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ABSTRACT

.

The flow in a curved channel is a complicated three
dimensional problegb It is important, but difficult, to
fully understand the phenoﬁenon with the existing knowledge.
The increased concern about river bank eresion and river
heandering in general has increased the demand for
theoretical and empirical studies which can predict attack

\ -
velocities on the outer bank of a meandering alluvial .
channel.
-

The purpose of this study is to examine mechanics- of

flow behavior in a bend; use the existing data to develop

longitudinal velocity.distribution curves; predict
distributions of erosive attack onathe banks of curved
channels; and determine the startinﬁ'énd ending pqQints for
side bank protection. It is hoped that the scales which ‘are
derived in this study have gome-pragticél value in.

minimizing the cost Qf bank protection works.

iv :
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1. Introduction

River bank erosion 1s a very common and serious problem
in curved channels. Thousands of hectares of valuable land
are destroyed by bank erosion. In Canada, baﬁk stabilization
ﬂq:ks in;olve the expenditure of millions of dollars every
year. The 1mmediate practical interest has been in
developing methods to stablilizeAthe streams and prevent
further progression of tﬁe meanders. The design of
stabilization works 1s hampered however at present by a lack
of prediction methods f6r the erosive force of curved

channel flows. This leads’ to costly overdesigned or

unreliable protection. 0

In the past three decades many investigators have
contributed their efforts to studying this complicated three
dimensional flow pheﬁomenon. However, results from these
studies were seldom correlated with each other. This study
has tried to combine data from previous significant
investigationé in ordetr to derive generally appplicable
results. As a fifst attempt, the amount of data was reduced
by considerng only flat bed @ ume data. In general, more
detailed data was available which was obtained under more

controled circumstances.

It is of interest to accomplish the following items :
(1) Study mechanics of flow behavior in the bend.
(2) Use the existing data to develop longitudinal

distribution curves.



(3) Predict distribution of erosive attack on the

banks of curved channels.

ta

(4) Determine the critical points for starting and

ending or changing the grsggtion of side bank %
protection. ‘
e ? ) .
Finally, it is hoped that these findings may ulftimately-
have practicai value in determi;ing the degree and areal

extent of protective works required to stabilize natural

. stream channels.
-

Chapters 2 and 3 of this study review the significant
theoretical developments and present a theoretical analysis
in which equétigns which govern the longitudinal velocity
distribution through the bend are developed. These equations

lead to some understanding the flow characteristics. Chapter
/

4 reviews the significant experimental investigafions of
flow in channel  bends. Chapter 5 is an analysis of these

experiments. The analysis method is to define channel zones,_.

r

collect data from each experiment, develop longtitudinal

velocity distribution curves, and compare and correlate the

|

results. Chapter 6 present§~an\application procedure,_wﬁich

1
i
I

may be used in practical river engineering designs. |

!

e



2. Review of the Significant Theoretical Studies

\
2.1 Introduction ‘ ‘
|
The purpose of this research 1s to develop some scales
useful in the prediction of erosion force on ths baﬁks of a
curved channel. Therefore, the theoretical study will only

focus on the derivation of the longitudinal velocity

distribution along the outer banks.

Of the many theoretical analyses in the literature two
have been selected because they are relatively simple and
essentially one dimensional. The assumptions made ‘in these
two models are steady, subcritical flow in alluvial channel
bends with unifcrm sediment and constant width. The radius
of the curves are large compared to the width and the
longitudinal velocity is large compared with the'transverse,
velocity. The Chezy number C was assumed the same o <
everywhere. These models were both intended for the
prediction of the bed configuration and therefore provided
an estimation of the velocity distribution.

2.1.1 Co-ordinate System
&

The co-ordinate system will be based on Figures 2.1 and
2.2, where x and u.are the longitudinal direction and
velocity, z and w are the lateral direction and velocitY}

and y-and v are the vertical direction and veloc{ty. The
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radius of curvature of the channel centerline is R.. The
o
channel width is B and the average flow depth across -the

channel 1s given by H_.

The radius of curvature of any point across the channel
is given by r which is related to R_. and z \

L .
r= R+ z [2.1]

h (refer to Figure 2.2) is the elevation of the water
surface above H_  for a channel with a flat bed . The depth

of flow is represented by H and is given by:

H= H + h - [2.2]

M
“2.2 odgaard (1986)

This theoretical study was for a steady, subcritical,

turbulent flow in alluvial channel curves with’uniform bed e

4 -

sediment.%It was assumed that the banks affected the flow

‘pattern within a distance of about one water depth. Othér

—,

*limitations were:
1. the cpannel width was constant;
¥ ' T
2. the centerline radius of curvature was large

compared with channel_widtﬁ; N
3. the flow depth was small compared with the

width;

B



4. cross-channel (transverse) velocity components

were small compared with longigudinal velocity

components;

<

5. the turbulence was isotropic.

L4 -~

2.2.1 Governing Equations

AJ
The equat@gns of motion for the longitudinal and

-

transverse velocity'components could be given as follows (in

the present coordinate system):

du ou ou uw 9 du : :
usy Y3y w3z * L = 9S 5;(63;) [2.3]
2
w Y 22w
uzy —= g5, + ay(eay) [2.4]

local radius of curvature

La
i}

eddy viscosity

m
1}

S and S, = longitudinal and transverse slope of the

water surface, respectively.

Under the aforemehtiqned conditions, only one friction
* o
(Reynolds Stress) term was considered in each equation; and

viscous terms were neglected. The equation of motion for the

1

vertical velocity component was reduced to the hydrostatic

L]

condition. b



The velocity profile for longitudinal velocity, u, was

assumed to be given by the traditional power law

u _m+tl o y,i/m .
=" m (H) (2.5]
- o
where
u = depth averaged velocity -
\
H = water depth : “ .
m = friction parameter (velocity profile exponent)

\ The parameter m was related to the shear velocity u,,

%
Darcy-Weisbach's friction factor f, Chezy coefficient C and ,

non-dimensional coveyance C, as )

KU 8 '
m= 5 T K/ F T kC/Vg= «C, [2.6]
where t
' ’
‘. x = Von Karman's constant = 0.4
u, = (%)@5; r= bed shear stress; p = fluid density.

°

.
2.2.2 Reduction of Equations .
v

The solution strategy for longitudinal velocity
distribution, consisted.of: (1) converting Equation 2.4 into

an ordinary differential equation for w at the wéter‘surface
¢ } o
w,; (2) converting Equation 2.3 into an ordinary
7 v .

differential equation for u. o £



. ou
With e = «ku,y(1-y/H); and 3y - u,/{xy), Equation 2.3,

taken at water surface y = H (subscript s denoted the

velocity at water surface), was reduced to
du Jdu du u_w u.’
s S s S S . - *
Ugx T Vedy T Wsaz =95 "W (2.7]

v

or, in terms of u, with u, = ku/m, v_= 0 and u_, = u(m+1)/m
-~
1 (m1 LN s - (M), (2 . 2 (2 g)
2 m ox - 9 m 'Ys'r "3z :

Along the channel centerline, both u and water depth H were
practically constant (De Vriend and Geldof 1983; Kikkawa, et
al 1976; Odgaard 1984; Thorne, et al 1983) and the

centerline form of Equation 2.8 became

[2.9]

in which gS_ is the last term on the right-hand side of
Equation 2.8 taken at*;=r:. Subscript c denoted the
centerline values. By introducing the non-dimensional
streamwise coordinate o=x/B, dividing bf;ﬁ:, and using
4/Equation 2.9, @quatioﬁ‘z.e took the folldwing form along a

path at constant distance from the channel centerline:

d,-u 2 | Ho 5 2 _Reoom .2 ‘
Qda( T )+ G ( 5. )*.= G ¢ (mc) [%.10]

P



.8

10

in which

2K2

- B
6= (m+1) Hc . : [2.,‘1]]

Wwhen du’/do=0, which will occur in the fully developed part

of long, constant-radius curves, Equation 2.8 yielded

U .2 .m,2 B R
(=)= ()" g \\—er[2.12]‘,

. . - 2
in which u
-~ [o4

H R
= =M ()2 :

With p=( 5’ )2, Equatibn 2.10 was reduced tos

[+

d¢ 4wy = g ’ ' [2.14]
do : _
in which
H, |
k=" G "
Re' m .2
q= G ?-‘(a:) .

This analysis can 'be extended to derive a length scale for
longitudinal velocity.- Define the non-dimensional
development length, L, as the distance over which the

velocity changes to the avérage_of its initial and final



FEN
i.".'\'?i: .
EValues divided by the channel depth.
The solution of Fquation J. 14 1.
et
o Ae ‘k‘ [2.15]
\
For oo 0 at 0.5B downstream of the curve entrance, u,ocan be
obtarned as:
oo A [2.16)
thertfore
U, : .
“iqg Voo .
0 (k* A) i [(2.17]
The ultimate value of u, u,, happemns as o =» o=, 1s therefore
y o= 9 [2.18]
u Kk
4 . '
U
Tvo Gy ﬂ
T g | [2.19]
. UL . Ux U .
Since U— 1s the average of 5; and 6: Then
U .
1 102 ;2
—= = ((Z+ )"+ ()9 . [2.20]
U, 2 k k
Using Equation 2.15
U, )
—= (Ae't e [2.21]
Um
Therefore,
£ r



Squaring both sides of the equation gives

e . Ay 9y oy L ey q 5
4(zk' A +2((A k)(k)) ) A e * [2.g3]
Therefore
e L -9, 49y (9 ;
e 4A(A 2,k 2({A k)(k)) )= D
‘kUL = In D
' In D
o, = ——
. xtw
and 1f L= g therefore,
B .
L- - in D~ [2.24]
k H,
Ul
An estimate of g~ 1s given by Steffler(12) a\Q :
U, B
T, " 1- 2R, [2.25]
. “ R

Subsequently, the value A can be determined as

H

a ( [2.267

B)z_R_c
r

Subsitituting the expressions for A, k, g, G, and m into



Equations 2.17 and 2.19 to define the value D and L.

Bgquati1on 2.24 becomes

2.27]

,._.
I
j
i
—_
=
.
-
ro
>
—_
+
—
—
P

2.3 Engelund (1974)

The study was for firstly, a steady fully developed
uniform flow 1n wide recyangular channel and secondly a
developing flow. Only the middle part of the channel, where
the vertical velocity components were negliBlle, was
considered because the circulation pattern was unaffected by
the existance of side walls. The channel was wide and the
mean radius of curvature R, was assumed large as compared

with the channel width.

2.3.1 Governing Equations

The equations of motion for the longitudinal and
transverse veloclty components were previously given as
Egquation 2.3 and 2.4. The velocity profile for longitudinal
velocfty, u, was assumed to be given by a quadratic profile

with wall slip.

2.3.2 Reduction of Equations

< Under the above developed flow assumptions, the flow

equations were reduced to
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2 d d
Suw, @ W
o7 aclah) e [2.28)
N ; ’ N
gs + LYo g | [2.29]
dy
where
h = the superelevation and the vertical coordinate

was considered positive downwards.

Except for wall region, the equation of continuity was

S

J
37 (rw)= 0 , [2.30]

\

The physical meaning of Eqguation 2.28 and 2.29 was
easily realized. The left hand side of quution 2.28 was the
centrifugal force per unit mass, which was mainly balanced
by the pressure gradient and friction term on the right hand
side. Equation 2.29 was reduced to the shear stress and

o

weight terms. However, note that for simple geometrical

-

reasons the slobe, S, must follow the law:
Sr= S_ R [2.31)

in which S, = the slope at the middle of the channel,

\ .
To slove the flow equations, the follewing

¥

substitutions were introduced

o



u= 9 og (Y [2.32)
r H
R
3 ey
U e [2.33]
au’ R_
h= - o o [2.34]

in which U= some reference velocity, for instance, taken as

the surface velocity i1n the middle of the stream; and a = a
nondimensional factdédr which was determined by the last

boundary condition. The eddy viscosity, e, was assumed to

vary as u,, so that

[2.35]

”—

After insertion in the flow equations, the flollowing

pair of ordinary differential eguations were obtained

Hus 2
f"= " (a - ¢ ) [2.36]
gHS s )
o= - U {2.37]

in which the primes indicated derivation with respect to the
LA .

variable, n = %. The §urface'velocity, u,, varied with r,

but if the channel width was small compared with the radius

of curvature, this variation might be neglected.

\ .

\



After 1ntegration Equation 2.37 became

U‘ D
¢= L 6.5 3—(1-77)‘ [2.38]

Equation 2.38 was inserted into Equation 2.36, which was

then i1ntegrated twice, taking account of the boundary

conditions as follows

1. The shear stress must vanish at the water surface

£°(1) = 0 ' [2.39]

2. In a steady and uniform transverse circulation the total

flux through a vertical must vani§ﬂ§ thus

J f(n)dn = 0 [2.40]
0

Then the function, f, is found to be given by

. o
moof(n) = 3U-m) (a= 1)+ g BUI-m)* = 55 B1(1=n)"+ K

v

["2.41]

/

¢

in; which ¢

K

a‘tegrat ion constant.

u‘
B= 6.5 T

To obtain an improved description of the flow in a

meander bend with a variable radius of curvature, the
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N

coordinates x and y, defined previously were applied, and 1t
was still assumed that the channel walls are'fixed and the
superelevation small. The longitudinal component of the flow

-

equation was assumed as

[ ]

cl

_ 3
Y ax

) r 42]
5;(gh) _ T ; [2.42

To proceed further EQuation 2.42 was linearized by‘

' u= U (1 + u") [j;%3]

m —

and assuming u' to be so small that second and higher-order
terms were neglected. Similarly, the local depth, H, was

written as

H= H ( 1 + ¢ ) [2.44]

o]

in which ¢ was also assumed to be a small quantity.
Substitution of Equation 2.44 into Equation 2.42 for a
constant radius single bend resulted in the following

first-order differential equation.

dul , ku'=g [2.45]
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in which
<
2
k:
C,’H
’ Z
q CjH 13

: -

The solution of Equation 2.45 can be written as below:

u'= %+ Ae ™o ) [2.46)

U
when x,=0, u'= ¢ + A; the minimum velocity GL= 1+ £+ A.
L] m

If x, » », u' = £, therefore the flow is in the ulg}mate

condition, The average of these two velocities is

~

%= Ae ¥*b , o [2.47]
2 X
- 1ln 2= - C—fH— X, [2.48]

H 2 )
o C, | [2.49]

2.4 Conclusion

-

Both the analyses of Odgaard and Engelund provide
‘estimates of the development length for- longitudinal ‘
velocity distriﬁgtion and for the ultimate (developed).
velocity néér the outer bank. Since neither;anéiysié
‘included the effect of the secondary flowtbn.véldcity

redistribution this fully developed velocity is
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underestimated. It is also uncertain whether the secondary
flow affects the development length. In the next chapter an

analysis 1s attempted which addresses these concerns.

2

[ 28



3. Theoretical Analysis

3.1 Introduction

The flow in a meandering channel is complicated by its
curvilinear characteristics. It 1s difficult to fully
understand with the existing knowledge. The previous
analyse5 did not take 1into account the effect of secondary
flow. In particular, they predict a virtually uniform cross
sectional distfibution in the fully developed situation for
rectangular channels. Exggriments, however, ‘indicate a
signifigant skewing towards the outside bank. Therefore, it

would be of value to attempt further analysis.

Using a similar method to Odgaard(9) and Engelund (3)
(in Chapter 2), equations are developed to predict'the'high
velocity areas in a curved channel for practicai engineering
designs. This research will be focused on the deviation of
the longitudinal velocity from the mean channel value.
Therefore once the velocity equations are derived they will
be simplified by elimination of meah surface velocity and
meén depth of the cross-section and their cérresponding
equations. The remaining equations a}e linearized by noting
that the distribution parameters and mean lateral velocity
are small compared to the mean velocity and depth. Tﬁé final
result is a set of first-order linear differential

-

equations.

20
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3.2 Govefning Equation

The channel geometry and co-ordinate system in this
chapter is as shown in Figures 2.1 and 2.2 and as used

]

preJiously in Chapter 2.

3.2.1 General Assumptions

In order to limit the problem, the distribution of
velocities, shear stresses and depth at a section are
assumed to be similar from section to section. Previous
experimental data indicated that this is only approximately

true.

3.2.2 Equations of Motion

The longitudinal velocity in the bend can be derived

from Navier-Stokes eguations. Once derived the equations are

further simplified by elimination of mean velocity at a
section, u,, and mean depth at a section, H, and their
corresponding equations.
" du du du uw 109P 101, o -
uzyt Va—y'+ wast = T 3% + 5 oy +'gS [3.1]
av ov ov 1 9P 1 aryy .
Uax + V'a? + W'a—2= - ; 'a—y + B 'ay - g [_3.2]
' t
ow ow ~ ow u? 1 ap 1 81}: :
Uax? Vay+ ¥az r p 02 * p 0oy [3.3]
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X
du ov ow ‘
E— + —y— + E: 0 [3.4]
for a shallow flow, Equation 3.2 reduces to
oP )
3y 49
P= -pg(H-y) [3.5]
Substituge Equation 3.5 iﬁ%b Equatdion 3.1 and 3.3, and
< ';_‘1;‘(.‘
chgnge to conservation form ) 8
ou’ duv duw uw oH 1 arxy .
Bt eyt ezt TT 9% T pay 98 [3.6]
auw ; 2 2 ot . K :
+ avw4 aw - U__ _ g i}i"‘ l yz [3.7]
ox dy 0z r 9z p 0y

Using boundary conditions |

) . RV
Integrate with respect to y from 0 to H. Equation 3.4 5
] . : . « . .

,reduced to

3

o
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) H a H . : A
a—;Judy+EJ w dy = 0 [3.8]
0 S Yo

By the top bouﬁdary condition, Equation 3.6 is reduced to

A
o) H 5 3 H H yuw
% J udy + P J uw dy + J T dy
0 0 0 -
. oH TxO
='- gH FEE: + g S H [3.9]
and Equation 3.7 is reduced to
9 H 9 H 5 H 2
% J uw dy + 35 J w dy - J - dy
, 0 0 o]
3H T 20 *
= -9 Hgp - o [3.10]
! :
Next, integrate across the channel for z from z = -b to b.
Equation 3.8 becomes
b 9 M b '3 H
J % J u dy dz + J 3% f wdy dz = 0 oo [3.11]
-b b 0

~“b
It is assumed that there is no lateral inflow from the

» channel side boundary, and since the flow discharge is also

o

assumed to be. constant, Equation 3.11 becomes

H '
— J u dy dz = 0 [3-12]
b ! .

c
\
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Similarily, Equation 3.9 is reduced to

d rb H 5 b ‘ H uw
o u dy dz + 2 — dy dz
ax [ B R

0

T b
2% 3z +gSJ H dz [3.13]
p -b

and Equation 3.10 becomes

d b H b Hu2
ax J‘uwdydz - J j-ﬁ—dydz
b Y0 v Yb Yo

- _g[Hz]b _ [b %gL gz " [3.14]
-b

-b

If Eéuation 3.8 is multipled by z and integrated with

respect to z from -b to b; the mass moment distribution can

be obtained by

-
s . -

0 b oH b H . . : .
HJ Jz u dy dz =‘J J wdydz - [3.15]
-bJ 0 Yb Yo ) ) .

»

Repeaf ‘the same process with Equation 3.9 to.procure the

moment of momentum distribution

3 b H o - pb oH ' ' e
3% I J zu'dydz - J J uwdydz L
-bYo . , -bJ 0 : . s .
g d J‘b 2 o Txo ° N s
= -5 = zH dz - J z — dz + gs J. ZHdz, '[3 . 16]
, 2.dx j, S e P . ; b ‘

-
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"

Multiply Equation 3.7 by y and 1ntegrate with resp

trom 0 to H and = from b to b the equation 3.7 be

d v M ’ 0 L M \'U‘\
J l y u w dy dz [ J R dyde
v o S

v

-~

3.2.3 Summary of the Motion Equations 1in Integral

1. Equation 3,12

3. Equation 3.14

ect to

comes

v

[3.
Forms
Lo
/ 14



4. BEquattion .15

wdydz

5. Eguation 3.16

6. Equation 3.17

ad b H b H y U2
E;J J\yuwdydz - J J R
b 0 b [¢]

3.2.4 Similarity Hypothesis

3.2.4.1 Assumptions

dy dz

z H dz

y 2z .
Let n = g, § = . Using a similarity hypothesis

assume:
tou = (ug,*ug,g,(8)) f£,(n)
2. H= H, + hy q,(%)

3. w = w +w, f,(n)

26
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4. u_,u,., w, w_, H, h are ftunctions of "x' only.
5. Also u_, s less than u_, w & w_ 1s much smaller
than wu_, h, 1s much smaller than H |
Tx'
0. (u_ *tu,g, () ¢
T .
i (u, tu,a,(8)) | wot oW ) (.
7.‘\'
8. =%~ = {. ()

I;Jf,(n) dy

0

1= £, (n) £.(n)dn
J o

I,=l n £ (n)dy

o ! Jo

I.=| n £,(n) £,(n)dn
J0
~ 1 2
I.=| n £,(n)"°dn
J0
'
I,=| £,(n) dn
Jo
f‘1

J= % g.(3) ag

nl

§ g,(8) a3 ~~—
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3.2.4.2 Formulation

With the above assumptions Equation 3.12 becomes

ad b M
3dx J‘ J (u, *tu,g,(%)) f (n)dydz = 0 [3.18]
b

O

Substitute 7 and § into Equation 3.18 to obtain the

following eguation.

d 1 1 -
d—xj b (u, +u,g,(3)) (H +h.q.(5)) Jf,(mdndg:o [3.19]

0.,

Finally, the equation becomes,

d »
G (2 bu, Ht Jyuy by ) =0 [3.20]

\J

Ignore any of u,, h,, w, w

. ins.guadratic or higher order

. . . ¢
combination, then Equation 3.20 becomes

H)= 0 _ [3.21]

80 'O

a;(u

Similarly, after substitutions and simplifications,

Equations 3.13 to 3.17 are reduced to:

d

d 2 } 2 2 [
I, 3x (2u,, Ho\')\-_. = g3xHe T 2ChU,, + f2gSH, [3.22] /

\ . S



d . I,
a;(u )HU)(I‘W*I ‘WS) N TU5<\ Ho
gH_h -
= - 5 = - Cou, (- wt w)
d _ H,
II d‘_)z(JhHoUsb4> J7hbus<x) = 2w b—

4 . 2
I. a (thbuso * ZJbHoUstSC) - B

(I,w+I . w_ ) u_ H,

d
= - gJ7d—xhbHo - 2J,Cu, u,, *+ J,gSh,
S MU (I + 1w ) - 213H :
dx HO Usa v Wy o Yso
= - &R h - 21,0,,(- wr w )R,

29

[3.23]

[3.24]

[3.25]

[3.26]

Further simplify by assuming u,, H, are constant and

equal to the initial value of flow velocity and depth

(as a uniform flow). By refering to Equations 3.21 and

3.22, which describes a backwater curve, the value of H

and u,, can be determined as below:
2
H = Cfxuso
[ gs
and
Q
- U, H, = 35 ° constant

The

[3.27]

[3.28]

remaining four equations (Equation 3.23 to 3.26) are
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nondimensionalized by u,, or H, and also

30

nondimensionalize x with R_.. In addition, each equation

R
1s multipled by —4%;——. Finally, Equations 3.23 to 3.26
become
- RC
'jf%T(J1011w' Lyw,') - I,
h,' R _
= - 2‘ > bc Cp, (=0, 0w +wl)” = [3.29]
=, R
S u4rah) = 2 3, e [3.30]
R
d * ' 2 o' ' c
dxl(hbJ7+ 2J6.Usb) - :(J,OI‘W +13WS)F
J, a 23, R_ J, R,
TR At T CetE T T O [3.31)
_ R
2—?§;T(J1014w'+15ws') - 216?3
——h——j—"’ —R—C—-zlc(—J"+')—f— [3.32]
= F: b ¢z oW WS I .
where
h,
h = §:= h
i . °
l'lsoJlO .
v Usp '
qu uso— U
!
X
x' - ——
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ws
wﬂ' = - = w'
Ufm
2
F 2 Uso
‘- =
! ch

These four equations are a set of solvable equations
for the developing flow in a curved channel. To solve this
set of equations, the distributions f, and g, may be

obtained from experimental data or expressions derived for
R, R. R,

developed flow. The parameters F_, Bi’ ﬁ;, T are specified

by upstream conditions and channel geometry. C, and C,, must
be evaluated experimentally or from a more Sophisticéted
turbulence model. They may be found to be functicns of the
other parameters.

d
In the case of developed flow when 35()=0 and w=0

Equatiohs 3.29 to 3.32 can be reduced to:

C (o] (o} '
I, e =—:‘ E— + —C,,w n [3.33]
o] .
R, R, R,
- 2pIw' o= - 2J6§:C1N1'+ J, E:Cfx h' [3.34]
2 1 e ——7—h' Re 21 RLc ' [3.35]
6 r . F b 7Ho f?w . 3.

By solving Equatiohs 3.33 and 3.35, the result can be

obtained as:

)

N

: H
(1,21)7= (1- £ 1,)c v F [3.36]

[
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h 1]
=(217-1)f;ﬁr [3.37]

r

=) o

(21,1,-21,)

<

therefore the secondary flow 1s given by

‘ (I,-0.671,) 1 H,
¥ T (3-0.671,) C,, R [3.38]

z o

and the superelevation is given by

L

2(1,1,-1,) _, b
=——° > F —_ .
(21,-1) « R, [3.39]

Equation 3.40 gives the longitudinal velocity perturbation

4

s

' 1, H, b .

R R T 2 (3.40]
therefore .
H, B . ’ ‘

u'= f( R’ 2R’ F,) [3.41]

Therefore the parameters F,, curvature, aspect ratio,
are the variables of the function of the longitudinal

velocity. The function g,(§) represents the non-dimensional

longitudinal velocity distribution across a channel. For a

simple "linear variation )

)
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[3.42]

and

[3.43]

u' ig the non-dimensional ultimate cross sectional velocity

distribution.

The comparison of these three theoretical analysis
(0Odgaard, Engelund and the present analysis) and one of
Steffler's experiments 1s shown in Figure 3.1. It has shown
that the present analysis/method is most close to the
experimental result. (The exponential distribution 1s used

for f(n) as detailed in the néyt section)

3.2.%' Length Scale for Developing Flow

The rearrangment of Equation 3.31 will give

* ku'+qg=0 A [3.44]

,"where ‘

X" C
T k = IZ Ho
- R J R
. 2 - c 7 c
2. q = (3w LW ) g + TChhi

2



34

b

‘suoT3InqrTIlstg AL3TOOTSA ‘

TeUOT308S S80I) S3IPWIITA °2Y3 JO udsTtIvdwo) 1°€ ®oanbta
q )
1 L0 S°0 GZ°0 0 GZ°0- G°0- GL°0- “1I-
\//\
5.5394] -g-
pun:abul .g- ,_.,Io/ola o.u.\\o\u
[ ] ] | s a u
0422600 -o- o g—e—"C o
1WaW:Jadx3 o o ¢ . ) -
. F o1
L
I




35
\

Therefore, the value of u' can be solved as

u'=%+ A e [3.45]

1n which g 1s not a function of u'. It may be assumed as a

constant in this solution and should be negative.

Veiocity distribut?ons, presented by most §tudies,
indicated.anggggﬁial shift in longitudinal maximum velocity
toward tgzﬁﬂsggae of the bank, followed by the outward shiﬁt
of the maximum longitudinal velocity. In other woras, the
minimum velocity would happen in the outer bank near the

entrance of the bend. It i1s'assummed that this minimum

valocity, U,, happens at the location of x,=0

1

U=10U (1+%+A) [3.46)

The ultimate velocity, U,, occures when x ==,

u

U= U (1 +%) [3.47]

The average velocity of U; and U, is named U_. It is located

\ : xR .
at the non-dimensional distance x} (L = H[“c ). Therefore, '
=4
N U= U, (1 + 3+ ae™u) | [3.48]
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U, +U,
U= —3 [3.49]

.

then,
~  ~kx{= 1nQ.5 (3.50]

RC
L= - ;2%4§L?r,ﬂ [3.51]
Cthc
If k = I, H therefore

p= - 1002y [3.52]

1
in which 12=J fI(n)Z dn.
: o
A
. If
Recall from assumption 6 of section 3.2.5, C-= R

Thus

I
L= -1n0.5% ;33— c,’ [3.53)

1

The value of I,and I, are defined as follow

/

1 ) .
i | I,= Jn’/"= e ( [3.54]
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, . N (o]
I,= an/mdn = 51% [3.55]
. \
Therefore
(m+1)°
L= «1n0.5 DY C ‘ [3.56]‘
] -
in which m= «C, \

3.3

e

S
Conclusion
4

The three theoretical analyses (Odgaard, Engelund,

present analysis) are based on similar assumptions:

The

.,

The ratio of radius of curvature to chénpel width is
large. W

Steady uniform subcritical flow in a wille rgctangqlgr
channel. ~ ‘

Chezy number C is assumed the same everywhere.
Transverse velocity is small compared with longitudinal

velocity.
3

assumptions unique to each analylis are: o,

Odgaard

a. The channel bed was assumed immobile.
b. The turbﬁlence was isotropic.

c. Veloc1ty proflle for longitudinal veloc;ty was

r

assumed to be given by the traditional power law. .

El

=S
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d. Flow depth distributions were a simple relationship
between transverse surface velocity ana,transverse
slope of bed.

e. Thé radial variatién of u'in the fully developed
flow is a linear. o=

.Engelund.

a. The channel bed was assumed to be composed of
uniform sediment. |

b. Secondary flow was unaffécted by the side wall.

c. .The velocities in tfansverse and lbngitudjnal
components were based on‘the given equations.

d. The radial variation of u in the fully‘dgvolopéd

. A3
flow is a straight line.

Present analysis

a.

The model is restricted to a rectangular wide

channel, however, it may be extended for use in

"other cases.

Vertical and lateral distributions of lateral and

longitudinal ve€locity and bed stress were assumed

. i

similar.

[

Longitudinal velocity profile for fully developed flow

predicted by the three methods are compared with one of

Steffler's experimeﬁts(12) im Figyre 3.1. It is found that .

‘ g
.the present analysis method is closest to ‘the experimental

result: This is becausé only the present analysis considers

the effect of se;ondary'flow. -

/. . : . 7
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) >

Three length scale equations 2,27, 2.49 and .56 are
ploted 1n Wigure 3.2, It 1s ftound the length scale 1s
rougbily proportional to ¢, . Odgaard and present analysis
give close results for a practical range of ¢, while
Engelund’'s results are Siqni.ticant ly lower. In view of the

assumpt 1tons made in these derivations, these results must be

checked with experimental data.
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4. Review of Significant Experimental Studies

4.1 Introduction

The experimental studies of curved channel flow done by
six researchers have been chosen for analysis. This data
relates to flat bed channels and was chosen because there 1is
more detaiged data availlable, the data 1s more reliable and
1s generally characterized by fewer parameters. For the
purpose of this analysis, descriptions of apparatus, results

A

and conclusions will be reviewed.

4.2 Ippen and Drinker (1962)

The experiments were conducted 1n two trapezoidal -
flumes. In both channels the general arrangement was the
same; consisting of a 6 meter long straight approach
section; a single curve with a 60° central angle, and a 3
meter long straight exit section. The side slopes were 2:1
and the channels were constructed with horizontal inverts
along all radial sections. A smooth entrance transition from
the stilling basin at the upstream end of the approach
channel reduced the tendencies for local separation. The
flow depth was controlled by an adjustable sluice gate

mounted at the exit section..

The centerline slope of each flume was 0.00055. The
bottom width of the larger flume was 0.6 meters and the

radius of the curve centerline was 1.5 meters. For the

41
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smaller flume, the base width was 0.3 meters, and the curve

centerline radius was 1.78 meters.

4.2.1 Analysis of the Experimental Results

Some asymmetry of the velocity, shear stress, and
water-surface configuration was found at station 1 test
section (about 66cm upstream of the bend entrance). However

the flow pattern in the bend was not caused by the upstream

distortion of the flow.

The velocity distribution was according to the
free-vortex (irrotational) motion for the flow through the '
upstream portion of the curve (stations 3-5). The
free-vortex pattern broke down .in the downstream portion of
the curve and established a high velocity zone near the
ouﬁer bank. It was caused by two major factors and depends
on the stream curvature :

‘1. The helicoidal motion tended to move the high velocity
fluid continuously toward the outer bank.

2. The separation zone that originated at the inside of the
curve reduced the effective area of the section,
resulting in acceleration of the constricted stream and
.a deflection of the flow away from the innerabank. For

increased curvature, runs 1-4, the separation zone was

strongly developed on the inner bank.

The flow velocity was asymmetrical in a long straight

reach below the curve. The channel was too short to permit
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the flow to return to normal, 1ndicating that such a return
would be fairly gradual. Therefore, a considerable length of

straight channel downstream of the. curve would be required.

For all seven contours of relative bed stress intensity
were presented. From these diagrams velocitlies near the
outer bank were derived by interpolating the, shear half way
up the outer bank. The outer bank relative velocity selected

for further analysis 1s egual to the square root of the

relative stress.

4.2.2 The Experimental Conclusions

A few important conclusions were found in this
investigation of the flow through a 60° curved trapezoidal
channel.

1. Shear stress in the curved reach increased with
increasing stream curvature. With a larger curvature the
location of shear maxima was found in the inner bank
following the entrance of the curve and near the outer
bank below the exit of the curve. With lower curvature
the increased shear stresses appear along the outer bank
in the downstream portion of the curve.

2. The relative shear pattern was found to be independent
from the flow depth and velocity but not the stream
geometry.

3. This investigation showed the importance of the boundary

shear stress which plays a signjificant role in stream
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erosion and deposition and thus providesiyaluable design
information in stream bank protection and river
training, -
4. Additional studies were deemed desirable to evaluate the
,
effects of the central angle of the‘curve, boundary

roughnessé and curve combination on the maximum shear

rates and their locations.

4.3 Yen (1965)

The experiment was conducted in a flume which had two
identical 90° curves of trapezoidal section. These were set
in a reversed-direction and connected by a 4.27 meter o
straight reach. The side slope of the channel was 1:1. The
bottom width of.the channel was 1.83 meters and the
\

centerline radius was 8.53 meters. A 15 cm high tail-gate

was built at the end of the channel so that backwater could

be controlled.

The boundary shear measurements were obtained by a
Preston tube which was connected to a modified
micromanometer. The outside and inside diameters of the tube
were 3.18 mm and 2.44 mm respectively,Aénd the measurements
were taken at the cross sections spaced every 11,25° in the

bend. ’

A Pitot tube was set in a plane parallel to the bed. It
was a standard (0.47625 cm) Prandtl-type pitot but a 0.55563

cm) Prandlt-type pitdt was used when the flow was slowver. In

I3
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4

elither case the Prandtl-type tube was connected to two
manometers. One was a water manometer to measure piezometric
head and velocity head, the other was a micromanometer for

the local velocities below 2.54 cm.

4.3.1 Analysis of the Experimental Results

The radial distribution of the average longitudinal
velocity over a vertical was fairly uniform in the straight
reach upstream of the curve entrance. However, as the flow
entered the curve, 1t was found that the velocity in the
outer bank was slower than 1t was in the inner bank. This
phenomenom was explained by the residual spiral motion from
the preceding curve, and was indicated by the longitudinal
slope of the water surface. The radial distribution of the
depth averaged velocity followed approximately that of a
free vortex pattern. This increased velocity near the inner
bank continued until a point between sections 11.25° and

22.5° of Ehe curve was reached.

Following the section at 22.5°, the maximum average
velocity of a section gradually shifted outward. Downstream
from Section 67.5°, the depth of the flow near the inner
bank started to incgease. Downstream of Section 78.75°, the

flow depth decreased near the outer bank.

The velocity distribution in the exlt section of the
bend was fairly uniform. It may have been due to the fact

that the flow was not fully developed. However, no
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measurements were taken after the exit of the curved channel

In thils experiment.

In the experimental runs, as the width-depth ratio
decreased, the non-dimensional velocity distribution tended
to be slightly ﬁigher near the central region of the
channel, and lower near the banks, owing to the stronger
spiral motion, and the relatively higher bank resistance.
The superelevation was small compared to the depth of flow;
hence, the non-dimensional velocity distribution was not
changed by the Froude number, and was only slightly affected
by the width-depth ratio. The trace of the maximum surface
velocity was almost the same as the average velocity. In the
downstream half of-the bend the former was slightly closer
to the outer bank. The trace of the maximum velocity near
the bottom in the downstream half of the bend was much
closer to the inner bank. This difference in traces of the
maximum velocity at different depths was explained by the

momentum transfer due to spiral motion.

The exéerimental results showed that the change of
width-depth ratio slightly alters the distribution of
boundary shear. The trace of thé méximum boundary shear,
starting from the upstream of the curve entrance was located
very near the toe of the inner bank. Subseqguently, the trace
followed an almést circular arc with its center coinciding
with the center of the bend until the downstream portion of “

the curve, where the trace moved outward gradually with the
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decreasing boundary shear stress. At the exit section of the
bend, the point of maximum boundary shear stress was inside
the centerline of the section. The boundary shear';tress
distribution was quite uniform, and was closely related to
the velocity distribution. The higher boundary shear
prevailed near the inner bank. This phenomenon had also been

observed in natural rivers and some experimental models.

The spiral motion has an upward direction and thus it
stabilized the bank. On the other hand, at the outer bank
the spiral motion had a downward direction which created the
erosion. Even though the boundary shear stress was not
maximum on the outer bank the downward direction of the

spiral motion would cause the most serious erosion.

©

The outer bank velocity selected for further analysis
was the velocity at mid-depth half way up the bank.

i

4.3.2 The Experimental Conclusions

1. Since the boundary shear stress was proportiomnal to the
velocity gradient, the redistribution of shear stress
was closely related to the velocity distribution. -

2. The spiral motion and the superelevation are two Qf the
most evident characteristics of the flow and the effect
of the bend exteﬁds both upstream and downstream.

3. The highest velocity occurred very near the inner bank

around the entrance of the bend and gradually shifted

>
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outward with distance downstream until around the exit
of the bend where the flow distribution changed to being
fairly uniform.

4. The flow pattern was a function of the width-depth ratio
but not Froude number.

5. Due to the direction of the spiral motion, the most
serious scour area occurred not in the inner bank, but
at the outer bank near the exit of the bend. :

6. The fully developed bend flow was not obtained in hpis
experiment. -

7. This experiment also indicated that the spiral motion
becomes stronger as the radius-depth ratio decreases and
that the flow in the central region becomes independent

when the width-dcpth ratio is greater than about 12,

o -

4.4 Varshney and Grade(1974)

The experiment w;s conducted in a 0.6 meter wide and
0.76 meter deep rectangular flumé with cement plastered
walls. A 6 meter straight length of channel preceded and
followed the 180° bend. The bed of the flume was cement

plastered and coated with different sand grains.

-

A uniform flow was ensured by adjusting the depﬁh of

"flow to be constant near the entrance and exit reach of the
flume. The shear stress distribution was measured by a

Preston tube of 0.636 cm with a static preésure probe placed !

above it. The pressure difference} P - P,, between the



49

Preston tube and the pressure probe was observed at various
sections 1.5 meters apart in the straight channel, and at
every 10° in the bend portion. At each section the shear was

megsured every 7.6 cm from the outer wall.

4.4.1 Analysis of the Experitmental Results

The observed shear distribution showed that the value
of the local shear ratio was larger at the inner bank than

P
‘the outer bank for some distance downstream of the entrance

of the bend.

The flow in the beginning portion ¢f the curve followed
the free vortex law. Then, the trend of higheg longitudinal
velocity shifted to the other side of the wall at the exit

of the bend.

The local maximum shear was found at some distance
downstream of the bend. Subsequently, the shear decreased at
the outer bank, and increased at the inner bank as the flow

tended to return to uniform across the channel.
r/

The relationship between R./B and dimensionless shear
distribution was obtained in different cases for a constant

S and B/H, equal to 4 and 8. It

Reynolds number of 0.455 x 10
indicated that the maximum value of the shear ratio at the

exit section decreased with an increasing value of R_/B.

The outer bank rélative shear styess selected for

- , .
further analysis was derieved by integpolating the shear

>
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half way up the outer bank. The relative velocity is equal

to the square root of the relative velocity.

4.4.2 The Experimental Conclusions

1. The velocity distribution near the exit\section of the
bend followed the forced vortex law .

2. For rigid boundary bends, the maximum value of
(Tr/r)occured near the outer side.of the exit. The value
"was found to dependent primarily on R./B, B/H_ , B and

N
Reynolds number for constant value of §.

4.5 Francis and Asfari (1970)

The experiment was conducted in a concrete rectangular
channel of width 0.61 m. It consisted of a 180° bend with
the central radius equal to 1.83 meters, and two straight
channels upstream and downstream of the bend. The length of
the straight channel was 44 times the depth and was thus
probably long enough to éEEDEe that a fully developed
veloéity distribution was able to occur before the bend

‘iééﬁggéted. Wooden barriers were used to form two other narrow
ﬁhéhannels; with B/R. = 0.154 (channel II), and B/R_. = 0.127
(channel III) respectively. The_téngential velocity was
measured in channel I and chaﬁnel III_by a miniatﬁre current
meter, whose rotor was 1 cm in diameter. The limitation of

such an instrument in areas of~high velocity gradient were

realised. )
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The discharge of channels I and III were 0.344 m’/sec
and 0.0275 m’/sec respectively. The flow depth in both the
channels at 30° into the curve'was 7.6 cm.” The longitudinal
velocities were measured at 0.5 m before the entrance of the
bend at every 15% around the bend and after the exit of the
bend. On each section the veloctity was taken at 65 p?ints‘

for channel 1 and at 30 points for ghannel III.

4.5.1 Analysis of the Experimental Results

The experimental results showed that the region of
maximum tangential velocity in channel I near the inner side
was between.the entrance and 45° into the curve. Afterward,
the ;elocity maximum started to shift toward the outer side
of the channel. The overall maximum local velocity was found
to be near the outer bank and below the water surface at
some distance downstream from the bend exit. In the case of
channel III, it wasf10und that the region of maximum
velocity was near the centerline ét the bend entry (not at
the inner bank of the bend). Tﬁe maximum velocity started to
shift towards the outer side of the channel in the region of
bend angle about 15° to 30° with increasirg magnitude..The

overall local maximum velocity pgévailed'at the outer bank

some distance downstream of the bend exit.

The outer bank velocity selected for further analysis

was the velocity at mid-depth half way up the bank.
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4.5.2 The Experimental Conclusions

The maximum ‘measured velocities in channel I increased
towérds the outer side. This effect wés due to high
vélocities at the inside of the bend at entry, and seem to
be associated with the sharper curvature and largef B/H,
ratio of this channel. This effect was not found in channel
111 with milder curvature. Thus, with the sharper curvature
there might be a-local disport;on of the velocity
distribufion at entry, irrespective of the length of the
straight épproach chénnel, and it affected the entire bend.

4.6 de Vriend and Koch (1977)

Tﬁe experiment was conducted in a 38 méter long
straight concréte channel, followed by a 90° bend with a
radius of a curvature of 50 meters.;The cross—sg;fion of the
" channel hasvrectangular, 6 meters wide, with a maximum depth
of 0.3 meters. The channel was horizontal in the straight

-10

channel portion and had a longitudal slope of 3x10" " along

the channel axis of the curve pertion.

The discharges were 0.61 nﬁ/s and 0.305 m3/s‘ The depth
of the flow at the upstream end of the channel;was’kept'
constant at about 0.25 meters. Therefore, the average

velocities were 0.4 m/s and 0.2 m/s respecti@ely.

-
L]



4.6.1 Analysi1s of the Experimental Results

For both discharges the vertical distributions of the
normalilzed velocity were similar in the various measuring
statlens. Only the distribution in the verticals D, 13 (near
the 1nner bank at about 60 1nto the bend) tended (o deviate
from thé>other ones. The reason ftor this phenomenon can be
explained as the 1nfluence of the helical flow on the main
veloci1ty. The helical f! caused a velocity reduction in
the upper part of the flow and an i1ncrease of the velocity
1n the lower part. The helical circulation was more
significant 1n the downstream portion thén that 1n the
entrance of the bend. The helical circulation was 1In a
outward direction in the upper half of the flow, pushi;b the
tower half of the flow 1n a inward direction. Dye injected
near the outer wall showed this circulation developed
shortly after the beginning ‘of the bend, reached its maximum

between the cross-secticns C, and D;, and then decreased -

slowly until 1t hgd vantshed around the exit of the bend.

At the entrance, the flow appeared non-uniforﬁ. In the
first part of the bend the velocity maximum was found to lie
near the 1inner wall, but gradually shifted towards the‘outer
wall while moving further downstream. The shifting of the
velocity maximum, and the increase of the inner wall
influence, tended to take place oJZr a shérter longitudinal

distance at the lower discharge.
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The outer bank velocity selected for further analysis
was the average velocity over first vertical profile (1.2

depths from the side bank) in each section.

4.6.2 The Experimental Conclu®%ions

1.The vertical distributions of the main velocity were very
similar throughout the flow field, except close to the
side wall in the curved part of the channel. There, the
main velocity was further reduced in the ubper part of
the flow, whereas it was higher 1n the lower part of the
flow. The deviations were explained by the advective
influence of the helical flow on the main flow, which
was not accounted for in the logarithmic law.

2. The measurement of the helical velocities was not
accurate enough to deduce the similarity of the
individual vertical distribution. When all the
experimental‘results were plotted on one figure, most
points turned out to be spread around a distinct
vertical distribution curve, except for those close to
the outer wall. These deviated from the‘other
distributions, indicating existence of a counter
rotation.

>

3. The observed depth-velocity field showed two features:
The point of its maximum in a cross-section lies near
the inner wall first, and after it enters the bend and
then gradually shifts toward the outer bank in the area

further downstream. These phenomena were attributed to
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the advective intluence of the helical flow on the main

flow.

4.7 Steffler (1984)

The experiment was conducted 1n a rectangular flume®”
consisting of a straight section 13.4 m long and a single
bend of 3.66 m centerline radius with an arc of 270"
(distance 17.2 m), followed by a 2.4 m straight exit
section. The channel was .07 m wide and 0.2 m deep with an

adjustable slope set at 1/1,200 for both experiments.

The flume was composed of galvanized sheet metal with
plexigléss inserts at the measurement locations. The
experimental data was measured by a Laser Doppler
Anaemometer. The laser beams entered ;he flow from the bed
of the flume which allowed the measurement of the
longitudinal and lateral velocity components. In the first
run, the flow depth was 0.061 m and main velocity was 0.36
m/s. In the other run the flow depth was 0.085 m and main

velocity was 0.42 m/s.

4.7.1 Analysis of the Experimental Results

The parameter difference in both runs was not large
enough to result in any significant gqualitative difference.
In the first two sections before the entry of the bend, the
velocity had an almost uniform lateral distribution with

only the two outermost profiles noticeably different. Just
)
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past the entry of the bend, it showed the velocity larger on
the inside of the channel than on the outer bank. As the
flow travels further down to about the fourth settion (30°
into curve) the velocity on the outer bank increased, and
the one 1n the i1nner bank slowed down. In the fifth and
sixth section the flow became almost uniform again (the
sixth section was 90° into the bend). In the eleventh
section (about 250° into the bend), the flow showed the
velocity increased at the outer bank and decreased at the
inner bank. Just past the twelfth section (the ex}t of the
bend), it showed a sudden increase of velocity skewness from
the previous section and in the thirteenth section an even
larger variation. The obtained.velocity profiles are

significantly different from the one in the straight

channel. This was due to the effect of the secondary flow.
' \

The outer bank velocity selected for further analysis
was the depth averaged velocity near tﬂe outer bank (1.5
depths away from wall for the first run and 1.2 depths away

from wall for the second run) in each section.

4.7.2 The Experimental conclusions

1

The lack of prediction methods for the developing and
developed longitudinal velocity distrdbution was identified

-as the most important gap in.the present knowledge.
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4.8 Conclusions

The selected experimental investigations, covering a
wide range of curvatures, aspect ratios and Reynold's
numbers, show common trends and conclusions regarding the

development of longitudinal flow in a curved channel.

Curva&ure affects the flow of water in several ways.
These effects include superelevation, secondary flow, and -
longitudinal velocity redistribution. The superelevation of
water surface 1n a channel curve leads to two occurrences of
longitudinal increase in depth: along the outer bank of the
curve as the water rises entering the curve, and at the
curve exit along the inner bank where the water level
recovers to normal depth. For bends of large curvature,
separation may develop in these two areas an% water surface

.

may slope upstream locally.

Some of fluid in the curved channel, especially near
the bed, moves slower than the average velocity. Since it is
glower, it lacks the appearant centrifugal force to resist
the imposed pressure gradient of the water surface slope. It
1s, therefore, accelerated inward until friction provides a
balancing force. Fluid moving faster than average (near the J
water surface) would experiencé an opposite effect and be
accelerated outward. The net result is a circulation over
the flow cross-section, superimposed on main longitudinal

flow. The secondary velocities increased with increasing

-
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H
ratios of depth to radius, ﬁ;

e

The higher velocities were found at the inner bank near
the entrance of the bend, and at the outer bank near the
exit of the bend. Bed and bank shear stresses were generally

found to correlate well with the local flow velocity.

The investigators attempted to understand the phenomena
and proposed theoretical explanations of flow in curved
channels. As a result, under some assumptions, the
su?erelevation and secondary flow phenomena can be well
explained. However, the flow development and the
longitudinal velocity redistriputidn are not well .
understood. There 1is Still‘need for further research in
order to predict the extent of the higher velocity area. It
should be possible to use the experimental data and
theoretical analysi§ to establish some scales. The scales
will depend on non-dimensional flow and geometrical
parameters. It may be possible to observe a simifg;ity of
the variation of non-dimensional lohgitudinalrvelocity in
the outer bank. The scales may be a reference for river
engineers to determine critical points in the cprved

channel. . .



5. Analysis of Existing Experiments

5.1 Introduction

In the past years many expgrimental studies on curved
channels have been done. However, an attempt to find general
relationships from these experiments to establish some
scales and empirica} correlations has not been made. Using
the selected experiments (Chapter 4) some scales for
predicting the variation of non-dimensional velocity in the
cuter bank are presented. The procedure adopted in this

.

research 1s as follows:

1. Data collection : recording the detailed data
from each chosen experiment.

2. Definition of channel zones : The velocity
maximum 1s shifted by different physical
phenomena in different parts of the channel,
suggesting a simplified analysis for each zone.

3. Analysis : the analysis is to be derived from
the data aﬁd some appropriate theory. The
theoretical results provide guidelines for

correlating the empirical data.

5.2 Data Collecting Procedure

As a preliminary study, this research was limited to
simple rectangular and trapezoidal cross section channels

and bends of constant radius. More controlled, detailed and

59



reliable experiments were available in this class.
1. To simplify the analysis and restrict the range of
parameters to physically realistic situations.

Experiments were chosen that met certain requirements:
/

a. The channel width was constant.

b. The centerline radius of curvature was larger than
its width.

c. The channel width was mor€ than twice the water
depth. |

d. The data was presented in sufficient detail.

2. Due to the fact that most papers did not present original
data, data often had to be derived from either the
figures of shear stress distribution or relative
velocity distribution.

3.The main purpose of this research is bank erosion
protection. Therefore, the only data considered were
those on the outer and inner banks.

4. In each experimental apparatus, aspect ratio, width to
radius of curvature ratio, discharge, Froude number,'
radius of curvature to depth ratio énd Reynold's number
were recorded. ¢

5. The Macintosh spreadsheet software EXCEL was used to
record and graph the data and to perform the

non—-dimensional correlations,



5.3 Definition of Zones for a Curved Channel

From the general conclusions of the experimental study,
1t 1s possible to describe the mechanics of flow and shear
stress redistribution. Consider the shear stress
distributions from four different cases as shown in Figures
5.1 to 5.4. It may be observed that the shear stress 1is
symmetrical about the axis at the entrance. When the flow
goes through the curve, the,expected tendency towards a free
vortex pattern is found in the initial portion._ The higher
shear stress is found on the inner bank and lower shear
stfess is found on the outer bénk. Further downstream the
shedr stress shifts to the opposite banks. In Figure 5.2,
the shear stress shifting i1s not as apparant as the other
three fiqures. This is likely due to the fact that the flow

was not fully developed.

From the point of view of vorticity the phenomenon may
be explained as follows. Initially the flow is uniform
across the channel (neglecting the side wall region). Its
vertical vorticity is therefore zero. After entering the
bend, the flow is constrained to move concentrically‘but
with zero vorticity which leads to the free vortex pattern.
Further downstream the flow gains vertical vorticity from
the tilting of the bed vorticity by the secondafy flow and

the shear stress profile skews to the opposife bank. -

The subdivision of a bend is based on the realization

that there:are distinct physical processes dominant in each
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zone. Figure 5.5 shows this subdivision. Zone I 1is an
initial zone. Zone Il is a secondary flow zone. Zone III 1S

a recovering zone, Zone IV is a relaxing zone.

An analysis of each zone 1s presented below.

i
5.3.1 Zone 1

Zone I is an entrance zone. It displays an essentially
potential flow behavior. The critjgal parameters here are
tr
channel width(B) and radius of curvature (R.). The channel

width for a trapezoidal channel was taken to be the average

of the top and bottom width.
. N

A

From all the analyses of the‘results of past
investigatigns, it was found that thibninimﬁm velocity ( on
the outer ban ) occhrred close to a diseance of B/2
downstream from the bend eﬁtrance and the velocity was

- €

reasonably well predicfed”by (Steffler, 1984)

[5.1]

where
- U, = the upstreanm average velocity
U, = minimum velocity

B = the channel width

-

R, = the radius of the curvature

—

»
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The value ot U obtained here may, in fact, be used as
an estimate for the starting velocity in Zane I1. Zone 1 in
the analysis extended from -2B to +2B (set 0 at entrance).
Stetfler, Rajaratnam and Peterson (198%5) estimate the
distance between the poi&ts 1n which 5% and 95% of the final
value of 1ts superelevation due to the change of the

curvature. They presented

L= 2.66 b (1 F ) ° [5.2]
where
b= the half of the channel width(B).
F = ¥roude number
L., the distance between the points in which 5% and
95% of the final value of its siipere®vation.

Since L, is approximately equal to B, most of the variation

1s captured within the reach -0.5B to +0.5B.

5.3.2 Zone 11 .

Zone I1 starts from x= 0.5B. It is characterized by a
transition to a new equilibrium cross-channel'velocity
distribution balancing bed slope, friction, and secondary
flow effects. The rate of‘.change of this distribution seems

to depend on how far out of equlibrium the channel is at any

.given location. This leads to an exponential decay type of

transitibn. The bend entrance disturbs the flow (causes U to

v .

' fall to U;) Which then recovers over some distanc® to a new

Yo . AN .
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equllibrium value U (ultimate velocity). Unfortunately,

most bends studied (and perhaps most natural bends) end
before this final equilibrium value 1s approached. The
values for U, used 1in most cases 1n this study were obtained
by extrapolating a best fit exponential curve and estimating
the asymptotic value. The development length scale L was
taken as the non-dimensional distance, from the start (0.5B
downstream from the entrance) of Zone Il to the point where
U= 0.5(U, + U ) on the best fit curve. The scale L is chosen
because 1t 1s relatively easy to measure with some

confidence. Using these development length scales the

similairty curve below was obtained

u-uU, Xy
TR f(y—) [5.3]
)
where x, = x,/H_.

The chosen non-dimensionalizatidn forces all the curves
to ﬁasslthrough the point (0.0,0.0) and (1.0,0.5) and so a
good fit is to be expected. The point (0.0,0.0) isyat a
distance of B/2 downstream of the bend entrance and its

velocity U, is about minimum or 'intial' velocity, U,.

$.3.3 Zone 111

v
Zone III is similar in behavior to Zone 1, except that

the rapid velocity shift is now towards the outer bank of

the channel. The magnitude and length of this transition



70

should be i1dentical to those of Zone I. Unfortunately, most
experiments end abruptly at the exit and confirmation is
difficult. This 1s, however a critical region, where the
attack velocities and shear stresses are largest. The
velocity jump here should be added to the velocity obtained
from the zone 11 curve at the point indicated by the end of
the bend (not U, unless the actual bend is very long) to

obtain the maximum attack velocity on the outer bank.

5.3.4 Zone 1V

Strictly séeaking there should be a Zone 1V, starting
downstream of the bend exit, considered in determining the
end, or downsizing, of bank protection. This zone would be
similar to zone Il with U, set to U,. The value of L might
be somewhat different since the radius of the curvature
would now be infinite. Presumably, the same curve would
agply and may also be~truncated by the beginning of a new
bend (likely in the opposite direction). Unfortunately, at
this time very limited data exists. \

-y ° ‘

A

5.4 Analysis of Results

Table 5.1 and Table 5.2 summarize the experimental

parameters from the selected investigations.
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5.4.1 Initial Velocity

An evaluation was made of the relative minimum velocity

U U
on the outer bank, d—. The variation of the ratio J with
B m

the curvature p—, which 1s shown in Figq?e 5.6, clearly

[y

indicates a decreasing miQimum velocity with increasing

curvature.

According to the theoretical analysis the relationship

U B
between GL and g~ vas presented as Equation 5.1. The data

m C

selected from the experiments of many researchers, have been
plotted on Figure 5.6, which indicated those are in good
agreement with EGUation 5.1; especially for rectangular
channels. The reason that the data of trapezoidal channels

shows some scatter might be due to ambiguity in.defining the
“«»

‘ .
widths of those channels. Therefore, the minimum velocity
-
which occurs close to a distance of % downstream from the

bend entrance is well predicted by Equation 5.1

5.4.2 Non-Dimensional Longitudinal Velocity Distribution

L4

Near the Outer Bank in Zone II

3 Y
,-
Figures 5.7 to 5.25 indicate the relative velocities

v

near .the outer bark in zones II, which are affected by the

free and forced vortex motions in the bend. The variation of

¢

the velocity is characterized by a transition to a new.

N h A~ . .
equilibrium (U falls to U; and attempts to rise to U,),
T . ' i
However, most experiments end before this final equilibrium

’
. i
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value ot U 1s reached. Thus, the ultimate velocity 1s
obtained by extrapolating a best fit exponential type curve.
Points near the end of the curve were not 1neluded due to
ex11 effects. The value of the L, U, U 15 shown in each

y

trqgur e,

5.4.3 Non-Dimensional Development of Longitudinal Velocity
near The Outer Bank

Figqure 5.6 which 1s based on the data from Table 5.1

rndicates the non dimensicnal velocity perturbation near the

outer bank 1gea rectangular curved channel against

* X
. . . b . .
non-dimensional distance (E—~). Figure 5.27. 1s for

trapezoidal channels. Figure 5.28 1s a combination of
Figures 5.26 and 5.27. 1t shows the best fi1t curve of each
data set which behaved~as expected between point(0,0) and
point (0.5,1.0). Beyond the point(0.5,1.0) these curves show
some ,scatter. Therefore, for design purposes 1t 1s
recommended that the practical engineer decide the

appropriate curve between the defined upper and lower limit.
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5.4.4 Ultimate Velocity ¥
.

Figure 5.29 indicates that thé€ relative ultimate
‘ B

U
velocity (GH).decreases with increasing aspect ratio (ﬁ-).
m o
The visual trend line in Figure 5.29 indicates that when the
aspect ratio 1s less than 10, the ultimate velocity will be

detreased. However, if the aspect ratio is larger than 10,

there is no significant difference between the ultimate

velocity and the mean velocity.

5.4.5 Development Length Scale

Figure 5.30 and 5.31 display the relationship between
3 H R
length scale, L, and curvature, ﬁL and ﬁL,respectively. This
[o] .

C

data is also shown in log-log fo?m on Figure 5.32. An

eguation can be derived from the log-log plot as shown

below:
Ho -1.12
L= 0.72(g~) " + A » (5.4]
(o
LN R .
It appears that the secondary flow which is directly

H
related to ﬁL has a dominating effect on the development
¢ -
length. Only for very mild curvature ratios do the actual
\ r
development lengths approach the values givén by the -

theoretical analyses (Chapters 2 and 3).

Equation 5.4 has been developed from selected

experimental data. In order to generalize the relationships
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6. An Example of the Application for a Curved Channel

. o
The general procedure for estimating the flow 1in Zzone

<

11 is as follows.

6.1 DATA °
*

It is assumed that® the channel width (B), the average

—

flow depth (H ) , the average velocity ( U,) and the radius
of channel curvature (R.) for a given reach @re provided.

Then, for &%xample

B = 30 cm .

H, = 4 cm o .
U,= 30.67 cm/s '

R.= 90 cm

Therefore

k 4
B
,E = 7.5
\\\ B = 0.333 - »

RC

'1:{-;- = 22.5

- } .

104
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6.2 Step 1

B
The known R and U, , obtain the corresponding value of
[
. U .
U, from the plot of d = f(gL) in Figure 5.67 Therefore in
C

m

U
the example,vﬁ—= 0.8335

m

6.3 Step 2 o

\

-~

B .
Using 7= and U, obtain U, from Figure 5.29. Therefore

\IJ_U_ 1.1 ’ ) ¢ v
Um— * N .

6.4 Step 3
"R

H
Using the values of ﬁL or ﬁL, the dewvelopment length

(=] C

scale, L, can be obtained from Figure 5.30 or 5.31.

Therefore, L = 9.

6.5 Step 4

_Values'of U argq obtained from Figure 5.28. Table 6.1
‘.,gives.the chculation worksheet for tﬁe example above.
Sections (4) .and (5) in Table 6.1 are used to plot a
nondiTensional.veloei;y curve in the bend for the given
channel (see Figure 6.1). Y ‘
.

6.6 Step 5

L ]
-

Select the critical,poinf, Cc', from the region.

indicated en Figure 6.1 and obtain the value of
- " : . ’ *
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£ + H ¢ 0.%B. x 1is the distance which measured from
eyl

%;' 1'?§F

~§ the entrance of the bend to the starting of the protection
S structure.

+f

i,

b



7. Conclusion

The purpose of this study was to attempt an empirical
analysis to predict the longitudinal velocity and the
potential for bank erosion near the outer bank of a curved
channel. To this end the scales U, U and L were 1ntroduced

and correlated to the channel geometry and flow paramaters.

It 1s found that the minimum velocity depends malinly on
the channel width to radius of curvature ratio and the
ultimate velocity depends primarily on the aspect ratio
which was confirmed to some extent by the theoretical
prediction. Theoretical prediction for the length scale L
indicated that i1t only depended on Cf. The experimental
results show that this is only true for very large values of

R R
— . For small and moderate values of ﬁi, the length scales

H

are significantly reduced. Very_little data in the
transition region (?i—is between 50 and 200) is presently
available. Thig should be a topic for further research. It
was also found that for the limited ranges of Reynold's and
Froude numbers represented no significant effects were

observed,

The use of these scales (U,, U, and L) would heilp thé
desig® engineer to estimate the location and resistance of
the protection works in a real bend. With the idealizations
of constant widtht constant radiuss and simple

cross-sectional.geometry §ignificant judgement will be

109
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required.

This study is based on tlat bed flumes. Further
research 1s needed to model natural channels. The research
should be addressed to gain more data for natural channels,

L .
downstream of bends and rough banks. Some measurements 1in
natural channels have been made (Bridge and Jarvis 1977,
odgaard 1981 and de Vriend and Geldof 1983) but there 1s not
sutficient data for a separate empirical correlation. It

would be useful, however, to analyse and compare these

results to the present research.

In summary, a detailed literature review, and empirical
analysis have been presented to introduce the three scales
to predict the longitudinal velocity distribution in curved
channels. It is felt that this approach to the determination
of the location of bank protection in real bends has

provided some valuable results and potential for further

studies.
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