be immediately warned of it and

recommended to consult a dermatologist in the physical setting since moles are

treated essentially in person to mitigate any possible risks. This is the first

study that leverages AI-assisted systems for screening moles from dermatology

images and this can potentially help efficient case triage and expedite condition

evaluation, making the entire diagnosis and treatment procedure streamlined

and productive in a teledermatology setting.

2. The dataset used in this work predominantly consists of images obtained from

people with comparatively lighter skin tones. Therefore, as a secondary contri-

bution, in search of a more versatile algorithm we employed an explicit thresh-

olding technique to detect human skin by classifying each pixel into foreground

(skin) and background (non-skin). This is expected to play a vital role in im-

proving the performance of subsequent models down the pipeline by making it

more versatile and targeting a wider patient population.

1.4 Outline

This thesis is divided into five chapters:

• Chapter 2 reviews previous work on the application of traditional and CAD-

based techniques in dermatology and methodologies developed for mole diag-

nosis and treatment. We also discuss the growth and scope of teledermatology

and its application in treating mole related conditions.

• Chapter 3 consists of two parts: we first propose our fully automated CAD

system for identifying moles from macro query images thereby paving the way

for efficient triaging of conditions with moles. In the second part, we discuss a

more versatile method of segmenting human skin from images.

5



• Chapter 4 presents the dataset that we used, the evaluation metrics, and the

experimental results for the mole identification problem.

• Chapter 5 presents the results and performance of the human skin detection

algorithm when applied to real-world images from a publicly available dataset.

• Chapter 6 concludes the thesis with a summary and presents potential future

works.

6



Chapter 2

Literature Review

In this section, we present a detailed review of previous CAD based tools used in

dermatology along with commonly used techniques used for the treatment and diag-

nosis of mole-related skin conditions. We also provide the literature on the advent of

telemedicine and its applications in dermatology.

2.1 Dermatology and its significance

Dermatology is an essential and indispensable medical field in today’s world. Skin

conditions have emerged as one of the most notable public health concerns and one

of the primary reasons for seeking medical advice through general practice [12]. Al-

though some skin conditions, such as skin cancer, can be life-threatening, others may

still impose a significant burden on patients in terms of poor quality of life and fi-

nancial costs [13]. Overall, skin diseases rank as the fourth leading cause of non-fatal

burden in terms of years lost due to disability [14].

Dermatologists specialize in diagnosing, treating, and preventing various skin con-

ditions, ensuring that individuals maintain healthy skin and general well-being. Ne-

glected skin disorders can have a profound impact on a person’s quality of life, self-

esteem, and mental health. Unfortunately, skin conditions are extremely prevalent,

affecting people of all ages and backgrounds. Common ailments such as acne, eczema,

psoriasis, fungal infections, and skin cancer can have significant physical and emo-
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tional consequences. Dermatologists are trained to identify and manage these condi-

tions effectively, providing relief to patients and improving their quality of life.

Another crucial aspect of dermatology is the early detection and treatment of

skin cancer, a condition whose incidence rates have been steadily increasing world-

wide [15][16][17][18][19]. Dermatologists play a central role in the identification and

treatment of skin cancer, including the most aggressive form, melanoma. Although

melanoma may frequently spread to other parts of the body, it is easily treatable if

it is detected early. Regular skin screenings and prompt intervention from dermatol-

ogists increase the chances of successful treatment and reduce mortality rates. The

key to finding melanoma early is to perform self-exams, the most common of which is

the ABCDE method. The ABCD mnemonic was introduced by Friedman et al. [20]

to educate primary health care physicians and the public about the early detection

of melanoma. A stands for asymmetry since one half of the spot should be unlike the

other, B for border since the border of the mole is supposed to be irregular, scalloped,

or poorly defined, C for color: the mole should have varying colors from one area to

the next, such as shades of tan, brown, or black, or areas of white, red, or blue, and D

is for diameter as melanomas are usually greater than 6 millimeters, or about the size

of a pencil eraser. However, when diagnosed, they can be smaller. The letter E for

evolution was added by [21] to adhere to the cases of rapidly changing and appearing

moles that can also indicate melanoma. Dermatologists use the ABCDE criteria to

diagnose melanoma. These criteria have specific sensitivities and specificities: 57%

and 72% for A, 57% and 71% for B, 65% and 59% for C, 90% and 63% for D, and

84% and 90% for E, respectively [22]. When combined, the criteria exhibit higher

sensitivity (89.3% for 2 criteria and 65.5% for 3 criteria) but lower specificity (65.3%

for 2 criteria and 81% for 3 criteria)[22]. Physicians specializing in cancer detec-

tion demonstrate good agreement in recognizing asymmetry, irregular borders, and

haphazard color [23]. The high sensitivity and inter-observer concordance support

using ABCDEs as a screening tool, and dermatologists consistently show accurate
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Figure 2.1: The ABCDE method of early detection of melanoma. Image source:
Canadian skin cancer foundation [26]

detection of early melanoma [24][25]. Figure 2.1 illustrates the ABCDE method for

self-examination of melanoma.

Additionally, dermatologists specializing in cosmetic dermatology offer a variety

of treatments aimed at improving the appearance of skin, hair and nails. From in-

jectables like Botox and dermal fillers to laser therapies and chemical peels, these

procedures help people achieve their aesthetic goals safely and effectively. Especially

with the dramatic increase in cases of body dysmorphic disorder (BDD), the num-

ber of patients seeking cosmetic procedures has increased dramatically [27]. BDD is

a psychiatric condition in which the individual is under the perception of a certain

imaginary physical defect in their body’s image [28][29][30]. United States, Brazil,
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South Korea, India, and Mexico are the top five countries with the highest number

of surgical and nonsurgical procedures[31]. In such cases, dermatologists must ensure

that cosmetic procedures are performed only after a proper screening with the ut-

most care, prioritizing patient safety. On the other hand, cosmetic surgery for aging

is a rapidly growing domain in dermatology. Advancements in laser surgery, chem-

ical peeling, liposuction, and phlebology have ushered in new techniques to remove

signs of aging that were not possible before. However, the term aging can be defined

from both physical and mental perspectives. When aging is considered a patholog-

ical process rather than a physiological process, dissatisfaction becomes inevitable

keeping in mind the current day’s youth promotion. In such a case, the treatment

of an aging face [32] is implied with a morality similar to that of the treatment of

tuberculosis or hypertension. However, such cases must be handled only after proper

screening and following strict guidelines. Alternatively, with increasing accessibility,

cosmetic surgery is also used nowadays as an instant alternative to psychotherapy for

people with low self-esteem. Studies such as [33][34] reveal considerable psychological

improvements in patients, and such cases are cited as proof of the medical value of

cosmetic procedures. Hence, as a psychiatric treatment, cosmetic surgery is often

used as a legitimate treatment today.

Dermatology also includes the recognition of skin manifestations of systemic dis-

eases. Many systemic conditions can manifest specific skin symptoms that dermatolo-

gists are trained to identify. This ability to link skin findings with underlying systemic

conditions contributes to a comprehensive approach to patient care, as dermatologists

work together with other medical disciplines to diagnose and manage these complex

cases.

Studies presented by Thomas[35] show that occupational skin disorders are among

the most common occupational diseases. An occupational disease is defined as a

disease that a worker develops as a result of their insured work activity. According

to German research [36], the rate of newly diagnosed occupational skin diseases in
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Germany is 0.67 to 0.68 to 1000 per year. The most common form of occupational

skin disease is contact dermatitis, which depends on several factors, such as etiology

and irritants. Early detection and rapid start-up of treatment are essential to treat

such conditions and prevent the potential onset of severe occupational skin diseases

and their associated social and economic consequences. Effective management re-

quires collaboration between dermatologists, occupational and health professionals,

and preventive services offered through statutory worker compensation programs.

Additionally, specific diagnostic tests play an essential role in the identification and

treatment of these occupational skin diseases.

Lastly, the field of dermatology has witnessed significant advancements in research,

diagnostic tools, and treatment options. Dermatologists stay up-to-date with the

latest developments and incorporate evidence-based practices into their work. This

allows them to provide the best possible care to their patients, utilizing innovative

therapies and technologies.

In conclusion, dermatology is critical in modern times due to the increasing preva-

lence of skin conditions, the importance of early detection and treatment of skin

cancer, the demand for cosmetic procedures, the recognition of skin manifestations

of systemic diseases, and the continuous advancements in dermatological research

and technology. Dermatologists play a vital role in promoting skin health, improving

quality of life, and addressing the diverse needs of patients.

2.2 Traditional feature-based methods

Over the years, there have been many advances in the development of automatic CAD

systems to aid dermatologists in their diagnosis. Older systems employ traditional

hand-crafted features such as texture, size, shape, and color to identify skin conditions

[37]. For instance, the gray level co-occurrence matrix (GLCM) is used to analyze the

skin image in detail [38]. Different combinations of GLCM features such as variance,

energy, correlation, homogeneity, contrast, and entropy are used to detect melanoma
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skin cancer [39]. Psoriasis detection techniques [40] use color features such as the first-

order moment, the mean color, the second-order moment, the standard deviation, and

the third-order moment, skewness of color along with the aforementioned textural

features. Dermoscopic features such as the asymmetry, border, color, and diameter

(ABCD) of skin lesions, along with some texture-based and statistical parameters

such as mean, skewness, and kurtosis extracted from GLCM for skin cancer detection

[41]. Classical image processing techniques [42] such as discrete cosine transform [43],

discrete wavelet transform [44][45] and singular value decomposition to extract feature

vectors were employed to detect warts, tinea corporis, acne, vitiligo, nail psoriasis,

and eczema.

2.3 AI in Dermatology

During the initial advent of AI, its applications in the field of medicine were unpopu-

lar. There were several factors contributing to this problem, such as local extremum

and gradient dispersion problems, insufficient hardware problems, and most critical

of all, lack of large amounts of labeled data. Despite the revolutionary progress of

AI in diverse domains such as image processing, speech recognition, text processing,

and other areas in the last decade, its main application was the in vivo classification

of benign and malignant lesions [46]. However, in comparison, radiological AI has

far surpassed dermatological AI. Different applications of AI in radiology have been

widely accepted and incorporated into various healthcare settings. This has greatly

helped to bring doctors at different levels closer and has also helped improve the pre-

cision of diagnoses. Radiological applications of AI have also greatly benefited and

promoted the development and acceptance of AI in dermatology as well.

2.3.1 Classical AI methodologies

In 2017, Esteva et al.[47] published a study that applied deep learning to skin tumors.

They trained a CNN using a dataset of 129,450 clinical images with 2032 different
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diseases. The CNN was trained to learn fine-grained features for pixel-wise disease

labeling. The trained model was validated by performing classification tasks such as

“keratinocyte carcinomas vs. benign seborrheic keratosis” and “malignant melanomas

vs. benign nevi.” The predictions were compared with the diagnoses from more than

21 board-certified dermatologists, and the model succeeded in performing on par

with all experts tested across both tasks as shown in Figure 2.2, thereby proving

that AI assisted tools can be used to classify skin cancer with a level of competence

comparable to dermatologists. A meta-analysis of 70 studies conducted by Dick et al.

[48] revealed that the accuracy of computer-aided diagnostic tools for melanoma is

comparable to that of human experts. Consequently, studies [49][50][51] reveal that

classification of malignant versus benign melanoma from non-dermoscopic images

predominantly curated from East Asian patients reported an area under receiver

operating characteristic curve of 0.94 for the detection of malignancy among 134

conditions. This also turned out to be on par with dermatology residents. CNNs

have also achieved expert-level diagnosis accuracy in non-pigmented skin cancer [52]

and outperformed dermatologists across five disease classes [53]. Even when the

modalities are switched from dermoscopic to non-dermoscopic, CNNs managed to

achieve dermatologist-level performance in the classification of melanoma [54].

Thus, gradually over the course of time, the implementation of CAD in dermatol-

ogy, empowered by AI, has been initiated by governmental, industrial, and academic

investments. Given the rapid pace of research and development in this domain, nowa-

days we generally use modern learning-based methods which employ models trained

on huge datasets.

2.3.2 Modern deep learning-based methods

Modern systems extensively use deep learning-based algorithms to provide computer-

assisted platforms to dermatologists, primarily because their performances are much

better and more reliable. Instead of relying on specific hand-crafted features, deep
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Figure 2.2: The figure depicts the sensitivity-specificity curve of the CNN as well as
the dermatologists for different cases of carcinoma classification and melanoma clas-
sification. (a) A red dot denotes a prediction by a dermatologist per image whereas
a green dot represents the mean of the dermatologist for each task, with variation
bars denoting one standard deviation (calculated from 25, 22, and 21 dermatolo-
gists for keratinocyte carcinoma and melanoma from general and dermoscopy images
respectively). Three cases have been experimented upon, Epidermal test with 65
keratinocyte carcinomas and 70 benign seborrheic keratoses, Melanocytic test with
33 malignant melanomas and 97 benign nevi and a second melanocytic test using 71
malignant and 40 benign dermoscopic images. Since the blue curve is above most of
the green dots, it reflects the better performance of the model with respect to derma-
tologists. (b) the CNN’s performance on a larger dataset has been depicted where
the curves are much smoother reflecting robust classification. The above illustration
is taken from [47].
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learning methods can automatically learn semantic features from large and diverse

datasets. As discussed earlier, classical deep CNN based architectures are utilized to

develop a skin lesion classification system [47]. MobileNetV2 [55], and LSTM [56]

have been employed to develop a system used for skin disease forecasting [57]. Chen

et al. [58] proposed a self-learning-based artificial intelligence (AI) platform that uses

a wide collection of data in a closed-loop flow from users and remote medical data

centers for real-time skin disease recognition. In this work, LeNet-5 [59], AlexNet

[60], and VGG16 [61] were adopted to carry out the training, classification, and as-

sessment processes. Jiang et al. [62] proposed a U-Net [63] inspired model from skin

lesion segmentation in which they added a squeeze-and-excitation layer after every

convolution to enhance informative features, along with integrating a convolutional

LSTM (ConvLSTM) [64] to improve sensitivity and prediction accuracy. SkinVision

employed a conditional Generative Adversarial Network [65] together with inpaint-

ing [66] for noise reduction. The segmented regions are further explored and their

features (shapes, colors, texture) are classified using an SVM classifier. Liu et al.[67]

developed a deep learning system using inception-v4 modules to generate two types of

differential diagnoses. The primary output comprised of the relative likelihood of 27

skin conditions, and the secondary output consisted of the relative likelihood of 419

conditions. The model was trained on a dataset of 16,114 de-identified (photographs

and clinical data) cases acquired from a teledermatology organization and the output

conditions were chosen based on granularity to assist non-dermatologist clinicians in

conducting preliminary clinical care. Cassidy et al.[68], on the other hand, discussed

in detail the different benchmark algorithms on the International Skin Imaging Col-

laboration (ISIC) datasets. An in-depth analysis of existing issues in the dataset

is provided along with a strategy to remove duplicate images from the dataset to

prevent biasing issues.
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2.4 Teledermatology

CAD tools for dermatology have become much more relevant, especially in the recent

COVID pandemic lockdown. Telemedicine became quite popular as patients turned

to online means to receive diagnoses and treatment for specific conditions. The user

satisfaction in an AI-assisted teledermatology service to redefine melanoma screening

using a pigmented lesion evaluator was found to exceed 75% [69]. Unfortunately, cer-

tain conditions, especially moles, require extensive diagnostic procedures and are still

preferably treated in person, where dermatologists use specific specialized tools such

as dermoscopy for imaging. Melanocytic nevi or moles that persist into old age have

elevated chances of malignant degeneration [5]. Therefore, it is highly crucial that

newly appearing moles be detected and adequately diagnosed and treated. Birkenfeld

et al.[70] trained a logistic regression algorithm on the characteristics corresponding

to different components of the ABCD criteria to classify skin lesions according to a

suspiciousness score. On the other hand, Cavalcanti et al.[71] proposed a three-step

approach to segment melanocytic skin lesions. Although face-to-face diagnostic accu-

racy surpasses that of teledermatology settings [72], a lack of accessibility in obtaining

reliable dermatological care makes it a viable solution. It has the potential to make

services more accessible to patients through referrals and reduced wait times, and to

provide diagnostic and triage support for cases under review.

As an extension to teledermatology, AI-assisted tools can also be used to develop

mobile applications and personal monitoring devices. The detection of melanoma,

one of the deadliest types of cancer, can be made much more accessible through

mobile applications, especially for people in rural areas with limited availability of

dermatologists. In the present day scenario, there are two types of mobile application

services for teledermatology [73]: store-and-forward teledermatology and automated

smartphone applications. The collaborating partner of this work, OROHealth1 Inc.

1https://orohealth.me/en
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falls in the former category. In their setting, they send pictures of lesions taken

by patients through their mobile application to dermatologists located remotely for

their diagnosis. On the other hand, automated smartphones are developed to provide

a probability of malignancy of melanoma on the spot based on images and other

information entered by the user. These tools have been shown to have a significant

impact on outreach [74] and provide viable solutions to patients in need.
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Chapter 3

Materials and Methods

In this section, we will discuss the proposed end-to-end pipeline of the fully automated

mole detection CAD system. We elaborate the different models we experimented with

to compare their performance in the search for the best model for the task at hand.

Additionally, we will also include a module describing a more versatile, yet classical

method of human skin detection that encompasses a wide range of skin-tones.

3.1 CNN vs transformer

Convolutional neural networks (CNN) have always played the most pivotal role in

computer vision. For years, CNNs have been the dominant method of processing and

classifying image-related data. CNNs were specifically designed for image recognition.

They are composed of multiple layers, including convolutional layers, pooling layers,

and fully connected layers. When these filters are applied repeatedly to the pixels

in an image, they build up a series of channels that help them recognize features.

Therefore, a CNN learns the data pixel-by-pixel, identifying features of the image

thereby building its way from local to global. They excel at learning spatial patterns

in images and extracting features that are relevant for classification.

On the other hand, transformers [76] were originally developed for natural lan-

guage processing (NLP) tasks, but have been recently adapted for computer vision

tasks such as image classification. Transformers use self-attention mechanisms to
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Figure 3.1: A convolutional neural network successively applies a series of filters to
an image thereby learning the features of the image, a zebra in this case. The above
illustration is taken from Medium [75].

learn global relationships between different parts of input data. They are capable

of capturing long-range dependencies in images, which can be useful for recogniz-

ing complex patterns. Therefore, unlike CNNs, transformers can make connections

between distant image locations (just as in language) with the help of self-attention.

The advent of Vision transformer[8] or ViT ushered in a new set of transformer

based models which could be applied confidently in vision related-problems. Its ar-

chitecture is similar to that of the original transformer (2017) with minor tweaks

that allow it to process image patches of a fixed size instead of words. ViT classified

images from the ImageNet[60] dataset with over 90% accuracy achieving a SOTA

performance in the ImageNet classification challenge.

3.2 Vision transformers (ViT)

Vision Transformer or ViT, as mentioned above, replaces the convolutional layers

commonly used in computer vision tasks with the self-attention mechanism used in

Transformers. In this section, we discuss the architectural details of the ViT model

in detail.
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Figure 3.2: A transformer block representation. Norm refers to a normalization layer,
Multi-Head Attention is the self-attention layer and MLP is a fully connected layer.
The plus signs represent some operation (e.g. concatenation) of an output with a
residual connection. Source : Picsellia [77]
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Figure 3.3: Mapping an input sequence x⃗ to an output sequence y⃗ through self-
attention. All of the preceding inputs xi(i ≤ j) including the one under investigation
are used to produce an output yj. Source : Picsellia [77]

Figure 3.4: From a structured image to sequential data. The image is split into
patches, patches are flattened and projected to another space. Finally, a positional
embedding is concatenated to keep track of the spatial order, before feeding the input
to the transformer. Source : Picsellia [77]
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1. Patch Embeddings: The input image is first divided into non-overlapping patches

of fixed size, typically 16x16 pixels, and each patch is linearly projected into a

lower-dimensional vector representation. This process results in a sequence of

1D patch embeddings.

2. Position Embeddings: Each patch embedding is then augmented with a learn-

able position embedding, which encodes its relative position within the image.

This is similar to the position encoding used in the Transformer model for NLP.

3. Transformer Encoder: The patch embeddings with position embeddings are

then fed into a series of Transformer Encoder layers. Each Transformer En-

coder layer consists of a Multi-Head Self-Attention (MHSA) mechanism and a

Position-wise Feed-Forward Network (FFN). The MHSA mechanism allows the

model to attend to different parts of the image patches, while the FFN provides

nonlinear transformations.

4. Classification Head: After passing through the Transformer Encoder layers, the

final patch embeddings are passed through a linear layer to produce a sequence

of class tokens, which are then fed into a classification head to produce the final

output.

ViT has achieved SOTA performance on several benchmark image classification

datasets, demonstrating that it can compete with or even outperform CNNs on certain

tasks. One advantage of ViT is its ability to capture global dependencies in the input

image, which is particularly useful for recognizing objects in context or understanding

the spatial relationships between objects.

Overall, ViT represents a promising direction in computer vision research, and it

has the potential to be applied to a wide range of other computer vision tasks beyond

image classification.
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Figure 3.5: Vision transformer (ViT) architecture. Source : original paper [8]

3.3 Nested hierarchical transformer (NesT)

NesT expands to the nested hierarchical transformer, which is essentially an im-

proved version of ViT. It employs the notion of hierarchically nesting local trans-

formers, which operate on non-overlapping image blocks. The proposed block aggre-

gation not only outperforms previously studied self-attention mechanisms but also

enables achieving a substantially simplified architecture with superior data efficiency.

It also helps in efficient cross-block non-local information communication that helps

the model to converge faster and requires much less training data. The overall archi-

tecture is illustrated in Figure 3.6.

Given an input image of dimensions H ×W × 3, we divide it into smaller patches

of resolution S×S. Each patch is linearly projected into an embedding. All such em-

beddings are divided into blocks and flattened to generate the inputs X ∈ Rb×Tn×n×d

where b is the batch size, Tn is the total number of blocks at the bottom of the hier-

archy, n is the number of embeddings in each block, and d is the dimension length of

each embedding in Rd. Thus, Tn × n = H ×W/S2. Trainable positional embeddings

[78] are concatenated to every block embedding before feeding them to the block func-
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tion T. Each canonical block houses three layers: multi-head self-attention (MSA) [76]

layer followed by feed-forward fully connected layer (FFN) with skip-connections [79]

and layer normalization [80]. Since these transformer layers are canonical, all blocks

at the same hierarchy level share the same set of parameters, so the MSA layer is

applied parallelly as MSANesT to all blocks at the same hierarchy level.

MSANesT (Q,K, V ) = stack(block1, block2, ......, blockTn) (3.1)

where,

blocki = MSA(Q,K, V )W 0 (3.2)

Here, blocki is of dimensions b × n × d. The FFN layer consists of two layers

collectively given by:

FFN = max(0, xW1 + b)W2 + b (3.3)

Therefore, the overall block function T is given by:

T = multiple X

⎧⎨⎩y = x+MSANesT (x
′, x′, x′), when x′ = LN(x)

x = y + FFN(LN(y))
(3.4)

Thus, every block independently processes local information and only shares global

information in the block aggregation step. This step shares information from spatially

connected blocks in the image plane through simple operations such as convolution,

layer normalization (LN), or max pooling. Therefore, the output in hierarchy l is

unblocked to the image plane for spatial operations. After sharing spatially local

information and down-sampling the feature maps, they are blocked back in hierarchy

l + 1 such that the number of sequences n remains the same, but the total number

of blocks gets reduced. This process is continued until the total number of blocks

reduces to 1 in the top-most hierarchy of the model. Therefore, not only does this

architecture solve cross-block communication in local self-attention, but it is also

simple due to its canonical stacking of primary transformer layers.
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Figure 3.6: NesT illustration with nested transformer hierarchy. Linearly projected
patch embeddings from the image are divided into blocks stacked with canonical
transformers at every hierarchy. Spatially neighboring blocks are aggregated by simple
spatial operations in the image plane, creating the hierarchical structure.

25



3.4 Big transfer (BiT)

The BiT[9] model is a family of deep neural network models designed for transfer

learning in computer vision. The models are based on ResNet (Residual Network)

architecture, which is a popular SOTA deep learning model for image classification.

The main idea behind BiT is to pretrain a large ResNet model on a large and diverse

dataset, such as the ImageNet dataset, and then transfer the learned representations

to downstream tasks.

There are 2 main types of components of BiT models: upstream components are

those which are used in the pre-training phase, and downstream components are those

which are used during fine-tuning the model to a new task.

The BiT architecture consists of a series of building blocks, each of which contains a

combination of convolutional layers, batch normalization, ReLU activation functions,

and shortcut connections. Building blocks are organized into several stages, with each

stage consisting of several building blocks that downsample the spatial dimensions of

the feature maps. So essentially it is quite similar to that of ResNetv2, but with two

key differences. First, group normalization is used in place of batch normalization

in all layers. Second, weight standardization is applied to the convolutional layers.

These modifications have been shown by the authors to be beneficial for training

models with large batch sizes and have a considerable impact on transfer learning

performance.

In addition to the ResNet building blocks, the BiT models also include several mod-

ifications that improve their performance on transfer learning tasks. One such modi-

fication is the use of swish activation functions, which have been shown to outperform

ReLU activation functions on several computer vision tasks. Another modification is

the use of a global average pooling layer at the end of the model, which averages the

feature maps across the spatial dimensions to produce a fixed-size representation.

After pretraining, the BiT model can be fine-tuned for downstream tasks such as
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Figure 3.7: Comparison of transfer performance of BiT-L model (curve in blue) vs a
ResNet-50 pre-trained on ImageNet (ILSVRC-2012) (curve in green) used as baseline.
The x-axis shows the number of images used per class, ranging from 1 to the full
dataset.

image classification, object detection, and semantic segmentation. By using transfer

learning, BiT models are able to achieve SOTA performance on several benchmark

computer vision datasets, such as CIFAR-10, CIFAR-100, and ImageNet, demon-

strating their effectiveness for a wide range of tasks.

3.5 Inception-V4

InceptionV4 is an image classification model developed by Google researchers that

builds on the Inception architecture with several enhancements to improve its per-

formance. The model consists of Inception modules, which are building blocks that

contain convolutional layers with various kernel sizes and strides to extract features

at different scales. The model also incorporates techniques such as factorized 7x7 con-

volutions and shortcut connections to improve computation efficiency and gradient

flow.

During training, the model is initialized with weights from a pretrained model such

as InceptionV3 or ResNet and fine-tuned on a target dataset using regularization

methods such as weight decay and dropout. InceptionV4 has achieved SOTA results

on benchmark image classification datasets such as ImageNet and MS COCO, and
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Figure 3.8: Inception-v4 network schema. The details of the individual modules are
illustrated in Figures 3.9 and 3.10

its performance can be further improved by using other techniques such as attention

mechanisms and adversarial training. We have included this model in our study in

order to establish how the transformer-based models perform with respect to SOTA

non-transformer based CNNs.

3.6 Human skin detection

In this module we discuss one of the classical human skin detection techniques that we

explored as an additive branch of this thesis work. Human skin detection is a widely

researched domain of computer vision and is a very essential step in skin disease

detection (mole detection in this case). It helps us to localize the part of the image

that belongs to the skin or not.

Over the years, many methods of skin detection have been developed that rely on

the intensity profile of the sample images to determine whether details conform to skin

or non-skin regions. Among these techniques, we have focused our attention to explicit

threshold techniques since they are computationally not as expensive as statistical

techniques and supervised learning-based methods and are also quite straightforward

to implement.

The skin detection method implemented in this work is developed based on the

28



Figure 3.9: Schema of the stem of Inception-v4 model. This acts as the input layer
to the network.

Figure 3.10: (From left) Inception A, B and C block in Inception-v4 model
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algorithms proposed by [81] and [82]. It determines whether a given pixel in an image

belongs to a skin or non-skin region depending on a set of rules applied to its RGB,

YCrCb, HSV and CYMK color spaces.

Assuming that R, G, B are the intensity values of a pixel in the RGB color space,

Y, Cr, Cb the intensity values in YCrCb space and H, S, V the intensity values in

the HSV color space, the following three rules are defined:

• RGBA check:

rule 1 = (R > 95)&(G > 40)&(B > 20)&(R > G)&(R > B)&(abs(R − G) >

15)&(A > 15)

rule 2 = (R > 220)&(G > 210)&(B > 170)&(G > B)&(R > B)&(abs(R −

G) <= 15)

RULE RGB = rule 1 ∪ rule 2

• HSV check:

rule 3 = H < 25

rule 4 = H > 230

RULE HSV = rule 3 ∪ rule 4

• YCrCb check:

RULE Y CRCB = (Cr > 135)&(Cb > 85)&(Y > 80)&(Cr <= (1.5862∗Cb)+

20)&(Cr >= (0.3448∗Cb)+76.2069)&(Cr >= (−4.5652∗Cb)+234.5652)&(Cr <=

(−1.15 ∗ Cb) + 301.75)&(Cr <= (−2.2857 ∗ Cb) + 432.85)

In the above constraints, abs() refers to the absolute function. In addition to the

aforementioned rules, the authors define a new set of rules based on the CMYK color

space as follows:
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K = min(255−R, 255−G, 255−B)

C = (255−R−K)/(255−K)

M = (255−G−K)/(255−K)

Y = (255−B −K)/(255−K)

(3.5)

In the above constraints, the min() function refers to the minimum function that

returns the minimum value from the given set of arguments. The C, M, Y, and K

components are, in turn, used to define a new set of rules as follows.

CMYK check:

rule 5 = K < 205

rule 6 = 0 <= C <= 0.05

rule 7 = 0.0909 < Y < 0.945

rule 8 = 0.1 <= Y/M < 4.67

RULE CMYK = rule 5 ∩ rule 6 ∩ rule 7 ∩ rule 8

Following the aforementioned rules, we adopt a hybrid color scheme to explore the

combination of these rules:

RC = RULE RGB ∩RULE CMYK

RH = RULE RGB ∩RULE HSV

RHC = RULE RGB ∩RULE HSV ∩RULE CMYK

RHC V ote = min 2vote(RULE RGB,RULE HSV,RULE CMYK)

In the above equation, min 2vote() refers to a function that returns True if at least

two rules from among its parameters vote for a given pixel as a skin pixel.
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Figure 3.11: Comparison of skin detection performance on a sample image from
Danderm dataset

Figure 3.12: Comparison of skin detection performance on a sample Creative com-
mons image
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Chapter 4

Experimental results: Mole
detection

In this chapter, we present the evaluated performance of the different models pro-

posed earlier in our automatic CAD mole detection system. Multiple datasets, both

public and private, have been used to encompass diverse types of skin conditions

and robustify our system’s classification confidence. We introduce the datasets fol-

lowed by details of the different performance metrics achieved by performing different

experiments.

4.1 Dataset

This project uses a combination of images from two sources: (i) a collection of real-

world images curated by OROHealth Inc from different patients and (ii) a publicly

available danderm dataset1. The former dataset is a private collection of images

collected from dermatologists in collaboration with OROHealth Inc. These images

were classified into more than 40 different classes of diseases by two Canadian board-

certified dermatologists. Out of all these classes of conditions, images belonging to

two conditions: nevus and melanoma, are considered moles, and the rest of the images

are labeled as non-moles. Care has been taken to prevent data leakage by ensuring

that images from the same patient are not included in more than one set (training,

1https://danderm-pdv.is.kkh.dk/
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validation, or test set). On the other hand, the danderm dataset is a publicly available

atlas built using photos taken during the private practice of clinical dermatology. It

delivers a broad spectrum of clinical cases, sometimes belonging to the same disease,

making it helpful in teaching dermatology. Out of the different clinical cases in this

study, the images under nevus, melanoma, and tumors are considered moles, and the

rest are non-moles. Figure 4.1 depicts two such cases taken from the public danderm

dataset.

(a) Sample image with a nevus

(b) Sample image of melanoma

Figure 4.1: Example images from public danderm dataset showing skin conditions
such as nevus and melanoma
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4.2 Dataset class imbalance

Initially, we began our experiments with only the private dataset curated by ORO-

Health Inc. However, we noticed a massive class imbalance problem in the dataset.

Of a total of 24972 images in the dataset, only 451 samples belonged to the mole class

(nevus and melanoma) resulting in an extreme class imbalance where the minority

class (mole) constitutes just about 1.8% of the entire dataset. In order to tackle this

problem, we included the images labeled as mole (nevus, melanoma, and tumours)

from the public Danderm dataset along with the private image set. As a result, we

managed to increase the number of mole samples from 451 to 1054. Therefore, we

minimize the data imbalance problem by modifying the definition of moles or positive

samples to include nevus, melanoma as well as tumors. However, this still results in

a minority class of 4.12% of the total dataset. This problem was overcome by sub-

sampling the training set into a smaller set containing at most 600 samples belonging

to each class. Figure 4.2 shows the class distribution of the dataset, which represents

about 96% of the dataset comprised of private non-mole images.

4.3 Experimental setup

The five models: BiT, NesT, Inception-v4 and ViT (base version and version trained

on ImageNet21k) were subjected to 22 experiments, each using different combinations

of hyperparameters such as optimizer, loss function, learning rate, and the total

number of steps in the learning rate scheduler keeping all other hyperparameters the

same. We relied on the deep learning library timm2 for the implementation of all deep

learning methods evaluated in this study. All experiments were executed on NVIDIA

Tesla P4 GPUs on virtual machines supported by the Google Cloud Platform (GCP).

Once we had preprocessed and subsampled our image dataset, we applied a series

of different augmentation techniques such as image resizing, randomly cropping a

2https://timm.fast.ai/
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Figure 4.2: Bar chart of dataset distribution

part of an image (the lower bound of the random area of the crop is set to 0.15 times

the total image area). This was followed by resizing, random flipping of images both

horizontally and vertically, random rotation of an image by 90 degrees, etc. These

transforms were followed by normalization and conversion to tensors. These tensors

are used to generate data loaders for training, validation, and test sets, respectively.

These data loaders are finally subjected to mixed data augmentation [83] in which

randomly selected samples are linearly interpolated to generate synthetic training

samples. The interpolation coefficient is selected from a beta distribution (fixed to

0.1 for all of our experiments). It must be noted that all the data augmentation

procedures mentioned here are implemented online to the data batches to prevent

the overhead of calling separate custom functions thereby making it more efficient.

During the construction of torch data loaders, we exploit the inclusive behavior

of gradient accumulation [84]. Gradient accumulation essentially helps us when the

batch size cannot be increased beyond a limit to account for GPU memory limita-

tions. In this method, instead of updating the model variables after every batch, we
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accumulate the gradients for a configured number of steps and then use the sum of

those accumulated gradients to update the variables. The number of steps depends

on the batch size (denoted by Gradient accumulation batch in Table 4.1) and the

number of epochs.

We used three different types of loss function to train our models. The cross-entropy

[85] loss was used since this is a binary classification problem, and cross-entropy loss

is one of the most popularly used loss functions for such problems. The focal loss [86]

had also been used, keeping in mind the considerable class imbalance in the dataset

in the number of image samples between the two classes (mole and non-mole). The

focal loss has consistently outperformed traditionally used loss functions, especially

when there is a substantial dataset class imbalance. The focal loss (FL) is represented

as follows:

FL(p) =

⎧⎨⎩−α(1− p)γlog(p), if y = 1

−(1− α)pγlog(1− p), otherwise

Here y ∈ {−1, 1} is the ground truth class, and p ∈ [0, 1] is the predicted probability

of the model for the class being label y = 1. The class imbalance issue is addressed

by introducing a weighing factor α ∈ [0, 1] for class y = 1 and (1 − α) for class

y = −1. For our experiments, we have fixed its value at 0.25. A tunable focusing

parameter γ ≥ 0 is used to introduce a modulating factor (1 − p)γ . Its value is set

to 1 for all our experiments. Lastly, we have also used an asymmetric single label

loss function that essentially decouples the focusing levels of positive and negative

samples. Since, in our case, positive samples (mole images) are lesser in number than

negative samples (’no mole’ images), in order to accentuate the effect of the positive

samples, we have set γ− ≥ γ+ where γ+ and γ− are focusing parameters of positive

and negative samples, respectively, in the loss function. For our experiments, we have

set γ− = 2 and γ+ = 0, respectively. Additionally, to tackle problems with severe

imbalance, probability shifting is employed via an extra tunable hyperparameter that

performs hard thresholding of negative samples with very low probability. This value
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has been set to 0.05 in all our tests. This modified version of focal loss is called an

asymmetric single-label loss function.

In order to optimize our model weights during the training phase, we decided to

employ two of the most common optimizers used in the domain of computer vision,

which include the stochastic gradient descent (sgd)[87] optimizer and the adam [88]

optimizer. Stochastic gradient descent is the most basic form of gradient descent

optimizer, which subtracts the product of gradient and learning rate from the weights

to optimize them. A momentum value of 0.9 is used to modify the weights, which

helps to accelerate the training process. The Adam optimizer, on the other hand,

combines the strengths of both the learning rate of RMSprop and the momentum

property of stochastic gradient descent. Adam has proven to outperform most other

optimizers and is widely regarded as the default optimization algorithm in most fields

of machine learning. A weight decay factor is used for regularization and is set to

0.0005 for both sgd and Adam optimizers. Additionally, to make the training process

efficient, we decided to include a patience clause of 5 epochs that terminates the

trainer when the loss is appreciably low and does not diminish on further training.

In order to strategically control the learning rate while training, we have also

employed two types of learning rate schedulers. The one-cycle scheduler anneals the

learning rate in three phases, from an initial value to a maximum value. Then it

decreases to some minimum value much lower than the initial starting value. The

maximum learning rate value for the different experiments (for NesT) is varied, as

shown in Table 4.1, and instead of using three phases, we decided to work with only

two. The multiplication indices shown in Table 4.2 determine the different learning

rate limits for the different models.

On the other hand, cosine annealing begins the learning process with an initial

learning rate, where it gradually decreases following the shape of a cosine curve. On

reaching a specific minimum value, the learning rate suddenly increases to where it

started. This non-linear repetitive nature of the learning rate helps prevent undesir-
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able minima in the weight space and takes care of the decay schedule.

Table 4.1 shows the synopsis of the different hyperparameters with which we com-

pared to optimize and arrive at the best combination of values to obtain model weights

of production grade. Every model was tested against different scale variations of these

22 sets of hyperparameter combinations.

4.4 Performance metric analysis

By a combined inference of the different box plots in Figures 4.3, 4.4, 4.5, 4.6, 4.7,

and 4.8 we can infer that the NesT model gives the best result with a particular

combination of hyperparameters (Batch size: 32, optimizer: Stochastic gradient de-

scent, loss function: asymmetric single label loss, maximum learning rate: 0.001).

Table 4.3 shows the confusion matrix of the best performing NesT model. Out of

all the performance metrics presented, we are most interested in the recall value of

test images with moles. This is because, as mentioned earlier, moles are usually not

treatable online, and we need to minimize false negatives as much as possible. The

high dataset class imbalance also causes the different models to be trained to be more

likely to identify images without any moles with higher confidence than those with

moles. Since mole detection is a problem where overlooked cases might become more

costly than false alarms, we evaluate our models’ performance mainly by their recall

values for test images with moles.

Figures 4.3, 4.4 and 4.5 represent recall, precision, and overall accuracy box plots

when one-cycle scheduler is used to control the learning rate, and figures 4.6, 4.7, and

4.8 represent the same but with cosine annealing. Figures 4.3 and 4.6 and figures 4.5

and 4.8 illustrate that the NesT model scores the best recall as well as overall accuracy

values with both schedulers. Although the precision values of NesT are not the best,

as illustrated by the figures 4.4 and 4.7, since we are more interested in recall scores,

we accept the trade-off. In order to decide which scheduler to choose, we compare their

performances by keeping all other hyperparameters the same. Figure 4.9 illustrates
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Table 4.1: A table depicting the hyperparameters combination used for different
experiments. Here SGD refers to stochastic gradient descent and ASL refers to asym-
metric single-label loss.

Gradient
accumulation
batch

Optimiser Loss function Learning rate

16 SGD ASL 0.01

32 SGD ASL 0.01

64 SGD ASL 0.01

32 SGD ASL 0.001

32 SGD ASL 0.1

32 adam ASL 0.01

32 adam ASL 0.001

32 adam ASL 0.1

32 adam cross entropy 0.01

32 adam cross entropy 0.001

32 adam cross entropy 0.1

32 SGD cross entropy 0.01

32 SGD cross entropy 0.001

32 SGD cross entropy 0.1

16 SGD focal 0.01

32 SGD focal 0.01

64 SGD focal 0.01

32 SGD focal 0.001

32 SGD focal 0.1

32 adam focal 0.01

32 adam focal 0.001

32 adam focal 0.1

the parallel plot of multiple performance metrics from which we can infer that the

one-cycle scheduler is more versatile than the cosine-annealing scheduler. Although
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Table 4.2: Multiplication indices of the maximum learning rate for different models

NesT ViT ViT (Ima-
geNet21k
pretrained)

BiT InceptionV4

x1 x0.01 x0.01 x0.3 x0.1

cosine annealing performs better for the recall value with mole images, the one-cycle

scheduler performs better in terms of all other metrics such as overall accuracy (test

accuracy), recall value of non-mole test images (test-no mole-recall) and F1-scores

for both mole and non-mole test images (test-mole-f1-score and test-no mole-f1-score

respectively). Hence, the model trained with the one-cycle scheduler has been chosen

as the best model. Table 4.4 shows the recall values of the best-performing versions

of each of the five models with their hyperparameter values.

Table 4.3: Confusion matrix of the best performing NesT model

Predicted label

Mole Non-mole Total

True label
Mole 127 9 136

Non-mole 7 277 284

Total 145 275 420

4.5 API simulation and experimental tools

In order to simulate the end-to-end integrated application programming interface

(API), we have used the Postman API3 platform to evaluate how our system is ex-

pected to work. It provides a platform for developers to design, build, and document

APIs. It also enables us to manage our API development workflow’s collections,

environments, requests, and other aspects.

In our project, most of the data was kept private as it is protected by a fully

3https://www.postman.com/api-platform/
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Figure 4.3: Recall box plots for test images with moles with onecycle scheduler
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Figure 4.4: Precision box plots for test images with moles with onecycle scheduler
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Figure 4.5: Overall accuracy box plots with onecycle scheduler

bit inceptionv4 nest vit vit_21k
Model

0.0

0.2

0.4

0.6

0.8

1.0

te
st

-m
ol

e-
re

ca
ll

Recall plot of mole samples with cosine annealing scheduler

Figure 4.6: Recall box plots for test images with moles with cosine annealing scheduler
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Figure 4.7: Precision box plots for test images with moles with cosine annealing
scheduler
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Figure 4.8: Overall accuracy box plots with cosine annealing scheduler

Figure 4.9: Parallel plot for metric comparison between onecycle scheduler vs cosine
annealing scheduler keeping other parameters fixed. Since onecycle scheduler outper-
forms cosine annealing with respect to most metrics such as recall on images without
moles (test-no mole-recall), F1 score on images with and without moles (test-mole-
f1-score, test-no mole-f1-score), we accept the trade-off of a slightly inferior recall on
images with moles (test-mole-recall).
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Table 4.4: Best performing experiments of each model with onecycle scheduler with
regards to recall in test images with moles

Model Gradient
accumula-
tion batch

Optimiser Loss
function

Learning
rate

Mole
recall

BiT 32 sgd asymmetric
single label

0.03 0.8897

InceptionV4 32 sgd asymmetric
single label

0.01 0.8676

NesT 32 sgd asymmetric
single label

0.001 0.9338

ViT 32 sgd cross
entropy

0.0001 0.9044

ViT 21k 32 sgd cross
entropy

0.0001 0.8676

encrypted database that complies with HIPAA, GDPR, PIPEDA, and all other legal

compliance requirements designed to protect confidential data. Every patient file or

physician case is fully encrypted using the user’s unique code such that only users

have access to open their data using security keys. Such security measures are crucial

for entities involved in handling public health information (PHI), such as healthcare

providers, health plans, and their business associates. Hence we containerized our

mole detection system by creating a docker4 image of it. The container image was

then sent to the GCP virtual machine with privileges to access the data in order to

train the model, and the trained weights were stored externally. The experiments

were automated and documented via MlFlow5 which is an open-source toolkit to

manage the machine learning life cycle and to follow experiments, manage models

and reproduce results.

The docker image that ended up generating the best results was chosen to test in

the postman API environment. Figures 4.10a, 4.10b, 4.11a, and 4.11b show the four

4https://www.docker.com/
5https://mlflow.org/toolkit
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sample images taken from the danderm dataset. It returns Mole if the system detects

the presence of a mole in the image and No mole if it doesn’t find any along with a

confidence probability, i.e. probability that the image belongs to the predicted class.

It is a measure of how confident the system is in its prediction.

Figure 4.10a shows a sample image of nevus taken from the danderm dataset. The

system correctly classifies it as a mole with a confidence of about 94%. Such high

confidence is reflective of the fact that the moles in the image are well-defined in a

clear background with characteristic nevi features.

Figure 4.10b is that of a sample image of melanoma from the danderm dataset.

Its prediction turns out to be a correct classification of Mole, although with a low

confidence of 50%. This is due to the fact that the patch of mole in this case is

located in an unclear background and the image has been taken under poor lighting

conditions.

Figures 4.11a and 4.11b show sample images of pustular psoriasis, which is a type

of genodermatosis and parasitic infestation, respectively. Their label prediction turns

out to be correct as No mole with high confidence values of 90% and 96% respectively.

The high confidence in No mole prediction is reflective of the fact that the dataset

has a high imbalance between the two classes with considerably more images without

moles than with moles.
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(a) (b)

Figure 4.10: Sample (a) nevus image and (b) melanoma from the danderm dataset.
These images were correctly classified by the system as images with moles with prob-
ability values of 94.9% and 50.5% respectively.

(a) (b)

Figure 4.11: Sample image of (a) pustular psoriasis, a type of genodermatosis and (b)
parasite infestation from danderm dataset. These images were correctly classified by
the system as images without any moles with probablility values of 89.8% and 95.9%
respectively.

48



Chapter 5

Experimental results: Human skin
detection

The primary objective of exploring a superior algorithm to detect regions of human

skin from any given image is to make our study more versatile with respect to different

skin tones. The datasets used in this thesis: the danderm dataset, as well as the

private dataset from OROHealth Inc., predominantly consist of image samples taken

from people with light skin tones. As a result, our model is trained on data limited

to a certain group of people. This might result in faulty predictions if you find cases

from patients with comparatively darker skin tones. Therefore, a robust human skin

detection algorithm becomes vital to prevent such unforeseen data cases. In this

chapter, we present and compare the performance of our skin detection algorithm

against a classical SOTA algorithm. First, we discuss the different sources of our

test data, followed by a qualitative analysis of masks obtained by implementing the

aforementioned algorithms.

5.1 Data curation

In order to include skin tones of different shades, we searched for images of people

of different ethnicities under the Creative Commons license. Images of natives from

five different geographical units were selected: Indian subcontinent, the Middle East,

Africa, Asia and Latin America. On the other hand, we have also tested the algo-
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rithms against sample images taken from the Danderm dataset and the Pratheepan

dataset [89].

5.2 Experimental setup and results

The different images curated are at first manually segmented using Segments.ai [90].

This segmenting tool is used to delineate regions of human skin as the foreground and

the rest as the background, thereby generating a ground truth mask for reference.

Figures 5.1, 5.2 and 5.3 are 3 such cases illustrated in this section. Of these figures

5.1 is taken from the Danderm dataset, figure 5.2 is a creative commons image and

figure 5.3 is taken from the Pratheepan dataset. The ground truths shown alongside

the query images are the masks generated from the segments.ai API followed by a

version showing the ground truth overlapped on the image. All the following images in

each figure correspond to the images overlapped with masks generated from different

thresholding rules. Each of these images is accompanied by their dice score with

respect to the ground truth. The current method refers to the method currently

being used by the data science team at OROHealth Inc [82]. Additionally, we have

also included masks generated by intensity thresholding rules RHC vote, RC, RH and

RHC as described earlier in Chapter 3. Lastly, two more combinations of intensity

thresholding rules, namely RHC vote|Y CrCb&HSV and RGB&Y CrCb were also

tested.

Figure 5.1 shows a case of vitiligo from the danderm dataset. Quantitatively speak-

ing, we see that the RHC vote|Y CrCb&HSV method generates the mask with the

highest dice score. Even visual inspection of the results reveals that the method in

question generates a much better mask as it covers very little of the discolored area

of the skin, unlike other methods.

Figure 5.2 is an image of a person of African descent with a Creative Commons

license. Visual inspection reveals that the RHC vote|Y CrCb&HSV method does

a pretty good job of identifying the foreground (human skin) and leaving it all un-
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masked. However, it does not fare that well when it comes to masking the background

(non-skin) area. From a quantitative point of view, the dice scores of the masks gen-

erated by the RHC vote|Y CrCb&HSV as well as the RHC vote methods far exceed

the ones generated by other methods.

Figures 5.3 are sample images taken from the Pratheepan dataset, which generate

quite interesting results. All methods provide quite similar results masking the hair

and eyes correctly but failing to mask the dress. Quantitatively, RHC vote|Y CrCb&HSV

and RHC vote generate the masks with maximum Dice score, but do not correctly

mask the eyes.

Tables 5.1, 5.2 and 5.3 show the dice scores of the segmentation masks generated

by the different methods with respect to ground truth.

By carefully analyzing the results generated by the methods in hand, we can state

that the current method generates masks in a more conservative manner compared

to methods that include RHC vote. The upside of this is the fact that the former

(current) method covers more area of the background (non skin regions), whereas

the RHC vote based methods end up leaving too much of the background area

unmasked. Consequently, the former method ends up masking too much of the skin

in the process (more false negative) whereas the RHC vote based methods perform

quite well in avoiding areas of false negative and does not cover too much of the skin.

As a result, we can say that it finally comes to the question of the trade-off of how

much of the skin region we are interested in to be correctly masked at the cost of the

background.
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Figure 5.1: Different masking methods applied to a sample image from Danderm
dataset. The illustrations represent (in clockwise manner) the query image, the
ground truth generated manually from Segments.ai, ground truth overlapped on the
query image, the masked images by former method, RHC vote method, RGB&Y CC
method, RHC vote|Y CC&HSV method, RHC method, RH method and RC
method respectively. Each of the masked images is accompanied by the dice score of
their mask with respect to the ground truth written underneath.

Figure 5.2: Different masking methods applied to a sample image from Creative
Commons. Illustrations are presented in the same order as described in Figure 5.1
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Figure 5.3: Different masking methods applied to a sample image from the Pratheepan
dataset. Illustrations are presented in the same order as described in Figure 5.1

Table 5.1: Dice scores of the skin segmentation masks generated by the different
methods on the Danderm image from figure 5.1

Segmentation method Dice score

Current method 0.87

RHC vote 0.98

RC 0.80

RH 0.80

RHC 0.80

RHC vote|Y CC&HSV 0.98

RGB&Y CC 0.80
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Table 5.2: Dice scores of the skin segmentation masks generated by the different
methods on the Creative commons image from figure 5.2

Segmentation method Dice score

Current method 0.87

RHC vote 0.98

RC 0.80

RH 0.80

RHC 0.80

RHC vote|Y CC&HSV 0.98

RGB&Y CC 0.80

Table 5.3: Dice scores of the skin segmentation masks generated by the different
methods on the image from Pratheepan dataset shown in figure 5.3

Segmentation method Dice score

Current method 0.87

RHC vote 0.98

RC 0.80

RH 0.80

RHC 0.80

RHC vote|Y CC&HSV 0.98

RGB&Y CC 0.80
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

Our aim for this project was to present a solution to the problem of detecting moles

from images uploaded by patients on a telemedicine platform. The model was trained

on a large dataset of real-world images and achieved accurate results in detecting

moles in new images. The results of this research demonstrate the great potential of

deep learning in classification in the early stages of dermatological conditions and the

need for further research in this area.

The NesT model achieved a recall value of 93.4% on test images with moles and

a macro average recall value of 95.46% on the entire test dataset. This presents one

of the many possible avenues in which deep learning can be confidently applied to

revolutionize the field of telemedicine, especially in dermatology, making treatment

more accessible and efficient.

However, it is essential to note that this research is limited because most images

have a lighter skin complexion and the number of image samples with moles that

have been used to train and test the model is small. Further research should focus

on increasing the diversity of the dataset and incorporating more diverse skin types

and moles to improve the model’s generalizability.

We have explored the aforementioned diversity issue from a different angle by test-

ing two different classical methods of human skin detection. However, it is found that
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the higher detection of skin tones of darker complexions comes at the cost of infe-

rior performance in terms of segmenting the foreground or skin from the background.

Hence future research for this problem should either focus on employing models with

better abilities to detect human skin or on implementing models which work better

for the specific task such as mole detection without segmenting out skin regions.

In general, the results of this research provide a promising first step toward using

deep learning to successfully assess patients to determine their urgency of treatment.

This demonstrates the potential of this technology to improve the lives of many

people, as it enables the patient to understand the nature of the treatment required

and the appropriate place to go for the best treatment.

6.2 Future Work

Considering the future scope of research in applications of artificial intelligence in

telemedicine, the future direction of research is significantly optimistic. Our work

can be extended to various problems of classifying and analyzing specific conditions

such as alopecia, eczema, and genitopathology. Moving beyond the sole use of im-

ages, other aspects of machine learning can be used to develop tools to maintain

patient history and screen patients, thereby recommending follow-up appointments

or treatment procedures. Since the application of AI in teledermatology is still in its

very early stage of development in business, problems are abundant and there is great

potential for innovation.

56



Bibliography

[1] J. A. Segre, “Epidermal barrier formation and recovery in skin disorders,” The
Journal of Clinical Investigation, vol. 116, no. 5, pp. 1150–1158, May 2006.
doi: 10 .1172/JCI28521. [Online]. Available: https ://www.jci .org/articles/
view/28521.

[2] H. L. Weiner, L. P. Levitt, and A. Rae-Grant, Neurology. Williams & Wilkins,
1999.

[3] H. W. Lim et al., “The burden of skin disease in the united states,” Journal of
the American Academy of Dermatology, vol. 76, no. 5, 958–972.e2, 2017, issn:
0190-9622. doi: https://doi.org/10.1016/j.jaad.2016.12.043.

[4] A. M. Goldstein and M. A. Tucker, “Dysplastic Nevi and Melanoma,” Cancer
Epidemiology, Biomarkers & Prevention, vol. 22, no. 4, pp. 528–532, Apr. 2013,
issn: 1055-9965. doi: 10.1158/1055-9965.EPI-12-1346.

[5] H. Tsao, C. Bevona, W. Goggins, and T. Quinn, “The Transformation Rate
of Moles (Melanocytic Nevi) Into Cutaneous Melanoma: A Population-Based
Estimate,” Archives of Dermatology, vol. 139, no. 3, pp. 282–288, Mar. 2003,
issn: 0003-987X. doi: 10.1001/archderm.139.3.282.

[6] C. Liddy et al., “How long are canadians waiting to access specialty care? ret-
rospective study from a primary care perspective,” Canadian family physician
Medecin de famille canadien, vol. 66, pp. 434–444, Jun. 2020.

[7] D. Das, E. Ergin, B. Morel, M. Noga, D. Emery, and K. Punithakumar, “AI-
assisted mole detection for online dermatology triage in telemedicine settings,”
Informatics in Medicine Unlocked, vol. 41, p. 101 311, 2023, issn: 2352-9148.
doi: https://doi.org/10.1016/j.imu.2023.101311.

[8] A. Dosovitskiy et al., An image is worth 16x16 words: Transformers for image
recognition at scale, 2021. arXiv: 2010.11929 [cs.CV].

[9] A. Kolesnikov et al., Big transfer (bit): General visual representation learning,
2020. arXiv: 1912.11370 [cs.CV].

[10] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, Inception-v4, inception-resnet
and the impact of residual connections on learning, 2016. arXiv: 1602.07261
[cs.CV].

57

https://doi.org/10.1172/JCI28521
https://www.jci.org/articles/view/28521
https://www.jci.org/articles/view/28521
https://doi.org/https://doi.org/10.1016/j.jaad.2016.12.043
https://doi.org/10.1158/1055-9965.EPI-12-1346
https://doi.org/10.1001/archderm.139.3.282
https://doi.org/https://doi.org/10.1016/j.imu.2023.101311
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1912.11370
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1602.07261


[11] Z. Zhang, H. Zhang, L. Zhao, T. Chen, S. O. Arik, and T. Pfister, Nested hier-
archical transformer: Towards accurate, data-efficient and interpretable visual
understanding, 2021. arXiv: 2105.12723 [cs.CV].

[12] J. Schofield, D. Fleming, D. Grindlay, and H. Williams, “Skin conditions are the
commonest new reason people present to general practitioners in England and
Wales,” British Journal of Dermatology, vol. 165, no. 5, pp. 1044–1050, Nov.
2011, issn: 0007-0963. doi: 10.1111/j.1365-2133.2011.10464.x. eprint: https:
//academic.oup.com/bjd/article- pdf/165/5/1044/47505999/bjd1044.pdf.
[Online]. Available: https://doi.org/10.1111/j.1365-2133.2011.10464.x.

[13] M. K. Basra and M. Shahrukh, “Burden of skin diseases,” Expert Review of
Pharmacoeconomics & Outcomes Research, vol. 9, no. 3, pp. 271–283, 2009,
PMID: 19527100. doi: 10.1586/erp.09.23. eprint: https://doi.org/10.1586/erp.
09.23. [Online]. Available: https://doi.org/10.1586/erp.09.23.

[14] R. J. Hay et al., “The global burden of skin disease in 2010: An analysis of the
prevalence and impact of skin conditions,” Journal of Investigative Dermatology,
vol. 134, no. 6, pp. 1527–1534, 2014, issn: 0022-202X. doi: https://doi.org/
10.1038/jid.2013.446. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0022202X15368275.

[15] J. Ferlay et al., “Cancer incidence and mortality worldwide: Sources, methods
and major patterns in globocan 2012,” International journal of cancer, vol. 136,
no. 5, E359–E386, 2015.

[16] H. Sung et al., “Global cancer statistics 2020: Globocan estimates of incidence
and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal
for clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[17] M. R. Donaldson and B. M. Coldiron, “No end in sight: The skin cancer epi-
demic continues,” in Seminars in cutaneous medicine and surgery, WB Saun-
ders, vol. 30, 2011, pp. 3–5.

[18] C. Smittenaar, K. Petersen, K Stewart, and N Moitt, “Cancer incidence and
mortality projections in the uk until 2035,” British journal of cancer, vol. 115,
no. 9, pp. 1147–1155, 2016.

[19] D. E. Godar, “Worldwide increasing incidences of cutaneous malignant melanoma,”
Journal of skin cancer, vol. 2011, 2011.

[20] R. J. Friedman, D. S. Rigel, and A. W. Kopf, “Early detection of malignant
melanoma: The role of physician examination and self-examination of the skin.,”
CA: a cancer journal for clinicians, vol. 35, no. 3, pp. 130–151, 1985.

[21] N. R. Abbasi et al., “Early diagnosis of cutaneous melanoma: Revisiting the
abcd criteria,” Jama, vol. 292, no. 22, pp. 2771–2776, 2004.

[22] L Thomas, P Tranchand, F Berard, T Secchi, C Colin, and G Moulin, “Semio-
logical value of abcde criteria in the diagnosis of cutaneous pigmented tumors,”
Dermatology, vol. 197, no. 1, pp. 11–17, 1998.

58

https://arxiv.org/abs/2105.12723
https://doi.org/10.1111/j.1365-2133.2011.10464.x
https://academic.oup.com/bjd/article-pdf/165/5/1044/47505999/bjd1044.pdf
https://academic.oup.com/bjd/article-pdf/165/5/1044/47505999/bjd1044.pdf
https://doi.org/10.1111/j.1365-2133.2011.10464.x
https://doi.org/10.1586/erp.09.23
https://doi.org/10.1586/erp.09.23
https://doi.org/10.1586/erp.09.23
https://doi.org/10.1586/erp.09.23
https://doi.org/https://doi.org/10.1038/jid.2013.446
https://doi.org/https://doi.org/10.1038/jid.2013.446
https://www.sciencedirect.com/science/article/pii/S0022202X15368275
https://www.sciencedirect.com/science/article/pii/S0022202X15368275


[23] R. L. Barnhill, G. C. Roush, M. S. Ernstoff, and J. M. Kirkwood, “Interclin-
ician agreement on the recognition of selected gross morphologic features of
pigmented lesions: Studies of melanocytic nevi v.,” Journal of the American
Academy of Dermatology, vol. 26, no. 2, pp. 185–190, 1992.

[24] M. D. Corbo and J. Wismer, “Agreement between dermatologists and primary
care practitioners in the diagnosis of malignant melanoma: Review of the liter-
ature,” Journal of cutaneous medicine and surgery, vol. 16, no. 5, pp. 306–310,
2012.

[25] S. C. Chen, D. M. Bravata, E. Weil, and I. Olkin, “A comparison of derma-
tologists’ and primary care physicians’ accuracy in diagnosing melanoma: A
systematic review,” Archives of dermatology, vol. 137, no. 12, pp. 1627–1634,
2001.

[26] Abcde method for early detection fo melanoma, www.canadianskincancerfoundation.
com/early-detection/the-abcdes-of-early-detection, Accessed: 2023-06-25.

[27] S. Higgins and A. Wysong, “Cosmetic surgery and body dysmorphic disorder
– an update,” International Journal of Women’s Dermatology, vol. 4, no. 1,
pp. 43–48, 2018, Self-Esteem: The Emotional Burden and Psychological Dev-
astation of Skin Disease, issn: 2352-6475. doi: https ://doi .org/10.1016/j .
ijwd.2017.09.007. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2352647517300801.

[28] R. V. E. Ribeiro, “Prevalence of body dysmorphic disorder in plastic surgery
and dermatology patients: A systematic review with meta-analysis,” Aesthetic
plastic surgery, vol. 41, pp. 964–970, 2017.

[29] K. França et al., “Body dysmorphic disorder: History and curiosities,” Wiener
Medizinische Wochenschrift, vol. 167, pp. 5–7, 2017.

[30] M. Alavi, Y. Kalafi, G. R. Dehbozorgi, and A. Javadpour, “Body dysmorphic
disorder and other psychiatric morbidity in aesthetic rhinoplasty candidates,”
Journal of plastic, reconstructive & aesthetic surgery, vol. 64, no. 6, pp. 738–
741, 2011.

[31] A. Valikhani and M. A. Goodarzi, “Contingencies of self-worth and psycho-
logical distress in iranian patients seeking cosmetic surgery: Integrative self-
knowledge as mediator,” Aesthetic plastic surgery, vol. 41, pp. 955–963, 2017.

[32] H. H. Roenigk Jr, “Treatment of the aging face.,” Dermatologic clinics, vol. 13,
no. 2, pp. 245–261, 1995.

[33] M. K. Goin and T. D. Rees, “A prospective study of patients’ psychological
reactions to rhinoplasty.,” Annals of plastic surgery, vol. 27, no. 3, pp. 210–215,
1991.

[34] L. Linn and R. Blacher, “Cosmetic surgery, with particular reference to rhino-
plasty,” The Psychological Experience of Surgery. Ed. Richard S. Blacher. New
York: John Wiley and Sons, pp. 194–206, 1987.

59

www.canadianskincancerfoundation.com/early-detection/the-abcdes-of-early-detection
www.canadianskincancerfoundation.com/early-detection/the-abcdes-of-early-detection
https://doi.org/https://doi.org/10.1016/j.ijwd.2017.09.007
https://doi.org/https://doi.org/10.1016/j.ijwd.2017.09.007
https://www.sciencedirect.com/science/article/pii/S2352647517300801
https://www.sciencedirect.com/science/article/pii/S2352647517300801


[35] T. L. Diepgen, “Occupational skin diseases,” JDDG: Journal der Deutschen
Dermatologischen Gesellschaft, vol. 10, no. 5, pp. 297–315, 2012. doi: https:
//doi.org/10.1111/j.1610-0387.2012.07890.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1610-0387.2012.07890.x. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1610-0387.2012.07890.x.

[36] H. Dickel, T Bruckner, C Bernhard-Klimt, T Koch, R Scheidt, and T. L. Diep-
gen, “Surveillance scheme for occupational skin disease in the saarland, frg:
First report from bkh-s,” Contact Dermatitis, vol. 46, no. 4, pp. 197–206, 2002.

[37] S. K. Singh and A. S. Jalal, “A robust approach for automatic skin cancer dis-
ease classification,” in 2016 1st India International Conference on Information
Processing (IICIP), 2016, pp. 1–4. doi: 10.1109/IICIP.2016.7975301.

[38] P. Mohanaiah, P. Sathyanarayana, and L. GuruKumar, “Image texture feature
extraction using GLCM approach,” 2013.

[39] V. J. Ramya, J. Navarajan, R. Prathipa, and L. A. Kumar, “Detection of
melanoma skin cancer using digital camera images,” 2015.

[40] N. K. El Abbadi, N. S. Dahir, M. A. AL-Dhalimi, and H. Restom, “Psoriasis
detection using skin color and texture features,” Journal of Computer Science,
vol. 6, no. 6, pp. 648–652, 2010. doi: 10.3844/jcssp.2010.648.652.

[41] S. Achakanalli and G Sadashivappa, “Skin cancer detection and diagnosis using
image processing and implementation using neural networks and abcd parame-
ters,” International Journal of Electronics, Communication & Instrumentation
Engineering Research and Development (IJECIERD), vol. 4, pp. 85–96, Jun.
2014.

[42] A. Ajith, V. Goel, P. Vazirani, and M. M. Roja, “Digital dermatology: Skin
disease detection model using image processing,” 2017 International Conference
on Intelligent Computing and Control Systems (ICICCS), pp. 168–173, 2017.

[43] W.-H. Chen, C. Smith, and S. Fralick, “A fast computational algorithm for the
discrete cosine transform,” IEEE Transactions on Communications, vol. 25,
no. 9, pp. 1004–1009, 1977. doi: 10.1109/TCOM.1977.1093941.

[44] M. Sifuzzaman, “Application of wavelet transform and its advantages compared
to fourier transform,” 2009.

[45] S. Kulkarni and A. R. Shelke, Multiresolution analysis for medical image seg-
mentation using wavelet transform, 2014.

[46] J.-M. Renders and T. Simonart, “Role of Artificial Neural Networks in Der-
matology,” Dermatology, vol. 219, no. 2, pp. 102–104, Jun. 2009, issn: 1018-
8665. doi: 10 . 1159 / 000225933. eprint: https : / / karger . com / drm / article -
pdf/219/2/102/2655641/000225933 .pdf. [Online]. Available: https : //doi .
org/10.1159/000225933.

[47] A. Esteva et al., “Dermatologist-level classification of skin cancer with deep
neural networks,” Nature, vol. 542, pp. 115–118, 2017.

60

https://doi.org/https://doi.org/10.1111/j.1610-0387.2012.07890.x
https://doi.org/https://doi.org/10.1111/j.1610-0387.2012.07890.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1610-0387.2012.07890.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1610-0387.2012.07890.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1610-0387.2012.07890.x
https://doi.org/10.1109/IICIP.2016.7975301
https://doi.org/10.3844/jcssp.2010.648.652
https://doi.org/10.1109/TCOM.1977.1093941
https://doi.org/10.1159/000225933
https://karger.com/drm/article-pdf/219/2/102/2655641/000225933.pdf
https://karger.com/drm/article-pdf/219/2/102/2655641/000225933.pdf
https://doi.org/10.1159/000225933
https://doi.org/10.1159/000225933
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