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Abstract

The performance-orientated abnormality detection design problem has drawn

more attention nowadays. This thesis focuses on analytical performance analy-

sis and the corresponding detector design problem for linear filters, the Kullback-

Leibler divergence (KLD) and Rényi divergence.

First, sensitivity analysis and sensitivity-based design are conducted for

linear alarm filters. Analytical expressions are derived to quantify the sensi-

tivity of a linear alarm filter with unknown data distributions, based on which

a new design scheme is formulated to minimize the weighted sum of detection

errors subject to upper bounds on the system sensitivities. The second work

is on the KLD based detection for independent and identically distributed

(i.i.d.) data under generalized Gaussian distributions with shape parameters

greater than 1. The false alarm rate (FAR) is analytically obtained and two

detection algorithms with constant and adaptive thresholds are proposed. The

third work studies the Rényi divergence based detection for i.i.d. multivariate

Gaussian data, where the divergence order is between 0 and 1. The o↵-set

and scaling faults are considered under the abnormal condition. The FAR and

missed alarm rate (MAR) are derived analytically, based on which a detection

scheme is proposed with an adaptive divergence order.

Intensive case studies with both simulated and experimental data are con-

ducted to verify the analytical results and to show improvement of the pro-

posed detection schemes over existing ones.
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Chapter 1

Introduction

With increasingly high requirements on safety, reliability and economy of

industrial systems, the design of e↵ective abnormality detection mechanism

has become a heated topic during last decades. In this chapter, the fundamen-

tal background and challenges on the abnormality detection system design are

introduced in the first section. Then, the states of art on current advances

in abnormality detection systems are demonstrated in the second section, fol-

lowed by the contributions of this thesis in the last section.

1.1 Motivation and Background

Along with the booming development in the distributed control systems

(DCS) and computer based supervisory control and data acquisition (SCADA)

systems, nowadays industrial plants are highly integrated. For such complex

and integrated industrial plants, it becomes rather challenging to maintain in

terms of reliability and operational safety. Even though the performance of

advanced control schemes has also been greatly improved, abnormal situations

are still almost inevitable due to a variety of causes, such as parameter changes,

disconnection problems, disturbance variations, and actuator and/or sensor

problems [50]. In order to detect those abnormal situations in the early stage,

the abnormality detection system design has drawn huge attention from both

industry and academia.
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1.1.1 Abnormality Detection Systems

As in [4], an abnormality detection system deals with data collected from

both device and control levels through a SCADA and/or a DCS; meanwhile,

it communicates with the manufacturing execution system level with the help

of human machine interface (HMI), where operators monitor the process mea-

surements and alarm states. It plays a crucial rule in supporting and guiding

operators to take remedial moves that prevent fatal accidents at the prelimi-

nary stage.

The diagram of a typical abnormality detection system is depicted in Fig-

ure 1.1. In general, it contains an o↵-line training stage, where historical data

is analyzed, and an on-line detection stage, where current measurements are

processed. In the o↵-line training stage, abnormal features are extracted from

historical data to distinguish abnormal situations from normal ones. In other

words, the selected abnormal features are expected to appear only when the

abnormality occurs, excluding the cases of mode transitions and normal op-

erations. The candidate abnormal features can be obtained with the help of

process knowledge, data analysis or direct observations. In order to reveal the

selected key abnormal features in observed data, the detection scheme includ-

ing the alarm generation rules is designed; then, parameters involved in the

detection scheme are tuned. Specifically, the level-crossing mechanism with a

threshold is usually utilized as the alarm generation rule in both industry and

academia. The parameters involved in the detection schemes can be either

numerically determined based on simulations or theoretically optimized via

performance analysis as per [128]. In the on-line detection stage, current mea-

surements are processed with the detection scheme obtained from the o↵-line

training stage; then, alarms are generated by applying the alarm generation

rules into the processed signals.
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Figure 1.1: Typical abnormality detection system.

1.1.2 Current Issues and Challenges

Ideally, the abnormality detection system generates one alarm per abnor-

mal situation so that operators can precisely take corresponding actions to

bring the plant back to normal. However, most industrial abnormality detec-

tion systems su↵er from an overwhelming number of false and nuisance alarms.

This situation even gets worse for highly integrated and large-scale industrial

plants with multi-operational modes. Specifically, according to [128], the av-

erage number of alarms per day should be less than 144 as per the standard

benchmark; however, the actual statistics were 1200, 1500 and 2000 in oil-

gas, petrochemical and power industries, respectively. As a crucial tool that

operators highly rely on, high false and nuisance alarms distract operators’

attention and lower the confidence level of operators on the detection system.

By contrast, an abnormality detection system with low false and nuisance

alarms spares more precious time for operators to tackle with important and

vital alarms that induce severe events. In order to reduce the number of false

and nuisance alarms on a plant level, it is necessary and significant to sys-
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tematically and prudentially design abnormality detection schemes for each

operating unit, control loop and key variable.

Nevertheless, the design of e↵ective abnormality detection schemes is dif-

ficult due to several challenges including the following two as per [125] and

[128].

• Analytically relating the design of detection schemes with de-

tection performance: This, in other words, refers to the derivation of

explicit expressions on the performance measures with respect to the pa-

rameters in the industrial plant and/or detection scheme. However, this

task is complicated even for basic detection schemes such as dead-band

[5], delay-timer [3] and filters [116], and can be more challenging for

nonlinear and/or complex detection schemes [128]. Many existing stud-

ies evaluate the detection performance with case studies, which induces

biased performance evaluations and a heavy computational burden.

• Design of robust detection scheme: A desirable abnormality detec-

tion system can handle uncertainties and noise [125]. Considering the

fact that uncertainties and noise are inevitable in practice owing to com-

putational errors, assumptions on models and measurement noise, it is

desirable to guarantee that abnormality detection systems still acquire

good detection ability and low false alarms even under the conditions

with uncertainties and noise. However, it is rather di�cult to quan-

tify the robustness analytically and formulate the corresponding design

problem due to unknown uncertainty resources and complex structures

of detection schemes.

Targeting at the two challenges above, this thesis investigates analytical

performance and sensitivity evaluations and the corresponding performance

based design problems.
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1.2 Literature Survey

Based on fruitful results on the abnormality detection topic, many sur-

veys were written to review, summarize and classify core techniques. Some

of the surveys aimed at categorizing the methods with general applications

[50, 128, 125], while others focused on specific objectives such as the bench-

mark Tennessee Eastman process [138], waste water treatment plants [94],

pipelines [93] and photovoltaic systems [97]. The method classifications are

not unique, and can be found in several surveys such as [125], [50], [8] and

[69]. In this thesis, abnormality detection methods are introduced with two

categories, namely, model-based and data-based methods, since they cover

most of the methods in the literature according to [125]. Accordingly, the

taxonomy of detection methods is depicted in Figure 1.2. More details about

each method are illustrated in the next two subsections, and the work related

to performance analysis for those methods is reviewed in the third subsection.

1.2.1 Model-Based Methods

Model-based methods utilize mathematical models or system behavior de-

scriptions for abnormality detection. Depending on the type of knowledge

involved, the model-based methods can be further divided into quantitative

model-based methods and qualitative model-based ones [125].

For the quantitative model-based methods, models can be obtained based

on physical principles or system identification techniques. In those meth-

ods, the analytical redundancy is calculated with the help of the quantitative

model to generate residuals for abnormality detection purposes [125]. Ac-

cording to the type of models considered in the detection scheme, it can be

further classified into deterministic model-based methods, stochastic model-

based methods, methods for discrete-events and hybrid systems, and methods

for networked and distributed systems [50]. Specifically, in the deterministic

model-based methods, observers [37, 46, 83] play an crucial role since 1995

5



Figure 1.2: Taxonomy of abnormality detection methods.
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[135]; while in the stochastic model-based methods, the Kalman filter based

methods [25, 130, 17, 66] and model parameter estimation methods [67, 68] are

frequently discussed in the literature. Comparing to the conventional continu-

ous deterministic or stochastic models where variables are changing smoothly,

the discrete-events or hybrid systems consider sampled data and/or events.

It has been shown that event-based systems can improve the robustness of

the abnormality detection system under large scale disturbances [90] and re-

lieve computational burdens [6]. The development of methods for networked

and distributed systems is stimulated by booming development in complex

industrial systems, for which the goal is to find a fault signal generator that

is robust against transmission delays, data dropouts and limited capacity of

communication channels [49].

Di↵erent from the quantitative models, the qualitative models are usually

derived based on the knowledge of system structures and behavior descrip-

tions (first principles) [47]. An illustrative example of quantitative model

based methods is the expert system, which is essentially a rule-based system

incorporating expertise from experienced operators and system characteristics

[84, 57]. Other widely used tools in this category are signed directed graphs

(SDGs) [79, 134] and fault tree diagrams [42]. According to [41], a SDG rep-

resents causal and connectivity information of a process, where graph nodes

denote the process variables and directed arcs stand for the causal relations. In

[41], the SDG based method was combined with the qualitative trend analysis,

and applied on an atmospheric distillation tower unit to illustrate its advan-

tages. In [112], a methodology was proposed to generate SDGs based on bond

graphs, which are widely used to present engineering processes and frameworks

in industry; then, the abnormality detection performance was evaluated with

a multi-energy process. Di↵erent from the SDG which is generated according

to connectivity information, a fault tree starts from top or undesired events

and terminates with primary or root causes [71]. A fault tree based method

was proposed in [71] for automobile systems where parameters of subsystems
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under normal and abnormal conditions were related to failure symptoms.

In general, model-based methods highly depend on the explicit mathe-

matical models or sound system behavior knowledge, which requires intensive

e↵orts and time to obtain [13]. Specifically, the model identification process

relies on judgments of model assumptions and operational modes, which need

long-term experience and inputs from operators. Besides, the model selection

process can be time-consuming. To be specific, a sound physical model is

usually highly nonlinear and complex to deal with, while an over-simplified

version can miss descriptions of transient behavior. Thus, experimental valida-

tions and professional evaluations, which also take intensive time and e↵orts,

are required to achieve a trade-o↵ between model complexity and detection

performance before a proper model is adopted and applied.

1.2.2 Data-Based Methods

Di↵erent from the model-based methods introduced above, data-based ap-

proaches can detect abnormalities with the help of historical process data,

without prior process models [126]. Data-based methods can be further clas-

sified into signal-based and leaning-based ones.

Features extracted in the signal-based methods are basic statistical char-

acteristics in the time domain (e.g., mean, trend, slope, peak, magnitude and

root mean square) or spectrum-based patterns in the frequency domain [50].

For instance, the trend of slopes in the time domain was utilized in [54] to

track the maximum power point in photovoltaic systems and achieved accurate

tracking results as well as fast-tracking responses. Another illustrative exam-

ple is the basic alarm filter including the moving average (MA) filters and mean

absolute deviation (MAD) filters. In the frequency domain, spectrum-based

patterns are usually obtained with the help of the Fourier transform, discrete

Fourier transform or fast Fourier transform [26]. For example, in [119], the

fast Fourier transform was applied on the on-line voltage, current, and vibra-

tion signals of a motor during operation to monitor the operational condition
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of the motor. The proposed method was tested with on-site experiments and

compared with commercial tools. Moreover, time-frequency analysis has been

popularly used in abnormality detection for machinery [87] and pipelines [149].

It involves transformation tools such as the short-time Fourier transform [87],

wavelet transform [148], Hilbert–Huang transform [109], Wigner-Ville distri-

bution [117] and Choi-Williams distribution [117].

The learning-based methods are referred to those considering large size of

historical data as per [50]. It can be further divided into statistical-analysis

based methods, non-statistical based methods and hybrid methods. Specifi-

cally, under the statistical analysis framework, the principal component anal-

ysis (PCA), independent component analysis, partial least squares and sup-

port vector machine based methods dominate the abnormality detection area.

Detailed introduction, comments and comparisons of those methods can be

found in [138] and [50]. Besides, several other methods were studied in recent

publications, such as regression based methods (e.g., auto-associative kernel

regression [23]), correlation analysis based methods (e.g., canonical correla-

tion analysis [74], correlation direction analysis [142], and mutual information

analysis [72]), learning machines based methods (e.g., pick replace machine

[64]), hidden Markov model based methods [137], Bayesian network based

methods [92, 52, 10], sparse representation [115], swarm decomposition [91],

symmetrical component analysis [114], and distribution analysis (e.g., Gaus-

sian mixture model [140], entropy and divergence based methods [81, 59], and

likelihood ratio based methods [45]). In the non-statistical based methods,

there are geometrical methods [129], random forest methods [31], fuzzy rule

based methods [99] and neural network based methods (e.g., artificial neural

networks [150], convolutional neural networks [73], deep belief networks [141],

and probabilistic neural networks [136]). The hybrid methods include those

combining at least two methods from statistical and/or non-statistical based

categories above, such as the data fusion based method studied in [60].

However, the detection performance is rarely studied analytically for most
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of the above methods, and the detection threshold is usually tuned numeri-

cally, which can be computationally expensive and ine↵ective. This is mainly

owing to the complicated detection procedure, which induces di�culties in

relating detection statistics with the statistical properties of measurements.

Fortunately, the detection performance of the basic filter based methods and

divergence based methods can be analyzed based on the statistical proper-

ties of measured data. Particularly, the development of the two methods are

reviewed in details below.

Basic Filter Based Methods

Belonging to the category of univariate signal-based methods, basic filters

are widely used as the abnormality detection tools with a statistical frame-

work.

Processing signals in the form of linear or nonlinear filters, control charts

are frequently utilized in process monitoring, quality control and abnormality

detection. The first control chart in the literature is the Shewhart control

chart, which was first proposed by Walter A. Shewhart in 1920s [14]. For

the Shewhart control chart, the control limit for measurements is usually set

to be two or three times of the standard deviation. The other two popular

control charts are the cumulative sum (CUSUM) control chart [35] and the

exponentially weighted moving average (EWMA) control chart [102]. Com-

pared with the Shewhart control chart, the latter two control charts are faster

and more e↵ective in detecting small shifts [113]. The CUSUM chart was

first proposed by Page in 1954 [95] in the form of a nonlinear filter using the

log-likelihood ratio between the two hypotheses for the abnormal and normal

cases. Later, the EWMA chart, which is also called geometric moving av-

erage filter, was proposed by Roberts in 1959 [101] with an infinite impulse

response filter structure [102]. The CUSUM chart treats past signals equally,

while the EWMA chart wights the current data and the past average values

di↵erently. In the literature, studies about the CUSUM and EWMA control

charts are mainly on investigating their applications in some certain distribu-
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tions [63], dealing with correlations in data [106], studying adaptive detection

schemes based on fault parameters [75] and combining the two control charts

with other advanced methods such as wavelet representations [88] and Kalman

filters [36].

Other than the three classic control charts, there are several univariate

filters proposed in recent work. Specifically, a general optimal design frame-

work for linear and quadratic alarm filters were proposed in [33] without any

distribution knowledge. Later, based on the general optimal design framework

in [33], MA filters were analytically proved to be optimal among linear filters

under log-concave and symmetric data distributions [34]. In [12], the MAD

filter was used to detect leakage in a pipeline; but the threshold tuning scheme

was not mentioned. In [118], the rank order filter was designed to balance false

alarms and detection delays without constraints on distributions. Then, as a

special case of the rank order filter, the median filter was adopted to deal with

the chattering alarms in [116].

Divergence Based Methods

While the aforementioned basic filters deal with changes in simple statistics

such as the mean, median and variance, the divergence based methods focus

on statistical changes in distributions. In order to capture the distribution

change, the divergence from the current distribution to the known distribution

under the normal condition can be adopted as the detection statistic.

One illustrative example is the Kullback -Leibler divergence (KLD). Closely

related with the Shannon entropy, the KLD was firstly proposed in 1951 [80]

and has been widely used in information theory and statistics for decades. It

was recently applied for the abnormality detection purpose in power systems

[82], glass melt plants [144] and bearing systems [38].

In the KLD-based detection scheme, the kernel density estimation can be

utilized for the KLD calculation and its distribution estimation [44]. With

the kernel density estimation, the distribution in a moving window and that

under the normal condition are obtained by calculating the sum of wighted
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kernel functions for each sample. Then, the KLD of the two numerical dis-

tributions is calculated via its definition in [80], and the distribution of the

KLD can be obtained numerically by using a large number of data windows

and another kernel density estimation of the KLD values. This tedious pro-

cess causes a heavy computational burden even with the simplifications for

the density ratio estimation proposed in [144, 59] and with the Monte Carlo

simulation for the KLD calculation used in [139]. Compared to the numerical

results using the kernel based method, tractable analytical results can relieve

computational load and simulation imprecisions. Thus, some papers studied

the KLD derivation and its distribution in an explicit form. In [144], the KLD

derivation under the normal condition with multivariate identically Gaussian

distributed data was obtained analytically as well as its asymptotic probability

density function (PDF). Also, the KLD-based method was proved to be more

sensitive to incipient faults than the Hotelling’s T-squared statistic. In [29],

the distribution of the symmetrical KLD was derived based on the Gaussian

assumption and applied in detecting slight anomalous behavior in electrical

traction systems. As for non-Gaussian distributions, there has been very lim-

ited work. In [38], the KLD under the Gamma distribution was derived and

used for the fault detection, estimation and isolation of incipient single sensor

failures. In [39], the KLD was calculated between two centralized generalized

Gaussian distributions (GGDs). But the analytical distribution of the KLD

was not obtained in either [38] or [39].

By adding the divergence order to the KLD, the Rényi divergence originally

proposed by Rényi in 1961 [100] o↵ers one more degree of freedom. It covers

or relates with a wide range of divergences including the KLD, the squared

Hollinger distance, �2-divergence and the total variation distance [62]. It has

wide applications including image registration [61], channel coding [105], un-

manned aerial vehicle path planning [123] and moving object tracking [24]. In

the abnormality detection area, it is mainly applied in distributed denial of

service (DDoS) attack detections and bearing damage assessments. Precisely,
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in [18], the Hartley entropy, Shannon entropy, Rényi entropy, generalized en-

tropy, KLD and Rényi divergence were applied and compared in detecting

both low-rate and high-rate DDoS attacks in a univariate scheme. In [15] and

[16], the Rényi divergence was proposed to detect di↵erent types of DDoS

attacks and flush events; then, the performance of the proposed method was

evaluated with simulated case studies. The divergence order was selected in

[15] based on the numerical FAR. As per [16], the Rényi divergence based

method outperformed the KLD based one. In [22], the Rényi divergence of

vibrational signals generated by Gaussian process models was used for bear-

ing monitoring and life-time estimation. Later, in [111], the Rényi divergence

was combined with the ensemble empirical model decomposition to detect the

degradation of bearing using vibration data. In both [22] and [111], the di-

vergence order was selected as a constant 0.5. As per the literature above,

the relation between the divergence order and the detection performance has

not been studied analytically, let alone the optimization problem formulation

regarding to the divergence order.

1.2.3 Performance Measures

According to [33], the FAR and MAR are usually regarded as two of the

most important metrics for alarm systems. The two metrics are closely related

to other two practical performance measures, namely the ‘in-control’ average

run length (ARL0) and the ‘out-of-control’ average run length (ARL1) [131].

Specifically, ARL0 indicates the average number of observations taken before

the process goes out of the control limit. According to [32], it is directly

related with the FAR. As for the ARL1, it measures the average number of

observations taken before the process goes back in the control limit. It has

been shown that the ARL1 has a straightforward relation with the average

detection delay [32], which can be expressed as a function of the MAR [2].

Additionally, the FAR and MAR are popularly used as performance measures

for a variety of abnormality detection schemes (e.g., the linear filters [32],
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time-deadbands [5], delay-timers [145] and point-targeted adaptive detectors

[86]) and as key performance indicators in order to compare di↵erent detection

schemes [146].

In terms of system robustness, it is usually quantified by sensitivity mea-

sures. In the literature, sensitivity measures can be generally classified into two

types: local sensitivity measures and global sensitivity measures [21]. Global

sensitivity measures are usually obtained based on statistical properties (such

as variance ratio [21]) based on assigned known density distributions [104],

which are unnecessary for local sensitivity measures [21]. Besides, the two

types of measures have di↵erent applications. Local sensitivity measures are

widely used in evaluating output variations due to slight changes in inputs,

while global ones deal with input variations over their entire ranges of interest.

With the help of proper sensitivity measures, a sensitivity-based design

problem can be formulated to meet diverse engineering needs. For example,

in mechanical engineering, derivative-based local sensitivity measures are used

to optimize the feasibility of a welded beam in [56]. In control engineering, the

sensitivity of a control system to disturbances is usually reflected by a global

sensitivity measure, namely, the sensitivity transfer function. For example,

the weighted H1-norm of the sensitivity function was minimized to achieve

optimal robustness with respect to control design in [143], and the 2-norm

of the sensitivity function quantified the robustness of the assigned pole to

parameter perturbations in a dynamical system in [1]. However, there are

rarely papers on the sensitivity analysis for abnormality detection systems.

1.3 Thesis Contributions

As is mentioned in the previous section, there is limited work on the ana-

lytical performance analysis for abnormality detection systems, let alone the

formulation of corresponding design problems. In the existing studies on the

analytical performance analysis, there is no result on how to quantify the

robustness of detection systems, and only a few articles on the analytical per-
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formance analysis for non-linear and complex detection schemes, such as the

divergence based methods. In this thesis, analytical evaluations of several

performance measures (including sensitivity, FAR and MAR) are conducted

for linear alarm filters, KLD-based detection and Rényi-based detection. Fur-

ther, based on the obtained results on performance, new detection schemes are

proposed where parameters are optimized with respect to the performance re-

quirement or adjusted with respect to the data dynamics to achieve improved

performance.

The major contributions in this thesis are summarized by chapters below:

In Chapter 2, the sensitivity of detection errors to changes in the trip

point and to uncertainties in collected data is studied for linear alarm filters.

Precisely, models are proposed to assess the sensitivity of system detection

errors to changes in the trip point and to uncertainties in collected data,

based on a derivative-based local sensitivity measure. Analytical expressions

are derived to quantitatively evaluate the sensitivity of a general linear alarm

filter with unknown data distributions. Then, a new sensitivity-based linear

filter design method is formulated to minimize a weighted sum of the detection

errors subject to upper bounds on the system sensitivities.

In Chapter 3, assuming that the observed data set under the normal con-

dition contains samples of a GGD with the shape parameter larger than 1,

an abnormality detection based on the KLD is studied without assumptions

on abnormal conditions. The KLD between the estimated GGD and the one

under the normal condition is used as the test statistic. An analytical expres-

sion for the KLD is derived when the number of samples is large. A constant

threshold detection method is proposed where the unconditional PDF of the

KLD under the normal condition is used to find the detection threshold by

limiting the FAR. Besides, an adaptive threshold method are proposed whose

detection threshold is adaptively adjusted based on the PDFs of the KLD

conditioned on the estimated mean and variance, respectively.

In Chapter 4, with the assumption that observed data samples under the
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normal condition are independent and identically distributed (i.i.d.) with

a multivariate Gaussian distribution, the abnormality detection is studied

based on the Rényi divergence with the divergence order between 0 and 1.

The Rényi divergence between the estimated Gaussian distribution from the

observed data and that under the normal condition is proposed as the test

statistic. Both o↵-set faults and scaling faults are considered under the ab-

normal condition. The FAR and MAR are analytically derived as functions

of the divergence order when the number of samples is large; then, an adap-

tive detection algorithm is proposed where the divergence order is optimized

according to observed data considering both the FAR and MAR.

With the results of this thesis, the sensitivity of the detection performance

over uncertainties can be analytically quantified and calculated for linear alarm

filters. Besides, the distributions of the KLD and Rényi divergence can be cal-

culated, which relieves computational burdens and improves e�ciency com-

pared with the conventional kernel-based or simulation-based evaluation. Fur-

ther, with the analytical performance measures, the parameters can be opti-

mized, which leads to improved detection performance compared with results

in the existing literature.
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Chapter 2

Sensitivity Analysis and

Sensitivity-Based Design for

Linear Alarm Filters
⇤

Research topics on alarm triggering mechanism improvement, es-

pecially the advanced filter design with a level-crossing alarm gen-

eration mechanism, are still among the most promising ones to reduce

nuisance and false alarms. Moreover, linear alarm filters are of par-

ticular interest since they are not only easy to implement but also

e↵ective in false alarm reduction. In this chapter, a local sensitivity

measure is adopted to quantify the robustness of linear alarm filters,

and a sensitivity based design scheme is proposed to achieve trade-o↵s

between the sensitivity and detection errors.

2.1 Overview

The majority of existing results for linear alarm filters still rely on the

assumption that the trip point and the PDFs of data under normal and ab-

normal conditions are known precisely. However, in reality, uncertainties and

⇤A version of this chapter has been published as: Ying Xiong, Yindi Jing, Tongwen Chen,
Sensitivity analysis and sensitivity-based design for linear alarm filters, Control Engineering
Practice, 71: 29-39, 2018. Part of this chapter has been published as: Ying Xiong, Yindi
Jing, Tongwen Chen, Performance sensitivity analysis of linear alarm filters, 2017 American
Control Conference (ACC), Seattle, USA, pages 4424-4429, 2017.
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changes are inevitable in both the trip point and the PDF estimation. Specifi-

cally, computational errors exist in the trip point setting. For example, in the

linear filter design scheme proposed in [34], the solution was found with itera-

tive numerical methods [33], which o↵ered approximated solutions instead of

the exact optimal one due to limited precisions and processing power. As for

the uncertainties in the PDFs, strictly speaking, the exact PDFs of process

signals are unknown. The PDFs are actually estimated based on the collected

data and pre-assumed probability models. But measurement noise in data

collection is ubiquitous. Uncertainties in both the trip point and PDFs will

propagate into the filter design and alarm performance evaluation. Thus, to

understand how uncertainties a↵ect the performance of an alarm system, it

is important to quantitatively measure the sensitivity of the system behavior

with respect to the trip point change and the PDF variations.

In this chapter, a local sensitivity measure is chosen instead of a global

one to quantify the sensitivity. Because results obtained with global sensitivity

measures highly rely on pre-assumed and limited types of distribution models;

without known distributions, the calculation of global sensitivity measures

is mathematically troublesome, if not impossible. However, distributions of

the collected data are usually unknown and have relatively large diversity

for di↵erent processes. Moreover, among existing local sensitivity measures,

the derivative-based elasticity measure [21, 77] is adopted and customized for

linear alarm filters. Specifically, the inputs of the elasticity are chosen as

the trip point variations and the PDF o↵sets caused by noise in collected

data. Then, the KLD, a popular distance measure between two probability

distributions in information theory and statistics [80], is applied to measure

the PDF o↵sets between the ideal noise-free data and the collected noisy data.

The MAR and FAR are chosen as the outputs. Without any knowledge on the

distributions of collected data, sensitivities of detection errors to the trip point

and KLD are calculated based on the Gaussian kernel estimation method.

This chapter is organized as follows. Backgrounds on alarm monitoring
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with linear filters and sensitivity analysis models are illustrated in Section

2.2. Then in Section 2.3, the proposed sensitivity models and the detailed

calculation procedures are presented, together with the sensitivity-based linear

filter design scheme. In Section 2.4, simulation results on data sets from

Gaussian distributions and from an industrial plant are presented and studied.

Section 2.5 summaries this chapter.

2.2 Linear Alarm Filters and Sensitivity Mod-

els

2.2.1 Linear Alarm Filters

Let x = [x(1), x(2), . . . ] be a vector of discrete-time signals. A filter is es-

sentially an operator that processes x to produce another vector discrete-time

signals y = [y(1), y(2), . . . ], written as y = F (x). In the alarm monitoring

area, linear filters show significant advantages over non-linear filters [33] in

easy application and simple computation. Therefore, linear filters are consid-

ered in this chapter, with the following form:

y(k) =
XN�1

i=0
✓ix(k � i), (2.1)

where N is the length of the linear filter and ✓i’s are the filter coe�cients.

Without loss of generality, the summation of all the filter coe�cients is set

to be 1, i.e.,
P

N�1
i=0 ✓i = 1. With the typical level crossing alarm generation

mechanism [70], the filtered signal y(k) is compared with the trip point ytp to

trigger an alarm, i.e., an alarm will be raised if y(k) > ytp.

In this chapter, collected data under the normal and abnormal modes are

denoted as xn = [a1, a2, . . . , aln ] with length ln and xab = [b1, b2, . . . , blab ] with

length lab respectively. It is assumed that ai’s are i.i.d., bj’s are i.i.d., and

ai’s are independent to bj’s. Let fX,n(·) and fX,ab(·) be the PDFs of ai and

bj respectively. Also, let yn = F (xn) and yab = F (xab) denote the filtered

signals, and fY,n(·) and fY,ab(·) represent the common PDF of each element in

yn and yab respectively.

19



The FAR (MAR) of the alarm system is defined as the probability that

an alarm is raised (missed) when the system is under the normal (abnormal)

mode. The goal in conventional linear filter design is to find the optimal

combination of filter coe�cients and the trip point with the lowest weighted

sum of FAR and MAR. With the trip point ytp, the cost function can be

calculated as:

Jconv = c1FAR + c2MAR

= c1

Z +1

ytp

fY,n(y)dy + c2

Z
ytp

�1
fY,ab(y)dy, (2.2)

where c1 and c2 are positive weights on the FAR and MAR. From (2.2), it

is obvious that the FAR, the MAR and the cost function can be significantly

a↵ected by the accuracy of the data PDFs and the trip point. Uncertainties

in the estimated PDFs and the trip point will lead to performance change.

Thus, there exists a strong need to quantify the sensitivity to these changes.

2.2.2 Sensitivity Definition and Properties

In this chapter, the derivative-based elasticity, a local sensitivity measure,

is adopted because it eliminates unit di↵erences of input and output variations

[20]. More rationale for this measure can be found in [21]. The measure is

defined as:

SI

O
= lim

�I!0

�O

O

�
�I

I
=

dO

dI

I

O
, (2.3)

where O stands for the output of the sensitivity model and I represents the

input with uncertainties. The ratio I/O is used to scale the changes in the

input and output over their current values to obtain a normalized dimension-

less value. SI

O
is naturally a sensitivity measure of O to I representing how

much the output O changes with the input I.

To complete the sensitivity modeling, it is necessary to specify inputs and

outputs that are not only relevant but also capable of representing practical

industrial needs. According to [21], model outputs should be variables of most

interests to the decision maker. So the performance indices, the FAR and
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MAR, are chosen as outputs for sensitivity analysis. As for the inputs, once

the filter design is completed, candidates are the trip point and the estimated

PDFs.

The sensitivity of the detection error over the trip point is straightforward

to model by using the definition in (2.3):

Sytp

FAR =
dFAR

dytp

ytp
FAR

, Sytp

MAR =
dMAR

dytp

ytp
MAR

. (2.4)

The sensitivity over the estimated PDFs, however, needs further modeling

since the PDF itself is a function not a scalar. For alarm systems, estimated

PDFs are obtained from the collected data sets with random noise. Thus, the

uncertainty in estimated PDFs can be represented by the distance between the

PDF estimated from the noisy data and the real PDF. In this work, the KLD

is applied to measure this distance. Specifically, let fY ✏,n(y) be the estimated

PDF using data without noise, and let fY,n(y) represent the estimated PDF

of raw data with noise. The KLD from fY ✏,n(y) to fY,n(y) is defined as:

Dkl(fY,n(y)||fY ✏,n(y)) =

Z +1

�1
fY,n(y) ln

fY,n(y)

fY ✏,n(y)
dy. (2.5)

According to the sensitivity definition in (2.3), the sensitivities of the FAR

and MAR over the KLD are:

SDkl

FAR = lim
�Dkl!0

�FAR

�Dkl

Dkl

FAR
, SDkl

MAR = lim
�Dkl!0

�MAR

�Dkl

Dkl

MAR
. (2.6)

Next, properties of the sensitivity measures and insights they can provide

are discussed. The elasticity of the FAR over the trip point, i.e., Sytp

FAR defined

in (2.3), is used as an example.

1. Sign of the sensitivity measure: If the scaling term in the sensitivity

measure (i.e., ytp/FAR in (2.4)) is positive, the positive sign of the sen-

sitivity measure Sytp

FAR means that the FAR increases with the trip point,

and vise versa. Thus, the sign indicates the direction of the FAR changes

with ytp. If the scaling term is negative, the opposite holds.
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2. Magnitude of the sensitivity measure: The magnitude is the percentage

change ratio of the FAR over ytp. A larger magnitude means that a more

significant change occurs in the FAR with the same change in ytp. For

good robustness, a small sensitivity magnitude is desired.

3. Information from di↵erent sensitivity measures: Since di↵erent sensitiv-

ity measures reveal model behavior from di↵erent aspects, each measure

deserves careful attention in terms of the sign, magnitude and trend.

So, it is natural to analyze them together. A direct way is to define an

overall sensitivity measure as:

Soverall =
X

i,j

ci,jS
j

i
, (2.7)

where i 2 {FAR,MAR} , j 2 {ytp,KLD} and ci,j’s are constants.

2.3 Sensitivity Analysis and Sensitivity-Based

Design for Linear Alarm Filters

In this section, calculations of the sensitivity measures defined in (2.3) are

provided for a generic linear alarm filter. The collected data under the normal

and abnormal modes are xn with length ln and xab with length lab as intro-

duced in Section 2.2. The coe�cients of the linear filter ✓ = [✓0, ✓1, . . . , ✓N�1]

are assumed to be known though arbitrary.

2.3.1 Sensitivity over Trip Point

Since the PDFs of the process signals are unknown, the Gaussian kernel

function is applied to the PDF estimation using the collected data from the

normal mode:

fX,n(x) =
1

ln

Xln

i=1
K(x� ai), (2.8)
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where K(x) is the Kernel function. In this chapter, the Kernel function is

chosen as the standard Gaussian function [96]. Thus,

fX,n(x) =
1

ln

1
p
2⇡

Xln

i=1
e�

(x�ai)
2

2 . (2.9)

The characteristic function of the estimated PDF under the normal mode,

denoted with  X,n(·), can be calculated as:

 X,n(t) =

Z +1

�1
fX,n(x)e

jxtdx. (2.10)

With the help of (2.9) and properties of the characteristic function under

Gaussian distribution [127], it can be derived that

 X,n(t) =
1

ln

Xln

k=1
e�

1
2 t

2+jtak . (2.11)

As ai’s are i.i.d., with the linear filter in (2.1), the characteristic function

of the filtered signal  Y,n(·) is derived as:

 Y,n(t) =
YN�1

i=0
 X,n(✓it)

=

✓
1

ln

◆N YN�1

i=0

Xln

k=1
e�

1
2 t

2
✓
2
i+jtak✓i . (2.12)

To simplify the notation, let X N

n
= {x | x = [x1, . . . , xi, . . . , xN ], xi 2 xn},

then (2.12) can be rewritten as:

 Y,n(t) =

✓
1

ln

◆N

e�
1
2 t

2k✓k2
X

x2X N
n

ejt✓x
T
, (2.13)

where k·k denotes the Euclidean norm of a vector.

The PDF of the filtered data from the normal mode can thus be calculated

as follows:

fY,n(y) =
1

2⇡

Z +1

�1
e�jyt Y,n(t)dt

=

✓
1

ln

◆N 1
p
2⇡k✓k

X
xn2X N

n

e
� (y�✓xT )2

2k✓k2 . (2.14)

According to (2.2), the FAR of the linear alarm filter can be calculated to be:

FAR =

✓
1

ln

◆NZ +1

ytp

1
p
2⇡k✓k

X
x2X N

n

e
� (y�✓xT )2

2k✓k2 dy. (2.15)
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From the definition in (2.4), the sensitivity of the FAR over the trip point is

eventually obtained as:

Sytp

FAR = �

✓
1

ln

◆N ytp
FAR

p
2⇡k✓k

X
x2X N

n

e
� (ytp�✓xT )2

2k✓k2 . (2.16)

Via similar analysis, the sensitivity of the MAR over the trip point can be

obtained as:

Sytp

MAR =

✓
1

lab

◆N ytp
MAR

p
2⇡k✓k

X
x2X N

ab

e
� (ytp�✓xT )2

2k✓k2 , (2.17)

where X N

ab
= {x | x = [x1, . . . , xi, . . . , xN ], xi 2 xab}.

2.3.2 Sensitivity over Noise Caused PDF O↵sets

In this subsection, sensitivities of the performance over the PDF o↵sets are

derived. In order to mimic the uncertainties in the estimated PDFs, the Gaus-

sian noises contained in the collected data are denoted by ✏n = [✏1,n, · · · , ✏ln,n]

and ✏ab = [✏1,ab, · · · , ✏lab,ab] respectively under the normal and abnormal con-

ditions. For each data set, the noises from di↵erent time instants are assumed

to be i.i.d. with the same distribution ✏n ⇠ N (m, �2) and ✏ab ⇠ N (m, �2).

Thus, data before filtering is modeled as

xn,f = xn + ✏n;

xab,f = xab + ✏ab,

under the normal and abnormal modes respectively. It is reasonable to assume

that noise is independent of the collected data. Thus, under the normal mode,

the output of the linear filter in (2.1) can be written as:

yn(k) =
XN�1

i=0
✓i [xn(k � i) + ✏n(k � i)] . (2.18)

Thus, by following similar steps in the previous subsection, the character-

istic function of yn with Gaussian noise is denoted by  Y ✏,n(·), which can be

calculated as:

 Y ✏,n(t) =
⇣YN�1

i=0
 X,n(✓it)

⌘⇣YN�1

i=0
 e(✓it)

⌘

=

✓
1

ln

◆NX
x2X N

n

e�
1
2 (1+�

2)t2+jt(✓xT+m), (2.19)
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where  e(·) is the characteristic function of the Gaussian noise distribution.

Accordingly, the PDF of the filtered data with noises is obtained as:

fY ✏,n(y) =
1

2⇡

Z +1

�1
e�jyt Y✏,n(t)dt

=

✓
1

ln

◆N X
x2X N

n

1p
2⇡(1 + �2)k✓k

e
� (y�✓xT�m)2

2(1+�2)k✓k2 . (2.20)

Thus, the FAR can be expressed as follows:

FAR=

✓
1

ln

◆N Z +1

ytp

fY ✏,n(y)dy

=
1

2
�

1

2

✓
1

ln

◆N X
x2X N

n

erf

 
ytp � ✓xT

�mp
2(1 + �2)k✓k

!
, (2.21)

where erf(·) is the error function.

As is shown in (2.20), both the mean and standard deviation of the Gaus-

sian noise o↵set the PDF of the filtered data. One method to quantify the

o↵set is to further introduce the mean and variance as two inputs to capture

the sensitivity of the FAR over the uncertainty in the PDF estimation. In this

way, the sensitivities over the mean and variance of the noise are considered

separately [132]. In this chapter, a di↵erent method is taken with the help of

the KLD to model the PDF estimation o↵set caused by both the mean and

standard deviation of the noise jointly.

From (2.6), the sensitivity of the FAR over the KLD can be expanded as

follows according to the total di↵erential theorem:

SDkl

FAR = lim
dm!0,d�!0

dm=�d�

@FAR
@m

dm+ @FAR
@�

d�
@Dkl
@m

dm+ @Dkl
@�

d�

Dkl

FAR
, (2.22)

where the condition dm = �d� is to specify a linear relationship between dm

and d�. This condition is necessary to guarantee that the limit is well defined.

The coe�cient � can be seen as a weighting factor to quantify the step size

ratio of the mean over that of the standard deviation. A larger � means that a

heavier weight is put on the standard deviation change than the mean change.

In applications, � should be tuned larger in situations where the system is
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more vulnerable to the variance of noise than to the mean. In this chapter,

� = 1 is chosen for simplicity, i.e., the mean and standard deviation changes

are treated equally.

@FAR

@m
=

✓
1

ln

◆N 1p
2⇡(1 + �2)k✓k

X
x2X N

n

e
� (ytp�✓xT�m)2

2(1+�2)k✓k2 , (2.23)

@FAR
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ln

◆N �

(1 + �2)

1p
2⇡(1 + �2)k✓k

⇥

X
x2X N

n

(ytp � ✓xT
�m)e

� (ytp�✓xT�m)2

2(1+�2)k✓k2 , (2.24)

@Dkl

@m
=

Z +1

�1

fYn(y)

fY✏,n(y)

✓
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ln

◆N 1p
2⇡(1 + �2)k✓k

⇥

X
x2X N

n

(ytp � ✓xT
�m)

(1 + �2)k✓k2
e
� (ytp�✓xT�m)2

2(1+�2)k✓k2 dy, (2.25)
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e
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(2.26)

Via tedious but straightforward calculations, each term in (2.22) can be

obtained in (2.23) to (2.26) using (2.5) and (2.21). The details are omitted

due to page limit.

Similarly, the sensitivity of the MAR over the KLD can be calculated as

follows:

SDkl
MAR

= lim
dm!0,d�!0

dm=�d�

@MAR
@m

dm+ @MAR
@�

d�
@Dkl
@m

dm+ @Dkl
@�

d�

Dkl

MAR
, (2.27)

where the partial derivative terms are shown in (2.28) to (2.31).
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x2X N
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e
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�
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2.3.3 Sensitivity-Based Linear Filter Design

Linear alarm filter design should consider not only the detection errors,

but also the tolerance to system uncertainties, namely, the sensitivities to both

the trip point changes and noise. In this chapter, a new linear filter design is

proposed to achieve the least detection errors given sensitivity requirements.

Thus, the weighted sum of performance errors shown in (2.2) is taken as the

objective function, while the sensitivity measures are used as the constraints

in the filter design problem.

There are two constraints involved. One is on the weighted sum of sensitiv-

ity measures of the FAR and MAR over the trip point. Since the trip point is

one of the optimization variables, the formulation of this constraint is straight-

forward. Another is on the weighted sum of the sensitivities of the FAR and

MAR over the KLD. But sensitivity measures with respect to the KLD need
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to be further modeled, because the mean and standard deviation of noise are

system parameters that can take any value in a continuous range. In this

chapter, the average sensitivities over certain mean and variance ranges are

used. Assume that the mean and standard deviation of noise have uniformly

distributions respectively under the normal mode, i.e., mn ⇠ U(mn1 ,mn2) and

�n ⇠ U(�n1 , �n2). The average sensitivity of the FAR over the KLD can be

obtained as:

S̄Dkl
FAR

=
1

(mn2 �mn1)(�n2 � �n1)

Z
mn2

mn1

Z
�n2

�n1

SDkl
FAR

(m, �)dmd�. (2.32)

Similarly, by denoting the uniform distributions for the noise mean and the

standard deviation in the abnormal mode as mab ⇠ U(mab1 ,mab2) and �ab ⇠

U(�ab1 , �ab2), the average sensitivity of the MAR over the KLD can be ex-

pressed as:

S̄Dkl
MAR

=
1

(mab2�mab1)(�ab2��ab1)

Z
mab2

mab1

Z
�ab2

�ab1

SDkl
FAR

(m,�)dmd�. (2.33)

In practice, the ranges of the mean and variance can be defined from the

knowledge of the disturbance or noise.

Thus, the new sensitivity-based filter design problem is formulated as:

argmin
✓0,··· ,✓N�1,ytp

c1FAR + c2MAR (2.34)

suject to c1|S
ytp

FAR
|+ c2|S

ytp

MAR
|  U3, (2.35)

c1|S̄
Dkl
FAR

|+ c2|S̄
Dkl
MAR

|  U4, (2.36)

where U3 and U4 are upper bound values of the sensitivities constraints over

the trip point and over the KLD, respectively. They are set as:

U3 = c3 min
✓0,··· ,✓N�1,ytp

�
c1|S

ytp

FAR
|+ c2|S

ytp

MAR
|
�
,

U4 = c4 min
✓0,··· ,✓N�1,ytp

⇣
c1|S̄

Dkl
FAR

|+ c2|S̄
Dkl
MAR

|

⌘
,

where c3 and c4 are coe�cients to adjust the constraints. In this model,

the upper bounds depend on the minimum weighted sum of the sensitivity
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values. Notice that c3 � 1 and c4 � 1 are necessary for the feasibility of the

optimization.

In (2.34), the ci’s are weighting coe�cients. They should be set and ad-

justed to meet practical engineering needs. Specifically, the weight ratio c1/c2

should be larger if the cost for false alarms is higher than that for miss alarms.

Since the FAR and MAR are scaled by c1 ad c2, their corresponding sensitiv-

ities are added up with the same weights c1 and c2. Besides, the coe�cients

c3 and c4 are directly related to the sensitivity requirements. Smaller coe�-

cients c3 and c4 indicate stronger sensitivity requirement on the corresponding

uncertainties.

However, the ratio c3/c4 does not have straightforwardly physical meaning

unlike c1/c2, since the sensitivity over the trip point can take a totally di↵erent

scale with that over the KLD. For example, when coe�cients c3 and c4 are set

to be equal, it is likely that one of the sensitivity constraint is not e↵ective

anymore, which means that an arbitrary linear filter can meet this sensitivity

requirement; while another constraint is still too strong to allow any feasible

solution. In order to quantify strength levels of two sensitivity constraints and

to reach an appropriate balance between them, firstly, the ranges of c3 and c4

should be calculated. Define

cmax
3 =

max
✓0,··· ,✓N�1,ytp

(c1S
ytp

FAR
+ c2S

ytp

MAR
)

min
✓0,··· ,✓N�1,ytp

(c1S
ytp

FAR
+ c2S

ytp

MAR
)
,

cmax
4 =

max
✓0,··· ,✓N�1,ytp

(c1S̄
Dkl
FAR

+ c2S̄
Dkl
MAR

)

min
✓0,··· ,✓N�1,ytp

(c1S̄
Dkl
FAR

+ c2S̄
Dkl
MAR

)
,

which are the maximum values of c3 and c4 for the constraints to be func-

tional. Thus, the ranges for c3 and c4 are c3 2 [1, cmax
3 ] and c4 2 [1, cmax

4 ]

respectively. Secondly, di↵erent sensitivity constraint levels can be described

by the corresponding percentages over the entire coe�cient range denoted by

µ3 and µ4. Then, the two coe�cients should be set as c3 = 1 + µ3(cmax
3 � 1)

and c4 = 1 + µ4(cmax
4 � 1). The sensitivity levels over the trip point and the

KLD can be adjusted by µ3 and µ4. If the sensitivity requirement over the
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trip point is higher than that over the KLD, µ3 should be set to be smaller

than µ4, and vise versa. When the sensitivity requirement over the trip point

is treated as equal to that over the KLD, then µ3 should be set to be equal

to µ4. Accordingly, given percentage values of µ3 and µ4, U3 and U4 can be

further calculated as:

U3 =[1 + µ3(c
max
3 � 1)] min

✓0,··· ,✓N�1,ytp

�
c1|S

ytp

FAR
|+ c2|S

ytp

MAR
|
�
, (2.37)

U4 =[1 + µ4(c
max
4 � 1)] min

✓0,··· ,✓N�1,ytp

⇣
c1|S̄

Dkl
FAR

|+ c2|S̄
Dkl
MAR

|

⌘
. (2.38)

To solve the constrained optimization problem in (2.34), a grid search

method shown in Algorithm 1 is used. In the grid generation, N�1 dimensions

of the hypercube [�1, 1]N�1 are considered for the filter coe�cients, since the

summation of the filter coe�cients is normalized to be 1. Let s be the step

size of the grid search in each coe�cient dimension. There are pN�1 candidate

vectors for the filter coe�cients, where p = 2/s. Another dimension of the

gird is the trip point. Let its range be [y1, y2] and the step size be ys. There

are (y2 � y1)/ys candidate values for the trip point. Firstly, for every possible

filter vector, the characteristic functions and the PDFs for both normal and

abnormal data sets are calculated. Then, for every possible trip point value,

the four sensitivity measures are calculated. In this step, sensitivities of the

FAR and MAR over the KLD are calculated separately. Precisely, the mean

sensitivity of the FAR over the KLD is calculated with (2.32) and that of

the MAR is calculated with (2.33). Following that, two pairs of weighted

summations are compared with the corresponding sensitivity requirements in

(2.35) and (2.36). If both requirements are satisfied, the weighted detection

error performance is calculated, the filter coe�cient vector is saved, together

with its corresponding feasible trip point range. For every filter vector, the

trip point within the feasible range that with the minimum weighted sum of

the detection errors and the corresponding optimal trip point are found and

saved. By searching over all saved filter coe�cients, one with the minimum

weighted summation of detection errors is discovered.
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Algorithm 1 Sensitivity-based filter design
Input: Data collected under normal and abnormal condition: xn,xab

Output: Solution of the optimization problem (2.34) (✓⇤ and y⇤
tp
)

Initialization: Generate pN�1 candidate vectors ✓ with ✓i 2 [�1, 1];
i = 1;  Save the number of feasible filters.

1 for j  1 to pN�1
do

2 For the j th candidate of the filter coe�cient vector ✓j, calculate fYn(y)
and fY ✏,n(y) by (2.14) and (2.19);
Similarly, obtain fYab

(y) and fY ✏,ab(y);
for k  1 to (y2 � y1)/ys do

3 Set ytp to be the k th candidate of the trip point;;

Calculate Sytp

FAR
and S̄Dkl

FAR
by (2.16) and (2.32);

Calculate Sytp

MAR
and S̄Dkl

MAR
by (2.17) and (2.33);

if (2.35) and (2.36) hold then

4 ⇥(i, :) = ✓j;
Ytp(i, k) = ytp;
J(i, k) = c1FAR + c2MAR ;
[Jmin(i),m] = min(J(i, :));  Save the minimum cost function for
each filter.
M(i) = m;  Save the optimal trip point for each filter.
i = i+ 1; close;

5 end

6 end

7 [Jmin, n] = min(Jmin(:));  Find the minimum cost function in all feasible
filters;
Return ✓⇤ = ⇥(n, :) and y⇤

tp
= Ytp(n,M(n)).

2.4 Case Study

In this section, simulation results based on data sets from Gaussian distri-

bution and from an industrial plant are shown to verify the analytical results

and perform the proposed filter design procedures in Section 2.3. Two widely

used linear filters, the MA filter and the linear weighted (LW) filter [120], are

considered and compared with the proposed optimal filter. The MA filter has

equal coe�cients, shown as:

y(k) =
1

N

XN�1

i=0
x(k � i); (2.39)
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while the LW filter has ascending coe�cients, expressed as:

y(k) =
1

N2

XN�1

i=0
(i+ 1)x(k � i). (2.40)

The LW filter reduces both the mean and variance of data, while the MA

filter only changes the variance and keeps the mean unchanged. The variance

reduction e↵ect of the LW filter is stronger than the MA filter. In this sense,

the LW filter can achieve lower FAR and MAR than the MA filter for some

asymmetric distributions, making the LW filter a competition to the MA filter.

Besides, there is no constraints in terms of the filter length; however, longer

length induces greater alarm delay, and how to analytically achieve the trade-

o↵ between the detection errors and the alarm delay is out of the scope of

this chapter. Similar to the order selection for delay-timers in [3], a simple

way is to choose the least order of the MA filter that fits the detection error

requirements based on industrial needs. In the simulation, the detection error

requirements are set as FAR  10% and MAR  10% for both Gaussian and

industrial data sets. With the help of the receiver operating characteristic

(ROC) curve (details can be referred to [3]), the order of N = 5 has been

chosen and considered to verify the e↵ectiveness of the proposed method. Also,

the sensitivity measures with di↵erent orders (N = 4, N = 5 and N = 6) are

evaluated and compared.

2.4.1 Simulation Results on Sensitivity Measures

In order to check the e↵ectiveness of the sensitivity analysis in Section 2.3,

Gaussian distributions are considered firstly. The data sets under the normal

and abnormal modes are generated from Gaussian distributions, where xn ⇠

N (6, 9) and xab ⇠ N (10, 16). The size of each set is 1000, i.e., ln = lab = 1000.

Sensitivity over Trip Point

In Fig. 2.1, both proposed and theoretical sensitivity results over the

trip point using the MA filter are shown. The proposed results are obtained

from (2.16) and (2.17), where the distribution knowledge is unknown. For
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the theoretical curves, the PDFs of the data are assumed to be known and

denoted with xn ⇠ N (mn, �2
n
) and xab ⇠ N (mab, �2

ab
). Via straightforward

calculations according to (2.4), the sensitivity of the FAR and MAR over the

trip point can be calculated as

Sytp

FAR = �
ytp

FAR
p
2⇡�nk✓k

e
� (ytp�mn)2

2k✓k2�2
n ,

Sytp

MAR =
ytp

MAR
p
2⇡�abk✓k

e
� (ytp�mab)

2

2k✓k2�2
ab .

Firstly, it can be observed that the derived sensitivity formulas tightly

match the theoretical ones for most of the parameter range. The small dif-

ferences in Fig. 2.1 are caused by errors in the PDF estimation with the

Gaussian kernel method. The gap can be further reduced by careful tuning of

the bandwidth in the kernel function (2.8) [58]. This verifies the e↵ectiveness

of the proposed sensitivity analysis under unknown distribution cases.

Secondly, properties of sensitivity measures in Section 2.2 can be used

to understand sensitivities of the FAR and MAR. According to Fig. 2.1a,

the sensitivity of the FAR has a downward trend with a negative sign. This

means that the FAR decreases when the trip point grows. And the increasing

magnitude means that the FAR gets more sensitive as the trip point rises.

Similar analysis is applicable for the MAR in Fig. 2.1b. The magnitudes

of the sensitivities show that the MAR is less sensitive than the FAR with

respect to the trip point change.

In addition, the sensitivities of the two filters are compared. When the

objective function in (2.2) has equal weights, i.e., c1 = c2, the optimal trip

points for the MA filter and the LW filter are yMA
tp

= 7.89 and yLW
tp

= 4.76

respectively. The sensitivity values of the FAR and MAR for the two filters at

their optimal trip points are listed in Table 2.1. The derived results in (2.16)

and (2.17) are used for the calculations. It can be seen that the LW filter is

less sensitive to the trip point variation.

Moreover, the trend of sensitivity changing with di↵erent filter orders can

be observed from Fig. 2.2. Specifically, in Figs. 2.2a and 2.2b, the weighted

33



ytp

2 3 4 5 6 7 8 9 10

S
y
tp

F
A
R

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

↓
yLWtp = 4.76

↓
yMA
tp = 7.89

MA - Proposed
MA - Theoretical
LW - Proposed
LW - Theoretical

(a)

ytp

2 3 4 5 6 7 8 9 10

S
y
tp

M
A
R

0

1

2

3

4

5

6

7

8

9

10

↓

yLWtp = 4.76

↓

yMA
tp = 7.89MA - Proposed

MA - Theoretical
LW - Proposed
LW- Theoretical

(b)

Figure 2.1: Sensitivity over the trip point for MA and LW filters: (a) FAR; (b)
MAR.

Table 2.1: Sensitivity values at the optimal trip points for MA and LW filters
under Gaussian distributions.

Filter Sytp

FAR Sytp

MAR |Sytp

FAR|+ |Sytp

MAR|

MA Filter|ytp = 7.89 -10.95 7.20 18.15
LW Filter|ytp = 4.76 -9.48 5.55 15.03

summation of the sensitivity magnitude of the FAR and MAR shown in (2.35)

is calculated with c1 = c2 = 1 for the MA and LW filters, respectively. Both

34



figures show that the magnitude of the sensitivity measures become larger

with higher filter orders. This means both the MA and LW filters tend to be

more sensitive to the trip point change when the order increases.
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Figure 2.2: Sensitivity over the trip point for MA and LW filters with di↵erent
orders: (a) MA; (b) LW.

Sensitivity over Noise

In this subsection, the sensitivity over noise is studied, where both the

proposed analysis and the theoretical analysis are used. In the simulations,

the ranges of the mean and standard deviation of the noise are chosen as
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Figure 2.3: Sensitivity of the FAR over the KLD for the MA filter: (a) proposed
results without PDF information; (b) theoretical results with PDF information.

m 2 [�0.2m̄, 0.2m̄] and � 2 [0.8�̄, 1.2�̄], where m̄ and �̄ represent the mean

and standard deviation of the data set respectively. Thus, the noise mean and

standard deviation are within 20% of the counterparts of data. The step sizes

for the mean and standard deviation are set as dm = d� = 0.1 to calculate

the sensitivity values over the KLD.

Considering Gaussian noise ✏n ⇠ N (m, �2), the filtered data is also Gaus-

sian distributed with y✏,n ⇠ N (m+mn, �2
k✓k+�2

n
k✓k). With the help of the

error function, the partial di↵erentiations of the FAR over the noise mean and
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Figure 2.4: Sensitivity of the MAR over the KLD for the MA filter: (a) proposed
results without PDF information; (b) theoretical results with PDF information.

variance in (2.22) are obtained as

@FAR

@m
=

1p
2⇡(�2

n
+ �2)k✓k

e
� (ytp�mn�m)2

2k✓k2(�2
n+�2) ,

@FAR

@�
=

�

(�2
n
+ �2)

(ytp �mn �m)p
2⇡(�2

n
+ �2)

e
� (ytp�mn�m)2

2k✓k2(�2
n+�2) .

Besides, according to [39], the closed form expression of the KLD with the

filtered Gaussian data are

DKL(fY,n(y)||fY ✏,n(y)) =
1

2
ln

�2
n
+ �2

�2
n

+
k✓k2�2

n
+m2

2k✓k2(�2
n
+ �2)

.
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Then it is straightforward to get the partial di↵erentiations of the KLD over

the noise mean and standard deviation as

@Dkl

@m
=

m

k✓k2(�2
n
+ �2)

,

@Dkl

@�
=

�

�2
n
+ �2

�
�(k✓k2�2

n
+m2)

k✓k2(�2
n
+ �2)2

.

With the same filter and trip point, the results with respect to the MAR in

(2.27) can be calculated by similar steps. For the MA filter at the trip point

yMA
tp

= 7.89, the sensitivities of the FAR and MAR over the KLD are shown in

Figs. 2.3 and 2.4 respectively. The proposed results are shown in Figs. 2.3a

and 2.4a; while he theoretical results are depicted in Figs. 2.3b and 2.4b.

Additionally, when the trip point ranges from 2 to 10 with the step size

0.01, the average sensitivity of the FAR over the KLD calculated with (2.32)

using both the MA and the LW filters are plotted in Fig. 2.5. Similarly,

the average sensitivity of the MAR over the KLD calculated with (2.33) are

depicted in Fig. 2.6.

Firstly, from Figs. 2.3 and 2.4, it can be observed that the sensitivities

derived with the proposed method can precisely catch the trend of the theo-

retical one. Specifically, peaks of both methods appear synchronously. The

di↵erences in the magnitudes of the peaks are caused by the limited size of

the data set. It has been tested that the di↵erences decrease with larger data

size.

Secondly, the e↵ectiveness of the proposed method is verified by the average

sensitivity curves shown in Figs. 2.5 and 2.6. It is obvious that for both the

MA and the LW filters, the proposed sensitivity results with respect to the

FAR and MAR can tightly match the ones derived with the PDF information.

The di↵erences are also caused by the limited size of the data set.

Additionally, from Figs. 2.5 and 2.6, it can be concluded that the average

sensitivity values of the LW filter over the KLD are smaller than those of the

MA filter in most of the entire trip point range in terms of the sensitivity of

the FAR over the KLD. As for the sensitivity of the MAR, the magnitude of
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Figure 2.5: The average sensitivity of the FAR over the KLD for the MA and LW
filters.
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the LW filter is greater than that of the MA filter for the trip point ranging

from 2 to 7, and it becomes smaller than that of the MA filter between 7 to

10. This reveals that the LW filter is less sensitive in terms of the FAR but

more sensitive in the MAR case.

Meanwhile, the sensitivity trends of the MA and LW filters with di↵erent

orders are shown Fig. 2.7 by setting c1 = c2 = 1 in (2.36). It can be seen

from Fig. 2.7a that higher order MA filters gets less sensitive to noise in the

collected data, while the LW filter becomes more sensitive to noise according

to Fig. 2.7b. One explanation for this phenomenon is that the noise reduction

e↵ect of the MA filters gets more powerful when the order increases.

2.4.2 Sensitivity-Based Filter Design under Gaussian

Distributions

In this subsection, the sensitivity-based design procedure introduced in

Section 2.3 is applied for the same Gaussian data. In the simulation, the

step size in each dimension of the filter coe�cient is 0.1, i.e., s = 0.1. Other

parameters (dm, d� and the ranges of the noise mean and standard deviation)

are set to be the same with those in the previous subsection. The sensitivity

measures of the proposed filter, the MA filter and the LW filter are listed in

Tables 2.2 and 2.3, respectively. Also, the sensitivity over the trip point is

treated equally to that over the KLD, i.e., µ3 = µ4. Three constraint levels

are simulated, which are denoted with di↵erent sensitivity constraint levels:

µ3 = µ4 = 5%, µ3 = µ4 = 10% and µ3 = µ4 = 15%. The corresponding upper-

bounds of the sensitivities in each constraint (2.35) and (2.36) are listed in the

first row in Tables 2.2 and 2.3, denoted with U3 and U4 and calculated with

(2.37) and (2.38), respectively. Besides, taking the case when µ3 = µ4 = 15%

as an example, the sensitivities of the proposed filter, the MA and the LW

filters over the trip point are shown in Fig. 2.8; and the sensitivity results

over the KLD using the three filters are plotted in Fig. 2.9.

Firstly, from Table 2.2, the trade-o↵ between detection errors and sen-

sitivity values can be observed. On one hand, the MA filter outperforms
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Figure 2.7: Sensitivity over the KLD for MA and LW filters with di↵erent orders:
(a) MA; (b) LW.

the other two linear filters in terms of the detection error, but its sensitivity is

larger than others. On the other hand, when the constraint level changes from

µ3 = µ4 = 5% to µ3 = µ4 = 15%, the summation of detection errors decreases,

while the sensitivity of the proposed filter becomes larger. Also, it has been

confirmed by simulations that when the constraint level is µ3 = µ4 = 20%,

i.e., U3 = 16.46 and U4 = 2.50, the MA filter becomes the sensitivity-based

optimal filter.

Secondly, how the sensitivity constraints work in the filter design is studied
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Figure 2.8: Three filters comparison in terms of the average sensitivity over the
trip point with Gaussian data.
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Figure 2.9: Three filters comparison in terms of the average sensitivity over the
KLD with Gaussian data.
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Table 2.2: Sensitivity values with di↵erent constraint levels with Gaussian data.

Constraint Levels [µ3, µ4] [5%, 5%] [10%, 10%] [15%, 15%]
Constraints [U3, U4] [4.43, 0.69] [8.27, 1.28] [12.34, 1.88]

Proposed ✓ [�0.7, 0.1, 0.4, [�0.1, 0.3, 0.4, [�0.1, 0.2, 0.3,
0.8, 0.4] 0.5,�0.1] 0.4, 0.2]

ytp 8.78 8.21 7.97
FAR +MAR 0.67 0.42 0.32

|Sytp

FAR
|+ |Sytp

MAR
| 4.36 8.21 12.23

|S̄KLD

FAR
|+ |S̄KLD

MAR
| 0.64 1.13 1.56

Table 2.3: Sensitivity values with MA and LW filters with Gaussian data.

MA LW
✓ [0.20, 0.20, 0.20, 0.20, 0.20] [0.04, 0.08, 0.12, 0.16, 0.20]
ytp 7.89 4.76

FAR +MAR 0.19 0.24
|Sytp

FAR
|+ |Sytp

MAR
| 17.96 15.97

|S̄KLD

FAR
|+ |S̄KLD

MAR
| 1.73 2.27

when the sensitivity level is µ3 = µ4 = 15%, i.e., U3 = 12.34, U4 = 1.88. The

constraint on the trip point is considered first in Fig. 2.8, where the summa-

tion of sensitivity magnitudes over the FAR and MAR is drawn with di↵erent

trip points. The constraint is labeled with dotted green line for reference. It

can be seen that because of the constraint, the feasible trip point ranges of the

proposed filter, the LW filter and the MA filter are truncated to be [2, 4.02],

[2, 5.93] and [2, 7.91] respectively. Similarly, the second sensitivity constraint

about the sensitivity over the KLD in (2.34) is shown in Fig. 2.9. It can be

seen that the proposed filter and the MA filter can satisfy the constraint with

the feasible ranges for the trip point denoted as [3.02, 9.98] and [7.69, 8.81], re-

spectively; while the LW filter can not meet the second sensitivity constraint,

thus it is infeasible. Then, combining the two constraints, there is no intersec-

tions for neither of the LW and MA filters. Finally, it can be concluded that

the proposed filter has a better balance on the detection error and sensitivity

than the other two linear filters.
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Figure 2.10: Industrial data.

2.4.3 Sensitivity-Based Filter Design with Industrial Data

In this section, industrial data collected from a Chinese power plant in

2013 is used for the sensitivity analysis and design. The data plot is shown

in Fig. 2.10, where the data points are sampled every 0.1 seconds and the

data sizes are ln = lab = 1000. Same as the Gaussian case, in the simulation,

the step size of the trip point is set to be 0.01, and the step size of the linear

filter is 0.1. In the calculation of the sensitivity over the KLD, the range of

the noise mean under the normal and abnormal modes are mn 2 [�0.45, 0.45]

and mab 2 [�0.49, 0.49] with the step size 0.01; and the ranges of the noise

standard deviation are �n 2 [0.52, 0.78] and �ab 2 [0.53, 0.79] with a step size

0.01. By following the sensitivity-based filter design procedure in Section III,

the sensitivity values with di↵erent constraint levels µ3 = µ4 = 5%, µ3 = µ4 =

10% and µ3 = µ4 = 20% are simulated. The corresponding upper bounds

are listed in the first row of Tables 2.4 and 2.5. By taking the third case as

an example, the e↵ects of the constraint with respect to the sensitivities over
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the trip point on the proposed filter, the MA and the LW filters are shown in

Fig. 2.11, and those with respect to the sensitivity over the KLD are shown

in Fig.2.12.

Table 2.4: Sensitivity values with di↵erent constraints levels with the industrial
data.

Constraint Levels [µ3, µ4] [5%, 5%] [10%, 10%] [20%, 20%]
Constraint [U3, U4] [25.60, 5.33] [34.70, 10.25] [52.91, 22.34]

Proposed ✓ [�1, 0.3, 1.7] [0.4, 0.5, 0.7 [0.1, 0.2, 0.4,
1.0,�1.6] 0.5,�0.1] 1,�0.7]

ytp 23.59 23.60 23.61
FAR +MAR 0.30 0.26 0.23

|Sytp

FAR
|+ |Sytp

MAR
| 23.81 33.46 51.14

|S̄KLD

FAR
|+ |S̄KLD

MAR
| 4.79 8.68 15.61

Table 2.5: Sensitivity values with MA and LW filters with the industrial data.

MA LW
✓ [0.20, 0.20, 0.20, 0.20, 0.20] [0.04, 0.08, 0.120.16, 0.20]
ytp 23.61 14.23

FAR +MAR 0.18 0.41
|Sytp

FAR
|+ |Sytp

MAR
| 60.72 32.86

|S̄KLD

FAR
|+ |S̄KLD

MAR
| 28.67 2.49

Similar to the observations in the Gaussian case, the trade-o↵s between

the performance error and the sensitivity measure also exist with industrial

data. Specifically, the sensitivity over the trip point and over the KLD both

increase with a lower sensitivity constraint, while the weighted sum of the

detection errors experiences a downward trend. Still, the MA filter is more

sensitive to both the trip point and the KLD changes than the proposed filter,

even though the MA filter has lower detection errors.

Also, from Fig. 2.11, it can be noticed that neither the MA filter nor the

LW filter can meet the sensitivity requirement with respect to the trip point.

Thus, the proposed filter still outperforms the other two filters in terms of the

sensitivity taking into account both detection errors and sensitivity.
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Figure 2.11: Three filters comparison in terms of the average sensitivity over the
trip point with industrial data.

12 14 16 18 20 22 24
0

50

100

150

200

250

300

350

400
Proposed Filter
MA
LW
Upper Bound

21 22 23 24
0

10

20

30

40

Figure 2.12: Three filters comparison in terms of the average sensitivity over the
KLD with industrial data.

46



2.5 Summary

In this chapter, both sensitivity analysis and sensitivity-based design are

studied for linear alarm filters. To quantify the sensitivity, a local sensitivity

measure, namely, elasticity, is adopted and customized. In the sensitivity

model, uncertainties in the trip point and in the KLD between the PDF of the

noise-free data and that of the noisy data are modeled as the inputs; while the

FAR and MAR are modeled as the outputs. By relating the definition of the

elasticity, sensitivity measures are defined to quantify the performance change

caused by variations in the inputs. With the help of the Gaussian Kernel

based method, analytical results of sensitivity values are derived, which do not

require knowledge on data distributions. Based on these sensitivity measures,

a linear filter design problem is formulated in a constrained minimization

structure, where sensitivity requirements are incorporated as constraints and

the summation of the FAR and MAR is the objective function. The grid

search is used to find the optimal sensitivity-based linear filter.

Simulation results with the proposed filter and the MA and LW filters

are conducted for the Gaussian and industrial data respectively. By com-

paring proposed results derived without any distribution information and the

theoretical ones obtained with the known PDFs, the proposed performance

sensitivity analysis is verified to be e↵ective. Furthermore, trade-o↵s between

sensitivities and performance errors are observed. The proposed linear filter is

shown to outperform the MA and LW filters when the sensitivity is considered.
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Chapter 3

Abnormality Detection Based

on the Kullback-Leibler

Divergence for Generalized

Gaussian Data
⇤

While the basic filters deal with changes in simple statistics such

as the mean, median and variance, the divergence based meth-

ods focus on statistical changes in distributions. In this chapter, the

KLD is adopted as the detection statistic for i.i.d. data from the non-

centralized GGDs. The focus is on the analytical calculation of the

KLD and its distribution under the normal condition, based on which

the FAR can be estimated and the threshold can be tuned.

3.1 Overview

In this chapter, we investigate the KLD based abnormality detection for the

non-centralized GGD, where the data samples are assumed to be i.i.d. under

the normal condition. The non-centralized GGD is studied instead of the

centralized one, since it is more general and is especially helpful for incipient

fault detection in the abnormality detection systems. Taking into account the

⇤A version of this chapter has been published as: Ying Xiong, Yindi Jing, Tongwen Chen,
Abnormality detection based on the Kullback-Leibler divergence for generalized Gaussian
data, Control Engineering Practice, 85: 257-270, 2019.
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mean change, the non-centralized GGD can magnify the KLD value under

the abnormal condition; while the centralized GGD cannot relate the mean

change with the KLD. Thus, for incipient faults with a constant bias caused by

sensor failures [144], the non-centralized GGD can capture this fault signature;

for faults with both mean and variance change, the non-centralized GGD can

further amplify the KLD value than the centralized one. However, there was

no result on the KLD calculation and its distribution with the non-centralized

GGDs due to two main challenges. First, because of the mean change, there

is no straightforward analytical formula for the KLD calculation. Further, the

complicated KLD expression makes the PDF derivation even more di�cult.

In particular, non-centralized GGDs with the shape parameter (denoted

as �) greater than 1 are considered in this chapter. The reasons of focusing on

this � range are three-fold. First, the mathematical analysis is more tractable

for this case. Second, existing parameter estimations for the case of �  1

are inaccurate and unstable even for a large number of data samples [124].

Lastly, while KLD calculations for the case of �  1 can still be conducted

with more involved manipulations, the result takes a fundamentally di↵erent

format from the case of � > 1. Thus, we consider the case of � > 1 only and

leave the other case for future work.

The remainder of this chapter is organized as follows. Section 3.2 con-

tains the detection problem formulation, the KLD expression, derivations of

the joint PDF and conditional PDFs of the KLD, and threshold selection

schemes. The algorithms for the constant and adaptive threshold methods

are summarized and discussed in Section 3.3. Then, Section 3.4 shows the

case study results. Section 3.5 concludes this work.

3.2 Abnormality Detection Problem

A series of observed data of size N is used for detection and is denoted by

{xi}
N

i=1 or the N -dimensional vector x. It is assumed that under the normal

condition, xi’s are i.i.d. samples from a generalized Gaussian PDF denoted
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as GGD(m, �2, �), where m, �2, � are known parameters. The distributions

of data samples under abnormal situations are di↵erent to GGD(m, �2, �).

Thus, the binary hypothesis test can be described as to decide whether the

observed data samples in x follow the known PDF, i.e.,
⇢
H0 : xi’s follow distribution GGD(m, �2, �),
H1 : xi’s do not follow distribution GGD(m, �2, �).

(3.1)

3.2.1 Background on Generalized Gaussian Distribu-

tion and Its Parameter Estimation

The analytical form of the generalized Gaussian PDF can be expressed as

the following [39]:

GGD(m, �2, �) =
�

2�c(�)�(1/�)
e�(

|x�m|
�c(�) )

�

, (3.2)

where �(·) is the Gamma function defined as �(z) ,
R +1
0 e�ttz�1 dt, z > 0

and c(�) , [�(1/�)/�(3/�)]1/2. The three parameters m, �2 and � are the

mean, the variance, and the shape parameter of the GGD, respectively. The

mean determines the center of a distribution, and the variance represents the

width of the PDF peak [39]. The shape parameter � inversely quantifies the

decreasing rate of the peak. When � = 1 or � = 2, the GGD becomes

Laplacian or Gaussian distribution, respectively. The PDFs of the GGD with

respect to di↵erent shape parameters when m = 0 and � = 1 are shown in

Figure 3.1. It can be seen that the top gets flatter and the tail is lighter

with greater �. When one random variable x follows a GGD, it is denoted as

x ⇠ GGD(x|m, �2, �) for the rest of this chapter to help the presentation.

Given a set of i.i.d. data samples {xi}
N

i=1 with xi ⇠ GGD(x|m, �2, �), the

three parameters m, �2, � can be estimated from xi’s. Several schemes have

been proposed in existing literature including the maximum likelihood esti-

mation, moment-based estimation, entropy matching, and globally convergent

method [124]. In this chapter, moment-based estimation [7] is used to estimate

m and �2 in consideration of its low computational complexity and tractability

in the KLD distribution analysis.
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Figure 3.1: PDFs of the GGD model with di↵erent shape parameters.

The mean and variance can be estimated as

m̂ =
1

N

NX

i=1

xi, (3.3)

�̂2 =
1

N

NX

i=1

(xi � m̂)2 =
1

N

NX

i=1

x2
i
�

 
1

N

NX

i=1

xi

!2

. (3.4)

The estimation of � is more di�cult and the maximum likelihood approach

[39] is used. The likelihood function of the sample set can be derived as

L(x|m, �2, �) = ln
NY

i=1

GGD(xi|m, �2, �), (3.5)

where ln(·) is the natural-logarithm function. The estimation of the shape
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parameter �̂ satisfies the following equation:

@L(x|m, �2, �)

@�

����
�=�̂

=
 (1/�̂)

�̂
�

P
N

i=1|xi �m|
�̂ ln|xi �m|

P
N

i=1|xi �m|
�̂

+
ln
⇣

�̂

N

P
N

i=1|xi �m|
�̂

⌘

�̂
+ 1 = 0, (3.6)

where  (·) is the digamma function [39]. For given values of m and �2, it

has been proved that (3.6) has a unique real root [124]. The equation can

be solved numerically using iteration methods such as the Newton-Raphson

method, where the estimates m̂ and �̂2 in (3.3) and (3.4) are applied.

3.2.2 KLD-Based Detection Scheme

As the hypothesis problem in (3.1) is to test whether the data set follows

i.i.d. GGD(m, �2, �), a natural way is to fit the data as a GGD denoted with

GGD(m̂, �̂2, �̂) and check if GGD(m̂, �̂2, �̂) is close enough to the known dis-

tribution GGD(m, �2, �). To quantitatively measure the distance from one

PDF to another, the KLD is a natural choice. The unsymmetrical KLD from

GGD(m, �2, �) to GGD(m̂, �̂2, �̂) is defined as [82]

Dkl

⇣
GGD(m̂, �̂2, �̂)||GGD(m, �2, �)

⌘

,
Z +1

�1
GGD(m̂, �̂2, �̂) ln

GGD(m̂, �̂2, �̂)

GGD(m, �2, �)
dx. (3.7)

When there is no confusion, we use the short notation Dkl to help the pre-

sentation of Dkl

⇣
GGD(m̂, �̂2, �̂)||GGD(m, �2, �)

⌘
. The KLD-based detection

rule for the hypothesis test in (3.1) is as follows:
⇢

Decide on H0 when Dkl  Dth,
Decide on H1 when Dkl > Dth,

(3.8)

where Dth is the threshold for detection.

The KLD is used as the test statistic in (3.8). Theorem 3.2.1 gives an

analytical expression for the KLD value, which is required for the KLD dis-

tribution analysis in the next subsection.
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Theorem 3.2.1. The KLD from the generalized Gaussian PDF with pa-

rameters (m̂, �̂2, �̂) to the one with parameters (m, �2, �) has the following

asymptotic behaviour when |m̂�m| ⌧ 1,

Dkl = ln
�̂��(1/�)

q
�(1/�)�(3/�̂)

��̂�(1/�̂)
q
�(1/�̂)�(3/�)

�
1

�̂

+
�(� � 1)

2�2

0

@ �̂
q

�(1/�̂)�(3/�)

�
q

�(1/�)�(3/�̂)

1

A

��2

�(3/�)�(�/�̂ � 1/�̂)

�(1/�̂)�(1/�)
(m̂�m)2

+

0

@ �̂
q

�(1/�̂)�(3/�)

�
q

�(1/�)�(3/�̂)

1

A

�

�(�/�̂ + 1/�̂)

�(1/�̂)
+ o[(m̂�m)2], (3.9)

where f(x) = o(g(x)) means limx!0 f(x)/g(x) = 0.

Proof. By substituting the GGD expression in Eq. (3.2) into the KLD defini-

tion in Eq. (3.7), we have

Dkl

⇣
GGD(m̂, �̂2, �̂)||GGD(m, �, �)

⌘

=

Z +1

�1

�̂

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂
"
ln

�̂�c(�)�(1/�)

�̂�̂c(�̂)�(1/�̂)
�

✓
|x|

�̂c(�̂)

◆�̂

+

✓
|x+ m̂�m|

�c(�)

◆�
#
dx

= ln
�̂�c(�)�(1/�)

��̂c(�̂)�(1/�̂)
�

1

�̂
+ T, (3.10)

where we have defined T to represent the last term of the KLD as follows:

T ,
Z +1

�1

�̂

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ ✓
|x+ m̂�m|

�c(�)

◆�

dx. (3.11)

By denoting a , m̂�m, we have

|x+ m̂�m|
� = |x+ a|�, (3.12)

which can be further expanded with the help of Taylor series under the con-
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vergence range of |x| � |a| as follows:

|x+ m̂�m|
� =

���1 +
a

x

���
�

|x|�

= |x|�

1 + �

a

x
+

1

2
�(� � 1)

⇣a
x

⌘2

+ o

✓
a2

x2

◆�
. (3.13)

Thus, the integration in Eq. (3.11) can be calculated as

T
(a)
= 2

Z 1

|a|

�̂

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ ✓
|x|

�c(�)

◆� 
1 +

1

2
�(� � 1)

a2

x2

+
1X

n=2

✓
�

2n

◆
a2n

x2n

�#
dx

+

Z |a|

�|a|

�̂

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ ✓ 1

�c(�)

◆�

|x+ a|� dx

(b)
=

Z 1

0

�̂

�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ ✓
|x|

�c(�)

◆�

dx

| {z }
T1

+ a2
Z 1

0

�̂�(� � 1)

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂
|x|��2

[�c(�)]�
dx

| {z }
T2

�

Z |a|

0

�̂

�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ ✓
|x|

�c(�)

◆�

dx

| {z }
T3

� a2
Z |a|

0

�̂�(� � 1)

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂
|x|��2

[�c(�)]�
dx

| {z }
T4

+
1X

n=2

✓
�

2n

◆Z 1

|a|

�̂

�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ a2n

x2n


x

�c(�)

��
dx

| {z }
T5n

+

Z |a|

�|a|

�̂

2�̂c(�̂)�(1/�̂)
e
�
⇣

|x|
�̂c(�̂)

⌘�̂ ✓ 1

�c(�)

◆�

|x+ a|� dx

| {z }
T6

, (3.14)

where (a) is obtained by the Taylor expansion in (3.13) and noticing that the

integrands for the x2n+1 terms are odd functions and the integrands of the x2n
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terms are even functions; (b) is obtained by using
R1
|a| f(x)dx =

R1
0 f(x)dx�

R |a|
0 f(x)dx.

Via the following integration formula in [55]

Z 1

0

e��x
n

xm
dx =

�
�
1�m

n

�

n�
1�m
n

, [Re � > 0,Re n > 0,Re m > �1],

it is straightforward to obtain the following:

T1 =

 
�̂c(�̂)

�c(�)

!�

�(1/�̂ + �/�̂)

�(1/�̂)
;

T2 =
�(� � 1)

2[�c(�)]2

 
�̂c(�̂)

�c(�)

!��2
�(�/�̂ � 1/�̂)

�(1/�̂)
.

For the rest of the terms of T , the following lemma can be proved.

Lemma 3.2.2. When � > 1 and a ⌧ 1, we have T3, T4, T5n, T6 = o(a2).

Proof. For T3, since e
�
⇣

|x|
�̂c(�̂)

⌘�̂

 1 and
R |a|
0 |x|� dx 

|a|�+1

�+1 when � > 1,

T3 
�̂

(� + 1)�̂c(�̂)�(1/�̂)

|a|�+1

[�c(�)]�
= o(a2). (3.15)

Similarly, we have

T4  a2
�̂�(� � 1)

2(� � 1)�̂c(�̂)�(1/�̂)

|a|��1

[�c(�)]�
= o(a2).

For T5n, via integration by parts and by using
R1
|a| f(x) dx =

R1
0 f(x) dx �

R |a|
0 f(x) dx, we have

T5n =

�
�̂

�̂c(�̂)�(1/�̂)[�c(�)]�
e
�
⇣

|a|
�̂c(�̂)

⌘�̂ Bn�1X

i=0

iY

j=0

|a|�+i�̂+1�̂j

(� + j�̂ � 2n+ 1)[�̂c(�̂)]j�̂

+
�(�/�̂ + Bn � 2n/�̂ + 1/�̂)

[�̂c(�̂)]2n�(1/�̂)

"
�̂c(�̂)

�c(�)

#�
Bn�1Y

i=0

�̂i
|a|2n

(�̂ + i�̂ � 2n+ 1)

�
�̂
R |a|
0 |x|�+Bn�̂�2ne

�
⇣

x
�̂c(�̂)

⌘�̂

dx

�̂c(�̂)�(1/�̂)[�c(�)]�

Bn�1Y

i=0

�̂i
|a|2n

(� + i�̂ � 2n+ 1)[�̂c(�̂)]i�̂
, (3.16)
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where Bn is the smallest integer number that makes � + Bn�̂ > 2n � 1, i.e.,

Bn = arg min
Bn2N

� +Bn�̂ > 2n� 1. In other words, Bn = b(2n� 1� �)/�̂c. We

denote the three terms of T5n as T5n.1, T5n.2 and T5n.3 respectively. It is also

obvious to see that T5n.1, T5n.2 = o(a2). Considering e
�
⇣

|x|
�̂c(�̂)

⌘�̂

 1, we have

that T5n.3 is bounded as

T5n.3 
�̂

�̂c(�̂)�(1/�̂)[�c(�)]�

Bn�1Y

i=0

�̂i
|a|�+Bn�̂+1

(� + i�̂ � 2n+ 1)[�̂c(�̂)]i�̂

= o(a2). (3.17)

For T6, since e
�
⇣

|x|
�̂c(�̂)

⌘�̂

 1 and |x+ a|�  2�|a|�,

T6 
�̂

(� + 1)�̂c(�̂)�(1/�̂)

✓
1

�c(�)

◆�

|2a|�+1 = o(a2). (3.18)

By using the results in Lemma 3.1.1 and Eq. (3.14), Theorem 3.2.1 is

proved.

The expression in (3.9) specifies the constant term and the quadratic term

of the KLD with respect to the mean-bias m̂�m. The linear term disappears

since the corresponding coe�cient is zero. When N ! 1, via the law of large

numbers, m̂ ! m almost surely. Thus, when the window size is large enough,

we have |m̂�m| ⌧ 1. In this case, the term o[(m̂�m)2] deminishes to zero,

thus the KLD can be approximated by the sum of the constant term and the

quadratic term in (3.9).

3.2.3 Threshold Selection

In selecting the threshold valueDth, the Neyman–Pearson approach is used

to ensure that the false alarm probability is no larger than a predetermined

value � while maximizing the probability of detection. As the probability

of detection is a non-increasing function of Dth. To find the value of Dth is

equivalent to solving the following equation:

P(Dkl � Dth) = �. (3.19)
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In the previous subsection, we find an analytical expression for the KLD

when the data size is large in (3.9). As m̂, �̂2, �̂ are functions of the data

set {xi}
N

i=1 via (3.3), (3.4), and (3.6), and the data samples are i.i.d. and fol-

lowing GGD(m, �2, �), the KLD value Dkl is also a random variable. To solve

(3.19), the distribution of Dkl needs to be derived. This is a challenging task

due to the complicated expression for the KLD in (3.9). In what follows, we

propose two methods to find the threshold value.

Constant Threshold

The first method directly derives the PDF of the KLD by using (3.9),

the estimation formulas in (3.3), (3.4), and (3.6), and the distribution of the

data set {xi}
N

i=1. However, the estimation of � as represented in (3.6) is in

an implicit form, not an explicit function of {xi}
N

i=1, m̂, and �̂2. Thus, for

tractable analysis, instead of using the estimation �̂, the value of � (which is

known a-priori) is used. This is the same as assuming that there is no change

in � for the data in the moving window.

With this simplification, we need to calculate the KLD from GGD(m, �2, �)

to GGD(m̂, �̂2, �), i.e., Dkl(GGD(m̂, �̂2, �)||GGD(m, �2, �)). For the simplic-

ity of presentation, it is denoted as Dkl,�. From (9), we have

Dkl,� =
�(� � 1)

2�2

✓
�̂

�

◆��2 �(3/�)�(1� 1/�)

�(1/�)2
(m̂�m)2

� ln
�̂

�
+

1

�

✓
�̂

�

◆�

�
1

�
+ o[(m̂�m)2]. (3.20)

Define

c1 ,
�(� � 1)�(1� 1/�)�(3/�)

�2(1/�)
, (3.21)

M ,
p

N
m̂�m

�
=

p
N

�

 
1

N

NX

i=1

xi �m

!
, (3.22)

S , �̂2

�2
=

1

N

NX

i=1

⇣
xi �

1
N

P
N

j=1 xj

⌘2

�2
, (3.23)
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where c1 is a deterministic coe�cient while M and S are random variables as

they are functions of xi’s. By ignoring the last term in (3.20), we have the

following approximation when N is large (N � 1):

Dkl,� ⇡ Dasy

kl,�
, �

1

2
lnS +

1

�
S

�
2 �

1

�
+

c1
2N

M2S
�
2�1. (3.24)

We prove the following lemma on the distributions of M and S for N ! 1,

then a closed-form approximation of the PDF of Dkl,� is obtained for large N .

Lemma 3.2.3. Define

c2 ,
�(1/�)�(5/�)

�(3/�)�(3/�)
� 1. (3.25)

If xi’s are i.i.d. following GGD(x, �2, �), we have

M
d

���!
N!1

N (0, 1) . (3.26)
p

N(S � 1)
d

���!
N!1

N (0, c2) . (3.27)

Cov
h
M,

p

NS
i
= 0, (3.28)

where the notation
d

���!
N!1

represents convergence in distribution when N !

1, N (a, b) denotes the Gaussian distribution with mean a and variance b,

and Cov(A,B) denotes the covariance of A and B.

Proof. Since xi’s are i.i.d. folllwing GGD(m, �, �), when N ! 1, from central

limit theorem,
p

N

 
1

N

NX

i=1

xi �m

!
d

���!
N!1

N (0, �2).

Thus

M =

p
N

�

 
1

N

NX

i=1

xi �m

!
d

���!
N!1

N (0, 1), (3.29)

which is (4.9) in Lemma 3.2.3.

Define yi , (xi �m)/�, from the definition in (3.23), we have

S =
1

N

NX

i=1

 
yi �

1

N

NX

j=1

yj

!2

=
1

N

NX

i=1

y2
i
�

M2

N
.
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According to (3.29), it is easy to get that M2 converges in distribution to a

chi-square random variable with one degree of freedom, i.e., M2 d
���!
N!1

�2
1.

Thus, M2 has bounded variance. By applying the Tchebychev’s inequality to

the term M2/N , we have

lim
N!1

P
✓
M2

N

◆
= 0. (3.30)

So the asymptotic distribution of S can be derived from the distribution of
P

N

i=1 y
2
i
/N .

Via straightforward calculations, we have

E
�
y2
i

�
=E


(xi �m)2

�4

�
=

�2

�2
= 1,

Var
�
y4
i

�
=E

�
y4
i

�
�
⇥
E
�
y2
i

�⇤2
= E


(xi �m)4

�2

�
� 1

=
�(1/�)�(5/�)

�(3/�)�(3/�)
� 1 = c2, (3.31)

Further, since y2
i
’s are i.i.d., it is easy to get

p
N(S � 1)

d
���!
N!1

N (0, c2)

according to the central limit theorem. Thus, (4.10) is derived.

In terms of the covariance Cov(M,
p
NS), it can be calculated as

Cov(M,
p

NS) = E(
p

NMS)� E(M)E(
p

NS). (3.32)

By using yi’s defined above to simply the calculation, we have

Cov(M,
p

NS) =
1

N
E
 

NX

i=1

yi

NX

i=1

y2
i

!
�

1

N2
E

2

4
NX

i=1

yi

 
NX

i=1

yi

!2
3

5

= �
1

N2
E
"

NX

i=1

yi

 
NX

i=1

y2
i
+ 2

NX

i=1

NX

j=i+1

yiyj

!#

+
1

N
E
 

NX

i=1

NX

j=1

yiy
2
j

!
,

=

✓
1�

1

N

◆
E(y3

i
). (3.33)

Since E(y3
i
) = 0, we have Cov(M,

p
NS) = 0, i.e., M and

p
NS are

uncorrelated.
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Theorem 3.2.4. Define L , 2NDasy

kl,�
. When � > 1 and N � 1, the PDF of

L can be approximated by fL(l) as defined as follows:

fL(l) ,
1

p
�c1c2

exp

 
�
c1 +

�

4 c2
�c1c2

l

!
I0

 
c1 �

�

4 c2
�c1c2

l

!
, l � 0, (3.34)

with I0(·) representing the modified Bessel function of the first kind.

Proof. To help the presentation, define

A(S) , 2Nw

✓
� lnS1/2

�
1

�
+

1

�
S�/2

◆
, (3.35)

B(S) , �(3/�)

�(1/�)

�(� � 1)�(1� 1/�)

�(1/�)
S�/2�1. (3.36)

Thus, L can be further expressed as

L = A(S) +M2B(S), (3.37)

In order to obtain the distribution of L, the key step is to get the characteristic

function, which can be expressed as

 L(t) = E(eit[A(S)+M
2
B(S)])

= ES[EM(eit[A(S)+M
2
B(S)]

|S)]. (3.38)

The correlation between M and S is zero; we use the following approximation:

EM(eit[A(S)+M
2
B(S)]

|S) = eitA(S) EM(eitM
2
B(S)),

which leads to

 L(t) = ES[e
itA(S) EM(eitM

2
B(S))]. (3.39)

According to the distribution of M in (4.9) from Lemma 3.2.3, it is easy to

conclude that M2 d
���!
N!1

�2
1 for N � 1. So the characteristic function of M2

can be derived as

 M2(t) ⇡ (1� 2it)�1/2. (3.40)
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Using the linear operation property of the characteristic function, we have

EM(eitM
2
B(S)) ⇡ [1� 2itB(S)]�1/2. (3.41)

By plugging Eq. (3.41) into Eq. (3.39), we get

 L(t) ⇡

Z +1

�1
eitA(S)[1� itB(S)]�1/2fS(S) dS, (3.42)

where fS(S) is the probability distribution function of the variable S.

Three steps are conducted for the calculations of (3.42). Firstly, from

Lemma 3.2.3, the PDF of S can be approximated in (3.43) for N � 1.

fS(S) ⇡
1

p
2⇡
p
c2/N

e�
(S�1)2

2c2/N . (3.43)

Secondly, the term [1�2itB(S)]�1/2 is expanded with the help of Taylor series

around the point S = 1 as follows, since S approaches to 1 when N � 1:

[1� 2itB(S)]�1/2 = (1� 2itc1)
�1/2

+
c2
2
(1� 2itc1)

�1/2it

✓
�

2
� 1

◆
(S � 1)

+ o(S � 1). (3.44)

Thirdly, with the help of A(S) in (3.35), by performing Taylor expansion

around the point S = 1, we have that Eq. (3.35) can be expanded as

A(S) = N
�

4
(S � 1)2 + o[(S � 1)2]. (3.45)

By plugging (3.43) - (3.45) into (3.41) and ignoring the lower order terms

of S � 1, we get that  L(t) can be approximated as follows:

 L(t) ⇡
(1� 2itc1)�1/2

p
2⇡
p
c2/N

Z +1

�1
e
�
h

N
2c2

� 1
4 it�N

i
(x�1)2

dx

= (1� 2itc1)
�1/2

✓
1�

1

2
it�c2

◆�1/2

. (3.46)

Thus, according to [110] (Chapter 5, page 37), the probability density function

of this variable can be derived as in (3.34).
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Based on the derived PDF of L, the threshold or rejection region for the

detection rule in (3.8) can be determined to meet the false alarm rate require-

ment. The equation of the threshold in (3.19) becomes

PL(L � 2NDth) =

Z +1

2NDth

fL(l) dl = �. (3.47)

With the PDF result in (3.34), the threshold value can be obtained numerically

with one dimensional line search methods.

Adaptive Threshold

In the previous method, the PDF of the KLD is derived considering the

randomness in m̂ and �̂2 jointly. As can be seen from the previous sub-

section that the derivations are complicated and approximations are made

for tractable analysis. An alternative way to handle the complication is to

consider the PDF of the KLD with respect to one random parameter while

treating the other two as conditions, that is, to work on the conditional PDF.

Since the estimation of the shape parameter does not have an explicit form,

its distribution cannot be obtained analytically. Thus two viable choices are:

1) to use values of �̂2, �̂ as conditions, and 2) to use values of m̂, �̂ as con-

ditions. The thresholds derived following this method depend on the values

of the estimated parameters, which are obtained with (3.3), (3.4) and (3.6)

using data samples in a window, thus the scheme is referred to as an adaptive

threshold method.

When the values of �̂2, �̂ are seen as conditions, the only random variable

in the KLD formula in (3.9) is m̂ as given in (3.3). Further, we use the

approximation: f
M̂ |�̂2,�̂

(m) ⇡ f
M̂
(m). In other words, the dependence of m̂ to

�̂2, �̂ are ignored. It is easily seen that the correlation between m̂ and �̂2, �̂

diminishes as the window size N increases. Thus the approximation is valid

for large N .
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To simplify the notation, we define

c3 , ln
�̂�(1/�)

q
�(1/�)�(3/�̂)

��(1/�̂)
q
�(1/�̂)�(3/�)

; (3.48)

c4 ,

0

@

q
�(1/�)�(3/�̂)

q
�(1/�̂)�(3/�)

1

A

�

�(�/�̂ + 1/�̂)

�(1/�̂)
; (3.49)

c5 , �(� � 1)

0

@

q
�(1/�)�(3/�̂)

q
�(1/�̂)�(3/�)

1

A

��2

�(3/�)�(�/�̂ � 1/�̂)

�(1/�̂)�(1/�)
. (3.50)

Thus Dkl in (3.9) can be rewritten as

Dkl = c3 + ln
�

�̂
+ c4

✓
�̂

�

◆�

+ c5

✓
�̂

�

◆��2 (m̂�m)2

2�2
�

1

�̂
, (3.51)

It can be shown straightforwardly that c4 > 0 and c5 > 0 for � > 1. In the

following theorem, the conditional PDF of the KLD given �̂2, �̂ is derived,

from which the corresponding threshold value can be found.

Theorem 3.2.5. Define L1 , 2NDkl. When � > 1 and N � 1, the condi-

tional PDF of L1 given estimation values �̂2 and �̂ can be approximated by

f
L1|�̂2,�̂

(l|�̂2, �̂) defined as follows:

f
L1|�̂2,�̂

(l|�̂2, �̂) , (l � 2NC1)
� 1

2

p
2⇡c1/25

✓
�̂

�

◆1��
2

e�
l�2NC1

2c5
( �̂
� )

2��

u(l � 2NC1),

(3.52)

where u(·) is the unit step function, and

C1 , c3 + ln
�

�̂
+ c4

✓
�̂

�

◆�

�
1

�̂
.

Proof. With the help of (3.48) and (3.49), L1 can be rewritten as

L1 = 2NC1 + c5

✓
�̂

�

◆��2

M2. (3.53)

Since c5 > 0 for � > 1, the probability of L1 < l can be calculated as

P(L1 < l) = P(2NC1 + c5

✓
�̂

�

◆��2

M2 < l)

= P
 
M2 <

l � 2NC1

c5

✓
�̂

�

◆2��
!
. (3.54)
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According to the distribution of M in Lemma 3.2.3, it is easy to approxi-

mate the distribution of M2 as follows

fM2(m) ⇡
1

p
2⇡

m� 1
2 e�

m
2 . (3.55)

Thus, Eq. (3.54) can be further calculated as

P(L1 < l) ⇡

Z l�2NC1
c5

( �̂
� )

2��

�1

1
p
2⇡

m� 1
2 e�

m
2 u(l � 2NC1) dm. (3.56)

By taking the first order derivation over l in Eq. (3.56), the approximated

distribution of L1 shown in Eq. (3.52) can be derived.

Similarly, when the values of m̂, �̂ are seen as conditions, we use f
Ŝ|m̂,�̂

(s) ⇡

f
Ŝ
(s). With the help of variable S defined in (3.23), the KLD in (3.51) can

be further expressed as

Dkl = c3 � ln(S1/2) + c4S
�/2 + c5S

�/2�1 (m̂�m)2

2�2
�

1

�̂
.

By invoking the Taylor expansion around the point S = 1, the terms with

order higher than 2, namely, o[(S � 1)2], diminish to 0 for N ! 1 surely. So

we have

Dkl ⇡ Dkl|
asy

m̂,�̂
, C2 + C3

(S � 1)

2
p
Nc2

+ C4
(S � 1)2

2c2
, (3.57)

where

C2 , c3 + c4 + c5
(m̂�m)2

2�2
�

1

�̂
; (3.58)

C3 , 2
p
Nc2


�
1

2
+

�

2
c4 +

✓
�

2
� 1

◆
c5
(m̂�m)2

2�2

�
; (3.59)

C4 , c2


1

2
+ c4

�

2

✓
�

2
� 1

◆
+ c5

(m̂�m)2

2�2

✓
�

2
� 1

◆✓
�

2
� 2

◆�
. (3.60)

The following theorem is derived for the conditional distribution of KLD given

m̂, �̂.
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Theorem 3.2.6. When � > 1 and N � 1, the conditional PDF of L1 given

estimation values m̂ and �̂ can be approximated by f
L1|m̂,�̂

(l|m̂, �̂) defined as

follows:

f
L1|m̂,�̂

(l|m̂, �̂) ,

8
>>>>>>>>><

>>>>>>>>>:

cosh

0

@

s
��� C3
2C4

���
l�2NC2+

C2
3

4C4
C4

1

Au

 
l�2NC2+

C2
3

4C4
C4

!

⇥

����l�2NC2+
C2
3

4C4

����
�1/2

p
2⇡|C4|1/2

e

� 1
2

0

B@
l�2NC2+

C2
3

2C4
C4

1

CA

, if C4 6= 0;

1
2⇡|C3|e

� (l�2NC2)
2

2C2
3 , if C4 = 0,

(3.61)

where cosh(x) = ex/2 + e�x/2 is the hyperbolic cosine function.

Proof. With the help of (3.57), L1 can be rewritten as

L1 = 2NC2 + C3

p
N(S � 1)
p
c2

+ C4
N(S � 1)2

c2
.

In order to get the distribution of L1, there are four cases to be considered.

When C4 6= 0, L1 can be further rewritten as

L1 = 2NC2 �
C2

3

4C4
+ C4

 p
N(S � 1)

c2
+

C3

2C4

!2

. (3.62)

According to (4.10), it is obvious that
p
N(S � 1)/c2

d
���!
N!1

N (0, 1). Thus,

the distribution of L1 can be approximated as a linear transformation of a

non-central chi-square distribution of one degree of freedom.

By defining D(S) ,
⇣p

N(S�1)
c2

+ C3
2C4

⌘2

; the PDF of D, denoted as fD(s),

can be obtained as

fD(s) =
1

p
2⇡s

e
� 1

2

✓
s+

C2
3

4C2
4

◆

cosh

 s����
C3

2C4

����s
!
u(s).

Thus, we have

P(L1 < l) = P
✓
2NC2 �

C2
3

4C4
+ C4D(S) < l

◆
.
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If C4 > 0, we have

P(L1 < l) = P
 
D(S) <

l � 2NC2 +
C

2
3

4C4

C4

!

=

Z l�2NC2+
C2
3

4C4
C4

0

fD(s)u

 
l � 2NC2 +

C
2
3

4C4

C4

!
ds. (3.63)

Similarly, if C4 < 0, it can be obtained that

P(L1 < l) = P
 
D(S) >

l � 2NC3 +
C

2
4

4C4

C4

!

=

Z +1

l�2NC2+
C2
3

4C4
C4

fD(s)u

 
l � 2NC2 +

C
2
3

4C4

C4

!
ds, (3.64)

By the first order derivative over l in (3.63) and (3.64), the distribution of L1

in (3.61) for the case of C4 6= 0 can be derived by combining (3.63) and (3.64).

When C4 = 0, since
p
N(S � 1) is Gaussian distributed, according to

Lemma 3.2.3, it is easy to obtain the PDF of L1 shown in (3.61).

Particularly, if C3 = 0 and C4 = 0, we have L1 = 2NC2 as a constant,

thus f
L1|m̂,�̂

(l|m̂, �̂) = �(l � 2NC2), or equivalently,

P(l = 2NC2|m̂, �̂) = 1.

This is a special case and can be derived from the second case in (3.61).

Similar to the previous case, the threshold is chosen based on the level of

false alarm probability �. The threshold values Dth,m and Dth,s satisfy the

following equations:

P
L1|�̂2,�̂

(Dkl � Dth,m|�̂2, �̂) =

Z 1

2NDth,m

f
L1|�̂2,�̂

(l|�̂2, �̂) dl = �, (3.65)

P
L1|m̂,�̂

(Dkl � Dth,s|m̂, �̂) =

Z 1

2NDth,s

f
L1|m̂,�̂

(l|m̂, �̂) dl = �. (3.66)

Via the results in Theorems 3.2.5 and 3.2.6, the values of Dth,m and Dth,s

can be obtained by solving (3.65) and (3.66) via one dimensional line search

methods. Notice that Dth,m depends on the samples of the data set {xi}
N

n=1

via dependence on �̂2, �̂, and similarly Dth,s depends on m̂, �̂. Thus they vary

with the data set.
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3.3 Summary of the Detection Algorithms

In this section, the KLD based abnormality detection algorithms are sum-

marized for constant threshold and adaptive threshold methods. Then discus-

sions are given for several practical issues.

3.3.1 Detection Algorithm with a Constant Threshold

The detection algorithm with a constant threshold is summarized as Algo-

rithm 2. There are three stages, namely, initialization, o↵-line training, and

online detection.

Specifically, in the initialization stage, the data size N and the false alarm

rate level � are assigned. In the o↵-line training stage, the parameters m, �2, �

for the normal state are obtained from historical data via (3.3), (3.4) and (3.6).

Further, with the help of Theorem 3.2.4, the threshold Dth is calculated. For

the online detection stage, a data set of size N is collected. The mean and

the variance for this set are estimated, i.e., m̂ and �̂2 are obtained by using

(3.3) and (3.4). Then the KLD Dasy

kl,�
is calculated using (3.24) and compared

with Dth. If the condition Dasy

kl,�
> Dth holds, the algorithm returns the alarm

state 1 and saves the sample data set and the KLD value Dasy

kl,�
for further

analysis; otherwise, the algorithm returns the alarm state 0. The algorithm

can be conducted online continuously for every N data samples.

3.3.2 Detection Algorithm with an Adaptive Threshold

The detection algorithm with an adaptive threshold is summarized in Al-

gorithm 3, which also have three stages. The initialization stage is exactly the

same as the constant threshold case, while the other two stages are di↵erent.

In the o✏ine training stage, the mean, the variance and the shape parame-

ter are estimated based on historical data under the normal state. But the

threshold calculation is conducted in the online detection stage. For the online

detection stage, a data set of size N is collected. The mean, variance, and

shape parameter for this data set are estimated, i.e., m̂, �̂2, �̂ are obtained by
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Algorithm 2 Detection algorithm with a constant threshold.
Input: Data collected under the normal condition and data inside a moving

window x = {xi}
N

i=1 for detection.
Output: Hypothesis test results for (3.8), i.e., alarm states.
Initialization: Assign values to N and �.
O↵-line training: Based on historical data for normal state, estimate m, �2

and � by (3.3), (3.4) and (3.6); Find the threshold Dth by
(3.19).

On-line detection:
1 while N data samples are collected do

2 Estimate m̂ and �̂2 by (3.3) and (3.4);
Calculate Dasy

kl,�
by (3.24);

if Dasy

kl,�
� Dth then

3 Return Alarm state as 1;
Save x and Dasy

kl,�
for further analysis;

4 else

5 Return Alarm state as 0;
6 end

7 end

using (3.3), (3.4), and (3.6). Then the adaptive thresholds Dth,m and Dth,s are

calculated from (3.65) and (3.66), respectively. Next, the KLD Dkl in (3.9) are

calculated and compared with Dth,m and Dth,s. If the condition Dkl > Dth,m

or Dkl > Dth,s holds, the algorithm returns the alarm state 1 and save the

sample set and Dkl for further analysis; otherwise, the algorithm returns the

alarm state 0. The algorithm can be conducted online continuously for every

N data samples.

3.3.3 Discussions

There are two di↵erent aspects between the constant and adaptive thresh-

old methods. Specifically, the main di↵erence exists in when and how the

thresholds are determined. In the constant threshold case, the threshold can

be calculated o↵-line with the historical data under the normal condition,

while in the adaptive threshold case, the threshold is derived on-line accord-

ing to both historical data and current data inside a window. Moreover, in the

constant threshold based method, the shape parameter of the data inside a
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Algorithm 3 Detection algorithm with an adaptive threshold.
Input: Data collected under the normal condition and data inside a moving

window x = {xi}
N

i=1 for detection.
Output: Hypothesis test results for (3.8), i.e., alarm states.
Initialization: Assign values to N and �.
O↵-line training: Based on historical data for the normal state, estimate m,

�2 and � by (3.3), (3.4) and (3.6).
On-line detection:

1 while N data samples are updated do

2 Estimate m̂, �̂2 and �̂ by (3.3), (3.4) and (3.6);
Calculate Dth,m from (3.65) and Dth,s from (3.66);
Calculate Dkl by (3.9);
if Dkl � Dth,m, OR Dkl � Dth,s, then

3 Return Alarm state as 1;
Save x and Dkl for further analysis;

4 else

5 Return Alarm state as 0;
6 end

7 end

window is not used in the detection due to the simplification of using � in the

data fitting instead of �̂, which may a↵ect its performance. For the adaptive

threshold based method, the shape parameter is estimated for each data set

and its di↵erence to � obtained from historical normal data is considered in

the detection process. However, the on-line estimation of the shape parame-

ter incurs higher computational load and requires a larger window size with

longer detection delay.

In the application of the constant and adaptive threshold schemes, one

practical issue is the selection of the window size N in the initiation stage. On

one hand, a large N is needed for the precision of the parameter estimation

and the validity of asymptotic analysis on the PDF s and the corresponding

threshold selection; on the other hand, it also increases the computational

load of the detection algorithm s.

Another practical problem is related to the o↵set between the derived PDFs

for L, L1 and those for data under the normal condition. Due to sample out-

liers or even errors in the distribution model, the derived PDFs of L and L1
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may fail to describe the corresponding true distributions. In this case, the pro-

posed methods can still be used for detection but the threshold selection needs

to be adapted. A practical and general method is to use the kernel density

estimation to find the PDF of the test statistic. For the constant threshold

case, the KLD can be calculated numerically from (3.7), by either directly

obtaining the two PDFs via the kernel density estimation or estimating the

probability density ratio. More details can be found in [144] and [59]. Then

the distribution of L under the normal condition can be estimated and used

for the constant threshold calculation in (3.19). As for the adaptive threshold

case, the distributions of M and S can be derived numerically, so that the

adaptive thresholds can be set.

Another assumption made in this chapter is that xi’s are independent

samples. For systems with correlated data, the distributions of M and S do

not follow the results derived in Lemma 3.2.3. To tackle this problem, one

option is to apply de-correlation methods, such as auto-regressive model and

whitening transformation [108]. Alternatively, the kernel density estimation

can be used to obtain the distribution of L in the constant threshold case, and

the distributions of M and S for the conditional threshold cases. Di↵erent

from the kernel density estimation for data set with i.i.d. samples, the kernel

bandwidth for correlated data needs to be carefully selected to achieve good

trade-o↵s between the estimation bias and variance [27]. Also, considering that

the values of L and S are nonnegative, the Gamma kernel [30] can be used

instead of the Gaussian kernel, since the Gaussian kernel will cause estimation

bias for samples near 0.

3.3.4 Extension to Multivariate Case

There are three possible ways to extend this work to multivariate cases.

One straightforward way is to apply the KLD calculation and its distribution

results directly for each variable and perform combining schemes (e.g. major-

ity voting) to determine whether an alarm should be generated. The second
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way is based on the multivariate GGD proposed in [53]. According to the def-

inition, the multivariate generalized Gaussian variable consists of several i.i.d.

univariate generalized Gaussian variables with the same shape parameter, and

it can be modeled as a linear transformation from a standardized multivariate

generalized Gaussian random variable by the singular value decomposition.

Thus, the KLD for each univariate generalized Gaussian random variable can

be calculated following similar steps in Appendix A. Then, by using the ad-

dition property of the KLD, the total KLD can be derived. Also, the results

in Lemma 3.2.3 still hold for each generalized Gaussian random variable. By

following similar steps in Appendixes C, D and E, the joint and conditional

distributions of the KLD can be derived according to [110]. More generally,

as the third way, by assuming that variables are mutually independent, the

shape parameter for each variable can be di↵erent. Similarly to the second

case, with the help of existing results in Lemma 3.2.3 and following similar

steps in Appendixes A, C, D and E, the distributions of KLD can be derived

according to [19] for the constant and adaptive threshold algorithms.

For all three ways, the results in the univariate case are fundamental for

the multivariate extension. Considering the focus of this work, we only provide

the above brief discussion on extensions to multivariate cases in this chapter

and leave further analysis and case studies for the future.

3.4 Case Studies

In this section, simulation results are shown to validate the analytical

results and to compare with other methods with both simulated and industrial

data sets. Three widely used linear and non-linear filter detectors, namely,

the mean absolute deviation (MAD) filter, the moving average (MA) filter,

the median filter, are considered and compared with the proposed KLD based

methods. Given the data sequence x = {xi}
N

i=1, the MA filter calculates

yMA = m̂ =
1

N

NX

i=1

xi; (3.67)
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the MAD filter calculates

yMAD =
1

N

NX

i=1

|xi � m̂|
2; (3.68)

and the median filter gets

yM = x(v+1) = medianN(x), (3.69)

where x(i) is the ith-order statistic, and if N is odd, v = (N � 1)/2; if N

is even, v = N/2 or v = N/2 � 1. Then the filter output yMAD (or yMA ,

yM) is compared with a threshold, and an alarm is raised if the filter output

is larger than the threshold. The MAD filter is a non-linear filter that takes

both mean and variance changes into consideration to detect abnormalities.

The MA filter is e↵ective in capturing the mean di↵erence in data set by

keeping the mean and reducing the variance. It has been proved that the

MA filter is optimal among linear filters under log-concave and symmetric

data distributions [34]. The median filter, a non-linear filter, is shown to be

e↵ective in removing nuisance alarms, especially the chartering ones [116].

3.4.1 Simulation Results on KLD

In this section, the behaviors of the KLD are studied. The simulation

results are compared with the derived analytical results in Theorem 3.2.1,

Theorem 3.2.4, and Theorem 3.2.5.

KLD Calculation

The first to show is the KLD value under normal condition. There are two

pairs of KLDs to be compared. The first pair is for the constant threshold

case. One is Dkl,� in (3.20) and the other is Dasy

kl,�
given in (3.24). And the

second pair is under the adaptive threshold case, namely, Dkl in (3.7) and

Dkl|
asy

m̂,�̂
shown in (3.57).

The relative di↵erence in percentage ✏ is used to quantify the o↵set of

Dkl by using its asymptotic approximation. For these two cases, the relative
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Figure 3.2: Relative di↵erence of KLD value between Dkl,� in (3.20) and Dasy

kl,�
in

(3.24) for the constant threshold case.

di↵erences are defined respectively as:

✏cons ,
��Dkl,� �Dasy

kl,�

��

Dkl,�

⇥ 100%, (3.70)

and

✏adap =

���Dkl �Dkl|
asy

m̂,�̂

���
Dkl

⇥ 100%. (3.71)

In the simulation, three distributions GGD(0, 1, 1.2), GGD(0, 1, 2.5) and

GGD(0, 1, 3.5) are considered. The relative di↵erence in (3.70) for the constant

threshold case is shown in Figure 3.2 for di↵erent window size N . For each N

value, 10000 randomly generated data sets are used to calculate the average

di↵erence. It can be seen that the di↵erence is small even for small window

size, e.g., less than 3% for N � 10. And the di↵erence diminishes as N

increases. This validates the derived asymptotic results on KLD.
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Figure 3.3: Relative di↵erence of KLD value between Dkl in (3.7) and Dkl|
asy

m̂,�̂
in

(3.57) for the conditional threshold case.

With the same parameter settings, the relative di↵erence of the adaptive

threshold case in (3.71) is shown in Figure 3.3. It can be observed that the

relative di↵erence decreases with larger window size. Also, the relative di↵er-

ence is less than 5% for window sizes greater than 200. Compared with the

constant threshold case, the relative di↵erence is higher with the same window

size.

KLD Distribution

The next to study is the PDF of the KLD. Figure 3.4 shows the relative

p-percentile di↵erence ✏p between the derived approximate PDF in Theorem

3.2.4 and the PDF obtained from the Monte Carlo simulations for data fol-

lowing GGD(0, 1, 1.2), GGD(0, 1, 2.5) and GGD(0, 1, 3.5). The relative pth-
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Figure 3.4: Relative PDF di↵erence between asymptotic closed-form result in
(3.34) and the value obtained from the Monte Carlo simulations.

percentile di↵erence is defined as

✏p =

��� ̂p �  p

���

 ̂p

⇥ 100%,

where  p is the pth-percentiles of the KLD distribution calculated from Theo-

rem 3.2.4 (i.e.,fL(l)), and  ̂p is that of the KLD distribution obtained from the

Monte Carlo simulations. The results where p is 50, 60, 70 and 95 are shown

in the four sub-figures in Figure 3.4 respectively. For each p value, the window

size N ranges from 1 to 100. And for each window size, the average of 1000

data sets is conducted.

Form Figure 3.4, it can be observed that the relative di↵erences for the

four p values decrease as the window size increases up to 60. It is natural

since the larger the window size, the more accurate the Taylor expansion in

(3.9) and the derived PDF in (3.34). Also, it can be seen that the relative

di↵erences remain steady around 5% when the window size is larger than 60.
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The analysis is accurate for large enough window size.

3.4.2 Abnormality Detection with Simulated Data

In this subsection, the proposed detection methods based on the KLD are

compared with the MAD, MA and median filters under simulated data. Fur-

ther, we compare with the case when the Gaussian distribution is used under

the proposed constant and adaptive threshold schemes. In order to show the

performance with di↵erent �, two cases with the same mean and variance but

di↵erent shape parameters are considered under the normal condition, namely

GGD(1, 1, 1.2) and GGD(1, 1, 5). As for the abnormal condition, seven types

of faults are considered, including both symmetric and non-symmetric dis-

tributions. Specifically, for the Type-1 fault, the mean increases by 0.4, i.e.,

the distributions become GGD(1.4, 1, 1.2) and GGD(1.4, 1, 5). In the Type-2

fault, 1.25 and 0.69 increase in the variance is considered in the faulty dis-

tributions, namely, GGD(1, 2.25, 1.2) and GGD(1, 1.69, 5). As for the Type-

3 fault, samples are generated from the distribution GGD(1.4, 2.25, 1.2) and

GGD(1.4, 1.69, 5), respectively, where both the mean and the variance change.

Also, the Gamma distribution Gamma(1, 1.6) is considered as a unsymmetri-

cal distribution in Type-4 fault. Additionally, three more faults are considered

in order to show the performance in detecting abnormality with the shape pa-

rameter change combined with mean and/or variance changes, namely Type-5,

Type-6 and Type-7 faults. Specifically, when � = 1.2 under normal condi-

tion, Type-5, Type-6 and Type-7 faults are GGD(1.4,1,5), GGD(1,2.25,5),

and GGD(1.4,2.25,5); while when � = 5, GGD(1.4.1,8), GGD(1,1.69,8) and

GGD(1.4,1.69,8) are used. The PDFs under the normal condition and the

seven faults are depicted in Figures 3.5 and 3.6 when � = 1.2 and � = 5 under

the normal condition, respectively.

For all involved detection methods, the window size or filter length is set as

60, i.e., N = 60. There are 10000 data sets generated for the normal condition

and for each abnormal case. In order to compare the detection performance
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Figure 3.5: PDFs under the normal condition when � = 1.2 and seven types of
faults.

-4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PD
F

Normal-GGD(1,1,5)
Fault1-GGD(1.4,1,5)
Fault2-GGD(1,1.69,5)
Fault3-GGD(1.4,1.69,5)
Fault4-Gamma(1,1.6)
Fault5-GGD(1.4,1,8)
Fault6-GGD(1,1.69,8)
Fault7-GGD(1.4,1.69,8)

Figure 3.6: PDFs under the normal condition when � = 5 and seven types of
faults.
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Figure 3.7: FAR v.s. DR with proposed KLD based methods and the MAD, MA
filter when � = 1.2.

among di↵erent methods, the FAR versus DR curve is used. In the drawing,

1000 threshold values are used for each method, which generate 1000 pairs

of FARs and DRs. The results for the proposed constant threshold scheme

are obtained with the proposed Algorithm 1; while Algorithm 2 is used for

the proposed adaptive threshold method considering Dth,m and Dth,s together

through the ‘OR’ operation; thus it is denoted with ‘KLD Adaptive M/S’.

One can also apply the adaptive threshold method by using Dth,m and Dth,s

separately. It follows the same steps in Algorithm 2, except it only considers

either Dth,m or Dth,s in Step 5.

The FAR versus DR curves that comprehensively consider the all seven

types of faults are shown in Figures 3.7 and 3.8. It can be observed that

under the two GGDs, the two KLD based detection methods are apparently

better than the other three filters. For example, when � = 1.2, the DRs at

FAR=0.05 of the MAD, MA and median filters are 0.808, 0.668 and 0.598,

while the proposed methods boost up the detection rates to 0.902 and 0.895,
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Figure 3.8: FAR v.s. DR with proposed KLD based methods and the MAD, MA
filter when � = 5.

respectively. The figures further show that the use of the GGD model can

achieve better performance than the Gaussian one when � = 1.2; while they

have similar performance when � = 5. Also, compared with using Dth,m and

Dth,s separately, the proposed adaptive threshold scheme that considers Dth,m

and Dth,s together with the ‘OR’ operation shows better performance.

In order to show the performance under each fault, the DRs at the FAR

of 0.05 are summarized in Table 3.1. The method with the best detection

rate is marked as red under each fault. First, when � = 1.2 under the normal

condition, it shows that the adaptive and constant threshold methods with

the GGD model outperform the three filters and those with Gaussian model

on average; when � = 5, the two proposed methods with the GGD model and

Gaussian model have similar performance, which is still better than that of the

three filters on average. Second, it can be seen that the MA filter outperforms

other methods in detecting faults of types 1, 4 and 5, where the mean change

dominant the fault feature; while the MAD filter performs generally better in
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the faults of types 2, 3, 6 and 7, where the variance change dominants. Third,

in a few cases the Gaussian model performs better than the GGD model, but

in terms of the average performance, the GGD model is still better.

Additionally, the sensitivity of the proposed KLD based methods are tested

under di↵erent noise levels. The signal-to-noise ratio (SNR) is used to quantify

the noise level as SNR = log10(�
2
s
/�2

e
) dB, where �2

s
is the variance of the

signal and �2
e
denotes the noise variance. Four SNR values are considered in

this test, namely, 10, 20, 40 and 1 dB. When SNR =1 dB, it is considered as

the ideal noise-free case; when SNR = 40 dB, it is regarded as a normal noise

environment, while SNR =10 dB is considered as a noisy circumstance. Under

each SNR, the normal data is generated from the distributions GGD(1, 1, 1.2)

and GGD(1, 1, 5). The faulty data consists of the same seven types of faults

shown in Figures 3.5 and 3.6, respectively. The corresponding FAR versus DR

curves are drawn in Figures 3.9 and 3.10. From the curve, it can be observed

that the proposed methods can still achieve stable performance, even under

noisy environment when SNR =10 dB.

Furthermore, simulations are conducted in order to better compare the

proposed two KLD based methods and explore how the computational load

changes with the window size N and the shape parameter �. In this part,

the normal data is generated from GGD(1, 1, 1.2) and GGD(1, 1, 5), while

three corresponding faults of types 5 to 7 are considered. The window sizes

N = 10, 30, 60, 100 and 200 are used. The computational load is quantified by

elapsed time using the ‘tic toc’ function in MATLAB software on a PC with

an Intel core i7-4790 CPU 3.6 GHz. For the constant threshold algorithm,

the computational time is counted during Step 2 and Step 3; while for the

adaptive threshold case, there are three steps counted, i.e., Step 2 to Step 4.

The computational load and DRs when the FAR is 0.05 are summarized in

Table 3.2. It can be seen that compared with the constant threshold scheme,

the one with the adaptive threshold performs generally better especially when

� = 1.2, with the cost of a higher computational load. As shown by the two
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Figure 3.9: Sensitivity test under di↵erent SNRs in terms of FAR v.s. DR with
proposed KLD based methods when � = 1.2.
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Figure 3.10: Sensitivity test under di↵erent SNRs in terms of FAR v.s. DR with
proposed KLD based methods when � = 5.
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Table 3.1: Detection performances for seven di↵erent faults when � = 1.2 and
� = 5 under normal condition.

KLD-GGD

� Faults Constant Adaptive M/S Adaptive M Adaptive S

1.2

Type-1 0.820 0.713 0.872 0.075
Type-2 0.830 0.944 0.190 0.947
Type-3 0.965 0.977 0.775 0.907
Type-4 0.963 0.954 0.962 0.909
Type-5 0.788 0.705 0.870 0.020
Type-6 0.958 0.978 0.189 0.977
Type-7 0.989 0.991 0.775 0.973
Average 0.902 0.895 0.662 0.687

5

Type-1 0.809 0.855 0.872 0.238
Type-2 0.964 0.877 0.131 0.965
Type-3 0.993 0.973 0.808 0.973
Type-4 0.984 0.990 0.962 0.995
Type-5 0.804 0.853 0.869 0.175
Type-6 0.973 0.824 0.132 0.928
Type-7 0.994 0.964 0.807 0.936
Average 0.922 0.902 0.649 0.740

KLD-GD

� Faults Constant Adaptive M/S MAD MA Median

1.2

Type-1 0.623 0.461 0.228 0.929 0.961
Type-2 0.899 0.935 0.961 0.138 0.135
Type-3 0.973 0.964 0.987 0.834 0.884
Type-4 0.955 0.935 0.924 0.978 0.346
Type-5 0.578 0.435 0.560 0.927 0.844
Type-6 0.990 0.997 0.998 0.137 0.264
Type-7 0.997 0.998 0.999 0.835 0.751
Average 0.864 0.818 0.808 0.668 0.598

5

Type-1 0.840 0.778 0.203 0.927 0.624
Type-2 0.905 0.967 0.945 0.104 0.103
Type-3 0.983 0.988 0.972 0.868 0.597
Type-4 0.980 0.977 0.816 0.978 0.152
Type-5 0.833 0.774 0.228 0.926 0.152
Type-6 0.922 0.976 0.964 0.103 0.113
Type-7 0.984 0.990 0.980 0.867 0.592
Average 0.915 0.920 0.712 0.662 0.383

algorithms in Section 3.3, the extra computational time mainly comes from

the shape parameter estimation process. Also, with larger window size, the
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computational load gets heavier, but the detection rate is higher. However,

there is no clear pattern on the relation between � and the computational

load.

Table 3.2: Computational load and DR with the proposed KLD based methods
using di↵erent window size, when � = 1.2 and � = 5 under normal condition.

N 10 30 60 100 200

Constant

DR (Normal � = 1.2) 0.203 0.613 0.912 0.986 1.000
DR (Normal � = 5) 0.450 0.752 0.923 0.985 1.000
Time (ms) � = 1.2 0.049 0.027 0.033 0.024 0.027
Time (ms) � = 5 0.028 0.024 0.024 0.026 0.029
Time (ms) � = 8 0.027 0.024 0.023 0.025 0.030

Adaptive

DR (Normal � = 1.2) 0.315 0.774 0.911 0.992 1.000
DR (Normal � = 5) 0.427 0.754 0.908 0.989 1.000
Time (ms) � = 1.2 0.168 0.189 0.268 0.385 0.674
Time (ms) � = 5 0.139 0.201 0.271 0.402 0.688
Time (ms) � = 8 0.145 0.186 0.270 0.387 0.691

3.4.3 Abnormality Detection with Industrial Data

In this subsection, performance results under industrial data are shown for

the two proposed KLD based methods as well as the MA, MAD and median

filters for comparison. Data of a power plant drum level is used where the data

points were sampled every 0.1 seconds. The time series are shown in Figure

3.11, where an abnormal water level fluctuation occurred after the sample

instance shown with the red dotted line. By using the estimations in (3.3),

(3.4), and (3.6) with 5000 data samples under the normal condition, the drum

level data under normal condition is modeled by GGD(49.80, 88.18, 2.37)†.

The estimated GGD is compared with the histogram of the data shown in

Figure 3.12. It can be observed that the distribution of the drum level data

under the normal condition reasonably matches the GGD.

†In the K-S test, the test statistic value is 0.0259 for samples to fit the estimated GGD, while
it is 0.0295 with Gaussian distribution model. The threshold of the K-S test is selected as
0.0276 with significance level of 0.001 [89]. If the significant level is set as 0.01, neither of
the two models pass the K-S test. But data under the normal condition fits GGD better
than GD, and the proposed scheme under GGD model has better performance.
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Figure 3.11: Industrial drum level data samples plot with sampling interval 0.1
second.
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Figure 3.12: Estimated GGD for the drum level data compared with histogram.
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Figure 3.13: FAR v.s. DR with the proposed KLD based methods, the MAD,
MA and median filters with industrial data.
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By considering the slow change of the water level signal, in the simulation

of the abnormality detection, the window size and the filter length is set as

600, i.e., N = 600, and a sliding window mechanism with the step size 60

is adopted to avoid long detection delay. Under this setting, the monitoring

statistics of the KLD, the MA filter , the MAD filter, and the median filter can

be calculated from (3.9), (3.67) , (3.68) and (3.69), respectively. Generated

from 1000 pairs of FARs and DRs by moving the threshold of each monitoring

statistics in full ranges, the FAR v.s. DR curves of di↵erent methods with

both the GGD and Gaussian models are depicted in Figure 3.13. It can be

first observed that the proposed KLD based methods outperform the three

filters. Second, the adaptive threshold method with the GGD has better

performance than other methods including that with the Gaussian model.

As for the constant threshold scheme, even though the performance with the

Gaussian model is slightly better than the GGD model, neither of the two can

achieve good detection performance with the FAR of 0.05.

To better understand how the adaptive threshold method works, the statis-

tic Dkl in (3.9), and the adaptive thresholds Dth,m with di↵erent � values are

shown in Figure 3.14. To obtain the threshold, firstly, the distribution of M2

is estimated with the kernel density estimation by using Gamma kernels. The

smooth parameter is chosen as 0.02. Based on the estimated distribution of

M2, the distribution of L1 is obtained via linear transformation. Thus, the

adaptive thresholds can be calculated to meet the false alarm rate requirement.

It can be observed that given a �, the threshold values vary with respect to

the data set and thus are adaptive to the current status of the system.

3.5 Summary

In this chapter, abnormality detection based on the KLD is studied for

data with the GGD whose shape parameter is larger than 1. By adding the

shape parameter to Gaussian distributions, the GGD covers more symmetric

distributions such as Gaussian and uniform distributions. We first derived an
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analytical formula of the KLD from the GGD estimated for current samples

to that for the normal condition. Then, by considering the randomness in the

sample mean and sample variance jointly and assuming there is no change

in the shape parameter, a constant threshold scheme based on the KLD are

derived with the help of the characteristic function and the central limit theo-

rem. Further, an adaptive threshold method is proposed where the conditional

KLD distributions are studied by separately considering the randomness in the

sample mean and the sample variance while using the remaining parameter

values as conditions.

In the simulation, firstly, the analytical expressions of the KLD are verified

with the Monte Carlo simulations. It was shown that the relative di↵erence

between the KLD calculated by definition and the proposed formula is smaller

than 5% for a large window size. So is the relative di↵erence between the

derived PDFs of KLD and those obtained from the histogram. Secondly, the

proposed KLD based detection schemes are tested and compared with the

MAD, MA and median filters with both simulated and industrial data. From

the DR versus FAR curves, the KLD based detection scheme was shown to

outperform the MAD, MA and median filters for both simulated and industrial

cases.
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Chapter 4

Abnormality Detection with the

Rényi Divergence for

Multivariate Gaussian Data
⇤

By adding one more parameter, namely the divergence order, to the

KLD, the Rényi divergence covers or relates to a family of diver-

gences. It o↵ers an additional degree of freedom for performance im-

provement. In this chapter, the distributions of the Rényi divergence

under the normal condition and under o↵-set and scaling faults are

derived analytically. Accordingly, the Rényi divergence based abnor-

mality detection scheme with an adaptive divergence order is proposed

for multivariate Gaussian distributed data.

4.1 Overview

In this chapter, we investigate the Rényi divergence based abnormality

detection for the multivariate Gaussian distributed data. First, the singular

value decomposition (SVD) is utilized to obtain uncorrelated processed data,

⇤A version of this chapter has been submitted as: Ying Xiong, Yindi Jing, Tongwen Chen,
Abnormality detection with the Rényi divergence for multivariate Gaussian data, IEEE
Transactions on Signal Processing, 2019. Part of this chapter has been accepted as: Ying
Xiong, Yindi Jing, Tongwen Chen, Abnormality detection with Rényi divergence for uni-
variate Gaussian data, 2019 IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, Victoria, Canada, 2019.
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and the processed data samples are assumed to be i.i.d.. The Rényi divergence

with the divergence order between 0 and 1 is adopted as detecting statistics.

The reasons are twofold. First, this divergence order range still covers a family

of divergences including the recommended divergence order 0.5 as per [22] and

[111]. Second, the analytical results on the FAR and MAR with the divergence

order greater than one has totally di↵erent formula comparing with those

for the range between 0 and 1, causing even more complexity in the FAR

and MAR calculations. Specifically, it leads to singularity in the divergence

value, i.e., the Rényi divergence can approach to infinity when the divergence

order is greater than 1. This occurs under both the normal and abnormal

conditions, thus the calculation of the FAR and MAR become mathematically

troublesome and non-trivial.

The remainder of this chapter is organized as follows. Section 4.2 illus-

trates the abnormality detection problem. The FAR and MAR are derived

analytically in Section 4.3. The detection algorithm and discussions are ex-

plained in Section 4.4. Section 4.5 shows the case study results and Section

4.6 concludes this chapter.

4.2 Abnormality Detection Problem

Under the normal condition, without loss of generality as per [147], the

d-dimensional measurement for each time instance is assumed to follow the

multivariate Gaussian distribution with zero mean and covariance matrix ⇧

denoted as N (0,⇧), and the measurements are time independent. We assume

that ⇧ is known, since it can be obtained via historical data under the normal

condition. Let ⇧ = P⇤P
T be the SVD of ⇧, where P is an orthogonal

matrix and ⇤ = diag{�2
1 · · · �2

d
} is a diagonal matrix with non-negative

entries. Let xi = [xi1 · · · xid] 2 R1⇥d be the sample vector at time i and

X =
⇥
xT

1 · · · xT

N

⇤T
2 RN⇥d be the measured sample matrix containing N

sample vectors. By defining the processed signal matrix as T = XP, we can

conclude that the rows of T, denoted as t1, · · · , tN , are independent samples of
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the multivariate Gaussian distribution with zero-mean and covariance matrix

⇤, i.e., N (0,⇤).

4.2.1 Detection Problem Formulation

The sample mean denoted as µ̂ and sample covariance denoted as ⌃̂ with

respect to the processed data can be calculated as follows:

µ̂ =
1

N

NX

i=1

ti; (4.1)

⌃̂ =
1

N

NX

i=1

(ti � µ̂)(ti � µ̂)T . (4.2)

The abnormality detection problem can be expressed as follows
⇢

H0 : ti’s follow the distribution N (0,⇤),
H1 : ti’s do not follow the distribution N (0,⇤).

(4.3)

The hypothesis test problem in (4.3) is to decide on whether the processed

data set follows N (0,⇤). A natural way is to fit the data with a multivariate

Gaussian distribution with the sample mean and variance, i.e., N (µ̂, ⌃̂), and

check whether N (µ̂, ⌃̂) is close enough to the known the distribution under

the normal condition (0,⇤).

4.2.2 Rényi Divergence Based Detection Rule

In order to quantify the distance from one PDF to another, the Rényi

divergence is adopted. According to [51], the Rényi divergence from N (µ̂, ⌃̂)

to N (0,⇤) of order ↵ is defined as

D↵

h
N (0,⇤)||N (µ̂, ⌃̂)

i
, 1

↵� 1
ln

Z

Rd

N (0,⇤)↵N (µ̂, ⌃̂)1�↵dx

�
, (4.4)

for ↵ > 0. The Rényi divergence covers a family of divergences with di↵erent ↵

values. Specifically, when ↵ approaches to 1, by taking the limit with L’Hopital

rule, the Rényi divergence converges to the KLD. For the infinity order case,

i.e., ↵ ! 1, the Rényi divergence relates to the separation distance [9], which

is used to bound the rate of convergence to the stationary distribution for
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certain Markov chains. Additionally, the Rényi divergence becomes a function

of the squared Hellinger distance [122] when ↵ = 1/2, and a function of the

�2-divergence for ↵ = 2. Moreover, the Rényi divergence is shown to relate

with the total variation distance with the help of Pinsker’s inequality [122] for

↵ 2 (0, 1).

When there is no confusion, we use the short notation D↵ in the following

content as the simplification for D↵

h
N (0,⇤)||N (µ̂, ⌃̂)

i
. For multi-variant

Gaussian PDFs, D↵ can be calculated as [51]

D↵ =

(
↵

2 µ̂
T
⌃

�1
↵
µ̂�

1
2(↵�1) ln

|⌃↵|
|⌃̂|↵|⇤|1�↵ , if ⌃↵ is positive definite;

+1, otherwise.
(4.5)

where ⌃↵ = ↵⌃̂ + (1 � ↵)⇤; | · | means the determinant of a matrix. Thus,

the detection rule based on the Rényi divergence of divergence order ↵ for the

hypothesis test in (4.3) is expressed as follows:
⇢

Decide on H0 when D↵  D↵,th;
Decide on H1 when D↵ > D↵,th,

(4.6)

where D↵,th is the threshold for the detection.

In this chapter, we consider that ↵ 2 (0, 1) to avoid the singular case where

the divergence value becomes infinity, i.e., the second case in (4.5). To include

the ↵ > 1 range, the singular case needs to be considered separately causing

more complexity in the performance analysis. Intuitively, when D↵ = 1, the

decision will be H1 always, thus the false alarm probability and the probability

of detection both will increase by the probability when ⌃↵ is not positive

definite.

4.3 Performance Analysis

In this section, the FAR and MAR are derived analytically in the first and

second subsections, respectively.
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4.3.1 FAR Analysis

Given the processed data matrix T = {ti}Ni=1 under the normal condition,

when N is large, the sample covariance matrix is highly diagonal dominant

since entries of ti’s are independent. It is reasonable to approximate the

sample covariance matrix in (4.33) as a diagonal matrix, i.e., ⌃̂ ⇡ ⌃̂diag =

diag{�̂2
1 · · · �̂2

d
}, where �̂2

j
is the jth diagonal entry of ⌃̂. It can be seen that

the condition minj{↵�̂j
2 + (1 � ↵)�2

j
} > 0 holds true for ↵ 2 (0, 1). Thus,

from (4.5), the Rényi divergence can be calculated by

D↵ ⇡

dX

j=1

"
↵

2

µ̂2
j

↵�̂2
j
+ (1� ↵)�2

j

�
1

2(↵� 1)
ln

↵�̂j
2 + (1� ↵)�2

j

�2�2↵
j

�̂2↵
j

#
. (4.7)

By defining

Sj , �̂2
j
/�2

j
and Mj ,

p

Nµ̂j/�j,

which are the normalized sample variance and the scaled mean, for ↵ 2 (0, 1),

D↵ calculated in (4.7) can be further expressed as

D↵ ⇡
1

2

dX

j=1

✓
lnSj +

1

↵� 1
ln

Sj

↵Sj + 1� ↵

◆
+

1

2

dX

j=1

↵M2
j
/N

↵Sj + (1� ↵)
. (4.8)

To calculate the FAR, the distributions Sj and Mj for large N under the

normal condition are derived in Lemma 4.3.1 as per [133], followed by the

FAR result in Theorem 4.3.2 for large N .

Lemma 4.3.1. Under the normal condition where the processed vector ti

follows N (0,⇤), we have

Mj

d
���!
N!1

N (0, 1); (4.9)
p

N(Sj � 1)
d

���!
N!1

N (0, 2); (4.10)

Cov(Mj,
p

NSj) = 0, (4.11)

where the notation
d

���!
N!1

represents convergence in distribution whenN ! 1

and Cov(A,B) is the covariance between variables A and B.
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Theorem 4.3.2. For ↵ 2 (0, 1), the FAR denoted by PF for the detection

rule in (4.6) can be approximated as follows for large N :

PF =
1

�(d)
�

✓
d,

NDth

↵

◆
, (4.12)

where �(s, x) is the upper incomplete gamma function.

Proof. According to (4.8), by defining R = 2ND↵/↵,

A(Sj) =
lnSj

2
+

1

2(↵� 1)
ln

Sj

↵Sj + (1� ↵)
, (4.13)

B(Sj) =
↵

2↵Sj + 2(1� ↵)
, (4.14)

we have

R =
1

↵

dX

j=1

✓
N lnSj +

N

↵� 1
ln

Sj

↵Sj + 1� ↵

◆
+

dX

j=1

M2
j

↵Sj + (1� ↵)

=
dX

j=1

⇥
2NA(Sj)/↵ + 2M2

j
B(Sj)/↵

⇤
. (4.15)

In order to get the PDF of R, firstly, we study the distribution of Rj =

2NA(Sj)/↵+2M2
j
B(Sj)/↵. The key is to get its characteristic function  Rj(t)

as

 Rj(t) = E(eit[2NA(Sj)/↵+2M2
j B(Sj)/↵])

= ESj

h
EMj

⇣
eit[2NA(Sj)/↵+2M2

j B(Sj)/↵] | Si

⌘i
. (4.16)

As is shown in Lemma 4.3.1, the correlation between M and S is zero. So

(4.16) can be further calculated as

 Rj(t) = ESj

h
e2itNA(Sj)/↵ EMj

⇣
eitM

2
j B(Sj)/↵ | Sj

⌘i
. (4.17)

Since Mj converges in distribution to N (0, 1) when N is large, it is easy to

conclude that M2
j
follows chi-square distribution of one degree of freedom for

N ! 1. Thus, the characteristic function of M2
j
can be calculated as

 M2
j
(t) ⇡ (1� 2it)�

1
2 . (4.18)
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By using the linear operation rule of the characteristic function, the charac-

teristic function of M2
j
B(Sj)/↵ can be obtained as

 M2
j B(Sj)(t) = EMj

⇣
eitM

2
j B(Sj)/↵ | Sj

⌘
⇡ [1� 2itB(Sj)/↵]

� 1
2 . (4.19)

Thus, by substituting (4.17) into (4.19), we have

 Li(t) ⇡

Z +1

�1
e2itNA(Si)↵ [1� 2itB(Si)/↵]

� 1
2 fSi(Si)dSi, (4.20)

where fS(S) is the PDF of the variable S. In order to solve the integral in

(4.20), the Taylor expansion is performed around Sj = 1 for 2NA(Sj)/↵ and

[1� 2itB(Sj)/↵]
� 1

2 respectively as follows:

2NA(Sj)/↵ =
N

2
(Sj � 1)2 + o

⇥
(Sj � 1)2

⇤
; (4.21)

[1� 2itB(Sj)/↵]
� 1

2 = (1� 2it)�
1
2 �

1

2
it↵(1� 2it)�

3
2 (Sj � 1) + o(Sj � 1).

(4.22)

Since the higher order term approaches to zero when N is large, by plugging

(4.22) into (4.20) and denoting the characteristic function of 2NA(Sj)/↵ as

 A(Sj)(t), we have

 Rj(t) ⇡ (1� 2it)�
1
2

Z +1

�1
e2itNA(Sj)/↵fSj(Sj)dSj (4.23)

= (1� 2it)�
1
2 A(Sj)(t). (4.24)

Recall Lemma 4.3.1, since
p
N(Sj � 1)/

p
2

d
���!
N!1

N (0, 1), A(Sj) expressed

in (4.21) approximately follows the chi-square distribution of one degree of

freedom when N is large. Thus, we have  A(Sj)(t) ⇡ (1� 2it)�
1
2 and  Rj(t) ⇡

(1 � 2it)�1, which is the characteristic function of chi-square distribution of

two degrees of freedom. So the results in Theorem 4.3.2 is derived.

4.3.2 MAR Analysis

We consider two types of frequently discussed faults, namely, the o↵-

set faults causing mean changes only and the scaling faults causing variance

changes only.
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Under O↵-set Faults

The o↵-set faults include the constant bias faults that bring up time-

invariant mean change, and the drift faults which cause time-varying mean

shifts. Once the o↵-set fault occurs, the distribution of the sample vectors be-

comes N (�,⇧) and the distribution of the processed sample vectors becomes

N (�P,⇤).

As the variance under the abnormal condition still have the same diago-

nal structure, the Rényi divergence calculation in (4.7) still holds under the

constant bias fault. We have the following theorem for the distribution of the

Rényi divergence of order ↵ 2 (0, 1) under o↵-set faults.

Theorem 4.3.3. For ↵ 2 (0, 1), the MAR denoted by PM1 under o↵-set faults

for the detection rule in (4.6) with threshold D↵,th can be approximated as

follows for large N :

PM1 = 1�Qd

✓q
Nk�⇤�1Pk

2
2,
q
ND↵,th/↵

◆
, (4.25)

where QM(a, b) is the Marcum Q-function.

Proof. In this case, the ith processed row vector is denoted as tf,i, which can

be calculated as

tf,i = ti +�P. (4.26)

Thus, the distribution of the processed sample vectors becomes N (�P,⇤).

Recall the definition of Mj under the normal condition, i.e., Mj ,
p
Nµ̂j/�j,

by denoting the jth column of P as pj, under the abnormal condition, Mj can

be calculated as follows,

Mj =
1

p
N

NX

i=1

tij
�j

+

p
N�pj

�j

. (4.27)

With the help of the central limit theorem, Mj converges in distribution to

N (
p
N�pj/�j, 1) for large N , i.e., Mf,j

d
���!
N!1

N (
p
N�pj/�j, 1). Thus, M2

j
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follows a non-centralized chi-square distribution with the non-central param-

eter N(�pj)2/�2
j
, and the characteristic function of M2

j
can be calculated

as

 Mj(t) ⇡ exp

"
itN (�pj)

2

�2
j
(1� 2it)

#
(1� 2it)�

1
2 . (4.28)

By following the same steps in the proof of Theorem 4.3.2, the characteristic

function of Rj can be derived as

 Rj(t) ⇡ exp

"
itN (�pj)

2

�2
j
(1� 2it)

#
(1� 2it)�1. (4.29)

Since the variables in ti’s are uncorrelated and follow Gaussian distribution, we

can see that the d variables are mutually independent. Thus, the characteristic

function of R can be obtained by

 R(t) ⇡ exp

"
itN

P
d

j=1 (�pj)
2

�2
j
(1� 2it)

#
(1� 2it)�d

= exp


itNk�⇤

�1
Pk2

1� 2it

�
(1� 2it)�d. (4.30)

So the results in Theorem 4.3.3 can be derived according to the property of

the non-centralized chi-square distribution.

Under Scaling Faults

Di↵erent from the o↵-set faults, the scaling faults change the variance

of the measurement but keeps the mean, such as the well-know precision

degradation and multiplicative faults in sensors. When this type of faults

occurs, the distribution of the sample vectors becomes N (0,K⇧K), where

K = diag(1, · · · ,j, · · · ,d). The distribution of the processed sample vec-

tor is thus N (0,PT
K⇧KP), which is the same as N (0, (PT

KP)⇤(PT
KP)).

Notice that in this case, PT
KP is not a diagonal matrix in general, thus ⌃̂

is not diagonal dominant even for largeN and the Rényi divergence calculation

in (4.7) no longer holds. The first term in (4.5) is related to the mean change,
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thus it approaches to zero when N is large. With this, the Rényi divergence

under scaling faults can be approximated as

D↵ ⇡ �
1

2(↵� 1)
ln

|↵⌃̂+ (1� ↵)⇤|

|⌃̂|↵|⇤|1�↵
. (4.31)

To help the calculations and analysis on (4.31), we further define t̃i =

ti(PT
KP)�1 = ti(PT

K
�1
P), and t̃i’s are samples of N (0,⇤). Define

ˆ̃µ =
1

N

NX

i=1

t̃i; (4.32)

ˆ̃
⌃ =

1

N

NX

i=1

(t̃i � ˆ̃µ)(t̃i � ˆ̃µ)T . (4.33)

We have that µ̂ = ˆ̃µ(PT
KP) and ⌃̂ = (PT

KP) ˆ̃⌃(PT
KP). For large N , ˆ̃

⌃

is diagonal dominant, from which we have ˆ̃
⌃ ⇡ diag{ ˆ̃⌃} = diag{ˆ̃�2

1 · · · ˆ̃�2
d
}

and ⌃̂ ⇡ (PT
KP)diag{ ˆ̃⌃}(PT

KP). By using this approximation in (4.31),

we have that

D↵ ⇡ �
1

2(↵� 1)
ln

|↵(PT
KP)diag{ ˆ̃⌃}(PT

KP) + (1� ↵)⇤|

|K|2↵|diag{ ˆ̃⌃}|↵|⇤|1�↵

= �
1

2(↵� 1)
ln

|K|
2
· |↵diag{ ˆ̃⌃}+ (1� ↵)(PT

K
�1
P)⇤(PT

K
�1
P)|

|K|2↵|diag{ ˆ̃⌃}|↵|⇤|1�↵

= �
1

2(↵� 1)
ln

|K|
2(1�↵)

· |↵diag{ ˆ̃⌃}+ (1� ↵)⇧̃|

|diag{ ˆ̃⌃}|↵|⇤|1�↵

,

where ⇧̃ , (PT
K

�1
P)⇤(PT

K
�1
P) = P

T
K

�1
⇧ K

�1
P.

When ↵ 2 (0, 1), we have ↵diag{ ˆ̃⌃} + (1 � ↵)⇧̃ > 0, the Hadamard’s

inequality can be applied in the above expression to obtain

D↵  Dup

↵
, �

1

2(↵� 1)
ln

Q
d

j=1 
2(1�↵)
j

Q
d

j=1

h
↵ˆ̃�2

j
+ (1� ↵)⇡̃jj

i

Q
d

j=1
ˆ̃�2↵
j
�2(1�↵)
j

=
1

2(↵� 1)

dX

i=1

"
ln2(↵�1)

j
+ ↵ ln

ˆ̃�2
j

�2
j

� ln
↵ˆ̃�2

j
+ (1� ↵)⇡̃jj

�2
j

#
,

where ⇡̃jj is the (j, j)th entry of ⇧̃.
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With slight abuse of notation, re-define Sj , ˆ̃�2
j
/�2

j
. As per Lemma 4.3.1,

we have that
p
N(Sj�1) approximately follows Gaussian distribution N (0, 2)

when N is large, i.e., for large N ,
p
N(Sj � 1)/

p
2 ⇠ N (0, 1). The upper

bound of the Rényi divergence can be calculated as

Dup

↵
=

1

2(↵� 1)

dX

j=1

�
ln2↵�2

j
+ ↵ lnSj � ln

⇥
↵Sj + (1� ↵)⇡̃jj/�

2
j

⇤ 
.

With the help of Taylor series around Sj = 1, we have

Dup

↵
=

dX

j=1

2

4aj

"p
N(Sj � 1)

p
2

#2

+ bj

p
N(Sj � 1)

p
2

+ cj

3

5+ o
⇥
(Sj � 1)2

⇤
,

(4.34)

where we have made the following definitions:

aj ,
↵

2N(1� ↵)

8
><

>:
1�

↵
h
⇡̃jj

�2
j
+ ↵

⇣
1� ⇡̃jj

�2
j

⌘i2

9
>=

>;
, (4.35)

bj ,
↵

p
2N

1� ⇡̃jj

�2
j

⇡̃jj

�2
j
+ ↵

⇣
1� ⇡̃jj

�2
j

⌘ , (4.36)

cj ,
1

2(1� ↵)
ln2(1�↵)

j
+

1

2(1� ↵)
ln


⇡̃jj

�2
j

+ ↵

✓
1�

⇡̃jj

�2
j

◆�
. (4.37)

Let S0 = {j|aj = 0}, S+ = {j|aj > 0} and S� = {j|aj < 0}. Dup

↵
can be

rewritten as

Dup

↵
⇡

X

j2S0

"
bj

p
N(Sj � 1)

p
2

#
+
X

j2S+

8
<

:aj

"p
N(Sj � 1)

p
2

+
bj
2aj

#2
9
=

;
| {z }

D1

�

X

j2S�

8
<

:�aj

"p
N(Sj � 1)

p
2

+
bj
2aj

#2
9
=

;
| {z }

D2

+C, (4.38)

where

C ,
dX

j=1

cj �
b2
j

4aj
. (4.39)
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Since when N is large,
q

N

2 (Sj � 1) ⇠ N (0, 1) and
q

N

2 (Sj � 1) + bj

2aj
⇠

N

⇣
bj

2aj
, 1
⌘
, we have that

hp
N(Sj�1)p

2
+ bj

2aj

i2
follows non-central Chi-square dis-

tribution with one degree of freedom and non-centrality parameter
b
2
j

4a2j
, i.e.,

�2
⇣
1,

b
2
j

4a2j

⌘
. Since the terms in D1 and D2 are mutually independent for dif-

ferent j, we have that D1 and D2 are linear combinations of independent

non-central Chi-square random variables. Further, Dup

↵
can be regarded as

a linear combination of Gaussian, positive and negative weighted non-central

Chi-square variables, but the distribution of Dup

↵
is intractable and remains

an open problem. To avoid the cases when Gaussian variables are included,

i.e., S0 6= ?, a subset of (0, 1) is considered as the new range for ↵. Specif-

ically, it should be noted that when Gaussian variables are provoked, i.e.,

at least one ↵ satisfies aj(↵) = 0, those ↵ values can be obtained as a

function of ⇡̃jj for given N and �j according to (4.35). By denoting those

↵ values as A=0 = {↵|aj(↵) = 0}, the new set of ↵ can be expressed as

A 6=0 = {↵|↵ 2 (0, 1),↵ /2 A=0}, which is considered as the new ↵ range. For

↵ 2 A 6=0, Dup

↵
can be further expressed as Dup

↵
= D1 �D2 +C. Via Lemma 2

in [78], by setting

�⇤1 =

P
j2S+

(2a2
j
+ b2

j
)

P
j2S+

⇣
2aj +

b2j

aj

⌘ , �⇤2 = �

P
j2S�

(2a2
j
+ b2

j
)

P
j2S�

⇣
2aj +

b2j

aj

⌘ , (4.40)

we have Y1 , D1/�⇤1 ⇠ �2(⌫⇤1, w⇤1) and Y2 , D2/�⇤2 ⇠ �2(⌫⇤2, w⇤2) approxi-

mately, where

⌫⇤1 =
(
P

j2S+
aj)

hP
j2S+

⇣
2aj +

b
2
j

aj

⌘i

P
j2S+

(2a2
j
+ b2

j
)

, (4.41)

w⇤1 =
1

4

⇣P
j2S+

b
2
j

aj

⌘ hP
j2S+

⇣
2aj +

b
2
j

aj

⌘i

P
j2S+

(2a2
j
+ b2

j
)

, (4.42)

⌫⇤2 =
(
P

j2S�
aj)

hP
j2S�

⇣
2aj +

b
2
j

aj

⌘i

P
j2S�

(2a2
j
+ b2

j
)

, (4.43)

w⇤2 =
1

4

⇣P
j2S�

b
2
j

aj

⌘ hP
j2S�

⇣
2aj +

b
2
j

aj

⌘i

P
j2S�

(2a2
j
+ b2

j
)

. (4.44)
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Thus, Dup

↵
can be written as Dup

↵
= �⇤1Y1 � �⇤2Y2 + C. By denoting PM2

as the MAR under scaling faults, PM2 can be calculated as

PM2 =P (Dup

↵
> D↵,th)

=P
✓
Y1 >

�⇤2

�⇤1
Y2 +

↵D↵,th � C

�⇤1

◆

=

Z +1

�1

Z +1

�⇤2
�⇤1

y2+
↵D↵,th�C

�⇤1

fY1(y1)fY2(y2) dy1 dy2.

Depending on whether D↵,th � C is positive, we have that

PM2 =

8
>>>>>><

>>>>>>:

R
+1

0


1�Q ⌫⇤1

2

✓
p
w⇤1,

q
�⇤2
�⇤1

y2 +
↵D↵,th�C

�⇤1

◆�
fY2(y2) dy2,

↵D↵,th � C > 0;R
+1

↵D↵,th�C

�⇤1


1�Q ⌫⇤1

2

✓
p
w⇤1,

q
�⇤2
�⇤1

y2 +
↵D↵,th�C

�⇤1

◆�
fY2(y2) dy2,

↵D↵,th � C  0.
(4.45)

By plugging the distribution of Y2, PM2 can be further calculated as

PM2 =

Z +1

(↵D↵,th�C)+

�⇤2

"
1�

1

2
Q ⌫⇤1

2

 
p
w⇤1,

r
�⇤2

�⇤1
y2 +

↵D↵,th � C

�⇤1

!#

⇥ e�
y2+⌫⇤2

2

✓
y2
⌫⇤2

◆w⇤2/4�1/2

Iw⇤2/2�1 (
p
⌫⇤2y2) dy2, (4.46)

where Iv(y) is a modified Bessel function of the first kind, and (↵D↵,th�C)+ =

max (0,↵D↵,th � C).

4.4 Proposed Detection Algorithm with Adap-

tive Divergence Order

In this section, we propose a detection algorithm considering the optimiza-

tion of the divergence order ↵ in terms of the FAR and MAR for multivariate

Gaussian data.

Under o↵-set faults, with respect to the NP-testing problem, ↵ value does

not change the FAR and MAR. Specifically, it can be observed that D↵,th

and ↵ appear as a ratio in both the FAR expression in (4.12) and the MAR
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expression in (4.25). When ↵ changes, by adjusting D↵,th, the same FAR and

MAR can be obtained.

As for the scaling faults, the value of ↵ has decoupled e↵ects on the FAR

and MAR, thus its optimization is useful. We can follow the NP-testing prob-

lem formulation to consider the joint optimization of ↵ and D↵,th. With the

help of the derived analytical formulas on the FAR and the MAR in (4.12)

and (4.46), the joint optimization problem can be formulated to optimize the

MAR under scaling faults subject to the given FAR requirement �, i.e.,

min
D↵,th,↵

PM2

s.t. PF  �.
(4.47)

The Lagrange method can be directly applied to solve this joint optimiza-

tion problem with respect to ↵ and D↵,th. Alternatively, it can be transfered

as a univariate unconstrained problem regarding to the divergence order ↵ to

relieve computational burdens. Specifically, for the case when the constraint

is tight, i.e., PF = �, from which D↵,th can be expressed as a function of ↵.

By replacing D↵,th with the function of ↵, the optimization problem in (4.47)

becomes univariate and unconstrained, which can be solved by exhaustive

search. When the FAR constraint is not tight for given ↵, the threshold can

be shifted to tight the constraint and reduce the MAR.

In practice, it needs to be judged whether to trigger the optimization prob-

lem in (4.47), since it is set up under scaling faults where the variance change

dominates the abnormal features. In order to obtain the preliminary knowl-

edge about the occurrence of variance changes, the k-sigma rule is adopted

and applied on Sj = �̂2
j
/�2

j
, since Sj conveys the variance change information

in the observed data and follows Gaussian distributions under the normal con-

dition as per Lemma 4.3.1. Specifically, if any Sj’s in n consecutive windows

satisfies that
p
N |Sj�1|/

p
2 > k, it is considered as the occurrence of variance

change faults and the optimization problem in (4.47) is triggered. For other

cases, ↵ is selected as 0.001 considering that excessive false alarms are major

problems in many practical alarming systems. Since the Rényi divergence is
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a monotonic increase function with respect to ↵, a smaller divergence order

under the normal condition induces a lower FAR.

According to the discussions above, our proposed detection algorithm is

summarized in Algorithm 4. There are two stages involved, namely, the o↵-

line training stage where historical normal data is processed and the on-line

detection stage in which observed data is used for abnormality detection in a

moving window. In the o↵-line training stage, the mean and covariance matri-

ces are firstly calculated from historical data by (4.32) and (4.33). The matrix

P is derived by the SVD, and the processed signal matrix can be calculated as

T = XP, whose dimension can be reduced by the given threshold of the per-

centage variance explained in T. Specifically, by sorting the elements in ⇤ =

diag{�2
1 · · · �2

d
} in a descending order, the explained percentage variance by

using the first dm elements can be calculated as
P

dm

i=1 �
2
i
/
P

d

i=1 �
2
i
. For a given

percentage variance threshold Vth, the reduced dimension dm can be deter-

mined as the minimum number of elements that satisfies
P

dm

i=1 �
2
i
/
P

d

i=1 �
2
i
�

Vth, i.e., dm = mindm

n
dm|

P
dm

i=1 �
2
i
/
P

d

i=1 �
2
i
� Vth

o
. More details can be re-

ferred to [43]. In the on-line detection stage, for each window of observed

data, the data matrix is first projected by the matrix P, then the mean vector

and covariance matrix of the estimated Gaussian distribution is obtained by

(4.32) and (4.33). If the variance change is detected with the help of k-sigma

rule, the fault coe�cients j’s are approximately estimated by matching the

diagonal elements of (PT
KP)⇤(PT

KP) with the covariance matrix of the

observed data ⌃̂, which is equivalent to assuming the abnormal distribution

has the same diagonal elements as the covariance matrix of observed data.

Thus, we have that j = Sj(pT

j
pj)�1, and the optimization problem in (4.47)

is triggered to obtain ↵ that minimizes the MAR. Otherwise, the constant

0.001 is assigned to ↵. Based on the ↵ value, the threshold D↵,th is calculated

by setting PF = �, and then used to determine whether an alarm should be

raised.
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Algorithm 4 Detection algorithm with adaptive divergence order and thresh-
old
Input: Training data under normal condition and observed data for detection.
Output: Hypothesis test results for (4.3), i.e., alarm states.
Initialization: Assign values to N and �.
O↵-line training: Estimate µ̂ and ⌃̂ by (4.32) and (4.33);

Find the matrix P and dm. Close

On-line detection:
1 while the window is filled by N new samples do

2 Calculate the processed observed data matrix T with T = XP;

Estimate µ̂ and ⌃̂ of T by Eqs. (4.32) and (4.33);
if Variance changes then

3 ↵ is obtained by solving (4.47);
4 else

5 ↵ = 0.001;
6 end

7 Calculate D↵ by (4.5);
Obtain D↵,th by solving PF = � with (4.12);
if D↵ > D↵,th then

8 Return Alarm state as 1; Save X and D↵ for further analysis;
9 else

10 Return Alarm state as 0;
11 end

12 end

13 Back to Step 1;

4.5 Case Studies

In this section, the asymptotic behaviors of the Rényi divergence are stud-

ied in the first subsection, while detection results are illustrated with one-

dimensional and multi-dimensional data in the next two subsections, respec-

tively.

4.5.1 Asymptotic Behavior Analysis

In this subsection, the asymptotic behavior the Rényi divergence under

the normal condition and under the o↵-set and scaling faults is studied, re-

spectively. In the following simulation, four cases with di↵erent dimensions
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Figure 4.1: Comparison between the theoretical FAR result in (4.12) and the FAR
obtained from the Monte Carlo simulations.

are considered, namely d = 1, 3, 5, 7. The divergence order ↵ is fixed as 0.6

and the window size is set as 100.

First, we study the FAR calculation. The data matrix X is generated from

the multivariate Gaussian distribution with zero mean and identical variance

matrix, i.e., P = I, which is equivalent to assuming that the entries of xi’s

are i.i.d. and follow N (0, 1). In the Monte Carlo simulations, there are 10000

Rényi divergence values calculated to obtain the FAR curve. The comparison

between the theoretical FAR result calculated in (4.12) and that obtained

from the Monte Carlo simulations is shown in Figure 4.1. From Figure 4.1,

we can see that the theoretical FAR derived in (4.12) matches well with that

obtained from the Monte Carlo simulations.

Second, the o↵-set fault is studied. In the simulation, the normal condition

is set as the same as that under the FAR comparison, while the bias parameter

vector is set as �(j) = 0.1j, j = 1 · · · d, which means that the jth entry of

xi’s are i.i.d. and follow N (0.1j, 1). In the Monte Carlo simulation, there are
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Figure 4.2: Comparison between the theoretical MAR result in (4.25) and the
MAR obtained from the Monte Carlo simulations.

10000 windows of data generated to obtain the MAR curve. The comparison

results between the theoretical MAR calculation in (4.25) and the Monte Carlo

simulation results is depicted in Figure 4.2. It can be seen from Figure 4.2

that the theoretical MAR curve derived from (4.25) almost overlaps with that

from the Monte Carlo simulation.

Third, the scaling fault is considered. The comparison between the the-

oretical MAR result in (4.46) and the MAR result obtained from the Monte

Carlo simulations is shown in Figure 4.3. The fault parameter j in K is set as

j = 0.6+0.15j, j = 1 · · · d. The multivariate Gaussian distribution N (0,K)

is used to generate 10000 windows of data to calculate the Rényi divergence.

It can be seen that the theoretical calculation matches that from the Monte

Carlo simulations but the error is greater than the two former cases. This

phenomenon is possibly owing to the additional Taylor expansion applied for

Dup

↵
.
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Figure 4.3: Comparison between the theoretical MAR result in (4.46) and the
MAR obtained from the Monte Carlo simulations..

4.5.2 Detection with One-Dimensional Data

In this subsection, the proposed Algorithm 4 is applied to the one-dimensional

data. In the simulation, data under the normal condition follows Gaussian dis-

tribution denoted as N (0, 1). The window size is chosen as 100, i.e., N = 100.

First, the optimization result of (4.47) under di↵erent  values is depicted

with Figure 4.4, where the FAR is required to be less than 5%, i.e., � = 5%.

It can be seen that when  2 (0.79, 1), the optimal ↵ is an increasing function

of  until  = 0.89, then it keeps stable around 1. For  2 (1, 1.21), it

approaches to 0, followed by an increasing trend to the value of 0.5 when 

rises from 1.21 to around 1.63. When the variance change becomes significant,

i.e.,  2 (0, 0.79) or  2 (1.21, 2), the optimal ↵ is 0.5.

Second, the detection performance of the proposed Rényi based method is

compared with the KLD based method. In the one-dimensional case, the KLD

between two Gaussian distributions N (µ, �2) and N (µ̂, �̂2) can be calculated
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as per [144]:

Dkl = ln
�

�̂
+

�̂2 + (µ� µ̂)2

2�2
�

1

2
. (4.48)

In this experiment, four abnormal cases where data follows the Gaussian

distributions N (0.4, 1), N (0, 0.752), N (0, 1.252) and N (0.1, 0.82) are consid-

ered, which correspond to one constant bias fault, two multiplicative faults

with  range of (0, 0.79) and (1.21, 2), and one combining the constant bias

and multiplicative faults, respectively. The number of windows is 1000 under

the normal condition and under each of the four abnormal conditions. In de-

tecting the variance change, 2-sigma rule is applied in 2 consecutive windows,

i.e., k = n = 2.

The FAR versus DR curves are shown in Figure 4.5. In Figure 4.5 (a), it

shows the comparison under the o↵-set fault N (0.4, 1). We can see that the

performance of the Rényi divergence and the KLD based method is exactly

the same, which agrees with our analysis that di↵erent divergence orders do

not change the FAR-MAR curve. The comprehensive performance under the

two multiplicative faults, namely N (0, 0.752) and N (0, 1.252), are depicted

in Figure 4.5 (b), while Figure 4.5 (c) shows the results under the combined

fault N (0.1, 0.82). The overall performance under the above four faults are

depicted in Figure 4.5 (d). We can see that under the latter three faults, the

proposed algorithm achieves better DR than the KLD based method.

4.5.3 Detection with Multi-Dimensional Data

In this subsection, the detection performance of the proposed scheme in

Algorithm 4 with multi-dimensional data is shown and compared with the

KLD, the Hotelling’s T 2 and the SPE statistics. The KLD for two multivariate

Gaussian distributions denoted as N (µ,⌃) and N (µ̂, ⌃̂) can be expressed

according to [144] as

Dkl =
1

2

dX

i=1


ln

✓
�2
i

�̂2
i

◆
+

�̂2
i

�2
i

+
(µi � µ̂i)2

�2
i

� 1

�
. (4.49)
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Figure 4.4: Optimal ↵ with di↵erent .

The Hotelling’s T 2 measures the magnitude of the variation remaining in each

sample after projection through the PCA model. It can be calculated as the

sum of the normalized squared scores as

T 2 = xP⇤
�1
P

TxT . (4.50)

The SPE quantifies the residuals of lack of fit with the PCA model, which can

be derived as

SPE = x(I �PP
T )xT . (4.51)

The multi-dimensional data model can be expressed as follows:

x =As+ ✏, (4.52)
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Figure 4.5: FAR v.s. DR comparison between the Renyi divergence and the KLD:
(a) under the constant bias fault; (b) under the multiplicative fault; (c) under the
combined fault; (d) overall performance

where

A =

2

66666666664

�0.31 �0.082 �0.96 0.001
�0.324 0.736 �0.216 0.001
�0.007 �0.396 �0.571 0.001
�0.409 �0.344 �0.005 0.001
�0.006 0.011 0.637 0.001
�0.566 �0.016 0.021 0.001
0.001 0.003 0.013 �0.568
�0.003 0.004 0.009 0.737

3

77777777775

,

x is 8-dimensional measured data, s is a four-dimensional multivariate Gaus-

sian distributed variable, ✏ is added in the measured data to mimic the noise

with zero-mean and signal-to-noise ratio (SNR) 10 dB. Under the normal

condition, s follows the standard Gaussian distribution, i.e., s ⇠ N (0, I);

while a multiplicative fault with K = diag(0.6, 0.7, 1.1, 0.8, 1.2, 1, 1, 1) is con-

sidered under the abnormal condition. The window size is chosen as 100, i.e.,

N = 100. There are 10000 windows of data generated under both the normal

and abnormal conditions from (4.52).
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In the training stage, the SVD is firstly performed on 30000 data points

generated under the normal condition. From the SVD, we have that ⇤ =

diag(2.71, 1.91, 1.65, 1.37, 0.093, 0.092, 0.091, 0.089). By setting the variance

percentage threshold as 95%, i.e., Vth = 95%, the dimension is reduced from

8 to 4, i.e., d = 8 and dm = 4. Based on the loading matrix P obtained from

the SVD, the SPE and the Hotelling’s T 2 statistics are calculated with (4.50)

and (4.51), respectively. The KLD is also applied on the projected data and

calculated by (4.49). In the Step 5 of the proposed algorithm, two consecutive

estimated variances (n = 2) are examined with the help of 2-sigma rule (k = 2)

to trigger the optimization process, i.e., any Sj’s in two consecutive windows

are out of the 2-sigma zone, the variance change is detected.

The FAR versus DR curves are shown in Figure 4.6. There are 1000 FAR-

DR points obtained for each method. It can be seen that the proposed method

based on the Rényi divergence with an adaptive order outperforms the rest

three methods. Particularly, when the FAR is required to be less than 5%,

i.e., � = 0.05, the true FARs are 4.6%, 4.7%, 5.0% and 4.9% for the proposed

method, the KLD based method, the SPE and the Hotelling’s T 2, respectively;

while the proposed method achieves the highest DR (76%), which is 8% higher

than the KLD based method. Both the proposed and the KLD based methods

are way better than the SPE and the Hotelling’s T 2.

4.6 Summary

In this chapter, the Rényi divergence with the divergence order between

0 and 1 is proposed as the detection statistic with the multivariate Gaussian

distributed data. By adding the divergence order to the KLD, the Rényi

divergence covers a family of divergences and o↵ers one more degree of freedom

to be tuned for performance improvement. The FAR and MAR are considered

as the detection performance measures. We first analytically derived the FAR

formula based on the result that the scaled Rényi divergence asymptotically

follows chi-square distribution when the number of samples is large. Under o↵-
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Figure 4.6: FAR v.s. DR comparison among the Renyi divergence, the KLD, the
SPE and the Hotelling’s T 2.

set faults, it has been proved that the Rényi divergence follows non-centralized

chi-square distribution for large sample size, according to which the MAR is

derived analytically. It is observed the divergence order and the threshold

appear as a ratio in both the FAR and MAR under o↵-set faults. Otherwise

stated, di↵erent divergence orders will not a↵ect the FAR and MAR, since the

threshold can be adjusted accordingly. As for the scaling faults, the MAR is

formulated by regarding the Rényi divergence as a sum of positive and negative

weighted non-centralized chi-squared random variables. Since the divergence

order and the threshold have decouple e↵ects on the FAR and MAR, the

optimization problem with respect to the divergence order is modeled as to

minimize the MAR under scaling faults subject to the given FAR requirement.

In order to acquire preliminary knowledge on the occurrence of scaling faults,

the k-sigma rule is utilized to detect the variance changes. Triggered by the

k-sigma rule, the optimization process of the adaptive divergence order is

incorporated in the proposed detection algorithm considering both the FAR
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and MAR.

In the simulation, first, the theoretical results on the FAR and MAR under

the normal condition and two types of faults are verified with Monte Carlo

simulations for multivariate Gaussian data. It shows that the theoretical FAR

and MAR results match well with those obtained from the Monte Carlo simu-

lations. Second, the proposed algorithm is applied on one-dimensional Gaus-

sian data and compared with the KLD based method. It shows that the Rényi

divergence based method outperforms the KLD based one with higher DR un-

der the same FAR requirement. Third, under the multi-dimensional data, the

proposed method is compared with the KLD based method and two bench-

mark statistics, namely the Hotelling’s T 2 and the SPE. The proposed Rényi

divergence based method achieves better DR than the rest three methods with

the same FAR requirement.
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Chapter 5

Conclusions and Future Work

This chapter concludes the thesis. A summary of the main results is pre-

sented in Section 5.1, while Section 5.2 contains potential future directions.

5.1 Conclusions

Targeting at improving e↵ectiveness and reliability of abnormality detec-

tion systems, this thesis conducts performance analysis and proposes new

detection design schemes for linear alarm filters, the KLD based methods and

the Rényi divergence based methods. The contents in this thesis can be sum-

marized as follows:

1. The elasticity, a local sensitivity measure, is proposed to quantify the

sensitivity of the detection performance over uncertainties in the trip

point and over measurement noise. Analytical results on the sensitivity

are derived using the Gaussian kernel based method, where there is no

constraint on data distributions. Then, a linear filter design problem

is formulated based on these analytical sensitivity measures in a con-

strained minimization structure. In the optimization problem, the ana-

lytical sensitivity results are considered as constraints, based on which

the goal is to minimize the summation of the FAR and MAR. The grid

search is used to find the optimal sensitivity-based linear filter.

2. The KLD based abnormality detection scheme is investigated for i.i.d.

113



data from GGDs with shape parameters larger than 1. First, an analyt-

ical formula of the KLD from the estimated GGD of current samples to

that of historical data under the normal condition is derived analytically.

Second, by considering the randomness in the sample mean and sample

variance jointly and assuming there is no change in the shape parameter,

a constant threshold scheme is derived with the help of the characteristic

function and the central limit theorem. Further, an adaptive threshold

method is proposed where the conditional KLD distributions are derived

by considering the randomness in the sample mean and the sample vari-

ance separately.

3. A new detection scheme based on the Rényi divergence with the diver-

gence order between 0 and 1 is proposed for i.i.d. multi-variate Gaussian

data. First, the FAR formula is analytically derived based on the result

that the scaled Rényi divergence asymptotically follows chi-square distri-

bution when the number of samples is large. As for the MAR calculation,

both o↵-set and scaling faults are considered. Specifically, under o↵-set

faults, it has been analytically shown that the Rényi divergence asymp-

totically follows a non-centralized chi-square distribution, and di↵erent

divergence orders do not a↵ect the FAR and MAR. Under scaling faults,

the MAR is formulated analytically as a function of the divergence or-

der and threshold, which have decoupled e↵ects on the FAR and MAR.

Then, a detection scheme is proposed with an adaptive divergence or-

der, which is calculated to minimize the MAR under the scaling faults

subject to the given FAR requirement.

Intensive case studies have been conducted to verify the derived analytical

performance results and show the e↵ectiveness of the proposed abnormality

detection schemes.
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5.2 Future work

Several future directions are demonstrated in this section. A possible ex-

tension of the sensitivity analysis results is introduced in the first subsection,

while the next two subsections illustrate potential new aspects and methods.

5.2.1 Robust Detector Design

The sensitivity measures used in this thesis are the local sensitivity mea-

sures that consider the derivative of the detection performance over measure-

ment errors. However, it is also crucial to find a proper global sensitivity

measure to quantify the overall robustness in an interval of inferences. Since

the local sensitivity measure used in Chapter 2 can only quantify the response

behavior against slight variable changes, global sensitivity measures called in-

fluence function and sensitivity curve [103] can be used in the filter sensitivity

analysis to measure the system robustness over the entire parameter changing

range. This includes two potential directions, i.e., to apply the global sensi-

tivity measures into linear filters and to conduct sensitivity analysis for the

divergence based methods.

The focus here will be the global sensitivity measure selection and the

optimization problem formulation. Specifically, since both linear filters and

the divergence based methods are essentially data-based statistical methods,

it is possible to conduct sensitivity analysis with the help of robust theory

in the robust statistical field. Actually, the influence function and the sen-

sitivity curve are widely used in the robust statistic, which is defined to be

statistics with good performance for data drawn from a wide range of proba-

bility distributions, especially for distributions that are not normal [65]. For

example, the influence function in [107] describes the e↵ect of an infinitesi-

mal contamination at the collected data point, standardized by the mass of

the contamination; and the sensitivity curve in [98] represents the e↵ect of

shifting an observation slightly to a neighbor point, i.e., add an observation

at one point and remove one at another point. In the robust statistic theory,
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both the influence function and the sensitivity curve should be bounded, thus

a robust detector can be designed.

5.2.2 Performance Analysis and Design for Combined

Data-Based Methods

The performance analysis and design schemes in this thesis are proposed

based on simple abnormality detection schemes. It is also interesting to explore

the performance of combined data-based methods.

In recent literature, the combination of two or more data based methods

are gaining more attention. Precisely, in [11], a PCA based method combined

with fuzzy logic filters was proposed to improve the FAR without sacrificing

the detection delay. In [28], a probability-relevant PCA method was proposed

and combined with the support vector machine to achieve good detection

results with applications on high-speed trains. In [40], a combined method of

hidden Markov and Bayesian network models was proposed and applied on the

Tennessee Eastman process to show its e↵ectiveness. However, the detection

performance was evaluated from case studies instead of analytical analysis in

[11, 28, 40].

According to the above articles, it is possible that a combined detection

scheme with the joint design of parameters can outperform each of the indi-

vidual detection scheme. In other words, it is meaningful to explore a properly

combined method under the analytical performance analysis and design struc-

ture, which can be done with the help of statistical tools and existing results

for each single detection scheme. The analysis can be conducted starting from

basic but powerful detection schemes, for which the analytical results on the

FAR and MAR are available in the literature. For example, as three basic

method in alarm monitoring, filters, dead-bands and delay-timers are studied

in [116], [5] and [3] respectively, where the FAR, MAR and expected detection

delay were derived analytically. Besides, the analytical performance of the

PCA based detection methods was studied in [147]. According to the signal

flow of the combined methods and the performance analysis steps in the lit-
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erature, performance measures of a combined method can be derived, based

on which the corresponding design problem can be formulated.

5.2.3 Exploring Model-Data-Based Methods

Despite of the combination among data-based methods, it is also promis-

ing to combine the model-based and data-based methods, which are still at

the preliminary stage. It has been shown in [76] that proper data-based meth-

ods, which process residuals in the model-based methods, can enhance the

detection performance of a model-based detection method in terms of deal-

ing with model uncertainties and measurement noise. In the literature, there

are only a few articles in this area. Specifically, in [48], the model-based

methods are combined with linear filters to achieve robust performance under

exogenous disturbances for small unmanned aerial vehicles. In [76], a residual

selection algorithm was developed that combined the model-based and data-

based methods. The combination maximizes detection performance by finding

proper residual generators.

Other than the combinations mentioned above, the particle filter is still

among one of the most promising tools to combine the model-based and data-

based methods, since it bridges system models and process data with the

help of Bayesian frameworks. Essentially, the particle filter use sequential

Monte Carlo methods to approximate the optimal filtering by representing

the PDF with a swarm of particles; thus, it is able to handle any functional

nonlinearity or measurement noise of any probability distributions. It has

attracted much attention in the nonlinear non-Gaussian state estimation field.

In the literature, an adaptive particle filter was firstly proposed in [85], where

simulation results showed that the adaptive particle filter was superior than

the extended Kalman filter. Later, a re-sampling method was applied into the

particle filter to avoid the particle degeneracy, where after several iterations

the whole probability mass was focused on a few particles in [121]. From the

articles above, we can see that the particle filter contains model knowledge
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via probability information. So it is possible to be related with other data-

based methods such as divergence based methods and likelihood ratio based

methods, where probability information is extracted as abnormal features.
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[81] Leite, G. d. N. P., Araújo, A. M., Rosas, P. A. C., Stosic, T., and Stosic,

B. (2019). Entropy measures for early detection of bearing faults. Physica

A: Statistical Mechanics and its Applications, 514:458–472.

[82] Li, B., Jing, Y., and Xu, W. (2017). A generic waveform abnormality

detection method for utility equipment condition monitoring. IEEE Trans-

actions on Power Delivery, 32(1):162–171.

[83] Li, L., Ding, S. X., Qiu, J., Yang, Y., and Zhang, Y. (2016). Weighted

fuzzy observer-based fault detection approach for discrete-time nonlinear

systems via piecewise-fuzzy Lyapunov functions. IEEE Transactions on

Fuzzy Systems, 24(6):1320–1333.

[84] Lin, C. E., Ling, J.-M., and Huang, C.-L. (1993). An expert system for

transformer fault diagnosis using dissolved gas analysis. IEEE Transactions

on Power Delivery, 8(1):231–238.

[85] Liu, M., Zang, S., and Zhou, D. (2005). Fast leak detection and location

of gas pipelines based on an adaptive particle filter. International Journal

of Applied Mathematics and Computer Science, 15(4):541.

[86] Liu, W., Wang, Y.-L., Liu, J., Huang, L., and Hao, C. (2017). Perfor-

mance analysis of adaptive detectors for point targets in subspace interfer-

128



ence and Gaussian noise. IEEE Transactions on Aerospace and Electronic

Systems, 54(1):429–441.

[87] Ma, S., Chu, F., and Han, Q. (2019). Deep residual learning with de-

modulated time-frequency features for fault diagnosis of planetary gearbox

under nonstationary running conditions. Mechanical Systems and Signal

Processing, 127:190–201.

[88] Mansouri, M., Al-Khazraji, A., Hajji, M., Harkat, M. F., Nounou, H.,

and Nounou, M. (2018). Wavelet optimized EWMA for fault detection and

application to photovoltaic systems. Solar Energy, 167:125–136.

[89] Marks, N. B. (2007). Kolmogorov–Smirnov test statistic and critical val-

ues for the Erlang-3 and Erlang-4 distributions. Journal of Applied Statis-

tics, 34(8):899–906.

[90] Meskin, N., Khorasani, K., and Rabbath, C. A. (2010). A hybrid fault

detection and isolation strategy for a network of unmanned vehicles in pres-

ence of large environmental disturbances. IEEE Transactions on Control

Systems Technology, 18(6):1422–1429.

[91] Miao, Y., Zhao, M., Makis, V., and Lin, J. (2019). Optimal swarm de-

composition with whale optimization algorithm for weak feature extraction

from multicomponent modulation signal. Mechanical Systems and Signal

Processing, 122:673–691.

[92] Muralidharan, V. and Sugumaran, V. (2012). A comparative study
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Leibler divergence. IEEE Transactions on Information Theory, 60(7):3797–

3820.

[123] Van Nguyen, H., Rezatofighi, S. H., Vo, B.-N., and Ranasinghe, D. C.

(2018). Online UAV path planning for joint detection and tracking of mul-

tiple radio-tagged objects. arXiv preprint arXiv:1808.04445.

[124] Varanasi, M. K. and Aazhang, B. (1989). Parametric generalized Gaus-

sian density estimation. The Journal of the Acoustical Society of America,

86(4):1404–1415.

[125] Venkatasubramanian, V., Rengaswamy, R., and Kavuri, S. N. (2003a). A

review of process fault detection and diagnosis: Part II: Qualitative models

and search strategies. Computers & Chemical Engineering, 27(3):313–326.

[126] Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., and Yin, K.

(2003b). A review of process fault detection and diagnosis: Part III: Process

history based methods. Computers & Chemical Engineering, 27(3):327–346.

[127] Walck, C. (2007). Handbook on statistical distributions for experimen-

talists. University of Stockholm Internal Report SUF-PFY/96-01.

[128] Wang, J., Yang, F., Chen, T., and Shah, S. L. (2015). An overview

of industrial alarm systems: Main causes for alarm overloading, research

status, and open problems. IEEE Transactions on Automation Science and

Engineering, 13(2):1045–1061.

[129] Wang, R., Edgar, T. F., Baldea, M., Nixon, M., Wojsznis, W., and

Dunia, R. (2018). A geometric method for batch data visualization, process

monitoring and fault detection. Journal of Process Control, 67:197–205.

133



[130] Wang, Z. and Shang, H. (2015). Kalman filter based fault detection for

two-dimensional systems. Journal of Process Control, 28:83–94.

[131] Wu, M. S. Y. (1995). Evaluation of optimum weights and average run

lengths in EWMA control schemes. Technical report, University of Toronto.

[132] Xiong, Y., Jing, Y., and Chen, T. (2017). Performance sensitivity anal-

ysis of linear alarm filters. In Proceedings of the 2017 American Control

Conference, pages 4424–4429. IEEE.

[133] Xiong, Y., Jing, Y., and Chen, T. (2019). Abnormality detection based

on the Kullback–Leibler divergence for generalized Gaussian data. Control

Engineering Practice, 85:257–270.

[134] Yang, F., Shah, S. L., and Xiao, D. (2010). SDG (signed directed graph)

based process description and fault propagation analysis for a tailings pump-

ing process. IFAC Proceedings Volumes, 43(9):50–55.

[135] Yang, H. and Saif, M. (1995). Nonlinear adaptive observer design for

fault detection. In Proceedings of the 1995 American Control Conference,

volume 2, pages 1136–1139. IEEE.

[136] Yang, X., Chen, W., Li, A., Yang, C., Xie, Z., and Dong, H. (2019).

BA-PNN-based methods for power transformer fault diagnosis. Advanced

Engineering Informatics, 39:178–185.

[137] Yiakopoulos, C., Gryllias, K., Chioua, M., Hollender, M., and Anto-

niadis, I. (2016). An on-line SAX and HMM-based anomaly detection and

visualization tool for early disturbance discovery in a dynamic industrial

process. Journal of Process Control, 44:134–159.

[138] Yin, S., Ding, S. X., Haghani, A., Hao, H., and Zhang, P. (2012). A

comparison study of basic data-driven fault diagnosis and process moni-

toring methods on the benchmark Tennessee Eastman process. Journal of

process control, 22(9):1567–1581.

134



[139] Youssef, A., Delpha, C., and Diallo, D. (2016). An optimal fault de-

tection threshold for early detection using Kullback–Leibler divergence for

unknown distribution data. Signal Processing, 120:266–279.

[140] Yu, J. (2012). A nonlinear kernel Gaussian mixture model based in-

ferential monitoring approach for fault detection and diagnosis of chemical

processes. Chemical Engineering Science, 68(1):506–519.

[141] Yu, J. and Yan, X. (2019). Active features extracted by deep belief

network for process monitoring. ISA Transactions, 84:247–261.

[142] Yu, Y., Zhu, D., Wang, J., and Zhao, Y. (2017). Abnormal data detec-

tion for multivariate alarm systems based on correlation directions. Journal

of Loss Prevention in the Process Industries, 45:43–55.

[143] Zames, G. and Francis, B. (1983). Feedback, minimax sensitivity, and

optimal robustness. IEEE Transactions on Automatic Control, 28(5):585–

601.

[144] Zeng, J., Kruger, U., Geluk, J., Wang, X., and Xie, L. (2014). Detecting

abnormal situations using the Kullback–Leibler divergence. Automatica,

50(11):2777–2786.

[145] Zeng, Z., Tan, W., and Zhou, R. (2017). Computation of performance

indices for generalized delay-timers. In Proceedings of the 2017 American

Control Conference, pages 4803–4808. IEEE.

[146] Zhang, K., Hao, H., Chen, Z., Ding, S. X., and Peng, K. (2015). A

comparison and evaluation of key performance indicator-based multivari-

ate statistics process monitoring approaches. Journal of Process Control,

33:112–126.

[147] Zhang, K., Shardt, Y. A., Chen, Z., and Peng, K. (2017). Using the

expected detection delay to assess the performance of di↵erent multivariate

135



statistical process monitoring methods for multiplicative and drift faults.

ISA Transactions, 67:56–66.

[148] Zhang, X., Wang, J., Liu, Z., and Wang, J. (2019). Weak feature en-

hancement in machinery fault diagnosis using empirical wavelet transform

and an improved adaptive bistable stochastic resonance. ISA Transactions,

84:283–295.

[149] Zhang, Y., Chen, S., Li, J., and Jin, S. (2014). Leak detection monitoring

system of long distance oil pipeline based on dynamic pressure transmitter.

Measurement, 49:382–389.

[150] Zhao, Y., Liu, P., Wang, Z., Zhang, L., and Hong, J. (2017). Fault and

defect diagnosis of battery for electric vehicles based on big data analysis

methods. Applied Energy, 207:354–362.

136




