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ABSTRACT

Seueral mu]t1var1ab1e frequency domain techn’ques that
can be used to ass1st w1th the deswgn of linear, feedback contro]
systems are 1nvestigated and compared with'other methods, - The inverse’
| Nyquist array, the character1st1c locus, the direct Nyqu1st array, the
opt1ma1 quadratic and the multiloop methods are eva]uated by
’exper1menta1 app11cat1on to a doub]e -effect, p11ot p]ant evaporator

The direct Nyqu1st array method was derived by direct,
'1ntu1t1ve extens1on of the convent1ona] s1ng]e 1nput, s1ng1e output
'Nyqu1st design procedure and ‘also based on the same theory that

under]1es the 1nverse]Nyqu1st array ang character1st1o 1ocus methods.

'It was conc1uded that the- d1rect Nyquwst array tecnn1que is a more :

‘ jpract1ca1 and conven1ent de51gn techn1que than the inverse Nyqu1st

array and. the character1st1c 1ocus methods and the 1ntu1t1ve deve]opment

. provides greater 1ns1ght 1nto the pnys*ca] meantng of each step in the'
| sign procedure The d1rect Nyqu1st array method was also app]1ed to
to ‘the oes1gn of a contro] system for a b]nary d1st111atlon co]umn 5

‘ mode] which conta1n°d pure t1me de]ays |

The character1st1c locus method was found to be s]1ght1y |

/

more~genera1, but‘less practtca] than elther the dtrect or the 1nverse |

Nyquist array methods. = =~ @&
“The three. frequency domain desﬁgn technfques werefa]so o
'compared w1th a mult11oop control scheme and the opt1ma1 regu]ator

control method A1l of the mu1t1var1ab1e technxques were found to

t

'~jproduce better contro] of the evaporator than the mu]ttloOp contro]

e
'ischeme The frequency doma1n techn1ques produce contro]]ers that gave

r]osed 1oop performance equ1va1°nt to other mu1t1var1ab1e schemes but



gave the designer better insight and opportunity for incorporating Ee
practical factors éuch as integrity, into the design,wlhan_optimal”
: control techniques. o .
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" CHAPTER ONE

INTRODUCTION

During the last two 'decades considerable attention has been
~ given to the design of multivariable control.systems.. Most of this
attention has been focused on the deve]opment'of new techniqUes which
are based on the concepts of modern control theory and use a state-
variable formulation. UnfOrtunate]y many of the'state -variable methods
: have been foundj}]6 ,26] to be of limited practical value in the des1gn'
of mu1t1var1ab1e control systems for chemical processes. The,ma1n
reason for the limited sdccessvwith thgse methods is due to the fact thet
modern control theoryrhas arisen’ from the study of systems with o
sTQnificant]y.different characteristics thén chemical processesi
Because of this, these methods solve only a sma]];portion.of the total
design requirements'of these complex proc¥sses and the'design usually
requires measurement$ (or estimates) of the state'varieb1es which often . -
are not available because of physical or economice]‘Constraints

| | Furthermore,vcontrollers des1gned us1ng methods based on .
'11near theory, but app]1ed to systems that are 1nherent1y hon- ]1near,
usually. require tuning when they are 1mp]emented in. the f1e1d The
state -variable methods do not offer any guwdance to the designer in the
- way the contro]]er must be altered if an unsat1sfactory so]ut1on 1s

obta]ned. With most of these methods, the on]y alternative if. a

| contro]]er is found to be unsat1sfactory is to redes1gn and retest it in

the field. T

On the other hand s1ng1e var1ab1e frequency -doma in techn1ques ’
’

have been found to be very effect1ve in de51gn1ng contro}]ers for 51ng1e—w,
1nput, s1ng]e—output systems These-techn1ques(are appllcablerto systems"

T



7 that contain time delays which are common1yffound in chemtca] processes
and they provide the des1gher with 1nfermat1on such as the gain marg1n,v
phase margln, crossover frequency, etc. wh1ch are very useful for the .
tuning of the controller in the fiéld. "

in spite of the success of»sing]e-variab]e frequency domain
techn1ques, the extenswon of these techn1ques to mu1t1var1ab1e contro]
has® received re]at1ve1y little attention. Only in the Tast decade has
this trend been redirected. It’begen'with Rosenbrock [65] who deye1oped \
the inverse Nyquist array method 1h the 1960's. Since theh sevéral -
techniques, which are essentially genehe]izations of the stabi]ity
criteria introduced by Bode [7] and Nyquist [54] for‘sing]evvariab1e_

| 'systems, have been proposed [4,36,44;58]. Because‘of theirrreceht‘

: development the expehience with most of these methods is ]imited and,
with the exceptlon of the inverse Nyqu]st array method, experimental
applications based on %hese methods have. not been reported in the
11terature S1nce most of these methods provide 1nformat1on similar éb
the s1ng]e-var1ab1e techn1ques and ‘produce a contro]]er wh1ch is eas11y

" tuned in the field, it 1s foreseeab]e tnat they w111 play as important
a ro]e in the des1gn of mu]t1var1ab]e contro] systems as the s1ng]e:r

_ var1ab]e frequency doma1n techn1ques did wwth s1ng1e var1ab1e processest

~/’However there is st11] a need for add1t1ona1 study of these’ methods 1n'“

"order to_1mprove them or'toldevelop\more pract1ca1 methods-Jh1ch_w1]l
make the desigh)of contro} systems'even easier "fhehe Ts a1so a need

: for more’ app]1cat1ons of these methods to pract1ca] systems in’ order to-

encourage the1r0use in 1ndustr1a1 processes

‘\.



1.1 Objectives of This Study.

. Based on these cons1derat1ons the study of - the mu]txvar1ab1e
frequency domain des1gn techn1ques was se]ected as the ob3ect1ve of this
1nvest1gat1on. Because of the vastness of th]s field th1s study was
]1m1ted, after 2 genera] rev1ew of th1s area, to a'detailed eva]uat1on of
the methods which were cons1dered to be the most promﬁs1ng techniques.

Th1s study has evaluated the inverse Nyqu1st array [65] and the character-
istic locus method [4,42]. It has a1so deve]oped and evatuated the
' "direct" Nyquist array method Altnough the "d1rect" techn1que has been
suggested [38, 68 70 71] in the 11terature it has not been fu]]y developed or’
}‘app11ed  The d1rect ‘Nyquist array method was" derived, "in th1s study, by
two d1fferent approaches F1rst by mod1f1cat1on and extension of the ;//////(/
same theory that. under]]es the inverse Nyquist array and charac/erast:c
Tocus methods and second]y by extens1on of " the s1ng]e u/raable frequency
.~doma1n‘technaques using an_1ntu1t1ve-approach. T _ evaluation of these~
methods'has been concerned with severa1 d'fferent featureS'ot the method:
the theoretical aspects,'their‘co pufer/:;plementat1on and the app11cat1on

of tnese techn1ques to the,des1gn of a contro] system for the doub]e-

' effect evaporator ot p]ant Tocated in the Department of Chem1ca1
Eng1neer1ng/ﬁf/thepbn1vers1ty of A]berta | Lo |
«///// A]though it is not 1nc1uded as part of th1s the51s th1s study
//’//;;2 also -included the deve]opment of a computerﬂa1ded des1gn package .
£29, 30 31,32]. Th1s program ass1sts W1th the des1gn of contro]lers
based on the 1nverse Nyqutst array, character1st1c 1ocus and d1rect
Nyqu1st array methods The package has been wr1tten in auser

- oriented form and the controﬁ]er can be des1gned in an 1nteract1ve way

us1ng a ChT computer term1na1 Th}s packagevhas~been 1ncorporated,as_a_



part of the GEMSCOPE [14)] package whjch:operates Qn‘an’IBM 360 serfes_
computer. under the University of Michigan time-sharing system (MTS).
This 1nvesttgat1on has also covered the compar1son of these
techniques with the optimal control method and the multiloop design
approach based on the experimental result$ obtained by app]y1ng these -
methods to the double-effect evaporator'pilot-p1ant}' |

~ i

1.2 Structure of the’ Thes1s

Th1s thes1s is divided 1n e1ght chapters Chapter Two contains

- a survey of the frequency doma1n de51gn procedures uh1ch have been

-

..‘yproposed to date The 1nverse Nyqu1st array method is d]scussed in

Chapter Three and two des1gn examp]es are 1nc1uded which 111ustrate the .

use of this nethod Chapter Four dea]s w1th the character1st1c 1ocus
method and presents a design examp]e us1ng this techanue
. In Chapter F1ve the attention is focused on the deve]opment

and app11cat10n of the d1rect Nyqu1st array method. Th1s chapter is

’d1v1ded 1n three main parts, In the first part the d1rect Nyqu1st -

array metnod is der1ved based on concepts wh1ch were 1ntr0duced in the

vdevelopment of the 1nverse Nyqu15t array [65] and the character1st1c
"1ocus method [4 42] In the second part the d1rect Nyqu1st array

"method is shown to be 2 d1rect and 1ntu1t1ve ixtens1on of s1ng1e 1nput

s1ng1e output des1gn techn1ques Th1s is a se]f contatned section and

it 1s based on a- report wr1tten by F1sher and Kuon []5] In theﬂlast
.part the dlrect Nyqutst array method is app11ed to de51gn a- cOntro]
System for ;he doub]e effect evaporator pllot plant -

| | The experlmental evaluat1on of the contro]]ers de51gned us1ngw_=ﬁ' o

jfrequency doma1n techn1ques is presented 1n Chapter S1x and 1nc1udes a

S =
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comparison with cohtro]]ers designed using the optima] control method '
and the mu]ti]bop\design approachn

In Chapter'Seven the direct Nyquist arrayﬁmethod‘is used to '
design'a control system.for-a mu]tivariable'process which contatns time
» de]ays" A mode] [79] wh1ch represents the d1st111at1on column 1ocated
at the Department of Chemical Eng1neer1ng of the Un1versxty of A]berta
has been used in this examp]e.- F1na11y,1n Chapter E1ght,the overa]]

"J)’

conc1us1ons of this work are summar1zed

/

‘1;3 Comments on Thesis Format and Use

The fo]1ow1ng conments are 1nc1uded to ass1st the reader in f
1dent1fy1ng those parts of the thes1s that -are’ most d1rect1y app]1cab1e
to h1s part1cu]ar 1nterests and needs - ’ |
1) The descr1pt1on of the 1nverse Nyqu1st array, character1st1clloc1,;.

.and d1rect Nyqu1st array methods 1n Chapters Three, Four and Five reSpect1ve1y,'
- vere wrltten SO that they cou]d be read or referred to e1ther sequent1a]1y
'or~1ndependent]y' Th1s requ1red some redundancy 1n d1scuss1ng certa1n L
" basic concepts and was the reason why mater1a] such.as the.deschptton !

i‘of the evaporator was p]aced 1n append1ces Specific commentS"were-i :i.f
included, where appropr1ate to po1nt out the s1m11ar1t1es and/or :tftjlq"'
re]at1onsh1ps between the dlfferent methods but these are not norma]]y
necesstry to an understand1ng of any. one’ method
q '2) A]] the frequency doma1n techn1ques are 1nteract1ve and requ1re T

| 'dec1s1ons and 1nput at each step in the des1gn procedure These dec1s1ons

' f-are often subJect1ve and each user wou]d probab]y make d1fferent dec1sions :5f;

e and fo]]ow a s]1ght1y d1fferent path in des1gn1ng a contro]]er for a g1ven

;appl1cat1on Chapters Three,-Four and F1ve contawn rather deta11ed presen- | ;

RN o
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" tations of the steps that'the author took and comments about why these
stepg seemed appropriate Each _example is presented in‘a similar format
to fac111tate compar1son of the mechan1cs“ of each method If the

computer a1ded design system is ava11ab1e 1oca]]y stme readers may prefer |

to sk1p over the details of each example and eva]uate the_methods,by B ;v-*

do1ng the examp]es themse]ves The deScription of the'examples is _}\_
111ustrat1ve and not essent1a1 to the presentat1on of the theory and/or
_‘methods. - | |

3) The main concTusfon‘of this uork is that;the direct Nyduist.array
T‘method is the preferred des1gn techn1que and shou]d be used in p]ace

‘of the other methods. This conc]us1on is subJect1ve and app11cat1on

_‘dependent but readers w1111ng to accept it may prefer to consider

Chapters One through Four as pr1mar11y h1stor1ca1 and theoret1ca1

background to Chapter Flve

| 4) Readers fam111ar w1th convent1ona1 s1ngle var1ab1e frequency doma1n D

-techn1ques m1ght prefer to read Sect1on 5 3 before con51der1ng the deta1ls

"conta1ned in the other chapters (Sect1on 5 3.is an 1ntu1t1ve exp]anatlon R

Aof the extens1on of s1ng1e var1ab1e Nyqu1st techn1ques to the d1rect
’;mu]ttvarlable Nyqu1st array approach ) | . -
5) In order to hand]e pract1ca] prob1ems, mu1t1var1ab1e frequency doma1n .

: des1gn techn1ques requ1re the use of 1nteract1ve computer fac111t1es to-

do. the numer1Ca1 ca]cu]at1ons and p]ott1ng " This. thes1s is concerned wath -'“'

‘}the des1gn methods and the resu]ts of app1y1ng them to spec1f1c prob]ems

}JEThe descr1pt1on of the computer programs and 1nstruct1ons about how to use
l' .

§ them are conta1ned 1n separate reports (They are wr1tten so the user
C .
'-:-can app1y them to practtca] prob]ems w1thout be1ng fam111ar.w1th all, the
}'] ivtheory and the "whys" d1scussed 1n th1s thes1s ) | ’ -

i



R é) AT of the f1gures d1scussed 1n Chapters Two through Seven are 1ocated

in-the sect1on of the thesis immediately preceed1ng the b1b11ography Th1sv
: was done to fac111tate multiple references to the same figure and comparisons
between f1gures ‘The figures show1ng Nyqu1st d1agrams etc ‘are d1rect

e]ectron1c copies of the d1sp]ay on the CRT of the computer terminal,

o



| CHAPTER THO
LITERATURE SURVEY OF MULTIVARIABLE. FREQUENCY DOMAIN TECHNIQUES

2.1 INTRODUCTION -

xA" Frequency domain techn1ques have proven to .be eff1c1ent and
effect1ve des1gn techn1ques for s1ng]e var1ab1e feedback .control problems
.'s1nce they were f1rst 1ntroduced by Bode [7] and Nyqu1st [54] " However
1t was not unt1l the ]960 s that any s1gn1f1cant progress was made in
the app11cat1on of frequency doma1n techn1ques to mu1t1var1ab]e control
prob]ems A very 1mportant contr1but1on was the- deve]opment of the
inverse Nyqu1st array method by Rosenbrock [65]. Other 1mportant

.techanues for the: des1gn of . mu1t1var1ab1e contro] systems u51ng

- frequency doma1n techn1ques include: the commutat1ve contro]]er [33 36],

'the character1st1c ]ocus method [4,5,41 42], and the sequential return- .
a‘d1fference method [45 46 47] Several mod1f1cat1ons and extens1ons of
these techn1ques have a]so been proposed in: the 11terature e.q. 57 58]

o Deve1opment of frequency doma1n techn1ques tor the des1gn of

tmultivarnab]e contro1 systems has proceeded a]ong two maln paths F1rst;

a number of 1nve9¢1gators have tr1ed to mod1fy the. prob]em format1on,

_or deve]op a deswgn approach to perm1t the use of c]ass1ca] s1ng]e :

”7".var1ab1e des1gn techn1ques Second]y, others have assumed a true mu1t1—

’varaab]e formu1at1on and deve]oped new des1gn techn1ques However, o

' ﬂa]most a]] of the: techn1ques can be 1nterpreted as extens1ons and f_;,f‘;,

' genera11zat1ons of the or1g1na1 work done by Bode and Nyqu1st

The fo]]owfng sectlons conta1n a rev1ew of frequency doma1n~

L techanues presented in an order 1ntended to emphas1ze the progressxve -

‘“Vecdevelopment and 1nter re]atlon of the var1ous techn1ques Thusrsurvey;_,

| :;i".g d
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i

is primari]yfconcerned~with the mu]tiVariab]e'regulator problem and is
restricted to technioUeS'that'can be uSed'to’assist With the design of
linear feedback control systems wh1ch can be represented as shown in
'_F1gure 2.1. UnTess it is otherw1se stated the feedback transducer matr1x
will bé cons1dered to be an 1dent1ty matr1X'sTnce there is no 1oss of

v \

-genera11ty as far as the problem<pf determ1n1ng system stab1]1ty is

.

Te presented in terms

concerned A]] of the deve]opments and” equations ?
.of dlscrete systems but the analysis: 1s also valid for cont1nuous _
. systems and,most of them can be app]1ed to_systems.represented by bothw
square, and non;souare; transfer function matrices. ;fhe theory of some
of the approaches can a1so hand1e'the 1nc1usion'ot a‘post'compensator”l'
: matrix, L(z), (wh1ch comes 1mmed1ate1y after G(z) in ngure 2.1) but

-th1s is rot usua]]y of pract]ca] 1mportance because it 1mp11es contro]

is exerc1sed\over a4comb1nat10n-of,the rea],plant output var1ab1es.

2.2 MULTILOOP CONTROL SYSTEM DESIGN |
R A common pract]ce in the design of contro]lers for mu]t1var1-‘:-

?ablzlsystems s to\neglect the 1nteract1ons that oceur between the

- 'system 1nput dnd output var1ab]es and to proceed on the baSIS of a -

number of s1ng1e var1ab1e contro1 1oops each of wh1ch can be des1gned

:'-!1ndependent of a11 the others Th1s approach has been WTde]y used and

"1s frequent]y referred to as mu1t1100p contro] The ma]n p]ace that the L

fmu1t1var1ab1e aspects of the prob]em are. cons1dered 1s in. the pa1r1ng of L

";the system 1nput and output var1ab1es and/or 1n the fleld tuntng of the -
1oops A techn1que to ass1st w1th th1s prob]em of pa1r1ng system

ffvar1ab1es has been proposed [e g 8 9] and in- most cases 1t can be }”

i

7'1nterpreted as” a. s1mp]1f1cat1on or spec1a1 case of the more genera]

Syl
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'mu]t1var1ab1e techniques d1scussed 1ater The actual contro}ter design =
'step 1s completed using any. applicable des1gn techn1que such as the
classical Bode or Nyqulst frequency ‘domain methods
However in many systems the 1nteract1ons between process
variables are too severe to be neg]ected ent1re1y In such cases the .
app]1cat1on of .conventional SJng1e var1ab1e techntques resu]ts in .
unsat1sfactory control of the overall system. In sbme cases contro]A
eng1neers have 1ntu1t1ve1y des1gned contro]]ers based an the1r prev1ous
t experience fo]]owed by a tuning of. a]] control 1oops in the f1e1d
The main reason for. th1s lack of success is 1nteract1on j.e.

the way in wh1ch a reference 1nput r. (z) app11ed to 1nput 1 affects the:
p,.set of outputs (yj( ), Jti) [42] Because of the 1nteract1on in a -

.mu]t1var1ab]e system the transfer funct]on between the 1nput r. (A) and

ethe output iz (z) w111 change when the other 1oops are c]osed and a]so L
']when there are changes- in the contro]]er constants in the other loops. |
Thus in order for a s1ng]e 1oop techn1que to produce a su1tab1e contro]-
ler for 1oop Ty the des1gn must be based on the system transfer fUnct1on
of 1oop i that app11es when ]oop i is open and the rest are c]osed
From a des1gn po1ht of v1ew thls 'is not very conven1ent s1nce the |
;ftransfer funct1on 1nvo]ved in the deS1gn of 1oop 1 is a funct1on of the
contro]1er des1gned and parameters in all other ]oops of the system |
"e'}Thus, in ‘the genera] case there 1§ no obv1ous start1ng po1nt and several

"_assumpt1ons must be made in order to proceed with the des1gn of the |

- first loop.

0 ra



Sequentia] Return-difference Method
| The Sequential Return- difference method deve]oped by Mayne .
' [44 45 ,46] in its most elementary form represents an eff1c1ent algebraic
1mp1ementatwon-of the approach.that an-exper1enced contro} engineer

would probably take in applying single variable techniques to multi-

variable problems In/th1s approach a codtro{ﬁer k,(z) is designed for .

the f1rst 1oop based on the transfer funct1on g}N ) between the inpOt
r]( z) and the-output y]( z) using a single- 1oop/$reQUency domain
technique. Then'a new process Eransfer function matrix G]( z) is calcu-
lated with this first 100p1c1osed'and the rest open. ‘.A contro]1er

kZ( Z) for the second loop is then des1gned based on the transfer functton
19122( ) (element of G]( ) between 1nput rz](l) and'output yz(z)) using
‘the same s1ng]e 1oop des1gn techn1que A new process transfer function

matrix GZ( ) is ‘then ca]cu]ated this ttme w1th the ftrst and second

e

1oops‘c]ose{.rnd the rest open. The procedure cont1nues*1n a.similar

_:‘ . it'of'the 1oops A schemat1c representat1on is shown in

F{é: ;yne [44 45] has shown that a suff1c1ent cond1t1on for

| .t” ;fhe overa1] mu1t1var1ab1e system is that each of the 1nde1-
dua175 T 1oops deve]oped in th]s approach be- stab]e | |

'he a]gebra1c updatlng of the transfer funct1on 1s done in the

;'Let the control]er matr1x w1th 1oop i c]osed be K Vdfag

' -_5(k (z)isz(z),‘..."%(z) 0 . 0, 0) and assume that the first i

"2contro11ers “have. already been- obta1ned The.orlg1na1 proceSS'transfers(”hf

o~ -

‘M'funct1on matr1x G(z ) JS;dEfTUed by; L o B L //ff’

_ ‘;y(?)'=i9(é) u(i)‘ N ;- : o | .f . “,:i(g,l)l[ =

11



By closing the first i loops, and using negative feedback, u(z) is given

by
| u(z) = K (2)y(2) + ri(2) * (2.2)
whereiri=Ki[r (2),r (2)'..1 r (2)], The newiinbhf-output relationship
1 2 m . . )
becomes o '
y(z) = (I + 6K ) Ve r () L (2.3)
or
BT N DN S D
| y(z) = i G(z) r (z) = G'(2) r (2) (2.4)
ii;,The_transfeh'function'matrix Gi(z) een.alsq’be easily = f

' ca]culated‘using one of Mayne's re]atiOnships [45,46] i.e;

- . o

6'(z) = [, - k(2) g1 Tel] 67N (2) (2.5)
where: _ . : : .

ki(2) = ki (2)/f(2) B - (2.6)

fil2) =1+ k() g},‘u S (2.7)

IR SR U

g; = 1 column of G (z) . .

elf' = vector whose ith e]ement s un1ty and® the

b :u rema1n1ng e]ements are zero.

The select1on of the contro]]er for loop i 1s a]ways based on,

the transfer funct1on g ](A) wh’ch is the (i,1) e]ement of G] ]( ).

Th1s 1s a very stra1ghtfor\ard techn1que but1t does not: so]ve the'»‘

' -_fbas1c prob]ems assoc1ated w1th the de51gn of mu]t1var1ab]e §ystems

HSpec1f1ca1]y yt does not prov1de-a.means ofudeterm1n1ng the bestvpalrind :

12
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of 1nput_ootout‘var1ab1es, nqr do§§ it give directions aboot thelOrder in
which the individual 1§ops should be treated in th; design procedure.
dbvious]y”the final.control]er will be influenced by both-decisionsf

More generally the techntque does not provide a means for designing
individual control loops (or picking individuatncOntro1]er constants)
.such that a'pertormancehcriterion based on the orer611 muttivariab]e
system will be optlmtzed Thus while it might provide a convenient means
. of dealtng with s1mp]e mu]t]var1ab1e prob]ems there is obv1ously a need

for more rtgorous mu]ttyarlab]e‘tgchntques.

L . =
v 4 A . . f
St " H

2.3 MULTIVARIABLE CONTROL SYSTEM DESIGN

Another_approach to thevapp11cation of single variable design .
techntayes to multivariable probiems has been to augment or modifymther
systemchy a pre- or oost-compensator. If.the compensator; reduces the.
1nteractions be tween the.tnput anduoutput variab]es of theiaugmented
‘_p]ant then it w11] be possible to comp]ete the actual controller: des1gn
fstep u51ng c]ass1ca1 s1ng]e var1ab1e techntques The contro]ler for the
mu1t1var1ab1e system then con51sts essent1a]]y of two parts* the mu]tt— |
variable compensator and a set of. s1ng1e variable. contro]]ers The |

-

concept of non- 1nteract1on s very appea11ng in some app11cat1ons, but-

s unfortunate]y 1n most prob]ems 1t cannot be shown that non- 1nteract1on

1s a necessary cond1t1on for the deS1gn of an opt1ma1 controi]er In

. ,
fact in some cases it can be shown that non 1nteract1na contro]]er will

g1ve poorer performance than other a]ternat1ves [64] Thus 1n genera1 terms

7one is trading off a guarantee of overal] opt1ma]1ty for de51gn conven-

| 1ence.’
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2.3.1 Non—interacting Design Technigues’
. - o - )
In this scheme the design of the controller is done in two

steps. * In the first step a pre-compensator K(z) is ‘chosen so that the

open loop transfer function matrix.of the augmented plant, G(z)K(z), is

+

'diagona] Since 1nteract1on has been e]1m1nated by the compensator K(z);v

single-Toop theory may be used to des1gn each ‘loop separately.
This design technique has not been widely used, especially on
complex processes, because it often produces a vehy cOmb1icated,
contro]ler which is expens1ve or 1mpract1ca1 to 1mp]ement\*>

Also the se]ect1on of the pre compensator matrix K(z ) to make

_the system d1agona1 restricts the form of cumpensat1on that can

be app11ed to each loop us1ng s1ng]e 1068 theory When. the deter-
m1nant of G(z) -has zeros outside the un1t circle th1s_procedure gives
a poor orlynstabte contrel [64] This is easily ‘shown by the fo]]owingpj

anaﬁys1s ln»order to obtain a diagonal open loop transfer fdnction

matrix for the system G(z), the pre-compensator metrix'K(z) has to have .
. . - : A : N .

the following, form: B “ - L

o

K2) = 67 (2) diag (4(2), 8,2) ... a,(2)  (2.8)

q], q2’ q3 dlagona1 e]ements of the augmented p]éh%}G )K(z )/

F'The contro]]er w111 then be unstab]e 1f the’ p]ant has r1ght half p]ane

ZQY‘OS

Non-interactive des1gn techn1ques have been discussed by Ts1en

,[75] Rae [62] and more\recent1y by MacFar]ane [40] and Berry [6]



2.3.2 Inverse Nyquﬁst Array Technique

| The non—intera;ting design technique described above was a
rigorous -mathematical apprbach which could only be applied if the system
met some specific mathematica] condition so that the 1nteractidn could
be eliminated cohp]etely. One would expect that if the objective was
simply to reduce interactions rather than to e11m1nate them ent1re1y
then the "non- 1nteract1ng” des1gn approach could be applied to a wider
range of problems and wou]d involve compensators that were more pract1ca1
‘to 1mp1ement. The 1nverse Nyquist array method . deve]oped by Rosenbrock

[65,67j essentially gives the contro]l eng1neer a means of reducing the

| Eystem interactions to a point where a Qohtrol]er design and'everall

stability analysis can proceed on the basis of c]assita1 sing1e variable

techniques.

The 1nverse'Nyquist array [65,67] is based on an extension of

- the Nyquist stability criteridh for multivariable systems; The stabili-

ty criterion is deve16ﬁedufrom the basic equation presenfed by McMohran
A [47], but wh1ch i's equwa]ent to the relat1onsh1p obtame«? earher b_y

;-Popov [61]

) s . S . ' .
_lﬁ‘j §Z|L % e
where:,i' 5 | |

R(z) = (I.+ Q(z))*]'Q(z) = c1oseq-]60p transfer‘fUnctieh matrix. )
C(e)
..'Q(z) = G(Z)K(z) = open ]oop transfer funct1on matr1x (OLT%M)h
.' CLCP.= closed-Toop character1st1c po]ynom1a] \

'OLCP = open 1oop character1st1c po]ynom1a1 e 'h'hl“ 9

15
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The 1nverse Nyqu1st array works with the 1nverses of the open-
‘1oop and closed-1loop transfer funct1on matr1ces because of the 51mp11c1ty
of the transformation bétween these two matr1ces and hence~can'on1y be -
used to design contro] systems for square p]ants

The design of the contro11er w1th th1s method is done in two
maJor steps. The first step is to design a compensator which makes the
1nverse of the open ]oop and the c]osed ]oop transfer function ‘matrices
”d1agona11y dom1nant“ (D1agona] dom1nance is defined later but in genera]
"terms it means that the off d1agona1 e]ements in the trans r funct1on
matrix for the augmented p]ant are sma]] with respect to the d1agona1
e]ements ) A compensator K( ), that will produce d1agona1 dom1nance
can be deve]oped in a systemat1c, 1nteract1ve manner us1ng the inverse .
'Nyqu1st array (Tne 1nverse Nyqu1st array is a-set of mZ‘Nyqu1st

v

diagrams representtng every element of the inverse oﬁ the OLTFM, where m

-~ is" the number of the p]ant outputs or infuts.) Once a sat1sfactory degree

of d1agona] dom1nance has. been obtatned ‘the next step is to use. s1ng]e
var1ab1e frequency doma1n techn1ques to de51gn a stab]e contro]]er for
~ each pa1r of input-output var1ab]es in ‘the augmented p]ant Th1stmethod

is d1scussed more fu11y in Chapter,Three, : ’ - f. Ly,

2.3.3 Commutat1ve Contro]]er Method | h:' ”" ‘i'f - "..“ - _..f,h
Another method whlch makes use of s1ng]e 1oop des1gn techn1ques S
.to des1gn a mu1t1var1ab1e contro1 system 15 “the commutatlve contro]]er
“This method proposed by Ma Far]ane [33 36] can be very usefu] in the
'des1gn of a contro] system for square p1ants wh1ch can be expanded 1nto

;the fo]]ow1ng dyadqc form



i ) m :
: G = Z) w.v .
(z) jgl 95(z) w, ; (2.10)
where )
gj(z) = jth eigenvalue or characteristic va]he of G(z)
WS = linearly independent, frequency independent,real
A eigenvectors of G(z)_-A |
T _ : oo T
ijj = dyad1c matr1x, Vka Jk

S1ng1e loop - techn1ques can be used to des1gn a‘mu]t1var1ab1e contro]
system for th1s kind of p]ant The 'deésign. of the contro]]ers is done in
"the moda] or e1genva1ue framework of the plant matr1x G( ). Then by o
| transform1ng back to the’ or1g1na] bas1s the contro]]er matr1x is
obta1ned. N | .
Sovtain i£>. L -

In this method the controller matrﬁx is assumed to be equal tdf,'

|

n = .?‘ kl(z)'w-vT:v o 'v | ~} ey

p]ant h]i] then be equal to

Wt~
@
.
—
N,
L=
——
N
g
=
<

Qz) = 6(z)K(z) = (2.12)
1and theAéloSEd—]dop transfer function matrfx wiT]'be .

| };“': - '” g Mg (z) J( z) - T ‘1-_ S
R(z) ?.(;+G(;)K(Z)): G(Z)K§Z} = JZ] ?*93(f7k (O ) (?713)‘ ~

_;.

The c]osed 1oop stab1]1ty and trans1ent response character1$t1c

of the overa]] system are governed by the propert1es of the m modal]y L
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‘ non-interacting“closed-toop subsystems, gj(z)kJ( z)/(1+ 9; (2) _j( z)).
‘ Therefore each subsystem can-. be des1gned 1ndependent]y and treated as a
s1ng]e Toop system

f Unfortunate1y most systems cannot be expanded in the dyadlc
form given by Equat1on 2 10 because the1r e1genvectors are frequency
dependent - The use of s1ng]e 1oop technlques is not su1tab]e for these

-

systems because the c]osed 1oop stab111ty and trans1ent response w111 be
governed not on]y by the1r elgenva1ues but a]so by ‘their e1genvectors

-However the commutat1ve contro]]er method can st1]1 be app]1ed to these
systems 1f its transfer funct1on matr]x is approx1mated by a dyad1c ‘

transfer funct1on matr1x us1ng the procedure recomnended by Owens [56].

2.3§4}.Characteristic tocus:Method ' S . .di - o\
' A very important contribution'in the designUOf multivariab}e.f
contro] systems u51ng mu1t1var1ab1e frequency doma1n’methods has been the
. genera11zat1on of the sca]ar return d1fference quant1ty 1ntroduced by i .
’ Bode [7] to a return d1fference matr]x"* (Th1s approach makes the des1gn

- of mu]t1var1ab1e systems equ1va1ent to the des1gn of‘s1ng]e 1oop systems ),'f

The return d1fference and the return ratwo matr1ces can be - ca]cu]ated

o [38] by assumlng that a]] the 100ps are broken at one po1nt as shown . in

F1gure 2 3 If a s1gna1 transform vector a( ) is 1nJected 1nto the feed-
- back’ contro] system, as-in F]gure 2. 1 the transform of the returned s1gna1

at 1s g1ven by -6(z ) K(z) H(z) ( ) The return d1fference matr1x F(z )'1s-.7"

LI

1def1ned as the coeff1c1ent matr1x of the d1fference between the 1nJected o L

_ and return s1gnal i.e.

R () S+ kM) 2) = F(2) ale) 218)



" where:
~ F(z)= return-difference matrix = I + G(2)K(z)H(z)

|
i
|

-The return-ratiO'matrix is defined by
o o - :

T(z) = G(z)K(2)H(z) e as)

i

It follows directly ‘that

R 1T e (2.16)
" and whn the feedback transtCer matmix H(z) is unity . - A
T(z) = Qz) . . S ('2‘.,17‘).

“Tvio of the methods proposed to date are based On ‘the -usg of the

return d]‘ference matr1x to. determ1ne the stab1]1ty of the system These ,“

'f are the character1st1c Tocus method [4 5, M 42] and the sequene1a1 return-
'.1 d1fference method [44 457, The extended Nyqu1st stab1]1ty cr1ter1on used: .
by these technlques is: b@sed on the fo]]ow1ng re]atlonsh1p proved by

!

oo (1L

@i gE AU

The deveTopment of the character1st1c locus method by Be]1etrut1

~ and MacFar]ane [4] 1s based on “the use of the characcertsttc vaZues |
(analogous to the elgenvalues of a matr1x of numer1c constants) of the |

.return dtfférence matrlx They a]so deve]oped a more pract1ca1 approach
. us1ng the character1st1c vaTues of the raxurn ratzo matr1x [4, 42]

Th1s method is more generaT than the 1nverse Nyqu1st array

LI

method [65] s1nce 1t does not requlre the system to be d1agona11y domlnantT
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"~

-

to determ1ne its stabt11ty But the selection of the contro]]er matr1x '
is much more d1ff1cu]t because the stab1T1ty of the system is estab11shed
_ from the character15t1c‘ﬁoc1 of the return rat1o matr1x and 1t is extrem]y
Td1ff1cuTt to f1nd a reTat1onsh1p between the eTements of the controller

| and the character1st1c va]ues of the return ratto matr1x that can be used
as & gu1de in the des1gn stage. The des1gn of the controTTer matr1x coqu
be done in a more systemat1c way ifa scheme recentTy deve]oped by 0wens T

| [59 661 or .Kouvaritakis [508} is used With the charaftcr1st1c Tocus method .

| .'1t is poss1bTe to reduce 1nteract1ons at high frequenc1es by allgn1ng the

| . characteristic d1rect1ons or elgenvectors [41, 42] of the OLTFM w1th the

't standard bas1s set of vectors At low frequenctes 1nteract1on 1s reduced |
i~by 1ncreas1ng the magn1tude of. the character1st1c Toc1 of the OLTFM [4],.

: l 42]! The method has a\prov§s1on to. check the 1ntegr1ty of thé contro] to mea—
surement transducer error mon1tor1ng and actuator fa1Tures [4] (Ear11er '

1t was. p01nted out that the performance of a convent1ona] s1ng]e var1ab1e

1 feedback Toop when app11ed to a spec1f1c 1nput output pa1r of var1ab]es on

'pa muTt1var1ab]e system is: a funct1on of the controT]ers and the other
.eTements in other parts of the mu1t1var1ab]e system Thus 1t 1s poss1bTe
}:that a component fa]Ture or other change 1n one part of a mu]tlvar1ab1e 2';cﬁ':‘
’_ system cou]d effect the performance and stab1T1ty of a controTTer app] ed - -
i'p to other 1nput output var1ab1e pa1rs in the same 1nteract1ng system ) A
{system 15 sa1d to have h1gh 1ntegr1ty 1f 1t rema1ns stabTe under a]l |
ﬂ;?fT1keTy fat]ures [4] The commutat1ve controTTer can be c0ns1dered as a
r",spec1a1 case of the character1st1c Tocus method that ar1ses when a i;,ﬁ'
;1“controTTer 1s des1 ned to change the charactercsttc vaZues of a system
.in'w1tnout chang1ng 1ts character1st1c d1rect1ons (e1genvectors) '

In the character1st1c Tocus approach the controTTer 15 calcu]ated-fil

._?,I)



_ tn‘stagesx At each stage a controTTer is spec1f1ed to mod1fy the’

‘ character1st1c Toc1 and the characterlsttc dtrect1ons of the return rat1o
matrtx or the OLTFM 0 that 1t w1TT haveothe des1red pr0pert1es The
f1naT controTTer 1s equaT to the product of the controTTers used. in each

| stage » | ‘k ‘

- '_ i It shoqu be . pointed Ouththat‘prior to'the deveTopment ot,the“t
- character15t1c Tocus method by BeTTetrutt1 and MacFarTane [4] ‘the
character1st1c vaTues of the return rat1o matr1x were aTso used by Bohn
- [502 503] to determ1ne the stab111ty and to de51gn a muTt1var1abTe

,controT system ;

The character1st1c 10cus method 1s d1scussed 1n more deta1T
in Chapter Four.
.

2.3, 5 D1rect Nyqu1st Array Method

L 4

One‘approach that has not been fuTTy dtscussed 1n the T]terature '

N [36 38 70, 71] to date is, the “dlrect Nyqulst array method" This is
T;‘another techn1que wh]ch g1ves the controT engtneer a. means of reduc1ng
'f>*the system 1nteract1on to a po1nt where a controTTer des1gn can. proceed
-on the bas1s o cTass1caT 51ngTe var1ab1e technlques Th1s method can be
:';cons1dered as a comb1nat1on of the character1st1c Tocus and the 1nverse
__Nyqu1st array techn1ques The stab111ty cr1ter1on 1s der1ved from the
‘:Ttheory assoc1ated w1th the former method and w1th the concept of dlagonaT
f’ffdomﬁnance and Nyqu]st arrays 1ntroduced 1n the Tatter techn1que
‘ Th1s method requ1res that the return d1fference matr1x *1 e y
F() 14 q( ) Lo b (2 19)

'Tbe d1agonaTTy dom1nant However 1t onTy uses the Nyqu1st d1agrams of

21
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of the open-1loop transfer function matrix, Q(z).

The des1gn procedure is 51m11ar to the 1nverse Nyqu1st array

‘Vmethod, i.e. the seTect1on of the contro]]er is done in:two magor steps

In the- f1rst step a s1mp1e contro]ler is des1gn to make the return- '

,d1fference matr1x d1agona]1y dom1nant In_the f1na] step.a_stngTegloop

controller is” designed for each ]oop.1n the system. This method i$
discussed in more detail in Chapter Five.

2. 3 6 Sequent1a1 Return- dlfference Method

The sequent1a1 return d1f.erence method [44 45, 46 51 57] in {tS

-’genera] form 1s not much dif’ erent from the sequent1a1 method d1scussed

f in sect1on 2 1 to. des1gn a mu1t1]oop contro] system The ma1n d1fferencet‘

1s tnat T\ the genera] case it is p0551ble to des1gn a pre compensator at
each step s1mu1taneous]y w1th the contro]]er for each loop The pre- -

compensator is restr1cted to perform e]ementary co]umn operatlons and at d

~the 1th stage of the des1gn procedure has the fo]]ow1ng form:

Ly 9

R L B B R S
o e e 1o TR I X O
-f:where X deflnes the co]Jmn operat1on to be performed Then the 1nput o

- and.the closedrloop_trahsfer'functmonjmatr)x;tshg1yen-by”;”_;5~

-1vector wnen the fxrst i, loops are c]osed is equa1 to

"'it;ﬁ(z)7:*’Gc(?1\Kf(é)‘X(i}ffffi(%) 7;fif'::,,ﬁ  -(2222i,:f?ﬂ5ef5

oo
.



or
y(z) =_FA _G(z)‘ri(z) =sGi(z) ri(z) R (2.23) .

In this case the stab111ty of the system is estab]xshed from the ‘return-

" tememtty |t
e @ K e
Cors
?i(z) =1+ G(i)[G) GZ'-*:161]‘K((Z) f T _(2'25)-f

The sequential cho'i‘ce‘,of__GJ does not affect F. (z) for j‘>ﬂf The des1gn
': procedure is as follows. On the -ith step the contro]]er k. (z) is de519ned

based on the g] ]( ) element of C1 ]( );' Then E neﬁ transfer function
'vmatr1x G (z) is ca)cu)ated!y1th a new compensator matrlx GJ and the f1rst
i )oops c)osed A new contro)]er k1+]( ) 1s des1gned for the 1+] loop

based on. the g]+] 1+1( ) element of ¢! (z) such that th1s 1oop is stab]e

,»The procedure cont1nues 1n a. s1m11ar way for the rest of the )oops The'f_:<”;,

,:'matr1x ¢! ( ) at the (th step can be ca)culated us1ng an a]gor1thm
: deVe]oped by Mayne [45 46]. o R i
- The use of a pre compensator does rot solve the main. prob]em of -
'(the sequent1a1 return d1fference method wh1ch is the order of 1oop -

. c]os1ng Any arb1trary cho1ce of order1ng may 11m1t the ach1evab1e i
performance of the contro) systems Owens [57] has proposed a scheme to K@ tii
'2 solve th1s prob]em by expand1ng the p]ant transfer funct1on 1nto a dyad1c B

. form However‘h1s scheme requ1res t e use- of a post compensator which

"t:}/{ ;f::.]e.u%
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is highly undesirab1e in most practical cases.

The sequential return—difference method has f]exibi]ity jn that |

‘ : 1t can be used in comb1nat1on with any other de51gn method ~ Any method

' 'can be used to des1gn the pre compensator G ( ) and the sequential return-
difference method can be app11ed to se]ect the f1na] contro]lers 1n each
1oop A very pract1ca] comb1nat10n appears to be the direct Nyqu1st array

and the sequentlal des1gn method .

A mod1f1cat1on of the seque1t1a] design method has been
--proposed by Owens [58] The main u1fference between these two schemes 1s‘
',that Mayne s method [44 45] produces control s1gnals u]( ), u2(z)

: u]( z) based on the .eedback error e]Qz), (z) ces ej(z) respect}vely.‘

~

2 3. 7 Owen S Mod1f1cat1on of the Sequent1a1 Return d1fference Method

' Owen S mod1f1cat1on [381 1ntroduces Sequent1a11y at each stage ‘
the effect of SPCh cqntro]]er u,(z), uz(z) L.} ;m( ) while reta1n1ng full
output feedback A sthemattc d1agram of th1s method s presented 1n n
:'Figure 2. 4‘ U51ng the 1atter approach the p]ant and the contro]]er are

_gexpressed in the following form

s Lyt )
i ;. ; oy eeh’.,.
K'(z) —.j;J .Jngz) ttszZ)s

B e

cowhere oo S B L S,

'"gj(z)p5 jth‘CO]umn-oﬁ=the:p1ant-thanSfen-fuhction natfix_:‘}s

o

Cafvy
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n

jth row of the controlier matrix .

e. - = column vector whose jth element is unity and the remaining-

gnts are zero.

R ster, Tet ol (z) = K (2), ryle) vy (a), 0

thengxhe:ph ~%r function matrix is given by

--,‘t_j./v(.z) = G""(z) u(z) | o | N | .(2ﬁ.248)

For a kel ?:feedbaCk‘chtVO]:

and the é: ‘?d 160p transfer function matrixiiék

RNV DN DIV IS PPN B
v(z) = (Im +G (z) K'(2)) G (2) r'(2) - (2.30)

: The stab111ty1;f the,system;is.determined'from*the1réturn-difference _

' matr1x, i.e. 4

or
JRRRLAENE PR RRCENS AN §

m.oa

-Thus the determ1nant of the return d1fferencp matr1x 1s equal to

Coa

IFgle ' - lﬂ (e J II + ]“ (@) @) @t f(z».ssf)f'-'-

and app1y1ng some f mu]as for part1t1oned determ1nants g1ven 1n

o ;Ga macher [19]

N F-(i) - IAjf Giﬁéj_Ki(Z)   . ;P;j~A .j - .(2'31).

() 442 Ky (2) () (1 Hg't kit (@32

25

u(z)= k(2 Y(VZ)'»’“‘:‘:i(.Z) ) e o -,(2'..'.29)' o
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| output te generate sequent1a11y u ( ). u2( z) Lou

. f

IR@ F @] N k) g @) (2.3)

6wens' method iS‘based on- Equation (2.34). It is similar to Mayne S

methpd [44 ,45] 1n ‘that the des1gn of the controTler is done sequent1a]1y

\)

At each steplthe m components of the row vector: k ( )} are chosen by
) ~1

i-19;
hyqu1st stab111ty cr1ter1on - The weakness of th1s method is that it does

exam1n1ng the sca]ar term. (1 + k.( ) F .(2)) which must satisfy theh

‘ not solve the basic prob]ems of the sequent1a] return -difference method

i.e. order of loop clos1ng, and se1ect1on of the contro]]er constants to

-sat1sfy an overa]] system performance criterion. The mod1f1cat1on ‘

; 1ntroduces extra design flexibility but it also makes the se]ect1on of the

controller much more difficu.t. The on]y_gu1de11ne the user has is that

-1

the sealar term (1 + k. (z) Fy.

]( z) 91(2)) Must satisfy_the'Nyquist
_ e |
stability criterion. i

]

2.3.8 Another hod1f1cat1on of the Sequent1a1 Return d1fference Method

26

When compar1ng Qwen' s mod1f1catlon to Mayne S Sequent1a] Return— .

_d]fference methqd [ 44, 45] 1t becomes obv1ous that 1nstead of using the ful]

.m( ) the feedback
error’ e1(.) (iﬁl; e m) can be USed to s1mu1taneous]y generate all. th1
control signaTs S1nce the sequent1a] methods are not’ d1scussed e]sewhere

\ (’

:1n th1s the51s the mod1f1catwon is presented here A schemat1c d1agram

V

of th1s mod1f1cat1on is shown in F1gure 2. 5 The contro] s1gnals

generated by every feedback error are sequent1a]1y accumu]ated
| For th1s cage: the contro11er matr1x can be represented in. the
- : o 4.@{7 v ‘ )
fo]]ow1ng foom = - - T o



where:
| kjtj'jth column of the controller matrix.
At the ith stage the closed .loop system is given by -

o(2) - K@) (e) - vz o' @) (%)

ki(z) el (2.35\"

27

y(2)= (1, + 6(2) K27 6(2) w' (2) + (1 + 6(2) K (2)))
6(2) K'(2) r(z) R (23
- The stabflity of thé‘§yétem will depend upon,the return-
\ . L. L . . . . . . )
ditterence matrix i.e.
Fi(z) =_Im_+,G(z)_j§i gj(z) e; | (2.38) N
or »
A C ' - o L
Fo(z) = Flq(2) (1 +F, G(z) T) o (239)

- . . . HER o

- The determinant of thg\:iiifn—d1fference matrix is
' V - 1 (d',

. S
‘S1m11ar]y app1y1ng some formu]as for part1t1oned deteﬁm1nants [19]

(2

Th1s mod1f1cat1on can be deve1oped from Equat1on (2 41)

de51gn 1s done sequentlaily At the 1th,stage the'm elements of co]ymn i~,

,wwnl=1 lu +g§ ( ke] »x&my~‘

2)] - |ﬂ1ZHll+eF Guﬁtl :(zu)”“ |



are chosen such that the scalar tenn 1+ eT F. ]] G(z) h{ satisfies the
‘Ny3u1st stability criteria. This mod1f1cat1on has the seme f]eiji]ity
as the Owen's "approach [58] but it also has the same problems.
2% conclusions o«
Of all the methods discussed in thws study the fo]]ow1ng appear
to- be the'more prom151ng ones: the inverse Nyqu1st array [65], the
‘characteristic locus method [4, 5 41 42] and the d1rect Nyqu1st array
me tiod [developed 1n Chapter Flve] (w1th the except1on of, the inverse
Nyquist: array method, these methods can a]so be used to design a contro]
system for_non—square plants but the selection of the control]er is more
difficu]t ) Because of their f]ex1b111ty and’ conven1ence 1t appears that
these multlvar1ab]e frequency domain des1gn techn;ques w111 be w1de1y

' used in the future. Therefore these techniques are described more fu]]y

in the“fo]lowing chapters.

#t
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CHAPTER THREE
THE INVERSE NYQUIST ARRAY METHOD

3.1. INTRODUCTION

The inverse Nyquist array»method first‘propOSed,by Rosenbrock
[65] has received considerable attention recently [1,17,20,21,22,23,40,
50,67] and several app11cations of this method have been presented in
the, 1iterature [3,41,48,49,52]. Experience with experimental fmp]emenf"
tations‘nsing‘this method is very 11m§ted and iny a-very small number
of expetrimental cases have-been'reportedlin the 1iteratnre [3,39]. thr o

. these reasons and in order to compare'this method with other mdltivari-

able frequency doma]n techn1ques, the. evaluation of .the inverse Nyq&1st

array method was undertaken as part of this study and 1nc1u ed

the theoret1cal aspects

the computer 1mp1ementat1on of th]S method

the des1gn of an actua] contro] system using this technlque

the.1mp1ementatton of the resu1t1ng controller on process
equ1pment | _ | | ; _

This chapter deals spec1f1ca]1y with the theoret1ca] aspects . .'.
of the 1nverse Nyqu1st array method and with the des1gn of a contro]

system f0r a doubTe- effect evaporator p11ot p]ant The exper1menta1 :
'results .are presented in Chapter Six. L

The inverse Nyqu1st array method for cont1nuous systems has’ :
L

been d1scussed in deta11 by Rosenbrock [65]. Thls chapter discusses the
_y'most 1m%ortant aspects of the inverse Nyqu1st array method for discrete .

- systems The 1nverse Nyqu1st array method 1s cons1dered here to be a-
&

_spec1a] case of a more general method the 1nverse.Nyquqst method;“The -
, e AP - o #;r.



objective in doing this 1s to emphas1ze the s1m11ar1t1es with the
characteristic locus method: [4 42] and espec1a]1y with the direct
Nyquist array method d1scussed in Chapters Four and F1ve respectively.
Control systems for the doub]e—effept_evaporator pjlot p]ant
were designed using two different order'state#spaee models of the same
, pilot p]antﬂ The results of the expérimentalfimp]ementation of the v

.- resulting controller in this chapter are discussed in Chapter Six.

3.2 THE INVERSE NYQUIST METHOD'_A
The fnverse Nyquist method and its special case the.inverse
Nyquist array metnod can be ‘applied to the des1gn of a mu]t1var1ab]e
.ﬁcontro1 system- of the form shown in F1gure 2.1. S1nce the feedback
”matr1x H(z) can always be made part of plant transfer function matr1x
- G(z), without loss of genera]1ty, it w11] be assumed that the feedback
maérlx, H(i) is a un1ty matr1x

McMorr n [47] has proved that for systems which can be.

represented by F1gure 2. ] the fo]]ow1ng re]at1onsh1p ho]ds

_] ‘ ' - < o o
.[B (z)] :,CLCP ' RN C D
.. T oee - G
(=) , |
where |
cLep =£c1bsed-1odp.charaeterfstic poiynomiajb -
OLCP = 0pen-1oop.eharaCteristic pdTynbmia] f. |
;Q(z)_= open ]oop transfer functlon matr1x G(z)K(i)::”'
CR(z) = c]osed Toop transfer funct1on ma&r]x = (I + Q(z Q(z)

o Th1s was deve]oped 1ndépendent1y by McMorran {47] but it 1s

' requ1va1ent to an equat1on derlved ear]ler by Popov - [61] and 1ater by

I
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Hsu and Chen [24]. The main reason for using the anéPSES of the open-

and c]osed loop transfer function matr1ces 1s the s1mp11c1ty of the

fransformat1on between these two matr1ces i.e.
(z) oo (3.2)

.Ihe’usé'of Equation (3.2) instead of the eqnétion.whichfre]ates the open-
and ctosed—]oop transfer function matrices ile.

R(z) = (»I[I']%Q(Z))"]Q(é) N C I
51mp11f1es, as will be seen later, the des1gn of a contro] system because
the e1genva]ués of R (Z) may be obtatned by s1mp1y "Sh1ft1ng" the
eigenvalues of Q ]( ). | | ' |

| A genera] des1gn method can be deve]oped in terms of:the
determ1nants of the inverses’ of the c]osed and open 100p transfer
"~ function matr1ces by u51ng the following resu]t LetD be a Contour in
. the complex z- p]ane as shown in Figure 3 1 cons1st1ng of a unit c1rc1e i,
" and a c1rc]e of rad1us a wh1ch is large enough to ensure that any' zero.

of IQ z)| and IR z)]| out31de the unit circle is 1ns1de the contour

D, Let also |Q ] map D 1nto r “and |R o| map. D 1nto rc enc;rc]1ng -
AL

‘,the OFTgln counterc]ockw1se n,a and n ttmes respectwve1y (CTPFKWtSe
enc1rc]ements are assumed- to be p091t1ve) Using Equatton (3 1), the
.(pr1nC1p]e of the- argument [66] and the we]] knoWn fact that a. c]osed
Toop- mu]t1var1ab1e d1screte system is stab]e 1f and onTy. 1f the. Closed- -
.1oop character1st1c po]ynom1a] does not conta1n any zero 0ut51de the “
unit c1rc1e centered at the Orlg]n 1t can be shown [47] that the System

.sws c1osed 1oop stable it and on]y 1f

n‘no= Py o o - _(,3-.4‘)_'
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vihere p g is the number oi Zeros outside the unit‘ciréIe of the Open-foop ,

characteristic po]ynom1a1 . ' ' | - '
A]though Equatlon (3.4) can theoret1ca11y be used to de31gn a

'mu1t1var1ab]e regulator it has no va]ue as a practical des1gn method.

The controller cannot be des1gned in a systemat1c way because of the

difficulty of pred1ct1ng the effect of specific elements of the contro]— '

er on the values of IQ z)| and |R |_ '

A more pract1ca1 approach can - be deve]oped by using the

| e1genva1ues or the character1st1c values of Q ( ) and R}l(z) to determjneb

the stab111ty of the system Jnstead-of the1r determinants: The term

. character1st1c va]ues" has been used by MacFar1ane [38] to emphas1ze

:'the fact that they are not constant va]ues (as the fam111ar e1genva1ue

‘1.) iyt are functlons of z .In,th1s case if every character1st1c va]ue

of Q'-(_) and R (z) mapS~D 1ntopfoi and féi (i=1,2 . ) enc1rc11ng
the or1g1n counterc]ockw1se n0 and hci'tjmes'respectiveJy,-Jt-can_be
f'shown [4] that ‘,d
. m ‘ ‘
"o = Ly o (3.5)
% v o on. =} n_, e S (3.6) . .

S e DT e e

The approach based on Equatlon (3 7) can: be s1mp]1f1ed further: ﬁv’eiﬁ

fbecause the stab111ty of the system can be determ1ned by us1ng on]y the
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jcharacteristic va]ues‘ofpthe inverse of the open-loop transfer function

-

matrix (qi(z),.i =1 ... m). By app1y1ng the e1genva1ue sh1ft theorem

[35] to -Equation (3 2), the character1st1c values of the inverse of the |

. c]osed Toop transfer functlon matr1x (ri(z): j = 1 ;;.«m) can be expressed S
o - B ’ °
as: .
o N )
-~ - ‘ ~ )
ri(z) =1 +q.(z) (3.8)

Then, using E@uatzon (3. 7) zt can be stated that a necessary and
| uuffLCIQHt condition for +he cZosed—Zoop eystem to be stabZe is that the
number of nncwclements of tne eritieal poznt (-1, 0) minus the*ﬁhmber of
encwrclements of the ormgtn by the charactertsttc ZOCt (Nyqutst dzagramsv
f the characterzsttc values) of matrtx q - (z) be equaZ to -p
| This stab1]1ty cr1ter1on 1s the bas1s of a deS1gn method wh1ch |
is equ1va1ent to the character1st1c Toc1 method proposed by BeT]etruttl ;
-and HacFarTane [4] and d1scussed 1n Chapter Four The masin d1fference : '
‘between these two methods is: that the chgracterTStTC Toc1 method uses B
_wtne characterwstlc values of the open Toop transfer funct1on matr1x or
'_1n genera] of the' return ratlo matr1x white th1s approach uses the f

-characterlst1c va]ues of the 1nverse of. the open Toop transfer funct1on

f_-matr1x Both methods have s1m1Tar propert1es and 51m1lar d1sadvantages

’-.These are d1scussed in: more deta1T 1n Chapter Four

'3 3 THE INVERSE NYQUIST ARRAY METHOD ‘.’ ‘:';~th_» o ‘. ftﬁ':. epr‘7v“‘ﬁ
| | Rosenbrock s 1nverse Nyqu1st array (INA) method [65] 1S a : p
‘s1mp11f1cat1on of the generaT 1nverse NyQUTSt method The INA method 15
,febased on a more pract1ca1 stab111ty c 1ter1on WhTCh can be obta1ned for

systems represented by ngure 2 T when he 1nverses of the open-TOOp Q ( )'“
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and the closed-loop, R'j( ) transfer funct1on matrices are row or co]umn
diagona]]y dominantl The matr1x Q (z) is Sa1d to be row dom1nant if for

all the z on the contour D the fol]ow1ng equat1on is sat1sf1ed

ooome o ‘
l933@)1 = T 1 a45(2)] >0 o (3.9)
| A : |

+ . where [dij] is the (1,j)'e]ement of Q-](z)h_ Simi]ar]y.the matrix Rf](z)‘. o

s row dominant if Equation (3.10) is satisfied, i.e.

“:where [ﬁjj] 1s'oheu(j;j)7e}ementlof RH]( ). Equ1va]ent equat1ons can be
-Wriften wheh Q‘]( )‘and Ril(') are column dominant . |
When matr1ces Q (,) and. R ](2) are dlagona]]y dom1nant the‘
1stab111ty of the c]osed looo system can be estab11shed us1ng only thef
,dlagonal e1ements of matr1x Q ( ) Rosenbrock [65] has shown us1ng"
'.Gershgor1n S theorem {43] that 1f the dzagonaz eZements, a]]( ) of
Qzl(z) (not the character1st1c va]ues as 1n the genera] case) map D 1nto
ﬂfé{i and ‘the dlagona1 e]ements r 1(‘), of R ( ) ‘map D 1nto Fc11 j'

: enc1rc]1ng the orlg1n counterc]ockw1se no1i and nC t1mes respect1Ve]y, ,"

“;then con : , - TCV
To = L Moii B

o?{‘Thus?uéihg’Eguathns_(3;4) (3 10) and (3 ) itrganjbe.shonn*thatféiff,';1»5
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sufficient and necessary conditi ‘on. fer a diagonally. dommart closed-
- . . : ' ‘ »
loop system to be stable 18

N3
po
]
ness—3z3 -
=3
i
]
©

5y el e o BB

""ABecause ﬁii( z) =1+ o..(z), the on]y d1fference between the Nyqu1st .

. d1agrams of - r ( ) and q (z) 1s a sh1ft in the 1mag1nary ax1s Thus the
system is c]osed -loop stab1e 1f the number of enc1rc1ements of the (- 1 ,0)
‘po1nt minus the number of enc1rc]ements of the origin . by the Nyqu1st
dlagrams of {q i%], 2 .,;_m};‘r‘ .; is equal to Py, |

| - Based on -this stab1}1ty cr1ter1on Rosenbrock [65] has deve]oped
_ia very pract1ca1 techn1que to des1gn 2 mu}tlvarwab1e contro] system
Rosenbrock [65] has also 1ntroduced the concept of the ihverse Nyqu1st i
:array wh1ch 15 a set of m2 Nyqu1st dlagrams (m 1s'the number of 1nputs,orr
tioutputs in the system) that correspond to every e1ement of Q ( ). Theij A
;'1nverse Nyqu1st array is . a very usefu] graph1ca1 tool to observe the;_A
2 ,effect of each contro11er matr1x 1n the contro] system and to se]ect the
‘ftype of control wh1ch is’ necessary b |

"_ Dlagona1 dom]nance 1n the system can a1so be estab11shed

'.graph1ca11y by draw1ng c1rc]es for d1fferent frequenc1es on the Nyqulst o

: ;i'd1agrams of the d1agona1 e]ements of Q ( )} The centres of these

'f.c1rc1es are. 1ocated on the Nyqu1st loc1 of the d1agona1 e1ements q ( f

"of Q (,) and the1r rad11 are equa] to the sum of the magn1tudes, for a o

' 5‘_g1ven frequency, of the off d1agona1 e1ements 1n a row or 1n a column

'ﬂ;depend1ng whetner row or column dom1nance 1s to be estab]1shed

hFor row dom1nance the rad11 of the c1rc1e5 are equa] to

. ¥
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.,. m ’ ._ . } ». .
d = jgl Iqij(zzl o v‘ . }(3,14) ;
J#‘ - e " A
and for column dominance the radii of these circles are given by v
T | :
mo : o |
5p° 2 'qui(z)'f o (3.8)
j=1 B . R
i

The bands formeq\by these. c1rc]es are usua]]yﬁreferred as the
, Gershgor1n bands The invers of the ~open- 1oop and the closed- i
“-loop transfer functlon matr1ces are d1agona11y domlnant 1f the Gershgor1n
'.c1rc]es do not enc]ose the 0r1g1n and the ( 1,0) po1nt respect1ve1y 'f{l
- The- Gershgorfn bands have two more 1mportant propertles ‘The - f1rst ‘one ,‘f' |
| has been proved by Gershgorln [43] and states that the character1st1c
,f}va]ues of the matrTCES Q" (2) and R™ (z) are 1ocated 1ns1de the
Gershgor1n bands Th1s property was used by Rosenbrock [65] to prove
'the stab1}1ty cr1ter1on on uh1ch the 1nverse Nyqu1st array method 1s

i based It 1s becauSe of . th]S property that the. Gershgor1n bands are

: -.;a]so used to determlne the stab111ty of the system

: The second property 1s .2 very 1mportant one because 1t g1ves
| “some phys1ca] 1n51ght 1nto th1s method Rosenbrock [67 69] has proved
o us1ng a. theorem due to Ostrowsk1 [55] that when the 1nverse of the 3';.‘f55f B

; 7iopen loop transfer functfon matrlx 07z ) is d1a90”a1]¥ dom1nant the "'69"/-7

v,“.Gershgor1n bands are tne 11m1t1ng bounds of a narrower band wh1ch ]St

'T"usually referred as the Ostrowsk1 band ThlS ]atter band a]so has the

.‘*5‘property of be1ng a ]1m1t1ng bound of the reg1on where the 1nverse of

ﬂff the transfer funct1on between 1nput 1 and output 1, when loop 1 1s open ;v'
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and the‘rest are closed, is 1565%6& The 05tr9wsk1 bands are generated
by c1rc1es whose centers are located in the Nyqu1st diagram of the“’9s
.Ad1agona1 elements, q (z) of Q ( ) and whose rad11 are equal to the

radii of the Gershgor1n c1rc1es mu1t1p11ed by a factor a1 or a}. These

factors are equa] to - Co . ‘. , o SUE "ﬂﬂ_7-

a; = max ——d— . (3.6)

i W

if row dominance is.used, or

8y
a =max:_—l-—"’“LT’ (3.17)
j }]»+q.. .
it 9

if co]Umn dominance is’used '

‘ The 1atter property of the 03trowsk1 bands can be represented ;x’

7
i

by the fo]]ow1ng equat1ons

flq 11

-1

L Where: h}( ) is the transfer funct1on between 1nput i and output 1 when '

| *_pthe loop i 1s open and the rest of the 1oops are closed

i.

. of the contro]]er constants 1n the other 1oops they are not genera]]y

“5' used qn the des1gn of the contro1]er except when 1t 1s necessary tO‘a

e;defrne more prec1se]y the reg1on of stab111ty of each 1oop Its use ?f;y" i

:'ffrequ1res a tr1a1 and error procedure However the property of the

> e S ER

.(z)‘ -..h;](-z'):l < ad, <d1 T (318) _,

B R R A

S1nce the w1dth of the Ostrowsk1 bands depends upon the va]uesy

Y
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Ostronsk1 bands oj\belng ]bcated inside the Gershgor1n bands is very
usefu] because once the system is diagonally domlnant the design of the
control]er can be done uswng single- var1ab1e techn1ques on each of the
Gershgor1n bands of the 1nverse of the open 1oop transfer funct1on matr1x
| The Gershgor1n bands can a]so be cons1dered as a’ measure of
the degree of’ 1nteract1on in the. system . The narrower these bands are
* the Tess 1nteract1ng the system is. ) | |
| " The de51gn of a muTt1var1ab1e regu]ator us1no the Inverse
.Nyqu1st array method- 1nvo]ves three steps, -
1) Pa1r1ng of the input- output p]ant.var1ab1es o
2) Des1gn of a pre- compensator to make ‘the 1nver3e of*the open-laop,
Q- T(z2), and the closed- Toop, R=1(z), transfer funct10n matr1ces '

diagonally dom]nant

¢731 Design of , mu]t]]oop contro] system u51ng s1ngle -variable

frequency doma1n techn1ques )

In the first step the 1nputS are reordered in such a way that the
‘ 1nteract1on between the 1nput output systems {u, (z) 4 i(z) f=1-..; m} is

"_m1n1m1zed or that the control of the outPUt y ( ) TS done by the 1"PUt

that has the greatest 1nf1uence on 1t, u1(z), This step is usua11y done '

j/
be graph1ca1 compar1son us1ng the plant 1nverse Nyqu1st*array which 1s

38

also’ usefu] to determ1ne if a compensator 1s requ1red to make the system ' ’_::7

- d1agona11y dom1nant

In the second step a pre compensator is se]ected 1n Ordér to;s

‘ﬂ make matr1ces Q (-) and R ]( ) d1agona]]y dom1nant Th1s compensator9519=;.;‘

1s USua11y des1gned by perform1ng success1ve elementary row operat1ons._;i'

on the 1nverse of the p]ant transfer funct1on matr1x Most of these
}ODerat1ons can be se]ected by V1sua1 1nspect1on of the correspond1ng

f 1nverse Nyqu1st array



T 1s an erro,“ 0

| o

" The f1na1 control matr1x w111 be equa] to the product of the

‘ contro] matr1Ces found in each step Each step is an 1terat1ve and S

1nteract1ve progess. However the des1gn of “the contro] matrix. 1s a]ways
done in & systematic way. o | - )
| Once the matrix Q_]( ) is diagonally dom1nant a mu1t1100p

control system is des1gned by u51ng the s1ng]e var1ab1e frequency doma1n

- technfques wh1ch app1y to 1nverse polar p]ots The only difference ‘,

between the des1gn of s1ng]e ‘Toop control systems and the des1gn of- a:

contro]]er for each Toop in th]S step js that the Nyqu1st d1agram of

the 1nver5e transfer functton of each loop is. rep]aced here by a band

(Gershgor1n band)

This three step procedure also a11ows the de51gner to solve

severa1 of ‘the contro] system requ1rements Tike stab1]1ty, reduct1on of

»_1nteract10ns, 1ntegr1ty aga1nst transducer and error mon1tor1ng failures

and the Performance of the system In the f1rst two steps a system 1s

gfven 'good non- 1nteract1ng and h1gh integrity propert1es aga1nst trans—

'ducer and error mon1tor1ng fa11ures by se]ect1ng a, control]er wh1Fh
N makes the 1nverse of the Open loop and closed 100p transfer function.

'fmatr1ces d1agona1]y dom1nant For examp]e, 1f a fa11ure in the transducer ‘

L . C\E‘r

of a any 100p in the system occurs a]] the rema1n1ng 1oops in the system
"‘wwll remain stab]e A]though such a- fa11ure w111 affect the transfer'
yfunct1on of each ]oop when 1t is Open and the rema1n1ng 1oops are c]osed, ,l.-
| the Nyqu1st plots of these transfer funct10ns will still be located |
v“1ns1de the1r reSpect1ve Gershgor1n bands S1nce the des1gn was based on
*‘the Gershgor1n bands the stab111ty of the loops w111 not be affected '

K a]though the ga1n marg}ns may be changed) The same occurs when there

1tor1ng fallure
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In the ]ast step of the des1gn the feedback gains {k ,1 1, m }
are chosen so that the c]osed—]oop system is made stable and the
berformance of the éystem is satisfactory. This makes the inverse
Nyquist'array»method a very useful and practical technique.

There-are~however‘some shortcomtngs in the use of the inverse
Nyquiét array method. These are: o |
1. It is not a]ways’ possible to find a simple controller matrix

which will make‘Q'l(z) and R-l(i):diagonelly dominant.AFor the
case when the matrix-R'l(z)'has been made diagonally dominant and 1
an.'anelytical'expressibn of'G( ) (or Q(z)) iS'given'it is
possible to. overcome the requ1rement that Q ( ) -be diagona]]y'
' dom1nant at the cost of add1t1ona1 ca]culat1ons. It is a1ways
'poss1b]e to go back to the genera] stab111ty criterion g1yen .
by Equat1on (3 4), i.e. |
n.o-ng - p

. (34)
“Since the inVerée'cloSedfToop»transfer function matrix,}h’L(z),

is diagonally dominant, n_will still be given by Equation
(3 12) (n_= z.n_.. ). The encirclements of the origin Nys

o c11
_ i=1"
~can be obta1ned d1rect1y by exam1n1ng the Nyqu1st d1agrams
}_correspond1ng to the mapp1ng of the contour D by |Q | or
L 6(2)] . |
‘There. is a]so the a]ternattve of mod1fy1ng Equat1on (3 4)-
»'by tak1ng into. con51derat1on the fact that n ;{pg 'z ‘\\\

iwhere z0 is the nuiber of zeros of IQ z)| out51de the un1t

‘-c1rc1e Equat1on (3 4) then will be equa] to



or | . j

3
(3%

From this equation it can be seeh thaf“the closed-Toop
system will be stéb1e if ahd.only if.the'number of éncirc]ehents J
of the (-1,0) point by the'Nyddist~d{éghams of {gi%(z);vi=1,..m}
is eqdaf Eo’thevnumber of.gerosfof~|Q(z)|veutside the‘unit

\
circle.

In'sqme cases Q'l(z) can be made diagonally dominant by
: des1gn1ng a post compensator L{z), in combination with a pre-
compensator gﬂch that Q ( ) is equal to:

q\ N

Aoz"l(z)f= K@l ) - (3.20)

From the,practical'point of view this alternative is questionab]e

because the control wou]d then be exerc1sed over a- comb?nat1on ‘
. of the output var1ab1es 1nstead of the output themse]ves

| Another a]ternat1ve has been used by Hawkins [501, 505];‘
A eedback contro]]er K(z ), can a]ways be found that/w’ll _

 make the closed 1oop sytem conta1n1ng Q(z ) ‘dia a]ly dom1nant..'

- This c]osed 1oop system can then be treated/as the new system. -~

matrix Ql( ) and the des1gn cont1nd/d/6§1ng the standard

e'1nverse Nyqu1st array method. /7/

+

'S1nce dlagona1 dom1nance is no? a necessary cond1t1on for

el

a1 -
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non-interaction [42] or good control, some design feedom
| (and/or;control energy! may be wasted maktng the systemA
d1agona11y dominant.
3. Integrity against actuator fa11ures cannot be checked in this
method.
4. ft can onWyrbe-apptied to p]ants\which'have a sqdare transfer
tunction‘matfixl |

]

3.4 USE OF A BILINEAR TRANSFORMATION
Although all the resu1ts preseh{ed here for*d15crete systems

have heen nhtaw_ ed using the z-transform, the de51gn ﬂf a multivariable
regulator for a d1screte system 15, for pract1ca1 reasons, usua]]y done
S

using a w- or r=bilinear transformation, i.e. e

©

5 ]+w | ~ " . } .
or
. - #
oL+ X
'z = — (3722) .

A b111near transformat1on maps the un1t c1rc1e in the z- p]ane_

into the Jeft ha]f plane in the W= or r- p]ane Its use. makes - the e
computat1on of the Nyqu1st d1agram easjer because the Nyqu1st contour :

‘used,1n«the}w— or r-p]ane is 1dent1pa1-to the Nquzst contour used‘for'

/

“of i;

42
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cont1nuous systems in the s- plane as it is shown 1n F1gure 3.2. This
~also s1mp11f1es the programming to 1mp1ement this technique because the
same programs can he GZZa to des1gn a continuous or a d1screte control
system. _The Nyquist diagrams obtained using a bilinear transﬁgrma;ion

are exactly the same as the ones obtained using a gftransform.
& o

In this~study the w-transformation was arbitrarily chosen.

3.5 AN ALTERNATIVE TO THE INVERSE NYQUIST METHOD
o ' \\‘ )
Similar stab111ty criteria can be -obtained uiipg the open— and
closed-loop transfer funct1on matr1ces 1nstead of their 1nverses by

rewr1t1ng Equation (3.1) in the fo]]ow1ng form:

_cee L - (3.23)

Using th1s equation equ1va]ent stab111ty criteria can also be’
obta1ned in terms of. the e1genva]ues of Q(z) and R(z) and in terms of :X".
their diagonal elements.when these matrices are d1agona11y dom1nant
However the methods based on these stab111ty criteria are less pract1ca]5

'
than the 1nvepse Nyqu1st array discussed in th1s chapter and the d1rect
.Nyqu1st array methods dlscussed in Chapter Flve Thls 15 because the.

'vmethods based on Equation (3. 23) requ1re the ca]cu]atlon of the c]osed—'

. Toop transfer funct1on matrix using Equat1on (3 3) to determ1ne the _

vstab111ty of the c]osed 1oop system Th1s ca]cu]at1on is not necessary ’

1n the 1nverse and the dtrect Nyqu1st array methods

A

36 'DESIGN OF A MULTIVARIABLE REGULATOR FOR THE THIRD ORDER EVAPORATOR
| MODEL |

In th1s sect1on a mu]t1var1ab1e regu]ator for the doub]e effect o



)
evaporator‘piTot plant, described-in appendix A, is des1gned us1ng tbe
1nverse Nyquist array method. The evaporator was represented by a
a discrete, three state, linear, time- 1nvar1ant modeT with normaT1zed _
perturbated var1abTes (The coeff1c1ent matrftes for the state- space

;modeT are shown in TabTe A.3) This mode] was obtafned by reduct1on,
us1ng MarshaTT s method (771, of a ten- state Tfnear, time-invariant model
‘der1ved by W1Tson [76].

The z- transform of th1s model can be represented by the

\J

foTTow1ng equat1on

Ml [ [se

2 | - N B N E3 0 I C TS
Gl L By(2)]

The outputs of the.. system are the first- effect ho]d up, 1; thehseeond;

effect hon up, wz, and the. product concentrat1on C2, - The inputs‘are'

the steam to the first-effect, S, the bottoms fTow from the f1rst effect :

], and the bottoms flow from the second- effect 82 ~The pTant'
z-transfer functfon matrfx G(z) was obtained from the state space modeT
{
- using the algorithm. of Souriau- Frame Faddeay . [66] G(z) is presented 1n

: -TabTe 3.1. For reasons exp1a1ned ear11er the des1gn was carr1ed out

5

}us1ng the - b111near transformat1on of G( ). The p]ant W= transfer

funct1on matrix of the th1rd order evaporatdr modeT, G( ),.1s shown in.
ATabTe32 o o o _'
The poTes of the z— and W- transfer funct1on matr1ces or the

zeros of the open Toop characterfstlc poTynom1aT of the th1rd order -

' 1doubTe effect evaporator are shown 1n TabTe 3. 3

The evaporator mode] is marg1naTTy stabTe since it has two

44
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-- A;Po1e5!0f'thE-Third OrderlEvaporéfOrijdé]"

z%Q]ane 'f._‘

10

TABLE 3.2

_Third Order Evaporator Model

— .
-0.01628 .

W

001890
W

TABLE 3.3

A

Tfo”_,'

ol

o

-0.04055
W

o

10.08275

W

-0.02252

'w—gransfer Function Matrix Derived from the

- -0.02031

- (w+0.0203)

W

1‘wa-91ane?‘-'v-
o0

>

. -0.0203

0.0




TABLE 3.4
Inverse of the w- transfer Funct1on Matr1x

on the Third Order Evaporator Mode

-15.444 w 0
6 (w) = TT}WT. | 18508 w 0
- [24.518 w' S Q49_150 W

po]es ]ocated on the unit c1rc]e in the z- p]ane

Based

1.

——

27,811 (w+0.0203) .

-11.650(w+0.0203)

249.225(w+0.0203)
AR S o

" Since the 1nverse Nyqu1st array works W1th the 1nverse of - the

p]ant transfer funct1on matrlx G ]( ) is presented in Tab]e 3 4.

a

v

i .Step one///Pa1r1ng the 1nput output var1ab1es of the evaporator

Tne 1nverse Nyqu1st array of G( ) is shown in F1gure 3: 3 for ,

the frequency range of 0 1 - 10 0 rad1ans/second

The 1abels in th1s

f1gure 1nd1cate the numer1ca1 va]ue at the end of each axis. 'The;f

)

: pa1r1ng of varlab]es has been done by graph1ca] compar1son between the -

= e]ements of the Nyqu1st array of. G (w It can be seen 1n Flgure 3.3

:vthat none of the rows or co]umns of G ](W) are dtag
rcan be seen:more c]earTy in F1gure 3 4 where the d1
- G ](w) w1th the Gershgor1n bands for row domlnance
the plant in. 1ts present form is' h1gh}y 1nteract1ve

o In order to reduce 1nteract10n and to hav

7control of the outputs a renumberlng of the 1nputs

ona]Ly dom1nant Th1s
agona1 e]ements of

are d1sp1ayed Thus

e more effect1ve

is necessary Fr om, SR

33.F1gure 3 3.9t oan be seen that the best conf1gurat10n 1s obta1ned when

)
row 2 is made row ]

-row_3 Js.made:row~2

row 1 is made row 3.



. dtagona11y dom1nant

N

ﬂ

Thts operat1on is accomp]lshed by pre- mu]t1p1y1ng G ](w) by the !

- contro]ler matr1x K]]

K=o o | O @.25)
_ D I . o T
| Yoo

L Note -when us1ng the 1nteract1ve des1gn program.developed at the

'}Un1vers1ty of A]berta the’ user simply 1dent1f1es what e]ementary

) operattons he wants done and the computer generates the appropr1ate
~compensator, e. g K]‘ in Equat1on (3 254 | | s ‘

| Th1s means phys1ca]]y that 1f a muZttZoOp contro] system 1s to

be des1gned the 1east 1nteract1ng scheme occurs when the f1rst effect -

.‘hobd up, ], is contro]]ed by B], the second effect hold ups 2,115 ' -';

- contro]]ed by 82 and the product concentrat1on "CZ is. contro]]ed by f

| steam flow S. Thrs is in agreement w1th previous resu1ts obta1ned by R

'tewe]1 [53] and Jacobson [27] when des1gn1ng a mu]tu]oop contro] system

for the evaporator u51ng convent1ona1 techn1ques and exper1menta] data

The new open 100p transfer functlon matrtx Q](w) is g1ven by .

Ty ,l] a{
o Its 1nverse Nyqu1st array 1s shown 1n F1gure 3 5. The d1agona1 e]ements

48

s om -Kf‘?_‘h b (326, .

| ,_'of Q] (w) WIth the1r Gershgortn bands are presented 1n F1gure 3 6 Fromv_j‘}:':

<these f1gures it can be observed that on]y rows 1 and 3 of Q] (_) are ;"

Because row 2 of Q] ( ) is not dtagona]f

iﬁgneed to proceed further W1th the deslgn procedure 1 e. to de51gn a

“,7fcontro]1er wh1chmakes the system d1agona11y domanant 1n a1] three rows

y dom1nant there isa o



Cay

' 4

Step two: Des1qn of a pre- compensator to make matrices- O (w) and

_ R. (n) d1aaona11y dom1nant

. The Nyqu1st array ofﬂQ]t(w) in F1qure 3.5 he]ps 1n the design of
_comoensator K(z) that w111'make>0( ) d1aqona11y dom1nant For example, by '
\h‘COmbartson of the magnitUde qi]( ) With qZ]( ) (and/or by tr1a1 and error) o
'1t .can be seen that subtract1nq from row 2 1 325 times row ] w111 make
row 2 d1aqona11y dom1nant S1mu1taneous]y, d1aqona1 dom1nance can be
g 1mpr0ved in row 3 by subtract1nq from 1t 0. 830 t1mes row 1. Then the

,_1nverse contro11er is q1ven by
e 0.0 0.07 o

| .KéTé f-13s 1o 00| 7 (3.27)
o -oi830”_‘0f0 Lol B

‘- N - o
\

The 1nverse Nyqu1st array of QZ( ) (where Q2 K2 Q] W)

R s presented in F1gure 3. 7 and the d1agona1 elements of 02 (w) w1th the

.f’iGersngor1n bands are shown n F]gure 3. 8 All tHe rOWS in- Q2 ( ) are

 now d1agona11y dom1nant However dlagona1 dom1nance can st111 be
L;1mproved in row 1 and 2 Th1s can be done s1mu1taneous]y by addlng 0. 3
n.‘;t1mes row - 3 to row 1 and 0. 930 t1mes row 3 to row 2 respect1ve1y, 1. e
- Qg](') must be pre-mu1t1p11ed by | " N
o | | a.of'i’ogsoogl{l‘ff‘f:{5a;<'
' vil;oﬂe,'0,9303f7i: o (3.28)"

!-:nhio.df-‘;l,d'_ f"_‘g?; B

R . . e RN S B

. !

"»Vf,to obta1n Q3 ( );, From the. 1nverse Nyqu1st array of Q3 ( ) shown in jfd;

gure 3 9 1t can be observed that the compensated system 1s a]most
7<id1agona1, i e a]most tota]]y non 1nteract1ng “_‘v'-?v';, *f_f]ifr ;7 %{z"“
- S1nce the system 1s d1agona11y dom1nant the stab111ty of the ~igh.; B
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closed- loop system can be 1nvest1gated using the inverse Nyqu1st array
method If the open ]oop system is assumed to be stab]e (po]es at the
'§r1g1n assumed to be stab]e) then the contour- shown in Figure 3. 2 can

be used and p , the number of zeros of the open 1oop character1st1c
Jpo]ynom1a1 in the r1ght ha]f p]ane is equal to. zero Accord1ng to __'
.RosenbrocP s [65] stab1]1ty criteria the closed- 1oop system Will be

| ;stabﬂe 1f the d1agona1 e]ements of tne 1nverse of tne open ]oop transfer‘
funct1on matr1x enc1rc1e the or191n counterc]ockw1se the same number of

: t1mes as they encircle ‘the point (- 1 0) o _ ,_’ : ‘5 . ,A\,
| To sat1sfy th1s enc1rc]ement cr1ter1on 1t is necessaqy to .
_change th% s1gns in 1oops 1 and 2. Th1s can be done us1ng‘thetfo]]owtn§..
contro}]er. iipzv o ;‘_' o ,'.il B | -

H.
|
i

T-10 0o o S
G lo oo | G
O T N

The open loop transfer funct1on matr]x at this stage 1s Q4( )

N where Q4 (w) = K4 Q3 ( ); The inverse. Nyqu1st dlagrams of 1ts d1agona1

V g e]ements are snown in thure 3 10 The pre compensator wh1ch has been’ used

.to make the open 1oop transfer funct10n matr1x d1agona11y domlnant and stab]e

s g1ven by [ where IR 1A.,;} , ?i““.;~iy_' o
R I AN )
003000 -0.75% 00 0.0 - o
; »v;Ké]5=“p, -0.930 2009 -1.0 | o (3.31)
" 1.000 Co.8s0 0.0) o



- when proport10na1 and 1ntegra] contro] s des1red KC( ) 15 g1ven by

| -0.830 0.0
Kg = -1.000 7?0.0
-1.324  -1.0

‘ .

51

" 0.751 . _
©=0.300 - (3.32)
-1.3274 S

Step three:. Des1gn of a mu1t1]00p contro]

transfer funct1on matr1x

system for the open- loop

The f1na1 step in the design procedure is the se]ectlon of the '

f1na] contro]]ers in each 1oop -Because the transfer funct1on between

_ the output and the 1nput for each loop is

system the usé of on]y proport1ona1 p]us i

1oop shou]d be suff1c1ent to produCe good

~ means that a contro11er matrlx Ké ‘shouT

. f1na1 mu]t1var1ab1e regu]ator 1s g1ven by

K2) = K (o

'_where]KC(z) fs(given'byAEquatidni(3.34),'

| be" used:

Equat1on (3 35)

. AL SRR R 3

represented by a First order -
ntegra] contro]]er 1n each
contro] Phys1ca11y,'th1s '

d be se]ected such that the

(3.33)

If'on]y:prqpqrtiona1.contqu is to-

(3;34)':

RERRSLN R
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The select1on of the contro]]er constants of matr1x Ko can be
e1ther done us1ng ‘simulated runs or by d1rect tun1ng of the contro]]er
constants in the. f1e1d Although the se]ectwon of the contro]]er constant
L was, in this case, done by exper1menta1 tuning, the use of s1mu1ated runs
cou]d be heTpfu] in some cases |

A very useful p1ece of 1nformat1on to gu1de the se]ect1on of the

the final control]er constants 1n matr1x KC is the est1mat1on of the

L stability gain region for each oop (1 e. the gain marg1ns) Th1s can’ be

‘_obta1ned graph1ca]]y from the d1agona] e]ements of ‘the inverse. of the
.Open ]oop transfer funct1on matr1x, Q4(w) 1nJF1gure 3.10. The c]osed-}oop

'system w111 be stab]e and d1aoona]1y dom1nant for:the.fol1owing'gains;

NI

= | Loop | 1/k > 1/18 5 or 0 < ky < T8, 5 (3.36)
Loop 2« 5 1/k, > 1/49 2 or Q_<’k2’< 19.2 .‘ (3.37) -
-Loop 35‘ _ ]/k . 1/37 0 or 0« ky < 37 0 (3;38)

Note that th1s system has “h1gh 1ntegr1ty“ aga1nst medsurement |
transducer or error- mon1tor1ng component fa11ures because 1t rema1ns stab]e
'and d1agona11y dom1nant for a w1de range of ga1ns (ahclud1ng zero or "open— t
. loop )-, Accord1ng to: the Z1egier-N1cho]s ru]es the recommended value for the .-
- controller constants k], k2 and k3 is 507 of the u1t1mate ga1ns 1ven in
] Equat1on (3 36), (3 37) and (3 38) respect1ve1y These va]ues were found
?to be too h1gh when the. regu]ator was exper1menta11y 1mp]emented a]thou h

; the : s1mu1ated runs had 1nd1cated the oppos1te For th1s reason’ a dec1s1on R
-:ffwas made to tune the ]oops 1n the f1e1d | _}; ;@Jjﬁg? =

| F1gure 3 11 presents a s1mu1ated response of the c]osed 1oop
th]rd order, evaporator mode] for a 207 step change 1n the feed f]ow

";: d1sturbance us1ng deferent galns for k], k2 and k3 The vaTues used for e

‘¢ B
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these gains are 5 %.(controller; F50350), 30% (controller: FDQ330) 20%
‘(F00320)'and TO%‘(FDO3]O) of‘their~respective uitimate gatnsy It‘can be
seen that there is an 1mpr0vement of .the c]osed ]oop system response

1]
when the gains are increased. This 1mprovement is ma1n1y in the contro]

of the first- effect ho1d up N] . /
A Figure 3.12 presents the response of the contro]led system for a
fUZO” step change in. the feed f]ow when the gains used in’ each 1oop are
equa],to thexr u]t1mateyga1ns. As expecteo the evaporator‘1s on the
verge'of instabsility.- ‘ | ‘An. ) |
B In order to eva]uate the degre#épf 1nteract10n in the contro]
system F1gure 3 13 presents the response of the contro] system for a 10%
‘;step change 1n the setpownt of the product concentrat1on CZ’ when the
contro]]er constants k], k?’ K2 are 50%‘(contro]]er:-FDO350) anth. 20%
controller'-FDOBZO) of thefr respect1ve u1t1mate ga1ns 1In this'case
there 1s not much 1mprovement in the response of the. doub]e effect
evaporator when the ga1ns k],;ké and k3 are 1ncreased However the -
_isystem isy for a]] pract1ca1 cases, non- 1nteract1ng regard]ess of the -
. .gains used | The use of the contro]ler (FDO350) for this step change .
‘-vwolates the phys1ca1 constralnts in var1abLe B2

Tne se]ect1on of the contro]]er constantmgﬁq*ége proport1ona]- Lo

1ntegra1 contro] case was- a1so done by exper1menta1 tuning In th1s
ﬁcase 1t was not posstb]e to app]y the Z1eg]er Nlchots ru]es to se]ect
: 1 the rntegra] constants because the crossover frequency for, each 1oop 1s N
zero . | “ . T

The resu]ts of the exper1menta1 tun1ng of the contro1}er ;'

e obta1ned 1n th1s sectlon are presented 1n Chapter wa



3.7 DESIGN OF“A'MULTIVARIABLE REGULATOR‘FOR THE FIFTH ORDER. EVAPORATOR _
 NODEL | |

The design of a,multivariab]e regu]ator~for the‘doub1e-effect_
evaporator pilot plant, described in appendix'A and represented by a
fifth order model, is presented in- this section. o
| The z- transform of the systemlused in this examp]e is a]so
given by Equat1on (3.24). The only d1fﬁerence with respect to the
hexample presented in the last section is thet‘in this example G( ), which
- 1s shown in Table 3.5, was obta1ned from a d1screte five-state (rather
than three. state) ]1near, time-~ invariant mode] w1th norma]1zed perturbat1on
variables. * This mode]l Was obtained by W1]son [76] and it is shown in .
; Table A.2 in Appendix A. As .in the prev1ous example the des1gn was .
carr1ed out us1ng the. w-bilinear transformat1on of G( ). The w-plant
transfer funct1on matr1x, G(w), is shown 1n Table 3 6. |

The po]es of G(z ) and G( ) or the zeras of the open-Toop -
'character1st1c po1ynom1a1 of the f1fth order double- effect evaporator

mode] are shown in Tab]e 3. 7

TABLE 3. 7

Po]es of the F1fth Order Evaporator Mode]

z-plane 7 o ,." - R w-plane

e 00
B T X I
Coe04 | 00202
0.9216° . ' -0.0408"
04328 ~0.3905

~—

-

7Thefihverse of tHe w-p]aht,trensfer function matrix iS'presented

54
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in Table 3.8. The plant in this example is also marginally stable since

it contains two pales on the unit-circle in the z-plane.
. o

Step one: Pairing the input-output variables of the evaporator
I .

The inverse Nyquist array of G(w) presented in Figure 3.14

shows that there is a strong interaction‘between the loops in the system.

This is also shown in Figure 3.15 which presents the diagonal e]eméots
of G'](w) with their Gershgorin bands. In this exampie intéraction can
be reduced o;\;d\éspropriase pdiring-of variables or by renumberiog the
‘inputs, ' | | |

As in" the previous example the best combination is obtained: if

w] is controlled by B], N2 is contro]]ed‘by 82 and C, is controlled by S.

This change can be implemented by pre-multiplying the métrix GTW(W)‘by

K{] where: )
: < 0 1 o0 N
Ki‘] =0 0. ].. ‘ o . o | (3.3‘9)

1>0»o.~.'»f4\'

._'l '

The inverse Nyquist array of Q;](w) = K G'](w) is shown in

Figore 3.16 and its diagonal eiements with their Gegshgorinhbands'are g

shown_ in_ Figure 3.17. From theSeﬁfigures it can be'obServed that'the N

‘matrix'Q”I( ) 1s not diagonai]y dominant Therefore 1t is necessary to

v
cont1nue W1th the second step in the des1gn procedure

Step two: Des1gn of a pre compensator to make the matr1ces Qﬁ ( )'andA

é¢)7d1agona11y domlnant .

-
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Step'2a) Design of a constant;pre compensator

From the Nyqu1st array of Q (w) in Figure 3.16 it can be.
obserded that rows 1 and 3 of Q] (y) are slightly diagdna11y domihant at
Tow frequenc1es Row 2 can be qsde diagonally dominant at low frequencies
by subtract1ng from thlS row 2.0 times row 1 and by adding 0.3 t1mes row
3 to row 2 This operat1on can be perfonned by pre- mu1t1p1y1ng Q] (-)‘

by the fo]]ow1ng contro]]er

0.

10 : ‘
= {20 1 03| - (3.40)
Lo o o

The new open 1oop transfer functlon matmx is ‘g*n by

] K2 Q] (W o .'Td '. _!-_ | (3-41)

v o B . - "

The Nyqu1st array and the diagonal elements - wwth the Gershgor1n bands of
‘Qé](w) are shown in Figures 3. 18 and. 3 19 respect1ve]y D1agona1 |
dom1nance can st111 be 1mproved in row 3 of Q2 (w) by subtract1ng 2.0

N

.,txmes row 1 from row 3, 1 e. 02 (w) must be pre mu1t1p11ed by

. fr o 07 .
Gl = o 1o 0] L @
L2000 1 e

0

‘The 1mprovements on d1agona1 dom1nance 1n Q3 w Jﬁ! 02 w)

'_can be observed from F1gure 3 21 wh1ch shows the dlagona] elements of

DN
PN

Q3 (w) with the Gershgor1n bands TheaNyQUJsﬁ appay-of Q3_s15-a150 S

' ‘presented 1n F1gure 3. 20

D1agona1 dom1nance can be 1mproved marg1na1T 1n row 1 or

(w) by add1ng to th1s row 0 15 twmes row 3 or by pre-mu1t1p1y1ng g .~'

ol

& .
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Q;](w) by the controller: o : | :'t"’}

-1

' : | - . T ‘ S

) T
The t quu1st array of the new open- 1oop transfer funct1on matrix Q4 (w) =

4] Q3 is shown in F1gure 3.22 and the d1agona1 elements of th1s matr1x
with their . Gershgor1n bands- are presented in F1gure 3.23. |

" In order to sat1sfy the. stab111ty cr1ter1on in each Toop the

sign has to be changed in rows 1, and 2 by pre-mu1t1p1y1ng Q4 by the . |

1.'

K= | o 1o L (3.83)

60

-controller matr1x R _f' S
i R . | IR
Gl oo o T (3.49)

The d1agona] e]ements of Q5 (w) are shown 1n F1gure 3.24 for a
N~

_ frequency range of 0 0] - 1.0, 1n ngure 3.25 for a frequency range of

,O 01 - 0.5 and 1n F1gure 3 26 for a frequency range of 0 1-- 5. 0 From
these f1gures 1t can be conc]uded that the OLTFM and the CLTFM are only

.d1agona]1y domwnant at 1ow frequenc1es Consequent]y the c]osed 100p

If'stab1]1ty and the stab111ty reg1on cannot be determln}d atfth1s stage

: and the des1gn cannot be cont1nued In order to- make the 1nverses of

”“.;the gpen ~Toop and c}osed 1oop transfer functlon matr1ce§ d1agona11y -*' ;1 .

sdom1nant a dynam1c pre~compensator has to be uSed

Several proport1cna1 1ntegra1 controllers were tested but

":,none of them make the 1nverses of the OLTFM and CLTFM d1agonal]y

dom]"a"t Thus a more Comp11cated control]er was necessary to comp]ete o

i.nthe des1gn of 2 contro1 system for the doub]e-effect evaporator Th1s o

is d1scussed in’the next sect1on B ".f B A
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Thig example is a good 11]ustration of oneaof'severa1b
.oitfalls of‘the inverse Nyquist method . It is not a]waySfpossfb]e to

f1nd a s1mp]e contro]]er wh1ch w111 make the 1nverSes of the OLTFM and the
: &
CLTFM d1agona11y dominant . Furthermore if dlagonal dom1nance 1s not “

; oota1ned the.des1gn cannot be completed us1ng th]S des1gn method (In”

Chapter F1ve it w1]1 be shown that the direct Nyqu1st array method can ~

"be app11ed to this: examp]e to des1gn a proport1ona1 contro] matr1x ) “l.ﬂ
‘ (o

v

 Step Zb) Des1gn of a dynam1c pre: compensatu;

From _the Nyquist array of Q] (w) angd the Nyqu1st d1agrams of

. Cits d1agona] e]ements in thures 3. ]6 and 3.17 1t wWas observed that only

f,\Jrow 3 Was dlagonally dom1nant It 15 obv1ous from F1gure 3. ]6 that

'd1agona1 ddmlnance at Tow frequenc1e; cou1d be obta1ned 1n row 2 by

. subtract1ng row 1 from row 2, i.e, by pre-mu]t1p1y1ng ehe matr1x Q] ( )

W

‘ The Nyqu1st array of (QZ( )) 1. ( 2)'] le ) 1s Shown in
) \,.4.,_
. “Figure 3 27 and the Nyqutst d1agrams of 1ts d]agonal e]ements w1th the1r ;‘

S respect1ve Gershgor1n bands are shown 1n F1gure 3 28 A carefu]

":fexam1nat10n of ‘he po]es and zeros of the matr1x (QZ( w)) ol and of Flgure S
13 27 shows that row 3 could be made perfect]y d1agona1]y dom1nant 1f a 'ﬁ;i‘ };T;
‘Phase 1ag compensator 1s used and the fo11ow1ng e]ementary row operat1on*e:

S s performed




This operation oan;he'aceonp1ﬁshedt1f (Q;(W))'

‘ _b_y:

) o R
" The new OLTFM is given by:

e Thé-NyduiSt array‘of (Q;( ))-]

-

]

10 | (3.a7)

)T = (g <‘Q;m)j5r o (3.48)

and the Nyqu1st dwagrams of 1ts d1agona]

: e]ements with the1r Gershgor1n bands are shown in F1gure 3 29 and. 3 30

"*f .PCSPECtlvely F1gure 3.29 and an ana]ys1s of the po]es and zeros of \

(Q;(Q))’ 1nd1cates that row. 1 can be: made perfect]y d1agona11y dom1nant ‘

‘1f a phase- 1ead compensator is used and the fo]]ow1ng operatwon is:

'i'"performed

‘ﬁfef:‘ The Nyqu1st array of (Q4(w)) ;

y “.n o 0165 (w”‘"‘“_“‘
B,

. ; oo
e, :

Yoo

"»_ihow ]C=hnow.1 +0.0165 (%ﬁ%F%%%8%¥J ththj;f'i: - (3.49)

e ) :

K4(w)) 1 Q3 )]\d\t@ R

Nyqu1st d1agrams of 1ts dlagona] e]eméhts w1th the1r Gershgor1n bands 1n\\

F]gures 3 31 and 3 32 show that rows T and 3 are a]most d1agona1
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is pre-multiplied

Thts‘dpenadtonﬁeanfbe aceﬁmplishédfbyfdsing°theffo]loWing.tdhtro]]er.;ff

. U B
. R

k 09}5-f,i.qj}:.fef(3-56): R A




- control]er matr1x
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However row 2 is. on]y d1agona1]y dom1nant at low freqUenCIes \ﬁn improve-

'ment in the d1agona1 dom1nance of row 2 can-be obtained 1f anothir phase-

. Tead Gompensator is u5ed and the fo]]ow1ng operatlon is performe \

FOW .2 = rOW 2 + 0.056 (—-;-5:§8g—) X rdw 3 (38

To perform this operat1on it is. necessary to use - the fo]]ow1ng';

B
- [ 1 0 0 ]
el ol w00 |
_(KS(W>) = 1. 0 . | ] 0056(W‘W) - (352)
0 d GV
Lo o J_,,‘_,

The Nyqu1st d1agrams of the d1agona1 e]ements of matr1x

.'(Q;f )) 1 = (K;( )) (Q4(w)) -1 in. F1gure 3. 33 1nd1cate that th1s matr1x o

t

) 1s. a]most d1agona] The Gershgor1n c1rc1es are very smal] but the

d1agona1 e]ements (loops) 1~and 2-are unstable ‘To correct th1s

-,31tuat1on 1t 1s necessaryl[o pre mu]t1p1y (Qs(w)) 1fby‘ o V;"
, o Kg)Efo 1o o (3.83)

The Nyqu1st d1agrams of the d1agona1 e1ements w1th the1r

"‘f'"Gershgor1n bands, Of the 0LTFM (QG(W)) ]l?.( 5):-;(05(_))ih are | presentedwgfgefaf |

.'”T.'1n F1gure 3 34

:¥' "c1osed 1oop transfer funct1on matr1ces d1agona1]y dom1n

The preecompensator used to make the 1nverses of the open- andf”jtf“”°l

i .1s.then ngen”¢j PR



0 0.668

Kglw) = U 00165 ( ' (3.55)

a1 s (M

" The i-transfbrm of'pre?cohpen§ator KB(W).JS equal to:
,FA{ o ) .j o , e )

! | 4 (2~ 0:4383
Yo 3 Gagiere) 0 0.668

t

| Sl e e 2 07610y | e
el = f 000997 Gt | (3.86)

Fa . o S

¥

"Stépvthree De51gn of a mu1t11oop contro] system for thg"opén¥106p =

“o 4

transfer fuactlon matr1x QG(W) | “f-' T

In th1s step tne contro]]er matr1x KC must. be se]ected such

that the mu1t1var1ab1e regu]ator is equa] to
. . . B . ) . /_ k ] “ o . . ,. . . 12 N - . .
»_..‘ ) . ' .. ‘ 'v ) .‘.. ..‘.:" . ., . .- ) A' ’ . . \5 ". ‘,_ - i “ . .

"-}vaka’KC,  T U (3.57)-_31 ‘

BT S A S i L

"If:on]yfpkquftibna]‘cpntfqifgf,dgsirédec;Wi]i:bé»gngn by: .

‘ <7fJfWhen proport1ona1 p]us 1ntegra] contro] 1s requ1red KC is. g1ven by

'~3itEquat1on (3 35)

:'n{ In order to select the f1na1 ga1ns in’ each 1oop 1t 1s very use-' R

'ftful to obta1n the ga1n marg1ns of Each 1oop for wh1ch the system w111
: , o . e A
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remain closed-loop stable. This piece of information can be graphically

obtained from FigUre 3.34.  The control system will be stable for the -

following set of gains:

~

f‘ ‘. .Loop 1: 5.6 ° k‘] < or 0« k]- <17.9 o (3.59)
Loop 2: 4;‘.2 <y cmor 0 < ky < 4’9.2‘ o | (3‘.‘60)
Loop 3: 555 < k3_ _< wl or 0 < k3 < 50 9 5 (361)

h
These gain marg1ns are almost the same as the oa1n marg1ns
}obta]ned in Sectlon 3.6 us1ng the th?rd order mode] with the except1on |
?of the th1rd ]oop 1n wh1ch there 1s a d1fference of ]ess than 20% Th1si
. _makes the" compar1son between the contro]ler matr1ces obta1ned in th1s .
. section and Sect1on 3»6 eas1er
The s1mu1ated response of‘the fifth order model for a 20%° stepdy
change in.the - feed flow ang- us1ng the contro]]er obta1ned in th1s . }1i
sect1on (cont1nuous ]1ne) and the contro]]er obta1ned from the th1rd f | }“aiifJ
‘h‘order mode] (broken 11nes) are presented in F]gures 3 35 3.36- and 3 37 |
The final. ga1ns used for eacn contro]]er 1n F1gures 3 35, 3. 36 and 3 37
: ;_tare approx1mate1y 10@.(controllers FDO310, NADYOS]O §O7 contro11ers f‘;r.»"th

- FDO320 NADYOSZO) and:3 (contrO]Iers FD0330 NADYOS@@) respecttveJy of ‘t}ﬂo'h'Q

Athe correspondlng u]t1mate ga1n of each 1oop As expected, 1n every

/j'case the dynam1c regu1ator glves s]1ght]y better resu]ts than the

&di'Qf' the th1rd order mode]

)

' fﬂproport1ona] contro]]er’deﬁ12?eg%ba

. '-‘n; ents‘t /51mU§ated response of the f1ft 'if-t'ni"*:*:i

L T b s
-}';order mode] for a 10% step change 1n the product coocentrat1on, 2, Set--~ f r_~7

'\'3po1nt when the dynam1c compensator pbta1ned 1n th1s sect1on (cont1nuous

P

0 11ne) and the constant c0mpensator obta1ned from the th1rd order mode]
! o : . ; ._d.,f'«‘&i . R



| 3. 8 CONCLUSIONS

.hexper1ence obta1ned in 1mpTement1ng and appTytng th1s method the foTTow-:

.-;,ung concTus1ons were drawn

_(broken'Tines) are used.: The final gains used for each Toop in th1s

case are approx1mateTy 20% of the]r correspond1ng uTt1mate ga1n It can
be observed that the dynam1c compensator produces a less 1nteract1ng
controtl system than the controTTer obta1ned from the third order modeT

S1nce s1m1Tar prob]ems to those descr1bed 1nvthe prev1ous :

'_'section-were expected 1n the exper1mentaT 1mpTementat1on of the dynamlc-

reguTator no decision about the ftnaT proporttonaT and proport1onaT-
1ntegraT constants was made at this. po1nt The seTectton of the f1na1
ga1ns was done by exper1menta1 tun1ng and the resuTts are presented in.

Chapter Six..
i : .

Fr%m the examp]es presented in the chapter and from the .

;-

"y T) The 1nverse Nyqu1st array is a s1mpTe techn1que wh1ch prov1des L
ol . 5

a systemat1c means of 1ncorporat1ng severaT typ1caT controT system

Ides1gn requ1rements, e.g. stab1]1ty, 1nteract1on, 1ntegr1ty aga1nst '

-

k transducer and error mon{tortng fa11ures, and a sat1sfactory trans1ent '

response ~f‘ o '-f

* o

..'2)3 A d1rect and easy 1nterpretat1on of one of the theorems due to

A T'Ostrowsk1 [55] is. poss1ble when u51ng th1s method Th1s theorem perm1tsf

.66

the determ1nat1on of the Tocat1on of the 1nverse of a transfer functlon jﬂtﬁg‘f',

of a Toop when 1t 1s open and the rest are c]osed [67] W1th th1s theorem ”’ﬂf;..
P

1t is. poss1b1e to determ1ne the exact stab]e ga1n space more accurate]y

[69] and to f1nd out when the system 1s under t1gh; control

'.: t’ L f.

‘fjf, 3) The requ1rement of d1agonaT dom1nance is- the'most severe short-"’t‘t‘t
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, coming of this'method ~ Some design freedom could be‘wasted in'making the

system dtagona]]y dom1nant (Conversely,-changes to the design method’

~ that would generate a narrower band than the Gershgor1n band would mean

qf

~greater accuracy and, in many,cases, 1ess control act]on to_produce
,dﬁagona1ldom1nance ) In some cases, 11ke in the fifth drder‘eveporator .

' mode] it is not possible to fu]f1]1 this requ1rement with a proport1ona1
or proport1onal plus 1ntegral contrc]]er .and consequent]y it is not-
possxbte to design a s1mp1e contro]]erqur th1sltype of system. In other

| _cesesdthis prdb]em can’he overcome atfthe<cest of.additional calculations

using ghe procedure 1nd1cated 1n Sect1on 3 3

w

4)< S1nce it is the contro]]er matrix and not 1ts 1nverse wh1ch

-w1]1 be 1mp]emented there 1s no d1qrct 1nd1cat1on in the inverse Nyquist -

array method of the compiex1ty of the contro]]er when a dynamtc compen~-

sator 1s be1ng des1gned This prob]em 1s more cr1t1ca1 for d1screte

- systems where as a matter of conven1ence 1t 1s des1rab]e to use a

b111near transformat1on s ’ s
. . - {\ "

5) The metnod does nqg have the f]ex1b111ty to deswgn a control

- system of hlgh 1ntegr1ty for actuator fa11ures

EY



CHAPTER FOUR
THE CHARACTERISTIC LOCUS METHOD

4.1 INTRODUCTION '

Most of the frequency domain'design methods. for mu]ttvariab]e
control systems whtch have;been proposed recently [e.g. 41;45,57,58] are
based'on a genera]ization of the sca]ar return-difference qu:;tity |
introduced by Bode [7]. Inc]uded in this group 15 the characteristic
- Tocus method (4,5, 41 42] which was. deve]oped by Be]letrutt1 and
MacFar]ane [4] and has been discussed in .detail by MacFar]ane and =
B°11etrutt1 [5 41,427, |

4

Because of its mare recent deve]opment'the expertence with this
| metnod is more th1ted than w1th the 1nverse Nyqu1st array method [65].
On]y a. very ]1m1ted number . of examples using th1s method have been &

presented in tne 11terature [e. g 4 42]a ‘However th1s method is

| rece1v1ng more. attent1on recent]y [60 72, 76]

& - R

In order to/compare the character1st1c locus method wtth the '

- inverse and dtrect Nyqu1st array methods the former method has a1so been v
1nc]uded in thws study - The 1nvest1gat1on of the charactertst1o 1ocus 3
’method nas covered the same aspects covered 1n the study of the 1nverse

tiNyqu1st array method presented in Chapter Threev'r' _ ‘ ¢

S1nce theycharacter1st1c 1ocus method for cont1nu0us systeMs S .;p

;has been d1scussed in deta11 by MacFar]ane and Be11etrutt1 [4 5 41 42] the fi,"

'-_ d1scuss1on of theoret1ca] aspects of th1s method 1n Sect1on 4.‘§pf th1s

4 w'chapter 1s restr1eted to the ges1gn of dlscrete contro] systems I,,*

| T,Sect1on 4 3 an examp]e of the des1gn of a mu1t1var1ab1e regulator for a

“hd=doubJe effect evaporator P1lot plant represented by a discrete three- ;'7‘

. -_"(

,‘1f_,»68»;~,;;_1



, [
‘state linear time-invariant /model is presented. The results of the

experlmental 1mpTementatloz/of the controller deve]oped in this chapter-
=) . . . . .
are presented in Chapter Six. In the final section of this chapter”some

- conclusions® about the characteristic locus method based on the experience
o :

obtained tn using this method are presented.

o
i

4.2 THE CHARACTERISTIC LOCUS METHDDP

‘ I B _ .
. 4 2.1 Basic Theory o h ; o )

The characterwst1c locus method was deve]oped to des1gn

mu1t1var1abTe feedback contro] systems of the type represented by Flgure
[ o

2.1. For th1$ type of system Popov [61] and 1 ater Hsu and Chen‘[24] have.(

o

~proven that ; ‘ o o e <
- CLCP
B |F(Z)| oLCP (4.1)
where:, ' o - \.' - _"_, - » * e
F(z) = Im +‘T(')j= return- d1fference transfer functlon matr1x \
T(z) = returnrrat1o transfer funct1on matrix o
CLCP = c]osed-ﬂoop character1st1c po]ynom1a1 - o f';f; L
OLCP = open Toop character1st1c poTynom1a1 '

The return ratfo matrlx T(z ) w1TT depend on the ‘way thé Toops )

‘are’ broken 1n the qontno+ system represented by Flgure 2.1. When the

3 Toops are broken after the p]ant transfer function matr1x T( )s is eqoa] e

to'

If the Toops are broken before or after the contro] matr1x K( ) the':

' return rat1o matr1x T( ) 1s g1ven by T ( ) or T ( ) respect1ve1y where

<

69
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T{z) = H.(z') G(z) K(z) y (4.3)
and e
C\ | 1.(2) = K(z) H(z) G(z2) ) . (4.4)

‘ )

Since the feedback transd&cer matrix, sz),~can always be made
part of the plant or control matrix withoﬁt loss of generaljgy it will'be
assumed ihat the matrix H(z) 1s*equa] to a unjty maérix. In this case
Equation (4.2) is equal lo the open-Yoop transfer function matrix, Q(z).

Using Equat{on (4.1) and the pfin%ip]e of the érgument,
Be11etrutﬁ1 and MacFarlane [4].have shown that, for sysfemé represented
by Figure 2.1,‘2f thé determinant of the retgrn-djfferengé maprix |F(z)]
maps the contour D, shown in Figure 3.1, 1q{o L encircling the origin ne

: - . -
times clockwise, tnen the closed?loop multiyariable system will be stable

1f and only if.
nf = —p ' : . K . (4.5)

where Py is the number of zeros 6dt§1de the unit circle of the OLCb.’,

The use of this stability criterion as a basis. for a design

method is impractical because it is not possible to design a multivari-

N

able regulator in a systematic way, i.e., it is not possible to

cbrre]ate'the values of [F(z)| with the elements of the controller matrix.-

-

of the_chéractehistfc values or the eigenvalues of the return-difference
~matrix, F(z). It has been shown [4] that if the characteristic values .
fi(z) (i=1,2 ... m) of F(z) map D into rfﬁ encircling the origin~nfi

times clockwise then

-/

Tah N LI o : 3 ; : . o coe - 2 ) 2o, 3 -,L.v'f" e v i
~ A moreTuseful stabiTity criterion has been‘?bta1ned in"téerms ?

[ &
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e
"y

m

Neg = ) N | o (4.6)-@,
foogy fi o ?

AN -

and the system will be stable with a1t its loops closed S% and’ on]y if:

N’ '\\F
? l -

m o
. . 2 Nej = 5P | - (4.7)
Although this stabi]ity.criterion is more useful than the
previous one its use as a.basis for a design technique is still very
* limited because it does not proyide a‘systemaffc way .to design the
control matrix..

A more practical méthod can be obtained if the chara?teristic.
values, ti(z)1(1=1,2 ... my of the return-ratio matrix T(z), of fhe
system shown_in'F{guré 2.1 are used. Slnce the return- difference matrix,
F(z), and the return-ratio matrix, T(z), are re]ated by the fo]]ow1ng

equation:
Fz) = 1, + T(z) L (4.8)

<% the ré]ations_hip between the eigenvalues of F(z) and T(z), by app]yihg |

the eigenvalue shift theorem'[35],bis‘given by:

AT Geam . (a9

M . PR 4 . . ) * :
LA SR R IR - : oy e ~ : EdE S L B I S :
e < . v .

_From Equation (4.9) it can be observed that the difference
betueen the Nyquist d1agram o\f (charaéteristic locus of F,\(z‘))ééan_d'
the Nyquist diagram of t. (z) (character1st1c 1ocus of T( )) is éﬁmp]y a

sh1ft in the-imaginary ax1s;. Consequent]y, 1f.ti( z) maps the contoun(D

- shown in Figure 3.1, into I'_. encircling the,point (']’O)’Anti times

ti



-

# clockwise it follows that: ' .

Nei = Ny (4.10)

} ' ' :
and the,mu]tivariab]e system shown in Figure 2.1 will be stable with all

its loops closed if and only if:

o> 23
o }
i

©

.= -p ‘ 4.1
TS IR o o 2
> | : | . #

. Any of the return-ratio matrices g1ven by Equatlons (4.2}, (4;3)

: . LAY
and (4.4) ccn be used to determine the stab111ty.of the closed-Toop -

system usind® Equation (4.71). However the return-ratio matrix given by .
Equation (4.2) is usually preferred because the return-ratio matrix is

g

equal to the open-loop transfer function matrix, Q(z)

4.2.2 Destdf Cbjectives: AStabi]ity, integrity, nonFinteraction;qnd

accuracy \
Based on the stability criterioh given by Equation-(4.11) |

-

Be]]etrutt1 ‘and hacFar]ane [4] have deve]oped the characterlst1c 1ocus

. method. This is a genera] h]ch 1nc]udes prov1s1on for tak1ng the

to1f0wing design objectiVes into oonsideration: . stability, {ntegrity,
_ o .\

1hteract1on and accuracy.

A contro] system is said to have good 1ntegr1ty 1f it remalns

stable under a]] comb1nat1ons of a st1pu1ated set. of fanTure cond1t1on5u

[4]1. A contro] system of high 1ntegr1ty, aga1nst the fa11ure in the

output transducer of one loop, can be des1gned us1ng the characterlst1c

Tocus method by ensuring that the,characterrst1C»]oc1 (Nyqu1st d1agrams

72
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- 1

of the"characteristic Qa1ues) of the pr1nc1pa] sub-matr1x obtalned by

deleting the correspond1ng co]umn and row from the return ratio matrix

g1ven by Equation (4.2) satisfy the stqb1ljty criterion g1ven.by

Equation (4.11). Other types of failures can also be considered with ./~
e .

this method by requiringthaf\thihrespective principal sub-matrix of the

abpropriate return-ratio matrix 3atigfy the stEbility_eriterion>q1ven by -

Equation (4.11) [4].

For systems represented by Figure 2.1 the: closed-100p transfer

function matrtx,‘R(z),is expressed in the following form:

R(z) = [T+ Q)] az) (4.12)

where,: -

When the eigenvalues or characteristic yalues of Q(z) are
. . . . e .

distinct and are.assoctated With 1inear1y independent,characteristicf

: vectors or d1rect10ns denoted by W (z), (i-] 2 ...m) the open 1oop

,transfer function matr1x can be expressed in the f0110w1ng way [42]

A ‘ A "/‘_) o T o
1Q2z)‘; W(z)[diagit; (2))] V(z) BERTADS
where: . o . 7 .
W(z) = o (2), wylz) 1. wm?;)] e
V(z) éw"( D aas)
t.(z) é ith character1st1c value of Q(z) or’ T(z) | |

'1oop transfer funct1on/matr1x is equa] to

73

Then from Equat1on (4 12) it can. be shown [42] that the c]osed- R



| t;(2) |
‘R(z) = W(z)[diag (]—T’—t—ﬁ)] V(z) - (3.6)

'it can'be'obseryed trom Equation.(4.T6) that the characteristic
va1ues,'ri(z); of the closed-loop transfer function matrix are:given'by;
g L -
ri(z) = W 1,2 MRS
and by comparing Equations (4.16) andv(4.]3) the'characteristic
directions (eigenvectors) ofvthe c]osed-1oop transfer fUnctton‘matrix
are equal to the charact%ristic dire&tjons of the'open-loop transfer
function matrix, Q(z). , S | T
Using this information the ch;raCteristﬁc Tocus method can be
used to design a cohtro] system of 1ow 1nteract1on by a11gn1ng the
"e1genvectors of the open 1oop or return-ratio matr1x with the standard .
basis set of vectors, i.e., by des1gn1ng ¥(z) = . G(z) K(z) such that the
—/fnatr1x H( ) ‘approaches the 1dent1ty matr1x | | o

At low frequenc1es 1nteract1on can be- reduced when u51ng the

character1st1c Tocus method [42] by ensur1ng that the ga1n of the *
. Character15t1c loci, t{( z), of Q(z z) are h1gh enough such that:
TR S
) R
T+ 1 (7 > 1 1—1;.,.'m o o (4718)ﬂ

.‘>

From Equat10n 4 16 1t can be seen that both approaches w111

l

_tend to make the c]osed 1oop transfer funct1on matr1x R( ) d1agona]

X

The accuracy of the contro] system def1ned as the degree to-

<

wh1ch the actua] outputs fo]]ow the des1red outputs [42], can a]so bg

_cons1dered when us1ng the character1st1c 1ocus method ngh accuracy can

'
!



be obtained in a system when the magnitudes of the charaéteristic loci of
the open-loop transfer funct1on matr1x are re]at1ve1y large at low,
frequenc1es When th1s is the case Equatlon (4.18) w1]1 be satisfied and
the c]osed loop TFH w11] tend to be equal to a unity matr1x; Consequent 1y
the output will follow c]osely any chgﬁge n the setp01nts

4.2.3 'Desigh Procedure

The character1st1c 1ocus method can be app]wép to square as
we]] as- non-square plants but it is relatively eas1er to app]y to square

p]ants. :
\\

~The design procedure using the-characteristic 106Us method

1nVO]VeS four phases whose order dependsgypon the re]at1ve 1mportance of

-

each property. These four phases are

'stability phase

integrity phase

interaction phase . B .

pérformance‘hhaseu o _"[,* L.
~ In each phase a ba51c control]er, 1.( ) is designed in an .

1nteract1ve and 1terat1ve way to give the system the desired properties.

The flna1 contro11er is given by the product of the bas1c contro]]er -

‘matr1ces found during the d1fferent phases, i. e | s

Three typeé of diagrams are commonly used with this method.
- The mOstIimportan ones are the character1st1c ]oc1 d1agrams (part a lof

F1gures 4.1 thr ugh 4. 15) wh1ch are the Nyqu1st d1agrams of the character—

- i
o
/
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istfc vaTues (eigenvaTues) of the open-loop or return-ratio transfer‘

funct1on matr1x, Q(z). These d1agrams are used to determine graph1ca]]y

the stab1T1ty of the c]osed Toop system by applying to them the stab1T1ty

Criterion represented by Equation (4.11). Another diagram (part b of

F:gures 4. T through 4.15) used 1is the magnitude Of the characteristic loci
as a function of- frequenc} This pTot is usefuT to seTect the ga1ns whlgh
are desirable in ordi;Qto have Tow 1nteract10n and h1gh accuracy at low

. frequenc1es From th1s dlagram it can be read1]y observed uhen Equatlon
(4.18) will be satisfied and consequent]y when the system w1T] have non-
lnteractxng and high accuracy properties. The third d1agram (part c.of
Flgures 4 1 through 4.15) plots the aT1anment of the characterist¢c
d1rect1ons (eigenvectors)'of‘the matrix Q( ) or R(z) with the standard
basis vectors as a function of frequency These diagrams are useful to-
determ]ne the degree of 1nteract1on of the cTosed Toop and open Toop

: system_at any frequency. When the character1st1c d1rect1ons are properly
a'Tig‘ned theywi]] be orthogonal, i.e.,matrices W(z) and R(z) in Fquation

.'(4.16)AwTTT be d1agona].} Consequently the closed-loop system will be

_non-interacting.

T,4.2.4 General. Comments

/
D1fferent types of basic controTTer matr1ces haVe been su9995ted

[5 42] to g1ve the contro] system spec1f1c propert1es SeveraT of these

I'd

bcontroHers have aTso been recommended for use wWith the 1nverse Nyqu1st

‘array method [65 67] The 1dea of the commutat1ve B

' fcontroTTer can be 1ncorporated as part of. th]S method The commutatﬂve

T

controller method [36] can be used when 1t is requ1red to change the

-1character1st1c vaTues w1thout changlng the characterlstlc dlrect10ns o

/ “



(eigenvectors) of the open- loop transfer funct10n matrix.

Unfortunate]y the des1gn of a contro]ler using the character-

{

istic 1ocus method, at least as orlgfna1]y propesed, is a d1ff1cu1t tash
' ' .

o;peeially for a plant whose.tﬁansfer function matrix is of orderbgreater;\

. ]
.tnan two. In h1gherxorder systems it is d1ff1cu]t to establish ‘the

re]at1onsh1p between the character1st1c loci- and the e]ements of the
contro]ler natr1x and *hence the systemat1c se]ect1on of a contro]]er
becomes the maJor problem -The designer also does not(get any phy51ca1

1 4

insight into the system because the character1st1c 10c1 do not have a

"physical meaning” zuzhﬂgs can be attr1buted to the_d1rect.Nyquist

. . ) ‘
diagrams.

Recent: papers have prOpOSed more systemat1c approaches to the—-
'to the de51gn of contro]]ers us1ng the characteristic locus method [60 '
- 508] One approach proposed by 0wens [60 1nvo]ves the se]ect1on of a.
contro]]er such that ‘the character1st1c va]ues of - the open 1oop matrix, |
Q(z), take Spec1f1ed vaTues at a g1ven frequency This is done by expand1ng
~ the transfer function matrix in. a dyadic form [59] The other scheme
~developed :by. KOUVGP]t&k]S [508 des1gns the contro]]er by break1ng the
'frequency range of 1nterest into three: reg1ons Tow, 1ntermed1ate and :
h1gh At h1gh frequenc1es a rea] contro]ler Kh’ is des1gned to 1mprdve
"the a]1gment between the efgenvectors of G(z ) and the standard bas1s
p,vectors The resu]t1ng Gpen- 1oop transfer function matrix Ql( )‘~ G(z)Kh

R .then . cons1dered as the new plant transfer funct1on matr1x At 1nter~,

. med1ate frequenc1es a_ new control1er K ,wmd1ag(ki(z))-V 1s.des1ghed

m
to compensate (about the cr1t1ca1 po1nt) the characteristic'valuestoff

“Qi(z)'(uﬁere Wm and.vm'approxnmate_at'nntermediate’fredUencies_the ;.f'

\

'
|

|
|

|
I
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B 4
e1genmector and the rec1proca] eigenvector structure of Ql(-)). The«
contr011er Kn must tend to 2 unity matrtx at h1gh frequenc1es so that
‘_'t does not upset the e1genvector alignment affected in the first stage

of the des1gn The new open- ]oob transfer funct1on matrix Q2 th

‘ol
now becomes the new plant transfer\\ynct1on matrix. Finally at Tow
frequencies a proportfona] integral contro13erv K], is designeg The‘
| -proport/pnat’matr1x will be a unity matrix and the integral matrlx w111
be equal to aW]dlag(k ) 1 where w] and V] approx1mate at Tow frequenc1es
the eigenvector and the recrprocal eigenvector structure<of Q2( z). The
l‘gains, ki’ are selected to adjust: the magn1tude of the characterlst1c

vatues of,QZ(z) and o detennlnes the durat1on of . the 1ntegra1 action as
_the frequency 1ncreases. This control]er must also tend to the unity
 matrix at h1gh frequenc1es | _ | |
The\ges1gn of mu1t1/ar1ab1e c@ntro] systems us1ng the o \\
*;characterlst1c va]ues of the return dlfference and return-ratio patrix
.to determine the stab111ty of the system was proposed by Bohn [§02 503]
prev1ous to the deve]opment of the character1st1c Tocus method by
: Be#ﬂetrutt1 and~MatFar1ane'[4]. In his work [503] wh1ch was mainly
d1rected toward the d1agona]1zat1on of ‘the return- rat1o matr1x Bohn
’po1nted out some of the d1ff1cu1t1es of work1ng with character1stuc va]ues
These d1ff1cu]t1es have a]so been commented on. more recent]y by Rosenbrock
1 and Cook (721 and by MacFar]ane [506] vThE'd1ff1cu]t1es ar1se because-
| the character1st1c values (e1genva]ues) of the return- d1fferen¢“\matr1x 8
.are not necessar11y rat1ona1 po]ynom1a1s as in the case when the c]osed 1oop

character1st1c potynom1a1 is factored by convent1ona1 methods Therefore

wthe character1st1c va]ues may not be s1ng]e va1ued ana]yt1ca] funct1ons :
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of z at all point withift the closed contour D. If the characteristic
values are not sihg]e—valued then the fiyquist critertohicannot be applied -
directly to each 1nd1v1dua] character1st1c value un]ess branch cuts

are 1ntroduced in the Nyqu1st contour [503]. These branch cuts are *

+ Ry

‘1mportant\1n'determinig the %umber of enckrc]ements of the critical point

of each individual cﬁaracter1st1c va]ue However, they do not need to be
¥ ) . - m

| cons1dered when dsEerm1n1n§’the total number of encirclements, ne = L "ti’

i=1-

of. the detem1nant of the retunn difference matri¥ because the branch cut
P

locus is always traced through n opposite dTrect1ohs for each conjugate

pair of characteristic values [503]. Thus, in practical applications,

< the test’ for system stabi]ity based on. the total number of encirclements,.

ne, is ndt changed by the (possible) existencevof_irhatidnal characteristic ..

values.

One 1mportant restr1ct1on in the characteristic locus method

arises because the characterlst1c va]ues are a property of . the system

matrix rather than being assoc1ated_w1th individual feedback gains

{k ,i=ly . .m}. fherefdre the use of charaCteristic vatues to*determine
the stab1]1ty reg1on of a system requ1res that the same gain be used

for each ]oop in the system [503]. Recent]y-Rosenbrock angd Cook (72]

have exam1ned the character1st1c lTocus - method for the case when different

ga1ns,,ki, are used in each’ 1oop It has been found [72] that if. d1fferent

‘gains, {k.,1=1 'm}; are used then further restr1ct10ns are requ1red

- on the return- rat1o or open- 100p transfer funct1on matr1x3 More B

spec1f1ca1]y, when d1fferent feedback ga1ns {k ,1 1 'm}'are used the

character1st1c locus method is valid on]y when: : o T



. Yhe open-loop matrix Q( ) s a nonhﬁgfﬁatr1x for all va]ues of

z around the contour D, i.e.
z) Q(z) (4.20)

where QT(z) is the transpose of Q(z). Then/}he stab1]1ty of the
c]osed Toop system can be determined by app]lcatlpn of a e
theorem due to Freeman et al. [184.

2. The return-differenee .matrix, F(z), is diagonally dom1nant The

stab1]1ty of the system in this case can be determined using a
theorem due to.RoseanECk [70] and‘Con (117 ( Thig‘theorem
is the basis of the.dihect Nyquist array method discussed in
. next chapter ) N
. The same restr1ct1ons app]y for the: case d1scussed in Chapter
Three uhen the characterrst1c 1oc1 of ‘the inverse.of the open 1oop transh
fer function matr1x are used to des1gn a contro] system. |

%

_4 3 DESICN OF A HULTIVARIABLE REGULATOR FOR THE THIRD ORDER EVAPORATOR MODEL .-
A des1gn of a mu]t1var1ab]e regu]atnr for the doubie-effect |

‘evapdhator, described in Appendix A, using the charagteristic Tocus

methodlie deveioped Tn thiS'sectTon The model used in this examp]e 1s

h,a d1scr°te three state, 11near, t1me 1nvar1ant model with' norma11zed

/r’

fperturbat10n var1ab1es This mode]lhgs been obtained from a tenth order . -

‘model us.ing the discrete Marshall's reduction technﬁque.[7gg.‘ The tenth
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order mode] has been obtained by Wilson [77]. This same mode] has a]so

been used in Section 3.6 to des1gn a mu]t1var1ab1e regu1ator using the

{nveras Hyquist array method [65].

The z-transform of the model is given by: \;;i

N](Z) . S(z)

W,(2)| = | 6(2) 'B](z) / (4.21Y
. L 3

C2(z) Bz(z)

where,sz) is the plant z-transfer® function matrir and is Shown in.Tab]e
3.1: The_outputs.of the doub]e—effect evaporator are the fjrst effect |
-hojd up, w];. the second effect ho]d -up, & 2, and he product concentrat1on
T The inputs of the system are tne steam f] W to the. first effect,

2
-
S, the bottoms f]ow from the f1rst effect By, and the bottoms flow from

‘the second effect Boo - v ' .

‘For reasons explained in Section 3.4 the design of the
. . %
multivariable regulator for the double-effect eVaporator has been carried

out using a w—bi]inear transformation of the z-ptant transfer function
matrix Thus G(w) has béen used instead of G(z), where w = éi%ﬂ The
| A | S

vi- transfer funct1on matr1x, G(w) is presented in Tab1e 3.2. The'poles
of th1s transfer funct1on matrix are shown in Tab]e 3.1. 3

The system is marg1na11y-stab]e because‘two-of its poles are"‘
at,the5orjgin in the w;pjane. To determine'thetstability of the system'
the Nyquist contoﬁr shown“in Figore 3.2 has been used. USimo‘this>

contour the number of right- half -plane zeros of the open 1oop character-

1st1c polynomla] is equa] to zero, i. e _
\

/ S 5 S o ;;ﬁ{

P, =0 S - o (22)

81
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The des1gn of the controller is based on the charactar1st1c C ‘

loci” d{agrams of the open ]oop or return rat1o transfer fundt]on matr1x |

The three-charactéristic loci of G(w) are shown in Figures 4 1, 4.2 and

4.3, Each figure consists of three graphs Graph (a) shows a character- "

jstic locus of G(w). The labels 1nd1éate the numerical value at the end‘

of each_axjs. The magnitude of this characteristic ]ocus for differentb

frequencies)ishshown in graph (b/. The magn§tudes are given in decibe]s

and the freS&ency in radian/sec. Flnally the a]1gnment of the corre-

sponding eigenvector with a standard basis vector at d1fferent

-frequenc1es is presented in graph (c). In tn1s graph the ang]es are.

given ‘in degrees From these f1gures 1t can be observed that the c]osed—

(-

loop system w1thout compensator will be unstab]e since they dobnot
satisfy the stability crfterion given by Equation (4.11). It also shows1
that there is a cons1derabTe amount of 1nteract1on ;nnthe open Toop .
transfer functton matr1x because e1genvectors 2 and 3 .are both a]tgned
with the same standard ‘basis veetor. _— S ’ E o

The most 1mportant des1gn factor is the absolute stability
fo]]owed by the 1nteract1on of the' system The performance
.and integrity of the system are cons1dered later, in the des1gn
| The character1st1c 1oc1 d1agrams in thures 4.1,-4.2, and 4 3
prov1de an 1nd1cat1on of how we]] the contro] system w1]1 perform but<
: they do not g1ve any spec1f1c 1dea about the type of control]er whlchrt
must be used *3 : @;“-' N

The selection’ of the contro]]er 1s usua]]y done by try1ng a.
_spec1f1c type of contro]]er matr]X wh1ch is known to glve the system
- certa1n propertles ~ Then a dec1s1on about the value of th1s type of

N

, contro] 1s'made by observ1ng the character1st1c 1oc1 d1agrams e T

1
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A controller to reorder the 1npu£s of the system was tried
first. This could reduce the interaction and improve the relative
stability of the §yéfem. From previous experience with the double-effect
. evaporator fhe best control scheme has beeén found to be when first effect
ho]d‘up, w] is céntro]]ed by pottoms f]ow B], the second effect hold up, H2,
. .1s controlled by bot?oms flow, B2 and the product concentration, C2, is

controlled by $team flow, S. This;tan be accomplished by using the following

control matrix:

: 0 0 1.0 |
o .
K= [1.0 0, o \(’\"\\(ﬁ/ﬁ(fj ,
0 1.0 0 '
: LI ' r
The new OLTFM is then given by L e
_ " 77N
« ' ‘ A
Qy () = G(w] K ‘ (4.24)

“~
1]
O

The effect of K].on the characteristic ]oci of Q](w) is difficult to
predictAbut canige_observed 1n ngures 4.4, 4.5\§nd 4.6 which show the
thrée/characteriﬁtic‘10C1 of Q](w).\ Although two eigenvectors-qf Q](w)
.are a]igned with the same standard vector thelsystem-isiless jnteractihg
in thishcase~as shown,by Figures 4.4c, 4.5c and 4.6c. The second
'eigenvector is perfectly a]fgned with,thé second standqrd YgCtof as shbwn
by Figure 4.5¢. Thefgystem is however unstab]eﬂbgcausé\jt does not
satisfy the stabi]ity'criteriqp given by Equatioﬂxi4,1l); :.t is necessary
to chénge fhe signs in thé characteristic Toci 1 and 2 to fiake the |

system s%ab1e, This is done by using the following control matrix -

K= |0 -1 0 S - (4.25)
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From the characteristic loci of Qz(w) = Q](w) K in Figures
4.7, 4.8 and 4.9 it can be observed that the closed-loop system is stable.
This suggests that. the chacggteristic loci 1 and 2 are strongly

influenced by, columns 1 and 2 respectively. In this case the three

o —

eigenvectors of QZ(W) are aligned with the second standard basis vector
which jndicates thét QZ(W) is more interactiﬁg fhan Q](w). |

The c]esed—ﬁoop system is a]réédy stab]e. Howevef the system
dbes Jgt.havé the‘desired properties, i.e., interaction, integrity,

performance with the controller matrix KiKo. Therefore the controller

- matrix K1K2 was eliminated and another control matrix was tested jnstead.

One type of controller which is very usefu]'and very often
recommended [5,42,67] is one whic@?makes the.open loop system diagonal '
at very low and/or at veky i§@<frequencies." At very low frequencies the
recomnended'[42]»contro1]er 1§_inen by |

' : .o _
K = 67(0) | - © (4.26)
For the double-effect evaporator G-](O)vdoés not exist because

it has two poles -at the origin. However the controller which makes the

- system diagonal at highkfrequencies [42] is equal to:

K, =6 (=)
or
15.444 0.0 27,8117
K = |18.58 000 - .60 (4.27)

20.518  49.150 49J2%f‘
P N - <
In order to apply this controller to the plant it is necessary . -
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to adjust the gains in each column. Then the control matrix will be
’ ‘ | . ‘
given by i ‘
R »

1 B ‘;‘@ K
Ki" = KD Vo (4.28)
where D] is a diagonal matrix that/can be chosen arbitrarily. In this
case D] was chosen to be equal to:

: g ,

1/24.5 0 0"

Dy= |- 0 1/49.15 0 - (4.29)
0 0 "1/27.8

‘A

so that the controller designed in this sectfon is equal to
the controller obtained using the direct Nyﬁuist array in
Section 5.4.
Then the new open-1loop transfer:function matrix 1$ equa1 to

1

Qp (w) = Gw)K, (4.30)

The character%stic ]oc%_o?ﬂgi](W) are presented in Figures 4.10, 4.1] ahd
4.12. From these figures it can be observed that the:system is a]mostf
éiagoné1 (the eigenve;tdrs ére proper]y a1ignéd and consequent1y

f orthogonal) not only at very high frequencies but it also is diagonal. for -
all the fréquency'spectrum. For this reason the chhfécterfstic‘}oci éan

be used without any prob]emﬁ From thesg'djagramS‘it,cén alsobe

observed that the system 1s‘unstab1é. Thﬁé cdn‘bevéasi1y corrected by
usgng.thé fb]iowing_contfb]]er: .

a

K' = -O_",'_'] ol R o (8.31)



Figures 4.13, 4.14 and 4.15 show the characteristic loci of

the new oSen—]oop transfer function matrix QZ](W) = Q]](W)Kzll The
closed-1oop system with the controller KB = K]]Kzl,_i.e.
-0.630 0.0 1,000 }
' KB = | -0.755 0.0 - -0.420-] : (4.32)

.00 -1 07

has very good properties besides~stabi1dty. It is almost non-interacting
and has high 1ntegrity'aga1nst'different transducer and error-monitoring
failures. v |

.The final phase in the design is the performance phose. It is
a requirement in the design that the system must possess good performance
characteristics. Good acecuracy (in the sense of foTloning:changes in the -
setpoints) is aohieved for setpoint chanaes whose, freauency content is in
the range in which the modu]i.of all the characteristic loci Ot?the open_
Toop transfer function matrtx are larage. These moduli can be increased by
1ncreas1ng the f1na1 gain for each co]umn '
From the character1st1c loci of Q] (w) in F1gures 4 10a, 4. 1a
~and 4. 12a 1t can be observed that the system can be represented by three
first-order sub- systems Thus the offsets of the system can be reduced ‘rf
by 1ncrea51ng the moduli. of the character1st1c values 1n F1gure 4. 10b |

"4 T]b and 4, ]2b ThlS means that proport10na1 contro1 on1y 1s suff1c]eht

- to heve a good control system. In th}s_case the‘f1na1~contro1 will be

K= Kgke (4.33)

' where; Kg is given by quatfon'(4.32) and'KC'is equal to

b

L

86



k] O 0 - N A
'-,KC =10 . k2 O. - ’ (4.34)
0 Ov k3

~ Before se]ectfng’the final gains in each loop it is convenienf
to determine the stability rggion or the stabiffty margins of the closed-
foop system. IA geneha]»fhis‘is done by selecting the contho11er KC éuch
that: | | |
K = kI, T (4.38)

I . . K : ' ’ ..
where>13 is the identity matrix and k.is a parameter which is used to

Study thejstability of the system. From'Figures 4.13a, 4.1ia-and 4.15a

it is found that the system will remain stable for the fb]]owing values

A

of k

- o <k : 5—0107- 24.5 o o (4.36)

- In this particu]ar-examp]e it is possible to expand this

stability region by:051ng different gains in each-loop, i.e..by using-

,Equation.(4.34): This is because the system has very‘good dihéhha]
dominancé (aimoét diagonalfjas wi]% be seen in the,néxffchagférf(-cf."
Fighré\S.lz) and the Gerﬁhghrin.bands are‘d{sjoint‘[72] This-énsures
that the charactérist%c Va]uéé of Qé( ) are s1ng]e va]ued for every
value of W on the contour D and that a d1fferent gain can be app11ed

t .

to each character1st1c va]ue [72]. The expanded stab111ty reg1on for

,wh@ch‘the c]osed—]oop, system will rema1n-stab1e _can,a150~be‘obta1héd ;

- from Figures 4.13a, 4.14aand 4.15a and it given by: .

=205 (430)

-

87 -
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, |
0 < ks < gy - 278 o )

Once the stab1T1ty region has been determ1ned the des1gn
_procedure can be cont1nued by selecting the f1na1 ga1n in each 1oop
- The se]ect1on, in this case, was a]so done based on the:.stability marg1n
| of each loop ‘However for reasons similar to the® ‘ones exp]a1ned in Sedtion
3.6 the se]ect1on.of the final ga1ns was done by exper1mental tuning"
By selecting kl, 5 and k3‘in EqUation'(4‘34) to be 50% 30%
20% and 10% of their respective u1t1mate ga1n the contro]]ers FDO350
FDO33O FDO320 and FDO310 were obtalned respect1ve1y These contro]
" matrices are a]most equal to the ones obtained 1n Section 3 .6 us1nge
*the inverse Nyquist array method The s1mu]ated responses of the

" evaporator when these contro]]ers are used and a 20 % step change in- the »
.feed flow is 1ntroduced in the system are presented in Figure 3.11. The L

s1mu1ated responses of the evaporator for a 107 step change in’ the setp01nt o
of the product concentrat1on when contro]]er FDO350 and ﬁEOBZO are used |
are shown in F1gure 3.13. | | |

| Integra] actwon can a]so be added to the control system by
~.des1gn1ng, in this case, the matr1x KC ‘given by Equat10n (3. 35) The n /
- selection of th s contro]]er was a]so done by exper1menta] tun1ng | |
The exper1menta1 resu]ts obta1ned by 1mp1ement1ng the control]ers,

des1gned in th1s sect1on are presented in Chapter Six.

;'44 4 CONCLUSIONS

The character1st1c locus method [4, 42] 1s a techn1que wh1ch can,
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be used to des1gn a stab]e control system. w1th good integrity propert1es
low interaction and good performance. Th1s method is more general than
.the inverse ‘Nyquist array method [65] since 1t does not require. the |
‘system to be diagonally dominant. P ; ‘; ' t | | .
On-the other hand the character1st1c 1ocds method is a less
pracL1ca1 method than the inverse Nyqu1st array techn1que The design of
s1mp]e contro] matr1ces with the character1st1c 1ocus method is very
: d1ff1cu1t becauée the character1st1c Toci s§1ow how good the contro] is
but they do not. g1ve any §@ec1f1c 1nd1cat1on about the way the contro]1er

. must be mod1f1ed to 1mprove “tihe contro] system. This means that the

de51gn of the contho]]er w1th1th1s method cannot a]ways be done ina .-

. systemat1c way. However the‘character1st1c 1oc1 diagrams are a very good ’

.tool in the ana]ys1s of a co tro] system. A contro]]er can be ea511y

- accepted or regected accord ng to 1nspect1on of the character1st1c Joci

d1agrams of the open- 1oop ransfer funct1on.,Neverthe1essd 1t Ts alsoc'

pUss%b%em%e—desfgn’é contfol %ystem 1n a systemat1c way with the

character1st1c locus .method if | a scheme recent]y deve]oped by

kouvaritakis [508] s ysed.
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CHAPTER FIVE y
c ~ THE DIRECT NYQUIST ARRAY HETHOD

5.1 INTRODUCTION
‘ A very praotical and powerful design technique which has been'

suggested [35,68,70,71] but not fully developed -or discussed in the ]1tera-

ture-is what can be ca]]ed the “d1rect” Nyou1st array method This method ,

arises from the combination of pr1nc1p]es from the inverse Nyqutst array

[65] and the character1st1c ]ocus methods [4, 42] More spec1f1ca]1y, it

‘ Comb1nes the requ1rement of diagonal dominance used in the inverse

" Nyqu1st array methéd [65] with a stab1]1ty cr1ter1on based on the

enctrclements generated by the return d1fference transfer funct1on

?

matrTx used in tne Character1st1c 1ocus method [4 42] The d1rect

“\

-

Nyqu1st array method can also be der1ved by 1ntu1t1ve extens1on h1s5] of
the convent1ona] single-input, single- output Nyqu1st destgn procedures
to the des}gn muit?var1ab]e contro] systems |

The d1rect Nyquist array method has been eva]uated ]n thts

study and the following. dtscuss1on focuses attent1on on the development .

‘ and app]tcat1ons of this method

| The fo]]ou1ng d1scu551on of the d1rect Nyqu1st array method is

restr1cted to discrete systems However ‘this d1scuss1on a]so app11es

' dlrect]y to. cont1nuous systems The bas1c theorettcal aspects of the

direct Nyqu1st array method are presented 1n Section S 2 and they bu1]d

: upon what has been sa1d about the character1st1c Tocus method 1n Chapter ,h_-'

4. “In Sectton 5 3 the deve]opment of: the direct Nyqu1st array.method

uhw'-

5 by, extens1on of conventtona] techn1ques is presented as a se1f conta1ned

‘ sect1on The app11cat10n of the d]rect Nyqulst array method to the

o 905h o '» o '%’;
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design, of a control system based bnidiscrete three- and five-state,
Tinear, time 1nvar1ant double -effect evaporator mode]s is presented in
Sections 5.4 and 5 5, respectively. The models used ip these examples
~are the same as the ones used in Chapters Three and Four. '

Insthe final section of this Ehapter some conc]usions'about
th1s method are presented based on the exper1ence obta1ned in app]y1ng
this method and from comparing this techn1que with the 1nverse\uluu1st
array method and the character1st1c ]ocus ‘method.

.""".

- 5.2 THE DIRECT NYQUIST ARRAY METHOD

’5.2.1 Stab 11ty Cr1ter1on

The character1st1c locus method which has been d1scussed in
Cnapter Four is based on the Nyquist criterion of enc1rc]ement of the
origin by the cnaracterlst]c values of the return- d1fference matr1x,

F(i). It has ‘been. shown [4, 42] that 1f the character1st1c va]ues_

{f (z), i=1, . m} of the return d1fference transfer funct1on matrIx
of a system represented by F1gure 2.1 map the contour D, shOWn in
'F1gur'—%.1, mnto Ff. enc1rc11ng the or1g1n nﬁ tlmes c]ockw1se'then the
RnuTtivariabIe'system.w11].be stab]e with a11-1ts loops c]osedﬁifkand :

Conly if -
N J ’ ’

'where'p- tsfthe‘numbér of zeros dutsﬁde the unjt Cire1e'of.the open71pop-,“

) ~ : e o ,
character1st1c po]ynom1a1 : D L 4-~'

It has a]so been mentloned 1n Chapter Four that th]s stab111ty

'.‘/

'cr1tef1on was not very pract1ca1 because it d1d not a]]ow the des1gn of

m L o ..'- o .\_ . T . .
) nfi'%'_po"\ ~.'~ B D (5.1)

- 9]



/
the coQtro]]er to proceed tn a systematic'way. however if the concept
| of'diagona1 dominance used in the interse Nyouist ahray method [65] is
used then a more.practfcal stabiiity criterion can be obtained. By

requiring the return-difference matrix, F(z) to be diagoné]]y dominant,

i.e. that
.m‘
UNCIRSPRLAC] (5.2)
J#i
)
for column dominance or
m,
35 (2)] Jg]_lfU--(z)l (5.3)

i

for row dOminénce, nhere . t represents element (i,j) of F(.)

stab1]1t} cr1ter1on, which 1nvolves only the d1agona] e]ements, fii(z),
of F(z ),can be obta1ned. Us1ng a theorem due to Gershgor1n and a proaf
simt]ar toethe one.used by Rosenbrock.[65] in the 1nverse Nyqu1st array’
method 1t can be shown [1] 38, 70] that 1f the return .difference matrix
s d1agona]]y dominant for all the z on the contour D and the _lgggng“_

e]ements f ( ) map D 1nto £id enc1rc]1ng the or1g1n nf11 t1mes clock-

' w1se then ‘the system w1]1 be stab]e with a]] 1ts }oops c1osed 1f

S1nce the return d1fference matr1x - when the transducer feed-

back matr1x is an 1dent1ty matr1x, is equa] to .'fi

TR =1, Q(z-)ﬂ )



the relationship between the elements of F(z) and the open-loop .

transfer function matrix, Q(z),is given by:

fisla) =1+ a2 -  (5.6)
and I
a0
fij(2) = ay5(2)! RN T (5.7)

. l
‘ i
‘i \
. ]
- . ]

From Equation (5.6) it cah be observed that the difference

between the Nyquist diagram of fii(z) and qii(z) is a shift in the

imegingry axis. Thus using Equation (5.4) it can be shown [38,70}71]”that5

-

o .- ] . X .
~ when ‘the return-difference matrix of a system represented by Figure 2.1
. . p - .
is didgonally dominant for all the z on the contour D, the closed-loop

system will be stable if and only if the number of encirclements of the

‘critica1 point (-1,0) by the Nygy1st diagrams of the d1§90na] e]ements,.

'Lgi%y'zl,,.m},‘of‘Q( ) s, equa1 to -p,» where p 1s the number of po]es .

of Q(z) outside the un1t c1rc1e in the comp]ex p]ane The d1rect Nyqu1st

array method is based on th1s stab1]1ty cr1ter1on

5.2.2 Design Procedure -
| The de31gn procedure used in the d1rect Nyqu1st array method
is very s1m11ar to the one used in the inverse Nyqu1st array method

“The d1rect Nyqu1st array method makes use of the Nyqu1st ‘

' array concept 1ntroduced by Rosenbrock [65] in the deve]opment of the

inverse Nyqu1st array method The Nyqu1st array of Q( ), wh1ch 1sa mxm

- set of Nyquist d1agrams correspond1ng to each e]ement in the matr1x

.- Q(z); is'a very usefu] graph1ca1 tool for determ1n1ng the efﬁect of the

contro]]er matr1x on the contro]]ed system and for se]ect1ng the type |

.
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~of control which'is necessary to satisfy the design requirements.
Diagonal dominance of the return-difference matrix can also

be determined grabhica]]y by drawing the Gershgorin circles with their

(z),

of Q(z). The.radii, di,'of the Gershgdrin cireles are equal te the sum

centers located on the Nyquist loci of the diagonal elements, dii

of the magnitudes of the_off—diagonal elements, i.e.

(2)] . ‘- sy

[
-

. ¢ '
if co1umn'dom1nance is used.- When row dom1nance is used the radii of

the Gershgor1n c1rc1es, are equa] to e
-
m o .
di = L lag4(2)] - (5.9)
j=1
« J#i

The return—différenée ma;rix is'diaéonally dominant 1if the
oersngortn circles do not anZude the poznt (-1,0). ‘ v
f_ Rosenbrock [69] has shown that these Gershgor1n bands have the
property of . conta1n1ng a narrower band the Ostrowsk1 band which 15 the
boundary of a region where the transfer funct1on between 1nput i and

‘.output i is ]ocated when 1oop i is open and the rest are’c]osed The

“'Ostrowsk1 c1rc]es have their centfrs on the Nyqu1st Toci of {q ( ),‘[
~ifl,_;ﬂ. m} and their rad11 are e a] to the rad1us of the Gershgor1n
”[d,cmrcles mu1t1p11ed by the factor S where S S

' ' v,, d . & | . |
a; = max ?T—iia——T o= ]...; m . - (5.10)
i S
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The design of a ¢ontrol system using tihe direct Nyquist array

Amethod’invo1ves three steps:

1) Pairing'the input-output plant variables.

2) Des1gn of a simple pre compensator which makes the return-
difference matrix, F(z), diagonally dom]nant and gives Q(z)-
tne des1red propertles .

3) Design of a mu]t1]oop contr07 system based on the d1agona1
elements of the open-loop transfer function matr1x, with their.
respective Gershgor1n and 05trowsk1 bands. \ a5

Foe

5.2.3 Advantages of the Direct Nyquist irray Hethod
F 4 ) '

in an interactive and iterative way the fo]]owing design requirements:
stability,interaction, integrity against qifferent faiTures, accuracy
and the transient response of the closed-]oop system. The de51gn of the
contro1]er us1ng this method is done in a systematic way - and at each .
step tihe designer has some 1nd1cat1on as to how the contro]]er should be
mod1f1ed to achweve the desired performance

The main-difference between the direct and the inverse Nyquist
array methods is that the d1rect method is based on ‘the ”convent1on§j"
Nyqu1st d1agrams of Q(z ) with wh1ch the pract1c1ng control englneer is -
fam111ar, w11]e the 1nverse Method is based on the quu1st d1agrams of
Qf](z). Another major d1fference is that the inverse method requ1res
- the tnverses of the closed- and open- 1oop transfer funct1on matr1ces to
be d1agona11y dom1nant wh1]e the direct method reou1res on]y the return-

) d1fference matrix to be d1agona11y dom1nant This means ‘that in the

inverse method in ongr to determ1ne the stab1]1ty of .the system the

Gershgor1n c1rc1es must not 1nc]ude ne1ther the or1q1n nor the cr1t1ca1

In this three step procedure the designer can take nto account

G5
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point (-1,0) while in the direct method it is only necessary that the\
Gershgor1n circles do not enclose the cr1t1ca] point (-1,0). As can be

seen there 1s more flexibility and freedom in_the selection of the DL

-~

©

controller with the ”direct“ approach.  When . Q(z) is known algebraically

it is also possible toAdesign a controqbsystem with the tnverse Nyquist
array method without requiring diagonal dominance from the inverse of
the open-loop transfer’funct;on'matrix. However this requires some
additional calculations.

It is also 'possible to derive the direct Nyquist'array design
procedUre based on an 1ntu1t1ve extension of convent1ona] 51ng]e 1nput
single-output Nyqu1st des1gn procedures Such;ﬂn approach has the
advantage of requiring no new theory and all the concepts. and mathemat1—
cal operations involved are fam1]1ar to most contro] eng1neers
Furtnermore the 1ntu1t1ve deveiopment provides greater 1ns1ght into the
physical mean1ng of each step in the des1gn procedure and also results

in a more practical and more powerfu] design technique than has been

obta1ned to date. This development is presented in ‘the next section.

5.3 DEVELOPJENT OF THE DIRECT NYQUIST ARRAY' METHOD BY EXTENSION OF
CONVENTIOJAL DESIGt TECHNIQUES
The prob]em of interest is feedback contro] of a mu1t1 -input
multi- output linear system such as shown in Figure 2.1, It is assumed
that the system of interest is fu]]y descr1bed by the mxz transﬁ;j
a.funct1on matrix, G(z), and that the compensatorsmatrﬁx,-K(z); is to'oﬁ
designed to give stab]e, c]dsed-]oop\COntro] In order to empha51ze

~ the two main steps 1n the proposed des1gn procedure the feedback system -

will be treated as shown in F1gure 5.1%n wh1ch the compensator is

96



divided into two parts:
1) the dynamic component K(z) which is designed first so that the

augmented plant Q(z) = G(z)K(z) is square and has the desired

Ns P
.€ ia$ dynamic cnaracteristics.
2) tne static component, K, which is a diagonal matri; of constant
| .Control]er gains {kii’ i=1 = m}. As shown 1ater,-K can be
designed on”the basis of,abpreximatipns which bound the true
value of the system transfer funct1ons and rmit a modified
o~ .

5.3.1 Formulation of the Design Problem "'AﬁgA

Nyquist stab111ty analysis to be co p]eted
Tne final step 1n the proposed design procedure generates m conventional

Vi

Nyguist d1agrams each of which is an exact representat1on of the

“relationship between one 1nput—output pair of the augmented system when

all the other Toops are closed. The necessary and sufficient condition

for stability of the closed- 1oopwmu1t1var1ab1e system when the return-.

d1fference matrix is d1agona11y dominant for all the z on-the contour D,

simp]y that'these diagrams all sat1sfx the Nyqu1$t criterion (cf. Appendix D).

For the sake of completeness the fodlowing discussion-includes

rd

some concepts and definitions that have been discussed elsewhere or are.

already familiar to most control engineers.

&

3

System Model

u1t1var1ab1e frequency domain de51gn‘techn1ques assume that
a su1tab1e mathematical mode] of the system of 1nterest can be der1ved

and expressed in the form:

y(z) = 8z . o (5.1)

97
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Equation (5.11) snowo that the relationship between the n—qimensiona]

vector of plant output variables, y(z), and the {-dimentional vector of
plant input variables, u(z) is dofined by the system transfer function
matrix, G(z). It is written in z transform notation because multivari-
aoje control systems are»norma]]y imp lemen ted osing digital computers
and nence tne discrete formuTation is most appnopriﬁte. However, the

fo]]ow1ngkdeve1opment a]so applies directly to continuous systems wnich

-

can be representod by Equation (?;J]) written as a function of the

It is assumed that the system described by Equation (5.11) is

Laplace transform variable s.
Control | Strate gz

to be controlled by the‘mu]tivariable'feedbaof control system shown in

Figure 2.1 where:
u(z) =‘K(Z_)[r_('2) - y(z)] S (5.12)

K(z) = exm compensator matrix

-
—_
N
~—
i

= an mx] vector of setpoints or inputs.

It is easily shown that the controller matr1x K(z) can be expanded,

'w1thout loss of genera11ty into the form

K(z)(;?(_z) K R o (5.13)

where ;-

K s a mxm d1agona1 matr1x of constant contro]ler ga1ns, kif
K(z) is a zxm matrix of dynam1c e]ements
. 1 . .
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1It wi11.be seen that the use of a general contro%]er matri* K(z) as
defined in Equation (5.13): -

1) is frequently necessary .to makg_the.design proceduré practicai.

2) provides flexibility in the'pairing of input-outpdt yariéb]es.

. 3) permits non-square sys}ems, G(z), to be handled.
4) permits the sbecification of dynamic feedback~contrd]iers.
5) ‘provides a means of achieying specific design 6bject1ve$ such
. as-non-interaction, or sgecffied system dynamics;

6) é]]ows the designer to consider propertigs that are unhique to
multivariable systéms such as the.”integrityﬁ'(e.g. stability
of each loop when one or more components in the other loops
faf{)._ . ’ o
7) implies no Tloss of simplicity since getting R(z) equal to the

identity matrix ﬁs gguiva]ént tp.working dirgctly with G(z). .-

Figure 5;} sﬁows tne general feedback control system of'Figuré 2;1 Mifh 'g

tne controller K(z) broken-into two part§: the static component, K,

‘and the'dynémic component, K(z); The following discussién will.bef

_concerned first with determining the elements ki; of K and hence it will
. N . “.‘ l ‘ ')
be assumed that the design of the dynamic part of the controller is
compiéte'and that it has been included as part of the augmented system 'f
“ T(z) where h |
IR - L ' 5‘
Uz) =6(2) K(z) L (5.14)
The specification of the1dyhamic-compensétof,'K(z); such that the
" augmented system{((z) has the desired properties is discussed later.
- (Note that in Section 5.3 g, (z) refers to an element of Q(z) while in

1the_kestlbf tne thesis it refers to an e]éménfvof‘Q(z) 5.G(z)K(z)‘K =‘,._,



e - 100

kY

\‘.
\ _ v
G(z)x. The use of Q(z) rather than Q(z) emphasizes the role of the-
feedbagk gain elements kii of the matrix K but in 1atter sections it will
bevseem\that the tsual practice is to use Q(z) to define the augmented
piantvat all stages in the design procedure regardless of how K(z) is
defined.  The meaning is normally ctear from context. )
The ahove'apprdach_imp]fes'that although G(z)hand;R(z) may-he
non-square, Q(z) is always square and that the diaqonal
e1ements nf‘the K}matrix can be interpreted as constant feedback
proporticnal controller gatns, kii’ associated with the control ef‘the<
1nput/output pain u%(z}:yi(i). One of‘the advantages-ofithis appnoach
is‘that it associates a single-gain e]ement k.. with each output, y s
, wh1ch is conven1ent both in the design stage and for field tuning of |
“the resu1t1ng contro] system. o - . : : : -
The spee1f1eat1on of the individual controller gains, kii?
obvious]y'depends on the.transfer functions relating eaCh-input—output
pair -of the augmented system. Therefone the’fb]]owing section discusses

/%

“the derivation of these transfer functions.

-

- 5.3.2 Development of the Tnansfer'Function-Relating Each'Input—Othut
pair .
, The “open Toop" re]at1onsh1p between the input to the augmented

p]ant, u and output- Yis when the proport1ona] feedback control loops

1t
.

are c]osed around all the other 1nput output pa1rs, is def]ned as:
vy hg(2) w2 (5.15)

- Th1s re]atwonshlp is 111ustrated in F1gure 5 2 where "the ]arge shaded

block - represents ‘the augmented system Q(z) w1th 1nputs u] and outputs



y%(z). ObviOus]y.hi(z) must be derived from“the.OLTﬁN of the‘augmented
piant and the following subseetions consider four cases in order of

>increasfng generality (and complexity).

Diagonal OLTFM

The simplest case is when Q(z)\isAdiagona] since hi(z) is

tnen equal to the diagonal element q; ( ) and the seiection‘of the

feedback contro]]er gains reduces to m independent, s1ng]e input s1ng]e— ]

output des1gn problems. The design can be comp]eted using any’
applicablie design apphoath such as\conventioné] Nyquist stability

analysis. o =

2 x 2 QLTFM
In the more generaj case}where the off-diagonal e]ements.of,
- Q(z) are nbn—zero'there arékihteraCtiohsiﬁetween the éompenents Of.the"'
input and output vectors, and in general h,(z) in Equatfdn'(5{15)
beeomes a function of several‘e]emehts of Q(z) and also of the feedback

controller gains, kiy,in all the other lgops. This is readily apparent

when the generé]jfeedback system shown in Figures 5:1 and 5.2 is expanded

into the‘moke famiiﬁar\b1OCKAdiégram form- Figure 5.3 shows the b]oek B

' dlagram representat1on of a 2x2 system of. the type shown in F1gure 5. 1 |

4
from wh1ch it fo]lous d1rect1y that the transfer funct1on reTat1ng the

'*‘second 1nput-output pair (assumwng that the other lqop js,c1osed) Js

"giyeh byf o ‘ ; ’ ‘: 1‘e'.; '
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’

" which illustrates the dependence or 1nteraCtion, between loop 2 and \oop
]Q, This approach to Ghe ana]ys1s of a 2 x 2 system is deve]oped more

fu]]y in a separate research report [30] !

3 'x 3 OLTFM
The analysis of higher order systems 15 considerabTy more
complicated but a stra1ghtforuard b]ock diagram analysis of a 3 x 3

T

system will show that hz( ) is as shown in EQuat1on (5.]7).

omaxm OLTFM |

| The “transfer funct1ons def1ned by Equat1on (5. 16)-and (5.17)
: cons1st of the appropr1ate diagonal element q (z) p]us m- 1 terms which
represent the effect of 1nteract1ons w1th the other feedback contro]
loops. Each of these "1nteract1on berms' has the form.of a coeff1c1ent
_,mu1t1p1y1ng an off- d1agona] e]ement in. co]umn i of Q(z) Th1s
'representat1on genera]1zes to the form g1ven by Equat1on (5.]8) The'
_re]at1onsh1p g1ven by Equat1on (5. 18) was- derived 1ndependent1y and has

a d1fferent structure, but g1ves ‘the same h ( ) ‘(when the mth 1oop is.

'open and the other.mel "Toops are c1osed) as aiven by Rosenbrock [60]

'Once the g;]attonshlp between each 1nput output pair: has been determ1ned

,1t 1s p0551b1e to proceed w1th the spec1f1cat1on of the qa1ns,,k{i,
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h, (z) = qzz(Z)'* I ( kllq3l(z) ) ( k}}qugz) )
T ke (a) J AT+ ky3a55(2)
K195, )
X { T‘;TI:TE:;T;T ‘LQ,Z(Z)]
"/ ke (2) o)\
33923 11931 %/
’ (’ ' k33q3372),>(' ' *‘nqn(ﬂ> (o))
K419, (2) ')
%3393
+ IR0} [q,,(2)]
(‘ T k33933 2
' /K . (2) Yeqen () oy
11721 . 73313 : .
@ ) @)
R mo
1. _ LY .
| L?° (z).~_j£l ¢j?(2) qji(Z) _
J#i
m o . .
L") = J. ¢..(2)q,.(2) (F(z) row. dominant)
' JEI IR | SRR

/b(i.

4?91;(2) ; cofactor of element (j,i) of F" (2)

b cofactor of element (i,i) of M (2)

- FQw ‘ ; coféctor'(i;jsT 0f (én(z))T v.
- %) (2). = . s ey eh T ‘
) . cofactor - (i,i) of (F.(Z)) Lok
. o _ 1

«F(z) = Return Difference Matrix'= (I +Q(z))
Fq(z) .:_- No}mali:edvReturn lefergﬁééymatrlx obtalned
"hyﬂﬁinding éach column/row of F(z) by the

v_ﬂ‘ ,'dlagohal.élementfih,fhaf toluﬁn/(ow

(5.17)

'(5.18a)1

" (5.18b).

'(5{18q) “

(5.18d)

~ -:‘(5..1:8Q) .

| '(‘5:18f)

| ~(5.189)
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5.3.3 Development of the Multivariable Frequency Domain Cesign Method

5.3.3.1 Direct Application of Nyquist Techniques to Each Input40utput o
The des1gn probTem reduces to the specification of the
1nd1v1duaT feedback ga1n k j assoc1ated with each 1nput output pair of
the augmented plant. Equat1on (5.18) can be used to analnee the system i
stab1T1ty dxrectTy, but even w1th the use of computers, this approach is
1mpract1caT for decign purposes and hence resort is made to graph1caT
'techn1ques analogous to conventional Nyguist analysis.
| Assuming the avaiTabiTity of an interactive'computer program
based: on Equation[(S 18) andfa‘CRT terminaT WTth graphic capability'it is:
a relatively s1mpTe matter to dlspTay the- Nyqu1st Toci. of ‘the transfer
funct10n {h ( ): 1=T m}, relating each input-output pair.. The gains v‘
'ﬁk]1 can- then be adJusted such that each of the Toc1 sat1sf1es the Nyqu1st |
stab1]1ty~cr1ter1a and has the character1st1cs that 1mpTy sat1sfactory. |
cIosed-Toop performance This approach represents an intuitive |
extension of frequency domain anaTys1s techn1Ques from s1ngTe 1nput L
single- output (SISO) to muTt1pTe—1nput muTt1pTe-output (MIID) systems. -
However it 1s onTy vaTld when the return d1fﬁerence matr1x F(z), is
1d1aoonaTTy-dom1nant for all the z on the contouer (cf Append1x D).
NOTE THAT NO MODIFICATION OF THE "SISO“ NYQUIST STABILITY ANALYSIS IS
LSUGGESTED -O0R REQUIRED THE ONLY. DIFFERENCE BETWEEN "SIS0" SYSTEMS AND
“MIMO“ SYSTEMS FOR MOST PRCTICAL APPLICATIONS IS IN THE DERIVATION OF
THE TRANSFER FUNCTION RELATING EACH INPUT OUTPUT PAIR
The stab111ty anaTys1s procedure outT1ned above 1s NOT
| *pract1caT for des1gn purposes because for exampTe a carefu] anaTy$15 R

;of Equat1on (5 18) w1TI shown that in. add1t1on to the requlrement ‘

/of d1agona1 domlnance 1t 1s necessary to have spec1f1c numerlc
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values for m-1 of the contro) parameters kii in order to evaiuate any: one
transfer function, hj(z). In‘genera], Equations (5.16), (5.17) or (5.18)
are.too comp1icated to give much. guioance for the sé]ettion of_a' |
feasible set of contro] parameters Simi]ar]y.even if the designer comes.
'up with an initial est1mate for each controller ga1n,,kii, Equation (5.18)
- and its associated Nyqu1st diagram, provide little practtcat guidanCe
.Aabouthhow'the controller gains should be modified to improve the overall
syStem pertorhance The next'section wi]]'show how a practica], conven-

ient design method can be deve10ped from the app11cat1on of. Nyquist

" analysis to modified forms of Equation (5.]8). E A o

5.3.3.2 Deve]opmeht of alPractjca1 Frequency Domain Desién Method;

The form ofpruatfon (5.18) is relatively simple but the .
foeff1c1ents oJ (z) are 1n'genera] functions ot'the controjler qains’ih_
~all the other loops and hence it is d1ff1cu1t to de51gn the first m-1
1oops.‘ Tne;fo110w1ng.subsect1ons discuss various approx1mat1ons for the
1nteractfon terms, L{(a); in Equatﬁoh (5 18) wh1ch can be used to. make

'the app11cat1on of Nyqu1st techn1ques more pract1ca1

| Cases with Zero Interactlon (L’(z) =-A); | o
- “A common , and pract1ca1 approach for systems.with very weak
”1nteract10ns, is’ s1mp]y to comp]ete the contro] system des1gn assum1ng
that h, ( ) = q1]( z), wh1ch 1mp11es that the 1nteract1ons are neglected
The same effect cou]d obv1ous]y be obta1ned by sett1ng L (z ) 1_0 in.
:Equatlon (5 18) " . | N »
An a]ternat1ve approach ls to spec1fy K(z) such that the OLTFM,_;;;.

Q(Z) is d1agona1 Thas approach 1s norma]]y refegred to as “the non-- =
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interacting design approach" and in terms of Equation (5.18) would résult
in values of zero for all the interaction terms Li(z).

L4

Using Limiting Values for Lijg)_
Instead of simply neglecting the 1hteracti6ns or speeifying

'E(z) so that hj(z) = q..(z ) it is poss1b1e\to find limiting va]ues of ‘

ii
' Li(z) which- can-be used in Equation (S;fB) ?or examp]iii'f it were
: possibleéto‘define an upper limit, LTax(z)von the magnitude of the-
interaction term Li(;),then it follows that‘the'magnitude'of_the transfer

function relating'fhe ith ihpdt-outdhtfpair would be bdunded by:_'

: ‘max, ! o T max
{lags @ - 1 ()} < Ins(2)] < flagi (2] + @) (5.19)
In terms of a Nyqufet'diagram, Equation (5.19) shows that'the Nyquist
10Cus'df'the transfer function hiil)'lies wiihin,a'band'Cehteredjon the w
1otus of q..(z),-and'includidg the.region defihed'by'adding and subtract-‘ B

max(z_) tore spec1f1ca11y the band is

ing, at each frequency , the value L
- deflned by c1rc]es;~w1th rad11 equaJwto L? (z) centered on 'the 1oc1

‘Aof q;. ( ), for a]] freqdenc1es An example is shown in F1gure-5 5.
A1though this approach may sound awkward it ]eads to a very pract1ca1 '
des1gn\procedure wh1ch‘1s in fact‘equ1Va]ent-to_the,D1rect NquJsthrray
_4,(DNA) Mefdod diseussed}ear1ier %h this:chapter.vahe;fo]]pwing seetione
'dealAWifhaconcepté sdch as Gerébgbrinfc1fc1esithat are=fami]iar.f(om thef,‘
”'proceed1ng deve]opment of the DNA method .Thjs fs fo]]owed\by extensidns.

based on Equat1on (5. 18)
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Gershgorin Circles: -It can be shown (see Appendix C) that if the return

difference matrix, F(z), is diagonaT]y.dominant; (as defined below) then

oij(z) <1 for all values of controlier gains and for all frequencieSi

Thus it follows from Equation (5.18) and (5.19) -that .the Nyquist locus of i

h%(z) Ties within a band centered on the locus of qii(z) and with a

width defined by circles with the following radi: .

3

: Iq]-j

.i

(U]

radius of Gershgorin circles = LTax(z)k=

| ()] (5.20)
j |
J

“He

This band is-in fact the “Gershgorﬁn\\and" defined in Equations'(S 8) and
\
|
\

(5.9)..(q1j( z) does not contain k and is def1ned tne same in all

: eohations) [t has the obvious advantage of be1ng 1ndependent of the

contro]]er gains and hence once the OLTFN is defined the Nyqu1st p]ots

w1th the Gershgortn bands can be p]otted for all diagonal elements, a5
S1nce the ]ocus of the exact transfer funct1on, hi(z) ‘must ]1e within
tne Gershgor1n band the stab1]1ty analysis can proceed as ‘in the conven- »

t1ona] Nyqu1st procedure but using the band 1n p]ace of the Tocus.

»,However it the critical po1nt falls w1th1n the Gershgor1n band then no

decision can be made concern1ng the c]Osed 1oop stablllty of that 1nput-

-
PR

.'output pair. - ‘ ."' : f ot g

Th1s approach c]ear]y shows that tne Gerhsgor1n band represents '

a région that w111 conta1n the locus of hy (z) regard]ess of what ga1ns

k.. are used.1n the other loops - a fact that will be 1mportant to the d

S A

understand1ng of system 1ntegr1ty Also 1t 1s clear that the w1dth of
tne band is a d}rect 1nd1cat1on of the potent1a] 1nteract1ons of 1oop i

~with a]] the other 1oops in the mu]t1var1ab]e system

.(z)f
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Diagonal Dominance: By analogy to the definitions used in the INA

method, the return-difference matrix F(z) is said to be (columnwise)

diagonally dominant if:
‘ ' m _ ; : _
|f11(z)l > 5§ lfji(z)] i=1,2 ...m (5.21)
A

where f-.( ) represents element (i,j) of F(z ). Since f '( )' q..(z) for

i
non-diagonal elements it fo]]ows directly from the phys1ca] s1gn1f1cance
'oanquat1ons;(5720) and (5.18b) thab djagonal dominance is a guarantee
that the critical ooint will not lie within the Cershgorin band and hence
that this-design approach is feas1b1e In»practice'the most~convenient |
'way of checking a system for d1agona] dom1nance is to display the

,Gershgdr1n band assoc1ated with the Nyqu1st Toci of the d1agona1 e]ements K
of Q(.) and see for what range of gain they satlsfy the Nyqu1st stab111ty-

)
- criteria with pg

‘.»ect to the cr1t1ca] po1nt - /k )
f~As shovm earTier'in this chapter derivation of - the
M‘ay method us1ng theorems of Tinear a]gebra 1eads to the*

definﬁtion “fe Ostrowsk1 band In terms of Equat1on (5¥]8) and (5:19)°

_Pp % T aii(z)  p=1...m(5.22)
1 kppqpp( z) =1 Ji | o . o
B 4 LN

| The Ostrowsk1 band deflned by Equat1ons (5.19). ano (5 22) can
be deduced from Equat]ons (5 16 through (5 18) ‘ It 1s narrower than

'.: the Gershgorln band but requ1res va]ues of the ga1ns,'kii, in a11~the.
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other Toops. As discussed later it is recommended that the "exact"
relationship defined by Equation (5.18) be used rather than the
Ostrowski appkoximation and hence Equation (5.22) 1is not discussed

- further.

4

5.3.4 Extensions to the Direet Nyquist.Array Method

| The DNA equivalent of the INA method developed by Rosenbrock
~involves a Nyquist analysis based on the d1agona] elements of the Q
augmented p]ant, qii( z), plus the bandsvdef1ned by the Gershgor1n and
Ostroiski circles. However the intuitive development that led to
Equation»(5.]8).gives‘greater insight fnto the physical significance of
the DNA method and permits several extensions.which make:the method‘more
practical as Wet]'as more accurate. | r‘ ,; L S

For example once (m-1) of the(gain elements ki have been

th

determined, the.m™ transfer function hi(z) can beteyaiuated directly

W -

from Equation (5.18) kather.than using Gershgorin, Ostrowski, or other
approximations. Also Equation (5.18) makes. it easier to -recognize caSes
vhere the interaction terms, Li(z)3 are zero and to calculate limiting

max(z) that ‘are mare accurate than;the Gershgorin circles. Some.

3

va]ues L

of these are discussed in the following sections.

¥

-Cases-hithlzero'Iﬁ%etectjon

| If the audmented/system '5('),'ts‘diagonai then,- as pointed out
' prev1ous]y, the radius of the Gershgor1n c1rc1es 1s zero and the Nyqu1st
"analy51s can be done on the bas1s of q ( ).

A Tess demand1ng approach is to des1gn the matr1x K(z) 50 thdt S

' w8 . ,
;‘.the'augmented system OLTFM 1s‘trzanguzar‘1n form. This woqtd meah'that
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~all the interactfons L (2), as def]ned in Equat1on (5. 18) would be 2ero
and hence the Nyqu1st analysis cou]d zga1n proceed on the bas1s of q; ( ).

| The 1mportance, to the des1gn procedure, of zero elements in
Q(z) does not seem to have been fully’ reallzed or ut111zed in previous
proposals or implementations. Since Q(z) = G(z) K(z), 1t is possible
in many practical abp]ications to generate zero elements in specific
"~ elements of Q(z) by proper specification of K(z) ( Note that K(z) must
be phys1ca1]y rea]1zab1e and its poles and the zeros of det K(z) must be
located inside the unlt c1rc1e in the comp]ex p]ane) [f some of the
1nteract1onxterms Li(z), in Equat1on (5. ]8) can be made Zero then th1s
. reduces the»number of loops tnat must. be designed by approx1mat10n and/or ,
1teration If enough zeros are introduced to make Q(z ) tr1angu]ar then |
the des1gn of the MINO system reduces to that of m SISO prob]ems

) The Gershgorin c1rc1es, as defiped previously, can be an overly

conservat1ve and mls]ead1ng aound on system 1nteract1ons because they do
not take into account the ex1stence of zero elements in Q( ). For examp]e,_
most triangular OLTFM wou]d result in Gershgorin circles of nonzero

radius which would 1mp]y uncertainty, or interactions, when in_fact none._

exists. Therefore it is desirable to develop better Timiting values.

L]mjtlng Values for the Interactions, L1£Zl;

The Gershgorin_circ]es'nesuTt from the fact that the magnitude |
of the cbefficients, aji(a); as nefined by Equation (5;¢8d) is always |
t 1ess than one when F( ) 1s d1agona11y dom1nant However vihen 5( ) |
‘conta1ns zeros then some of the terms that contr1bute to the 1nteract1ons, _-’
' Lw(z), w1]1 be zero regard]ess of the ga1ns, 511, in the other 1oops

i
In many cases a more accurate value of Li (z)\can-be der1vedf1f these
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Zeros are taken into account.

G® Circles

From Equation (5.18d) it is obvious that 45

the cofactor of element (j,i) of F"(z) (or equiva]ent]} of F(z) or Q(2))

(z) = 0 whenever

contains the equivalent of a row or column of zeros. This condition is

obvious to the designer from.the structufe of Q(z) and can be defined

fbrma]]y'as: . : _ - \‘5.

m
radius G° c1rc]es = Lmax(z) = J % la.sl2)] (5.23)
3t |
A
_ .
where:’ o
¢31 = O when the cofactor of qji(z) 15 zero-or iji(l)l =0 .

< &

1_when ¢ji(z)"f 0
In the general casetwhen all the @ji(z) are non-zero the G° and Gersh-

'gorin‘ciréles are equivalent. On the other hand'thé G° circles are more
accurate when some of the coeff1c1ents are zero and can be used whenever

R IR
F(z) is d1agona1]y dom1nant

5.3.5 Conclusions f«

The most 51gn1f1cant resu]t of thes precedlng deve]op&bnt of the
dwrect Nyqu1st array method is the 1ns1ght it gives to the phys1ca1
prob]em It is a]so 1mportant from the point of‘v1ew of the examples

d1scussed in the fo]]ow1ng sect1ons that Equation (5.]8) could be used

as an exact" Nyquwst plot of h (z) as opposed to using the Ostrowski -

dﬂfc]es ’"f" B l o -
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5.4 DESIGN OF A MULTIVARIABLE REGULATOR FOR THE THIRD ORQER EVAPORATOR
MODEL |
‘ This.section presents the design of a multivariable regulator
for the double-effect evaporator pilot p]ant described in Appendix A
using the direct.Nyquist array method. The model, of the system is the
same as the one used in Sections 3.6 and 4.3 and.it consists of a discrete,

three state, linear, time 1nvar1ant mode] with normalized perturbat1on

variables. The model vas obta1ned from the tenth order model “derived
by‘wi1son [77], using the Marshall's reduction technique [78] and is /
presented in Table A.3. g . /
Tne z~transform of the mode] is represented by the fo]]ow1ng \L.//
equation: | ' - A -
W, (z) | S(z) |
p(z) | = fe2) | 8.~ (s.24)

where G(z) has been obtained from the state space model shown in Table

A.3 by us1ng an a]gor1thm of So:rlau Frame Faddeev [66] G(z)ris
presented in Tab]e 3.1. ; K : | o | _

| | The outputs of the system are the f1rst effect ho1dup, A7

' the second effect hn]dup, 42, and the product concentratlon, C2 |

. S1m11ar1y the 1nputs are' the steam flow to the f1rst effect, S the

~ bottoms flow from the f1rst effect B], and the bottoms f]ow from the.
" second effect, B )
| ‘For reasons exp]atned before, the des1gn has been carrled on

using w- transfer funct]on matrtces instead of z- transfer funct1on

matr1ces S0 the- procedure w111 appear to the user as 1dent1ca] to that
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.used for continuous systems; (wis a biTinear transformation of z-such
that z = (]+w)/(14w) ) The plant w-transfer function matrix is presented
in Tab]e 3.2 The poles of the third order evaporator mode] (1.e.‘the
zeros of the open-loop characteristic poTynom1aT) are shown in Table 3. 3.
The system has two poles at the origin in the w-plane. However, if the
Nyqu1st contour used to determqne the stab1]1ty of the.system is the ene
shown in F1gure 3.2 then the number of right-half-plane zeros (po) of the
:open-loop character1st1c.polynom1al is zero, 1,:» o
The direct Nyquist_array is~more convenient to the user.than-
its counterpart the inverse NyouiSt anray-because of the Tnformation it

provides. For example, the Nyquist anray of G(w), shonn in Figure 5.4,

for the range of frequencies, O.TS S w £ 10.0, indicates -that:

1) The first effect.honup, w], is affected mainly by the bottomsid'
flow B], fo]Towed by the steam flow to the f1rst effect S.

2) The second effect holdup, W 9y s affected malnTy by the bottoms
flow ﬁT However, the steam fTow S and the bottoms fTow 82 also
afféb{ W, s1qnnf1cant1y | |

3) The product Cohcentratlon, CZ’ is ma1nTy by the steam. fTow S
foTTowed by the bottoms f]ow B] | | '

4) Thehbottoms fTow_82 does not affect C .ana_wlt-
ThTS 1nformat1on is not eas11y ava1TabTe from the 1nverse
'Nyqu1st array shown in FTgure 3. 3 The system in 1ts present fonm Ts
'h1gh1y interacting. This can aTso be observed from Flgure 5 5 WhTCh shows
the otagonaT elements of G(w) . w1th tne1r respect1ve Gershgor]n bands.
: In each case the Gershgor1n bands TncTude the 0r1gln‘ (The Tabe]s in

each diagram indicate the scale at the end of each ax1s.)_f

113
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Step -one: Pairingrthe.output-input variables of the evaporator '

Interaction in the evapbrator Can}be reduced by prbper pairing

of the variables. From the four_potnts noted above, .it can be concluded .

that the least interacting scheme is ohtained when w] is controlled by
By, W, is controlled by B, and C, is'controlled by S.  This means that
column 1 must be made co]umn 3, column 2 must be made column 1. and

column 3 must be made co]umn 2 This operat]on,can_be accomp]Jshed.

mathemat1ca]]y by post-mn]t1p]y1ng the plant transfer function matrix by ‘

0 0 1 |
K= |1 0 o - - (5.25) .
o 1 0 |

?tjshould also be noted in passing that th1s flrst step of the

Nyqu1st array approach can be’ regarded as an a]ternat1ve to the method ,
recommended by Br}sto] [8,9] to se]ect the d1fferent control ]oops in a
‘multiloop scheme. |
~ The Nyquist array of the new open Toop. transfer function matrix
.Q](W) = G(m) ];7is’bresented in Figure'5"6“ The‘diagona]jeTements of
-Q]( W) w1th the1r respect1ve Gershgor1n bands are shown 1n F1gure 5 7.
_Only the second co]umn of the system Q](w) is d1agona1]y dom1nant

'Therefore,,1t js.necessary to proceed with another step 1n_the destgn,

"

-~ Step tWor: Design of a pre-éompehsatdh to make5the'return-differen¢e
matrix, F(w), diagonailyvdominant-t g ‘ o

‘\

The objective in- this step is to d

T

~which will make the return-differenc

atrix, F( ﬁ d1agona]]y domlnant The
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use of the Nyquist array plots is very helpful in this step. The Nyquist

array of Q, (w) in Figure 5.6 suggests that:

-column 1 can be made diagonally dominant by adding to this column
2,1 times column 2.
-column 3 can be made diagonally dbminant by Subtfacting_from'this

cd]umn_0;93 times cb]umn 2.

Thése‘two elementary column operations can be done by post-

multiplying Q,(w) by the following controller:

1.0 0.0 © 007
K= 121 1.0 0.93] - (5.26)
c.Lo0 00 o T RN

~ The new openh1oop‘trénéfer'Function matrix is-then equal to

»

B = )t = Q) Kl (G2
Every column in Qz(w) 1s now d1agona11y dom1nant as can’ be

seen from the Nyqu1st arraJ of Qz(w) in Figure 5. 8 and from the d1agonal

1 e]ements of QZ( W) WIth ‘their Gershgor1n bands in F}gure 5. 9 HOWever, '

the d1agona1 dom1nance of co]umn 3 can. be 1mprOVed further by subtract1ng{

0. 4 t1mes co]umn 1 from this co]umn 3, i.e. by post mu1t1p1y1ng matrlx .

L

) 10 -0.4 o

L

- FigUre,S.TO shows the Nyquist array'offthé'new;opgh‘Toqp



transfer function matfiy Q3(w) = Qz(w) g and Figure 5. TT shows its
diagonal eTements, w1th thewr respective Gershgor1n bands. It can be
seen from these f1gures that columns -two and three. are aTmostvperfectTy
diagonally dominant (i.e. <tmply "non 1nteract1on”) and that d1agona1 |
dominance can be improved in co]umn [ by add1ng 0.63 t1mes column 3 to

column 1, i.e. by us1ng the contro]]er

| oo |
L L O E R CX
063 0 1 | | -

- The Nyquist d1agrams of the d1agona] elements of Q4( ) = Q3( w) K

in F1gure 512 indicate that Q4(w) is strongTy d1agona11y dom1nant, i.e.

~ the Gersngor1n bands can hard]y be nOtTCEd 1n th1s f1gure,‘£
Hav1ng 0bta1ned a contro]]er matr1x wh1cn makes the’ OLTFM
d1agona]Ty dom1nant the stab1T1ty of the c]osed loop: system can now be f
determ1ned Us1ng the Nyqu1st contour shown 1n F1gure 3.2, p =0 and
.hence ‘the cTosed Toop system will be stab]e 1f none of the loci of the _‘
| d1agona1 eTements enc1rcTes the cr1t1ca1 p01nt ( } 0) In order to _
:_ sat1sfy the stab1]1ty cr1ter1on the 519n 1n columns T and 2 must be

.changed: Thus it w1TT be necessary to post mu1t1p1y 04( )

_'I B 0 O . . t‘. S o
B T I R It Y
' | 0 ;O,il ] B

’ The d1agonaT eTements of Q5(W) Q4(w) K5 are presented in
F1gure 5. 13 and it 1s obv1ous that none of them enc1rc1e the crltwcal

p01nt Tnerefore the system 1s stab]e Thus the control]er that w111

16



_make the OLTFM diaQOnally dominant and simultaneously make the closed- -

loop system stable is given<by:

Coor

Kg 7 KyKaKgkyKy |
-0.630 0.0 1.0
kg = | -0.748 0.0 -0.400

<0.985  -1.00. . -1.777

Step-three Des1gn of 1nd1v1dua] contro]]ers for each ]oop
" Each 1oop in the system (1 .e. the d1agona1 elements: of the: OLTFM)
can be adequate1y represented by-a first order transfer: function Thus the ,

use of s1mp1e proport1ona1, or proport1ona1 p]us 1ntegra1 contro] in each

loop shou]d be suff1c1ent to prov1de very good control

o (5:31)

y (5.32)

The ga]n marg1ns of ‘each 1oop can be est1mated graph1ca11y from

F1gure 5 13 us1ng the same approach as in the des1gn of single var1ab1e

- contro] systems The system will be c]osed ~Toop stab]e if

R T
Loop 1 R 0“ k] 0.0406 446
Foop e s O kz ' 030203 0203 - 49, 2.

j-"I__.oop 3.0 ;.;f ' 0 < k ]‘ = 27.8:-

3¢ o.o3eo:

'Theffinalzcohtrollervmatrix wi]T‘be‘given.by:hh;

B BKC |
" where for proportional, contro] KC w111 be equa] to :
f"K

K d‘ag ! k1'k2’k3) . ,

'J(5}33). .

. "'-f(:s,.-34‘5‘ g
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(5.35)
"%-:;l(stéé)_25'~ -
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and for a proportiona]~integra1 control K will be given by Equation (3.35).
It should be not1ced that the controller KB and the ‘stability -

: marg1ns given by Equatlons {5.32), (5 33), (5.34) and (5.35) are almo;t
1dent1ca1 to the‘contro11er obtained using .the characterfstic ]ocus method
in Sect1on 4 3. A]so for the th1rd order model 1t is. poss1b1e to ca1cu]ate |
a contro]]er which w111 g1ve a "perfect]y“ non- 1nteract1ng system Th1s
.was “done in Append1x £ and the contro]1er was almost 1dent1ca1 to Equat1on :
(5. 32) Thus in th1s examp]e the ”graph1ca1” frequency domain des1gn .a'
procedures led to essent1a11y the same result as the ana]yt1ca] ca]cu-_.

-

~lation, Another 1nterest1ng resu]t is obta1ned by 1ett1ng k = 1.337,

k2‘=-ﬁ.0 and k3 = 0.751 in Equat1on (5.37); the new contro]]er‘matrix’is -

:j < then equal to:

| -0.842 . 0.0, 0.751

K=Kgke = [=1.000 0.0 -0.300| - (5.9) .
1317 <100 329

: and'the;new-stabi]ity regfon}will»be giVen;by:‘~

24 6:

doop 1 0 k] ewe o (5ig)
Lleop2 o 0 ,<"”k2 . T-G"g Z 9. 2 o (s
; Loop 3~ L : 0<k 27 8 37 O | - ot ':’_‘(5.4] ) :

3 0 75]

Th1s 1s the same. bas1c contro]]er matr1x wwth the same stab111ty ,ﬁ_
regwon obta1ned for the tn1rd order evaporator mode] us1ng the 1nverse |
Nyqu1st array and the character1st1c 1ocus method in: Sect10ns 3 6 and

4 3 respectlvely Thus the s1mu]ated runs shown in F1gures 3. m, 3 12



- ’Chapter STX.

119

and 3.13 in Section 3.6 aTso appTies‘for the controller matrix given by
_Eouation {5.32). The appTioation'of the‘ZfeoTer—NichoTs settings rule

to select the final gains produced exceTTentfcontroT in the simuTated.‘
'<.runs but they were found to bé'foo high‘when these gains were used in the
pilot pTant - For this reason a deoiston was madehto tune the Toops
experlmentaTTy for the proport1ona1 and proport1ona1 pTus 1ntegraT case

-~ The seTectlon of the matr1x KC by exper1menta] tun1ng 1s presented in |
R
5 5 DESIGN OF A PULTIVARIABLE REGULATOR FOR THE FIFTH ORDER EVAPORATOR

HODEL R

In this exampTe a muTt]var1abTe regu]ator is des1gned using the

- direct Nyqu1st array for the doubTe effect evaporatqr pTant descr1bed in

Append1x'X. The modeT used 1n thTS exampTe is the same as the one used
~-in Seotion 3.7, 1.e a d1screte five- state, linear, time invariant mode]

as presented'in Table A.Z The evaporator 15 represented in the z- doma1n'

by:

el I _sgz) ST
| e | |n@f o e
e L e DA |

‘ where the pTant z- transfer funct1on G( ) 1s shown 1n TabTe 3 5 ~The .
‘~des1gn af the mu]tlvar1ab1e reguTator, as 1n the prev1ous cases and for -

?"reasons exp1a1ned before has been done us1ng a w- b1T1near transformat1on- '

of the pTant z- transfer funct1on matrlx Thus GQw has been used 1nsteadhﬂhif -

' U.f'of G(z), where z (T+w)/(]-w) G(W) is shown in TabTe 3 6 ';'Hﬁij\ﬁr
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The bo]es of the plant transfer function matrix or the zeros
of the open-loop characteristic.po1ynomia1 are shoun in Table 3.7. The.
bplant has two po]es at the or1g1n in the w- p]ane The Nyquist contour .

used to determ1ne the stab1]1ty of the system is shown | in F1gure 3. 2
'Us1ng this contour the number of r1gnt -half- p]ane zeros ( 0) of_the
open Toop characterlst1c po]ynom1a1 is equal to zero. The Nyquist.array
of G(w) for a range of frequenc1es 0. 1 < W < 5 0 is shown in F1gure 5.14.
_(leferent ranges of frequenc1es have been used in the, d1fferent
B examp1es in. th1s thes1s in order to have an appropr1ate sca]e in each

““diagram.) It can bevobserved from Flgure 5.]4 that:

1) tne first effect ho]dup, W], is ma1n1y affected by the bottoms

-»f]ow B fol]owed by the steam f]ow S

1’ , .
_bZ)»_the second effect “holdup, | 2,‘15 malnly 1nf1uenfed by the bottoms o }
‘flow 81 and o]lowed, at h1gh frequenc1es, by the bottoms f]ow |
: 82 and.fina]ly by the steam flow 5. Note that at 1ow
frequenciestthe'sleam.flow S hasja.greater effect than B, in
' contro]11ng WZ | o | ‘ | ‘ | o _
"3) the product concentrat1on C is affected almost equa]Ty by the -
- :steam flow s and the bottoms f]ow B]

| 4) the bottoms f]ow 82 does not affect C2 or w]

. Th1s s essent1a11y the same 1nformat1on obta1ned 1n the ;.
‘prev1ous examp]e uh1ch g1ves an 1nd1cat1on of the accuracy of the th1rd

_ forder mode] Th1s 1nformat10n a1so 1nd1cates that the present conflgura- L
Et1on of the doub]e effect evaporator is hwgh1y 1nteract1ng Th1s can | :

'also be observed in Flgure 5 15 wh1ch shows the Nyqu1st d1agrams of the

Y

- dlagona] e]ements qf G(w) w1th the1r correspond1ng Gershgor1n bands
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Interaction can be reduced in this case, without the use.of a compensator

by properly pairing tne input—output variables.

Step one: Pairing;the'evaporator input?output variables - -

"From the 1nformat1on obtained from the Nyqu1st array of G(w)
in Figure 5.14 it can be conc}uded that the least interacting conf1guraf
tion is obtained when B]‘contrets'w], B, controls W, and Svcontrpls C, .

ThisAfirsttstep.in the design invoTVesia renpmberihg in the

colums of G(w). This is obtained by post-multiplying the OLTFM by:

o o 1] |
=l o o . (5.43)
ool

.

In F1gures 5.16 and 5.17 the Nyqu1st array of Q1( ) Ggw)_Kl
and its d1agona] e]ements with tne1r Gershgor1n bands are presented
.respect1ve1yt On]y columh 2 s dlagona11y dom1nant Consequent]y it is

| necessary to deswgn akpreecompensator to make‘the system d1agona11y.

dominant.

StepitWOf- Des.ign of a pfe- compensator to make the return d]fference

o matr]x F(m)JXagona]1y dom1nant

1Step 2a) Des1gn-of cOl ant pre compensator

Th1s step 1nvo1ves the se]ectwon of the s1mp1est contro]ler o

' that w111 make the- returngggfference matr1x d1aqona11y dom1nant, 1 e
‘,the se]ected control]er must produce an. open 1oop svstem in wh1ch the

'AGershgor1n c1rc1es of 1ts d1aqona1 e1ements do not enc]ose the cr1t1ca1

121

‘J,fp01nt ( 1 0) The use of the Nyqu1st array 1s again very he]pfut in th1S"

| *iSelétt1on, A
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From Fiéure'S.IG it can be seen ‘that column 1 can be made

diagonally dominant if 2.0 times column 2 is added to column 1, i.e. if

the fO]]Oangly | -4matrix is Used:

k10 0.0 0.0 | -
2o 100 00 o (5.44) -
0.0 0.0 1.0 |

3 shown in F1gures 5. 18 and 5.19 respectlvely Columns

_ne now d1agona11y dom1nant However tne d1agona1

elements ar; bee. These 1oops can be'madg stable by~chang1ng the

signs in thed QQ columns, i.e. by using the.fd]]owing contro11ef matrix;
| -1 0 0 |
M b =] 0 1 o S (5.5)
| 0 0 |

“Q3(W)»= QZ(W) kg _1dl i;l o (5;46):f‘

and 1ts Nyqu1st array and d1agona] e]ements are shown 1n F1gures h.20
and 5. 2] Co]umn 3 1s still not d1agona]]y dom1nant However, 1t 15 '

"obv1ous from Figure 5. 20 that 1nteract1on can be reducec in this co]umn

by addeng 0.4 t1mes co]umn 1 to co]umn g ~ by postmu]tip]ying'Qj(W) ,

by the contro]1er matr1x

Gan)
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Figures 5.22 and 5.23 present the Nyquist array ovaA(W) =
Q3(w) K4,and‘its diagona]ietements with their respective Gershgorin
bands. Diagonal domtnanoe in column 1 can slichtly be improved by
subtracting 0.6 times columh 3 from column 1. This operation can e

accomp]1shed w1th‘the controller matrix:

1.0 0.0 0.0

»

Ke=]00 . 1.0 0.0 . (5.48)

L-0.6 0.0 1.0 ‘ - (

The'Nyquist,diagrams of the eléments of Q5(w)“ Q4( W) K are
shown in Figure 5.24 and the Nyquist diagrams of the diagonal elements.
with their Gershgorin bands are shown in Figure 5.25. The open- ]oop

transfer function matrix: QS(W) 1s not d1agona1]y domlnant 1n co]umn 3.

A careful exam1nat1on of Figure 5.24 suggests that the d1aqona1 dom1nance can

be 1mproved in columns 1-and 3 but it w11] not be poss1b1e to make

y

. co]umn 3 of the OLTFM QS(W) d1agona]1y domlnant u51ng a constant
é?pre compensator However 1t can be not1ced 1n F1gUre 5.25 that the

return- dlfference matrlx, i.e.

1s‘diagona1]y dominant. (The Gershgor1n C1rc1es do not enc]ose ‘the
" - AN

critica] point»(—lno)) Thus 1t is poss1b]e, u51ng a constant compensator, “
to cont1nue 1n th]S case with the des1gn\ I%ts was. not the case when the :
Tnverse Nuqutst arroy method was used to. deszgn a stattc regulator fbr

thto sdstem _

The - pre compensator used so far to make the return dIfference

matr1x d}agona1]y dom1nant is glven by

4
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Kn = KyKoKaK ks ot (5.50)

or

(5.51)

~— From the Nyqu1st array of QS( ) 1n Flgure 5.24 it can be
noticéd that diagona] dominance of Flw) cou]d be . 1mproved a llttle in
»co]umn 1 by subtract1ng 0.5 times column 2 from co]umn 1 Similarly
diagdnéi dominante in column 3 cou]d a]éq be improved by adding column
2 to column 3. This operation can be accomp]1shed bj post- mu]t1p1y1ng

(w) by matrix K6’ where

°

1 0 o7

ke = [-0.5 1 7 | o s2)
0@ 0

The Nyqu1st array of Q5(w) = QS(w) £ and the Nyqu1st

| d1agrams of its d1agona1 element w1th their respegglve Gershgorln bands |
eare shown 1n F1gures 5. 26 and 5, 27 respect1ve1y The new pre compensator

matrix, KB, used to make the return- d1fference matrix d1agona]]y‘dom1nantA

o .

s then given by: L L 4

vk
-

or

124
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¢ - [-0.600 0.0 1.0 - |
k3= |-0.760 0.0  -0.400| ~ (5.53)
21,020 -1.0 -1.800 |

)

The. compensdtdr KB given‘by Eduation (5.54) is approximately the
_same as tne dne obtained in Sect]on 5.3 us1ng the dlrect Nyqu1st array
method and the th1ed order model. (Th1s is another 1nd1cat1on of the
accuracy of the third order mode].)‘ .

The degree of diagonal dominance obtained in the return-
difference matrix F(w) using the pre-compensator KB is about the best fdat
can be obtained when a constant pre-compensator is used. If better
diagonal dominance is desired in the return>diffefenEe and in the open-

- loop transfer function matrix a dynamic compenéator hes to be.designed.
In order to.investigéte the effect of diagoha] doﬁfhadce;in the perform-
~ance of -the control system a dynamic pre;compensdtor Was also designed

as part of this exa%ple to improve the degree of diagonal dominahce in

the open-loop transfer function matrix.

d Step 2bﬁ Design of a dynamic pre-compensator -

_{E:was obseryed fkom the Nyquist‘afray of the>OLTFM Qz(w) and

from the Nyqufst.diagrams df’its diagona1 elements in Figures 5.18 and
5.19 ré;pective]y that columns 1 and 2 of Q?(w)'were diagonally dominant.
lb A careful examﬁnatfon of the poles and zefos ef the b]aﬁi~ﬁransfer |

funetion matrix and the Nyquist‘array of Qz(.) in F1gure 5.18 suggested

that co]umn 3 could be made d1agona]]y dom1nant if a phase 1ead :

' »compensator is used and the fo]]ow1ng e]ementary operat1on 1s performed

column 3 = column 3 - 0.0559 (5%7*-%%%%) X cojumn 2 (5.54) -

¢
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This operation can be realized if the matrix Qz(w) is post-multiplied by

the following controller matrix:

-

B -0 0
1 _ : w + 7.400 '
K3(w) =-10 1 -0.0559 (mg—ﬁ') (5.55)
0 0 B

pow. -d

-

The new open-loop transfer function matrix, Q;(w) will be given

by:

Q;(w‘) = Qy(w) K;(w) - | P (5.56)

The Nyquist array’of-Q;(w) and the Nyquist diagfams qf'its
diagonal elements wifh their Gershgor%n bands are presented fnhfigurgs
5.2é and-5.29 respectively. It can be observed from Figufe 5.29 that the -
threelco]gmns'are~diagona11y déminanﬁ. However co]umns'] and 3ﬁére
Qeak]y‘diagoha11y dominant. Thé Nyquist'arfay of'Q;(w) in Figuké 5.28
and an analysis of the.zeros_and.pples of this matrixASugéests tﬁat_co]umn
3 can be made almost diagonal if a‘phase—Tead c0mpéﬁsator is.used and Eii:>} :

following operation is performed:

T 3 % co 7.0y
column. 3 = .column 3"-0f024'(671—ﬁf§§5') X co]umn 1 (5.57) ’
This operation can be accomplished if. the matrix Q;(w) is ppst-"

md]tip]ieihby
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+ 7.400

. . W
-1 0 -0-0240 (F=—5"395+) 7.

Ky = | o T b : - *I

g\ =10 - B | (5.58)
0 0 o A

; The Nyquise_array of the new'OLTFM Q;(w) = Q;(w)'_](w), is
presented in Figure 5. 30 The Nyquist diagrams of the d1agona] e]ements
of Q4(w) with their respect1ve Gershgor1n bands are- shown in F1gure 5.31.
From th1s‘f1gure 1t can be observed that only co]umn 1 of Q4(w).does not
havevvery good diagoha] dominance. However an analysis of the Nyquist
array of Ql(w) in Figure 5.30 and of the'p61es and- zeros of this matrix
suggeSts that diagona1 dominanée in column 1}cén'be drastica]]y improved

if a phase ]ag compensator is used and the fo]10w1ng operat1on is

| L.
|

performed on Q4( )
/

C.390

7.400

co]umn 1= co]umn 1+ 13 2 (————~—%6——

) x column 3 . (5.59) .
'This.eperation can be realized if the matrix Ql(w) 15 postf

multiplied by:

-l N 0. 0 -
- K;(W)= 0 - - 1 e »-0 (560) ‘
W+ 0.390 y g .

The new'oben-]oop.transfer fhnction'mathix,iQé(w) iSjgiven"hy
05( ) Q4(w) 5} o (56

\The NYQ“‘»?*C .“ffa%bf Qs'(W) and Nyquist diagrams of their

-~



diagonal elements w1tn their Gershgorln bands are presented in Figures
-5.32 and 5. 33 respective]y From F1gure 5.33 1t can be observed that
"Q5(W) has a h1gh degree of diagonal dominance (1t is a]most d1agona1)
However two of its d1agona1 e]ements are.unstable. . To correct this

situation it is necessary to post-multiply Q;(w) by

128

4
10 0 o |
Ke o L o . (5.62)
0 0 11 N

The.Nyqulif diagrams of the diagonal elements of the new open-

Toop transfer function matrix Qé(w) = Qg(W)fK% are presented in Figure -

5.34.

The dynamic compensator designed in this seetion to make the
v T . ‘ ‘ -
open-loop transfer function matrix diagonally dominant will be given by

oy - ey )k e

.KB( W) K]K2K3(w) 4(w) KS(W) K6 (5f63)-

or - O . o
_, ) ;o
o ) W +0.390

F B2 G 7o) O ! I
P n B 'w“+:7.4‘00""_"'
Rl = 088 0 0024 (fopage) | (5.64)

t 0629 -1 -0.1039 (vv::g_.goo_')d
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z - 0.4383,.
r-'l*2;18.(—————-*———z T 0,7619_) :

HOE 0.683 . 0 o:145 - 4383) (5.65)

b oe -0 -0.628 (22 8 72;3)

- Step ‘three: Design of individual controllers for‘each loop

'Steg,3a.- Stabi]ity'analysts fot the constant compensatot

The contro]]er matrlx KB g1ven Dy Equat1on (5 53) was des1gned
to produce diagonal domlnance in the return d1ffenence matrix and is |
-cyplca1 of the best resu]ts that can be obta1ned using a compensator of
constants. The des1gn can be cont1nued by select1ng ‘the individual .
contro]]ers in each ]oop such that the final contro1]er matr1x 1s g1ven

- . . . . el

. by:

K= Kghe 7 o o (5.86)
" where K¢ is diagonal. It‘has'thejfolloWing form. when-only proportional-

" contral is desired:

(5.67)

The ma1n ob3ect1ve 1n th]S step is the select1on of tne constant
3k]' 2 > kj O In order to se]ect these constants 1t 1s very useful to |
f1rst determ1ne the stab1]1ty reg1on for wh1ch the c]osed 1oop system w111 B
rema1n stab]e, 1 e. the ga1n marg1n of each 1oop A conservat1ve rg

kg

; stab1]1ty reg1on can be obtawned from the Nyqu1st d1agrams of the d1agona]
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elements of .the OLTFM Q6(w) containing the respectfve Gershgorin bands in
Figure 5.27. The‘c]osed-loop system in this case will remain stab]e for
the following combination of.gains.

]' - 0)

LOOP ’I:‘ - 0..< -k] < 50693 - 14..4 : . o (56§)
. ] - I
Loop 2: '0-< k2,< 50731 - 49.2 o o .(5.69.)"

PUNPS . -1 - : .
.Loop 3: o 0 < k3 < 0.1T6 =. 8.62 . : (5.70).

~The stab111ty reg1on g1ven byaEQuations'(S 68), (5.69) andh(5'70)

can be graph1ca11y represented by F1gure 5 35 The €1osed-1oop - sfftem
w1]] rema1n stabTe for any comb1nat1on of ga1ns 1ns1de the para11e10p1ped
_fEach S1de of this stab111ty req1on can be expanded by mak1ng use of the
4Nyquwst diagram of the: exact transfer. funct1on - of each 1oop when the '
rest of the loops are c]osed as_given by. Equat1on (5 18) However
"the determ1nat1on of the expanded stab1]1ty reg1on 1nvo]ves a very
'comp11cated procedure and 1ts complex1ty 1ncreases w1th the order of

the system The new reg1on wh1ch 1s 1rregu1ar has - to be determ1ned o
v‘ p01ntw1se and each po1nt has to be found by a tridl and error procedure

: <In add1t1on the use of Equat1on (5 18) W111 produce a d1scont1nuous f»:.

__stab111ty reg]on s1nce 1t 1s on]y p0551b1e to f1nd the expanded stab]e |
space for the reg10n wh1ch opposes each side of the para11e10p1ped as .._h':f
shown in broken 11nes in. F1gure 5, 35 Th1s is because the use - of the
: "transfer funct1on {h (z) i= 1 m} g1ven by Equat1on (5 18) on]y

| guarantees stab111ty when the return d1fference matr1x is dlagonallyk

dom1nant i.e. on]y one va]ue of k can be varxed in- ‘each trlal and error

"-attempt and the va]ues of the other ga1ns mushi_'vw1th1n the reg1on -

bR
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definedtby Equation (5.68)~(5;70). BecaUSe the benefits of obtaining
.an'expanded stability region(are hargina1 the ca]cu]ation.of the
expanded gain.Space is not recommended and it was not‘done,in this
example. | .. |
- | Once the stability reg10n has been obta1ned it is possible
to select the f1na1 ‘'gains in -each 1oop In this examp]e a direct
',app11cat1on of the Z1eg]er Nichols controller sett1ng rules fs not
feas1b1e since the-gain margins obtalned do not represent the u1timate |

“gain of each 1oop Therefore the se]ect1on of the f]nal gains has to be.

. done in a somewhat arb1trary way. One 1og1ca1 way to make th1s se]ect1on

:1s by choosing the ga1ns based on. the conservat1ve galn margans ngen
'.by Equat1ons (5.68), (5.69) and.(5.70) and by.uslhg h1gher_percentages
" of these va]ues when the uncertaintytis greater'i'e” when thevGershgorin ."
At-c1rc1es are 1arger Add1t1ona1 tun1ng of the 1oops may be requ1red for *
_these cases. | | | |
o An arb1trary se]ect10n in th1s examp]e of a ga1n wh1ch is 34%
~of the ga1n marg1n for the first 1oop, 20% for the second 1oop and 65%
for the thlrd loop w111 produce the contro]]er FDO320 shown 1n Table
: B.1 1n the Append1x B Contro]]ers FDO310 and FDOBBO can be obta1ned
cby us1ng d1fferent percentages of the ga1n marg1ns F1gures 3. 36 and
.3 38 present in broken 11nes the SJmulated response of the evaporator .
u51ng contro]]er FDOBZO for a 20% step change 1n ‘the - feed flow and o
510% step change 1n the setpo1nt of the product concentrat1on reSpect1ve1y.
h The exper1menta] tun1ng of the compensator g1ven by Equat1on t;fb

t-(5l54) is presented in. Chapter S1x o
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' Step 3b. 'Stabi1ity analysis for the dynamic compensatdr_

o

Note ‘that the dynamic cbmpensator given by gguatign (5.65) is
~very similar to the ‘compensator for “perfect” non-interaCting,Cdntrol
 (cf. Appendix'E) The stabi]{ty region can be determined using the Nyquist_

dlagrams of the d1agona1 el Qé(w) in Figure 5.34.,From this

f1gure it cah-be estab]]shed that ‘the \closed-loop system will be. stable |

\
L

for the fo}]oning cqmb1nat1ons of gains:

' ( 0 1 e .‘
Loop‘]. | 0 | k].< 00395 <>24.t_ o ) : (5.74)
.‘ o ( ]v s | B |
Loop 2: Q k2 f 0.0212 = 50.6 o T (5.75)
Looe 31 0 < ks < 50FTE - 31’5 o | N (5.76)

W2) = (2) Kc e (5.78)

Where.'KC iS‘alsO‘given by Equation 5.67)‘when Qn1yﬁpropohtional control )

1s des1red oy

It shou]d be noted that 1K in Equat1on (5 67) is se]ected
| 1 = 1.464, k ] 0 and k3
- given by Equation (5 78) and 1ts stab1]1ty reglon

such that k. the contro]ler K]( )

’1]] be approx1mate]y

. : equaT to the dynam1c compensator and the stab111ty:reg1on obta1ned 1n

“h_vexper1menta] tun1ng However the smmu]ated res

Sectlon 3.7 us1ng ‘the 1nverse Nyqu1st array and t', f]fth order model o
‘The- se]ect1on of the f1na] ga1ns in thi &case was a]so done by o
ﬁnges of the evaporator |
A.for a 20% step change 1n the feed f]ow when the galns used 1n each 1oop
| ,'are ]o% (contro]]er NADYOS]O), a- 20% (contro]]er NADYOSZO) and 30%~(contro]Jer_{

| NAQY0530) of 1ts correspond1ng u1t1mate qa1n are a1so represented by



B d1agona1]y dom1nant to dlfferent degrees These compensators were K
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~ the continuous line in Figures 3.35; 3.36.and;3.37.respectively. In

'this_case-there is also an improvement in the control system when the

gatns in each loop are increased. This improvement tsﬁ;ain1y reflected

in the first effect level. S o ) o
Figure 3.38 presents thetswmulated response (continuous 11nes)

of the evaporator when contrbt}ér NADY0520 is used for a 10 step changev1n

the setpoint of the product concentrat1on,‘cé.A S1nce the system is

' 'non 1nteract1ng when the dynamlc compensator is used on]y the product

“concentrat1on is af?ected in ﬁhf\\case

Effect of Improving the'DiagonaluDomtnance in-thé'Evaporator

In the prev1ous examp1e 1t 1s poss1b1e to 1nveswgate the effect
. of 1mprov1ng the d1agona] dom]nance in the system Three compensators
-were obtawned tnat make the open 1oop and retuhn d1fference matr1ces :

A

_ g]yen by Equat1on (5 5]) Kg given. by Equat1on (5 53) and Ké g1ven by
Equatton:(5~64) The degree of 1mprovement in the dlagona1 domlnance of
. the system can be observed in F1gures 5 25 5 27 and 5 34 by - compar1ng
'Vvthe rad11 of the Gershgorln c1rc]es The compensator Ké makes the :
system a]most d1agona1 wh11e KA g1ves the poorest d1agona1 dom]nance

o F1gure 5.36 presents the response of the open ]OOP compensated

s

1_2]p1ant for a step. change in the 1nput correSpondlng to C2 AS eXPECted '._{t;};
.'e1mprov1ng the d1agona1 dom1nance of a system makes it 1955 1nteract1ng f;~1"
. ‘ F1gure 5 37 and 5 38 present the s1mu1ated response of the _fi'“; :
; ,devaPorator for a step change 1n feed f]ow and 1n the setpo1nt of the ,
"i product concentratlon us1ng contro]]ers DJA0520 FDOBZO and NADY0520 These |

‘ :'contro]]ers are based on the compensators KA’ KB and K] respect1ve1y



and have gains wh1ch are of the same magnitude. The contro]1er NADYOSéB
was used as a base case and its gains are 20 g of the correSpond1ng
u]t]mate ga1ns It can be observed from these f}qures that the performance
of. the evaporator 1mproves slightly by improving the diagonal. domlnance
in the OLTFM not on]y for a setpo1nt change but also for a step changec
in a ]oad d1sturbance - It shou]d also be noted that the improvement 1is
smaller for a step change in the setpo1nt of C2 than fOr-aistep chanoe“
in the feed flow. | - | — '

‘ The effect of 1mprov1ng d1agona1 domlnance in the system is i
N also- shown in thures 3.35, 3. 36 3 37 and 3 38 wh1ch compare the
-‘performance of ttie evaporator u51ng cons ant versus dynam1c contro]]ers

'It can be neticed that when tne galns are. approx1mate]y the same for- the
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'_dynam1c and the constant compensators the response when us1ng the dynam1c -

compensator 1s:s]1ght1y better t1an when the constant compensator is used.
Th1s is the case not on]y for a'step change in a setpo1nt but a]so for a-

step change in a d1sturbance var1ab1e

5.6 CONCLUSIONS

_ The d1rect Nyqu1st array method has been found tO\be a very

pract1ca1 and powerfu] des1gn techn1que wh1ch arises. 1ntu1tive]y by

K extend1ng the convent1ona] s1ngle 1nput, s1ng]e output Nyqu1st des1gn L

lfprocedure Th1s method has the advantage of requ1r1ng no new theory and’

all the concepts and mathemat1ca] operat1ons 1nvolved are. fam1]1ar to most

-

contro] englneers The d1rect Nyqu1st array method prov1des a systemat1c -

means of 1mp1ement1ng contro] system des1gn obJect1ves such as staﬁi- -

;11ty, reduct1on of 1nteract1ons, htgh system 1ntegr1ty aga1nst component

,.fa1]ures, good steady state accuracy and’ acceptable tran51ent responses

~,

O
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The direct Nyquist arﬁhy method isbmorespractical thah the
'character1st1c 1ocus me thod [4 42] , because the Nyquist array plots
prov]de more 1ns1ght into the performance of the system and an indicatilon
of how to des1gn a controller to produce a part1cu1ar\c]osed—1oop
character15t1c rather than s1mp]y prov1d1ng a test of whether or not the
the des1red resu]t has been obtained. It must be noted that a procedure o
for the character1st1c lTocus method has been devetoped recent]y by
Kouvaritakis [508] to de51gn a_contro] system in a more systemat1c way.

' The direct Nyquist. array method -is more practical than the
§
i e

inversc [65] method because the designer specifies the controller elements -
d1rect1y (rather than spec1fy1ng e]ements of the 1nverse of the contro]
‘matrix and hav1ng the computer calcu]ate the actua] values 1ater) Thus
the- des1gner has a better ”fee]" of the comp1ex1ty of the actua1 contro]ler
he is deve]op1ng A]so the d1rect Nyqu1st array con@1sts of “standard"
Nyquist d1agrams that represent components of the actual phys1ca] syétem

' .p(ratner than thelr 1nverses) S0 most users uould get a better physical v_-
'1ns1ght than w1th the 1nverse method. W1th'the dtrect method it 1s a]so‘
poss1b]e to. re]ax the requ1rement of dlagona] dom1nance requ1red by the
';nverse method and hence 15 app11cab1e to a broader class of appllcat1ons
'From the computat10na1 point of view the d1rect Nyqu1st array method is
more eff1c1ent than the inverse. metnod stnce one extra operation 1is ".
-requ1red 1n the ]atter method, 1 e. the: 1nvers1on of the p]ant transfer}

funct1on,matr1x.
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R o CHAPTER SIX
EXPERIIENTAL RESULTS AND COMPARISON

' NITH OTHER METHODS .

;%.1 INTRODUCTION - . - e

; This chapter d1scusses the experimental evaluation of the

fmu]tivar1ab1e regulators, designed in Chapters Three, Four and Five using

‘the inverse Nyquist array-[65] “the characteristic'locus [4,42] and the

' v

| ’ dlrect Nyqu1st array methods respect1ve]y All of'the controllers uere

R I

¢

[N S R

des1gned for, and app11ed to the doub]e effect evaporator described 1in
: Append1x A. These methods are a]so compared with an optlma1—quadrat1c
é mu1t1var1ab]e controller -and a multiloop contro] scheme _that have been

app11ed prev1ous]y to the same evaporator [27, 53 773

" in one of tne disturbance var1ab1es of the system. Three different -

disturbances can be used to upset‘theupilot»p1ant,evaporator: feed flow,

feed concentration and feed temperature Only the first two‘haVerbeen
’used in ithis study. Feed flow has been found to be the most severe :
.disturbance in the- system and this Was the main reason for using it.

feed concentration dlsturbance has been used: to eva]uate the degree of

Fach control system was eva]uated by introducing: a step change

The -

¢Tnteractjontin the contro] sys;em The degree of 1nteract1on of the

_closed41oop system was a]so tested by 1ntroduc1ng a step change 1n the

setQOﬁnt-of the product concentration‘ln the-doub]e effect evaporator :

The- exper;menta] runs descr1bed in this. chapter were done- in

| { two sets separated/by”§5vera1 months dur1ng wh1ch the evaporator was -

///gperafEd'a1most cont]puously and underwent a maJor overhaul

pe

<

= i3

36

4

&

o~

O

The second |

. set of runs was done pr1mar11y to eva]uate a dynam1c compensator that was

v
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designed in the last stages of this 1nvest1gat1on put also 1nc]uded some

other runs for comparison. It should be noted that in the second set oF

runs a slight]y Tower (i.e. 80%) effect1ve ga1n was used in the C2

measurement transducer and a]so that there is slightly less noise evident

‘1n the system. For these reasons comparisons are made on]y between exper-

imental runs from the same set. However both sets of runs lead to the.

I same general conclusions. |

The controllers were 1mp]emented on an IBM ]800 digital data

~acqu1s1t10n and cqntro] computer, which is 1nterfaced to the pilot plant

evaporator, using a computer; contro] package deve]oped by Newell [53].
There were a number “of factors that had to be cons1dered when

| evaluating the d1fferent design methods and tne'performance of the

controllers produced by each method. These included:

-

1) Design method-.
- inverse Nyqu1st array
- d1rect Nyquist array
4dcharacter1st1c 1ocus method
L - opt1ma] quadrat1c regu]ator
- convent1ona] s1ng]e var1ab]e mu1t1]oop control -
2) 'Mode] used as the bas1s for the contro]]er des1gn
- th1rd order state space evaporator mode] -
~ flfth order state space evaporator model -
3) Contro] modes
- proport1ona1 .
- proport1ona] plus 1ntegra1

- open 1oop .

137
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.4) Control performance
- u;zer load changes
- under setpoint changes
5) “Augmented plant
- compensator of constant elements
- dynamic compensator
6) Method of evaluation

- simulated runs

- experimental runs

It was._not feasib]é’to investigate all passible combinations of these
different'factors but the controllers evaluated as part of this study and
the figure numbers that present the corresponding dynamiC'respdnse of the
evaporator variab]es; afe squarfzed in Table 6.1.

After the exper1menta] resu]ts have been presented and .
d1scussea the conclusions regarding the most important of the above ‘
factors.are'summarized. Unfortunately there is no sing]e, quantitdtive
performahce criterioq thatvadequate]y appf?es,under ald coﬁditions.
Therefore in most cases the conclusions are deriyed byﬁcareful, qua1ita-
tfve comparison of the runs as ggbupéd‘in Table 6'1. . | |

| | The f1rst sect1ons of th1s chapter d1scuss the exper1menta]
tuning that was requ1red to determwne ‘the final ga1ns in -the cghtr011ers
des1gned us1ng the 1nverse Nyquist array, ‘the d]rect Nyqu1st array and
the- character1st1c 1ocus methods. This 1s fo]]owed by the exper1menta1
resu]ts using an opt1ma] mu1t1var1ab1e contro]Ter and a mu1t1]oop contro]

‘scheme.. A ’
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6.2 EXPERIMENTAL TUNING OF THE CONSTANT COMPENSATOR OBTAINED FOR THE
THIRD AND FIFTH ORDER MODEL USING THE INVERSE, THE DIRECT NYQUIST
ARRAY, AND THE CHARACTERISTIC LOCUS METHODS ify\

For the third order evaporator'mode1 it vias not1ced that the
static compensator designed with the inverse Nyquist array method [65] in
Chapter Three and with the characteristic lTocus method [4,42] in Chapter
Four were practica]]y'theﬂsane as the one obtained using the direct
JNyquist arnay.method in Chapter Five: Furthermore it was peinted 6ut also
in Chapter Five'that the .constant compensator obtained for the~fifth
" order evaporator mode usung the d1rect Nyqu]st array method was almost
equal to the one obta1ned for the th1rd order mode] S1nce the same
‘basic compensator was obtained in a1] these cases this section eovers‘
;the tuning of the censtant compensator for aj] these cases.

6.2.1 Selection of the Proportional Gains

The use of the Ziegler-Nichols setting rules [12} to.select
the_fjna]rprdportiona1 gains in eachlloop produce a set‘of’éains}whjch
vere ﬁdnnd to be}re]ative]y'high when they were‘app}ied 1n;the field.
The‘response'ot the eVaporaton.was>nothas«good as the simu]atedpruns hae ~
~ indicated.. Therefone the'proportidna1 gains .in each“IOOp:Were-obtained
by‘egpefimental tnning.u This was done }n‘n Systematjc'nay.c Starting
with the'basic information obtained‘in Chapters Three; Four.and Five.

The tunlng of the constant compensator for the thlrd order mode] proceeded *
as fo]]ows ( For the f1fth order model a more conservat1ve stablllty

'reg1on was obta1ned 50 d1fferent percentages than the ones 1nd1cated

below have to be used to\ pmducevthe results presented 1n thjs sectlon.)t'

Given the basic controller:



-0.630° 0.0 1.0

Kg = | -0.748 -~ 0.0 -0.a00'| = (6.1)

. -0.985 -1.0.  -1.777
and the gain space for which the system remains stable:

Loop 1: 0 <k, <20.6 | - (6.2)

Loop 2: 0 < k, < 49.2 | ' : (6.3)
Loop 3: , 0 <ky<27.8 . . - (6.4)

The objective was to find the matrix KC'

142

k1 |
Ke=10 Ky 0 (6.5)
such that the contro] system L
K = KK AR o (6.8)

B™C
. .(N’

)

gave'the best response for a step Change in the setpdints of the controll-

“ ed var1ab1es or for a step change 1n the d1sturbance var1ab1es

| The procedure fo]]owed to choose k], 2 and k3 was very~
“similar to.the Zlegler Nichols approach [12] commonly used to se]ect the

' contro]]er sett1ngs 1n 51ng]e 1oop systems The chosen'ga1n in each

Toop. (k SE 2, k3) was a]ways based on 1ts respect1ve u1t1mate gain. iThel

-galns used 1n each loop to control tne evaporator were 10%- (contro]]er

_FDOB]O) 20% (contro]]er FDO320) and 30% (contro]]er FDO330) percent qf" |

. the correspond1ng u1t1mate ga1n of each 100p »The.numertca1 valdés of

© these contro]]ers‘are pnesented.ln Tab]e B.1."

~ -
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. Figures'6,1, 6.2'and 6.3 present the experimental response of

the~closed loop system using'the contr 1ers_FDO310, FD0320, and FD0330 g

‘respect1ve1y for a step change of Z0% in the feed flow. As expected by

1ncreas1ng the gawns in each 1pop the offsets are reduced but ‘the system

'dbecomes more: osc111atory The effect of 1ncreas1ng the gains can be

c]ear]y not1ced in the three output variables which are be1ng contro]]ed
first effect ]eve], ], second effect level, wz, and the product .

concentration; CZ‘ when'us1ng.contr011er FDO33O inthis set of runs

. there was. a Sustafned cycling in the system (F1gure 6. 3),‘1nd1cat1ng that

the’ evaporator is on the verge of 1nstab111ty |
| From these runs it was conc]uded that  a reasonab]e set of
,ga1ns are the ones used 1n contro]]er FD0320 which produced the results
p]otted in Flgure 6.2, (A 1ater run w1th a ga1n equa? to 16% of* the
_u1t1mate value for the CZ S 1oop and done when there was 1ess noise ev1dent

Ll

1n the evapgrator system, is. p]otted 1n Flgure 6.15 and has an even _i Sy

‘better response. )

o The fact that the bas1c mu1t1var1ab]e contro]]er can be tuned
. \‘%)L

exper1menta11y using procedures s1m11ar to the ones used for 51ngle 1oop
(]

contro11ers is probab]y one of the most 1mportant advantages of the

| T
'J%frgquency dona in techn1ques studied here W1th these methods if the

_ process response is unsat1sfactory there 1s usua]]y no need 1o comp]ete]y

'redes1gn the contro]]er A sat1sfactory contro] system can usua]]y be

'obta1ned by 1ncreas1ng or decreas1ng the ga1ns in each feedback 1oop

‘ Th1s 1s not the case. w1th many of ‘the: mu1t1var1ab1e t1me doma1n methods, v

;s1nce if the des1qn cr1ter1on is to be ma1nta1ned an unsat1sfactory controller

has - to be redes1oned re evaTuated and f1na11y re- 1mp1emented exper1menta11y.-
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. Another- important adyantage of the frequency-domain methods N
d1scussed in this study.is that with these methods it is aTways clear to
| the control engineer how tne controTTer shoqu be mod1f1ed qf it dis not
satisfactory.’ W]th other methods it is not a]ways clear what must be
' mod1f1ed or how to obtaln a sat1sfactory control system | _
| The proport1ona] controTTer FDO320 was also tested f0r a 20%
step change in feed concentratlon with the resu]ts shown 1in F1gure 6.4.
In - this run there is no s1on1f1cant change in any of the output var1abTes
Because the feed concentrat1on affects only the product concentratwon |
th1s run is a’ measure of the 1nteract1on in the contro]]er The system |
| is aTmost non-1nteract1ve as expected (An unexp1a1ned d1sturbance in the o
+ Steam fTow at T= TGﬂ anuteS affected all the output and controT var1abTest)‘
The degree of 1nteract1on of the controT system u51ng the S
"'proport1ona1 contro]]er FD0320 can a]so .be observed 1n FTgures 6 5 and
6. 6. These f1gures show the response of ' the evaporator to a 10% step
change in the setpo1nt of the product concentrat1on, CZ‘ The response of -
' ‘the system is fast and the 1nteract1on between 100ps is. Tow For a 10%
change in tne product concentratlon, CZ’ there is a d1sturbance of onTy
g, 5% and 6. O% in the TeveTs of the flrst and second effect respect1ve]y
| and they recowe@ after a relat1ve1y short per1od of t1me The system is.
'va T1ttTe more: osc1TTatory for a step up than for a step down 1n the o
setpo1nt ' S | | | |
| ' From the prev1ous exper1menta] runs 1t can “be notlced that the
‘fﬁﬂTﬁmate ga1ns obtalned exper1menta11y do not agree w1th the theoret1ca1
H ones obta1ned from the Nyqu1st daagram of the th1rd ahd f1fth order

~modeTs The exper1menta1 uTtlmate gains (see run F00330 1n F1gure 6 3)

'are approx1mate1y 30% of the theoret1ca] ones The dlfference is ;5
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attributed to mode]lfng’errors. However the simulated resu]ts-presented h
in Chapter'Three.(ftgures 3.TT, 3.13, 3.35-3.38) are quaTitatively -

| consistent wfth the experfmentaT results. In both cases the ma1n effect

of 1ncreas1ng the gains in the contro]]er is to reduce the offset in the
first- effect TeveT ]. The increase of gatns in each .loop does not |
affect the second- effect TeveT w2, and the product concentratton, Cz,

' very much

| 6.2. 2 SeTect1on of the Integra] Constants

In the prev1ous section the most reasonab]e proportlonal ga1ns

vere found to be the ones used in the controTTer FD0320 Consequent]y

- these gains were used as a start1ng p01nt in the seTect1on of the -
bropo;t1ona1 plus integral contro]]er constants In the th]rd order
model (cf TabTes 3. T and 3 2) and to a Tesser extent .in the fifth order mode]

‘every open Toop transfer . funct1on in the system behaved approx1mate]y |
like a f1rst order system Thus it was nqt poss1b]e, in- th1s case to f‘

- use the crossover frequenc1es to estfmate the 1ntegral constantst
Therefore they were arbttrar11y chosen to be 1/64 of. the ga1ns used in
ControTTer FDO320 Thts 1ntegra] controTTer £D1320 shown 1n TabTe B 2
‘vias used to controT the evaporator for a 20/ step - change 1n feed fTow
Tne response of the system 15 presented ln F1gure 6. 7 It can be- 5

| observed from thTS f1gure by comPar1ng w1th the response of contro]]er o

\FDO320 1n thure 6 2 that the ma1n effect of the 1ntegra1 actwon has been f

‘ to e]]anate the offsets However in thTS case the max1mum dev1at1ons

_ are sT1ghtTy htgher tvan when u51ng proporttonal controT on]y Th1s

1nd1cated that the Teve] of - 1ntegraT actton was sat1sfactory and that

the oscv]Tatory behaV1our of the evaporator was probabTy due to too h1gh
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. a proportional gafn.
: Since the system was on the~verqe‘of-instabiTity‘when'the'prop-
ortional controTTer FDOB3D was 1mpTemented on the evaporator, a new set of
| pr0port1onaT qa1ns was seTected for the proport1ona1 1nteqra1 controITer
FDI315 given in Table B 2 They were chosen to he 507 of the. qa1ns used
in controTTer FDO33O s1nce 1t is:common oract1ce to use: 507 of the qa1n
ythat produces susta1ned osc111at1ons The response of the pilot pTant u51nq
7controTTer FDT315 is shown in F1qure16 8 in which it can be observed that the
osc1TTatory behav1our of controTTer FD132¢ (F1gure 6.7) has been almost
eliminated. In contro]]er FD1315 1 the 1ntegra1 constants were 1ncreased
by a factor of 1.; while keep1ng the same proportlonal constants as in
'controllethDI3TSI The response of the;system.w1th-thls oontrollersts
shown in Figure 6.9. The effect of tncreasing the‘integrai action B
A'deteriorates'the control The maximum dev1at1ons are hxgher and the |
o system is more osc1IIatory than in F1gure 6 8. . | |
| From these resuTts 1t can be concluded that a reasonabTe set
| of vaTues for a proport1ona1 1ntegra1 cmtroTTer are g1Ven by proport1ona1-t
'{1ntegra] contro]]er FDTBIS def1ned in Table B. 2 ' .
_h/ . | I |
6.3 EXPERIMENTAL TUNING OF THE DYNAMIC COIPENSATOR FOR THE FIFTH ORDER
. MODEL OBTAINED USING THE INVERSE AND DIRECT NYQUIST ARRAY METHODS - e

The seIect1on of the proport1ona1 ga1ns for th'éfynam1c ,5

vcompensator was done 1n the same way as for the stat1c compensator 1n
‘the prev1ous sect1on However s1nce th1s compensator was deswgn f_:'
: g3§?§n1f1cantly Tater in th1s study than the other contro]]ers a new set
| *l‘of runs was done to evaTuate and seTect the proport1ona] ga1ns for th15' )

“-dynam1c compensator ATT the exper1menta1 ruhs presented 1n th1s sect1on

.‘.>
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are from this recent set of runs.
Tne baS1c dynamic compensators obtalned for the f1fth order

'i evapoLator modeT us1ng the 1nverse and the d1rect Nyqu1st array methods
were essent1a]1y the same as the one given by Equation (3.56). The
stabi]jty'marginsifor whichnthe ctosed-loop will remain stable when
using‘this compensator‘are giuen by Equations (3.59),-(3.60)‘and (3.61)}

| F1gures 6.10, 6. 11, 6'12 and 6.13 present. the responseS»of‘the
‘eVaporator.for:a 2 % step change in the feed f]ow when the ga]ns used in
~each loop are TO% (controTTer TADYOSTO) | 20% (controTTer NADYOSZO) 30% 1;;
‘(controTTer NADY0530) and 50% (controTTer NADYOSSO) of their correspondf | |

‘1ng ultimate_ %a1n, respect1veTy The qa1n used in the concen-

tration loop is actually '80% of the va]ues 1nd1cated above ~The numerTCaT

f_"vaTues of tnese contro]]ers are presented in Table B. 3 There is a Tow ,

fTeveT of no1se in the response of the system in each case. The exper1—'

mentaT resuTts are in th1s case, 1n cTose agreement with the s1mu1ated |

: resuTts (see F1gures‘3 35, 3 36 and-3 37) The effect of 1ncreas1ng the n

ga1ns 1n each. Toop. is refTected ma1n]y in the reduct1on of the offset 1n

the’ fvrst effect TeveT w] However the response of. the system aTso
'fbecomes more osc1TTatory by 1ncreas1ng the ga1ns The product concentra--; T

'vt1on, 2 and the second effect TeveT w2, are not’ affected s1gn1f1cant1y

~ - when the ga1ns in each Toop are’ 1ncreased | | ) | | _ '

» ) From these resu]ts it was concTuded that a su1tab]e set of

| ga1ns w1TT be the ones used 1n controTTers NADY0520 or NADY0530

o F1gure 6. 14 presents tne response of the evaporator for a. TO%

= _step change 1n the setpo1nt of the product concehtrat1on us1ng | |
‘lcontroller NADY0520 ATthough the dynam1c compensator makes the system

g 1 L
' modeT aTmost non 1nteract1ng the exper1menta1 response shows that there



. s st1TT some 1nteract10n in the system as ev1denced by the -small
perturbat1ons in w] and‘w2 E

- ;The use of the dynamic compensator with only proportiona] a
control action produced very good resﬁlts.v Therefore integral action
was not.app]ied‘jn this case. —

During the-second.set of runs.it;Was»obServed'that there_was
less noise Tn the system and a sTightTy'Tower (Tze. 80%).effectiye gain
had been used in the C2 measurement transducer. For ‘these reasons.and

in order to make a more fair compar1son among dlfferent contro]]ers some
add1t1ona1 runs were performed u51ng the constant compensator d1scussed
in the prev1ous sect1on and tne opt1ma1 mu1t1var1ab1e contro] dtscussed
in Sectlon 6 5.1. | | |

4 In the recent set of runs the pilot plant evaporator was also
Operated us1ng contro]]ers FD0520 and FDOS3O wh1ch are based 1n the
- - static compensator given by Equat1on 6 1. These controTTers, defined in
_ Table B.1,. are almost, 1dent1ca1 to controTTers FDO320 and FDO330 |

' .respect1ve1y The onTy d]fference is that the . effect1ve ga1n in the\\

‘ Toop correspond1ng to the product concentrat1on, C2, 1s 80% of the va]ue
1
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v of the ga1n used in the Tatter contro]]ers | F1gure 6 15 and 6 16 present" o

_the responses of the p1]ot pTant for a 20% step change in. the feed fTow :'

‘when the contro]lers FDOSZO and FD0530 are used. The performance of the =

system was in th1s case much better than WTth contro]]ers FDO&?O and
".FDOS3O Th1s was matnTy due to the Tower TeveT of no1se 1n the system
' _»and 10wer galn in product concentrat1on measurement system

‘s As 1n the prev1ous runs when contro]Ters FDO320 (F]gure 6 2)

’and FDO33O (F1gure 6 3-) were usedﬁwe mam effect of 1ncreas1ng the gams f

'1n the Toops 1s to ded?ease the offset in w] The response of: the o

o e o N

4
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system yas more oscillatory when'eontrelJer.FD0530‘was used which
nat the.gains.hsed in controT]er-FDOSéO'dr tn FDO§§‘ the host
su1tab1e ones. - |
In F]gure 6 17 controller FD0520 has been used to control the
evaporator during a 10% step ehange in the setpo1nt‘of CZ‘ Since the
controller is only djagona]]y dominant (as obposed to non-interacting)
some 1nteractiens are present in the responses‘of N] and_'w2 as‘they Were"
in Fﬁghhe‘6.5. , 'i‘. : \ o | |
An optimal mu]tivatiéb]e'controlier vOP0501‘ given by Equatton
6.19 end d1scussed in Sect1on 6.5. 1 was a]so used in th]S set of runs to
control .the evaporator dur1ng a 20% step change in the feed f]ow
_distufgsncei ‘The experimentaT response of the evaporator is presehﬁed
in Figure 6.18. - |
.'} .
6 4 EXPERIHENTAL RESULTS WITH THE OPTIMAL REGULATOR CONTROL METHOD AND
" THE' THIRD ORDER EVAPORATOR MODEL | |
The Opt1ma] QUadrat1c regu]ator contro] method is probab]y the
most w1de1y known of the so-called mu1t1var1ab]e t1me doma1n methods |
This techn1que has been studwed extens1§e1y at the Un1ver51ty of A]berta

by Newe]] [53] The method can be summar1zed in the’ fo]]oa1ng way.

-G1ven the d1screte state space mode1
K 41) = An) 4 Bun) FDd() (6.7)

"~ and the dischetef1inear;quadrétiq'perfbkmance index:
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v

. AN

N-1 :

J= ) (x(n) - xd)T (x{n) - xd) + u(n - ])T Ru(n - 1) (6.9)
n=1 .
"where:'
xd is the'desired state vector - ' _ .

Q is a.positiye semi-definite symmetnic matmix
| R is a symmetric positive definite matrix (but since th1s is a d1screte
fonnu]atlon 1t can be made arbitrarily small)
N s a 1arge 1nteger such that at n = N the process‘has reached
steady state ‘the recun/zve re]at1ons wh1ch def1ne
the control matr1ces have converqed to constant
values. | T o

Tne opt1mé] control method 1nv01ves m1n1m1zat1on of the quadrat]c

.performance 1ndex and produces a d1screte law of the form:
u(n) = kx(n) e (6.10)

| The matr1x K.is def1ned by a recurs1Ve re]at1onsh1p [73] whwch converges‘
;to constant va]ues after a few 1nteract1ons “Note that under this scheme

E the contro] s, exerc1sed over the system states rather than the outputs
“as 'in" thie freqdency doma1n methods S 7-: L &‘ o 4

}’ The des1gn freedom in. th]s method 1s in the §%§§it§§n of the

_5we1ght1ng matr1ces Q and R In th1s study an. exhaust1ve search was not -

‘ made to determine the best values for these matr1ces The va]ues used

~in these expe:g;tnts are the best ones found in prev1ous work by NeWell

[53] and W1lson'[77] -.7" | .' ‘ | .

For the tn1rd order mode] the state var1ab1es are the same as

.

}the output var1ab]es Consequent]y there is no need to estimate any of
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the state variables.

6.4.1 'Proportiona]'Controlu

The values of the Q and R matrices used to calculate the B
optimal proportional contro] for the third order évaporator model are

o giveh by:

diag[10,10,100] (6.11)

O
.
1}

'diag[0.05,0.05,0.05] , (6.12)

e
"

The proport1ona1 contro]]er matrwx for a samp11ng 1nterva1 of

64 seconds is g]ven by

’ 4,904 -0.40] -11.920 |
poseo = | 5784 -1.600 4.025 | (6.13)
L 4,093 9.685 9.357

Figure 6.19 snows the response of the evaporator, us1ng _
-contro]]er OPO3OO far a Step. change of 20% 1n the feed f]ow d1sturbance
The ga1ns of this contro]]er seem to be high. There are sma1]-osc11]a-
tions in all the controlled variables but the’offsetseaheivery-sma]].;The | o
.response'ofvthe same'contro11erlfor 5 20%-step ohange'ih'feed concentﬁétion.is"'
shown jh ngure 6. 20  The control 1s very good in a]] the output var1ab1es
— Th1s proport1ona] contro]]er generates a system whlch is

. _J%o1agona11y dom1nant and it is prooab]y because of this property that the

" ,'fﬁsystem js-non- 1nteract1ng
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’f6¢4.2 Proportiona]—lntegral Control

The state vector Wwas augmented, as described by Newe]1 [53] to

P

generate integral action on each output varlable The R matrix used in

this case is the same as Equation (6.12) while Q matrix is given by:
- w N o

Q = diag[19,10,100,1,1,1] " (6.14)

- »
For a sampling interval of 64 seconds the proportional-integral

control, OP1300, is equal to

“rs.490  -0.190 12.0 B N
Kp = | 6.429 -1.386 - 4.487 > -(6.15)
0P1300 | o 3 : '
| Ls.519 12.26 11.810,)
0.989 -0.050 " -1.175
K| = 11.156 -0.325  0.437 |~ . (6.16)
0P1300 o . ' '
. 0.825 1.9352;, 1.090

The response of the evaporator us1ng contro]]er 0P]300 to a-
20% step change in feed f]ow is’ shown in: F1gure b.. 21 The effect of’g
adding 1ntegra1 action can he apprec1aqu by compar1ng it w1th the
proport1ona] contro] OPO3OO in F1gure 6 19 w1th 1ntegra1 act1on the 
small offsets are e]1m1nated the system 1si§ little more osc11]atory
” -and has larger p ‘ershoots Other work [27, 53} has shown that 0pt1ma1‘
proportlona] and proport1ona1 1nteqra1 contro11ers can q?v’\Tuch better

. control of the evaporator than shown in F1gure 6. 19 and 6. 21
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6.5 EXPERIMENTAL RESULTS WITH THE OPTIMAL REGULATOR CONTROL HETHOD AND
‘ THE FIFTH ORDER EVAPORATOR ‘MODEL
In the fifth Order,modeq the number of state¥ is greater than

the number of outputs. The implementation of the fifth order optimal

v

control requires the estimation of the unmeasured first effect contentra-

tion, C In*previous studies this estimation was doneiusing a Kalman-

r
Bucy filter estimator [2, 23] or a Luenberger observer- [34 74]. sHowever

in this study a procedure programmed by Newell [53] was used, because of
\ ‘
its simplicity and convenience. '

Al ‘ N [ I

6.5.1 Proportional Control

The propdrtional controller 0P0500, was calculated for a

. sampling interval of 64 seconds and‘using,the-fol1owing matrices in the

quadratic perfarmancé index:

]
i

diag[10,1,1,10,100] . (6.17)

it

* R = diag[0.05,0.05,0.05] (6.18)
~ The ca]chlﬁ@ed optimal eontrot, 0P0500, is~que1-to

(651 . -l.226  -3.23  -0.0873 -13.13

P i | |
Koposoo;‘ 3.822 0.368  0.689°  -1.377 - 9.707 (6:19)

3.05 . 10%s © 0.078 L9785 1nsr0]

The response of the evaporator us1ng proport1ona] contro]]er .
OPOJOO for da 20% step change in feed flow,'1s shown in Figure 6.22. The ™ . . »
vcontro] of the product concentrat1on, CZ’ and the second effect holdup,

<w23 is very good. There is on]y a sma]l offset in ‘the first effect

SO
ISR

hS
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holdup, W (During the most recent set of runs this controller was also

b
used to control the evaporatot. The ‘response of this controller (0P0501) -
was presented in Figyre 6.18..-The results in Figure 6.18 are very

simi]ar to the oneApresented’inAFigure 6.22 and they are typical of the.
better results obtained.with optimal quadratic controtlers by previous

workers [53,77]. It can be noticed also that there is evidence_of less

noise in Figure 6.18.)

6.5.2 Proport1ona1 Integral Contro]

For th1s case the state vector was also augmented as descr1bed
by Newel ] [53] tokgeﬁerate 1ntegra1 action on each. output var1ab]e ‘The
R matrix used in'this run was given by Equation 6.18 and the Q matrix was.

defined by:
Q= diag[10;1,1,10,100,],],]] - (6.20)

The ca]cuTated control matr1ces for a. samp11ng 1nterva] of 64 .

seconds are:

[3.209  -1.239  -3.640  0.139 -15.44

KEP]SOO_"' 4502 0.7 0.553 -1.284 %,- 9.07 | (6:21)
o [4.238 - 1.166 -0.059  12.26  14.22_
.' v ' 4; -
[1.277 0,027 -1.432 -
| KéP]SOO =] 0793 ;p7298§“:,j 0.895 I .A‘T - (6.22)
- Lofas "';11936,;;” 1,306 A |

+

The resdghse of tne evaporator us1ng the proport1ona1 1ntegra1

contro]]er OP]SOO for a 207 step change in. feed f]ow is shown in thure '



6.23. This is more osc11]atory than the response of the system with on]y
proportiond] control. However the offsets are e]1m1nated by the 1ntegral
action. : ~

A3

6.6 EXPERINENTAM

~ESgtTS USING A MULTILOOP CONTROL SCHEME
The mu'N op case was implemented by us1ng dfagona] matrices

“in the mulg'var}abte proport1ona] plus 1ntegra1 control a]gor1thms Th1s

"~ makes. 1t equ1valent ‘to single Varlable control and also prov1des a "base

case" for compar1son u1th mu]t1var1ab]e techn1ques When the control .
parameters are the same as the d1agona1 elements in the mu]t1var1ab]e
controlTers then a comparison of ‘the two cases gives an 1nd}cat1on of
the effect of the orf- d1agona1 e]ements in the contrg]ler matrices.

The pairing of the ]nput and output variables for the mu]t1]oop

--,evaporator control scheme was obta1ned by ana]yzing the d1rect Nyqu1st

array (see Chapter Five). It was found that the conflguratlon Wh]Ch is’
the least 1nteract1ng is given by the fo]]ow1ng 1oops
| - product concentratlon, Cys.controlled by steam flow, S.

- f1rst effect ho]dup, w],.controTled by bottoms flow B] »

- second effect ho]dup, 2; control]ed by bottoms flow 82 |
' S1m11ar resu]ts were obta1ned by Newe]] [53] us1ng Br1sto1 s
approach [8 9]. | ' .'§ .

2

1ntegra1 constants was not Laue. Instead the se]ect1on of the |
contro]]er constants was made ma]nly‘to 111ustrate the effect on the |
evaporator response of the off d1agona1 e]ements 1n the contro]]er
'_matr1ces discussed- in the preceedlng sect1ons (1;e. to 111ustrate the a

o advantage of mu1t1var1ab]e versus mu1t1loop contro])

155

An’ exhaust1ve search for the best proport1ona] and proport1ona1-,»'
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.6.6:1 MuTtiToop Proportional Control’

.The proportional gains used in the multiloop proportional
controT are shown in Table 6.2 for‘the run MLOéOO These constants are
equaT to the corresponding d1agonah§entr1es of the best contro] matr1x
‘(FDO320) found us1ng the th1rd order evaporator modeT and the inverse or

'vd1rect Nyqu1st arrayumethod. In th1s way a direct. compar1son can be made‘
.between multivariable proport1ona1 control FD0320 and muTt1Toop propor-
tional control T L0200.- The response of the Tatter controTTer for a 20%.
step change in feed flowgis shown in Figure 6. 24‘ Compar1ng this
1response w1th the TGSPQQ;k of proport1ona1 contro] FD0320 in Figure 6. 2
_it can be observed that the muTtlTOop system produces hlgherilrfsets and
h1gher max imum dev1at1ons in the three output var1ab]es Figure 6.25 |
. shows the response of contro] MLO200 ftoa 20%\step change*in feed ‘
concentration. Since this dtsturbanee affects on]yvthebprodUCt.coneeh- bt
tration} CZ; its etfect in the cantrol system'is very small. These responses:

under - muTt1Toop controT are typ1ca1 of the hest resuTts ohtalned 1n other )

‘studles [27] :
{

6.6.2 MuTtiTOOp PhoportionaT-Integral Contro]' a .
| The proport1ona1 and 1ntegral constants used in the mu1t1Toop

: _proport1ona] 1ntegra4 controTTer were equaT to tne correspond1ng entr1es

t of the best proport1ona] 1ntegraT matrlx (FDT315) found us1ng the th1rd
’order evaporator model and . the lnverse or d1rect Nyqu1st array method

_ The controTTer constants .used in th1s control]er are the ones shown 1n *'f
7ab1e 6 T for run MLTZOO The response to a 20% step change 1n feedt_
fTow is shown in thure 6 26 The add1t1on of 1ntegra1 actlon to the
proport1ona1 controTTer eTlm1nates the offsets The negat1ve aspects

of 1ntroduc1ng 1ntegraT act1on are that some of the max1mum dev1at1ons
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. A
Do

are sTightly h1gher espec1a11y for the product concentrat1on, C2 The

h.,.- b

- comparison of the response of the mu]t1100p proportlonal 1ntegra] control

4LTZTO of ' F1guref6 26 w1th the response of the muTt1var1abTe proport1ona15

integral contro] FDT315 of Figure 6. 8 shows that the mu]t1var1ab1e
"controT ‘reduces cons1derab1y the max1mum dev1at1ons in the output

var1ab1es and makes: the system respond faster

R |  TABLE 6.2
CONTROL SETTINGS FOR MULTILOOP RUNS

. Control. o R Integral

: a " Interval . Proportional ~Constant
*  Run Loop : (Sec.) Constant S(Min-Ty
B W, 64 o - 368 . h
0200 | B, . W, 64 984
s, 64 . 555
L .' . N : " ‘ M : - ‘
| B L X 2 RN
2l | oB, W, - 64 138 0,205
s o, 6. =07 0arm.

o 6 7 COMPARISON "AND CONCLUSIONS OF THE EXPERIMENTAL RESJETS

6.7.1" Proport1onaT Versus Proport1ona1 IntegraT ControT ;. :

| The add1t1on of 1ntegra] act1on 1n the muTtiToop control scheme
am;roved the response of thercontroT system dramat1ca11y The severe
offsets assoc1ated w1th the proport1ona1 controTTer were eT1m1nated w1th
= the 1ntegral act1on An. anaTogous 1mprovement was not observed w1th |
| ..the muTt1var1abTe contro] systems The add1t10n of 1ntegra1 act1on to

. g’ATE muTt1var1ab]e contro]lers produced no s1gn1f1cant 1mprovement 1n o

Lt K o . - ; : i,

157.
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. the response of the evaporator The response of the system usfng on]y
proportlona] contro] was very good and ‘the offsets were very sma]1 due to

the relatively h1gh proport1ona] gains. Thus thene was ltttle room for
. . L N . .

1mprovement For~the.control1erfdesdgned using the inverse and direct

E

Nyquist array the on]y not1ceab1e effect ofiadding integral action Was

to reduce the offset in the first effect Tlevel. When the 0pt1ma1 control .

4

method was used the performance of the system vith 1ntegra1 act1on was
-more osc111atory than when only proport1ona] act1on was used However

P

" this could probab]y be corrected by proper cho1ce-of the Q and R'matrfces
| | Thus, it was conc]uded that a good mu]t1var1ab1e des1gn method
: wou]d produce a proport]ona] @bntro]ler that would g1ve at Jeast as good : 'qt '
:*control of tne evaporator as a mu]t11oop proport1ona1 p]us 1ntegmﬂl -
contro]]er o B I S _> . B

.

6. 7 2 About the Contro] System Des1gn Method -‘fis "‘;'»u.. -A‘.§E,

when app11ed to the thlrd order evaporator mode] the 1nverse

‘Nyqu1st array [65] the character]stlc 1ocus [4 42] and the d1rect . :
"Nyqu1st array method produce essent1a]1y 1dent1ca1 proport1ona1 or h
'proportlona1 p]us 1ntegra1 contro]]ers These methods lead natura]]y to

. * . k \..' i
'swm11ar contro]]ers whenever a constant contro]ler matr1x ex1sts wh1ch

A_;‘makes the system a]most d1agona1 The response of the doub]e effect

o devaporator w1th tﬁgse contro]]ers is very good The ma1n advantage of

these methods 1s that they produce a contro]]er wh1ch is very easy to

",‘tune in the f1e1d Once the bas1c contro]ler and ga1n stab111ty reg1on

| '7;h7contro]1er in: the f1e1d 1n a manner s1m11ar to the tun1ng of sing]e

has been obta1ned the f1na] contro]ler can be chosen by tun1ng of the bas1c
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For the tifth order model the jnverse Nyquist array method was
~unable to produce'a constant compensator which would make the CLTFM
 diagonally domﬁnant.~ Thus it was not possible to design a'proportional
contro]]er tor'the fifthﬁorder model with this method "On the other hand
the direct Nyqu1st array method did produce a proport1ona] contro]]er _ tﬁh
for the same model whtch was,almost the same as the one_obta1ned for the i
th1rd order mode1
| Wnen dynam1c e]ements were used in the compensator the inverse
and the d1rect Nyqu1st array methods both produced essent1a11y the same
‘\'i"\dynam1c-contr011er for the f1fth order mode] The response of the-
doub]e effect evaporator w1th Lh]S dynamic contro]]er was exce]lent
Another important feature of the 1nverse Nyqu1st array [65],
the character1st1c 1ocus [4 42] and the d1rect Nyquist array method is-
that the contro] system des1gn produced by these methods is capab]e of '4.
hand]1ng set po1nt changes as we]] as reJect1ng any type of unwanted |
2;.d1sturbances Th1s 1s not the case wwth the opt1malacontr01 method
I.where d1fferent control matr1ces are required for "opt1ma1" setpo1nt
| contro] and to regu]ate the system aga1nst undes1rab1e d1sturbances
' - The- opt1ma] contn;ﬂ rnethod a]so produced very good contro] .
;;5_ d'The use of the f1ftj)order mode] gave much better resu]ts than us1ng the .
‘."th1rd order'model The cr1t1c$1 step 1n th1s method 1s the se]ect1on
": of the matr1ces Q and R of the quadrat1c performance.1ndex and unfor-
| .‘ftunate1y the method 1nc]udes no dtrect means of estlmat1ng what Q and
.~‘;.R shou]d be to produce a spectfted type of response Another d1sadvan* ff“vujj-p
":tage of the method is that the contro] is’ based on the state var1ab1es '

E Atnstead of;the outputs In many cases this” requ1res the estJmatlon of

,-,,ag%tbéQStatés‘Whiéh‘dncreases_the.comp]ex1tyJof_thevcontro] 5¥5§3m~_f7:“' 1

e
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Of all the methods studied here the'multﬁloop desdgn”approach .

produced the worst contro] system and one would expect the performance to

"_be even ‘worse  for processes with larger 1nteract10ns However this scheme

is the simplest and mos t familiar approach. for des1gn1ng control systems
The control]er which gave the best exper1menta] performance
was the tuned dynamlc compensator obtained with the d1rect and the

1nverse Nyquist array methods using the. f1fth order model. The second

best performance was obtained us1ng the optama} contro] method and the .

fifth order mode] (Th1s was a 3x5 contro]ler matr1x ) The th1rd best

'performance Wwas obta1ned u51ng the tuned constant compensator des1gned

«

with direct Nyquﬁ§t°array method and the f1fth order mode] or the th1rd f

order mode] or\us1ng the: Inverse Nyqu1st array and the character1st1c

AN

/’/

- locus. me thod w1tn the thtrd order mode]

'6 7 3 About the Order of the Mode]

;ldom1nance (1 e. non 1nteract1on) w1th the f1fth order mode} as had been

" obta1ned when us1ng the th1rd order model Thts 1s obv1ously because B

J

“1

It is a s1gn1f1cant fact that the same constant compensator :

‘_was obtalned for the tn1rd and f]fth order mode]s when us1ng the d1rect
""N/qu1st arday met1od In both cases the compensator represented the
’best that cou]d be obta1ned when a c0nstant compensator was used

fr However 1t vas not poss1b1e to obta1n the same h1gh degree of d1agona1

’,‘the th1rd order mode 1s 1ess comp11cated (and hence 1ess representat1ve
";of the rea] evaporator) than the f1fth order model W1th the 1nverse } L

dwNyqu1st‘array method [65] 1t was not posslb1e to des1gn a emnstant

'gj7~compensator that wou]d produce a daagona]]y dom1nant system when us1ng

‘d7nthe f1fth order mode] Th1s may 1nd1cate that the d1rect Nyqu1st array

P 2
g .

PR



- order of the mode] s 1ncreased even though the d1men510ns of the

6. 7. 4 The Effect of Q1agona] Dommance
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method is Tess sen51t1ve to reduct1ons in the modeT order'or accuracy()
and aTso Tless restrxct1ve

In genera], with the'inVerse-Nyquist array [65]Athe character—
istic Tocus [4, 42] and the d1rect Nyquist array methods the d1ff1cu1ty
of des1gn1ng a contro]]er 1ncreases with 1ncrea51ng order of the mode]
This is becausel1tvls‘more difficult to Vjsua]1zeethe type of operat1on
or ‘the type of controller whfch 1s“requfred £o obtafn the‘specified

,design objectives, It also appears that the compTex1ty of the. contro]ler

- ~matrix i$ increased (1 e. more dynam1c eTements are requ1red) when the

. é"f
contro]ler matr1x remain the same

The exper1menta] work has shown that there is not a d1rect
reTatwonsh1p between ‘the compTex1ty of the controT]er and the performance )

o}

¢ of the system There 1s not much d1fference between the performance of

the p]Tot pTant evaporator u51ng a constant controTTer and usang a

,dynamlc controTTer wh1ch requtres two phase Tead and one phase Tag

*

»compensator , (The performance of the system however, 1s sT}ghtTy better

: when tne dynam1c controTTer 1s used )

. v

S

The desagn of a contro] system for the f]fth order evaporator,,i jfff

"modeT us1ng the d1rect Nyqu1st array method as descr1bed 1n Chapter

1
AF1ve prov1ded an opportun1ty to 1nvest1gate the effect of d1agonal

) domlnance (of the open Toop and return*d1fference transfer funct1on

,.fmatr1ces) on the performance of the contro] system In this examp]e

N

(three compensators, KA (Equat1on (5 52)), KB (Equatlon (5 54)) and K" ‘

o (Equation (5 66)) were. obtalned ‘that made°the open Toop. and return- 4f’:

oo b T e T e e
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L4

<difference mdtrices diagonally dominant in different degrees. The vary4
ing degree of diagonal dom1nance *can be observed in the Nyqu1st d1agrams
of “the dtagona] eTements of the respective open- Toop transfer funct1on

matr1x‘w1th tne}r Gershgor1n bands, i.e. F1gures‘s,25, 5.27 and 5.34

respectively.
Experimental ‘runs using controTTers based on cbmpen'sators.KB

and K, have been‘discussed'previousTy (i.e. controllers FDO§29‘\FDOSZO

B .
»NADYOSZO). The controlTer based on-c‘ompensator-KA given by" Equat1on (5s52)

.

—

" was a]so 1mp1emented exper1menta]1y Tae ga1ns used with th1s compensator
| were chosen such that the eTements 'of the resu1t1ng oontro]ler DNA0520
were approx1mate]y of the same magn1tude as the eTements of contro]]ers
'-FDO320 and NKDYO520 In this way a fair compar1son cou]d benmade among
o contro]]ers DNAOSZO FDO320 FD0520 and NADYOSZO Contro]]er DNA0520

is presented in Table B, 4. The responses of. the double-effect
evaporator when us1ng contrdﬁ]er DNA0520 for a- 20% step change in :

.

feed f]ow, feed concentrat1on and for a 10% increase 1n the setpo1nt of 2

3

“the product concentrat1on are presented on F1gures 6. 27 6 28 and 6 29

N respect1ve1y The effect of 1mprov1ng dlagonal dom1nance can be éna]yzed

f'} by compar1ng these ftgures w1th F1gures 6 2, 6. 4. and 6. 5; respecttvely

. ﬁb :
: wh1ch present the response of controT]er FD0320 based on compensa

AT] these experlments are from the same set of runs and hence can be Coata

- f‘écompared direct]y - ) '='A;'-ﬁ¥ff“ ,::f,.‘zj;“-‘ 7.:t, ,31'::' 'si'*ﬁT,Tﬁf;'

h? o TOwer overshoots than when controT]eraDNAOSZO 1s used For a 20%
o T e g A ju.;

PP g e

i’
- For.a ZOA chang ﬁgedﬂﬁlp{ -4 1mprOVement in-the. response' L

‘of the system by 1mprov1ng he dﬁa@bnal §m1nance of the contro]der TSA; T
: A . ; : P
,very-sma]l The use of cOntroTTerrFDO320 g1ves sma1]er offsets and

AR
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‘decrease in the feed concentration there is no ditference in the'behaviour
of these two contro]]ers The same applies for a step changed in the
.~setpo1nt of the product concentration. In all three cases the contro]ler
FD0320 is a little more oscillatory which 1nd1cates that s]1ght1y h1gher
effective ga1ns were used in th1s contro]]er R .
- The effect of 1mprov1ng d1agona1 dominance can also be ana]yzed
'hby compar1ng the responses of contro]ler FD0520 based on compensator
'KB’ in Figures 6. 7 -and 6. 9 aga1nst the response of the system in F1gures
6.14 and 6.17 when contro]]er NADY0520 based on compensator KB’ is used
. 'As in the prev1ous case there is no s1gn1f1cant difference 1n the '
behav1our of these contro]1ers for a-'10% step change 1n the setpo1nt of
. tne product concentrat1on E_For a step-change 1n the feed.flow there
was a-margina] Qmprovement in the response of the product concentrat1on
'when‘contro1]er NADYOEZO iseused It was SUrpr151ng to f1nd out in these
'exper1menta1 runs that a marg1na1 1mprovement was not1ced for Toad d1st—
furbances and not when a setp01nt ¢hange Was 1ntroduced 1nto the evapora-
tor because one wou]d expect dlagona] dom1nance to be more 1mportant in
_setpo1nt changes _'. e | 4 | o |
- From tnese observat1ons 1t can be concluded that smal] _h
_1mprovements in the degree of d1agona1 dom1nance in. tne open 100p and
‘retun% d1fference matr1ces produced\only a marg1na] 1mprovement in the
.f c]osed ]oop performance of the system Th1s means that -a non- 1nteract1ng |
.'.y“system cannot always be Just1f1ed and that Nyqu1st array deS1gn techn1ques' o
"A_5are valuab]e because they a110w the de51gner to trade off contro]]er
: c'tomp]ex1ty versus the degree of non 1nteract10n produced )

N ' :
The same genera] conc1u51ons were obtained 1? CHPpter F1ve =f

based on s1mu1ated resuTts 1, 17‘3'5 @ff,;,{“_i~ﬁﬂ4-}.

S e 7

oL T T e g



! | o “CHAPTER SEVEN
S ~ CONTROL SYSTEM DESIGN FOR MULTIVARIABLE PROCESSES
CONTAINING TIME DELAYS

7. 1 INTRODUCTION
‘j ¥ Pure time de]ays are very common in process systems but can
Nxonly be hand]ed by a few destgn techniques. The presence of a t1me delay
in a transfer functlon makes 1t an 1rrat1ona] funct1on and in most cases,

~unless they are approxxmated by rat1ona1 funct1ons the bas1c Nyqu1st

stab111ty theorem [54] has' to be mod1f1ed to ‘deal with 1rrat1ona1

‘éil transfer' Wunct1ons [13 J1]. Desoer and Wu‘[504] g1ve 5uff1c1ent
‘." ‘E’condmmns for the stab111ty of mu]t1 1nput muit1-ou’tput,~ ']fnear,h’tihme-
.fnvarlant feedback systems which are -genera]1zat1on of. previouS'worksr
~oon system stab111ty that or1g1na]1y began with Nyqu1st However the
design'. of mu1t1var1ab1e systems with non- rat1ona1 G( ) is st111 "n
sa fu]ly c]ar1f1ed [509]“ However transf@r funct1ons w1th t1me de]ays have
the pecu]1ar1ty that the bas1c Nyquist stab1]1ty theorem can be app11ed
to them directly w1thout requ1r1n0 any mod1f1cat1on One.of_the main

-reasons fon the popu]ar1ty of the S1ng1e 1nput, 31ngle-output frequency

; doma1n techn1ques was due to th1s fact In mu1t1var1ab1e systems w1th

than the 1nverse Nyqu1st array method ‘because; in. the d1rect method

time de]ays cause the Nyqu1st 1ocus to "Sp1ra1 1nto the 0r1gln" whereas

in the 1nverse method tne correspond1ng Ioc1 spwra] out to 1nf1n1ty
I The d1recf Nyquist des1gh approach was 1mp1emented us1ng

~ffinumer1ca1 methods to perform operatwons such as matr1x mu]t1p11cat1on,.v ;

;wlfinvers1on etc F0r example Q( 5) = o(s)' s) 1s ca]culated numer1ca11y

N L . ‘,.VTA._"'
Ao

V pure t1me de]ays the d1rect Nyqu1st array des1gn method 1s more conven1ent'yi-
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at each frequeney ra;her than trying tbymdﬁijp]y G(s) and k(s) analyti-

cally to produce a single matrix with each element being a complex

. func;ion‘ It.is relatively easy io incorporate time delays into the

elements of»G(s) and/or K(s) and since the calculations are done

numerically the subsequent numerical mu1t1p11cat1on step p]ott1ng,

ete remains unchanged. Furbher work would be requwred to determine

how pure ‘time delays could be 1nc0rporated into the inverse Nyqu;:t

array and the character1st1c ‘locus methods. _ , ) <j7
The fo11ow1ng section . presents a design example using the

direct Nyqu1st array method to des1dn a system for a binary d1st111a—

“tion column which conta1ns t1me de]ays 1n each e]ement of-its- transfer

funct1on matr1x The results agree w1th preV1ous work by Wood and Berry[79]
N : ver .

7.2 DESIGN OF A CONTROL SYSTEM FOR A BINARY DISTILLATION {OLUMN MODEL
“1In th1s examp]e the d1rect Nyqu1st array method is app11ed to

::the des1gn of a control system for a binary d1sta11at1on column model.

The model ‘used was obtained by Berry [6] from an e1ght tray, nine inch
- d1ameter p1lot scale d1st111at1on column by pu]se t@st1ng The co]umn
has a tota] condenser and a “basket type of - rebo1]er and -is used to .
b’separate a b1nary mixture. of metnano] and*water .The dxst1l]at1on f‘ L
column is 1ocated in the Department of Chem1ca1 Eng1neer1ng and has been ;.‘

descrlbed 1n deta11 by Berry [6] and Nood and’ Berry [79] The d1st111a- ) :r‘_?

' °f,'.t1on co]umn used 1n th1s examp]e can be represented by the f0110w1ng

EEEPIEN s - . ] .
' 3 " > L ’

'i»dynam1c mode] : B
- | e
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where the output variables are the‘UVerhead product comp051t1on XD’ and o

it

the bottom product compos1t1on XB The input var1ab1es are the reflux

f]oW‘rate,' , and the steam flow rate S The plant transfer funct1on

-
LN

matrix, ( (s) is presented in Tab]e ii 1. The deshgno1s carr1ed out 1r1§§

the S doma1n, rather than‘the w domain used 1n-prev1ous.examp1es,to

illustrate that both .cases appear essentially the same to the user of
the 1nteract1ve des1gn program | .
| As can be observed from Table 7.1 the distiTtatton‘co]umn

contains a time delay term in each element of its transfer function

matrixi The Nyquist array of the distillation column is presented in

Figure 7.1, for a frequency range_of 0.1 to 3.0 radiansZmﬁnif From this

figure it can be observed that'
o the reflux f]dw rate, R and the steam f1ow rate, S, have a]most
g 1A the same efﬁect on the overhead product compos1t1on, XD.
- the bottom product compos1t1en, XB’ is affected more strong]y

by the steam f]ow rate S, than by tne ref]ux flow rate R,

A

Th1s 1nd}cates th@t the present conflgurat1on 1s the best oneu

. to contro] the d1st111at1on co]umn under a mu]t1loop scheme Th1s fact:

'd1s emphas1zed from observ1ng F1gure 7.2 whlch presents the Nyqu1st '

- d1agrams of the d1agona1 e]ement of the: d1st11]at10ni' w1th thelr
- .- E »
‘Gershgoran bands Th1s flgure shows that the plant transfér function

rd

",matr1x G( ) s already d]agonally dom1nant Thus there is no

- -



f " | , . ' B )
\\, v TABLE 7.1 o o
DISTILLATION COLUFN TRANSFER FUNCTION MATRIX
‘ L ' : v - '
. i -1s 3 RPN P L |
‘ _ 128”0 -18.9e7 > |
, 16.7s + 1 2].0s + 1
G(s) = | B . :
Yol 667> 0 19.4e73
-~ 10.9s + 1 - 144s 4] i
[ R
- A ;/)
_ : ‘' o ;_' |
- Typical steady state operating cpnditions of the distillation
Ccolumn [79]. N, Gﬁ - I
o - o ﬁFlow R . . Composition
. Stream b/min . wt. % methanol
Overhead* - 1.8 - 960 B
 Refluxt* s . %0
Bottoms* : '5;32} I 0;5' } o e
" Feed . cT2us v aes . o
Steam** o, T e

* Qutput Variabléﬁt ~overhead comp051t1on bottoms compos1t10n
** - Input variables: ref1ux f]ow, steam f1ow : S



s
ﬁ‘“.
need to reorder the variables. |
| From»Figures 7.1 and 7.2 it is also apparent that the diagonal
elements in column 2 will, be unstabiQYUnder negative feedback. In order o
to correct th1s situation it is nétessary to change. tﬁe sign in thts

Y

“column by post-mu]t1piy1ng the p]ant transfer funct1on matr1x G(s), by

B e o N 1 2

~ The plant matrii G(s) is rep]aced in. the subsequent operat1ons

by:the.OLTFM:Q]( ) = G(s)'K] The Nyqu1st array of ‘the OLTFM Q](s) is
‘.presented in F1gure 7 3 and the Nyqu1st d1agrams of the d1agona] e]ements
of Q]( ) are shown in Figure 7 4. The 1atter f1gure is plotted with an
assumed loop gain of un1ty and 1t is c]ear from the plot of the second

d1agona1 e]ement that F(s) is NOT d1agona11y dom1nant However'F(s)_can .
be made d1agona]1y dominant by proper choice of the Toop gains. Thus it -
is possible to. de51gn, in th1s case a mu]t1loop control system us1ng the/
direct Nyqu1st array method. At thts po1nt there are two a]ternatlves in’,r.[’
.vthe.des1gn “The. f1rst one is-to proceed w1th the des1gn of the mult1]oop;}_‘
-control system and the second is to des1gn a- pre compensator to 1mprove
‘the dlagonal dom1nance of the system Both a]ternatlves have ‘been i;'_'f’
eva]uated in the fo]]ow1ng seotfbns - Vf_.:i;'k:f,n

-
bt
oo

.

o De51gn of a Mu]tl]oop Co ﬁol'system' ;itF{# Qt 7i f~i_:.:u‘g_c;,"’f,; &.‘ff¢~;

ﬂ;oj. S]nce the contro] of the- present d1st111at1on co]umn us1ng a .

'1y mu1t1loop contro] schemeahas been 1nvesttgated by wood and Berrya/]g] and
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the. best contro]]er constants “have heen obtalned by exper1mentaT tuninq
by Berry [6] no attempt was made to select the f1na1 contro]]er constants
in th1s example Th1s sect1on 1s presented ‘to 111ustrate the 1nformation
which the direct Nyquist array method provides. ‘

0 From F1gure 7.4 which ‘contains the Nyquist p]ots of the
Gershgorln bands for’ the d1agona} e]ements 1t can be observed that the 1:

| d1st111at1on column w111 rema1n stable w1th its ]oops c]osed for the

fo]]ow1ng comb1nat1on of galns R K . R - 't] ;
\ | ) . o . _- ) . | J
Loop 1: 0< Ky < T16§;{c0.926’ SR ,’__,",-"A(7.3)'-
o toopze 0 k, .<l4'17U= 0L213‘” L (_7’.4)._

Th1s reg1on can be expanded by u51ng the exact Nyqu1st 1ocus T
of each Toop -when 1t is open andy the rest are closed and a tr1a1 and
’e error procedure However no major. benef1ts are ohta1ned “from the
expanded stab]1ty reg1on,. ,& A; . |

¥ .
W1th the 1nformat1on prov1ded by Equat1ons (7 3) and (7 4)

it is poss1b]e to sélect safely the proport1ona1 constants for each R

loop | R :'”,i't'h;;—;/;) .

De51gn of a Pre compensator to Improve the Dlagonal Dom1nance 1n the

sttem —

v

The transfer funct1on matr1x of the d1st1]1atlon column shown

_'1n Tab]e 7. ] can be CO"S‘dEPEd to have the Preferred structure for a T EE e

: system wh1ch conta1ns t1me de]ays ThlS js because the greatest time |

_de]ays are in the Off dlagonal p051t1ons and hence the augmented system e

can ea511y/be made d1agonal]y dom1nant by us1ng a dynam1c compensator

3 ‘ *
< w

Nt L o .
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Th1s type of transfer funct1on matr1x is not uncommon . Hydraulic models “
-have been found [3] to have the same type of transfer funct1on matrix

The use of a stat1c compensator does not 51gn1f1cantly 1mprove S
'Athe domlnance in th1s system However uslng a dynamlc compensator the L

'follOW1ng alternatlves are possi le‘f’

o a)_ make the OLTFM an upper or 'ower trlangular matr1x o
b)) 1mprove the d1agonal domtnance of the OLTFM o
¢ make the GLTFM a dtagonal matr1x (1 €., non- 1nteract1ng)

Only the last two alternat1ves have been 1nvestlgated 1n ‘this study

g
. '

l):‘Improvjnggbiagonal‘Domlnance tn the: OLTFM'
From the*transter function matrix, G(s) in Table 7. l it can b L
-observed that the elements in the same row have time constants of the'f o

: :'same magn1tude Thus 1t 1s poss1ble to 1mprove diagonal domlnance by g

.us1ng only time: delays 1n the compensator From’ the matrlx Q1(s) and} N

- 1ts Nyqu1st array 1n F1gure 7 3 1t was found that d1a§onal domlnance

could be greatly. lmproved 1n Q](s) 1f the follow1ng elementary operat1ons jf;ﬁf
~i are. performed (With the present 1mplementat1on the use of pure time i .
.«gdelays in the controller, K(s) requires that all the dynam1c components-_TG‘;S
be. 1ntroduced at one t1me rather than ln a ser1es of Steps Thls _lff:l o
:.l1m1tat1on could be overcome by reprogramm1ng but would reduce computing |
eff1c1ency ) lhl.h‘*:pj” ; _T‘}.~,; ;‘c,;;;": Lo R
colum 2 =pcolumn 2 - 3 x € xcolum ] (15)

‘2;?;~f column l column 1- 0 45 X e 4 % column 2 (7ﬁ6)i;ﬁ;ifﬂ



hl §‘T71‘;

Theseloperatjons are performedfby'using:the‘fot10wing | l‘x'ug-_;

' compensator:;‘

L

N R ik HR o
IO Il Y B 2 IO
- o5 et g SR

Y

The Nyqu:st array of the\new OLTFM QZ( s) = Q](sjkz(s) and the g
- Nyqu1st d1agrams of 1ts d1agona1 e]ements w1th the1r Gershgor1n bands
. are presented in F1gures 7 5 and 7.6 respect1ve1y thure 7 6 shows L

- that the system is now strong]y d1agona]1y om1nant and that a controller

S gain canbe chosen that w1]l make the system c]osed Toop. stab]e

The f1na] compensator used an th1s case is gtven b¥~;i;~-'
- or v

‘;K‘ ?A- sy_ . ; .:"f t:[d.i h{,?yf'ft\;A'. y, ..(7%9): };;‘k?
| :0445ie745-:511];d o s ,

R Pade Approx1mat1ons of the T1me De]ays u&f

"ﬂ VT It should be po1nted out’ here that 1n thts example there have

::‘1not been any approx1mattons of the time de]ays present 1n the p]ant or L

fithe controller However 1n order to 1nvest1gate the use of approxima- :'h*'n'

.t1ons for pure t1me deIays the contro]ler matrtx K2 was a]so generated
»-us1ng a second order Pade approx1mat1on [10] The Nyqutst array and

:7;“3Nyqu1st d1agrams of the d1agona1 e1ements wlth Gershgortn circ]es for ‘: fgﬂffti

"the OLTFM Qz(s), 1n wh1ch a second order Pade approx1mat1on Was used,., ,
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are pnesented in Figure 7. 7 and 7'8 It can be - not1céd by compar1son of

| ~; 'these f1gures w1th F]gures 7 5 and 7. 6 that thé second order Pade ’ I-.

approx1mat1ons compensate for the. process t1me delays very well at a]]
frequenc1es but the difference becomes apparent at h1gh frequenc1es

Hence the use of the Pade approx1hnt1on will Tead ‘to a smaller stab111ty
reg1on S L . N -;?eq :;' '

% D ¢

"'l

, ‘,2) Des1gn1ng a Non 1nteract1ng System i 'A'_ . v
; The OLTFM Q](s) (which is equal to G(s) but w1th the: s1gns o
“changed 1n the second co]umn) can easily be’ made diagonal (non- 1nteract- .

'5_,1ng) by perform1ng stmu]taneously the fol]owing co]umn operatlons on

| Q](S)

colum 2 = column 2 - 1 478 X (;? gs : 1) X e zsfx‘column”1f h(Z.TO) -
and
:1‘cojomn,1>¥ column 1 - 0 34 X (%%~g§—i¥ld X e 45, x column 2 : (7 ]])

)

The factons used 1n these operat1ons were obtavned by an ana]ys1s of the L

E’e]ements of matr1x G(s) These operatlons are accomp]ished by

'.A“ a‘_

ff-post-mu1t1p1y1ng Q](s) by the fol]ow1ng matrix

. The Nyqu1st d1agrams of the dTagonaJ elements of the OLTFM o
Qz(s) = Q](s K2 are shown in F1gure 7 9 Fhe Gershgorin c1rc1es 1n this

| case have a zero rad1us The f1na1_c_ntrol] f;used to make the open-t_.; ;“53~5ff'

i3
] S 1




s
>loop,transferﬂfunction matrix diagonal is then given by:

:} K]

K; - o
or
L 1675+ ]
ST "‘ 478(21~Os+1)

Stab111tvﬁAnalys1s ,'.: “"_-vh v» ER -“ ;;7-‘t, S
Contro]]er matr1x KB g1ven by - Equatlon (7 9) and control]er
Ké g1ven by Equat1on (7 14) produce a system thh s1m11ar propertles
From the Nyqu1st d1agrams of the diagona] e]ements of Qz(s) and Qz(s) 1n_4
| ngures 7 6 and 7 8 the stab111ty reg1on for wh1ch the c]osed 1oop ;:3_;' -;:f s
system w111 rema1n Stab1e can be obta1ned for each contro11er In both _1 iff:;
| cases the d1st111at1on co]umn W111 rema1n stab]e for the fo1]ow1ng R

7*; comb1nat1on of gains
e L°°P 1o 0« k1 tr7§‘=*‘-28,, L (L) B
: Loop 2 0« k2 ——7-5 0. 27 A S ae)

'if From F1gures 7. 6 and 7’% the crossover frequency of each 1oop can a]so bezfg;,f7-

obta1ned Aga1n, in. both cases the crossover frequency obta1ned for

- each 1oop 1s the same . :“‘Z" Py

‘“»TLoob”‘;f‘fitf crossover frequency 1 5 radians/min .
jfLoopfz;~.ﬂ}‘_, crosSover frequency 0 55 rad1ans/m1n ‘é =
"~}fl“Naﬁéﬁnteracting;cgntro]fof_théaeresentidfstfilat{on_c§1umh:has‘fif;jlk

T I N
e



been stud1ed prev1ous]y by WOod and Berhy [79] The hon~1nteracting‘

e contro] system was in th1s case denived dlrectly from the transfer
funct1on representat1on of the dlst11lat1on co]umn and is the same as
Vthe one- obta1ned by . wood and’ Berry [79] (The same resu1t cou]d have |
been obta1ned by progre351ve1y 1ncrea51ng the d1agona1 dom1nance of the
Nyqu1st array'of Q(s): ) Stnce they obta1ned the f1na] control]er

\ constants by exper1menta1 tun1ng no attempt was made; here to specify |
d1fferent constants The fo]]owwnq controller consthts reoorted by WOod and ,
"'Berry [79] for/hon 1nteract1nq contro1 (wh1ch are the. ”best" va1ues found 1n "

, the1r exper\men;ai eva]uat1on of convent1ona1 s1nq1e varwab]e contro1) were

used in this stud

| Ihtégha1 cthtant. d'-f‘fEKfi=iO-Q40'min_]-;"h‘ ‘

[

Loop Xy - st
3hw:proportional constant ‘;ﬁb}é’GQIZ;l,; |
ulntegral constant Kill kra=i0s014fmfnf},y_
The complete d1st111ation co]umn 1nc]ud1ng the effect of the fht’ 3

f.]feed f]ow and feed concentratlon d1sturbances as modelled by Berry [6]Q

2”T‘_was s1mu1ated us1ng IBM s ConttnuOus System Mode111ng Program (CSMP)

{"Flgures 7. 10 7. 11, and 7 12 present the $1mu1ated response of the

h‘d1st111at1on co]umn for a step change of approximately 14% (+0 34 lb/min)
.fﬁl1n the feed f]ow, when a mu1t1loop, a dlagonally dommnant and a nona fvﬁ J;fifie
'-'1nteract1ng contro] system is used, respectlvely As expected from the

ﬁrev1ous Nyqu1st ana1y51s the contro1 system that makes the system
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dlagonally dominant (contro]ler W1th on]y t1me delays gtven by Equat1on

7(7 9) behaves a]most the ‘same ‘as the non - 1nteract1ng cbntro] (g1ven by '_

| Equation (7. 9)) The\only d1fference s that the response of the non- ' ‘ﬂ,
1nteract1ng contro] system leads’ the response of the system w1th the

_ approxnd&te“ contro]]er\sl1ght1y The. reSponse of these two contro]lerS”
..1s much more damped then the’>Esponse of the mu1t1loop contro} whqch 1s ‘

: osc1]1atory The overshoots in the case of the mu1t1]oop&contro] are

also htgher On- an overa]] bas1s the response of the mu1t1loop control

' system can be cons1dered to be worse than the non- 1nteract1ng and the

d1agona]]y domtnant systems

7.3 concwsxons | | R
| 1 The d1rect Nyqulst array method has been found to be a very
;_mpowerful techn1que that can hand]e&;ystems whlch contavn tlme de]ays 1n :.'-h
fi‘the process system,/G(s) and(o” the dbntro]]er, K(s), wothout requ1r1ng

'any approximattons The d1:t111at10n co]umn«example presented 1n th1s fa“
'_”chapter 111ustrates th1s case. | . }_'_,_ o - el
' From the examples presented 1n th]S chapter and Chapter F1Ve

t.1t can Hﬂso be conc]uded that whenever a: control]er matrlx exasts which

f.1s phys1ca11y rea11zab1e and makes the system non 1nteracting,’1t can

t\be des1gned u51ng the d1rect qu1st array method A very important ; |
*ﬁ-advantage of ‘the. d1rect Nyqu1jz array method 1s that w1th thts method :{};tj;j::i

'Af‘several a]ternattves can be 1nvest1gated by compromls1ng between the f,;;~f]j;g*

.-a,complex1ty of the contro]1er and non 1nteract1on 1n the system I_»Fh

:'ﬂ,many cases, 11ke 1n the d1st1llat1on c01umn examp]e, 1t is possib]e to

"'id9519n a 1ess complex system w1th a]most the same oharacter1st1cs as a

LI
b

:non 1nteract1ng system "j.;;:fj?i~7-:7:“"“3
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CHAPTER EIGHT
CONCLUSIONS;AND FURTHER RESEARCH

8.1 CONTRIBUTIONS o RS
The ma1n contr1ﬁet1ons of th1s work are:

BT 1) Deve]opmen¢ and extens1on of the dxrect Nyqu1st array des1gn

yy o

method. - o _
- Y o . :
2) A compar1son of the 1nverse Nyqu1st array, character1st1c o '//
a A
locus and the dlrect Nyqu15t array deSTgn methods. " 'f‘ ///_

3) Exper1menta1 1mp1ementation and evaTuat1ou of controTTers ‘yf/ff,f

designed. us}hg the 1nverse Nyqu1st array, characterist1c 1 us, N;*Ti
‘;d1rect Nyqu1st array, opt1mal quadrat1c and convent1onav‘design -T
| Atechn1ques ",_f’_f< | - A | | o
4)“AD°velopment documentat1on and demostrat1on of afset of 1nter-
e act1ve computer programs to 1mp1ement the mu}t1var1ab1e s f

.frequency domaln des1gn techn1ques Z/fig(’

/’,-,.7 .‘/ i

8 2 COMPARISON OF FREQUENCY DOMAIN AND STAT@ SPACE METHODS |
_ The ma1n advantage of the/jrequency doma1n techanues over
the methods based on a state var1ah1e formulation are f;i;, 5f rc_r';f»;"}t;};s
;5 1) The use»of frequency doma1n methods obv1ates the need of e |
B :havxng to determlne a parametr1c mode] s1nce frequency response Ajey
v:data wh1ch adequate]y def1nes the system can be used d1rect1y
‘312);1They take 1nto account the somet1mes conf11ct1ng design .F j;‘-

| :i requ1rements for stab111ty, non 1nteract1on, 1ntegrity and

v';dioveraTT performhnce of t\e system | o '

;'.3) They produce a: contro]Ter matrix whwch is- easwer to tune "on line"ff:[
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“because it includes a d1agona1 mat of' 1oop ga1ns
4) The contro] system 1nvo]ves only tﬁbfoutput varlables, i.e, ;}
5-1t does not. requ1re measurement of the state ~variables. ’
5)',Many contro] app11cat1ons run. 1nto dlff1culty due to system .
parametérs wh1ch change as a funct1on of*t1 e and/or\due to.

i

‘errors/1n est1mat1ng parameters which mear that the mode] on
wh1ch ‘the contro1 system des1gn is. based is d1f;erent than the
actua] process on wh1ch the control system is f1na11y 1mp]emented
{.Muﬂt1var1ab]e frequency doma1n techn1ques can dea] w1th this
prob1em in some cases. For examp]e 1f the change.jnesystem,
fparameters (or measurement errors or noxse) 1s equivalent to a
. change 1n one or more. of the\feedback ga1ns {k],1 1, W} then 1;” |
the range of actua] k va]ues can be checked agalnst the ) |
' stab111ty limits on k generated dur1ng the frequencytdoma1n
i}des1gn For each 1oop there 1s a range of values of k for
’ wh1ch kgop ids stab]e and s1nce the stab111ty analysis is
ﬁbased on the Gershgorwn or Ostrowsk1 bands 1t is. known:that a]l
'//the other 1oops w111 a]so be stab]e at least for the range of
K'?{k ,1 1 m} for wh1ch F( ) rematns dlagonally dominant. It is ffy‘53'5
‘obv1ous fhat changes on any co]umn of G(z) wh1ch when comb1ned
do not produce any- change in the d1agonal dominance (1 e radius f“
df-f of Gershgor1n c1rc1es) wou]d have no effect on the stab111tyf. afiﬁk
analysis and hence wou]d not result 1n unstable system ;}1ffa
‘itft;performance (The use of a "band" 1nstead of a 11ne 10cus during
"':f the stab111ty ana]ys1s wou]d norma]]y/result 1w’cgpservative
‘;-r;ega1n est1mates) L ‘ ' e |



8.3 COMPARISON OF FREQUENCYN-. DO‘MAI‘N DESIGN METHODS’ -

v genera] than ' the inverse [Eﬂ and the d1rect Nyquist array methods
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'The'above result is a quantitattve teSt More Subjegtively.
it is known that the off- d1agona1 eTements of G{z) have only a c
' small effect on the off- -diagonal e]ements of a d1agona1]y .
fdompnant Q(z ) = (z)K(z) Thus one .would expect{:hat at Jeast
. for small changes in.the off d1agona1 eTemEntsi mall parameter
vchanges in G(z) wou]d have a sma]]er effect on the closed- 100p
performance of d1a90naTTy dominant systems than if the Toops
-‘were closed: around G(z) dlrectly !
. Thus: the mu1t1var1ab1e ‘frequency doma1n des1gn technlques |
lare expected to g1ve conservat1ve con-ro]Ters that are Tess

‘ sens1t1ve to parameter changes than contro]lers des1gned by

. other methods o R

J : ’

- N

‘ The characteristic Tocus method [4, 42] is sllghtly more

However the use of character1st1c values to detennlne the stabllity of

'the system makes the character15t1c Tocus method a Tess pract1cal

.8

| procedure than the Tatter techn1ques The character1st1c loc1 d1agrams 7

“are-a very useTfuT too] to ana]yze controT systems but they do not give S

f,:adequate gu1dance about the type of contro]Ter wh1ch must be used to

“'ach1eve the des1red contro] spec1f1catnons Thus w1th the character1stic -

B Tocus method the seTect1on of the controﬂ]er cannot be done 1n a systematic-"':

';:way as w1th the 1nverse and the d1rect Nyqu1st array methods when designingff,;fsl.

a constant compensator However thls probTem 1s at Teast partia]ly overcomef:;f'f<"

| p1" the ChaTaCtEFTStTC locus method when des1gn1ng a proport1ona1- tegraitf;f" 8

Lom
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3% o { Y LY
.

¢ - L . /
'_contro]-matrix,Yif‘the procedure recently proposed by Kouvaritahis [édéﬂ

0

is. uséd " ' K : o T . . .- SR
. The 1nverse [65] and the direct Nyqu1st array methods are very s

’s1m11ar Their re]at1onsh1p is s1m11ar to the one that exists between the h

. single- var1ab1e frequency design procedures whén uslng the 1nverse versus

the direct polar plots. These methods have been found easier to use and..

more convencent than the charac{er1st1c 1ocus method (4, 42] However the

| information provaded by the Nyquist array: d1agrams is }ess exact than

" .the 1nformat1on supplied by the set of the character1st1c loci dfagrams

/ The 1nverse and the d1rect Nyqu1st array methods produce

‘ ba51ca]1y the §ame contro]]er when a h1gh degree of d1agona1 donnnance .

in the open- 1oop transfer functlon matr1x is requ1red B li ,’ | ’ ﬂ, 1;

In 5p1te of the s1m11ar1t1es between the. dfrect and 1nverse ‘ |

Nyquist array methods th1s study has found the d1r§n$-Nyqu1st array

method to be more conven1ent than the 1nverse Nyqu1st array techn1que

_ for the fo]low1ng reasons o ,ji,:;f N }»jﬁh&n,";"ff.fe . '.‘._ -

1) It 1nvo]ves the use- of the famllfar “d1rect" Nyqu1st d1agrams |

'that represent the mathemat1cal re1at1onsh1p between phystcal

| 1nput/output var1ab]es*and hence are’ more fam111ar and mean- h o

oy

1ngfu1 to most users than the Nyqu1st p]ots of the transfer | 'h.“;»-iﬂ

- funct:ons of the 1nverse of the openxloop transfer function a—

i 'matrlx Q (z). used int the inverse method. Th1s means that the ' fe;}f

fl.:1nformat1on prov1ded by the d1rect Nyqu1st array 1s more R

jphys1ca11y mean1ngfu1 to the user than the 1nformat1on suhplied
-by the 1nverse Nyqu1st array Furthgrmore the DNA method can

‘hgvbe 1nterpreted as a dIrEct and 1ntu1t1ve extens1on of convent1ona1

ToEg
A



‘square. ).
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;J}
sinle-input single-outpyt (SISO) design‘techniques. Thus it
relates more directly to the previous;experience of most‘users.
The direct Nyquistvarray method reqUires only tHat the heturn-
dtfferenee matrix, F(z), be diagonally dominant (whﬁch is a
physically meaningful characteriSttc) as;compared to the-inverse>
Nyqufst array methpd which nequihes that both the inverse of

the c1osed-f§dp mtrix, R'](z),and the inverse of the'openeloOp

matrix, Q'](z), be diégonaTYy dominant (a condition which is mhne

difficult to interpret physically).. This makes the DNA a more
conven1ent technique because it requires only that the (-1,0)
po1nt not be enclosed by the Gershgor1n circles as opposed to

Ehe INA method which requires the same condition for the (-1,0)

| . | C e
point and the origin. However,if the plant transfer tbnction

i P

fmatrlx is known a]gebra1ca11y the requlrement that the or1g1n

« should not be enc]osed by the Gershgorln circles in the 1nveﬁse

Nyqu1st array method can be re]axed by perform1ng some add1t1ona1

_ca]é%]at1ons as exp]alned in Section 3. 3
- The DNA method can handle systems with non- square transfer

function matr1ce5-d1reet1y HowehFr, note that Q(z) is a]ways

L 3

The DNA fiethod works with the control matr'x K( ), at 311
t1mes (as Opposed«to K ]( )) so. the user 1s

ays: aware of
the form, comp]ex1ty and magn1tude of the e1eme ts of K( )

and hence it is, re]at1ve]y eas1er to be sure that the contro]]er‘v:;'jﬂ-

&

is pract1ca] and’ phys1ca]1y rea11zab1e

: The 1ntu1t1ve der1vat10n of the DNA method based on‘the
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extension of conventional SISO technfques shows™ that when
the return-difference matrix is diagonally dominant the
Gershgorin circlés-and the Ostrowski circles are simply a means

of approx1mat1ng, or defining the limits of 1nteract1on

._‘

terms in the ana]yt1ca1 expression fon/hi(z) that relates the(

input/output pair Uitys. This analyticaljexpressionhfor hi(z)

can be used to derive other limiting or approximate solutions
Ty

that in many problems will permit a more accurate and. convenient

r

design than is poss1b1e with the Gershgor1n or Ostrowsk1 c1rc]es.
Fon/example the Gersh;or1n c1rc1es for a system with a "tr1angu]ar R
OLTFM“ w11], in genera] have non-zero rad11 whereas 1t is

obvious from phyh1cal considerations.that there are no'inté;- -
actions which 1nf1uenée system stability. The use of the g0

circles", wh1ch(t;ke into account any zero e]ements 1n ‘the ,?\ ff
L ) - H

. OLTFM (z), show that h, (z) is equ%% to q (z) when Q(z)

-

is tr1angu]ar

A final check on the stabiiity and:pe}formance of the c]osed-j

Toop mu1t1p1e 1nput mu1t1p1e output (MIMO) system €an be made |

.-_us1ng the Nyquist plots of {h ( ); i= 1 Iwa(z) is"

d1agona11y dom1nant then for open 1oop stab]e systems 1t is

| ‘necessary and suff1c1ent that each of the Nyqu1st p]ots of

‘of unstab]e po]es of Q( ) (See Append1x %3

h (z) sat1sfy the convent1ona1 Nyqu1st stab111ty'cr1ter1on. '

'For the genera] case§9the sum of the clockw1se enc1rc1ements e"
- of the cr1t1ca1 po1nt (- 1, 0) by the Nyqu1st 1ocus of

th, (z ) i=1, ..} must be equa] to Pys where p is the numberf:‘ﬁ’b;‘.a;

e



-

0

&
SN
“a

The DNA-method provides a general progedure ?or‘pairing

*input/output variables of MIMO systems since the direct

Nyquist array defines the re]at1onsh1p between each pos-

sible pair ot’1nput and output variables ; In most : g‘~‘
practical app]JeatwonS-the ‘columns of ‘Q(z) sﬁouldfbgmfw.
ifrterchanged so that_the "linkage" or'“transmisston"

be tween u1 andry (represented by q ;( )) is greater than

' between y and the other input var1ab1es This proeedure

takes 1nto cons1derat1on not only the steady state be-'
hav1our of the system but- the dynam1c behav1our as we]]

The DNA-is computat1ona11y more eff1c1ent than the inverse

an_eéxtra operation. the aner51on of the plant transfer
tunction matrix. :
It is easier to accomodate‘pdre time de]ays ih the DNA

me thod s1nce ‘the Nyqu1st p&pt sp1rals 1n to the or1g1n .

rather than out to 1nf1n1ty as-it does 1n the INA method

7The inverse N;gu1st array method has also been found to

. have some advantades over the d1rect Nyqu1st array method the most

1mportant of wh1ch are o ']_»;. >: ' vf : ._'_ '? P

1)

'The Ostrowsk1 c1rc1?s 1n the inverse Nyqu1st array method

become sma11 when the ga1ns in the other 1oops are 1ncreased;;_“ B

v )

v_{6ﬂ Th1s means that the reg1on of uncerta1nty assoc1ated

/-

";when h1gh ga1ns are used Note that in the 11m1t as the

182

- Nyquist array method S1nce the ]atter method a1ways requ1res 3

"W1th the 1nverse of the transfer funct1on h (z) is redtned‘ =

5'irad1u5 of the Ostrowsk1 c1rc1es approaches zero the Q]1(z ,,1

E Aapproaches h (z [Bﬁ In,the.DNA methoda;hi(_) and\h?@f(z)ij;
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}must-be calcuﬁated from Eantion 5.18 and'p1otted (where
- hTaX( ) is the value-of:h (z) when'a11 the~§atns; ki‘ assume
the1r maximun penn1ss1b]e values) The d1fference between the
two 1oc1 shows the max1mun effect on h, (z) that can be produced
by 1ncreas1ng the other ga1ns.{k], fl,..m,]#1} e, a more
. exact indication of the effect of increasing the'loop gains
than implied. by the rad1us of the Ostrowsk1 c1rc1es 1n the INA |
method Thus 1n the DNA' method more exact 1nformat1on can be
| obta1ned by at the price’ of extra computer ca1cu1at10ns
:25v Accord1ng to Rosenbrock [69] 1t seems that, there 1s a tendency,

X
~in pract1ce for the off d1agona1 e]ements of the 1nverse of

1

'the plant transfer funct1on matr1x G to be relat1ve1y

%.smaTler than those of G. In th1s study th1s tendency has not
”'been not? ced. ) A]so it 1s not clear whether th1s d1fference “in ;
”senswt*v1ty“ is an advantage or d1sadvantage }' e
3) WAs in the s1ng1e var1ab1e case the 1nverse Nyqu1st array is..
_'more conven1ent to USe when the transducer feedback matrix 1shlfﬁh.h
“al nonconstant matr1x However 1t has been pohnted out earfier’:; o
'u{that 1n these cases, 1t 1s a1ways possab]e (and desirable) to i
‘Emake the transducer feedback matr1x part of the plant transizf* ]};f:
‘ﬂf”funct1on matrix. ;'f" o RO -

, . o

8 4 FURTHER RESEARCH A .
'f_”' : o Some natura1 extens1ons and recommendatlons for future i
: 1nvest1gathons in th1s area are R I E ?'”'ah', L

- 1) Deve]opment of a systemat1c procedure to de51gn a contro] system h*ftyj;



of the p]ant

184 -

for non- square pTants us1ng the dlrect Nyqu1st arrey method (cf

'work by Kontakos [507] “The research shou]d be oriented toward
Lthe des1gn}ofla non-square;pre-compensator,wh1ch_1n comb1nat1on

-with the non-square plant wi]T'produce a square open:1oop transfer’

s

-ifunct1on matr1x that reta1ns the most 1mportant character1st1cs o

¢ <

' Further research ‘is requ1red 1nto the ana]yt1ca1 express1on for

h (z) in order to der1ve other 11m1t1ng or approx1mate so]ut1ons

'l

~—

“ Wh1Ch W111 Perm1t a more accurate and convenxent design than 1s - 3.}1;1

poss1b1e w1th the Ostrowsk1 c1rc1es

R

Ser1ous con51derat1on must be g1ven to the comb1nat1on of the

d1rect Nyqu1st array method and the- sequent1a1 return d1fference .dv

X method The use of. the d1rect Nyqu1st array procedure in the flrst
: stage of the des1gn W111 m1n1m1ze the bas1c prob]em of the sequent1a1

'return d1fference method wh1ch is the orden’of 1oop clos1ng

Tt

‘v'~S1m11ar1y the use’ of the sequent1a1 return dlfference in the finaThtf

i ,stage of the des1gn provides the d1rect Nyqu1st ﬁrray method with 'f:{'f.

E '.‘5)'., |

a systemat1c and exact s1ng1e 100p des1gn\procedure | .
E Further work wou]d be required to determ1ne how pure-t1me delays

L cou]d be 1ncorporated .into the genera] d1rect Nyquist arrays\ :f?'h1 S

N

' :1nverse Nyquist array, and the character1st1c 1ocus methods

In- order to 1ncrease the f]ex1b111ty of the computer a1ded des1gn |
pgckage and make the design of a contr71 system an eas]er tash thefe{: o
f°]]0W1"9 Programs shou]d be 1ncorporated 1nto GEMSCOPE' 3 "i ifhﬂg B
'ﬂ‘jua) A m1n1ma1 rea11zat1on a]gor1thm to‘obtain the state-t'»..f,gﬂeipf

"- space model from a transfer-funct1on matrix. f*“ .
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" b) Asprogram to obtaih the‘trénsfér'functioﬁ«hstrix from B
) the exper1menta1 frequency. reSponse of a system A]though
,the ava11§b111ty of a transfer funct1on matr1x 1s not
‘requ1red W1th the frequency domain techn1ques, the

know)edge.of thTS TFM cou]d-be he1pfu] in the designjA-,
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Figure 3.2 Nyquist Contour in the w-Plane .

i
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CAPPENDIX A . o o
PILOT PLANT EVAPORATOR AND ITS MODELS |

LN

A;T THE;EVAPORATOR | | C . Py
" The pilot plant evaporator used in thiSTWOrk'is.a'doubTe
"effect un1t w1th the two effects operating in series ThTS p1Tot
plant has been descr1bed in deta1T by prev1ous workers [27 53 77]
AThe maJor pieces of process equ1pment are “shown in the schemat1c '
"d1agram in Figure A:1.. The controT Toops shown in F1gure A. T

represent the muTt1Toop controT scheme appT1ed to the evaporator in

§ : T f ‘5"{‘1 :

prev1ous studies. [27 53 77]

Vo

The f1rst effect has naturaT c1rcu]at1on through its ]8 inch

Tong, 3/4 1nch 0.D. tubes It is heated by process steam The second | ‘

'; effect is a Tong tube vert1ca1 un1t wh1ch is run in its forced c1r- ."

:.iculat1on mode It has three s1x foot Tong, one 1nch 0 D. tubes !;~
;It is operated at a Tower pressure than the f1rst effect_and is. |

'.heated by the vapour produced in. the f1rst effect

The evaporator is fuT]y 1nstrumented and can be controTTed -

. by e1ther Foxboro eTectron1c controTTers or under D1rect Dig1ta1

"'ControT (DDC) from an IBM 1800 Data Acqu1s1tion and ControT Computer N ,
' operat1ng under MPX MuTt1Toop DDC can be appTaed d1rect1y us1ng the

: ';computer control package, and advanced controT schemes by user wrftten

L flprograms wh1ch ut1T1ze a set of system programs to 1nterface between ;:,Lf""'7

'the user and system controT programs ..fff
o 'v' - fﬁf_-,' . L

’/7(2; THE EVAPORATOR MODEL

The compTete deveTopment of the doubTe effect evaporator
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- model has been presented by Newell [53] who der1ved flfth’and tenth
.'order non-linear mode]s ~Based on these modeTs w1lson [77] caTcuTated
‘_dd1screte five- state and three state, 11near, time- 1nvar1ant mode]s rd'
‘}uS1ng a ]1near1zat1on procedure and MarshaTl s modei reductlon method

'"[78] . o

| The 11near1zed mode]s 1n the d1screte form can be represented
L) = ) 4'-z_.su,<.n)*.‘+9§_‘<jn).j’-_,;_?‘ R (S DA

. o dY(n)‘; Q_gfﬁ)J»Fd ,ﬁlriqif'. R :  ; _::a.jb (A-Z)
; The e]ements of the vectors x, '} d v_are deftned as‘norm- rf‘hi&;ﬁf,»r
‘a11zed Perturbatwon var1ab1es PRI .u;/‘d\s:s_» R

R w:;,,~. o T YT

‘5fi°where w] Js. the normaT steady state vaTue of w] R
| ) ‘, | The vectors x, Uy d and x.for the f1fth order dtscrete modeT
"'1ffare defined 1n Tab]e A 1. The coeff1c1ent matrices of th1s discrete |
"‘J;stlme mode] w1th a 64 second samp11ng 1nterva1 are shoWn in TabTe A-2-'
' _ For the th1rd order d1screte mode] the state vector X 1s -
;Ltfrgiven by ' .v, R '.'v. ”_ i _“h .' f §
: . (W]. 2’ CZ)T ﬁfbf ;f”_;ihigt- . (A 4)

“.vftThe elements of the state vector are def1ned 1n Table A 1 The vectors ff"*”VT

h7f;lu d and v.are equal to the ones def1ned in: Table A 1 The coefficient viﬂ:i.~f:
,””matrlces for th1s model w1th a 64 second sampTing 1nterva1. are shown

-dln Table A 3 | tf‘rrTfffnff ;t<7'.51>‘ R



. TABLE A 1

DESCRIPTION OF THE EVAPORATOR VARIABLES A

;State Vector, —!<1'.»' f o , . Norma] Steady St@te Value]"'

| §_i= [N] WZ CZ] R R
- W1 _*F1rst effect holdup . i ;'_;' "ol:fﬁ'_‘f.'ff' 45-5*15' Q
fetli‘ First effect concentratlon - : § }t' 4 59% g1yco]
'Hi,,‘F1rst effect enthalpy. 4”‘d'_;aﬂ:;'fif'_‘7 189.2 BTU/lb
'_7:W2‘ ;Second effect ho]dup | 7T'21d, | clf}fi: 41 5 1b
) j} CZ?\ Second effect cOncentrat1on 'lH;1f,df25;1,°f' 10 11% glycol

A1Control Vector h

';_'- [s 31 BZ]

s Stéan flow L>3"Af;;gjtf*’;;f,c“£{“:ff}f z o lb /min

(B First effect bottons flow l:-fj&,g; Bl 43‘ lbs/min.

‘idile Second effect bottoms flow ff]i7i' 1 581 lb /m1n._ f_fff»; |

D1sturbance Vector d ;f} . fl}'“°.;t'd~ ff.if5n5f:ff;;?g7fffi}feffFf§§}”ff*‘f?f;

[F CF HF]

| ”"F Feed flow f'fff**}?ja}[*T*ijifif?af7;{,1}?? 5.0 b, /min.;5¥f¢:}*}évﬁe%if
’“7Q'f!CFf Feed concentration'.f;;’;f k '\_t;ﬁ_;;fls | 3 zx g]yco] ;;ﬂ?}“

o : ::‘OUtput Vector ,[

g »i;ﬁ - [w1 e, cz]
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N e
. [-0.0m19
[ o.0116
RE 0,01159a
~-0.0138
' r,j@o.0T37f,f

| L TABLE A 2 L |
FIFTH ORDER DISCRETE EVAPORATOR MODEL (T*=j647se¢;);f

-0.0082

-0.0391

45555J}

- -0.0817 0 -
0.0888 -0,
-o 04325_ 0

.0 fﬂ-o 0008
L0, 9223 o

* 20,0009,

L .

s |

S

200912,
0.0871 -
o 4375h¢;
20,1052
s 1o48':7;-'

W

o oot |

v —— )
Cte

s
| omee

10,0351
= |-0. 0136
00012 -
oo

0. 9603 3

. 0785 0. 0049'? o

-0, 0002 . 0. 0662 |
0 0. 0088 [ .
o 0016 0 oosgj‘.;}w;5.
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k'j-o 0400 o, 0219

P

TABLE A..

'T" (T =

€m3~mm$*]u
0 - 0157 P

64 sec)

<
we>
T}

THIRD ORDER DISCRETE EVAPORATOR MODEL_," -

|0
={ 0.0378"
B 7 T

-0.0811
0.0854
0.0a42
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e APPENDIX B
[R R ' CONTROLLER MATRICES

"/eontains an explanat1on of the code used f0r

- fﬁthe figures presented 1n th1s the51s It a]so 1nc1udes the numer1ca1

'Eeva1ues of the contrdl matr1ces that were 1mp1emented on the doub]e- . ﬂ,j-

- ,effect evaporator p11ot p1ant These matr1ces were des1gned based

7=con the th1rd or flfth order evaporator model and using the following f]*fi
‘4f]ifrequency domain technlques 1nverse Nyquist array. characteristic ‘Agf

; ;_hloqps and d1rect Nyquist array method
E . .w/ SRR, .




R R M2
N TABEE B- 1 SRS

PROPORTIONAL CONTROL MATRICES DESIGNED FOR THE SR
THIRD AND FIFTH ORDER EVAPORATDR MODEL USING THE _*-_-—~—f»——fff’
INVERSE NYQUIST ARRAY THE CHARACTERISTIQ>LDCUS AND L o

THE DIRECT NYQUIST ARRAY METHODS e
T '._'v,'t’:TA o

S ReTat1onsh1p ]
' [Controtler S R

, PEopoktiohaT*CGntrbITériI
M mate Gajn .k R .

R I S

B R I I AR RN % PSR K S 4
SlFoosio |0k, zae | as |28 || avas 00 cnf |
i - | R R N .2 42' -492 49_2_J

S |roos20 o} o2k |alee | s.e | ﬁSJseﬁ*Ni/‘;3,sa;°;jfo;pg;j¢gé;ézgf o

o JGsifmytﬁm@;:;

S fﬁgA . 1o?af?{Oi¢f}7 4 45 ;;A'u

s | e s fwas | eer | e o

>f * The effectlve ga1n used 1n the measurementvrransducer wa
e The effect1ve ga1n M§ed ‘" the go5

/ '_ : | ‘ ,
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TABLE B 4

PROPORTIONAL CONTROL MATRICES DESIGNED FOR THE FIFTH A

ORDER EVAPORATOR MODEL USING THE DIRECT NYQUIST

~ ARRAY METHOD :

1347

Cohf?b]Ter
Designation

‘FinaT

Prop. K k, -k
Ga1n N . 2 73

N

-Proportiona1

.Controller -

T

1 bnAos00

0,600 °
1--0.760
| -1.520.

.OJJ
0'&.

0.8 |

1.0

1.0

a0
)

-0:4

DNAQ520

G2k, 3.6 -9.52 5.0
o S s

[0
273

952 40 | |

 ..5;0:
. _?2,0: 




: Code
6=3

. Ges
- G=DISC

0.1 to 10.0

L KK=(5.43)(5.40)

- TVED0320.
. FD. |

CNMOY

I CLeDNM

| 1
EXPLANATION OF THE CODE USED FOR FIGURES( )

[

;.tive1y

. Contro] matrtx des1gnat1on (see Tables in this
_“Appendix) R _

348

TABLE B-5-

Exp]anat1on

Third order evaporator mode] has been used to

produce the Nyquist array, character1st1c Tocus -
or the control matrix

F1fth order evaporator mode] has been used

D1st111at1on co]umn mode] has been used

Frequency range used to produce the Nyqu1st

}d1agrams (rad/sec or rad/m1n )

The Nyqu1st array, or d1a ona] e]ements ‘of -
the open- 1oop matr1x Qz( ? is displayed

The Nyqu1st array, or d1agona1 e]ements of
matr1x st(w) 1s d1splayed o .

e .v".« i
BN . <
\ .

}'Control matr1ces K and K2 has been used. They -

are given. by Equat1ons (5 43) and (5 44) respec- :;;-f’d

. ‘\' .

L a T
'\

- Lo

; Frequency Domain Techn1ques (querse Nyquist

Array,. Character1st1c Locus, and Direct. Nyquist
Array Method) were used to desxgn contro]ler

- 'Dynam1c compensator obta1ned us1ng the Nyquist "bft;,w;
| -array methods ’ . o R

B D1rect Nyquist array method

fInverse Nyqu1stsarray or characteristic 1ocus or
direct Nyquist, array method:-has been used to- produce

" the control matris' under cons1deration._i e.vall ,f;f*

‘:-'Produce the same controller.a.

 * §]€*f »f

» "!‘ .

‘4(1)'.Note:»-vertfeaT.bars:are,uSedqtoidefinibTeaehfeiénéntfofdthe;gédé;rLrjh};”

[ R
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_Table B-5 (continued)

| }Code_'~ | o | o - Explanation
SIM5 S | ‘F1fth order. evaporator mode] has been used to
o * s1mu1ate the results. . - -
‘Ekp' ' L Exper1mentalvresulfs‘_'
| g K=Tab1enB-1 ’y‘ The numerical va]ue of. the control matrix 1s .
T R conta1ned in. Tab]e B l . - N
.jp - "1 - '_=,Proport10na1 contro] on]y
P+ T hi - ‘-'Proport1ona1 p1us 1ntegra1 contro1
: MULHV '"i;f,f'j" o 'Mult1 1oop contro]
©PT o j- ’“,Opt1ma] contro]., ";"i“ S

oN20% A 208 step change in the- feed f10w was used 1n
o ' + the run under- cons1derat1on o 3

. 10% step change (up and down) 1n the set point PRSI
- of the product concentration was® 1ntroduced in
- the run under cons1derat1on. . : oo

108 ¢

¢20%=FCdW-Q:._" - f,fA 20% step change in feed concentrat1on was used
BERERN T ~ as the disturbance variable qin: the run under
: I g cons1derat10n o _ N B

0 S Part of f1rst set of exper1menta1 runs._fjﬂ

SN ~:f*:;ifPart of second set of exper1menta1 runs 5i3



O omeoncc.
| LIMITING VALUES' FOR THE ¢ ;(z) FACTORS -

| This appendix derives"the basic relationships that 1ead'to o
the GershgorIn and- OstrowskI bandgiand shows that they can be regarded '

as 11m1t1ng values, or bounds on the 1ocat10n of the NquIst locus _[’ffh

. -

»
of the "exact" transfer functIOn h(z)

| When the return 3ifference matr1x, F(z), is. dIagonally |

N domInant the IImItIng va1ue of the ¢ ( ) factors in EquatIOn (5 18)
| i»TS gIven by - Ild»if] I '{ St ;. _' ; ‘,."fm
( ;‘|. v “ PRI * Ko 1)

A speCIfIc case of a thIrd order system has been chosen to show the

: |«I>J1
-'Hva]‘thy Of EquatIon (C 1) The second order case is tr1v1a1 and the

;same appr0ach can be used to prove EquatIen (C 1) for higher order fi'
B systems | PR SR DR

EquatIOn (5 17) thch 91ves the open loop re]ationship

| 'ihbetween the Input of the augmenued p]ant u2 and 0utput y2 for a third

,,::.order system when the other 100ps are closed can be written in the }];"ff'
o "f°”°w‘”9 ge"er’a’l way ERRI
h (z) ng( 2). + ¢}2(z) q]z(z) ¢32(z) q32(z) , :‘ (t 2))

3 -

. . o
~. P
~

(k”qﬂ z) )( 3q23(z) ) .(k”qz (Z ) ) i
oy ST ARG ) T AT e
0 ¢~|22 [] (k”qSL(Z) ) ( 33q.|3(z) )] ...".}t:j

B 1) ”33‘*33")

o badd ..

e
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e )

DS TEN [( 11q21(2) ) ( k33dy3(2) ')A | (gﬁéqéé(i) ')]\
L @ - T 2)) \T¥ky404,02)/ {?E;ggggri) |
AR _[] ( kj92) ) (533913(27 )] :
R TS 1 20

R . : — T

(64)

© " Given these Equatidns_the=proﬁfehiean}be siated jn»theffd]16Wing way:‘ f,?g* v

TS

'Show that'l R
-/

P

-_“ayd |

R ey

L lkul{lqm z)l |q3](z)?} Ear s
'u}""'-" “ T ‘q”(z” | _<; f s

>4
"’,~\‘:
S

g |vq'23"<z>‘| o
T1 ¥ k33q33(z)1

\

) QZ
'__Equgtion'(c;3) can- be written 1n the fo]lowing ways i’”}_,gj,

]2 [1 (Ul )(“33“13 )]
T SRR L L H"‘33“33 '

A

’1\f[ where the z's have been dropped for conven1ence and a is defined by 'T:i;ifﬁf;

(k'ﬁ q31 ' ) ("33“23 ) ("nqm )
‘*k11q11 T3’1‘33“33 R 1“11

| ':;”'Taking abso1ute values Equat1on (c 9) giVés\

R when'the;return;differenceimatriX‘iéfdiagbnéijyedominaﬂtr‘xheniiffgifﬁ'J ”

31

@l s ee
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LﬁL i"‘ >A; -:'-I: B :f(t 11)-&f

. -;{¢ | = f ‘ : —~— L(Caty

i

33“33

S T T e L e
N * - . N . M . RS . oL -
. . . i . . NEECEE - PEE
. ’ e . . . e .

..1 SEENIEE - IR

. JBJ SRR R e
RLIPY S S SEFPNN (v V.3 IS
L 11“11 ' E33q33

A

. ,”{]|icéhfbe expreSSed in the fo11OW1ng way . f 7“',2575"'  5ff,'ff i~‘ ‘?‘1

” ) il)l'= ] B u1a2@ | ;7J77ﬂf?* 5uff;Jf;if;'f?;[f> :‘ 5(Ci13)_‘f* 3
il where a]. oy are g1Ven by Equat1ons (C 7)/and (C 8) kespectively and

.Lh

}'~»~" 0is a factor greater than one def1ned by this equatlon I; ?bQ"]d;w\ ,'_ RETE

'falso be noted that fo]]owung 1nequaf?ties are va]id

'7}5-Rép}étihg Edgqt1chﬂ(c;13)gﬁn£d.t&p5¢j¢h<§¢;1z)5w§f5btgiﬁjif"\;f{f;,i_}vi';r>.‘:

‘::ftTaL:i§12{-f$fff }-;" 'k-|gl' i
R ;_ 11“11

Cosinee 01

e . : Do




g | | | }"’-;:'_.
Equat1on (C 17) can be simp]1f1ed by mu1t1p1ying qI by oy and e11m1nating

\

the conmon factors, then

I¢ | <f * ' LAL , - (c )
_]2 | lk11q31 8 I‘33“23 l' ¥ o ]k11 2|  2_ ,u,n_.__,,§,>_
T Enqn T F;3q3§ TR IEnqn L

11q31 I ' 33“23 I i 11“21 T
' | ‘*k11q11 T*“33“33 T+ E11q11 ey
¢12 - k T .q ' k C.19)- w7

el ‘3‘1 | s |+ oo, |m———‘q2‘ [l
B 11q11 T 33“33 2 [T, S

1“11

g I'k11q31 ket o v ‘3”1iqz1’"" “
LI T—ksaqsa T E11q11
A\..-." - k19 9, %
S\ %1 Kaxdes k1191
N [+G L
R "2 ‘*k11q11 rk33"33 _ ' ElquI

(c zo)ffff:ffﬁ

|¢]2| ’3— = a;

;7,.—; wh1ch shoys the va}1d1ty of Equat1on (C 5)

Folloking the sane apiroach -
T T P R B
1t can be proved that

l¢32|

2' 45*1»[ f1f7fe»% :



. N
. t L.

Equat1ons (C 21) éﬁd (C 22) 1nd1cate that the region of B

uncertalnty about where h2( z) is 1ocated can be narrowed s1lght1y

: by using the appropr1ate factor a] and az 1nstead of the maximum of::;'

these values

Y .



- APPENDIXD e )
STABILITY THEOREM R |

D 1 BASIC EQUATION _ S S T
‘ Let {h (z), i= 1, m} be the transfer function between 1nput 14:5:f;
"1_ and output 1 when 1oop i 1s open and a]] the others are closed as .
'ﬂll_def1ned by Equatlon (5 18) and as 1]1ustrated in F1gure 5, 2 A]so let L
_“:b{lFJi( ) be the cofactor of e]ement (3,1) of the return-difference matrix,f_;l.§b
‘;;';F(z) A f“ ,” ;.' e f'.“' L
' Equahcnl(s 18) was der1ved independently but follows direct]ylghﬁﬁ7ff
tniyf“fromfthe results obta1ned by Rosenbrock [68] Using the notation defined,ifaﬁth_
JEAnffabove h (z) can be wr1tten / } . "71n ‘ L k¥

Eiéj;ﬁ¥i 1 h (z) q (Z) .in F1i(;)v:;ihiff;ﬂé:;5if}thiigﬂ‘b;i)itaféikgp

. \’_

GIf loop 1 in F1gure 5 2. 1s closed using the cgntroller k

dn Lo
LT v

the clo ed«]oop characternstxc polynomial for Ioop 1 w111 be gjven by \v'f'wf’

2T S '  ng qji(z)Fji(z)k E
1+»kh(z)=1+kkqi(2)+‘u‘* CEEEE (DZ)

F (2)

or. br1ng1ng to a common de“°m1nator i
L L | (1 +—k1q11(z))_&;a

. "a""’. AN




L

e where [F(z | is- the determ1nant of matr1x F(z)

I when a11 the 1oops {1 1, m} ane cons1dered Equation (D 4)
\‘ ’ ’ ‘. .s , wo e N R

ﬂ becomes
\‘ o [C%4
L

Yo

R :{ggi_tz Kk (z)) | é;(ZQ%T-;}I (z)l ¥ Hd*fifif(ntsrtf{,f]*”
Lo T R T o TR TR

R Be]]etruttl and MacFar]ane [4] have_sﬁgun.that”’forfthe

‘i;Qisystems of 1nterest in: th1s work the stab111ty of the c]osed~1oop

;dtbsystem can be detenn1ned by the encirc]ements of the origin by the

55.5'mapp1ng of the contour D by |F(z)| See Chapter Four) In the i

.‘fi}fo]]oW1ng d1scuss1on 1t w111 be shown that when F(z) 1s diagonally

1-fffdom1nant the net enc1re&ements of the or1g1n contributed by the term ‘fffifi g

':fif1n square brackets 1s zero and hence that the closed-loop system ‘

;ifustab1]1ty can. be determined ﬁrom the Nyqu1st plots of {h (z), i=1 m} S

R . e e B e TS R

e 5': e“ B, __;d ¢u~~-'*;*a:. R e ‘. e _‘k;‘.{;;;»

Jﬁf D.2 STABILITY THEOREM ‘f_f;’:f{i',*,f”f‘}j,g;;i.};‘fi}}fgw{‘”




. f'hof the argument 1t follows that the number of encirclements of the

: fijtor1gln by lF z)lm 1, w111 be cance]led by the number of encirclements i

357

“Then i F(2) 15 diagonally dominant 1t has been shown o8]

v

* et
(D 6)

R
Z

_'_“'f" "11

E : Consequently s1nce the mlnors FJJ(z) are also d1agona11y dominant

f'&itfﬁ(l7f;if?

;1 :Thus the number of enc1rc1ements of the or1g1n by the mapping of D
eby IF(z lm -1 w111 be equa] to "T’ Where ti,;.__. 8 -

Cmeeen e
T pine = 11

RUDS

TN

The number of enc1rc1ements of the orig1n by the mapping of

»;;D by r1F11(z) w111 also be equal to nT Consequent]y from the principle
- o=l

if}of the or1g1n by 11 F (z) and hence the stabi]ity of the c]osed loop i
?iii w111 be determtned enly by the number of enc1rc1ements of the crit!cal point |
.}2f;( 1 0) by the mapp1ng of‘D by {kihi(z) i 1 m} which 1s equal to the o
:fvjinumﬁer of enc1rc1ements of the origin by the mapp1ng of D by [F(z)l
1jf{;Thus the c]osed 100p system w11] be stable 1f and only 1f )
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~ kjhy(z) encircles the cri'ﬁca’] point (-1,0),

E
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APPENDIX i:H e

DIAGONALIZATION OF THE DOUBLE EFFECT PILOT PLANT EVAPORATOR
‘ o ( NON INTERACTING CONTROL ) '

i jE 1 DIAGONALIZATION OF AN OPEN- LOOP TRANSFER FUNCTION MATRIX o
Rosenbrock [65] has shown that when the piant transferAfunction |

| matrix G(z ), 1s non- SinguTar and. the poies of G(z) and the zeros of
}"det G(z) iie-~inSide the unit Circle a stabTe controi matrix KTE),:
| -can be found by performing éiementary coiumn operations on G(z), that ;”TTI
At wiii make the' OLTFM Q( ) G(z)K(z) dT gonai Furthermore the OLTFM

WiTT have all 1ts poies and zeros in51de the unit c1rcTe 1n the compiex

S . SO o
| M{ ATthough the third. and fifth order evapohator modeis each
'have two poTes at~¢he (~1 0) pOint these modeTs can be considered to be

f stabTe and by drawing a smaiT sem1c1rcie at z 1 the.poies can be Jf}{N.'ﬂYfﬁ

- o conSidered to be Tocated 1nSide the unit circTe The determinants of

»V4N_;un1t c1rcie Thus it TS pOSSibie in both cases to find a stabTe
.'T].matrix ,?hy_ffffif- f.iffiff'ffif?~"'

u*ﬂtfcontroiier has been designed that w1TT mathematicaily canceT the off-a a,.ﬁff

1ffffvdiagonai elements The controlier and the 0LTFM obtained for both cases,

i{_the transfer function matrices aiso have their zé?os Tocated inside the .f;ffa

' ”i'controiier matrix that w111 produce a stabie open Toop transfer function
A W ,_.w_gn%‘ﬁ,s P

S ..,.‘-'

For the third and fifth order evaporator modei a non-interacting

.?_ B

Nﬂiziare presented in the next sections ' ii‘ﬁf:;{i;ﬁZTf“

R DL+

’”ff"_E 2. DIAGONALIZATIQN our THE THIRD ORDER MODEL m TABLE 3 1
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L

0.6658 0 1.0 o
g elomes o oamel @y
| '-0.99229 o 1.0 --1_,7“7_554 L g

. " ‘ y
;.and the resu1t1ng open- loop transfer funct1on matr1x Q(z) G(z)K(;) 1s“

-_;fequa] to

B R | 07045 il e s
B i3 o) O

c The contro]ler obta1ned us1ng the d1rect Nyqu1st array method
fﬁ;(Equat1on 5. 32) was approx1mate1y the sarie. as Equatlon E 1) ;vaffj'{};ffé

D ;

E 3 DIAGONALIZATION‘ OF THE FIFTH ORDER EVAPORATOR MODEL IN TABLE»B 5

For the f1fth drdek evapqrator model the des1gned4controller,

S l '.
I8

K ) wh1ch makes the OLTFM diagona] is given by ']ifﬁrf};ﬁ::ﬁ;w'f

e

'Gfk(ijfé?’:3;T;0 ﬁf;ﬁr:1,,':ij'efi';aﬁiigsjj‘gf}ff“ff:;€; ff(5;3;ff,?wf'”“




The non- 1nteract1ng controllj

r, |
’:‘ané\the resulting bpen-loop transfer function matrix is equal to
.. » . . - - .\ . . ' ! o
f0.j190e 0 - o ]
Q@) =] o -0.4088 f 0
t\\ P A L \] | ‘
: o . . 0 0.02202 g | ¥
where: A R |
- (z -0.899) g
ST Z-1) (Z-0. 8898T -
- \ .‘
. _0.4058 o
Tz - 1 | ' v { .}.‘
o (2#0.7628) (z - 0.89%8)
s (@- 0._9603) (z - 0. 9216) (z -0, 4382rr

”.

ris. sl1ght1y more comp11cated |

than the dynamic compensato}7obta1ned u 1ng the d1rect Nyqu1st array

method (cf Equat1on (5 65))



