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Abstract 

Rule-based models have enjoyed a great deal of interest in the previous decades as one of 

the development paradigms of intelligent systems. They are regarded as a fundamental 

vehicle of knowledge representation, serving as a computational platform supporting an 

array of design practices and analysis of knowledge-based systems and their applications. 

With the rapidly growing complexity of real-world systems and their ensuing models, and 

diversity and quality of distributed sources of data, the quest for designing advanced rule-

based models becomes evident. In the design of rule-based models, there are two 

challenging issues. The first is about the scalability of rule-based models when we are faced 

with high-dimensional data. The equally important task when building rule-based models 

is to endow such models with a sound measure of quality with which one can efficiently 

assess the relevance of the results produced by the rules. 

 

In this study, some key design objectives are formulated and pursued. When faced with 

high-dimensional data, some fundamental limitations such as the concentration effect 

hamper the design of high-quality rules or even make the design of monolithic models 

infeasible. To alleviate this problem, an idea of distributed fuzzy rule-based models is 

formulated, instead of a single monolithic (multivariable) rule-based model. In its 

realization, a slew of low-dimensional models is built and aggregated. The aggregation is 

realized by some linear linkage transformation. Such ensembles of models help us avoid a 

negative effect of the concentration effect. Next, a novel concept of the granular rule-based 

model is investigated. We show that granular models quantify the relevance of the original 

rule-based architectures and deliver a granular format of results, namely prediction 
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intervals. The granular results are optimized by engaging the criteria of coverage and 

specificity of information granules. Subsequently, in order to improve the quality of the 

models, a comprehensive and systematic way of ranking alternatives in the environment of 

multicriteria group decision making is proposed by introducing information granules. The 

underlying decision process is realized with the use of the analytical hierarchy process 

(AHP), resulting in information granules (fuzzy sets) quantifying degrees of preference and 

relevance of the weights. A series of experiments are carried out to examine the feasibility 

of the proposed methods.  
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Chapter 1.  Introduction 

In two-valued logic, there are only the concepts of false and true. However, the introduction 

of ambiguity (fuzzy set) makes it possible to describe the logic with weights, breaking the 

traditional regulation. Fuzzy sets form a class of objects with a continuum of grades of 

membership coming from the range of values in [0,1] [1]. Fuzzy rule-based models are 

proposed based on the concept of fuzzy sets [2], [3]. Fuzzy rule-based model is a system 

that describes the relationships among input and output variables expressed at the level of 

information granules (fuzzy sets). Within the realm of rule-based modeling, there has been 

a plethora of methodologies, designs, and analyses supporting the development of the 

models [4]–[10]. Fuzzy rule-based modes have been studied, developed, and applied to 

control, data mining marketing, and decision making, among others [11]–[14]. 

 

Granular Computing (GrC) [15]–[17] has emerged to process information, especially in 

the area of computational intelligence and human-centric systems [18]. In GrC, the 

variables are represented in an abstract way and then the resulting information granules, 

formalized as fuzzy sets, interval-valued sets, rough sets, etc., are used in complex problem 

solving [19]. It is beneficial to design a comprehensive framework to develop and process 

information granules with an appropriate methodology. Then, the rule-based model is 

presented as that well-structured framework since it can handle numeric and linguistic 

information simultaneously. 
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1.1 Motivation  

In the design of rule-based models, there are two aspects we need to pay attention to. One 

is that with the emergence of big data in recent decades, fuzzy rule-based models meet two 

other challenges, namely accuracy and computing overhead. There is no doubt that the big 

data challenge comes hand in hand with the computing complexity and during the design 

process of local models, the distance between values will be influenced by the 

concentration effect while processing the high-dimensional data [20]. In order to address 

these two problems, distributed fuzzy rule-based models are applied. That is, assign 

partitioned input data into modular models such that only a few variables are used for the 

construction of each fuzzy rule-based model. This issue has not received enough attention 

so far and thus calls for more investigations. 

 

The other aspect worthy of much attention is that the rule-based models and fuzzy rule-

based models in a way they have been constructed (optimized), validated, and used, are in 

essence regarded as numeric constructs. Thus, the results produced by any model do not 

fully coincide with the experimental data. It becomes highly desirable, if not imperative, 

to come up with models augmented by the quantification of their quality and results. From 

a perspective of the structure of the rule-based model, one can regard it as a collection of 

local regressions augmented with some aggregation mechanism. In these local models, an 

estimation of the parameters is carried out in a “standard” way (typically by considering a 

least square error optimization method) and there are statistical means to assess the quality 

of the model by supplying the corresponding confidence intervals and prediction intervals 

for the output generated by the model. In linear regression models, the concepts and 
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algorithms supporting a formation of prediction intervals are well documented and widely 

utilized. This avenue of model evaluation has not been investigated and pursued in terms 

of algorithmic developments in fuzzy rule-based modeling. As a result, there are a number 

of open problems with regard to prediction intervals in rule-based models. Hence their 

formal formulation and ensuing algorithms deserve careful attention. 

1.2 Objectives and originality 

Objectives 

In the presence of high dimensional data, we are faced with some algorithmic challenges. 

In addition, there is no ideal rule-based model that can fully coincide with the original data. 

We propose distributed and granular rule-based models to address the above stated 

problems, respectively. The design of the distributed model is based on the partitioned data, 

which effectively mitigate the issue caused by large-sized data. The proposed granular 

model brings the rule-based model to a new conceptual and algorithmic level, producing 

the interval-valued sets to further quantify the performance of the model and improve its 

credibility. When it comes to the concept of information granules, their combination with 

decision making helps solve an actual problem (the site selection of renewable energy 

sources), and the sites are evaluated by the granular preference results. The objectives and 

relationships among the main pursuits of this study are displayed in Figure 1.1. 
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Figure 1.1 Roadmap of the research. 

➢ For high-dimensional data, we improve the design methodology and quality of fuzzy 

rule-based models by introducing a design of one-dimensional local model (rule-based 

model) aiming at dealing with the high dimensionality of the input space and 

improving the computing efficiency. Then the distributed local models are aggregated. 

➢ The (fuzzy) rule-based models are improved by the association of numeric results 

produced by the rule-based model with the granular characterization (in the form of 

prediction intervals) and then we introduce the mechanism of the performance 

assessment. That is, the quality of the granular model is evaluated by the concepts of 

coverage and specificity, and the combination of these two measures.  

➢ The principle of justifiable granularity and the concept of fuzzy sets applied to the 

Analytic Hierarchy Process (AHP) algorithm generates the granular (interval-valued) 

results for assessing the alternative sites of solar energy. Then, the quality of granular 

results has to be evaluated following the ranking fuzzy sets method. 
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Originality 

The originality of the study exhibits several facets.  

➢ The development of a novel distributed rule-based model avoids the issue of the 

concentration effect; during the design process of distributed models, the membership 

grades as the input are transformed into the output space by the optimal linkage matrix, 

which creates a new avenue for the design of rule-based models. 

➢ The degree of granularity of the rules is proposed and optimized. This problem, 

although of practical relevance, has not been studied in the past. 

➢ The concept of the prediction interval is combined with rule-based models, resulting 

in interval information granules to improve the quality of the model. 

➢ A novel granular group decision-making model is developed, which builds upon the 

combination of information granules and the AHP algorithm. The preference for 

alternatives is evaluated based on the obtained granular results. 

1.3 Organization 

The organization of the thesis is as follows:  

In Chapter 2, we provide a critical literature review, including the concepts and the 

application of clustering algorithms, optimization algorithms, rule-based models and 

information granules, etc. They are the fundamental elements in this study. 

In Chapter 3, we focus on the augmentation mechanism of rule-based models for dealing 

with large or high-dimensional data. The data are separated into local models, generating 

partition matrices that are then mapped to the distributed rule-based models. Finally, the 

results are aggregated. 
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Chapter 4 elaborates upon the combination of rule-based models and granular 

quantifications, which forms the granular rule-based model. The numeric output of the 

basic rule-based model is augmented by the granular output space, which further improves 

the model reliability. 

In Chapter 5, a granular multicriteria group decision making is presented to solve the 

renewable energy planning problem. Compared with the traditional decision-making 

model, our model produces granular results. Thus, the plan is assessed based on both the 

granular preference degrees of alternatives with respect to the set of criteria and the weights 

of the corresponding criteria. 

Finally, the overall summary is provided and the future research tasks are outlined in 

Chapter 6.  



 7 

Chapter 2. Preliminaries 

In this chapter, we introduce some fundamental methods related to our research. 

Specifically, the clustering algorithms are covered in Section 2.1. In Section 2.2, we 

introduce the key model-rule-based model. Subsequently, in Sections 2.3 and 2.4, ideas of 

information granules and prediction intervals are summarized to lay the foundation for the 

studies reported in Chapters 4 and 5, respectively. Then a commonly used optimization 

method (Particle Swarm Optimization) is introduced in Section 2.5. Next, the concentration 

effect is introduced in Section 2.6. Finally, some evaluation methods are summarized in 

Section 2.7. 

2.1 Clustering 

Clustering is an unsupervised learning method, devoted to dividing data into a number of 

groups (clusters), where the data points in the same group are similar to each other while 

dissimilar to the points in other groups. In our study, two clustering algorithms, namely K-

Means and Fuzzy C-Means (FCM) are reported.  

 

A. K-Means 

K-Means method [21], [22] is commonly used because of its simplicity [23]–[26]. It is an 

iterative algorithm to partition data 𝑋 = {𝒙1, 𝒙2, … , 𝒙𝑁} in the Rn-dimensional space, into 

a collection of c disjoint subsets (clusters). It aims at minimizing the objective function in 

the following form to find the optimal cluster centers for the data. 

𝐽 = ∑ ∑ ‖𝒙𝑘 − 𝒗𝑖‖
2

𝒙𝑘∈𝑆𝑖

𝑐

𝑖=1

(1) 
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where 𝑆𝑖  is the i-th cluster and 𝒗𝑖,  𝑖 = 1,2, … , 𝑐 , is the center of 𝑆𝑖 . ‖𝒙𝑘 − 𝒗𝑖‖
2  is the 

distance defined as 

‖𝒙𝑘 − 𝒗𝑖‖
2 = ∑

(𝑥𝑘𝑗 − 𝑣𝑖𝑗)
2

𝜎𝑗
2

𝑛

𝑗=1

(2) 

where 𝜎𝑗  is the standard deviation of the j-th feature of data. 

 

The minimization of the above objective function is done in an iterative way. First, we set 

the number of c clusters and select cluster centers randomly. Next, we calculate the distance 

between data points and cluster centers. For the k-th data, it is assigned to 𝑖-th cluster if 

this point is closer to 𝑖-th cluster than to the other centers, as shown below, 

𝑆𝑖 = {𝒙𝑘|‖𝒙𝑘 − 𝒗𝑖‖
2 ≤ ‖𝒙𝑘 − 𝒗𝑗‖

2
, ∀𝑗 ∈ [1, 𝑐], 𝑗 ≠ 𝑖} (3)

Then we compute the average value of the points in each cluster as the new updated cluster 

center (prototype). 

𝒗𝑖 =
∑ 𝒙𝑘𝒙𝑘∈𝑆𝑖

𝑁𝑖
(4) 

where 𝑁𝑖  is the number of data in i-th cluster. The process of calculating distance and 

determining to which cluster the data points belong is terminated when the new cluster 

center is close to the previous one. The detailed process of K-Means clustering is shown as 

follows: 

Input:  data, the number of clusters c, maximal number of iterations 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  and 

threshold 𝜏  

Output: prototypes 

Initialize prototypes 𝒗0, 𝒗1  randomly, 𝑖𝑡𝑒𝑟 = 0 

While |𝒗𝑖
𝑖𝑡𝑒𝑟+1 − 𝒗𝑖

𝑖𝑡𝑒𝑟|> 𝜏; 𝑖 ∈ [1, 𝑐]  

 { 
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 Group the data into corresponding cluster 

𝑆𝑖 = {𝒙𝑘|‖𝒙𝑘 − 𝒗𝑖
𝑖𝑡𝑒𝑟‖

2
≤ ‖𝒙𝑘 − 𝒗𝑗

𝑖𝑡𝑒𝑟‖
2
, ∀𝑗 ∈ [1, 𝑐], 𝑗 ≠ 𝑖} 

Compute new prototypes with 

𝒗𝑖
𝑖𝑡𝑒𝑟+1 =

∑ 𝒙𝑘𝒙𝑘∈𝑆𝑖

𝑁
; 𝑖 = 1,2, … , 𝑐 

𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

If 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 { 

 break 

 } 

 } 

 

B. Fuzzy C-Means 

Fuzzy C-Means [27]–[30] is a clustering algorithm in which a dataset is grouped into c 

clusters with every data point belonging to each cluster to a certain degree. It was first 

reported in the literature by Dunn in 1973 [31] and then generalized by Bezdek in 1981 

[32]. The objective of the FCM algorithm is to minimize the weighted Euclidean distance 

between data points and clustering centers, namely prototypes. As before, we also assume 

the data in Rn. The objective function to be minimized comes in the following form 

𝐽 = ∑ ∑ 𝑢𝑖𝑘
𝑚

𝑁

𝑘=1

‖𝒙𝑘 − 𝒗𝑖‖
2

𝑐

𝑖=1

(5) 

where 𝑢𝑖𝑘 stands for the degree of membership of 𝑘-th data clustered into the 𝑖-th cluster; 

the partition matrix includes a collection of membership grades 𝑢𝑖𝑘, see 𝑈 = [𝑢𝑖𝑘],  𝑖 =

1,2, … , 𝑐; 𝑘 = 1,2, … ,𝑁. The partition matrix satisfies two requirements: 𝑢𝑖𝑘 ∈ [0,1] and 

∑ 𝑢𝑖𝑘
𝑐
𝑖=1 = 1 , 𝑘 = 1,2, … ,𝑁 . The distance ‖𝒙𝑘 − 𝒗𝑖‖

2  is the same as in (2). The 

fuzzification coefficient m is greater than 1, commonly its value is selected to be 2. 𝒗𝑖, 𝑖 =
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1,2, … , 𝑐, are a collection of prototypes. For the k-th input data, the result of being clustered 

to i-th cluster, in terms of the membership grades [33]–[35], is computed as 

𝑢𝑖𝑘 =
1

∑ (
‖𝒙𝑘 − 𝒗𝑖‖

‖𝒙𝑘 − 𝒗𝑗‖
)

2
(𝑚−1)⁄

𝑐
𝑗=1

(6)
 

where the distance between data point and prototype is in the form (2). The i-th prototype 

is expressed in the form 

𝒗𝑖 =
∑ 𝑢𝑖𝑘

𝑚𝒙𝑘
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

(7) 

The FCM algorithm is realized as a sequence of steps where the partition matrix and 

prototypes are updated until the minimized value of the objective function reaches the 

predefined threshold. 

Input:  data, the number of clusters c, the fuzzification coefficient m, maximal number 

of iterations 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 and threshold 𝜏 

Output: partition matrix U, prototypes 𝒗𝑖; 𝑖 = 1,2, … , 𝑐 

Initialize prototypes randomly, 𝑖𝑡𝑒𝑟 = 0 

Compute the partition matrix 𝑢𝑖𝑘 and the value of objective function 𝐽 with 

𝑢𝑖𝑘 =
1

∑ (
‖𝒙𝑘−𝒗𝑖‖

‖𝒙𝑘−𝒗𝑗‖
)

2
(𝑚−1)⁄

𝑐
𝑗=1

;𝑖, 𝑗 = 1,2,… , 𝑐; 𝑘 = 1,2,… ,𝑁 

𝐽 = ∑ ∑ 𝑢𝑖𝑘
𝑚

𝑁

𝑘=1

‖𝒙𝑘 − 𝒗𝑖‖
2

𝑐

𝑖=1

 

While the value of objective function> 𝜏 

 { 

 Obtain a new partition matrix and prototypes as 

𝑢𝑖𝑘 =
1

∑ (
‖𝒙𝑘−𝒗𝑖‖

‖𝒙𝑘−𝒗𝑗‖
)

2
(𝑚−1)⁄

𝑐
𝑗=1

 ; 𝑖, 𝑗 = 1,2,… , 𝑐; 𝑘 = 1,2,… ,𝑁 

𝒗𝑖 =
∑ 𝑢𝑖𝑘

𝑚𝒙𝑘
𝑁
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1

; 𝑖 = 1,2, … , 𝑐 
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Calculate the value of the objective function J 

𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

If 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 { 

 break 

 } 

 } 

 

There were some improvements to the FCM algorithm. The Gustafson-Kessel (GK) 

clustering algorithm proposed by Gustafson-Kessel in [36] could be viewed as a FCM 

variant employing an adaptive norm distance to find ellipsoidal shaped clusters. The 

distance (2) is defined as ‖𝒙𝑘 − 𝒗𝑖‖
2 = (𝒙𝑘 − 𝒗𝑖)

𝑇𝑀𝑖(𝒙𝑘 − 𝒗𝑖), where 𝑀𝑖 is a symmetric 

positive definite matrix. The improvement of GK algorithm is illustrated by clustering two 

classes that had some degree of overlap. A feature weight-based FCM (WFCM) algorithm 

was proposed in [37], which is similar to GK, but the symmetric positive definite matrix 

𝑀𝑖  is fixed for different clusters. Subsequently, the gradient-based Fuzzy C-Means 

(GBFCM) algorithm was proposed in [38] to present one datum at a time to the network, 

and the minimization of the objective function is completed using the gradient descent 

method. However, the minimization process of FCM is proceeded by solving two equations 

alternatively in an iterative way and in each iteration, all the data are used. Compared to 

FCM, GBFCM is very competitive in terms of speed and stability of convergence for the 

data. In [39], the Fuzzy C-Means with Focal Point algorithm (FCMFP) was proposed and 

applied to bearing fault diagnosis, the function (1) is rewritten by the introduction of a 

regularization term with a focal point 𝒑 as 𝐽 = ∑ ∑ 𝑢𝑖𝑘
𝑚𝑁

𝑘=1 ‖𝒙𝑘 − 𝒗𝑖‖
2𝑐

𝑖=1 + 𝜁 ∑ ‖𝒑 −𝑐
𝑖=1

𝒗𝑖‖
2. If 𝒑 is far enough from the data points, as the i-th cluster approaches 𝒑 there is no 

data belonging to it and thus the membership values will tend to zero. In practice, this is 
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equivalent to moving the prototype 𝒗𝑖 . This allows one to obtain different clusters, 

depending on the different focal points. In [40], a new hybrid method, namely FCM-

ELPSO was proposed, which combined FCM with an improved version of PSO and then 

used a special index and the objective function value as cluster validity indexes to evaluate 

the clustering effect. In general, FCM and its improved versions are relatively easy to 

implement and as such they serve as important tools to form the condition part of rule-

based models. 

 

C. Biclustering algorithm 

It was first introduced by Hartigan in 1972 [41]. Unlike clustering, it aims to 

simultaneously cluster both rows and columns for a data matrix. The biclustering algorithm 

can be realized in different ways. In general, they can be categorized into five directions; 

that is, Iterative row and column clustering combination [42], [43], divide and conquer [41], 

greedy iterative search [44], exhaustive bicluster enumeration [45], and distribution 

parameter identification [46]. We briefly introduce the ‘Blocking clustering’ method as an 

example, which is the representative of the divide and conquer category. 

 

Blocking clustering was first proposed by Hartigan [41], which is called ‘direct clustering’. 

Its main idea is to find K appropriate clusters and in each cluster all data are equal. Duffy 

et al. made it known as ‘block clustering’ [47] and an improvement was reported by 

Tibshirani et al. in 1999 [48], where the entire data are split into M (M>K) biclusters that 

are then recombined. The detailed process in [48] is as follows: 
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1. Begin with the entire data (X) into one block. 

2. Sort the rows (or columns) by row (resp. column) mean. 

3. At each stage, find the row or column split of all existing blocks into two pieces, 

choosing the one that produces largest reduction in the total performance index, 

the index is sum of squares, say 

𝑄 = ∑ ∑ (𝑥𝑖𝑗 − 𝑏𝑝)
2

𝑖,𝑗∈𝐵𝑝𝑝
 

where 𝐵𝑝 is the p-th cluster (block), p=1, 2, …, M, and 𝑏𝑝 is the average value of 

𝑥𝑖𝑗 in the cluster 𝐵𝑝. 

4. The splitting is continued until M blocks are obtained. And then blocks that have 

approximative 𝑏𝑝 are recombined until the required K blocks are obtained. 

 

2.2 Rule-based models 

Rule-based architectures are commonly used for system modeling [3], [49]. Their essence 

is to describe the potential relationship between input and output in the form of if-then 

rules. 

If antecedent   then consequent (8)

There are two main categories: Mamdani [13] and Takagi-Sugeno rule-based models [10]. 

In this thesis, we consider the rule-based models in the Takagi-Sugeno structure. Assume 

that we have c if-then rules and the combined input-output pairs of data are positioned in 

the Rn+1 dimensional space, e.g. [xk targetk], 𝑘 = 1,2, … , 𝑁. For the i-th rule, it is shown as 

follows 

If 𝒙 is 𝐴𝑖(𝒙), then 𝑦 is 𝐿𝑖(𝒙) (9) 
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where 𝑖 = 1,2, … , 𝑐, usually the condition part 𝐴𝑖(𝒙) is a set or fuzzy set defined in the 

multi-dimensional input space. The conclusion part 𝐿𝑖(𝒙) is a certain function, such as a 

constant function, linear function, polynomial function, etc., where constant function and 

linear function are commonly used. Researchers usually set the prototypes of the output 

space ωi  as the constant function 𝐿𝑖(𝒙) = ωi  and choose 𝐿𝑖(𝒙) = 𝑎𝑖0 + 𝒂𝑖
𝑇𝒙  as linear 

function. The rationale behind our choice is that the Takagi-Sugeno rule-based model can 

be regarded as a combination of linguistic description (in the antecedent part) and function 

(in the consequent part) modeling. Since the architecture of the (fuzzy) rule-based model 

is determined, for any input data 𝒙, the corresponding output (�̂�) of the model is the linear 

combination of the conclusions of the rules 

�̂� =
∑ 𝐴𝑖(𝒙)𝐿𝑖(𝒙)𝑐

𝑖=1

∑ 𝐴𝑖(𝒙)𝑐
𝑖=1

(10) 

The set 𝐴𝑖(𝒙) stands for the degree of activation of the rule, 𝑖 = 1,2, … , 𝑐,  Thus, the sum 

of 𝑐 activation results is 1, saying ∑ 𝐴𝑖(𝒙)𝑐
𝑖=1 = 1, so that the output can be rewritten as 

�̂� = ∑𝐴𝑖(𝒙)𝐿𝑖(𝒙)

𝑐

𝑖=1

(11) 

 

A. Design of information granules of the antecedent part of the rules 

As mentioned above, we have input-output data in the Rn+1 dimensional space. The 

commonly used way to form information granules 𝐴𝑖 is made through clustering or fuzzy 

clustering, which can be carried out in the input space or combined input-output space. 

Cluster these data into c clusters and the results are given in the form of c prototypes whose 

coordinates vi  is located in the input space and ωi  is positioned in the output space, 

respectively. 
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Two types of information granules are formed: 

(i) set information granules:  Here we consider the use of K-Means. The clustering 

method returns c centers and splits the data into c sets. 

(ii) fuzzy set information granules: Here FCM algorithm is considered. The 

generated characteristic functions are generalized into a collection of fuzzy sets. 

An additional fuzzification coefficient m offers some flexibility modifying the 

shape of the obtained membership functions. 

In what follows, we show an example of information granules (membership functions) 

generated by clustering and fuzzy clustering (m=2), see Figure 2.1. In comparison with the 

characteristic functions K-means, FCM produces membership functions. The shape of 

these membership functions is impacted by the values of the fuzzification coefficient. 

 

 (a)  (b)  

Figure 2.1 Characteristic and membership functions with (a) clustering: K-means (b) fuzzy 

clustering: FCM. 

 

B. Estimation of optimal parameters of the consequent part of the rules 

Considering the constant function, we could use the prototypes ωi or the weighted values 

of output space as the constants, saying 
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𝐿𝑖(𝒙) =
∑ 𝐴𝑖(𝒙𝑘)𝑡𝑎𝑟𝑔𝑒𝑡𝑘

𝑁
𝑘=1

∑ 𝐴𝑖(𝒙𝑘)
𝑁
𝑘=1

(12) 

When it comes to the linear function, it can be described in different ways 

𝐿𝑖(𝒙) = 𝜔𝑖 + 𝒂𝑖
𝑇(𝒙 − 𝒗𝑖) (13) 

or 

𝐿𝑖(𝒙) = 𝑎𝑖0 + 𝒂𝑖
𝑇𝒙 (14) 

where 𝒂𝑖 is a vector of parameters of the i-th local function. The formulation of the local 

model makes it directly linked with the i-th rule. It is evident that the function (13) passes 

through the cluster point (𝒗𝑖, 𝜔𝑖). 

 

Here we focus on the estimation of the parameters standing in 𝐿𝑖(𝒙); refer to the linear 

function (13). To determine the parameters 𝒂𝑖  for the 𝑖 -th rule, let us introduce the 

following notation describing a transformation of the original data 

𝒛𝑘 = 𝒙𝑘 − 𝒗𝑖 (15) 

𝑡𝑎𝑟𝑔𝑒𝑡𝑘
′ = 𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − 𝜔𝑖 (16)

  

The model can be expressed now as 

ℎ(𝒛𝑘) = 𝒂𝑇𝒛𝑘 (17)

This entails that the data are now considered as the pairs (𝒛𝑘, 𝑡𝑎𝑟𝑔𝑒𝑡𝑘
′ ), which are formed 

on the basis of (13). In other words, 𝐿𝑖(𝒙𝑘) = 𝜔𝑖 + ℎ(𝒛𝑘). 

 

The minimized performance index Q (distance between the data output and model output) 

reads as follows 
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𝑄 =
1

𝑁
∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑘′ − ℎ(𝒛𝑘))

2

𝑁

𝑘=1

(18) 

We organize the data in the vector- matrix format 

𝑍 =

[
 
 
 
𝒛1

𝑇

𝒛2
𝑇

. . .
𝒛𝑁

𝑇 ]
 
 
 
; 𝒕𝒂𝒓𝒈𝒆𝒕′ = [

𝑡𝑎𝑟𝑔𝑒𝑡1′

𝑡𝑎𝑟𝑔𝑒𝑡2′

. . .
𝑡𝑎𝑟𝑔𝑒𝑡𝑁′

] (19) 

The optimized vector of parameters of 𝒂𝑖 is computed following the Least Square Error 

algorithm: 

𝒂𝑖 = (𝑍𝑇𝑍)−1𝑍𝑇𝒕𝒂𝒓𝒈𝒆𝒕′ (20) 

 

Then we consider another linear function in the form (14). Let us arrange the parameters 

of the model into a vector form 

𝒂𝑖 = [

𝑎𝑖0
𝑎𝑖1

⋮
𝑎𝑖𝑛

] (21) 

Then the output of the rule-based model (14) is calculated by 

�̂� = ∑𝐴𝑖(𝒙)

𝑐

𝑖=1

𝒂𝑖
𝑇 [

1
𝒙
] = ∑𝒂𝑖

𝑇 [
𝐴𝑖(𝒙)
𝐴𝑖(𝒙)𝒙

]

𝑐

𝑖=1

(22) 

Similarity, we optimize the parameters 𝒂𝑖 , 𝑖 = 1,2, … , 𝑐 , by minimizing the distance 

between data output and model output. 

 

As mentioned above, Takagi-Sugeno model is more popular since it realizes the 

transformation from linguistic information to function. In the past few decades, it has been 

studied and applied in several aspects. A novel methodology for the extraction of a 

hierarchical Takagi-Sugeno fuzzy rule-based architecture from data was proposed in [50] 
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to reduce the number and complexity of involved fuzzy rules. The proposed hierarchical 

architecture takes the form of a cascading topology in which the predicted result computed 

at the previous layer is considered in the output part of the fuzzy rules. Subsequently, an 

effective approach to data-based fuzzy modeling of high-dimensional systems was 

developed in [51], in which redundant rules are removed based on a fuzzy similarity 

measure and a genetic algorithm and the gradient method are introduced to optimize the 

structure and parameters of the model. In [52], a prediction model that combines interval 

type-2 TS fuzzy neural network model optimized by extended Kalman filter and SOM was 

proposed, which improves the prediction accuracy by 20% compared with traditional 

algorithms. Soares developed an explainable machine learning model based on the fuzzy 

rule-based model to significantly reduce the computation time in [53]. The main idea is to 

approximate the deep reinforcement learning (DRL) model with a set of if-then rules that 

provide an alternative interpretable model, which is further enhanced by visualizing the 

rules. The proposed approach includes a learning engine composed of zero-order fuzzy 

rules, which generalize locally around the prototypes by using multivariate function models. 

The adjacent prototypes, which correspond to the same action, are further grouped and 

merged into the so-called MegaClouds reducing significantly the number of fuzzy rules. 

Zhang designed a novel three-dimensional (3-D) fuzzy modeling framework without 

model reduction. It is a new 3-D fuzzy modeling method based on clustering and support 

vector regression. The advantages of this method are linguistic interpretability and no 

reliance on model reduction [54]. 
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2.3 The principle of justifiable granularity 

The terms of information granules and information granularity carry various meanings. 

One can refer to artificial intelligence in which case information granularity is central to a 

way of problem solving through problem decomposition where various subtasks could be 

formed and solved individually [55]. Zadeh coined an informal yet highly descriptive 

notion of an information granule [56]. In a general sense, by information granule, one 

regards a collection of elements drawn together by their closeness (resemblance, proximity, 

functionality, etc.) articulated in terms of some useful spatial, temporal, or functional 

relationships. The granules are formally described in various ways including fuzzy sets, 

intervals, rough sets, among others. They are constructed based upon the concept of 

generalised constraints, coverage and specificity, while ‘coverage’ quantifies the extent of 

the experimental data covered by the granule, and the ‘specificity’ means how specific the 

granule is. The optimal information granules are realized on higher values of coverage and 

specificity. Subsequently, Pedrycz and Homenda [57] proposed the principle of justifiable 

granularity, which intends to design a justifiable granule in presence of experimental 

evidence. The justifiable granule is formed in such a way that it has highly legality 

(justifiability) and specific enough meaning. Here we depict an illustrative example to offer 

a better insight into the essence of this model. Given is a collection of one-dimensional 

data 𝒙 = {𝑥1, 𝑥2, … , 𝑥𝑁}. Our objective is to construct an interval information granule [a, 

b]. The optimization of the interval, namely the determination of its bounds (a and b) is 

split into two parts. First, we consider the numeric representative of data, denoted by r, 

which could be the median, mean, etc. Then the values of a and b are determined separately. 
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For the left part [a, r], we consider the coverage as the following expression 

𝑐𝑜𝑣 =
1

𝑁
∑ ind(𝑥𝑘, [𝑎, 𝑟])

𝑁

𝑘=1

(23) 

where ind() is an indicator function, defined as 

ind(𝑐, [𝑑, 𝑒]) = {
1, if 𝑐 ∈ [𝑑, 𝑒]
0, otherwise   

(24) 

and the specificity is 

𝑠𝑝 =
1

𝑁
∑ 𝑚𝑎𝑥 (0,1 −

|𝑟 − 𝑎|

range
)

𝑁

𝑘=1

(25) 

where range is the range of 𝒙, it could be written as |𝑚𝑎𝑥𝑘=1,2,…,𝑁𝑥𝑘 − 𝑚𝑖𝑛𝑘=1,2,…,𝑁𝑥𝑘|. 

 

It is evident that with the increase of the interval, cov is an increasing function and sp is a 

decreasing function. For these two indexes, the higher their values, the better. However, 

they are of conflicting nature. Thus, to obtain a justifiable interval, the objective function 

can be realized as the product of the coverage and specificity. 

 

The upper bound b is determined in the similar way. For a fixed 𝑟, we show the influence 

of b on the criteria 𝑐𝑜𝑣, 𝑠𝑝 and their product in Figure 2.2. The experimental results further 

show that with the increase of upper bound b, the coverage and specificity are in conflict. 
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Figure 2.2 The performance indexes as a function of the upper bound. 

 

2.4 Prediction interval  

Linear regression model is a linear approach for modeling the relationship between 

dependent variables and one-dimensional or multi-dimensional independent variables. It is 

well-known that the regression model produces numeric results, which is usually 

augmented by the confidence interval or prediction interval. The confidence interval 

displays the (1 − 𝛼)% upper and lower confidence limits for the expected value of the 

predicted regression results, while the prediction interval [58]–[60] requests the (1 − 𝛼)% 

upper and lower confidence limits for an individual predicted regression value with 𝛼 

being the confidence level. Thus, with the increase of 𝛼, the intervals become narrow. To 

make it easy to follow, we show a regression problem with one-dimensional data, 

(𝑥𝑘, 𝑦𝑘), 𝑘 = 1,2, … , 𝑁. The linear regression model is defined as �̂� = 𝛽𝑥, where 𝛽 is a 
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constant value estimated from the data. Denote the numeric result of the model by �̂�. Thus, 

the confidence interval is expressed by [61] 

�̂� ± 𝑡𝑁−1
𝛼 2⁄

𝜎𝑦√
1

𝑁
+

(𝑥 − �̅�)2

(𝑁 − 1)𝜎𝑥
2

(26) 

and the prediction interval is 

�̂� ± 𝑡𝑁−1
𝛼 2⁄

𝜎𝑦√1 +
1

𝑁
+

(𝑥 − �̅�)2

(𝑁 − 1)𝜎𝑥
2

(27) 

where 𝜎𝑥  and 𝜎𝑦  are the standard deviations of x and y, respectively, 𝑡  denotes 𝑡 -

distribution and �̅� is the mean value of the input. In Figure 2.3, the solid curve is the 

confidence interval, the dashed curve is the prediction interval, and the star describes the 

position of the mean value of x. It is easy to conclude that the prediction interval is wider 

than the confidence interval and both intervals become narrow when the corresponding 𝑥 

is close to �̅�. 

 

Figure 2.3 Confidence and prediction interval as a function of x. Solid curve: confidence bounds, 

dashed curve: prediction bounds. 
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2.5 Particle swarm optimization  

Particle Swarm Optimization (PSO) was proposed by Eberhart and Kennedy in 1995 [62]. 

It is a stochastic optimization technique based on the movement of swarms, observing and 

imaging the effect of the information held by individuals on the population. Suppose that 

we have a swarm of particles of size N moving around in the domain. Each particle is 

characterized by its own position and velocity. A fitness function is used to describe the 

goodness of the position of the particle. There is an example in Figure 2.4, the PSO 

algorithm is introduced to find the maximum value of the function 𝑦 = 𝑒−
(𝑥1−0.5)2

2
−

(𝑥2−0.5)2

2 . 

 

Figure 2.4 Fitness function. 

 

The detailed process of the PSO algorithm is as follows. In the search space, for the i-th 

particle, its position and velocity are 𝒑𝒐𝑖 and 𝒗𝒆𝑖, respectively. The particle comes with its 
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personal best position visited so far (namely, 𝒑𝒃𝒆𝒔𝒕𝑖) and the global best position within 

the entire swarm (namely, 𝒈𝒃𝒆𝒔𝒕). Then the velocity and position are updated in the 

following form: 

For updated velocity: 

𝒗𝒆𝑖
𝑘 = 𝜆𝒗𝒆𝑖

𝑘−1 + 𝑐1𝒓1(𝒑𝒃𝒆𝒔𝒕𝑖
𝑘−1 − 𝒑𝒐𝑖

𝑘−1) + 𝑐2𝒓2(𝒈𝒃𝒆𝒔𝒕𝑘−1 − 𝒑𝒐𝑖
𝑘−1) (28) 

where 𝑖 = 1,2, … ,𝑁, the multiplication of vectors is completed coordinatewise. 

The position is updated as follows: 

𝒑𝒐𝑖
𝑘 = 𝒑𝒐𝑖

𝑘−1 + 𝒗𝒆𝑖
𝑘−1 (29) 

The position is clipped in the search space. For instance, in Figure 2.4, the range is [0,1]. 

In (28) (29), k stands for the index of iterations; i is the index number of the particle; 𝜆 is 

the non-negative inertia weight and 𝑐1  and 𝑐2  are the acceleration constants used for 

adjusting the learning rate; 𝒓1  and 𝒓2  are the random vectors being generated by the 

uniform distribution over [0,1]. The updates of velocity and position as described by (28)-

(29) are carried out until the global best position has been achieved. 

 

The biggest advantage of the PSO lies in its simplicity and effectiveness. Compared with 

some traditional optimization algorithms, such as gradient descent, the PSO optimization 

is completed by searching the space without computing the gradients, which makes it easy 

to optimize complex problems, especially the non-differentiable or non-continuous 

problems. The Genetic algorithm (GA) is another optimization algorithm similar to PSO, 

both of which simulate the fitness of individual populations on the basis of natural 

characteristics. The GA algorithm is used to find the optimum solution with a series of 

evolution operations, such as crossover and mutation. 
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In addition, there are some studies on the improvement of the PSO algorithm. For example, 

the Elite Particle Swarm Optimization with Mutation (EPSOM) is proposed in [63], where 

the bad particles are replaced by the same number of elite particles, generating a new swarm. 

Another improved PSO is proposed by integrating the particle swarm optimizer, dynamic 

linkage discovery, and recombination operator, called particle swarm optimization with 

recombination and dynamic linkage discovery (PSO-RDL) [64]. Now the improved PSO 

algorithm has been commonly used to solve optimization problems [65]–[76]. The PSO-

XGboost model is proposed to improve the classification accuracy of the model [77]. The 

PSO algorithm used in the density peaks clustering improves the global search ability of 

the classifier [78]. The combination of Particle Swarm Optimization and Support Vector 

Machine (PSO-SVM) is developed for damage identifications. The proposed approach is 

inspired by the effective searching capability of PSO, which can eliminate the redundant 

input parameters and a robust SVM technique is used to classify damage locations 

effectively [79]. 

2.6 Concentration effect 

The curse of dimensionality was first proposed by Bellman [80], which is a general term 

associated with high-dimensional data. Typically, the curse of dimensionality includes 

concentration effects, combination explosions, etc. The concentration effect means that in 

a high-dimensional space, the difference in distance between data points tends to become 

smaller. To make it easy to follow, we elaborate upon an experiment with uniformly 

distributed random numbers in the range of [0,1] (with different dimensions). In the 

experiment, we compute the distances between any two data points, as shown in the 

following figure. The x-coordinate is the value of distance and y-coordinate shows the 
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number of the data pairs generating the corresponding distance. It is obvious that with the 

increase of the dimensionality, the spread of distances between any two data points 

becomes concentrated, losing the diversity, resulting in high data similarity. 

 

Figure 2.5 The distribution of distances for various number of variables. 

 

2.7 Performance indexes 

In view of the numeric results of the rule-based models, the evaluation criteria (Root Mean 

Squared Error) RMSE [81] is commonly used: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − �̂�𝑘)2

𝑁

𝑘=1

(30) 

The other commonly used alternatives are Mean Squared Error (MSE) [82]: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − �̂�𝑘)

2

𝑁

𝑘=1

(31) 
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Both RMSE and MSE can intuitively show the error between the predicted value and the 

actual value. In addition, Mean Absolute Error (MAE) [83] is a measure of errors between 

paired observations expressing the same phenomenon 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − �̂�𝑘|

𝑁

𝑘=1

(32) 

and R Squared 𝑅2 [84] is a statistical measure that represents the proportion of the variance 

for a dependent variable, that is explained by an independent variable or variables in a 

regression model. 

𝑅2 = 1 −
𝑀𝑆𝐸(𝑡𝑎𝑟𝑔𝑒𝑡, �̂�)

𝑣𝑎𝑟(𝑡𝑎𝑟𝑔𝑒𝑡)
(33) 

The evaluation criteria are close to each other, exhibiting no essential difference. Thus we 

just use RMSE as the criterion to measure the difference between the original output and 

numeric results. 

2.8 Conclusions 

In this section, fuzzy rule-based models and clustering are introduced which are the basic 

models and algorithms of this research. Besides, the concentration effect is described. 

Subsequently, the concept of granularity is used for granulating the model for evaluation, 

and an advanced decision-making model based on granulation is developed. Then we 

briefly introduce the prediction interval. Intervals are used to enhance the performance of 

our models. Finally, the basic principles and development of particle swarm optimization 

(PSO) are explained and the performance indexes are introduced to optimize and evaluate 

the model. 
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Chapter 3. Enhancement of rule-based models—

designing distributed models  

When it comes to the large or high-dimensional data, the problem concentration effect 

arises, see Section 2.6. The distributed rule-based models can avoid the appearance of them, 

since for the distributed low-dimensional data, a clustering algorithm works well. The term 

distributed fuzzy rule-based models can be found in the literature [85]–[88]. Especially the 

work in [86] proposes a distributed fuzzy decision tree learning scheme to generate binary 

and multiway fuzzy decision trees from dataset following the MapReduce programming 

model. In this study, the proposed distributed rule-based model architecture is that the 

combination of membership grades as input is transformed to output space through the 

optimization of the linkage matrix or both a linkage matrix and prototypes of the output 

part. Also, the development of the model is completed in a supervised mode in the presence 

of input-output pairs of data (𝒙𝑘, 𝑡𝑎𝑟𝑔𝑒𝑡𝑘) mentioned as before. The performance index Q 

expressing the quality of the model is shown in Section 2.7. 

3.1 Distributed rule-based model and its development 

In anticipation of dealing with a large number of input variables, our intent is to develop a 

single input rule-based model associated with a minimal design effort, implying a minimal 

computing overhead. Such models (more specifically, their condition parts) will be used as 

the components of the distributed fuzzy model. 

 

We consider c rules with the simplest form of the conclusion part (0th order TS model), see 

equation (10). The design of the rules (viz. their condition and conclusion parts) can be 
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realized in various ways depending upon the involvement of the optimization mechanisms. 

A concise summary of the existing alternatives is presented in Table 3.1. 

Table 3.1 Development strategies of one-dimensional rule-based model. 

Condition/conclusion 

Conclusion 

(no optimization) 

Conclusion (optimization) 

Condition (no 

optimization) 

uniformly distributed 

membership functions in the 

input space and uniformly 

distributed numeric 

representatives in the output 

space 

uniformly distributed 

membership functions in the 

input space and optimization 

of numeric representatives in 

the output space (e.g., through 

clustering) 

Condition (optimization) 

optimized membership 

functions in the input space 

(e.g., obtained through 

clustering) and uniformly 

distributed numeric 

representatives in the output 

space 

Combined optimization of the 

membership functions and 

numeric representatives in the 

output space (e.g., through 

fuzzy clustering applied to 

data in both spaces) 

In the first variant identified in Table 3.1, no optimization schemes have been engaged. 

The fuzzy sets formed in the input space have triangular membership functions uniformly 

distributed across the input space. The conclusion part is formed as taking the weighted 

outputs that fall within the realm of the corresponding fuzzy set in the input space. In other 

words, the constant result is a context-dependent (conditional) average of 𝑦𝑘  computed 

within the context expressed by 𝐴𝑖. It is worth noting that in this way of building the rules, 

from the input-output perspective, the fuzzy rule-based model realizes a piecewise linear 
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mapping. One may anticipate that with the increase in the number of rules, this 

approximation produces better results in terms of smaller values of Q. The number of rules 

c can be selected by observing the change of Q regarded as a function of c: we determine 

such a number copt when a further increase in the number of rules does not result in 

significant improvements of the model. In other words, Q decreases with the increase of c, 

but once c becomes bigger than copt, Q decreases slightly, e.g. 𝑄(𝑐𝑜𝑝𝑡 + 1)/𝑄(𝑐𝑜𝑝𝑡) → 1. 

Using 𝑄(𝑐𝑜𝑝𝑡 + 1)/𝑄(𝑐𝑜𝑝𝑡) with fixed 𝜏 such that we can obtain a more precise value of 

copt than plotting Q as a function of c. Once copt has been determined, further calculations 

for the higher number of clusters are not considered, which contributes to a reduced 

computing overhead. In a quantitative way, we consider the ratio 𝑄(𝑐 + 1)/𝑄(𝑐), trace its 

values over successive values of c and determine the smallest c for which the following 

relationship holds 

𝑄(𝑐 + 1)/𝑄(𝑐) < 𝜏, 𝜏 < 1 (34) 

where 𝜏 is a certain threshold whose value has been predefined. When it comes to the 

optimization alternatives outlined in Table 3.1, the refinements of the membership 

functions in terms of their shapes and parameters are considered. They typically engage 

the clustering of input and output data. It is likely that such models could (will) result in 

better performance, however some computing overhead is encountered. As usual, one 

needs a critical assessment of the gains in the performance and the associated optimization 

effort. 
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We also consider two-input distributed rule-based models [89], [90], where the rules are 

constructed in the same way as their single-input computation process. Note that now the 

number of rules is 𝑐2 in comparison with 𝑐 rules for single input models. 

3.2 From local models to a global model 

We are concerned with a distributed collection of data in the sense that individual data are 

described in the individual feature spaces F1, F2, …, Fr. These feature spaces can be 

disjoint or overlap. In particular, the spaces could be one-dimensional, i.e., card (Fi) =1. 

The buildup of such one-dimensional models is motivated by some experimental findings 

reported in [91]. The architecture is composed of several main functional modules as 

outlined in Figure 3.1. 

 

Figure 3.1 Overall architecture of distributed rule-based model. 

 

A. Construction of combined vector of membership grades 

The condition parts (fuzzy sets) defined in one-dimensional input spaces transform any 

scalar input into a vector of membership grades; this is done individually for each variable. 

The number of fuzzy sets in these spaces is determined following the procedure described 
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in Section 3.1. Thus, we obtain vectors of membership grades of dimensionality of 

𝑐1, 𝑐2, . . . , 𝑐𝑟  respectively. Denote these vectors as 𝒖1, 𝒖2, . . . , 𝒖𝑟 .  Let 𝑐′ = ∑ 𝑐𝑖
𝑟
𝑖=1 .  We 

concatenate these vectors into a single c’-dimensional vector 𝒖,  i.e., 𝒖 =

[𝒖1 𝒖2 ⋯ 𝒖𝑖 ⋯ 𝒖𝑟]𝑇. For two-input rule-based models, we obtain the vectors of 

membership grades 𝒖1, 𝒖2, . . . , 𝒖𝑟  from the corresponding feature space with the 

dimensionality of 𝑐1
2, 𝑐2

2, . . . , 𝑐𝑟
2 respectively; thus we have 𝑐′ = ∑ 𝑐𝑖

2𝑟
𝑖=1 . 

 

Transformation of membership grades through a linkage matrix to the output space. 

Before proceeding with the detailed formulas, we introduce a concise matrix notation, 

𝑊 = [

𝑤11 𝑤12 ⋯ 𝑤1𝑐′

𝑤21 𝑤22 ⋯ 𝑤2𝑐′

⋮ ⋮ ⋱ ⋮
𝑤𝑐1 𝑤𝑐2 ⋯ 𝑤𝑐𝑐′

]𝑈 = [

𝑢11 𝑢12 ⋯ 𝑢1𝑁

𝑢21 𝑢22 ⋯ 𝑢2𝑁

⋮ ⋮ ⋱ ⋮
𝑢𝑐′1 𝑢𝑐′2 ⋯ 𝑢𝑐′𝑁

] (35) 

Then the mapping from the c’–dimensional vector of membership degrees positioned in 

the input space to the output space is completed in the following standard manner 

�̂�𝑘 = ∑𝑑𝑖𝑘�̄�𝑖

𝑐

𝑖=1

(36) 

where �̄�𝑖  is the numeric representative (see Section 3.1) in the output space; 𝑑𝑖𝑘  is 

computed with the aid of the linkage (association) matrix W as follows: 

𝑑𝑖𝑘 = ∑𝑢𝑗𝑘𝑤𝑖𝑗

𝑐′

𝑗=1

(37) 

where 𝑢𝑗𝑘  and 𝑤𝑖𝑗 , 𝑖 = 1,2, . . . , 𝑐 , are the corresponding elements in (35). In a matrix 

notation, one has 

𝑑 = 𝑊𝑢 (38) 
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Thus, d becomes a linear combination of u and some unknown W, where u stands for the 

corresponding column of matrix U. 

3.3 Design of the distributed rule-based model 

In the process of designing the model, we are concerned with the determination of the 

linkage matrix W and the collection of prototypes in the output space. We assume that the 

prototypes in the individual input space are formed as discussed in Section 3.1. 

 

A. Optimization of the linkage matrix 

The prototypes (representatives) located in the output space are formed by being uniformly 

distributed across the output space. Here we envision building c-2 clusters. We also add 

the extreme values encountered in the output space; in total this yields c prototypes; denote 

them as �̄�1,�̄�2, . . . , �̄�𝑐 , where �̄�1  is the minimal value of the output data and �̄�𝑐  is the 

maximal value of the output data. �̄�2, . . . , �̄�𝑐−1 are distributed in a uniform way. 

 

The objective is to minimize the sum of distances between 𝑡𝑎𝑟𝑔𝑒𝑡𝑘 and �̂�𝑘, 𝑘 = 1,2, . . . , 𝑁, 

with respect to the unknown matrix of linkages (associations) W, namely 

𝑄(𝑊) = ∑(𝑡𝑎𝑟𝑔𝑒𝑡𝑘 − �̂�𝑘)
2

𝑁

𝑘=1

(39) 

and 

𝑊𝑜𝑝𝑡 = 𝑎𝑟𝑔(𝑚𝑖𝑛𝑊 𝑄 (𝑊)) (40) 

Let us proceed with the detailed estimation process. The original output data, output of the 

model and the numeric prototypes are arranged in the following vector format 
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𝒕𝒂𝒓𝒈𝒆𝒕 = [

𝑡𝑎𝑟𝑔𝑒𝑡1
𝑡𝑎𝑟𝑔𝑒𝑡2

⋮
𝑡𝑎𝑟𝑔𝑒𝑡𝑁

] , �̂� = [

�̂�1

�̂�2

⋮
�̂�𝑁

] , �̄� = [

�̄�1

�̄�2

⋮
�̄�𝑐

] (41) 

Furthermore, using the matrix notation (35), one has �̂� = (𝑊𝑈)𝑇�̄�. Next, we rewrite the 

optimization problem (39) in the following concise format 

𝑚𝑖𝑛𝑊‖𝒕𝒂𝒓𝒈𝒆𝒕 − �̂�‖2 = 𝑚𝑖𝑛𝑊( 𝒕𝒂𝒓𝒈𝒆𝒕 − (𝑊𝑈)𝑇�̄�)𝑇(𝒕𝒂𝒓𝒈𝒆𝒕 − (𝑊𝑈)𝑇�̄�) (42) 

Proceeding with the detailed calculations, one has 

‖𝒕𝒂𝒓𝒈𝒆𝒕 − �̂�‖2 = 𝒚𝑇𝒕𝒂𝒓𝒈𝒆𝒕 + (�̄�𝑇𝑊𝑈𝑈𝑇𝑊𝑇�̄�) − (�̄�𝑇𝑊𝑈)𝒕𝒂𝒓𝒈𝒆𝒕

−𝒕𝒂𝒓𝒈𝒆𝒕𝑇(𝑈𝑇𝑊𝑇�̄�) (43)
 

Taking the gradient of (43), we have the following expression 

𝛻𝑊‖𝒕𝒂𝒓𝒈𝒆𝒕 − �̂�‖2 = 2�̄��̄�𝑇𝑊𝑈𝑈𝑇 − 2�̄�𝒕𝒂𝒓𝒈𝒆𝒕𝑇𝑈𝑇 = 0 (44) 

Finally, the analytical solution to (44) comes in the form 

2�̄��̄�𝑇𝑊𝑜𝑝𝑡𝑈𝑈𝑇 = 2�̄�𝒕𝒂𝒓𝒈𝒆𝒕𝑇𝑈𝑇

𝑊𝑜𝑝𝑡 = (�̄��̄�𝑇)−1�̄�𝒕𝒂𝒓𝒈𝒆𝒕𝑇𝑈𝑇(𝑈𝑈𝑇)−1 (45)
 

 

B. Optimization of the linkage matrix and prototypes in the output space 

To design the distributed model, we also consider another alternative, where both the 

linkage matrix W and the vector of prototypes �̄� are optimized, namely Q is a function of 

W and �̄�; the minimum of Q with respect to �̄� is expressed as 

𝑚𝑖𝑛�̄�‖𝒕𝒂𝒓𝒈𝒆𝒕 − �̂�‖2 = 𝑚𝑖𝑛�̄�( 𝒕𝒂𝒓𝒈𝒆𝒕 − (𝑊𝑈)𝑇�̄�)𝑇(𝒕𝒂𝒓𝒈𝒆𝒕 − (𝑊𝑈)𝑇�̄�) (46) 

where W and U are defined in (35). By using the notation 𝐴 = 𝑊𝑈, we have 

(𝒕𝒂𝒓𝒈𝒆𝒕 − (𝑊𝑈)𝑇�̄�)𝑇(𝒕𝒂𝒓𝒈𝒆𝒕 − (𝑊𝑈)𝑇�̄�) = (𝒕𝒂𝒓𝒈𝒆𝒕 − 𝐴𝑇�̄�)𝑇(𝒕𝒂𝒓𝒈𝒆𝒕 − 𝐴𝑇�̄�)

= 𝒕𝒂𝒓𝒈𝒆𝒕𝑇𝒕𝒂𝒓𝒈𝒆𝒕 + (�̄�𝑇𝐴𝐴𝑇�̄�) − (�̄�𝑇𝐴)𝒕𝒂𝒓𝒈𝒆𝒕 − 𝒕𝒂𝒓𝒈𝒆𝒕𝑇(𝐴𝑇�̄�) (47)
 

The gradient of (47) is 
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𝛻�̄�(𝑦 − 𝐴𝑇�̄�)𝑇(𝒕𝒂𝒓𝒈𝒆𝒕 − 𝐴𝑇�̄�) = 2𝐴𝐴𝑇�̄� − 2𝐴𝒕𝒂𝒓𝒈𝒆𝒕 = 0 (48) 

Proceeding with details, one has 

𝐴𝐴𝑇�̄�𝑜𝑝𝑡 = 𝐴𝒕𝒂𝒓𝒈𝒆𝒕

�̄�𝑜𝑝𝑡 = (𝐴𝐴𝑇)−1𝐴𝒕𝒂𝒓𝒈𝒆𝒕

�̄�𝑜𝑝𝑡 = (𝑊𝑈(𝑊𝑈)𝑇)−1(𝑊𝑈)𝒕𝒂𝒓𝒈𝒆𝒕 (49)

 

As W and �̄� are subject to the optimization of Q(W,�̄�), the formulas (45) and (49) are used 

iteratively by proceeding with some initial condition, considering a uniformly distributed 

output prototypes, and successively updating the values of W and �̄�. 

 

In what follows, we present a general process to build the construction of the distributed 

models. 

1. for variable (feature)= 1 to r (r is the number of variables) 

 { 

 for cluster (c)= the range of clusters 

 { 

 Generate c prototypes uniformly distributed, calculate the corresponding 

triangular membership grades u, and calculate the corresponding �̄� so that 

𝑄(𝑐) = ‖𝑢𝑇�̄� − 𝑡𝑎𝑟𝑔𝑒𝑡‖ is obtained. 

 } 

 Using the ratio 𝑄(𝑐 + 1)/𝑄(𝑐) < 𝜏  to determine optimal c and the 

corresponding u and �̄�. 

 } 

2. Based on step 1, we obtain u and c for each variable; then we combine all u into U 

and generate the prototypes (�̄� ) of output space uniformly distributed across the 

output space where the number of prototypes we set to the mean of all c, through 

formula (41) to determine the linkage matrix W. 

3. 𝑄 = ‖𝑈𝑇𝑊𝑇�̄� − 𝑡𝑎𝑟𝑔𝑒𝑡‖. 
 

C. Computing overhead 
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The analysis of computing complexity encounters two main calculation procedures, 

namely fuzzy clustering and matrix inversions. Two extreme situations (a monolithic 

model and a family of one-dimensional rule-based models) are investigated. The time 

complexity predominantly associated with the fuzzy clustering [92] is 𝑂(𝑐2𝑁𝑛𝐼), where I 

is the number of iterations of the clustering method (in the case of the monolithic fuzzy 

model) and for matrix inversion, the associated complexity is 𝑂(𝑐′3) + 𝑂(𝑐3) [26], where 

usually 𝑐′ ≫ 𝑐 holds in the case of distributed rule-based models. 

3.4 Experimental studies 

The experimental studies reported in this section are concerned with the publicly available 

data from https://archive.ics.uci.edu/ml/datasets.php, https://datahub.io/m-achine-learning, 

https://sci2s.ugr.es/keel/semisupervised.php and https://www.kaggle.com/. The objective 

is to quantify the performance of the model and deliver some comparative analysis 

involving a monolithic multivariable fuzzy model by contrasting the performance 

expressed in terms of the corresponding RMSE values and the development time. The 

experiments were carried out on a PC with AMD Ryzen Threadripper 2990WX 32-Cores 

64-Threads 3.5GHz CPU and 64GB RAM running the MATLAB 2019a in the same 

environment. The experiment is repeated 30 times provided that the data are split into the 

training and testing sets (70-30% split), and both the average values of the performance 

index and their associated standard deviations are reported. 

 

The monolithic approach is based on the FCM algorithm which is used in its generic 

version with the weighted Euclidean distance (including the variance of the variables as 

the weights) while the fuzzification coefficient is set to 2.0. The concatenated input-output 
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variables are clustered. The algorithm runs for 1,000 iterations; it has been found that this 

number of iterations is sufficient for the method to converge. Besides, in the monolithic 

fuzzy rule-based model (the same structure shown in (9)), the condition part 𝐴𝑖 comes from 

partition matrix in the FCM algorithm and 𝐿𝑖 comes from the prototype �̄�𝑖 in the output 

space produced by the FCM algorithm. For the one-dimensional models with the optimal 

matrix W, we determine the number of rules based on (34) with the value of τ set to 0.95. 

When the one-dimensional models contain two parameters (the matrix W and vector �̄�), 

we use iterate formula (45) and (49) 100 times. 

 

Crop Data Challenge 2018 (Maize) (no. #3394, 58 including 57 input variables) 

(https://www.kaggle.com/). 

First, we focus on the experiment involving one-dimensional rule-based models. To build 

a collection of 57 single input models, we determine the number of rules and the obtained 

results are displayed in Figure 3.2. The constants in the corresponding conclusions are 

generated by (10). The corresponding values of the performance index (RMSE) are 

included in Figure 3.3(b). There is a quite visible difference between the number of rules 

for each model ranging from three to eight. The average number of rules is five. As the 

triangular fuzzy sets are used, the input-output characteristics are piecewise linear. The 

plots of them with superimposed data for the best single input model (the 13th variable) and 

the worst single input model (the 2nd variable) are included in Figure 3.3, where the 

piecewise linear nature of the mapping is visible. 
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As a matter of curiosity, we also design the single-input rules by invoking the optimization 

mechanism of the FCM clustering with the fuzzification coefficient set to two. The input-

output data are clustered, yielding pairs of prototypes in the input and output space, 

respectively. The constant conclusions are the prototypes generated by the clustering 

algorithm. Consider two variables: the 13th one and the 2nd one; the corresponding RMSE 

values are displayed in Figures 3.4 (a) and (b). 

 

 (a)  (b)  

Figure 3.2 Average performance index for single input rule-based models: (a) optimal number of 

rules (b) corresponding values of RMSE index. 

 

 

 (a)  (b)  

Figure 3.3 Input-output plots of one-dimensional models with superimposed data, where the stars 

are the original points and the piecewise linear is described in the right bottom part: (a) the 13th 

variable (b) the 2nd variable. 



 39 

 

 

 (a)  (b)  

Figure 3.4 RMSE values versus c for the rule-based model obtained for the (a) the 13th variable 

and (b) the 2nd variable. 

 

Realizing the distributed models (with the value of 𝑐 = 3,4, . . . ,8  for one-dimensional 

model and 𝑐 = 3 for two-input model), the obtained results for Crop Data Challenge 2018 

dataset are covered in Table 3.2. Both the RMSE values and the computing times are 

presented. The monolithic model is run for several selected values of c such as the minimal, 

maximal and average ones. 

Table 3.2 RMSE obtained for the distributed rule-based model and the monolithic rule-based 

model involving selected numbers of their rules. 

 
Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

Monolithic model 

𝑚𝑖𝑛( 𝑐𝑟) =3 mean(𝑐𝑟) =5 𝑚𝑎𝑥( 𝑐𝑟) =8 

Qtrain 
0.4639± 

0.0056 

0.4667± 

0.0055 

0.6038± 

0.0105 

2.2932± 

0.4905 

2.2310± 

0.2038 

2.0484± 

0.2737 

Qtest 
0.6313± 

0.0390 

0.6159± 

0.0285 

0.9026± 

0.0453 

2.3041± 

0.5114 

2.2314± 

0.2053 

2.0613± 

0.2791 

T(sec) 0.0423s 3.9345s 0.0660s 0.6070s 6.6957s 10.7159s 

* Distributed model 1 is one-dimensional rule-based model with optimal linkage matrix W.  
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* Distributed model 2 is one-dimensional rule-based model with optimal linkage matrix W 

and prototypes �̄�𝑖 of output space. 

 

To contrast the results for the individual data, the values of squared differences are 

displayed in the form of the radar plot, as shown in Figure 3.5 (as the number of data is 

large, here we only show the first 360 data points). 

 

 (a)  (b)  

 

 (c)  (d)  (e)  

Figure 3.5 Radar plot of errors shown for the individual data (testing set); the circle is the average 

value of error. (a) distributed one-dimensional model (b) two-input rule-based model; monolithic 

model: (c) c=3, (d) c=5, and (e) c=8. 

 

The experiments are completed for the datasets shown in Table 3.3. 
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Table 3.3 Dataset information. 

Dataset number of data dimensionality 

Wine Quality 1,599 13 

Electrical Grid stability simulated 10,000 14 

Appliances energy prediction 19,735 26 

Concrete Compressive Strength 1,030 9 

Satimage 6,435 36 

Texture 5,500 40 

 (a), (b), (c), (d) come from (https://archive.ics.uci.edu/ml/datasets.php), while (e) comes 

from (https://datahub.io/machine-learning), and (f) is from 

(https://sci2s.ugr.es/keel/semisupervised.php). RMSE values and resulting computing 

overhead are shown Table 3.4. Based on the experimental results produced for one-

dimensional rule-based models, one can conclude that the distributed model performs 

better than the monolithic model in terms of the values of the performance index and the 

associated computing overhead. When it comes to single-input or two-input distributed 

models, the corresponding values Q are close to each other, however, the performance of 

a single-input distributed model is the better one for all datasets except for the Electrical 

grid stability dataset. 

 

  



 42 

Table 3.4 RMSE for the distributed and monolithic rule-based model involving selected numbers 

of rules.  

 
Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

(c=3) 

Monolithic model 

min( 𝑐𝑟) =3 mean(𝑐𝑟) =5 max( 𝑐𝑟) =8 

Qtrain 
0.6117± 

0.0111 

0.6114± 

0.0077 

0.6337± 

0.0096 

0.9300± 

0.1343 

0.9329± 

0.1718 

0.9965± 

0.1699 

Qtest 
0.7832± 

0.4430 

0.7250± 

0.1540 

0.8902± 

0.0102 

0.9313± 

0.1316 

0.9364± 

0.1865 

1.0022± 

0.1797 

T(sec) 0.0050s 0.3203s 0.0112s 0.0776s 0.1215s 0.2976s 

(a) 

 
Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

(c=3) 

Monolithic model 

min( 𝑐𝑟) =3 mean(𝑐𝑟) =4 max( 𝑐𝑟) =9 

Qtrain 
0.0171± 

1.147e-4 

0.0172± 

9.9405e-5 

0.0167± 

6.8289e-5 

0.0379± 

7.1544e-4 

0.0375± 

6.0172e-4 

0.0374± 

3.4394e-4 

Qtest 
0.0173± 

2.159e-4 

0.0172± 

2.1961e-4 

0.0169± 

1.6159e-4 

0.0382± 

6.5696e-4 

0.0376± 

5.9866e-4 

0.0375± 

5.0096e-4 

T(sec) 0.0081s 0.8020s 0.0112s 3.8997s 8.6779s 14.7697s 

(b) 

 
Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

(c=3) 

Monolithic model 

min( 𝑐𝑟) =3 mean(𝑐𝑟) =7 max( 𝑐𝑟) =9 

Qtrain 
14.4411± 

0.0304 

14.4439± 

0.0324 

14.4443± 

0.0309 

17.9374± 

0.4089 

17.3980± 

0.3773 

16.9975± 

0.4646 

Qtest 
14.5580± 

0.0729 

14.5604± 

0.0697 

14.6126± 

0.0704 

17.9375± 

0.3882 

17.4226± 

0.3813 

16.9963± 

0.4405 

T(sec) 0.0558s 7.4562s 0.0822s 2.3861s 6.5639s 29.0864s 

(c) 
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Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

(c=3) 

Monolithic model 

min( 𝑐𝑟) =3 mean(𝑐𝑟) =6 max( 𝑐𝑟) =8 

Qtrain 
6.1375± 

0.1630 

6.0964± 

0.1515 

7.9323± 

0.1313 

19.4042± 

2.0824 

19.6644± 

3.2476 

18.6308± 

2.0706 

Qtest 
11.4269± 

1.5050 

10.4462± 

1.3412 

12.0546± 

1.1059 

19.5849± 

2.3595 

19.7241± 

3.5755 

18.7089± 

1.9708 

T(sec) 0.0021s 0.1454s 0.0023s 0.0685s 0.1876s 0.2586s 

(d) 

 
Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

(c=3) 

Monolithic model 

min( 𝑐𝑟) =3 mean(𝑐𝑟) =7 max( 𝑐𝑟) =9 

Qtrain 
19.1414± 

0.5748 

18.0270± 

0.9805 

19.2766± 

0.4256 

33.2661± 

11.0861 

36.1910± 

6.4121 

36.3031± 

6.7764 

Qtest 
19.5449± 

1.3399 

18.5377± 

1.0204 

20.6933± 

1.4696 

33.2979± 

11.0444 

36.5775± 

6.1629 

36.5870± 

7.1875 

T(sec) 0.0420s 4.7678s 0.0373s 0.8106s 6.1633s 25.0040s 

(e) 

 
Distributed 

model 1* 

Distributed 

model 2* 

Two input 

feature space 

(c=3) 

Monolithic model 

min( 𝑐𝑟) =6 mean(𝑐𝑟) =8 max( 𝑐𝑟) =9 

Qtrain 
0.0123± 

1.2783e-4 

0.0123± 

1.2463e-4 

0.0134± 

0.4256 

0.5830± 

0.0303 

0.5801± 

0.0271 

0.5810± 

0.0301 

Qtest 
0.2489± 

0.6031 

0.1645± 

0.4877 

0.3066± 

1.4696 

0.5841± 

0.0318 

0.5802± 

0.0277 

0.5824± 

0.0305 

T(sec) 0.0536s 5.8437s 0.0530s 3.5084s 9.7296s 12.4635s 

(f) 

* Distributed model 1 is one-dimensional rule-based model with optimal linkage matrix W.  

* Distributed model 2 is one-dimensional rule-based model with optimal linkage matrix W 

and prototypes �̄�𝑖of output space. 
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Table 3.5 Improvement (RMSE) of distributed one-dimensional rule-based model 1 (compared to 

entire feature space) for testing data. 

dataset 

% improvement 

 min(c) average(c) max(c) 

Crop Data Challenge 2018 

(Maize) 

Qtest 72.60% 71.71% 69.37% 

Time 93.03% 99.37% 99.61% 

Wine Quality 

Qtest 15.90% 16.36% 21.85% 

Time 93.56% 95.88% 98.32% 

Electrical Grid stability 

simulated 

Qtest 54.71% 53.99% 53.87% 

Time 99.79% 99.91% 99.95% 

Appliances energy 

prediction 

Qtest 18.84% 16.44% 14.35% 

Time 97.66% 99.15% 99.81% 

Concrete Compressive 

Strength 

Qtest 41.65% 42.07% 38.92% 

Time 96.93% 98.88% 99.19% 

Satimage 

Qtest 41.30% 46.57% 46.58% 

Time 94.82% 99.32% 99.83% 

Texture 

Qtest 57.39% 57.10% 57.26% 

Time 98.47% 99.45% 99.57% 

 

We also do the experiments for Condition monitoring of hydraulic systems CE Dataset. 

Compared with the monolithic model with average c, the distributed model improves 63.3% 

for testing results and 96.2% of computing overhead. 

 

Higher-dimensional models (say, those involving pairs of input variables) are constructed 

in an analogous manner as in the case of single input models. One has become of the fact 
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of the rapid increase of the number of rules. For instance, for a two-dimensional input space 

and ci fuzzy sets distributed across the individual variables, one encounters ci
2 rules in 

comparison with ci rules present in the one-dimensional model. This gives rise to the 

increasing dimensionality of the combined vector of membership degrees used in the 

construction of the linkage matrix W. 

 

In summary, the distributed rule-based models produce visible improvements for all 

datasets, especially the improvement expressed in terms of the resulting computing 

overhead. For most datasets, the distributed rule-based model with the optimal linkage 

matrix and prototypes in the output space shows improvement over the performance 

achieved when only the linkage matrix has been optimized. 

 

As for the monolithic models, there is an optimal value of the number of clusters for each 

dataset. However, when we compare the result of the monolithic model performed with the 

optimal cluster to that of the distributed models, the former model is worse by 15.90%. 

Distributed models exhibit good performance for all datasets in the experiments, especially 

for the Crop Data Challenge 2018 data which contains 57 inputs. This particular data 

demonstrates that a monolithic model is not suitable for high-dimensional data. 

 

Then we show the comparison between the FDSS algorithm in [93] and the distributed 

models in our paper, where data we use are Wine and WDBC. 
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Table 3.6 Accuracy (%) obtained for the distributed rule-based model and FDSS. 

 Distributed model 1* FDSS 

Wine 56.54±0.08 55.82±3.17 

WDBC 98.97±0.03 92.09±6.7 

Through comparing the accuracy for these two methods, it is transparent that the distributed 

model performs better, especially for WDBC data; our distributed model improves the 

performance by 7.5%. 

 

In addition, we also added the experiment of distributed model based on PSO algorithm, 

that is, we do the experiments as before. For each feature space, when a fuzzy rule-based 

model is used, we need to generate the prototypes and then calculate the membership 

grades for the condition part. In our paper, we mentioned that the prototypes are generated 

by uniformly distribution, but for the distributed model with PSO algorithm. The difference 

is that prototypes are obtained by the PSO algorithm by minimizing the objective function 

(error between original and model output). The performance index and the computing 

overhead are computed for some datasets, where the resulting performance (the average 

result values of all feature spaces) is a function of the number of clusters. Compared with 

the distributed model, for Crop Challenge Data, the distributed model designed with the 

PSO algorithm gives the largest improvement of the performance index at the level of 

0.86%. However, the computing overhead increases 366 times. As for the Wine Quality 

data, the performance index improves by 2.82% and the running time has the 262-fold 

increased overhead. 
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From the above comparisons, we conclude that once the PSO algorithm has been added, 

no matter what the number of the cluster is selected, the resulting RMSE is slightly better 

than the one obtained for the distributed model. However, the computing overhead is 

substantially increased. 

3.5 Conclusions 

This study has focused on the development of distributed fuzzy rule-based models. The 

presence of high-dimensional data calls for a change in the design strategy by moving from 

the monolithic nature of the model to a distributed form of the architecture composed of a 

number of models of low dimensionality. In particular, the distributed architecture could 

be composed of one-dimensional fuzzy sets followed by the aggregation mechanism. The 

conclusions drawn from the series of experiments point out the advantages of the 

distributed format of the models of their monolithic character, which are manifested 

through lower RMSE values and lower computing overhead. Based on the experimental 

evidence gained in this study, compared with a monolithic model, the one-dimensional 

rule-based model shows improvements: especially in distributed model 1. 

 

The distributed architecture of the model provides a sound starting position for further 

investigations. The experiments presented here concentrate on the one or two-dimensional 

space of conditions. However, it could be interesting to study the situations of low 

dimensional feature spaces whose content in the sense of variables involved there has 

become optimized. The linkage matrix and the way of transformation carried out from the 

input membership space to the output space studied here form a simple linear mapping; 

other alternatives including logic-oriented and nonlinear mappings are worth investigating. 
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Chapter 4. Augmentation of rule-based models—with a 

granular quantification of results  

As we mentioned above, the rule-based model has a weak point in terms of the numeric 

output space. For the sake of completeness of our considerations, we introduce prediction 

intervals formed for each rule present in the rule-based models. Their aggregation follows 

the aggregation rule applied to the original model. 

 

Confidence intervals and prediction intervals are the tangible and compelling manifestation 

and full acknowledgement of the limited quality of models. There are no ideal models. The 

likelihood that a numeric result of prediction coincides with the real data is zero. This has 

been the driving force behind the concept of prediction intervals as a vehicle to make the 

prediction outcomes more aligned with real-world phenomena. One has to acknowledge 

that the result of prediction is an information granule. The commonly employed formalism 

uses intervals. Typically, the determination of prediction intervals is cast in the 

probabilistic setting with the notion of confidence level playing a pivotal role. Depending 

upon the nature of the model and the detailed assumptions made in advance, the building 

of the prediction intervals can be straightforward or could entail a carefully structured 

detailed optimization procedure. 

 

In linear regression, prediction intervals come with a well–defined and commonly used 

assumptions as to the character of noise and the linearity of the model. Under such 

conditions, the intervals are easily determined with the formulas available in numerous 
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textbooks, see [94], [95]. There are numerous refinements made to the generic regression 

model and those come with the associated prediction intervals. 

 

In nonlinear models, e.g., neural networks, the formation of prediction intervals is more 

complicated and quite often associated with additional assumptions and optimization 

involved. The studies reported in [96]–[101] elaborate on ways of forming and optimizing 

prediction intervals for neural networks. In [63], Khosravi proposed to limit the spatial 

search of neural network structures by prediction intervals, thereby reducing potential 

candidates by 77%, and improving prediction accuracy. 

 

Surprisingly, in fuzzy models [101], there are no investigations as to the probabilistic 

underpinnings of the results (where in fact the rules are built by involving local regression 

analyses), which in the sequence do not yield any prediction intervals. There are quite 

limited probabilistic-inclined analyses as reported in [102], [103]; however, they do not 

address the quality of results in terms of their associated interval characterization. 

4.1 Rule-based models: concise structural and design considerations 

In this section, we briefly recall the architectural aspects of rule-base models along with 

the commonly encountered design practices. This brief recollection is helpful as being 

directly linked to the buildup of the prediction intervals. In this chapter, we consider the 

structure of rules with linear function (11). The linear aggregation of the local models with 

the activation levels is shown in (14). The design of a rule-based model is carried as a two-

phase process: (i) formation of information granules of the condition part of the rules, and 
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(ii) estimation of optimal parameters of the local linear functions forming the conclusions 

of the corresponding rules, see the detailed process in Chapter 2.1. 

4.2. Design of prediction intervals for rule-based model 

Individual regression local models forming in the conclusion parts of the rules can be 

associated with the confidence and prediction intervals; their development follows the 

standard construct known in regression analysis. An important step is to build (aggregate) 

prediction intervals coming from individual rules. 

4.2.1 Boolean rules 

Considering a certain single rule for the model constructed with the use of the K-Means 

clustering algorithm, a prediction interval �̂� for any input x and some confidence level  

is expressed in the form 

�̂� = [�̂�−, �̂�+] = [𝜔 + �̂�𝑇(𝒙 − 𝒗) − 𝑡𝑁−𝑛√�̂�2[1 + 𝒛𝑇(𝑍𝑇𝑍)−1𝒛],

𝜔 + �̂�𝑇(𝒙 − 𝒗) + 𝑡𝑁−𝑛√�̂�2[1 + 𝒛𝑇(𝑍𝑇𝑍)−1𝒛]] (50)
 

where  

�̂�2 =
(𝒕𝒂𝒓𝒈𝒆𝒕′ − 𝑍�̂�)𝑇(𝒕𝒂𝒓𝒈𝒆𝒕′ − 𝑍�̂�)

𝑁 − 𝑛
(51) 

and  

𝒛 = 𝒙 − 𝒗 (52) 

𝑡 stands for 𝑡-distribution, which is popular in the statistical analyses. The shape of 𝑡-

distribution is related to the degrees of freedom (𝑁 − 𝑛). Now considering that we have c 

rules and for each of them we have constructed the model as above with the optimal 

parameters, and they are the aggregation of the models (as a matter of fact, only a single 

model is invoked for any x). The rules assume the form 
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-if 𝒙 is 𝐴𝑖 then 𝑦 = 𝜔𝑖 + 𝒂𝑖
𝑇(𝒙 − 𝒗𝑖) (53) 

where Ai are sets formed by the K-Means algorithm. More specifically, we have the 

prediction result  �̂� = 𝜔𝑖0 + �̂�𝑖0
𝑇 (𝒙 − 𝒗𝑖0) , where  𝑖0 = argMin𝑖=1,2,...,𝑐‖𝒙 − 𝒗𝑖‖

2  and the 

corresponding prediction interval is formed as �̂�𝑖0 . In a nutshell, the prediction intervals 

are implied by the interval associated with a single rule.  

 

Use one-dimensional data as an example, it is governed by the nonlinear function  

𝑦 = 𝑓(𝑥) + 𝑛𝑜𝑖𝑠𝑒

𝑓(𝑥) =
1

𝑥
𝑠𝑖𝑛( 3𝑥) + 0. 2𝑥 + 𝑙𝑜𝑔( 0.1𝑥) (54)

 

where noise is a normally distributed random variable N(0, 0.15). This formula is popular 

in the literature. We pick up randomly N = 300 input-output pairs of data. Figure 4.1 

visualizes the performance of the models in terms of the generated prediction bounds; here 

the results are reported for the selected values of the rules as 1, 3, 9. 

 

 (a)  (b)  (c)  

Figure 4.1 Prediction bounds produced by rule-based models for selected values of c: (a) c=1 (b) 

c=3 (c) c =9. 
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4.2.2 Fuzzy rule-based model 

In the case of the rules constructed by the FCM clustering [104], as several rules are fired 

at the same time with the corresponding degrees of firing (membership), we determine the 

prediction interval associated with the individual rule and then complete their aggregation. 

The calculations of the prediction intervals for each rule follow the same way as presented 

before for the Boolean rules. Because of the membership grades, the overall prediction 

interval resulting from all c rules is expressed as follows 

�̂� = ∑𝐴𝑖(𝒙)�̂�𝑖

𝑐

𝑖=1

(55) 

where �̂�𝑖 = [�̂�𝑖
−, �̂�𝑖

+]. In terms of the detailed computing (note that interval calculus is 

engaged in [105]), the above expression reads as follows, 

--lower bound of the prediction interval 

�̂�− = ∑𝐴𝑖(𝒙)�̂�−

𝑐

𝑖=1

(56) 

--upper bound of the prediction interval 

�̂�+ = ∑𝐴𝑖(𝒙)�̂�𝑖
+

𝑐

𝑖=1

(57) 

In essence, structurally the above formula follows the same expression as being used to 

aggregate numeric values coming from the rules. 

 

Similarity, we use the one-dimensional data mentioned above to do the illustration. Figure 

4.2 depicts the prediction intervals with optimized parameters m, where (a) c=3 and (b) 

c=9. 
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 (a)  (b)  

Figure 4.2 Prediction bounds produced by rule-based models for selected values of c: (a) c=3 (b) 

c=9. 

 

4.3 Evaluation of quality of information granules of results of rule-based 

models 

As the results produced now are in the form of information granules, the quality of the 

model can be expressed by means of the two performance indexes which are pertinent to 

the granular nature of the output, viz. coverage and specificity [106], [107]. The detailed 

formula is shown in Chapter 2.3 (23) and (25), where the lower and upper bound are 

generated by prediction intervals �̂�− and �̂�+, respectively. 

 

Both the coverage and specificity have to be as high as possible. Because of their 

conflicting nature, an alternative is to assess the quality of prediction intervals (viz. the 

granular manifestation of the rule-based model). Here we consider the product of the 

coverage and specificity, 

𝑉 = 𝑐𝑜𝑣 ∗ 𝑠𝑝 (58) 
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An overall development of the granular model showing the main phases is displayed in 

Figure 4.3. We train the rule-based model with training data to obtain the optimal 

parameters 𝑐,𝑚 and centers 𝒂, which are used for testing data to generate a partition matrix 

and then produce predicted output space; the quality of the model is evaluated by RMSE 

between data target and predicted output. Next, based on the predicted output, the 

prediction interval is produced and assessed by the granular nature V. 

Centers
Partition matrix

Prediction line Prediction 
interval

Q V

through minimum of Q and maximum of V to determine parameters c m 

FCM LSE

Training data

Input target

Input target

Testing data

Partition 
matrix

Prediction 
line

Prediction 
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c m 
Centers

Centers

a
T

y ( )T
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Figure 4.3 An overall design of granular rule-based model. 

 

4.4 Experimental studies 

In the series of experiments, we demonstrate the approach considering both synthetic data 

and those publicly available. As the FCM is being used for the construction of the rule-

based model, the number of rules (c) and the fuzzification coefficient (m) are experimented 

to assess their impact on the performance of the model. Several selected values of the 



 55 

confidence level () [108] are considered; in particular in the following experiments, we 

assume the value of  is set to 0.05. 

 

Synthetic data 

The one-dimensional data mentioned in Chapter 4.2.1. The training and testing data are 

divided by 70-30%. Proceeding with the K-means clustering, the results are reported for 

the varying number of rules; as a reference we also consider c =1 (viz. a single linear 

regression model). The performance is reported in terms of the sum of squared errors (Q), 

coverage (Cov), specificity (Sp) and the product (V), as seen in Table 4.1.

Table 4.1 Performance of the model reported for selected values of c and α=0.05.

c 1 2 3 4 5 6 7 8 9 

Qtrain,  

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.48 

0.50 

0.96 

0.95 

0.15 

0.20 

0.15 

0.19 

0.12 

0.13 

0.94 

0.94 

0.60 

0.60 

0.56 

0.56 

0.07 

0.17 

0.93 

0.93 

0.72 

0.53 

0.62 

0.49 

0.05 

0.18 

0.90 

0.93 

0.73 

0.56 

0.65 

0.52 

0.05 

0.15 

0.91 

0.93 

0.73 

0.57 

0.67 

0.53 

0.03 

0.13 

0.92 

0.94 

0.77 

0.60 

0.71 

0.56 

0.03 

0.14 

0.92 

0.94 

0.78 

0.58 

0.72 

0.54 

0.02 

0.12 

0.94 

0.94 

0.82 

0.62 

0.77 

0.58 

0.02 

0.07 

0.92 

0.95 

0.83 

0.68 

0.77 

0.64 

When the confidence level is fixed, with the increase of clusters, the product of coverage 

and specificity is larger, and when c is 9, the performance yields the highest value. 

 

The same data (along with their split into the training and testing part) are used in the 

construction of fuzzy rule-based model (when using the FCM algorithm); the results are 
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reported in the same way as before. However, we encounter an additional parameter, 

namely a fuzzification coefficient (m). Here the range of m is from 1.05 to 3, and the step 

is equal to 0.05. Its impact on the performance of the model is investigated. 

Table 4.2 shows the results regarded as a function of c and m, with the increase of clusters, 

V increases quickly.

Table 4.2 Performance of the model reported for selected values of c with optimized m. 

m \c 1.1\2 1.6\3 1.45\4 1.3\5 1.95\6 1.7\7 1.65\8 1.6\9 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.08 

0.09 

0.98 

0.98 

0.62 

0.63 

0.61 

0.61 

0.06 

0.06 

0.97 

0.94 

0.67 

0.67 

0.65 

0.63 

0.03 

0.04 

0.95 

0.94 

0.72 

0.70 

0.68 

0.66 

0.03 

0.03 

0.96 

0.94 

0.77 

0.76 

0.74 

0.71 

0.03 

0.04 

0.97 

0.97 

0.77 

0.71 

0.74 

0.69 

0.03 

0.04 

0.96 

0.96 

0.81 

0.74 

0.78 

0.71 

0.02 

0.03 

0.96 

0.97 

0.83 

0.75 

0.80 

0.73 

0.02 

0.02 

0.96 

0.98 

0.84 

0.77 

0.80 

0.76 

 

Figure 4.4(a) shows that V (product of coverage and specificity) varies from m 

(fuzzification coefficient) for training data. Figure 4.4(b) shows that V varies from m 

(fuzzification coefficient) for testing data. Figure 4.4(c) is the relationship of training data 

between Q and m. Figure 4.4(d) is the relationship for testing data. Figure 4.5 shows the 

change of V with c. 



 57 

 

Figure 4.4 Performance of the model as a function of m; shown are curves for different values of 

c.  

 

 

Figure 4.5 V as a function of c. 

 

According to Figures 4.4-4.5, it is shown that for both training and testing data, the larger 

the cluster is, the larger V is. There is an opposite trend for Q with the increase of c. 

Especially in Figure 4.5, apart from clusters, m has little influence on Q. Usually when m 

is around 1.6, the parameter Q gets the minimum value, but V decreases with the increase 

of m.
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After implementing the process for the same data with K-means and Fuzzy C-Means, we 

will compare the results. In Table 4.3, we show the examples for clusters 3 and 9. 

Table 4.3 Comparing performance of the model for one-dimensional data. 

clusters performance K-means FCM clusters performance K-means FCM 

c=3 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.07 

0.17 

0.93 

0.72 

0.62 

0.93 

0.53 

0.49 

0.06 

0.06 

0.97 

0.67 

0.65 

0.94 

0.67 

0.63 

c=9 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.02 

0.07 

0.92 

0.83 

0.77 

0.95 

0.68 

0.64 

0.02 

0.02 

0.96 

0.84 

0.80 

0.98 

0.77 

0.76 

 

Through comparing the result shown in Table 4.3, FCM performs better than K-means 

when we choose a suitable fuzzification coefficient. Especially V increases obviously. 

 

Synthetic two-dimensional data 

The well-known two-dimensional synthetic data are described in the form 

𝑦 = 𝑓(𝑥1, 𝑥2) + 𝑛𝑜𝑖𝑠𝑒, 𝑓(𝑥1, 𝑥2) = 𝑥1𝑒
−𝑥1

2−𝑥2
2
+ 𝑠𝑖𝑛( 𝑥1

2) + 𝑐𝑜𝑠( 𝑥2
2) (59) 

where noise is normally distributed noise, N(0, 0.15). Again N =300 data pairs are selected 

randomly.  The nonlinear function is displayed in Figure 4.6.  
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Figure 4.6 Two-dimensional synthetic data. 

 

Again proceeding with the K-means clustering, the results are reported for the varying 

number of rules, saying the sum of squared errors, coverage, and specificity, as shown in 

Table 4.4. 

Table 4.4 Performance of the model reported for selected values of c for α=0.05. 

c 1 2 3 4 5 6 7 8 9 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.79 

1.37 

0.91 

0.05 

0.30 

0.99 

0.28 

0.05 

0.48 

1.29 

0.91 

0.16 

0.46 

0.92 

0.42 

0.15 

0.40 

0.67 

0.92 

0.43 

0.51 

0.80 

0.47 

0.34 

0.28 

0.54 

0.92 

0.48 

0.58 

0.80 

0.54 

0.39 

0.26 

0.32 

0.92 

0.71 

0.60 

0.66 

0.55 

0.47 

0.18 

0.19 

0.93 

0.75 

0.67 

0.70 

0.63 

0.53 

0.14 

0.21 

0.94 

0.82 

0.71 

0.68 

0.66 

0.56 

0.13 

0.19 

0.93 

0.87 

0.73 

0.67 

0.68 

0.58 

0.10 

0.15 

0.44 

0.41 

0.92 

0.88 

0.41 

0.36 

Concluding from Table 4.4, when we consider cluster 8, the performance is the best for 

these two-dimensional data, which means that for K-means, the prediction result is the best 

when cluster 8 is considered. 
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Then the same data are also used in the construction of the fuzzy rule-based model, and we 

also give two parameters, namely a fuzzification coefficient (m) and clusters (c). Table 4.5 

shows the results regarded as a function of c and m. Q has an obvious decrease, and V has 

the opposite trend.

Table 4.5 Performance of the model reported for selected values of c with optimized m. 

m \c 1.35\2 1.15\3 1.35\4 1.35\5 1.3\6 1.25\7 1.45\8 1.25\9 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.37 

0.43 

0.94 

0.93 

0.47 

0.39 

0.44 

0.37 

0.28 

0.35 

0.95 

0.94 

0.58 

0.51 

0.55 

0.48 

0.17 

0.18 

0.96 

0.94 

0.61 

0.57 

0.59 

0.54 

0.18 

0.19 

0.97 

0.94 

0.63 

0.59 

0.62 

0.56 

0.14 

0.15 

0.96 

0.98 

0.67 

0.62 

0.64 

0.61 

0.10 

0.13 

0.96 

0.96 

0.71 

0.65 

0.68 

0.63 

0.09 

0.12 

0.96 

0.98 

0.72 

0.65 

0.69 

0.63 

0.07 

0.09 

0.96 

0.95 

0.75 

0.69 

0.71 

0.66 

 

Figure 4.7(a) shows that V varies from m for training data. Figure 4.7(b) shows that V varies 

from m for testing data. Figure 4.7(c) is the relationship of training data between Q and m. 

Figure 4.7(d) shows the relationship for testing data, while Figure 4.8 depicts the change 

of V with c.
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Figure 4.7 Performance of the model as a function of m; shown are curves for different values of 

c. 

 

 

Figure 4.8 V regarded as a function of c. 

 

Through the above figures and tables one can conclude that the larger the cluster is, the 

bigger V is, but the smaller Q is. Q and V exhibit the opposite trend with the increase of m. 

V decreases when m becomes bigger, but Q decreases firstly, and then increases when m is 

bigger than 1.4. 
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In Figure 4.9, we only report the prediction intervals obtained for 9 clusters with its suitable 

m, and as the data are two-dimensional, the prediction intervals are plotted versus the 

original outputs. 

 

Figure 4.9 Prediction intervals vs. numeric outputs for c=9. 

 

Table 4.6 Performance of the models for two-dimensional data. 

clusters performance K-means FCM clusters performance K-means FCM 

c=3 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.40 

0.67 

0.92 

0.51 

0.47 

0.43 

0.80 

0.34 

0.28 

0.35 

0.95 

0.58 

0.55 

0.94 

0.51 

0.48 

c=9 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.10 

0.15 

0.44 

0.92 

0.41 

0.41 

0.88 

0.36 

0.07 

0.09 

0.96 

0.75 

0.71 

0.95 

0.69 

0.66 

 

Then we will compare the results for the same data with K-means and Fuzzy C-means in 

Table 4.6 and we show the examples in the case of the clusters 3 and 9. All the results of 
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FCM are bigger than that of K-means, and especially when cluster is 9, V significantly 

increases. 

 

Machine Learning data  

Iris Data description: 

The data set contains three classes of 50 instances each, where each class refers to a type 

of iris plant. One class is linearly separable from the other two; the latter two are not linearly 

separable from each other, see https://archive.ics.uci.edu/ml/datasets/iris. 

Name Objects Attributes Categories 

Iris 150 4 3 

Again, proceeding with the K-means clustering for Iris data, the results are reported for the 

varying number of rules. Here we put clusters are from 2 to 8, and then give the 

performance in terms of the sum of squared errors, coverage, and specificity, see Table 4.7. 

Table 4.7 Performance of the model reported for selected values of c and α=0.05. 

c 2 3 4 5 6 7 8 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.27 

0.68 

0.90 

0.29 

0.48 

0.89 

0.44 

0.26 

0.14 

0.53 

0.92 

0.43 

0.62 

0.85 

0.57 

0.36 

0.06 

0.46 

0.92 

0.56 

0.74 

0.80 

0.68 

0.45 

0.05 

0.38 

0.96 

0.64 

0.52 

0.73 

0.49 

0.47 

0.05 

0.28 

0.95 

0.86 

0.77 

0.43 

0.73 

0.37 

0.04 

0.19 

0.94 

0.86 

0.79 

0.47 

0.74 

0.40 

0.04 

0.23 

0.97 

0.87 

0.78 

0.62 

0.76 

0.55 

 

https://archive.ics.uci.edu/ml/datasets/iris
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From Table 4.7, the performance is the best when cluster 8 is considered. Thus, the 

prediction result is best when iris data are divided into 8 clusters. 

 

Then the same data are also used in the construction of fuzzy rule-based model, and Table 

4.8 shows the results regarded as a function of c and m like before. And the range of m is 

from 1.04 to 3, and step is 0.1. 

Table 4.8 Performance of the model reported for selected values of c with optimized m. 

m \c 2.74\2 1.64\3 1.84\4 1.84\5 1.84\6 1.34\7 1.34\8 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.15 

0.18 

0.93 

0.93 

0.58 

0.54 

0.54 

0.51 

0.08 

0.10 

0.93 

0.92 

0.70 

0.67 

0.65 

0.61 

0.04 

0.07 

0.94 

0.93 

0.76 

0.66 

0.72 

0.61 

0.04 

0.08 

0.94 

0.93 

0.77 

0.65 

0.73 

0.61 

0.04 

0.08 

0.94 

0.96 

0.80 

0.66 

0.75 

0.64 

0.03 

0.09 

0.95 

0.97 

0.70 

0.63 

0.67 

0.61 

0.03 

0.09 

0.96 

0.96 

0.81 

0.65 

0.77 

0.63 

Figure 4.10(a) shows that V varies from m for training data. Figure 4.10(b) shows that V 

varies from m for testing data. Figure 4.10(c) is the relationship of training data between Q 

and m. Figure 4.10(d) is the relationship for testing data. Figure 4.11 shows the change of 

V with c. 



1 

Figure 4.10 Performance of the model as a function of m; shown are curves for different values of 

c.

 

Figure 4.11 V as a function of c. 

Through the above figures and tables, we conclude that the larger the cluster is, the bigger 

V of training data is, but the smaller Q is. For the testing data, when cluster is 6, the model 

gets its maximum value. Q and V have the opposite trend with the increase of m. For 

training data, V decreases with the increase of m, but Q increases; for testing data, V and Q 

usually change a little except cluster 2. 

 

Next, we only give the prediction interval for 8 clusters with the suitable m, and as the data 

are multi-dimensional, the prediction intervals are plotted versus the original outputs, see 

Figure 4.12. 
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Figure 4.12 Prediction intervals vs. numeric outputs with cluster 8. 

 

Then we will compare the results for the same data with K-means and Fuzzy C-means as 

shown in Table 4.9, we show the performance indices when cluster is 3 and 8. 

Table 4.9 IRIS data-comparative analysis. 

clusters performance K-means FCM clusters performance K-means FCM 

c=3 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.14 

0.53 

0.92 

0.62 

0.57 

0.43 

0.85 

0.36 

0.08 

0.10 

0.93 

0.70 

0.65 

0.92 

0.67 

0.61 

c=8 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.04 

0.23 

0.97 

0.78 

0.76 

0.87 

0.62 

0.55 

0.03 

0.09 

0.96 

0.81 

0.77 

0.96 

0.65 

0.63 

 

Banknote data description: 

Data were extracted from images that were taken from genuine and forged banknote-like 

specimens. For digitization, an industrial camera usually used for print inspection was used. 

The final images have 400x400 pixels. The object lens and distance to the investigated 
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object gray-scale pictures with a resolution of about 660 dpi were gained. Wavelet 

Transform tool were used to extract features from images, see 

https://archive.ics.uci.edu/ml/datasets/banknote+authentication. 

Attribute Information: 

1. variance of Wavelet Transformed image (continuous) 

2. skewness of Wavelet Transformed image (continuous)  

3. curtosis of Wavelet Transformed image (continuous)  

4. entropy of image (continuous)  

Name Objects Attributes Categories 

Banknote authentication 1372 4 2 

Again proceeding with the K-means clustering for Banknote data, the results (the sum of 

squared errors, coverage, and specificity) are reported for the varying number of rules, 

where clusters are from 2 to 9, as shown in Table 4.10. 

Table 4.10 Performance of the model reported for selected values of c and α=0.05. 

c 2 3 4 5 6 7 8 9 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Sptrain 

Sptest 

Vtrain 

Vtest 

0.38 

0.73 

0.93 

0.32 

0.61 

0.85 

0.57 

0.27 

0.28 

0.60 

0.90 

0.42 

0.67 

0.83 

0.60 

0.35 

0.25 

0.52 

0.89 

0.53 

0.69 

0.81 

0.61 

0.43 

0.23 

0.49 

0.90 

0.60 

0.70 

0.78 

0.64 

0.47 

0.20 

0.40 

0.91 

0.71 

0.72 

0.76 

0.66 

0.54 

0.18 

0.30 

0.90 

0.78 

0.74 

0.75 

0.67 

0.59 

0.17 

0.18 

0.90 

0.82 

0.75 

0.74 

0.67 

0.61 

0.16 

0.16 

0.90 

0.90 

0.75 

0.72 

0.68 

0.65 
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From Table 4.10, the performance is the best when cluster is 9. Thus, the prediction result 

is the best when Banknote data are divided into 9 clusters. Then the same data are also used 

in the construction of fuzzy rule-based model. Table 4.11 shows the results regarded as a 

function of c and m as before. The values of m vary from 1.04 to 3, with the step of 0.1.

Table 4.11 Performance of the model reported for selected values of c with optimized m. 

m \c 1.14\2 1.24\3 1.24\4 1.44\5 1.44\6 1.44\7 1.34\8 1.24\9 

Qtrain, 

Qtest 

Covtrain 

Covtest 

Spectrain 

Spectest 

Vtrain 

Vtest 

0.35 

0.37 

0.94 

0.94 

0.61 

0.55 

0.57 

0.52 

0.23 

0.25 

0.91 

0.91 

0.67 

0.65 

0.61 

0.59 

0.23 

0.23 

0.91 

0.92 

0.69 

0.65 

0.62 

0.60 

0.17 

0.18 

0.94 

0.94 

0.70 

0.68 

0.64 

0.64 

0.15 

0.16 

0.94 

0.95 

0.73 

0.71 

0.68 

0.67 

0.12 

0.13 

0.94 

0.94 

0.75 

0.73 

0.70 

0.68 

0.11 

0.12 

0.94 

0.94 

0.76 

0.74 

0.71 

0.70 

0.11 

0.13 

0.94 

0.93 

0.76 

0.76 

0.71 

0.70 

 

Figure 4.13 Performance of the model as a function of m; shown are curves for different values of 

c.



1 

 

Figure 4.14 V regarded as a function of c. 

 

Figure 4.13(a) shows that V varies from m for training data. Figure 4.13(b) shows that V 

varies from m for testing data. Figure 4.13(c) is the relationship of training data between Q 

and m. Figure 4.13(d) is the relationship for testing data. Figure 4.14 shows the change of 

V for varying values of c. 

 

Concluded from the above figures and table, the larger the cluster is, the bigger V is, but 

the smaller Q is. And V has a decrease trend with the increase of m, but when m varies from 

1.04 to around 1.5, Q decreases, and then it increases quickly.  

 

Next, we give the prediction interval for 9 clusters with the suitable m. As the data are 

multi-dimensional, the prediction intervals are plotted versus the original outputs, see 

Figure 4.15. 
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Figure 4.15 Prediction intervals vs. numeric outputs with cluster 9. 

 

Next, we compare the results for the same data with K-means and Fuzzy C-means, as 

shown in Table 4.12. 

Table 4.12 Comparing performance of the model produced for Banknote data. 

clusters performance K-means FCM clusters performance K-means FCM 

c=3 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.28 

0.60 

0.90 

0.67 

0.60 

0.42 

0.83 

0.35 

0.23 

0.25 

0.91 

0.67 

0.61 

0.91 

0.65 

0.59 

c=9 

Qtrain 

Qtest 

Covtrain 

Sptrain 

Vtrain 

Covtest 

Sptest 

Vtest 

0.16 

0.16 

0.90 

0.75 

0.68 

0.90 

0.72 

0.65 

0.11 

0.13 

0.94 

0.76 

0.71 

0.93 

0.76 

0.70 

 

Until now, we have finished all the experiments, and the results of Machine Learning data 

are similar to that of Synthetic data. Comparing the results shown in above tables, whether 

it is K-means and FCM, Q decreases and the values of V increase. When the number of 
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clusters and the fuzzification coefficient are fixed, the performance of FCM is better than 

that of the results produced by the K-means clustering. 

4.5 Conclusions 

This study raised an important issue of the inherent granularity of results produced by rule-

based models, both Boolean and fuzzy set-based. It is shown that prediction intervals are 

impacted by the essential parameters of the clustering techniques, such as the number of 

clusters and the fuzzification coefficient.  

 

As a result of comparative analysis, it becomes apparent that fuzzy rule-based models 

exhibit better performance than rule-based models in terms of the coverage criterion. There 

are visible jumps between successive prediction intervals implied by the lack of continuity 

of clustering results generated by the K-Means algorithm. From this point of view, there is 

a tangible advantage of the FCM algorithm.
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Chapter 5. A granular multicriteria group decision making in 

renewable energy planning problems 

In this chapter, we consider the application of information granules. That is, the combination of 

information granules and group decision making. To position the formulated problem in a broader 

context and highlight the multi-criteria and group decision nature of decision problems in the area 

of renewable energy, in what follows, we complete a concise focused literature review. 

 

A selection of a suitable location for renewable energy facilities, especially a solar one, gives rise 

to a challenging decision-making problem, which involves a series of usually conflicting criteria 

and the decision process is realized by a group of experts (group decision-making). Solar energy 

only needs sunlight as a source, but its cost is high and it is directly impacted by the weather [109]–

[111]. Wind energy requires open terrain and has a great impact on wildlife, especially birds [112]–

[115]. Although tidal energy contains huge energy, deciding how to effectively use and exploit it 

becomes a huge problem [116]. Apart from the choice of energy type, there are also a lot of issues 

that need to be considered for a certain type of energy. Take solar energy as an example. It is a 

widely distributed, low-density, and intermittent energy source in nature, so choosing the location 

for solar energy development is particularly important. At the same time, the storage, transmission, 

and subsequent maintenance of electricity should also be considered.  

 

In recent decades, there have been some studies on these issues. Pablo et al. applied Analytic 

Hierarchy Process (AHP) and Analytic Network Process (ANP) to help a Spanish solar power 

investment company invest a solar-thermal power plant project or not [117]. In [118], Meryem et 
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al. combined the Geographic Information System (GIS) and the Multi-Criteria Decision-Making 

(MCDM) method to assess a suitable location for a solar energy project in the southern region of 

Morocco. The research concluded that Ouarzazate shows a high adaptability to the installation of 

photovoltaic power plants. Tolga et al. integrated TOPSIS (a multicriteria decision making 

(MCDM) technique) and fuzzy AHP to solve the energy planning decision-making problem. The 

conclusion was that wind is an optimal energy compared to other energy sources, see [119]. In 

2015, Sunil et al. proposed a fuzzy Decision-Making Trial and Evaluation Laboratory based 

methodology to evaluate the solar power development key enables. Through the analysis of 16 

factors in India, it was found that the key was state level and power sector reforms [120]. In terms 

of the optimal solar site selection in Isfahan-Iran, Mahmood et al. combined fuzzy logic, weighted 

linear combination (WLC) and Multiple Criteria Decision Making (MCDM) Process. It is finally 

determined that some areas in Isfahan, Borkhar, etc. have the potential and suitability for the 

construction of solar power plants see [121]. Similarly, Seda et al. used the combination of both 

pyranometer and Photovoltaic Geographical Information System (PVGIS) and AHP to analyze the 

ideal location for installing PV power plant. The experiment showed that the best location is Kulluk 

[122]. Lindberg et al. used multi-criteria analysis with a Boolean approach and power flow 

simulations to do the geographical assessment and the impact analysis on the grid, respectively, of 

three different sizes of PV parks to find the optimal one for utility-scale solar guides [123]. 

Davoudabadi et al. presented an approach based on data envelopment analysis (DEA) and fuzzy 

simulation of interval-valued intuitionistic fuzzy sets (IVIFSs) to evaluate a renewable energy 

project. Among multiple candidate energy options, wind energy and fossil energy are determined 

to be the better options. With further analysis, the advantages of wind energy have gradually 

expanded and become the most suitable choice [124]. Hirushie et al. proposed a framework that 
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use system dynamics for rating renewable energy project deployment scenarios and the fuzzy 

logic-based optimization algorithm is introduced to optimize system capacities and energy mix 

[125]. 

 

In the above problems, the decision-making process is essentially a process of comparison and 

selection among a limited number of alternatives. Through a comprehensive consideration of 

various factors and at the same time assigning appropriate weights to each factor, an optimal 

solution is finally constructed. 

5.1 Problem formulation – an overall of design process 

In this study, we consider a decision-making scenario in which we have p criteria, c decision-

makers (experts) and N alternatives {alter1, alter2,…, alterN}. The problem is structured as 

illustrated in Figure 5.1; the same figure also shows the main phases of processing with emphasis 

focused on the visualization of criteria and individual decision-makers by forming a criteria-

participants matrix. Furthermore, we highlight the aspect of information granularity which is 

inherently associated with the diversity of the group nature of the decision process and its 

quantification. 

 

Figure 5.1 Criteria-decision-makers (DMj) array. 

DM1 DM𝑗  DM𝑐 

criterion1 

criterion𝑖 

criterion𝑝 

𝑅[𝑖,1] 𝑅[𝑖,𝑗] 𝑅[𝑖,𝑐] 
𝐸[𝑖] 



 75 

 

 

Figure 5.2 Elevation of type of information granule reflective with the movement from individual DMs to 

a group decision-making. 

 

Considering the i-th criterion and the j-th decision maker, the decision process is realized with 

respect to n alternatives and their weight. Both of them involve a process of pairwise comparison 

(described later in detail). In a nutshell, an AHP method [126] considered here is used and N 

alternatives are compared pairwise resulting in an N x N dimensional matrix of pairwise 

comparisons R[i,j] = [r[i,j]]. The same process of pairwise comparison is completed for the weights 

of the criteria resulting in a p x p matrix in the form W[i,j]  =[w[i,j]]. Once the matrices have been 

constructed experimentally, the N-dimensional vector of preferences of the alternatives associated 

with R[i,j] is formed as e[i,j]. The entries of the vector are regarded as degrees of preference assuming 

values in the interval [0,1], thus e[i,j] is a discrete fuzzy set defined over a set of alternatives. The 

method of pairwise comparison also quantifies a level of consistency of the pairwise comparison 

which is described by the corresponding inconsistency index 𝜆[𝑖,𝑗]. The same process is carried out 

for the weight matrix W[i,j] of dimensionality p by p, resulting in weight vector w[i,j] of 

dimensionality p and the corresponding inconsistency index 𝜃[𝑖,𝑗]. By analyzing a certain row, see 

DM1 DM𝑗  DM𝑐 

preference 

weights of 

criteria 

preference preference 

Type-1 

information 

granule 

Type-2 

information 

granule 

weights of 

criteria 
weights of 

criteria 
Type-2 

information 

granule 

Type-1 

information 

granule 

Type-1 

information 

granule 
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Figure 5.1, it is noticeable that the alternatives evaluated in light of the same criterion by different 

decision-makers produce a family of fuzzy sets with different membership functions. To aggregate 

these results and develop a global view conveyed by the group, the individually obtained fuzzy 

sets have to be aggregated to arrive at the global view. With the intent of describing the diversity 

of view, the result is formed as an information granule of type-2, namely E[i] (note that e[i,j]s are 

type-1 information granules). This aggregation is obtained with the use of the principle of 

justifiable granularity [57]; the principle realizes the process of elevating the type of aggregated 

information granules. In brief, the transformation is expressed as E[i] =G(E[i,1], E[i,2],.., E[i,c]), where 

G stands for the process of granulation guided by the principle of justifiable granularity. As a result, 

E[i] is a type-2 information granule defined over the space of n alternatives, E[i] =[ E[i]
1, E

[i]
2,…, 

E[i]
n]. E[i]

j denotes a degree of preference (information granule defined over [0,1]) of the j-th 

alternative expressed with respect to the i-th criterion. In the construction of E[i], the principle 

involves also the values of the inconsistency index associated with the corresponding fuzzy sets. 

Likewise we proceed with the fuzzy sets of the weights of the criteria obtained by processing W[i,j], 

which results in the fuzzy sets of weights of the criteria w[i,j]. As in the case of preference levels of 

alternatives, the aggregation of the results delivered by the individual decision-makers is carried 

out with the aid of the principle of justifiable granularity resulting in the weight expressed as an 

information granule (e.g., a fuzzy set) of type-2. Thus, W[i] is an information granule defined over 

the space of decision-makers. Finally, E[i] and W[i] are aggregated by taking a weighted average 

𝐸 = ∑ (𝑊[𝑖]

𝑝

𝑖=1⊕

⊗ 𝐸[𝑖]) (60) 

In the above expression, the symbols shown in circles underline that the operations are completed 

on information granules rather than numeric entities. In sum, E is an information granule of type-
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2 defined over the space of n alternatives. In other words, the i-th coordinate of E, Ei captures an 

overall level of preference of the i-th alternative, where the level is expressed as an information 

granule of type-1 defined over the unit interval. Finally, these information granules of preference 

E1, E2, ..., En are ranked with the use of ranking methods such that a linear order is established, 

where Ei <Ej denotes that Ej is preferred over Ei. 

5.2 Literature review 

In this section, we briefly recall the key ideas supporting the development. 

5.2.1 The analytic hierarchy process (AHP). 

The basic idea of the Analytic Hierarchy Process [127], [128] refers to a decision-making method 

that helps determine preference degrees among a set of alternatives by carrying out a series of 

pairwise comparisons of preferences of two alternatives at a time. The experimentally determined 

entries of the pairwise comparison matrix satisfy the two essential properties, namely reflexivity 

and reciprocity: 

-reflexivity: the elements on the main diagonal are equal to 1 (they represent situations where a 

preference of alternative is expressed vis-à-vis itself). 

-reciprocity: the elements located symmetrically with respect to the main diagonal are inverse of 

each other.  

The entries of the matrix are quantified by using a certain scale; usually, those values are selected 

from the set {1, 2,..., 9}. If alternative1 is strongly preferred over alternative2, then the 

corresponding entry of the matrix is selected from the upper end of the scale, e.g., 9 or 8. If some 

moderate preference is considered, the entry of the matrix assumes values in the range 6-7, etc. At 

the same time the preference of alternative2 over alternative1 is taken as a reciprocal value of the 

estimate already completed, e.g., 1/9. 
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Having the matrix completed, one determines the maximum eigenvalue (𝜉) of the matrix and the 

corresponding eigenvector. The eigenvector (after normalization) is the estimate of the fuzzy set 

describing degrees of preference assigned to the individual alternatives. The method comes with a 

flagging mechanism: the maximum eigenvalue quantifies the consistency in terms of the 

inconsistency index coming in the following form 

𝜆 = (𝜉 − 𝑁)/(𝑁 − 1) (61) 

where N is the number of alternatives. If the inconsistency index 𝜆 is greater than some threshold 

value (say, 0.1), the result lacks consistency and the acquisition of the pairwise matrix has to be 

repeated. In our research, the value of 𝜆 is also used to weight the corresponding eigenvector. 

 

The method can be augmented by a robustness analysis, which helps express a level of robustness 

of the results when some changes of the pairwise comparison matrix are encountered. In doing 

this, we analyze on the possible perturbations (due to the subjective way of determining entries 

from the scale). To quantify the robustness, the following process is considered: 

Given some reciprocal matrix R, we perturb their entries in an additive way by adding random 

integers coming from the uniform distribution [-, ] to the integer entries of R. The modified 

entries of R are clipped to the range of the assumed scale, using which R has been estimated. Note 

that once some entries have been modified, the entries positioned symmetrically with respect to 

the diagonal also need to be changed. The modified R, denoted as 𝑅𝜀, produces some fuzzy sets of 

preferences 𝒆𝜀 . It is compared with the original fuzzy set 𝒆  produced by R. Similarly, one 

compares the original ranking provided by 𝒆 to the one produced by 𝒆𝜀. Given , the experiment 

is repeated a number of times, e.g., 1,000 and the resulting Euclidean distance between 𝒆 and 𝒆𝜀 
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is computed as well as the Hamming distance between the rankings. These two distances were 

obtained for selected values of  quantifying the robustness of the AHP method. 

 

As an example, we consider 5 by 5 matrix R with some entries. We run the calculations 1,000 

times with several values of , namely 1, 2, 3, and 4. The histograms of inconsistency values and 

distances between 𝒆 and 𝒆𝜀 for different values of  are shown in Figure 5.3. Especially when  is 

1 or 2, most values of the inconsistent index are less than or around 0.1 and the corresponding 

distances are 0. 

 

Figure 5.3 Difference of results (consistency, distance between fuzzy sets and rankings) between original 

and modified R as a function of . 

 

5.2.2 Arithmetic of information granules 

Given two information granules A and B defined in [0,1], we determine their product and sum. We 

consider both intervals, namely A = [a, b] and B= [c, d] and fuzzy set with triangular membership 
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functions. The information granules are defined in the interval [0,1]; m and n are the modal values 

of A and B while a and c are the lower bounds and b and d are the upper bounds. 

Let us proceed with the addition of A and B, i.e., A⊕B: 

-intervals. We obtain the following result 

 A⊕B= [a+c, b+d]  

-triangular fuzzy sets 

To calculate the resulting fuzzy set C, we use the extension principle [36]. Given are the triangular 

fuzzy sets A and B as follows 

𝐴(𝑥) = {
(𝑥 − 𝑎) (𝑚 − 𝑎)⁄ , if 𝑥 ∈ [𝑎,𝑚]
(𝑏 − 𝑥) (𝑏 − 𝑚)⁄ , if 𝑥 ∈ [𝑚, 𝑏]

            0,                otherwise
;   𝐵(𝑦) = {

(𝑦 − 𝑐) (𝑛 − 𝑐)⁄ , if 𝑦 ∈ [𝑐, 𝑛]

(𝑑 − 𝑦) (𝑑 − 𝑛)⁄ , if 𝑦 ∈ [𝑛, 𝑑]
            0,                otherwise

(62) 

The sum of them is 𝐶(𝑧) = 𝐴(𝑥) ⊕ 𝐵(𝑦), where modal value (𝐶(𝑧) = 1) is attained at 𝑧 = 𝑚 +

𝑛. 

If 𝑥 < 𝑚 and 𝑦 < 𝑛, one has 𝑧 = 𝑥 + 𝑦 and we involve the increasing parts of fuzzy sets A and B. 

𝑧 = 𝑥 + 𝑦 = (𝑚 − 𝑎)𝛼 + 𝑎 + (𝑛 − 𝑐)𝛼 + 𝑐 = (𝑎 + 𝑐) + (𝑚 + 𝑛 − (𝑎 + 𝑐))𝛼 . Thus the 

membership function is 

𝐶(𝑧) = 𝛼 = (𝑧 − (𝑎 + 𝑐))/((𝑚 + 𝑛) − (𝑎 + 𝑐)) (63) 

If 𝑥 > 𝑚  and 𝑦 > 𝑛 , 𝑧 = 𝑥 + 𝑦 = 𝑏 − (𝑏 − 𝑚)𝛼 + 𝑑 − (𝑑 − 𝑛)𝛼 = (𝑏 + 𝑑) − (𝑏 + 𝑑 − (𝑚 +

𝑛))𝛼, and the membership function of the decreasing part of the resulting fuzzy set is 

  

𝐶(𝑧) = 𝛼 = ((𝑏 + 𝑑) − 𝑧)/((𝑏 + 𝑑) − (𝑚 + 𝑛)) (64) 

Multiplication of A and B, i.e., A⊗B 

-intervals. The resulting interval is 

A⊗B= [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] 
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-triangular fuzzy sets 

Similarly, we have the triangular fuzzy sets A and B as mentioned above, and the product of them 

is 𝐷(𝑧) = 𝐴(𝑥) ⊗ 𝐵(𝑦), where modal value is obtained by 𝑧 = 𝑚𝑛. 

If 𝑥 < 𝑚  and 𝑦 < 𝑛 , one has 𝑧 = 𝑥𝑦 = [(𝑚 − 𝑎)𝛼 + 𝑎][(𝑛 − 𝑐)𝛼 + 𝑐] = 𝑎𝑐 + [𝑎(𝑛 − 𝑐) +

𝑐(𝑚 − 𝑎)]𝛼 + (𝑚 − 𝑎)(𝑛 − 𝑐)𝛼2 = 𝑓(𝛼); thus the membership function of the increasing part of 

D is 

𝐷(𝑧) =
−[𝑎(𝑛 − 𝑐) + 𝑐(𝑚 − 𝑎)] + √[𝑎(𝑛 − 𝑐) + 𝑐(𝑚 − 𝑎)]2 − 4(𝑚 − 𝑎)(𝑛 − 𝑐)(𝑎𝑐 − 𝑧)

2(𝑚 − 𝑎)(𝑛 − 𝑐)

=
−[𝑎(𝑛 − 𝑐) + 𝑐(𝑚 − 𝑎)] + √[𝑎(𝑛 − 𝑐) − 𝑐(𝑚 − 𝑎)]2 + 4(𝑚 − 𝑎)(𝑛 − 𝑐)𝑧

2(𝑚 − 𝑎)(𝑛 − 𝑐)
(65)

 

If 𝑥 > 𝑚  and 𝑦 > 𝑛 , 𝑧 = 𝑥𝑦 = [𝑏 − (𝑏 − 𝑚)𝛼][𝑑 − (𝑑 − 𝑛)𝛼] = 𝑏𝑑 − [𝑏(𝑑 − 𝑛) + 𝑑(𝑏 −

𝑚)]𝛼 + (𝑏 − 𝑚)(𝑑 − 𝑛)𝛼2 = 𝑔(𝛼), and the membership function of the decreasing part is 

𝐷(𝑧) =
[𝑏(𝑑 − 𝑛) + 𝑑(𝑏 − 𝑚)] − √[𝑏(𝑑 − 𝑛) + 𝑑(𝑏 − 𝑚)]2 − 4(𝑏 − 𝑚)(𝑑 − 𝑛)(𝑏𝑑 − 𝑧)

2(𝑏 − 𝑚)(𝑑 − 𝑛)

=
[𝑏(𝑑 − 𝑛) + 𝑑(𝑏 − 𝑚)] − √[𝑏(𝑑 − 𝑛) − 𝑑(𝑏 − 𝑚)]2 + 4(𝑏 − 𝑚)(𝑑 − 𝑛)𝑧

2(𝑏 − 𝑚)(𝑑 − 𝑛)
(66)

 

As seen from (61) and (62), the membership function of D is not a linear function. An illustrative 

example for the sum and product is shown in Figure 5.4; C is the addition of fuzzy sets A and B, 

and D is the product of these two fuzzy sets. It is evident that the sum result of triangular fuzzy 

sets is still triangular, however the product is not. 
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Figure 5.4 Addition and multiplication of triangular fuzzy numbers. 

 

5.2.3 Ranking information granules 

Ranking alternatives described by information granules is far more challenging than ranking 

numbers (which reduces to a simple comparison of numeric values and ordering them in increasing 

order). Let us consider information granules A1, A2, ..., AN (intervals or fuzzy sets) defined in the 

interval [0,1]. In what follows, we briefly describe some selected methods by highlighting the 

underlying rationale behind the ranking technique. 

 

Method #1: The method was proposed in [129]. Assume that we have fuzzy sets A1, A2, ..., AN 

needed to be ranked. 𝐴𝑚𝑎𝑥(𝑥) is the maximizing set based on the largest value in support of all 

subsets as below. 

𝐴𝑚𝑎𝑥(𝑥) = {
𝑥/5, 𝑥 ∈ [0,5] 
 0,  otherwise

(67) 

Then we rank the fuzzy sets by the intersection point between them and 𝐴𝑚𝑎𝑥(𝑥). The larger the 

intersection point, the higher the preference of the corresponding fuzzy set is. 
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Figure 5.5 Example of ranking. 

 

Method #2: This is a center of gravity method [130]. The fuzzy set 𝐴𝑖 is represented by the center 

of gravity of the membership function, denoting by 𝐶𝑜𝐺(𝐴𝑖), computed as 

𝐶𝑜𝐺(𝐴𝑖) = ∫ 𝑥𝐴𝑖(𝑥)𝑑𝑥
𝑅

∫ 𝐴𝑖(𝑥)𝑑𝑥
𝑅

⁄ (68) 

The larger the value of 𝐶𝑜𝐺(𝐴𝑖), the higher preference of 𝐴𝑖. 

 

Method #3: The relative anteriority index in [131] is expressed in the form 

𝐼(𝐴𝑖 , 𝐴𝑗) = {
𝐾(𝐴𝑖) (𝐾(𝐴𝑖) + 𝐾(𝐴𝑗))⁄ , 𝑖𝑓 𝐾(𝐴𝑖) + 𝐾(𝐴𝑗) > 0 

                 1,                            𝑖𝑓 𝐾(𝐴𝑖) + 𝐾(𝐴𝑗) = 0.
(69) 

where 𝐾(𝐴𝑖) is computed out by comparing the Hamming distances 𝐷𝐻 between fuzzy sets and 

the maximum (union) of them, i.e., 

𝐾(𝐴𝑖) = 𝐷𝐻(𝐴𝑖, max(𝐴1, 𝐴2, . . , 𝐴𝑛)) = ∫|𝐴𝑖(𝑥) − max(𝐴1, 𝐴2, . . , 𝐴𝑛) (𝑥)|𝑑𝑥 (70) 

Given the anteriority index, we compare the two fuzzy numbers 𝐴𝑖 , 𝐴𝑗 , 𝑖 ≠ 𝑗 , producing the 

corresponding preference relationship as follows: 
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{
𝐴𝑖 ≥ 𝐴𝑗 , 𝑖𝑓 0 ≤ 𝐼(𝐴𝑖 , 𝐴𝑗) ≤ 0.5 𝑜𝑟 0.5 ≤ 𝐼(𝐴𝑗 , 𝐴𝑖) ≤ 1.

𝐴𝑖 ≤ 𝐴𝑗 ,   0.5 ≤ 𝐼(𝐴𝑖, 𝐴𝑗) ≤ 1 𝑜𝑟 0 ≤ 𝐼(𝐴𝑗 , 𝐴𝑖) ≤ 0.5.
(71) 

Method #4: In this approach [132], the ranking is based on the magnitude of fuzzy sets defined as 

𝑀𝑎𝑔(𝐴𝑖) = (∫ (𝐴𝑖
𝐿(𝛼) + 𝐴𝑖

𝑅(𝛼) + 𝐴𝑖
𝐿(1) + 𝐴𝑖

𝑅(1))𝑓(𝛼)𝑑𝛼
1

0

) 2⁄ (72) 

where f is a nonnegative weight function and increasing on [0,1] and 𝛼 is the 𝛼-cut value with 𝛼 ∈

[0,1] . 𝐴𝑖
𝐿(𝛼)and 𝐴𝑖

𝑅(𝛼)  are the bounded left-continuous non-decreasing function and right-

continuous non-increasing function, respectively, over [0,1].  

The larger the value of 𝑀𝑎𝑔, the higher the preference of the fuzzy number. 

 

Method #5: Median of fuzzy numbers [133] is computed in the following form: 

∫ 𝐴𝑖(𝑥)𝑑𝑥
𝑀𝑒𝑑

−∞

= ∫ 𝐴𝑖(𝑥)𝑑𝑥
∞

𝑀𝑒𝑑

(73) 

The larger 𝑀𝑒𝑑 is, the larger the preference of the fuzzy number is. 

5.2.4 Information granularity  

Information granularity is one of the methods to construct an information granule on the basis of 

some experimental evidence. In the setting of this study (as we are provided with fuzzy sets), the 

principle aggregates the fuzzy sets and forms a single information granule of a higher type. Recall 

that fuzzy sets are information granules of type-1, viz. their degrees of membership are numeric. 

The result of aggregation of several information granules is an information granule of type-2, for 

example an interval-valued fuzzy set (where the degrees of membership are intervals) or more 

generally a fuzzy set whose membership grades are fuzzy sets themselves. An illustration of the 

resulting information granules is presented in Figure 5.6. 
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Figure 5.6 Example of resulting information granular (interval-valued or triangular fuzzy set). 

 

To proceed with the detailed algorithm, let us assume that for some alternatives, the degrees of 

membership are 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑐} (recall that we have c decision-makers). They give rise to an 

information granule defined in the interval [0,1] being a result of maximization of the product of 

coverage and specificity. If we consider an interval information granule 𝐴 = [𝑎, 𝑏], the coverage 

(cov) and specificity (sp) are defined as follows 

𝑐𝑜𝑣(𝐴) = 𝑐𝑎𝑟𝑑(𝑢𝑘|𝑢𝑘 ∈ [𝑎, 𝑏]) 𝑐⁄

𝑠𝑝(𝐴) = 1 − (|𝑏 − 𝑎| |max(𝑢𝑘) − min(𝑢𝑘)|⁄ ) (74)
 

where 𝑘 = 1,2, … , 𝑐. 

The convenient construction of the information granule is realized as a two-step procedure: 

(i) specification of a numeric representative of U, e.g., the average or modal value, denote the 

result as u0. 

(ii) maximizing the product of coverage and specificity by choosing the lower and upper bound of 

the interval a and b.  
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For a triangular fuzzy set A, the calculations of coverage and specificity are modified because of 

the use of the membership degrees rather than 0-1 values only. The detailed calculations are 

completed as follows 

𝑐𝑜𝑣(𝐴) = ∑ 𝐴(𝑢𝑘)

𝑐

𝑘=1;
𝑢𝑘:𝑎<𝑢𝑘<𝑏

(75) 

𝑠𝑝(𝐴) = ∫ 1 −
1

0

(|𝑏𝛼 − 𝑎𝛼| |max(𝑢𝑘) − min(𝑢𝑘)|⁄ )𝑑𝛼 (76) 

5.3 An overall method 

In this section, we elaborate on the overall decision-making process. It consists of five main phases. 

 

Step 1: Assuming a certain scale, e.g., 1-9, the reciprocal matrices are elicited producing 𝑅[𝑖,𝑗], 

where 𝑖 = 1,2, … , 𝑝;  𝑗 = 1,2, … , 𝑐. 

 

Step 2: Consider the i-th criterion. For each 𝑅[𝑖,𝑗], we solve the eigenvalue problem, 

𝑅[𝑖,𝑗]𝒆[𝑖,𝑗] = 𝜉[𝑖,𝑗]𝒆[𝑖,𝑗] (77) 

and determine 𝒆[𝑖,𝑗] which is the eigenvector corresponding to the largest eigenvalue  𝜉[𝑖,𝑗]. The 

consistency is quantified by computing 𝜆[𝑖,𝑗] using (57). The result is used to compute the weight 

(weight) of the corresponding 𝒆[𝑖,𝑗] 

weight(𝒆[𝑖,𝑗]) = 1 − ((𝜆[𝑖,𝑗] − 𝜆min) (𝜆max − 𝜆min)⁄ ), 𝑗 = 1,2, … , 𝑐 (78) 

where 𝜆min and 𝜆max are the minimal and maximal value of 𝜆[𝑖,𝑗], respectively, 𝑗 = 1,2, … , 𝑐, for 

the i-th criterion. 
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Step 3: Again considering the i-th criterion, the principle of justifiable granularity is used to 

determine the interval-valued fuzzy set 𝐸[𝑖]. 

 

Analyze the eigenvector 𝒆[𝑖,𝑗], 𝑗 = 1,2, … , 𝑐, with its weight. That is, for each alternative 𝑎𝑠, the 

corresponding values in 𝒆[𝑖,𝑗] compose one-dimensional weighted data. Based on the data, we 

introduce the principle of justifiable granularity to find the optimal lower bound (a) and upper 

bound (b) with (70). Since what we input to the information granularity is weighted data, form (70) 

is replaced by 

𝑐𝑜𝑣 = ∑ weight(𝒆[𝑖,𝑗] ) 𝑐⁄

𝑐

𝑗=1;

𝒆[𝑖,𝑗]∶𝑎<𝒆[𝑖,𝑗] <𝑏

𝑠𝑝 = 1 − (|𝑏 − 𝑎| |max(𝒆[𝑖,𝑗]) − min(𝒆[𝑖,𝑗])|⁄ ) (79)

 

In the same way, using the principle of justifiable granularity, one can construct �̃�[𝑖] in the form 

of a triangular fuzzy set. 

 

Step 4: The AHP method is used with regard to pairwise matrices of weights 𝑊[𝑖,𝑗], 𝑗 = 1,2, … , 𝑐. 

𝑊[𝑖,𝑗]w[𝑖,𝑗] = 𝜂[𝑖,𝑗]w[𝑖,𝑗] (80) 

where 𝜂[𝑖,𝑗] is the eigenvalue and w[𝑖,𝑗] is the eigenvector. Then for matrix 𝑊[𝑖,𝑗], they generate 

importance vectors of criteria w[𝑖,𝑗] and these weight vectors are aggregated with the principle of 

justifiable granularity producing interval fuzzy set 𝑊[𝑖] or triangular fuzzy set �̃�[𝑖] for the i-th 

criterion (the same as before, determine each lower and upper bound by maximizing the product 

of coverage and specificity). 
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Step 5: Finally, the vector of preferences of alternatives is constructed by combining interval-

valued fuzzy sets 𝐸[𝑖] with weights 𝑊[𝑖] as described by (56). In addition, for triangular fuzzy sets, 

the weighted sum is computed by the transformation format of (56) as follows. Then we obtain the 

result �̃� as below. 

�̃� = ∑ (�̃�[𝑖]
𝑝

𝑖=1⊕
⊗ �̃�[𝑖]) (81) 

In addition, to evaluate the reliability of the results, a process is described in Section 5.2.1. 

5.4 Experimental study 

In this section, we use the developed methodology to the decision problem of setting up a solar 

PV power plant by considering five criteria, namely Potential energy production, Environment 

factors, Safety, Distance from existing transmission line, and Topographical properties and discuss 

three alternative locations. Following the presented approach, the locations and the weight of the 

criteria are determined by decision-makers. The elicited matrices of pairwise comparison from 

experts are shown in Appendix. Twelve decision-makers are involved in the evaluation process. 

 

For 𝑅[𝑖,𝑗]s, the corresponding eigenvectors 𝒆[𝑖,𝑗] along with the values of the inconsistency index 

𝜆 are reported in Table 5.1. 
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Table 5.1 The eigenvectors and values of inconsistency index of pairwise comparison matrices. 

 Criterion #1 Criterion #2 Criterion #3 Criterion #4 Criterion #5 

DM 

1 

𝜆: 0.091; 

𝒆[1,1]: [0.07 0.98 0.18]  

𝜆: 0.099; 

𝒆[2,1]: [0.25 0.97 0.08]  

𝜆: 0.001; 

𝒆[3,1]: [0.72 0.68 0.11]  

𝜆: 0.062; 

𝒆[4,1]: [0.33 0.09 0.94]  

𝜆: 0.072; 

𝒆[5,1]: [0.07 0.94 0.34]  

DM 

2 

𝜆: 0.003; 

𝒆[1,2]: [0.44 0.86 0.27]  

𝜆: 0.016; 

𝒆[2,2]: [0.31 0.92 0.22]  

𝜆: 0.017; 

𝒆[3,2]: [0.25 0.93 0.26]  

𝜆: 0.004; 

𝒆[4,2]: [0.34 0.93 0.11]  

𝜆: 0.025; 

𝒆[5,2]: [0.45 0.89 0.08]  

DM 

3 

𝜆: 0.029; 

𝒆[1,3]: [0.33 0.53 0.78]  

𝜆: 0.011; 

𝒆[2,3]: [0.91 0.34 0.23]  

𝜆: 0.023; 

𝒆[3,3]: [0.89 0.41 0.20]  

𝜆: 0.007; 

𝒆[4,3]: [0.94 0.26 0.24]  

𝜆: 0.002; 

𝒆[5,3]: [0.89 0.36 0.27]  

DM 

4 

𝜆: 0.005; 

𝒆[1,4]: [0.44 0.60 0.67]  

𝜆: 0.016; 

𝒆[2,4]: [0.54 0.72 0.43]  

𝜆: 0.071; 

𝒆[3,4]: [0.54 0.66 0.52]  

𝜆: 0.006; 

𝒆[4,4]: [0.66 0.64 0.40]  

𝜆: 0.001; 

𝒆[5,4]: [0.60 0.69 0.41]  

DM 

5 

𝜆: 0.047; 

𝒆[1,5]: [0.56 0.82 0.15]  

𝜆: 0.016; 

𝒆[2,5]: [0.37 0.92 0.11]  

𝜆: 0.062; 

𝒆[3,5]: [0.09 0.94 0.33]  

𝜆: 0.005; 

𝒆[4,5]: [0.14 0.95 0.26]  

𝜆: 0.091; 

𝒆[5,5]: [0.29 0.95 0.09]  

DM 

6 

𝜆: 0.005; 

𝒆[1,6]: [0.90 0.41 0.12]  

𝜆: 0.005; 

𝒆[2,6]: [0.97 0.22 0.12]  

𝜆: 0.015; 

𝒆[3,6]: [0.97 0.23 0.09]  

𝜆: 0.040; 

𝒆[4,6]: [0.98 0.08 0.19]  

𝜆: 0.001; 

𝒆[5,6]: [0.90 0.43 0.13]  

DM 

7 

𝜆: 0.002; 

𝒆[1,7]: [0.62 0.77 0.15]  

𝜆: 0.076; 

𝒆[2,7]: [0.58 0.79 0.21]  

𝜆: 0.000; 

𝒆[3,7]: [0.34 0.92 0.19]  

𝜆: 0.000; 

𝒆[4,7]: [0.60 0.78 0.15]  

𝜆: 0.000; 

𝒆[5,7]: [0.58 0.80 0.16]  

DM 

8 

𝜃: 0.009; 

𝒆[1,8]: [0.12 0.54 0.83]  

𝜆: 0.000; 

𝒆[2,8]: [0.36 0.35 0.86]  

𝜆: 0.091; 

𝒆[3,8]: [0.36 0.93 0.07]  

𝜆: 0.009; 

𝒆[4,8]: [0.08 0.65 0.76]  

𝜆: 0.037; 

𝒆[5,8]: [0.19 0.49 0.85]  

DM 

9 

𝜆: 0.093; 

𝒆[1,9]: [0.30 0.58 0.76]  

𝜆: 0.012; 

𝒆[2,9]: [0.19 0.17 0.97]  

𝜆: 0.043; 

𝒆[3,9]: [0.12 0.82 0.55]  

𝜆: 0.002; 

𝒆[4,9]: [0.93 0.17 0.33]  

𝜆: 0.027; 

𝒆[5,9]: [0.30 0.95 0.13]  

DM 

10 

𝜆: 0.005; 

𝒆[1,10]: [0.16 0.51 0.85]  

𝜆: 0.052; 

𝒆[2,10]: [0.86 0.40 0.31]  

𝜆: 0.009; 

𝒆[3,10]: [0.20 0.35 0.92]  

𝜆: 0.005; 

𝒆[4,10]: [0.95 0.14 0.26]  

𝜆: 0.003; 

𝒆[5,10]: [0.93 0.33 0.14]  

DM 

11 

𝜆: 0.052; 

𝒆[1,11]: [0.19 0.18 0.97]  

𝜆: 0.040; 

𝒆[2,11]: [0.40 0.91 0.08]  

𝜆: 0.000; 

𝒆[3,11]: [0.51 0.82 0.26]  

𝜆: 0.003; 

𝒆[4,11]: [0.56 0.81 0.17]  

𝜆: 0.000; 

𝒆[5,11]: [0.11 0.56 0.82]  

DM 

12 

𝜆: 0.006; 

𝒆[1,12]: [0.12 0.55 0.82]  

𝜆: 0.009; 

𝒆[2,12]: [0.38 0.33 0.87]  

𝜆: 0.052; 

𝒆[3,12]: [0.42 0.91 0.08]  

𝜆: 0.005; 

𝒆[4,12]: [0.14 0.88 0.46]  

𝜆: 0.009; 

𝒆[5,12]: [0.19 0.49 0.85]  

 

The vectors 𝒆[𝑖,𝑗] are displayed in the form of the bar chart; refer to Figure 5.7. 
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Figure 5.7 Visualization of e[i,j]. 

The principle of justifiable granularity generates some summarization expressed as interval-valued 

fuzzy sets 𝐸[1], 𝐸[2], … , 𝐸[5] or triangular fuzzy sets �̃�[1], �̃�[2], … , �̃�[5]. For the three alternatives 

under discussion, one obtains the results shown below 

𝐸[1] = [(0.12,0.44) (0.41,0.60) (0.55,0.85)], 

𝐸[2] = [(0.31,0.54) (0.17,0.52) (0.08,0.44)], 

𝐸[3] = [(0.20,0.54) (0.66,0.94) (0.08,0.30)], 

𝐸[4] = [(0.55,0.98) (0.60,0.95) (0.11,0.40)], 

𝐸[5] = [(0.53,0.93) (0.33,0.59) (0.08,0.41)] 

Likewise, the triangular fuzzy numbers are determined yielding the following membership 

functions: 

�̃�[1] = [𝑇(0.11,0.12,0.72), 𝑇(0.51,0.51,0.98), 𝑇(0.57,0.85,0.85)], 

�̃�[2] = [𝑇(0.31,0.31,0.66), 𝑇(0.17,0.35,0.44), 𝑇(0.07,0.12,0.53)], 

�̃�[3] = [𝑇(0.09,0.15,0.64), 𝑇(0.59,0.93,0.94), 𝑇(0.07,0.10,0.61)], 

�̃�[4] = [𝑇(0.30,0.95,0.98), 𝑇(0.41,0.93,0.93), 𝑇(0.15,0.15,0.61)], 
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�̃�[5] = [𝑇(0.07,0.11,0.74), 𝑇(0.36,0.36,0.76), 𝑇(0.11,0.13,0.48)] 

 

Proceeding with the evaluation of weights, we arrive at matrices shown in Appendix. Subsequently, 

the corresponding results are displayed in Table 5.2; refer also to the bar plot in Figure 5.8. 

Table 5.2 Maximal eigenvectors and inconsistency index of pairwise comparison matrix. 

 Criterion  Criterion 

DM 1 

𝜃: 0.036 

w[1]: [0.11 0.06 0.51 0.23 0.82]  
DM 7 

𝜃: 0.038 

w[7]: [0.09 0.06 0.87 0.20 0.43]  

DM 2 

𝜃: 0.086 

w[2]: [0.15 0.07 0.32 0.34 0.87]  
DM 8 

𝜃: 0.095 

w[8]: [0.12 0.05 0.81 0.53 0.20]  

DM 3 

𝜃: 0.065 

w[3]: [0.21 0.63 0.25 0.06 0.71]  
DM 9 

𝜃: 0.067 

w[9]: [0.19 0.25 0.46 0.83 0.05]  

DM 4 

𝜃: 0.063 

w[4]: [0.12 0.84 0.50 0.16 0.06]  
DM 10 

𝜃: 0.066 

w[10]: [0.23 0.15 0.10 0.95 0.12]  

DM 5 

𝜃: 0.069 

w[5]: [0.06 0.44 0.33 0.11 0.86]  
DM 11 

𝜃: 0.095 

w[11]: [0.20 0.64 0.35 0.10 0.64]  

DM 6 

𝜃: 0.018 

w[6]: [0.09 0.08 0.50 0.30 0.81]  
DM 12 

𝜃: 0.072 

w[12]: [0.33 0.21 0.23 0.16 0.88]  

 



 92 

 

Figure 5.8 Pairwise comparison matrices. 

 

Next, by applying the principle of justifiable granularity, we obtain the interval-valued fuzzy set 

𝑊, say 

𝑊 = [𝑊[1],𝑊[2],𝑊[3],𝑊[4],𝑊[5]] 

= [(0.09,0.14) (0.06,0.25) (0.46,0.51) (0.06,0.31) (0.58, 0.88)] 

and the triangular fuzzy set �̃� with the entries 

�̃� = [�̃�[1], �̃�[2], �̃�[3], �̃�[4], �̃�[5]] 

= [𝑇(0.09,0.09,0.25), 𝑇(0.05,0.06,0.34), 𝑇(0.10,0.50,0.51), 𝑇(0.06,0.30,0.35), 𝑇(0.64,0.81,0.88)] 

 

Finally, based on the above result, we calculate the combination of interval-valued fuzzy sets 𝐸[𝑖] 

with weights 𝑊[𝑖] following (56). The vector of preferences of alternatives is resulted as follows, 

as shown in Figure 5.9(a). 

𝐸 = [𝐸1, 𝐸2, 𝐸3] = [(0.41,1.58) (0.59,1.51) (0.14,0.88)] 
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As for triangular fuzzy sets, the weighted sum �̃� is computed following (77), as visualized in 

Figure 5.9(b). 

 

(a) 

 

(b) 

Figure 5.9 Resulting fuzzy sets (a) interval-valued (b) weighted sum of triangular fuzzy sets for 3 

alternatives. 

 

Then, for the interval-valued set 𝐸 and fuzzy set �̃� in our experiment, according to the ranking 

methods, the ranking result is shown in Table 5.3. It shows that mostly the alternatives are ranked 

as (2)>(1)>(3). 
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Table 5.3 Ranking results obtained using different ranking methods. 

 Ranking result for interval-valued fuzzy sets Ranking result for fuzzy sets 

Method #1 𝐸1 > 𝐸2 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

Method #2 𝐸2 > 𝐸1 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

Method #3 𝐸1 > 𝐸2 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

Method #4 𝐸2 > 𝐸1 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

Method #5 𝐸2 > 𝐸1 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

 

Then considering the sensitivity analysis, we add the noise as mentioned in Section 5.2.1, where 

the noise coming from the random values in the level of [-4, 4] is taken as an example. Saying [4, 

-3.7, 2.1, 1.3, -3.1, -2.2, 0.5, 2] is added for corresponding integer values [2, 3, 4, 5, 6, 7, 8, 9] in 

pairwise matrices. Then we do the same experiments for the generated new matrix, the final 

interval sets and fuzzy sets are shown in Figure 5.10, and the ranking results are in Table 5.4. 

Compared to the ranking results in Table 5.3 with the given ranking methods, mostly the Hamming 

distance between the rankings are 0 except that distance is 2 for Method #1 and #3. It proves the 

robustness of the results to some extent. Thus, we can conclude that the second location is the best 

site to install the PV power plant. 

 

 (a) 
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(b) 

Figure 5.10 Ranking of fuzzy sets: (a) interval-valued (b) weighted sum of triangular fuzzy sets. 

 

The ranking results are reported in Table 5.4. 

Table 5.4 Ranking results with different methods. 

 Ranking result for interval-valued fuzzy sets Ranking result for fuzzy sets 

Method #1 𝐸2 > 𝐸1 > 𝐸3 �̃�1 > �̃�2 > �̃�3 

Method #2 𝐸2 > 𝐸1 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

Method #3 𝐸2 > 𝐸1 > 𝐸3 �̃�1 > �̃�2 > �̃�3 

Method #4 𝐸2 > 𝐸1 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

Method #5 𝐸2 > 𝐸1 > 𝐸3 �̃�2 > �̃�1 > �̃�3 

 

5.5 Conclusions 

In this study, we have established a model for the planning and site selection of renewable energy. 

Through the combination of AHP, ranking fuzzy sets and the concept of information granularity, 

from a number of alternatives, the site selection programs are evaluated and sorted from multiple 
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perspectives, and the optimal site is finally selected. The fuzzy analytic hierarchy process adopted 

in this study maintains the advantages of the traditional analytic hierarchy process, while 

improving the interpretability. 

 

There are still some further studies worth pursuing in the next step. The analytic hierarchy process 

is dependent on the suggestions of experts in related fields. In the next step, we can consider 

evaluating each participant through certain indicators and analyzing each decision matrix, giving 

appropriate weights to further optimize our decision model.  
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Chapter 6. Conclusions & future studies 

In this thesis, we have proposed some enhancement ideas and algorithms to improve the rule-based 

models. In this chapter, we briefly summarize the main achievements and identify some interesting 

future works. 

6.1 Conclusions 

Although rule-based models, especially fuzzy rule-based models, are commonly used in the 

research, there is also the evident limitation and shortage existing due to the numeric results and 

high-dimensional data. Thus, in our proposed studies, we stressed the combination of rule-based 

models, information granules and the concept of distributed idea. All the experiments 

demonstrated several essential points:  

➢ The design of distributed fuzzy rule-based models makes an improvement for dealing with 

large data especially high-dimensional data. The distributed models are a collection of one-

dimensional fuzzy local models instead of a monolithic model. Evidently, it achieves lower 

RMSE and lower computing overhead. 

➢ The prediction interval is well known in the statistics area, and its combination with TS 

model needs more attention. In this study, we developed granular rule-based models with 

prediction intervals and showed that such augmented models are essential to the 

quantification of the relevance of the obtained numeric results. 

➢ The analytic hierarchy process is an important tool for a group decision making model. It 

is used to evaluate the alternatives and the corresponding weights and then the optimal 

alternative is selected by the weighted preferences (set). In this study, we proposed a 

concept of information granule injected into the fuzzy analytic hierarchy process, 

aggregating the eigenvectors and transforming the preferences of alternatives (set) into 
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interval-valued sets, which realizes the improvement of reliability of decision-making 

model. 

6.2 Future studies 

Some further studies worth pursuing can be carried out along several directions. First, some other 

methods can be tried to form granular rule-based models. For example, the information granularity 

is used for the local functions to generate the interval-valued functions. Second, several 

augmentations of clustering techniques can be considered in the context of building rule-based 

models. One can also concentrate on investigating linkages between standard performance 

measures of numeric models (such as e.g., RMSE) and the quality of granular (interval) prediction 

results. Third, the role of prediction intervals and their quality can be cast in the framework of 

coping with ensembles of models. One can easily envision that the use of bagging and boosting of 

rule-based models (again the topic not studied here in great detail) will exhibit a visible impact on 

the quality of prediction intervals; a quantification of this effect is worth studying. In the case of a 

family of models, a way of aggregation of prediction intervals leading to type-2 information 

granule (referred to as granular prediction intervals) could be investigated. Fourth, the combination 

of distributed rule-based models and information granules is also an interesting topic. In what 

follows, we introduce some future studies in detail. 

6.2.1 From numeric to granular rule-based model 

We aim to designing the granular rule-based models. The difference between this kind of granular 

model and the granular results in Chapter 4 is that the granular rules are designed on the basis of 

the granular parameters of the conclusion part instead of using prediction intervals. What is more, 

the granular models are designed by using an optimization algorithm, e.g., Particle Swarm 

Optimization (PSO). Firstly, fuzzy rule-based models are used for mapping experiment data to 
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model numeric output, and then granular rule-based models are generated by introducing the 

information granularity to the parameters that are determined in the fuzzy models. Similarly, the 

predicted interval will be produced by the granular models. 

6.2.2 Analysis and design of distributed granular rule-based models 

The distributed architecture of the model provides a sound starting position for further 

investigations. Let us do the extension for the study of distributed fuzzy rule-based models, e.g., 

distributed granular rule-based models. Firstly, the data are divided into different feature spaces 

and then output membership grades. Next, we combine all the membership grades into one vector 

as the input mapping to an output interval by a granular linkage matrix. For each feature space, the 

membership grades are generated by triangular membership functions with the cluster centers 

being determined by uniformly distributed in distributed models in Chapter 3. However, we have 

introduced an optimization algorithm, PSO algorithm, to optimize the prototypes instead of 

assigned centers by uniformly distributed. The above process is the design of distributed granular 

rule-based models; thus, the performance index RMSE, coverage and specificity can be used to 

estimate the quality of the model. 

6.2.3 Augmentation of rule-based models—distributed models with a biclustering algorithm 

Here we continue the development of distributed models, which are combined with a biclustering 

algorithm, see Section 2.1. With the biclustering algorithm, the data are separated and then input 

to individual rule-based models. Then we design each model and generate the corresponding 

output space; next, they are aggregated with an optimal weight to obtain the model output. 
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Appendix 

The pairwise comparison matrix of three alternatives coming from 12 decision makers under 

different criteria. 
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The comparison matrices based on criterion #3: Safety 
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4

7

1

5
1]
 
 
 
 
 

, R[3,8] =

[
 
 
 
 1

1

4
8

4 1 9
1

8

1

9
1]
 
 
 
 

 

R[3,9] =

[
 
 
 
 1

1

5

1

6
5 1 2

6
1

2
1]
 
 
 
 

, R[3,10] =

[
 
 
 
 1

1

2

1

4

2 1
1

3
4 3 1]

 
 
 
 

, R[3,11] =

[
 
 
 
 
 1

3

5
2

5

3
1 3

1

2

1

3
1]
 
 
 
 
 

, R[3,12] =

[
 
 
 
 1

1

3
7

3 1 8
1

7

1

8
1]
 
 
 
 

 

The comparison matrices coming from criterion #4: Distance from existing transmission line 

R[4,1] =

[
 
 
 
 1 5

1

4
1

5
1

1

7
4 7 1]

 
 
 
 

, R[4,2] =

[
 
 
 
 1

1

3

7

2
3 1 8
2

7

1

8
1]
 
 
 
 

, R[4,3] =

[
 
 
 
 
 1 4

7

2
1

4
1

5

4
2

7

4

5
1]
 
 
 
 
 

, R[4,4] =

[
 
 
 
 
 1

7

6

3

2
6

7
1

9

5
2

3

5

9
1]
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R[4,5] =

[
 
 
 
 1

1

6

1

2
6 1 4

2
1

4
1]
 
 
 
 

, R[4,6] =

[
 
 
 
 
1 9 7
1

9
1

1

3
1

7
3 1]

 
 
 
 

, R[4,7] =

[
 
 
 
 
 1

3

4
4

4

3
1 5

1

4

1

5
1]
 
 
 
 
 

, R[4,8] =

[
 
 
 
 
 1

1

9

1

8

9 1
3

4

8
4

3
1]
 
 
 
 
 

 

R[4,9] =

[
 
 
 
 
1 5 3
1

5
1

1

2
1

3
2 1]

 
 
 
 

, R[4,10] =

[
 
 
 
 
1 6 4
1

6
1

1

2
1

4
2 1]

 
 
 
 

, R[4,11] =

[
 
 
 
 
 1

3

4
3

4

3
1 5

1

3

1

5
1]
 
 
 
 
 

, R[4,12] =

[
 
 
 
 
 1

1

7

1

3

7 1
7

4

3
4

7
1]
 
 
 
 
 

 

The comparison matrices following criterion #5: Topographical properties 

R[5,1] =

[
 
 
 
 1

1

9

1

7
9 1 4

7
1

4
1]
 
 
 
 

, R[5,2] =

[
 
 
 
 
 1

2

5
7

5

2
1 9

1

7

1

9
1]
 
 
 
 
 

, R[5,3] =

[
 
 
 
 
 1

7

3

7

2
3

7
1

5

4
2

7

4

5
1]
 
 
 
 
 

, R[5,4] =

[
 
 
 
 
 1

5

6

3

2
6

5
1

8

5
2

3

5

8
1]
 
 
 
 
 

 

R[5,5] =

[
 
 
 
 1

1

5
5

5 1 7
1

5

1

7
1]
 
 
 
 

, R[5,6] =

[
 
 
 
 
1 2 7
1

2
1 3

1

7

1

3
1]
 
 
 
 

, R[5,7] =

[
 
 
 
 
 1

3

4

7

2
4

3
1 5

2

7

1

5
1]
 
 
 
 
 

, R[5,8] =

[
 
 
 
 
 1

1

2

1

6

2 1
3

4

6
4

3
1]
 
 
 
 
 

 

R[5,9] =

[
 
 
 
 1

1

4
3

4 1 6
1

3

1

6
1]
 
 
 
 

, R[5,10] =

[
 
 
 
 
1 3 6
1

3
1

5

2
1

6

2

5
1]
 
 
 
 

, R[5,11] =

[
 
 
 
 
 1

1

5

1

7

5 1
2

3

7
3

2
1]
 
 
 
 
 

, R[5,12] =

[
 
 
 
 1

1

3

1

4

3 1
1

2
4 2 1]

 
 
 
 

 

The pairwise comparison matrix of criteria coming from 12 decision makers. 
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W[1] =

[
 
 
 
 
 
 
 
 1 2

1

5

1

3

1

6
1

2
1

1

7

1

5

1

9

5 7 1 3
1

2

3 5
1

3
1

1

5
6 9 2 5 1]

 
 
 
 
 
 
 
 

,W[2] =

[
 
 
 
 
 
 
 
 1 3

1

2

1

3

1

5
1

3
1

1

7

1

3

1

9

2 7 1
1

2

1

2

3 3 2 1
1

5
5 9 2 5 1]

 
 
 
 
 
 
 
 

,W[3] =

[
 
 
 
 
 
 
 
 
 
 1

1

3

4

5
4

1

3

3 1 5 7
1

2
5

4

1

5
1 6

2

5
1

4

1

7

1

6
1

1

8

3 2
5

2
8 1]

 
 
 
 
 
 
 
 
 
 

 

 

W[4] =

[
 
 
 
 
 
 
 
 1

1

8

1

5

4

5
3

8 1 2 7 9

5
1

2
1 5 6

5

4

1

7

1

5
1 5

1

3

1

9

1

6

1

5
1]
 
 
 
 
 
 
 
 

,W[5] =

[
 
 
 
 
 
 
 
 1

1

6

1

5

1

3

1

8

6 1 3 5
1

3

5
1

3
1 3

1

5

3
1

5

1

3
1

1

7
8 3 5 7 1]

 
 
 
 
 
 
 
 

,W[6] =

[
 
 
 
 
 
 
 
 1 1

1

5

1

3

1

9

1 1
1

7

1

5

1

7

5 7 1 2
1

2

3 5
1

2
1

1

3
9 7 2 3 1]

 
 
 
 
 
 
 
 

 

 

W[7] =

[
 
 
 
 
 
 
 
 1 2

1

8

1

3

1

5
1

2
1

1

9

1

4

1

7
8 9 1 5 3

3 4
1

5
1

1

3

5 7
1

3
3 1]

 
 
 
 
 
 
 
 

,W[8] =

[
 
 
 
 
 
 
 
 1 4

1

8

1

6

1

2
1

4
1

1

8

1

7

1

7
8 8 1 3 5

6 7
1

3
1 5

2 7
1

5

1

5
1]
 
 
 
 
 
 
 
 

,W[9] =

[
 
 
 
 
 
 
 
 1

1

2

1

3

1

6
7

2 1
2

5

1

4
6

3
5

2
1

1

2
7

6 4 2 1 9
1

7

1

6

1

7

1

9
1]
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W[10] =

[
 
 
 
 
 
 
 
 1 3 2

1

5

7

6
1

3
1 2

1

9
2

1

2

1

2
1

1

7
1

5 9 7 1 7
6

7

1

2
1

1

7
1]
 
 
 
 
 
 
 
 

,W[11] =

[
 
 
 
 
 
 
 
 
 
 1

1

2

1

5
3

1

4

2 1 3 4
3

2

5
1

3
1

5

2

1

2
1

3

1

4

2

5
1

1

9

4
2

3
2 9 1]

 
 
 
 
 
 
 
 
 
 

,W[12] =

[
 
 
 
 
 
 
 
 
 
 1 2 1 3

1

3
1

2
1 1 2

1

5

1 1 1
2

3

2

5
1

3

1

2

3

2
1

1

7

3 5
5

2
7 1]

 
 
 
 
 
 
 
 
 
 

 

 


