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Abstract

Answer typing is an important aspect of the question answering process. Most commonly

addressed with the use of a fixed set of possible answer classes via question classification,

answer typing influences which answers will ultimately be selected as correct. Answer typ-

ing introduces the concept of type-appropriate responses. Such responses are plausible in

the context of question answering when they are believable as answers to a given question.

This notion of type-appropriateness is distinct from correctness, as there may exist many

type-appropriate responses that are not correct answers. Type-appropriate responses can

even exist for other kinds of queries that are not strictly questions.

This work introduces class-free models of answer type for certain kinds of questions

as well as models of type-appropriateness useful to the domain of information retrieval.

Models built for both open-ended noun phrase questions and how-adjective questions are

designed to evaluate the type-appropriateness of a candidate answer directly rather than via

the use of an intermediary question class (as is done with question classification). Exper-

iments show a meaningful improvement over alternative typing strategies for these kinds

of questions. Ideas from these models are then applied outside of the domain of question

answering in an effort to improve traditional information retrieval results. Experiments

comparing reranked results with those of the Google search engine show improvements are

made in those rare situations for which Google provides less than ideal results.
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Chapter 1

Introduction

In years past, the sum of human knowledge was held in the libraries of the world. With the

advent of the computer and the dawning of the information age, this repository of knowl-

edge has gradually migrated from these libraries to the realm of the Internet. Instead of

searching libraries far and wide for a piece of desired information, an interested person

may simply query this vast repository using an online search engine to at least gain an ini-

tial understanding of the topic of their choice. However, the pendulum has begun to swing

too far; the wealth of information easily available has begun to outstrip the ability of people

to find specific information related to a topic.

The most popular means of searching for information online are the large search en-

gines. These represent large-scale systems based on the principles of information retrieval

(IR) in which users are allowed to submit queries for which relevant documents are re-

turned. Relevance is often based primarily on the overlap between the query contents and

the document, which presumes that documents containing query words also contain infor-

mation the user is looking for. Additional factors can also contribute to relevance, such as

PageRank [6] made popular by the Google search engine. Because of this use of overlap, a

query for only a few generalized terms results in an overwhelming number of results. This

can often prompt a user to refine the query by substituting more specific terms or adding

additional terms related to the topic of interest. However, this is not a natural means by

which humans meet their information needs.

It is for the combined goals of a natural interface and the reduction of information over-

load that question answering (QA) stands out. Instead of simple keyword-based queries,

users may pose syntactically-correct and semantically-rich questions as the basis of their

information request. Likewise, the response to these questions will no longer be a sim-

ple list of relevant documents (which may or may not include convenience features such as
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snippets) but rather specific answers that satisfy the question. In effect, the burden of sifting

through documents is shifted from the user (who may be easily overwhelmed) to the QA

system.

Beginning with the National Institute of Science and Technology’s Eighth Text Re-

trieval Conference (TREC-8) [67], research into large-scale corpus-based QA has grown

dramatically. Organized as a competition, the TREC-8 QA track and subsequent TREC QA

tracks spurred rapid development of QA techniques for free-form questions against a large

unstructured text corpus. In order for techniques to be successful at TREC, they must ad-

dress both the issues of handling syntactically well-formed natural language questions and

the extraction of responses from unstructured newswire text. The approach advocated by

the TREC QA tracks support the overall goal of developing QA techniques that can scale

up to large collections such as the Web where a large portion of human knowledge resides.

The use of computational resources to meet or exceed the abilities of humans is a com-

mon theme in artificial intelligence research. By playing to the strengths of computational

resources over human intelligence, we are able to approximate the means by which users

find high-quality information relevant to their information needs. Of course, we must be

careful not to overly restrict the amount of information reaching users. IR may be a better

solution for exploratory queries (in which a user wishes to gain a better general knowledge

of a topic). Additionally, answers alone are seldom acceptable as responses and require the

support of one or more documents in the collection.

The goal of answer typing is to ensure that a set of potential answers (or candidate an-

swers) can be filtered such that only those deemed plausible as responses are retained. Each

answer to a question is by definition a plausible response, and responses to query generally

fit some notion of appropriateness. Because answer typing forms the basis of this thesis, it

is important to note both the distinction between QA and answer typing and the role answer

typing plays within the QA task. Whereas QA seeks to find correct answers, answer typ-

ing merely attempts to find potentially correct answers according to type appropriateness.

This process is an important aspect of the complete QA process, but is also useful in fields

for which exact answers are either unexpected or undesirable (e.g., IR). By relaxing the

requirement of correct answers to appropriate candidates, we can both focus on a single

component of QA and obtain a process from which non-QA applications can benefit.

Answer typing is meant to capture the fact that a user posing a question has some

implicit expectation of what encompasses an appropriate response. Simple examples of

such questions are those that include a question focus, which is defined here as a noun
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phrase following the wh-word what or which and coming before the main verb. An example

of question focus is what city hosted the 1988 Winter Olympics? in which city is the focus.

Such focus questions clearly state that the desired answer must be a city, and a correct

answer must be a city that hosted the 1988 Winter Olympics. Other questions exist in

which there is much less explicit type information, but type information is still present.

For example, who questions, such as Who was the first Prime Minister of Canada? do not

explicitly state what they are looking for, but a user posing such a question would not accept

colours or kinds of automobiles as results. Moreover, the user can confidently exclude such

responses as incorrect even in cases in which he or she does not know the correct answer;

they are obviously wrong. It is this implicit knowledge of type-appropriateness that we

wish to capture and exploit to improve the responses we return.

The previous examples foreshadow the most common means by which answer typing

is performed in QA. Most often a list of pre-defined answer type labels is created with both

the set of expected questions and some named entity extraction strategy in mind. This pre-

defined set depends greatly on the ingenuity of its creator as well as the ability of the named

entity recognizer that will attempt to find such entities in text. However, regardless of the

set of type labels defined, we still run the risk of encountering an unanticipated question

type for which no label is appropriate. In many cases, the set contains a miscellaneous

or catch-all type [27, 36] to cover such cases. This behaviour is still a danger even for

those typing systems using a large number of types [24]. For these unanticipated questions,

answer typing is largely ineffective due to the fact that questions assigned to this class often

have very little in common. For unanticipated questions assigned a miscellaneous or catch-

all type, we can often make a very meaningful increase in performance over the default

strategy of accepting nearly any candidate as appropriate [57].

One of the primary goals of this thesis is to develop an effective answer typing strategy

that is both flexible enough to apply to areas outside of QA and does not rely on a set of

pre-defined answer type labels. Even though a given set of answer type labels may have

high coverage on a specific set of questions, we cannot expect that all future questions will

be covered by these labels. Furthermore, as time goes on the questions encountered by a

system may begin to drift away from the expected types leading to an increasing number of

miscellaneously-classed questions for which labels are ineffective. If we wish to avoid the

constant refinement and adjustment of type labels required by pre-defined types, we must

evaluate appropriateness in a more direct manner instead of using intermediary types.

3
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1.1 The Question Answering Process

Although only the answer typing aspect of QA is explored in the bulk of this thesis, it

is instructive to look at the QA process in its entirety to better understand the limitations

and expectations of answer typing. Many of the systems involved in the TREC QA track

competitions define a framework similar to the one shown in Figure 1.1 [67]. Although

components of Figure 1.1 are shown as a linear pipeline, the pieces can often be rearranged

and/or run in parallel to achieve some desired effect. For example, the answer extraction

and answer typing modules may be run in parallel and a reranking component may assign

weights to each of the two independent processes. Similarly, answer typing may come

before answer extraction in the event that the chosen answer extraction module is com-

putationally intensive, allowing the answer typing module to first reduce the number of

candidates according to their appropriateness as answers. Regardless of the order in which

the modules are applied, this basic framework covers the overall QA process in the majority

of cases.

1.1.1 Question Analysis

The question analysis phase of a QA system is meant to extract useful information from the

text of a natural language question. The exact information extracted varies by system, but

can include information such as a reformulation in keyword format such that a standard IR

system can be used, a parse tree or portions thereof [57, 65] for matching against documents,

and type information that can be fed into the answer typing module. In some cases, a type

category is sent to the document retrieval module for use with an index enhanced with type

information [59]. Most often the analysis results are used by the answer extraction and

answer typing modules.

Regardless of any module ordering choices, the question analysis module is most likely
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to be performed both first and prior to all other modules. This is because the results of

question analysis are useful for nearly all subsequent modules and may be employed in a

number of ways. Although question analysis may be delayed until its results are required,

the results of question analysis can often provide hints on how to handle the given question.

Given the topic of this thesis, we will largely focus on the relationship between ques-

tion analysis and answer typing. Often the line is blurred due to the fact that much of the

information provided by question analysis, such as a desired named entity type, is used

exclusively by answer typing. From this perspective, we largely combine the discussion of

question analysis (as it relates to answer typing) and answer typing itself (i.e., the identifi-

cation of type-appropriate responses) into the discussion of answer typing.

1.1.2 Document Retrieval

An information retrieval (often called document retrieval in QA) engine plays an important

role in any QA system. Because of the large size of the document collection in which an

answer is likely to be found, document retrieval techniques provide an efficient means of

filtering out the large number of documents that are unrelated in any way to the question.

The bulk of contemporary information retrieval research can be applied to this problem with

little or no modification, but a few important differences must be noted.

Information retrieval is concerned with keyword-based queries in which each keyword

or phrase is expected to be in some way related to the information sought. A natural lan-

guage question, however, contains words that would be misleading to an IR system should

they appear in a query. For example, in the question who is James Bond? the words who

and is are not important to finding documents relevant to James Bond. Including them in

a keyword query may result in too few or irrelevant document being returned, especially if

the IR system implicitly requires that all query terms be present in the document (an AND

query). To address this issue, queries must be formulated to include only those words that

are expected to appear in documents containing an answer. This may be performed either

by the QA system prior to invoking the IR engine, or by a modified IR engine that is capable

of accepting questions and filtering out the irrelevant words.

IR systems make use of document scores when producing a sorted list of relevant docu-

ments. Ordinarily, a human user of an IR system is unconcerned with the document scores

so long as the sort order implied by them places relevant documents near the top of the list.

A QA system, on the other hand, may find these scores useful. If only the sort order is used,

a QA system can only assume that each document differs from the preceding and follow-
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ing documents by some pre-defined score. At the other extreme, a QA system may simply

impose a top-N cutoff and consider all top-N documents as having equivalent score. If

the score assigned by the IR engine is made available to the QA system, a soft rather than

hard cutoff may be used. For example, if the difference in score between the first and fifth

documents returned by an IR engine is negligible, all five should be considered roughly

equivalent in terms of containing a correct answer. Should the difference in score between

the fifth and sixth documents be large, however, the QA system may choose to consider

only the top five documents.

Given that information retrieval is a relatively well-studied topic, this thesis will not

focus on the document retrieval module of a QA system. Many existing IR systems can be

adapted to handle questions without excessive modifications; in QA competitions, sorted

lists of retrieved documents are often made available to participants to shift the burden of

QA from the document retrieval module to other components of the system. This has the

effect of focusing QA research on the QA-specific portions, rather than on the parts shared

by both the IR and QA communities.

1.1.3 Answer Extraction

Ultimately, the answer for a given question must come from some document in the collec-

tion, and it is the role of the answer extractor to pinpoint a particular answer. The IR engine

serves to narrow down the list of possible documents that could provide an answer, but this

is still too much information for a user to be presented with. The answer typing module

judges the appropriateness of the various words as potential answers, but performs this task

in a very broad manner; just because a word is appropriate does not necessarily mean that it

is a correct answer. The answer extractor must look within a document to determine support

for words as answers to a question.

Answer typing can be viewed as gathering support for candidate answers from a source

of general knowledge (in our case, a large document collection), whereas answer extraction

is much more focused on gathering support for a candidate within a specific document.

Various features of the candidate, document, and question can indicate which candidates

have support as an answer to the question. For example, if the position of the wh-word in

the parse tree of the question is similar to that of a candidate in its parse tree in the document,

this candidate may be a good potential answer. Similarly, if there are many question words

located in close proximity to a candidate, this candidate may be a more likely answer. The

answer extractor generally may use more complex features that can better pinpoint answers

6



because it only operates within the context of a single document and not a large collection.

The distinction between what constitutes answer typing and answer extraction is often

fuzzy. Answer extraction can make use of information derived from a large collection

of documents, such as learned patterns that often match the answer to a certain type of

question. Similarly, answer typing can place more emphasis on certain documents of a

collection than others, and may use features from the document of a candidate answer when

determining appropriateness as an answer. Because the line between the two is ill-defined,

this thesis will consider answer typing as scoring candidates according to some function

that places more weight on corpus statistics versus answer extraction which assigns more

weight to a few documents, for example those returned by the IR engine. Although answer

typing or answer extraction may include elements from one another, a component can be

classified as one or the other according to whether or not a few documents or an entire

corpus play a more important role.

1.1.4 Answer Typing

In order for a QA system to accurately identify answers, it is helpful to have some concept

of what candidate answers are appropriate. Humans perform this task naturally when both

posing and being presented with a question; an expectation of the correct answer type al-

lows for obviously incorrect candidates to be rejected as incorrect. For example, given a

question such as who discovered insulin? we may accept Frederick Banting, Charles Best,

and Stephen Harper as possible answers but reject words such as treatment, 1922, known,

involved, diabetes, etc. Based on the format of the question, an idea of the desired answer

type can be formed. In the case above the desired answer is a person. Similarly, candi-

date answers can be identified as type-appropriate or not. By employing such a method, a

QA system can invalidate inappropriate responses and increase the likelihood of returning

a correct answer to the question. Conversely, answer typing may occur without the explicit

use of types, which will be referred to here as class-free answer typing. Class-free answer

typing directly scores the appropriateness of words to a question without ever having to use

types.

It should be noted that answer typing requires only the question to form a notion of what

types would be appropriate. If the types are drawn from some finite fixed set, this process

can be called question classification. Question classification must be combined with named

entity recognition to provide a complete answer typing system. Named entity recognition is

the task of identifying words or phrases of a specified finite fixed set of types within a given
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document. For such an answer typing system to be effective, it must be able to accurately

classify questions as one or more of the appropriate types and identify words or phrases

appropriate to those types.

1.2 Contributions of this Thesis

Given our focus on answer typing alone, we wish to explore effective means of answer

typing that are useful for both the task of QA and for any task in which the notion of type-

appropriateness is beneficial. For example, an application may wish to store only those

items in a database that are type-appropriate. In this context, answer typing can ensure

that the database is consistent. We adopt the notion of answer typing depicted in Figure

1.2, representing a portion of Figure 1.1. Some important consequences of this framework

are that answer typing is cast as filtering or ranking a pre-defined set of candidate answers

and that a text corpus is used. Within this framework, the following sections describe the

contributions of this thesis.

1.2.1 Class-Free Answer Typing for Open-Ended Noun Phrase Questions

Given the wide acceptance and use of class-based answer typing approaches, we explore an

alternative class-free typing strategy that better accounts for the deficiencies inherent in the

use of classes. Although class-based answer typing is appealing because of the separation of

question classification and named entity recognition, any set of classes is unable to cover all

possible questions. Even if class-based approaches exhibit good performance on questions

covered by the classes, we can augment a class-based approach with our class-free typing
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strategy in cases where class-based answer typing performs poorly. Therefore, it is useful

to explore a class-free strategy that will have a variable (but significant) impact depending

on whether or not a class-based approach is used in conjunction.

Class-free answer typing requires that we determine a score for each candidate response

directly rather than using an intermediary class. Because a candidate’s suitability is com-

puted directly to the question itself, we have a much lower risk of encountering a word

which we did not anticipate as a possible answer. In fact, we expect that only rare words

and difficult-to-type questions will present problems for our typing strategy, the very same

problems that lead to poor performance for class-based strategies. By removing the re-

liance on intermediary types, we eliminate the possibility of finding no adequate class for a

question as well as the errors arising from named entity recognition required of the set of

classes.

This thesis introduces an answer typing strategy based on the intrinsic similarity of

words and the wealth of information contained within text corpora instead of a predefined

set of answer classes. Such a model is shown to be particularly effective for those ques-

tions seeking an open-ended noun phrase as a response; these questions typically use the

word what or which. Also, questions seeking more closed forms of answers, such as the

how-adjective questions (Chapter 4), benefit from a more fine-grained approach to typing.

Conversely, more complex questions often require a more involved response and are not as

amenable to typing; reasons or causes are not easy to identify as type-appropriate to a ques-

tion. The model introduced in detail in Chapter 3 is shown to perform well on open-ended

noun phrase questions and the results are encouraging for the application of the model in a

full question answering system.

1.2.2 Fine-Grained Typing of How-Adjective Questions

The class of how-adjective questions, questions in which the wh-word how is followed by

an adjective/adverb such as high, can be generally considered more restricted than the open-

ended noun phrases discussed previously. Most often these questions are relegated to the

fixed type of Number or Quantity because of the fact that they seek an answer expressed

in terms of a quantity of units. However, just because these questions are always answered

by a numeric value does not mean that all numeric values are appropriate responses. If a

question is asking how high and we respond with a value expressed in terms of pounds or

kilograms, the response is incorrect. Therefore, we wish to exploit the appropriateness of

units in response to the adjective in the question.
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We introduce a method in Chapter 4 to automatically discover and rank those units that

are appropriate for numeric quantities of a given question. By identifying those units that are

appropriate to the adjective, we can achieve a finer granularity of typing than that provided

by simply looking for numbers. This reduction in appropriate candidates can make the task

of answering how-adjective questions easier by allowing only responses expressed in terms

of appropriate units to be further considered. Experimental results show better precision

over the entire range of recall when compared with both the coarse grain numeric type and

alternative finer-grained approaches.

1.2.3 Extending Answer Typing Beyond QA

Answer typing is most easily thought of in the context of QA. However, answer typing does

not need to be restricted to QA, and it can play a vital role in any application for which a

notion of type-appropriateness is useful. For example, we may wish to extend the database

natural join operation that typically joins based on tuples that share an equivalent attribute

value. Answer typing could be used in this instance to implement a fuzzy-join in which the

attributes are type-compatible rather than equivalent. This fuzzy join would result in many

more result tuples than a natural join, but would allow for combinations not previously

possible. Such application of answer typing to domains other than QA is a logical next

step.

In this thesis, we extend answer typing into the domain of information retrieval, an area

closely related to QA but with subtle differences. IR users interact with the system via key-

word queries to search for specific answers (as if the query were a modified question) or

general interest topics (a “tell me more about X” request). Even when searching for specific

answers, the queries are often much less structured than questions seeking the same infor-

mation (for example, a query would be age Stephen Harper rather than how old is Stephen

Harper?). Finally, users expect documents as results rather than short answers, and so we

must be careful to order documents rather than terms according to type appropriateness.

To apply answer typing to the domain of IR, we extend our open-ended noun phrase

answer typing model with additional features more suited to IR. Because our noun phrase

typing model is designed with flexibility in mind, small changes to the notion of type-

appropriateness are easily accommodated. Experimental results show that information re-

trieval results for queries seeking a short answer are significantly improved by a notion of

type appropriateness. We compare with the popular Google search engine so that the com-

parison ordering is as good as is reasonably possible given the wealth of information on the
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Web and Google’s desire to produce accurate results for queries.

1.3 Outline of the Thesis

To serve as both a summary and preview of the remainder of this thesis, this overview is

intended to give a general overview of the upcoming chapters.

Related Work

Chapter 2 introduces, in general terms, the body of work related to the topic of answer

typing. Almost all QA systems incorporate answer typing in one form or other, and we

identify common themes in the methods commonly employed. By far the most popular is

question classification (introduced previously) for which the set of types can vary greatly

(from less than 20 to over 140). Methods to assign these types can be based either on

hand-defined or learned rules or with the use of a learned classifier based on features of the

question. Finally, a few systems depart from the traditional class-based notion of type and

attempt to directly evaluate the suitability of a candidate answer. In particular, the system

we focus on uses ideas borrowed from theorem proving to connect a candidate answer with

concepts in the question.

Typing Open-Ended Noun Phrase Questions

The first set of questions for which we build an answer typing model is the set of open-

ended noun phrase questions. A generative model intended to show how pieces of the

question contribute typing information followed by a discriminative model that is able to

take advantage of more diverse features, are introduced in Chapter 3. Open-ended noun

phrase question, specifically those identified by what or which as the wh-word, contain a

surprising amount of typing information. The way in which a question is stated reveals

clues about what a potential answer must satisfy. For example, a question such as what city

hosted the 1988 Winter Olympics? must be answered by 1) a city, and 2) something that has

hosted an Olympics. If we wish, we can adjust the level of detail by taking more general or

specific information from the question. For the above example, we may wish to make the

second requirement more specific and require a city that hosted a Winter Olympics. This

information is particularly easy to extract from questions because the wh-word largely acts

as a placeholder for the answer. If we parse the question with Minipar [39], the wh-word

takes on the syntactic role of the as-yet unknown answer.
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Once typing information is extracted from questions, we compare it with similar in-

formation extracted from a text corpus as a whole. The best way to find out what words

are appropriate for “things” hosting a Winter Olympics is to search text for mentions of

things hosting a Winter Olympics. If we have an unlimited amount of text, we can expect to

eventually find mentions of all things that have ever hosted a Winter Olympics, the correct

answer included. Unfortunately, such an unlimited quantity of text does not exist and so

we receive only partial information. To increase coverage, we use automatically generated

similar word clusters to essentially fill-out these incomplete lists of mentions. This similar

word expansion is not exact, but allows us to form a fuzzy idea of what terms are type ap-

propriate for a particular aspect of a question and the question as a whole. Given a measure

of appropriateness, or expected likelihood of seeing a mention, the next step is to combine

the values for multiple aspects of a single question into a score for the question as a whole.

For example, a candidate such as Calgary will have different values for Calgary is a city

and Calgary hosted a Winter Olympics. We introduce two methods of typing in Chapter

3, varying with respect to the weights of question contexts and the inclusion of additional

features.

Fine-Grained Typing of How-Adjective Questions

As discussed in Section 1.2.2, one of the primary contributions of this thesis is to con-

sider the class of how-adjective questions at a finer level of detail. Although it is true that

how-adjective questions are answered by numeric responses, not all numeric responses are

satisfactory as answers. A how tall question cannot be answered in units of weight or mass,

regardless of whether or not the numeric quantity itself is properly identified. Chapter 4

introduces the idea that the units themselves are the basis for type appropriateness. We

can automatically discover what units are appropriate for how tall questions by looking for

words related to the adjective tall, such as height and tallness, and mentions of the phrase

height is measured in X. Once again, mentions form the basis of what is type appropriate,

and similar word expansion can again fill out the list of mentions. These mentions contain

units that are type appropriate for the given adjective.

Once a set of potential units has been discovered, we must apply some filtering, as more

than just units are discovered, especially when we use unparsed web documents as a source.

The result is a list of high-quality units in which answers to the question may be expressed.

It should be noted that all questions sharing the same adjective, such as tall, will share the

same unit list, and there is no need to repeatedly search for units appropriate to every new
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question. Given the expected type of a question, determining type-appropriate responses is

then as simple as matching the unit of the response with a unit on the list; the list is ordered

and matching higher up can be considered a stronger indicator of appropriateness.

Beyond QA: Answer Typing for IR

The logical next step of answer typing is to extend beyond the bounds of QA and into the

realm of IR. Chapter 5 extends the flexible model for open-ended noun phrases to queries

submitted to an online IR engine. Of course, not all IR queries can benefit from answer

typing. Many IR queries are searching for general topics and not specific answers. However,

a significant portion of IR queries are looking for short, specific responses. Also introduced

is a rudimentary means of identifying such queries along with an extended typing model

that can take advantage of additional features specific to the IR task.

In general, IR queries contain much less information than questions, and any informa-

tion they do contain is typically expressed in a different manner. We focus on prepositional

queries, such as cities of Canada, that are a noun phrase modified by a prepositional phrase.

Although this class of queries seems small at first glance, prior work has established a class

of noun phrase (not prepositional) queries that can be transformed into this format. Once

we have a query in prepositional format, we proceed to analyze the query in much the same

way that we analyze questions.

The only further complication introduced by IR is the fact that users expect an ordered

list of documents instead of a single specific answer as a response from an IR engine. To

preserve this behaviour, we must rerank the results of an IR engine with respect to whether

or not results (snippets or documents) contain terms that are type appropriate to the query.

The ultimate goal is to produce an ordering that is more favourable to users than the results

in their original ordering (for some queries), and experiments show that answer typing

improves upon the original Google ordering for those cases in which a query has a short

answer.

Conclusions

Chapter 6 concludes with a summary of the primary contributions introduced in this the-

sis. The connecting theme of all aspects of this thesis is the central notion of the type

appropriateness of terms without the need for intermediary types. Although a class-based

approach is certainly useful for typing, it cannot cover all cases. For those cases in which

a class-based approach is insufficient (such as open-ended noun phrases and fine-grained
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how-adjective questions), a class-free approach can truly shine. Answer typing can even

apply beyond the realm of QA, a subject that will hopefully be explored further in the

future.
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Chapter 2

Related Work

Answer typing is an often-neglected aspect of QA. Many times it is mentioned in passing

so that more attention can be paid to aspects of a QA system that distinguish the system

in question from other similar systems. Often these distinguishing features are part of

the answer extraction process, for which the bulk of work is done. This glossing-over of

answer typing details is especially prevalent when simple answer typing methods are used.

However, more attention is paid whenever answer typing forms a relatively important part

of a QA system; heavy reliance on typing and/or sophisticated typing often garners a more

detailed description of how the typing is performed. We examine some examples of both

simple and complex approaches to answer typing in this chapter.

In most contemporary systems, answer typing plays the role of either verification or

guidance (or both) for the question answering system as a whole. When used for verifica-

tion, the answer type model provides an answer to the question Is this answer candidate ap-

propriate? The decision can be binary (yes or no) or a score that then needs to be combined

with the scores obtained in the remainder of the question answering process. Although no

known QA system uses what can be considered a pure verification approach, in which the

type is only used to verify candidates selected as answers by a separate answer extraction

module, some systems, such as that of Burger and Bayer [8], make use of answer type

information late in the question answering process. Answer typing features are combined

with answer extraction features to create a unified set for which weights must be learned.

When answer typing is used in a guidance role, question analysis first provides a type

to go along with the question that may then be used by subsequent stages of question an-

swering. These subsequent stages can take into account the difference between the desired

type and the type of a candidate answer when evaluating the appropriateness of that can-

didate. In some ways, guidance is a more natural way to incorporate the notion of answer
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Figure 2.1: Architecture of Prager et al. [60]

type into a question answering system. However, using answer typing for guidance is not

conducive to compartmentalizing the question analysis and the answer typing model as a

single component of the system; question analysis passes the type to all stages of question

answering, resulting in a potentially more difficult development process. Guidance is by far

the more popular method of incorporating answer typing into QA. A notion of type can be

incorporated during any stage of the question answering process, and is most often added

early on. For example, the system of Prager et al. [60] (see Figure 2.1) passes a QFrame

containing answer type information from the initial question analysis phase to the subse-

quent answer extraction modules which may include many parallel sub-models. Each of the

parallel sub-modules may make use of the desired answer type when searching for answer

candidates.

Regardless of their use for verification or guidance, current approaches to answer typ-

ing can be considered as either class-based or class-free. Class-based approaches make use

of an explicit set of answer types. These methods assign a type from a given set of types

to each question and each answer candidate. In other words, a class-based system must

perform two explicit steps: 1) compute likelihood that a type T is assigned to a question Q,

and 2) compute the likelihood that a candidate c is labeled as T ; the former is referred to as

question classification whereas the latter is known as named entity recognition. Conversely,
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a class-free approach refrains from using a set of explicit answer types in favour of comput-

ing some notion of appropriateness directly. A class-free system computes the likelihood

that c is appropriate for Q without requiring a priori knowledge of types T .

2.1 Class-Based Approaches

QA systems that employ a class-based approach to answer typing must both assign types to

questions and identify that same type (or types) in the set of answer candidates. Often, the

set of types is taken to be of that of an existing named entity recognition system, such as the

MUC-7 types [11]. The MUC-7 competition (and previous MUC competitions) embodies

a great deal of prior work on named entity recognition. Given that named entity recognition

was explored in this prior work and continues to be developed, the focus of this section will

be on question classification where questions are assigned a fixed type (or types) and entities

of the same types must be identified in text. However, it should be noted that performance

of any class-based approach is dependent on both the accuracy of question classification as

well as the accuracy of entity recognition for that same set of types.

The majority of class-based approaches can be broken down with respect to how they

assign types to a question. The types can be assigned either by some predefined rules (static)

or by a learned classification model that associates features of a question with particular

types (learned). Static approaches are based on knowledge engineering; someone must sit

down and define rules that associate certain aspects of a question with a particular type.

For example, one may create the rule (question word = what ∧ question contains author⇒

type = Person). In contrast, a learned approach employs machine learning techniques, often

with supervised training data, to associate features derived from a question with particular

types. The learned model may then be applied to future questions to determine types.

2.1.1 Answer Types

The choice of a set of answer types is not a straightforward process. The set may be selected

to be small and general so that both the question classification task as well as entity recog-

nition task have relatively high accuracy. Conversely, the set may be chosen to be large with

complex organization so that answer types convey a great deal of information. They may

also be derived using outside sources of information, such as a predefined ontology. This

section explores the sets of answer types used by various question answering systems.

The simplest and most popular sets of answer types are those based on the MUC an-

swer types (Table 2.1). The Message Understanding Conference (MUC) was created to
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Type Definition from MUC-7 [10]
ORGANIZATION named corporate, governmental, or other organizational entity
PERSON named person or family

LOCATION
name of politically or geographically defined location
(cities, provinces, countries, bodies of water, mountains, etc.)

DATE complete or partial date expression
TIME complete or partial expression of time of day
MONEY monetary expression
PERCENT percentage

Table 2.1: MUC-7 Types

further research in the field of Information Extraction (IE). One of the tasks of IE is named

entity recognition within documents. That is, entities must be identified as one of a fixed

set of types. Because of the large amount of research undertaken using the MUC types, it

is a logical starting point for class-based answer typing. Existing systems have been de-

signed to identify the MUC types (for example, Maynard et al. [44]) and so the challenge

of identifying appropriate types in text has already been addressed for this set of types.

A number of systems make use of what appear to be modified or enhanced sets of the

types used as part of MUC. The IBM system [26], based on Maximum Entropy learning [1],

originally began using the MUC types augmented with PHRASE (a miscellaneous type) and

REASON (a miscellaneous type applicable to why questions). Eventually this system grew

to use a total of 31 answer types [27] along with PHRASE and REASON, shown in Table

2.2. The AnswerFinder system at Macquire University [49] makes use of a set of thirteen

possible answer types [48], including MUC types such as person and location while adding

some additional types such as river, state, and unknown. Finally, the Cymphony system

[35] uses a set of types with a top-level hierarchy roughly based on the MUC types.

A system developed at the University of Albany SUNY [71] departs from the standard

MUC types and instead uses the BBN IdentiFinder [3] types with the addition of three extra

types. Also departing from the MUC types, He et al. [22] make use of the set of types as

used by the Li and Roth [36] classifier (described later when discussing learned class-based

approaches). Both approaches show that the MUC types (along with enhancements) need

not be the only basis for a fixed set of answer types.

The ISI Webclopedia system contains over 140 possible entity types, referred to as

QTargets [24]. QTargets are organized into a multi-level hierarchy and are divided into

groups based on the kinds of answer, and often the question, they represent. The entire

type list and its hierarchy is specified manually, representing a great deal of effort for type
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Category Types
Name Expressions Person, Salutation, Organization, Location, Country, Product
Time Expressions Date, Date-Reference, Time
Number Expressions Percent, Money, Cardinal, Ordinal, Age, Measure, Duration
Earth Entities Geological Objects, Areas, Weather, Plant, Animal, Substance,

Attraction
Human Entities Events, Organ, Disease, Occupation, Title-of-Work, Law, People,

Company-Roles

Table 2.2: Ittycheriah et al. [27] types

set creation. Despite its wide scope and fine granularity, it is still prone to encountering

questions for which no type in the hierarchy is appropriate. In fact, the authors state that the

S-NP (or general noun phrase) type is the default QTarget and will be used unless something

more appropriate matches.

2.1.2 Rule-Based Approaches

By far the most common and simple approaches to answer typing employ a set of predefined

rules to map from a given input question to one or more explicit answer types. The rules

may be carefully constructed by hand over a development set in accordance with the types

of questions developers expect to encounter. The rules may also be learned from a training

set of example questions along with the type that is appropriate for each question. Often, the

systems employing fixed rules for answer type assignment do not explicitly state the method

by which these rules are developed (for example, Sun et al. [65]). For these systems, and

similarly for our work, the emphasis is not on the derivation of rules but on the advantages

and drawbacks of using a set of rules that have been crystallized prior to running the answer

typing system. Presumably, hand-crafted rules exhibit higher precision as opposed to those

built automatically, although they may show lower coverage.

The use of a rule-based class-based approach for answer typing does not imply poor

overall performance of a system. On the contrary, two of the top-ranked systems at past

TREC competitions, described by Harabagiu et al. [21] and Sun et al. [65], make use of

rules to assign answer types to questions, although Harabagiu et al. make use of a class-free

approach in certain cases (which will be discussed later on). Neither system explicitly states

how these rules are derived.

Some systems explicitly state the use of hand-crafted rules. For example, the work of

Wu et al. [71] describes rules in which any question beginning with When, Where, Who
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are assigned the types Date, Location, Person, respectively. The How 〈ADJ〉 questions are

mapped via special rules, and the What/Which 〈BE〉 and What/Which 〈ENTITY〉 are han-

dled using a special mapping from a key noun (either in 〈ENTITY〉 or following 〈BE〉) to

particular answer types. The use of hand-crafted rules allows for easy and fairly accurate

assignment of type(s) to question, but can potentially miss certain cases. For example, the

system above would incorrectly assign a type of Person to the question Who manufacturers

the world’s fastest car? For this question, the correct answer type would likely be Organi-

zation rather than Person.

The AnswerFinder system [48] makes use of 29 regular expressions to assign answer

types to questions. The regular expressions were derived from the TREC 2002 questions,

and presumably are created by hand. If a new question matches one of the regular ex-

pressions, the type assigned to that question is the one specified by the expression. An-

swerFinder uses the GATE system [20] to identify named entities within the text as being

of one of the possible answer types. In this particular context, AnswerFinder is an example

of a system that takes advantage of prior efforts of MUC for named entity recognition rather

than designing their own specific extraction program.

Returning to the ISI Webclopedia system [24], answer types are assigned with the help

of a parser and 276 hand-built rules [23]. Given the large number of types and the complex-

ity of the hierarchy, rules are applied in a back-off scheme such that the assignment falls

back to increasingly general types. This back-off scheme allows the 140+ type hierarchy

to be useful without an incredible number of rules for deciding when either a general or

specific type is the best choice for a given question.

2.1.3 Learned Class-Based Approaches

Similar to rule-based approaches, learned approaches make use of a fixed set of answer

types that can be assigned to questions. The decisions for type assignments are made based

on a learned model of associations between features (derived from the question) and answer

types. New questions presented to the model are assigned a type based on how well their

features map to types under that model. Often a learned model can discover non-obvious

associations that may be missed by manual rules, but may also make errors due to noise in

the training data because of limitations introduced by transforming questions into features.

One of the first attempts at learning a model for question typing is presented by Itty-

cheriah et al. [25] in which a Maximum Entropy approach is used to learn a typing model.

The types used are those of MUC, and Maximum Entropy is used for both question classi-
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Coarse Class Fine Sub-classes
ABBREVIATION abb, exp
ENTITY animal, body, colour, creative, disease/medicine, event, food,

instrument, language, letter, other, plant, product, religion,
sport, substance, symbol, technique, term, vehicle, word

DESCRIPTION definition, description, manner, reason
HUMAN group, individual, title, description
LOCATION city, country, mountain, other, state
NUMERIC code, count, date, distance, money, order, other, period, percent,

speed, temp, size, weight

Table 2.3: Li and Roth [36] classes

fication and named entity tagging. Ittycheriah et al. specify an additional miscellaneous or

catch-all class (Phrase) that can be used when no other class is appropriate for a question.

The feature extraction module considers the question as a bag of words, n-grams, part of

speech tags, and WordNet-based [45] expansion terms. Error analysis shows that the ques-

tion classification module and named entity tagger are the two components with the lowest

error rate in their entire question answering system.

Li and Roth [36], probably the most well-known of the class-based learned approaches,

take learned answer typing a step further by employing a larger set of answer types along

with the Sparse Network of Winnow (SNoW) learning architecture (rather than Maximum

Entropy). A two-level hierarchical classifier is built on features including the words in the

question, the part-of-speech tags for those words, chunked noun phrases, named entities,

head chunks for a sentence, and certain key words that often occur with a particular class.

Features are also combined to produce additional features, although not all combinations

are used. This represents a typical feature space for learned class-based approaches.

Li and Roth’s use of a two-level hierarchy is meant to allow for the use of the general

class (of which there are six) when deciding on the more specific classes (46 possible). The

classes used by Li and Roth are found in Table 2.3. Unfortunately, the performance benefit

of first deciding on a coarse class and using it as an additional input when deciding on

more refined classes is very small. This does not mean that the classifier in general is poor,

however, as Li and Roth report a classification accuracy of 95% on their set of fine classes.

Even higher performance is reported on the coarse set of classes, for which the classifier

is correct 98.8% of the time. This coarse set of classes better represents the original MUC

types, although it likely does not have a sufficient degree of granularity to perform good

answer typing.
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One missing detail, typical of many class-based approaches, is that of an entity tagger

or detector capable of identifying entities of these 46 possible types. Of course, it may

be possible for a QA system to modify its behaviour based on the type(s) assigned to the

question, but in general a type such as plant or religion would best be handled by identifying

words that are members of that class. Interestingly enough, the classes of Table 2.3 include

a partial breakdown for the numeric types (such as distance and speed). This is similar to

our approach, discussed in Chapter 4, of examining the how-adjective questions in greater

detail rather than simply resorting to the use of a single numeric label.

Zhang and Lee [72] present a comparison of machine learning techniques for learning

a model to assign types to questions. They compare a nearest neighbour approach, a naı̈ve

Bayes approach, a decision tree approach, a SNoW-based approach [36], and a novel sup-

port vector machine (SVM) approach. The SNoW approach was meant to approximate or

recreate the system used by Li and Roth. The use of an SVM to perform essentially the

same task as Li and Roth represents a general shift toward SVM learning in contempo-

rary natural language processing. Performance is given at 80% accuracy when classifying

TREC-10 questions as one of the types used by Li and Roth (see Figure 2.3), a slight im-

provement over the 77% for the SNoW-based classifier. By incorporating a kernel based on

the parse structure of the question, Zhang and Lee are able to make a slight improvement in

performance, but this is only tested on the coarse classes of Figure 2.3.

2.1.4 Narrow-Class Questions

Many questions, including the how-adjective questions, fall into the realm of having either

an obvious single or few classes. The when questions are always seeking a time or date, and

appropriate responses must be temporal references (e.g., [41]). For other questions, such as

who (looking for a person or organization when not a definition question), it can suffice to

identity named-entity types in text based on the MUC classes [11]. Of course, each of these

kinds of narrow-class question can be handled in a fine-grained manner, and we focus on

the how-adjective questions as an example of such narrow-class questions.

Wu et al. [71] handle how-adjective questions differently than other questions. They

use special hand-crafted rules to assign a particular answer target during the answer typ-

ing phase (although no examples of rules are ever stated). This is a common trend for the

discussion of answer typing in the QA literature; answer typing is seldom considered im-

portant enough to be explained in detail, often because the most obvious means are used to

perform answer typing (such as the use of hand-crafted rules). Regardless of the rules used,
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Wu et al. take advantage of the structure inherent in how-adjective questions rather than

just treating them as questions seeking a number. However, manually hand-crafting types

is costly, and would have to be repeated if the system was moved to a new language or a

new query domain. Our automatic approach does not suffer from this drawback.

2.1.5 Limitations of Class-Based Approaches

Class-based approaches work with a fixed set of answer types that have been defined a

priori. That is, prior to any new question being seen, the set of types has been crystallized

and cannot be changed. This results in the problem of what to do in the event that no

existing type is appropriate for a question. This can manifest itself as situations in which a

question receives no type label (for example, due to no appropriate rule in a static approach)

or a significant amount of uncertainty about the type(s) (for example, all types receiving a

uniform probability). In such situations, a miscellaneous, or catch-all, type either implicitly

or explicitly exists. This miscellaneous category is reserved for questions seeking an answer

that is not one of the predefined types and is effectively a non-type. For example, if our set

of types is taken to be {person, place, location} and we are given the question What animal

can run the fastest? we must assign the miscellaneous type to the question because none

of the other types are appropriate. A question receiving the miscellaneous type is looking

for something other than one of the given types. However, due to the fact that the majority

of words in text are often not one of a predefined set of types (depending on the size of the

type set and the accuracy of entity recognition), the majority of words and phrases have no

type and are therefore appropriate for a miscellaneous question. In other words, when we

have a question seeking a miscellaneous type, we can expect the set of appropriate answer

candidates to be large and the relative benefit of class-based approaches to be small.

Light et al. [37] performed a study to measure answer confusability in systems that use

a fixed set of answer types. Using the set of TREC-9 questions [68], along with a fixed

set of 24 answer types, Light et al. manually assign one of the 24 types to each question.

Furthermore, they manually identify sentences containing a correct answer, and manually

extract all terms of the appropriate type from these sentences. Answer confusability for

a question is then measured as the ratio of the number of correct answers to the number

of appropriate terms extracted from the sentences. Thus, if the number of correct answers

is constant but the number of appropriate candidates increases, the answer confusability

score goes down. Averaging answer confusability over a set of questions provides an up-

per bound on performance because perfect question typing, sentence extraction, and entity
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recognition are unrealistic in an automatic system. Overall, Light et al. find that this perfect

answer typing would result in only 59% average accuracy. In other words, on average, each

question has three correct answers for every five appropriate terms, leaving two terms as

appropriate yet incorrect. When considering questions assigned as their DefaultNP, which

is essentially the miscellaneous class, performance drops to 25%. For the DefaultNP class,

a system randomly guessing one of the appropriate terms as an answer can be expected

to be correct only one out of every four times. Light et al. expose the underlying flaw in

using a fixed set of answer types; multiple entities of the same type are indistinguishable by

the answer typing system unless some other technique is employed to compensate for this

shortcoming.

2.2 Class-Free Approaches

In contrast to class-based approaches, class-free approaches require no explicit set of an-

swer types to perform answer typing. Instead of explicit answer types, other methods are

used to associate appropriate answers with the questions. These methods still rely on gen-

eral information derived from an entire corpus or a set of external sources, and are still

considered to be answer typing rather than answer extraction strategies.

Interestingly enough, class-free answer typing is a very uncommon approach to answer

typing. Only the system described by Moldovan et al. [47] performs a form of class-free

answer typing. Moldovan et al. use a class-based approach for most standard types of ques-

tions, but adopt a different approach when faced with a question seeking a reason (such as

how did James Dean die?). Assigning these sorts of question a fixed type (for example, a

Reason type) is not particularly helpful because of the difficulty in identifying reasons and

because the space of all possible reasons is quite large. Instead, Moldovan et al. derive se-

mantic relations from the question that are used in conjunction with predicates derived from

WordNet [45]. An example of a semantic relation derived from the question how did James

Dean die? is manner(x, die) in which x would be replaced by a manner in which somebody

or something could die. Later on, during answer extraction, this semantic relation would

need to be resolved with a combination of the WordNet predicates and predicates from a

candidate answer sentence (in which x is replaced by some manner of death). Essentially,

the whole of WordNet is transformed into a typing strategy for connecting known question

concepts (such as manner(x, die)) to a potential answer without the need for a fixed type

label.
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An example of their logic prover, COGEX, in action is provided in [46] and is used

here. Much of the terminology used in their description is left to the interpretation of the

reader, including the definition of the individual predicates forming the basis of the logic

proof. In general, they use xi variables to indicate concepts and ej variables to represent

relationships between concepts. A question, such as which company created Mosaic?, is

transformed into a conjunction of these predicates. In this case, the question becomes:

∃e1, x2, x3, x4, x5 (organization AT(x2) & company NN(x2) & create VB(e1,

x2, x5) & mosaic NN(x5))

Roughly translated, this format states that we are looking for something that is both an

organization and a company and this entity created Mosaic, the browser that popularized

the Web. The candidate answer sentence is also transformed into this logic format, although

the logic form is omitted here because of the size and complexity:

In particular, a program called Mosaic, developed by the National Center for

Supercomputing Applications (NCSA) at the University of Illinois at Urbana

- Champaign , is gaining popularity as an easy to use point and click interface

for searching portions of the Internet.

Named-entity recognition is used to establish the fact that NCSA is an organization:

∀x3, x4, x5, x6, x7, x8 (national NN(x3) & center NN(x4) & for NN(x5) & su-

percomputing NN(x6) & application NN(x7) & nn NNC(x8, x3, x4, x5, x6,

x7)→ organization AT(x8))

and transformed WordNet glosses establish the relationship between develop and make and

make and create, thereby encapsulating the general-world knowledge of the equivalence of

develop and create (at least in the realm of software):

∃x2, x3, x4,∀e2, x1, x7 (develop VB(e2, x7, x1) ↔ make VB(e2, x7, x1) &

something NN(x1) & new JJ(x1) & such JJ(x1) & product NN(x2) & or CC(x4,

x1, x3) & mental JJ(x3) & artistic JJ(x3) & creation NN(x3))

∀e1, x1, x2 (make VB(e1, x1, x2)↔ create VB(e1, x1, x2) & manufacture VB(e1,

x1, x2) & man-made JJ(x2) & product NN(x2))

Once the rules have been derived from the question and candidate answer sentence (and

from WordNet as a whole), all that remains is to derive a specific answer term from the
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combination of all the logic forms. For this particular example, a sequence of 374 steps

are required. Should a proof be impossible, some conditions that prevent proof completion

are relaxed and a penalty is imposed for finding answers with relaxed conditions, thereby

reducing the score for answers that are inappropriate (due to WordNet rules being relaxed).

Understanding this complex process can be difficult, but the ultimate goal of connecting

question concepts with answer concepts via general world knowledge (i.e., WordNet) is

clear.

Aside from this method for class-free answer typing used by Moldovan et al., no other

known question answering system uses a class-free approach to answer typing. One of the

goals of this thesis is to develop a class-free answer typing strategy that is more general than

Moldovan et al. so that it can be applied to all questions rather than only ones seeking an

abstract Reason answer. More specifically, we hope to show that class-free answer typing

performs better on those questions for which the answer type is unknown or poorly defined.

2.3 Summary

Although answer typing is an important component of a QA system, the most common

approach to typing is often very simple. Class-based approaches using (often hand-crafted)

rules to assign types are the most prevalent means of performing typing, even though these

classes are known to be deficient in at least some cases where a Miscellaneous type must

be assigned. Because rules are often difficult to create and can have poor coverage, learned

class-based typing approaches can account for a more diverse set of questions being mapped

to a given set of types. Class-free approaches avoid the problems inherent with any class-

based approach (be it rule-based or learned) by not relying on a set of predefined types that

have variable coverage. However, class-free approaches are the most rare and often the

most complex, meaning that they require a great deal of effort to create.

In the next chapter, we explore the use of a novel class-free answer typing strategy.

Although class-based approaches often exhibit good performance for those questions that

can be assigned one of the classes, a class-free model can assist for those questions that

are either miscellaneous or have a type assigned with low confidence. Therefore, all typing

approaches should be considered to be mutually beneficial rather than mutually exclusive.
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Chapter 3

Typing Open-Ended Noun Phrase
Questions

The first class of questions considered in this thesis are the open-ended noun phrase ques-

tions. In general, these are the questions denoted by the wh-word which, what, and who

that are not seeking the definition or explanation of some entity or concept. Definition

questions often require a long response and are not as suited to typing (such as who is

Stephen Harper?). Open-ended noun phrase questions are of particular interest for answer

typing because the desired answer can be just about anything that can be expressed as a

noun phrase; from animals to movies to kinds of automobiles. Conversely, other kinds of

questions are significantly restricted in the types they seek. When questions in particular

are always looking for a temporal reference (i.e., time or date), which is a specific kind

of noun phrase. The open-ended noun phrase questions essentially represent those ques-

tions that can be answered by something that can be named; if a question is looking for the

world’s fastest land animal, the answer is the animal named by the word cheetah. Nameable

answers are crucial to our system, as responses that cannot be named by a term are more

complex in nature and are either 1) multi-part, such as when and where was the Battle of

Gettysburg fought?, or 2) complex, requiring more of an explanation than a short answer

(e.g., how do questions).

The open-ended noun phrase questions are best able to take advantage of a fixed set

of answer types. For example, the LOCATION type of Table 2.3 has as subtypes city,

country, mountain and state. Each of these types correspond to something nameable, such

as Edmonton, Canada, Mt. Robson, and California, respectively. If we encounter questions

looking for an answer such as Edmonton, the subtype city would be useful. Likewise, if

Table 2.3 included a river type and we encountered a question such as what is the longest

river on the world?, then the river type is an excellent match. However, if no river type
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exists in our fixed set of types, then we must fall back to using something more general

such as LOCATION or possibly miscellaneous. In this instance, a better solution would be

to perform answer typing without an explicit set of answer types.

In this chapter, we study the creation of a class-free answer typing strategy for open-

ended noun phrase questions. We begin by presenting a generative model in which the

question is decomposed into multiple complementary pieces where each piece contributes

to the notion of type-appropriateness for the question as a whole. This generative model

explains the way in which the pieces of the decomposed questions interact, but is not able

to easily incorporate new and diverse features. Moving to a discriminative model results in

a loss of intuitive clarity as to how information from the question contributes to type, but is

a great deal more flexible when it comes to adding new and diverse features.

The remainder of this chapter is organized as follows. We begin in Section 3.1 by intro-

ducing the resources available for a model of answer type, especially those that represent the

general world knowledge necessary for typing. We will then introduce a generative model

in Section 3.2 that makes use of these resources to perform class-free typing. Because of

some of the shortcomings inherent in the generative model, we move to a discriminative

model in Section 3.3 that is both better-performing and more flexible. Both models are ex-

perimentally evaluated and their performance is compared to alternative typing strategies in

Section 3.4. Conclusions are drawn in Section 3.5 before moving to the next chapter where

typing for a new class of questions is studied.

3.1 Resources

Before developing an answer typing model, it is useful to describe those linguistic resources

that are available for analyzing a question and determining responses that are most suited

to it. The resources listed here are key components of both the initial generative answer

typing model of Section 3.2 and of the follow-on discriminative preference ranking model

of Section 3.3. Therefore, these resources may be considered as the basis of our open-ended

noun phrase typing as a whole.

The model we develop for open-ended noun phrase questions is based exclusively on

limited corpus statistics rather than the Web. A number of systems (e.g., [5]) have used the

idea of answer projection to find answers to a given question on the Web and then project

the answer upon the corpus (i.e., find documents in the corpus that have the answer found

on the Web). This approach has high performance and does not require complex techniques,
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but is only applicable to general questions for which the Web is an appropriate corpus. If

we instead move to domain-specific QA (e.g., medical), we cannot expect to have Web-

scale resources at our disposal and must once again rely on limited corpus statistics. For

this reason, we restrict ourselves to limited corpus statistics for general open-ended noun

phrase questions even though answer projection from the Web would likely provide better

overall performance.

3.1.1 Word Clusters

The data we find in a corpus is extremely sparse. We cannot expect to see every possible

occurrence of every word in any corpus, regardless of its size. Instead, we wish to abstract

specific words to their general concepts. For example, it may not be as important to keep

track of what words follow the verb eat, but rather that most tend to fall into the concept of

food. Word clusters allow us to perform this abstraction from specific words to general con-

cepts. An abstract cluster may not correspond to any particular word, but instead represents

a concept that includes words that were not observed occurring in that particular context in

the corpus.

Word clusters may be created in a number of different ways. Some are as simple as

a thesaurus whereas others use more advanced techniques [7, 16, 53, 31]. The techniques

used to obtain word clusters are not the focus of this thesis; what is important is that we

have word clusters based on some notion of similarity between words. Therefore, we use

the Clustering By Committee (CBC) algorithm [51] developed locally at the University

of Alberta [50]. CBC uses the idea of a committee that is the core of each cluster; the

committee contributes to the cluster centroid rather than all cluster elements. A new element

must be close to this reduced centroid to be added to this cluster. CBC has shown good

performance and can be built automatically on a corpus of text with no manual labeling. To

get a feel for the kinds of clusters CBC creates, the following is an example cluster created

for the negative feeling concept, although CBC is not currently capable of assigning such a

meaningful cluster name:

tension, anger, anxiety, tensions, frustration, resentment, uncertainty, confu-

sion, conflict, discontent, insecurity, controversy, unease, bitterness, dispute,

disagreement, nervousness, sadness, despair, animosity, hostility, outrage, dis-

cord, pessimism, anguish, ...

In general, a word belongs to as many clusters as there are senses for that word. How-

ever, the idea of a sense under the CBC clustering is not always what a human annotator
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Word Clusters
suite Cluster1: software, network, wireless, ...

Cluster2: rooms, bathrooms, restrooms, ...
Cluster3: meeting room, conference room, ...

ghost Cluster1: rabbit, squirrel, duck, elephant, frog, ...
Cluster2: goblins, ghosts, vampires, ghouls, ...
Cluster3: punk, reggae, fold, pop, hip-hop, ...
Cluster4: huge, larger, vast, significant, ...
Cluster5: coming-of-age, true-life, ...
Cluster6: clouds, cloud, fog, haze, mist, ...

Table 3.1: Example clusters for words

would select. Rather, the senses are based on how the word is used in text relative to other

similar words. Table 3.1 shows two example words and the clusters which loosely corre-

spond to their multiple senses. For our cluster resources, we build CBC clusters on 10 GB

of English newswire text sourced from the AQUAINT corpus and TREC disks to obtain a

total of 3607 clusters.

3.1.2 Contexts

The contexts in which a word appears, whether it be nearby words or portions of a parse

tree, often gives clues as the semantic type of that word. For example, the word monitor

used in the context computer monitor indicates that the word refers to a particular device.

If we see the same word in the context hall monitor instead, we know that it is referring to a

person rather than a device. This basic idea of using context to infer some notion of type has

been exploited by many proposals for distributional similarity and clustering [13, 38, 53].

Following the work of Lin and Pantel [40], we define contexts of a word to be the

undirected paths in dependency trees involving that word at either the beginning or the end.

Minipar [39] is used to produce the dependency tree parses for sentences from which the

contexts are extracted. An example dependency tree parse for the sentence the quick brown

fox jumped over the lazy dog is shown in Figure 3.1.

The links in the tree of Figure 3.1 represent dependency relationships. Dependency

relationships are in the form of X modifies Y which means that X provides additional infor-

mation to the basic information provided by Y. We can also say that Y is the head of this

relationship, whereas X is the modifier. The direction of the arrow representing a link is

from the head to the modifier in the relationship. Labels associated with the links represent

the type of relation connecting the head with the modifier. Within a context we may wish to
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The quick brown fox jumped over the lazy dog

det

mod
mod subj

over

det

mod

Figure 3.1: Parse tree for The quick brown fox jumped over the lazy dog

leave one endpoint empty and replace it with a variable X. We call any word that replaces

X, as found in a corpus, to be a filler of the context. The concepts of contexts and fillers

enables the separation of the two for easier manipulation, especially if we want to look up

which clusters (not just words) are most likely to occur in a given context.

The links of Figure 3.1 can be chained together to form paths through the dependency

tree from one word to another. These paths behave similarly to the individual links (or rela-

tions), except that longer paths are increasingly more specific. We can use the length of the

path to balance between the specificity of the context (i.e., a length-2 path is more specific

than a length-1 path) and the sparseness of data. Longer paths contain more information

but have fewer fillers. With only a few fillers observed in a corpus, we cannot draw strong

conclusions about what is likely to fill a given context. As a result, we restrict ourselves to

paths of length at most two (involving at most three words), although we also make use of

shorter paths.

To create a database of contexts and fillers, we parsed the entire AQUAINT corpus

composed of 3 GB of newswire text with the Minipar dependency parser [39] and collected

the frequency counts for words appearing in all contexts. This parsing and collection of

contexts need only be done once and can be used for all of our experiments, both in this

chapter and in subsequent chapters. An example context and its fillers are shown in Figure

3.2.

Question Contexts

Dependency tree path contexts are useful for both questions and sentences we find in our

corpus. For question contexts, we parse the question in the same way as a regular sentence.

However, the question requires an as-yet unknown answer that is represented by the wh-

word. This is generally true for the what and which open-ended noun phrase questions

we consider in this chapter. Therefore, question contexts concern the wh-word which is a

placeholder for the answer. We extract two kinds of question contexts. The first rule applies
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X host Olympics

subj obj

Filler Count Filler Count
Athens 16 bidding 4
city 13 money 4
bid 5 Osaka 4
continent 5 Zakopane 4
Moscow 5 Atlanta 3
Beijing 4 China 3

Figure 3.2: An example context and most frequent fillers

if the parse tree contains a trace for the wh-word. Minipar generates a trace for a wh-word

to indicate the role of the answer in the deep structure of a sentence. If a trace is present, it

indicates how the answer would appear in an idealized form of the question. For example,

a question such as what do most tourists visit in Reims? is parsed as:

Whati do most tourists visit ei in Reims?

det

i

subjdet
obj

in

Here, the symbol ei is the trace of the wh-word whati. This parse tree provides us the

following question contexts:

Context Explanation

X visit tourist
obj subj

tourist visits X

X visit Reims
obj in

visit X in Reims

The second rule deals with situations where the wh-word is a determiner, as in the

question which city hosted the 1988 Winter Olympics? (the parse tree for which is in Figure

3.3). For these questions, the noun the determiner is attached to is said to provide a question

focus. In such cases, we extract an additional question context involving the noun that is

modified by the determiner. The additional context for the above sentence is:

Context Explanation

X city
subj

X is a city

We create this context because the question explicitly states that the desired answer is

a city. For the generative model introduced in Section 3.2, we use this additional context

32



What city hosted the 1988 Winter Olympics

det subj

obj
det

num
lex-mod

Figure 3.3: Parse tree for what city hosted the 1988 Winter Olympics?

alone (i.e., it overrides any other contexts) whenever we can extract it because the question

explicitly states the desired answer (in this case, a city). Experiments during development

showed that using this context in conjunction with other contexts extracted from the ques-

tion produces lower performance than using this context alone for the generative model.

In the event that a context extracted from a question is not found in the database, we

shorten the context in one of two ways. We start by replacing the word at the end of the

path with a wildcard that matches any word. If this fails to yield entries in the context

database, we shorten the context to length one and replace the end word with automatically

determined similar words instead of a wildcard. This context shortening is of particular

benefit to the generative model introduced in this Section 3.2, but is not as useful for the

subsequent discriminative model and so is only used in the generative case.

Candidate Contexts

Candidate contexts are very similar in form to question contexts except for one important

difference: candidate contexts are extracted from the parse trees containing candidate an-

swers rather than the question. In natural language some words may have more than one

meaning. For example, Washington may refer to a person, a city, or a state. The occurrence

of Washington in Washington’s descendants and suburban Washington should not be given

the same score when the question is seeking a location. Given that the sense of a word is

largely determined by its local context [12], candidate contexts allow the model to take into

account the candidate answers’ senses implicitly.

Candidate contexts are not always available to our system. For the model of Section

3.2, we will introduce two variants; one with candidate contexts and one without. The use

of candidate contexts is dependent on whether or not we have the resources available to

parse the candidate answer and its sentence. This requirement is not always reasonable,

especially when this means either parsing a very large corpus ahead of time (e.g., the Web)

or parsing results on the fly (which will add a great deal of overhead to answer typing).

As a result, for those experiments in which we use the AQUAINT corpus as a source of

33



candidate answers, we have pre-parsed sentences available to provide candidate contexts.

For those experiments in which we use another source for candidate answers, we do not use

candidate contexts.

3.2 An Initial Generative Model

Building on the resources of Section 3.1, we introduce a probabilistic generative model to

determine the appropriateness of candidate answers without the use of fixed types (i.e., a

class-free approach). This model was first presented by Pinchak and Lin [57]. The goal of

this model is to provide a probability of some given candidate answer t being appropriate as

a response to a given question Q. Given the resources available to us above, we say that the

problem of finding whether or not t fits the contexts extracted from Q is equivalent to the

problem of whether or not t is appropriate to Q. This means that our model will assign high

probability to a candidate t iff it is likely to appear in the question contexts. We believe this

is a reasonable expectation because the question contexts are extracted from the question in

such a way that the desired, but unknown, answer is the missing piece to be occupied by

fillers.

Once probabilities are assigned, the candidates can be sorted according to how likely

each candidate is to be appropriate and we expect appropriate answers to appear near the

top. This ranking allows for some leniency in terms of accuracy. Admitting an incorrect

answer near the top of the list is not a catastrophic mistake; rather we just allow the possi-

bility of an inappropriate candidate being selected as the correct answer. This model is not

designed to be used in isolation; it must be combined with document retrieval and answer

extraction modules to form a true model of whether or not an answer is correct.

Given our assumption of the equivalence of appropriateness with likelihood of occur-

ring in question contexts, we now present a model for the likelihood of occurrence in ques-

tion contexts. We must assume that some set of candidate answers are provided by an

external source, be it an answer extraction module or a simple script to collect all nouns

from a set of documents. This means that our model does not consider Pr(t) when com-

puting the likelihood of t occurring in the set of question contexts ΓQ. In other words, we

are computing Pr(in(t, ΓQ)|t), that is the probability that candidate t fits into the question

contexts ΓQ (in(t, ΓQ)) given the fact that we know t has occurred (or has been selected a

priori as a potential answer).

We can evaluate the value of Pr(in(t, ΓQ)|t) directly, but there are several complicating
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factors. The first complication is the fact that our corpus does not contain enough data to

show every possible t in ΓQ. This data sparseness will be present regardless of the corpus

we choose, although larger corpora tend to mitigate this problem somewhat. This means

that for some t, we may have never observed it occurring in any or all of the question con-

texts ΓQ and so we cannot compute an accurate probability. To address this, we introduce

a hidden variable C that represents the clusters to which t belongs. The introduction of C

to our model gives:

Pr(in(t, ΓQ)|t) =
∑
C

Pr(in(t, ΓQ), C|t) (3.1)

=
∑
C

Pr(C|t)Pr(in(t, ΓQ)|C, t) (3.2)

We make a further assumption here that the cluster C supersedes the information con-

tained in the word t. That is, C now is a representative for t, at least in terms of how likely

it is to occur in the question contexts ΓQ. As an example, consider a case in which we have

the candidate Washington as above. If our current cluster for Washington represents major

U.S. cities, then we are abstracting the knowledge that we are dealing with Washington in

particular and are asking how likely is it for a U.S. city to appear in the question contexts

ΓQ instead. This provides a convenient generalization from word (Washington) to cluster

(U.S. cities) that will help with data sparseness. This substitution is formalized as:

Pr(in(t, ΓQ)|C, t) ≈ Pr(in(C,ΓQ)|C) (3.3)

We can now rewrite Equation 3.2 as:

Pr(in(t, ΓQ)|t) ≈
∑
C

Pr(C|t)Pr(in(C,ΓQ)|C) (3.4)

Our model is now conveniently split into two pieces. The first deals with how likely

a cluster C is given a candidate t and the second deals with how likely a cluster C is to

appear in the question contexts ΓQ. The former of these pieces is relatively straightforward

to consider as we merely have to ask how likely a candidate is to belong to some cluster.

The latter piece presents a problem when ΓQ consists of multiple question contexts derived

from the question. In cases where ΓQ consists of multiple contexts, we make a naı̈ve Bayes

assumption that each individual context γQ ∈ ΓQ is independent of all other contexts given

the cluster C. With this assumption, our model becomes:

Pr(in(t, ΓQ)|t) ≈
∑
C

Pr(C|t)
∏

γQ∈ΓQ

Pr(in(C, γQ)|C) (3.5)
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This is our initial model that does not rely on candidate contexts. We have resources

available to assist in computing each of the components of Equation 3.5, although the details

of exactly how these parameters are estimated are explained in Section 3.2.2. Next we build

upon our initial model and add candidate contexts.

3.2.1 Introducing Candidate Contexts

The model of Equation 3.5 assigns the same likelihood to every sense of a candidate an-

swer. This means that the model only considers a candidate such as Washington as being

equally likely to be a city as a person. However, the way this instance of Washington is

used in text will have an influence on which sense (and hence cluster) is more likely to

represent it. For this case, we are actually computing the value Pr(in(t, ΓQ)|t, in(t, Γt)).

The extra information here is knowledge that t occurs in the candidate contexts Γt. If we

once again introduce clusters as hidden variables and make the assumption that clusters

supersede words, we arrive at the following model:

Pr(in(t, ΓQ)|t, in(t, Γt)) =
∑
C

Pr(in(t, ΓQ), C|t, in(t, Γt) (3.6)

≈
∑
C

Pr(C|t, in(t, Γt))Pr(in(C,ΓQ)|C) (3.7)

Once again, the model we arrive at in Equation 3.7 is split into two parts. The latter

part, Pr(in(C,ΓQ)|C) is the same as in Equation 3.4 but the former part now depends

on in(t, Γt) (Pr(C|t, in(t, Γt))). This means that the cluster C representing candidate t

now depends on the contextual information around t (the candidate contexts). Because

the candidate contexts, like the question contexts, may include multiple elements, we once

again use the naı̈ve Bayes assumption and compute this term as:

Pr(C|t, in(t, Γt)) =
Pr(in(t, Γt)|t, C)Pr(t, C)

Pr(in(t, Γt|t)Pr(t)
(3.8)

≈

(∏
γt∈Γt

Pr(in(t, γt)|t, C)∏
γt∈Γt

Pr(in(t, γt)|t)

)
Pr(C|t) (3.9)

=
∏

γt∈Γt

(
Pr(C|t, in(t, γt))

Pr(C|t)

)
Pr(C|t) (3.10)

It should be noted that for many cases, the set of candidate contexts contains only one

context. Therefore, Equation 3.10 is unnecessary and we can simply replace Γt with γt in

Equation 3.7.

Now that we have a generative model with and without the inclusion of candidate con-

texts (Equations 3.10 and 3.5, respectively), we must describe how the resources of Section
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3.1 are used in the estimation of the parameters necessary for their computation. The details

of these estimations are the subject of the next section.

3.2.2 Parameter Estimation

The generative probabilistic model relies on a number of parameters that must be estimated

from our available resources. Equation 3.5, the probabilistic model without the use of can-

didate contexts, requires parameters Pr(C|t) and Pr(in(C, γ)|C). Equation 3.10 requires

the same parameters in addition to Pr(C|t, in(t, γt)). This section describes how these

parameters are calculated given the resources of Section 3.1.

The context resources of Section 3.1 provide us with a database of contexts and fillers

from which we can collect the joint and marginal frequency counts of contexts and their

fillers, i.e., |in(t, γ)|, |in(∗, γ)| and |in(t, ∗)|. This further allows us to estimate basic prob-

abilities directly, such as Pr(in(t, γ)), Pr(in(t, ∗)), and Pr(in(∗, γ)). We can also compute

the probability Pr(in(t, γ)|t) directly, which will come in useful for the discriminative pref-

erence ranking model. Our word cluster resources provide us with knowledge of which

clusters C a candidate t may appear in, and also the similarity between two terms t1 and

t2 sim(t1, t2). Word similarity is a positive real number that corresponds to the strength of

similarity between two words and is a by-product of cluster creation. Most often we expect

two words in the same cluster to have a higher similarity value than two words that share

no cluster.

Because the calculation of Pr(in(C, γ)|C) requires the use of Pr(C|t), the means by

which Pr(C|t) is computed will be described first. For a given candidate t, we cannot

sample how often t is used in the sense represented by C because each occurrence of t

in text is not labeled with the sense that is used. To combat this, we turn to the average

weighted guesses (or votes) made by those neighbours of t, in which a neighbour of t is

a term with high similarity to t. The idea here is that if t and its neighbour t′ are similar

words (t′ ∈ S(t)), then Pr(C|t) and Pr(C|t′) will have similar values. Averaging across

multiple neighbours gives a better picture of how likely t is to be used in a certain sense:

Pr(C|t) =

∑
t′∈S(t)

sim(t, t′)× Pru(C|t′)

∑
{C′|t∈C′}

∑
t′∈S(t)

sim(t, t′)× Pru(C ′|t′)
(3.11)

Of course, the calculation of Pr(C|t′) in Equation 3.11 suffers from the same problem.

A solution, which is adopted here, is to replace Pr(C|t) with a uniform probability estimate
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Pru(C|t′):

Pru(C|t) =

{
1

|{C′|t∈C′}| if t ∈ C,

0 otherwise
(3.12)

This uniform estimate is very crude, but the weighted average of such crude estimates can

quite often be correct. Essentially we are saying that t′ occurs with uniform probability

in all of its clusters and votes with weight 1/|C ′| for its neighbour t to also be a member

of some particular cluster C. Although crude estimates can be inaccurate, the weighted

average of neighbours means Pr(C|t) is likely to be closer to the true value than to a uniform

distribution.

Estimation of Pr(C|t, in(t, γt)) departs from the simple case of Pr(C|t) by requiring

that neighbours of word t must also occur in the candidate context γt:

Pr(C|t, in(t, γt)) =

∑
t′∈S(t)∧in(t′,γt)

sim(t, t′)× Pru(C|t′)

∑
{C′|t∈C′}

∑
(t′∈S(t)∧in(t′,γt))

sim(t, t′)× Pru(C ′|t′)
(3.13)

This means that a neighbour t′ must both share a cluster with t and share the context γt with

t. This will admit fewer neighbours from which the weighted average of crude estimates

(Equation 3.12) is created. The only drawback to this approach is that we may not have

enough neighbours t′ that actually appear in a given candidate context γt. For this reason

we use short candidate contexts, in particular contexts of length one. Also, if γt does not

have sufficient fillers in our database, we fall back to using Pr(C|t). Therefore, we make use

of the candidate context when possible and fall back to a simpler calculation when either

the candidate context is too rare or we do not have any candidate contexts at all.

The final parameter necessary for our model is Pr(in(C, γ)|C), and is calculated ac-

cording to:

Pr(in(C, γ)|C) =

∑
t′∈C

Pr(C|t′)× |in(t′, γ)|+ Pr(in(∗, γ))∑
t′∈C

Pr(C|t′)× |in(t′, ∗)|+ 1
(3.14)

For this component, we start by assuming that each instance of t in text (specifically in

context γ) actually represents fractional counts for all the clusters C of t. Therefore, if we

would like to know how often the concept for C occurs in text, we look for how often the

words of C occur and sum up their fractional counts. For example, if we want to know how

often the cluster major Canadian cities occurs in text, we find the occurrences for words
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such as Toronto, Montreal, Vancouver, Calgary, Edmonton, ... and add their fractional

counts to the total. These words do not contribute their full counts because they may occur

in other clusters corresponding to other senses (e.g., Vancouver is a city as well as an island).

To smooth this distribution, we use add-one smoothing [9].

3.2.3 Summary

The generative model introduced here relies mainly on the ideas of question contexts de-

rived from the question itself and fillers for those contexts derived from a parsed corpus.

Both of these resources are created automatically from existing unlabeled data. Adding

candidate contexts increases the complexity of the model, especially in terms of how we

decide which clusters best represent a given candidate. However, when contextual informa-

tion is available for a candidate, making use of it can help improve the model as shown in

the empirical results of Section 3.4.

3.3 Discriminative Preference Ranking

The generative model of Section 3.2 combines various corpus statistics to give a proba-

bilistic model of appropriateness, but is unfortunately hampered by the fact that including

additional and diverse information is very difficult. For example, if some of these probabil-

ity distributions are derived from dramatically different sources, we can expect a significant

degree of error in the resultant probabilities. Even worse is the inability to include new

features that were not considered when developing the generative model. For example, we

may wish to include some bias based on the frequency of occurrence of a candidate in the

candidate list. This feature would be very difficult to incorporate into the models of Section

3.2 because this number is not based on any property related to the corpus.

Discriminative models specialize in their ability to combine a diverse set of features

when making decisions on output values. Feature values can be real-valued or binary and

can be drawn from any number of different distributions representing any desired concept.

We have already mentioned one such discriminative learning technique, Maximum Entropy

[1], in Chapter 2, when discussing class-based learned techniques of Ittycheriah et al. [26,

27]. More recently, language research has moved from maximum entropy to maximum

margin approaches, most often represented as Support Vector Machines (SVMs). Because

software packages are freely available for SVM-based binary classification [28], multi-class

classification [15], regression or function fitting [62], and preference ranking [30], we adopt

the use of SVM-based discriminative learning techniques to improve upon our answer type
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model. In particular, we use the SVMlight package1, a freely available implementation of

SVM learning, including the quadratic program solver at the heart of the SVM learning

task.

A SVM gives our model a degree of flexibility that is not possible with hand-built gen-

erative models. This increased flexibility allows us to add as-yet unanticipated features,

migrate the model to a new domain, and increase performance by addressing some of the

specific drawbacks of the particular generative model of Section 3.2. It is shown in Pin-

chak et al. [58] that application of these discriminative techniques improves performance.

Furthermore, in Chapter 5, we show how this flexibility allows for the model to be used in

domains for which the model was not originally designed.

3.3.1 On the Use of Preference Ranking

The ultimate goal of answer typing, like that of IR, is to produce some ranked list of re-

sponses according to how appropriate they are to the query. Although QA in general must

find a single correct answer, answer typing must find multiple type-appropriate responses

from a set of candidate answers. Initially, this seems like a straightforward binary classifi-

cation problem; a candidate is either appropriate or not. However, a set of candidates are

all often related in some way to the question and so we wish to determine which candidates

are more appropriate than others. In effect, we want to produce a ranked list according to

type-appropriateness.

Preference ranking naturally lends itself to any problem in which the relative ordering

among examples is more important than the specific labels or values assigned to those exam-

ples. The classic example application of preference ranking is that of information retrieval

results ranking [30]. Generally, information retrieval results are presented in some ordering

such that those higher on the list are either more relevant to the query or would be of greater

interest to the user. Information retrieval results can be influenced by a number of signals

including the document contents, highlighted or prominent words in the document (such as

the title or headline), and the general popularity of the source of the document. Discrimi-

native preference ranking allows the inclusion of these various features when determining

how highly in a ranking a result should appear.

In a general preference ranking task we have a set of candidates c1, c2, ..., cn, and a

ranking r such that the relation ci <r cj holds iff candidate ci should be ranked higher

than cj , for 1 ≤ i, j ≤ n and i 6= j. The ranking r can form a total ordering, as for

1http://svmlight.joachims.org/
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information retrieval results, or a partial ordering in which we have both ci ≮r cj and

cj ≮r ci. Partial orderings are of particular interest for answer typing because they can

be used to specify candidates that are of an equivalent rank. That is, we may specify two

answer candidates that are either both appropriate or both inappropriate. Answer typing is

only meant to discover appropriate candidates and we cannot assess the relative magnitude

of two appropriate (or inappropriate) candidates. Therefore, a partial ordering can be used

to specify that appropriate candidates be ranked higher than inappropriate candidates, but

say nothing about how appropriate candidates are ranked in relation to one another.

Given some ci <r cj , preference ranking only considers the difference between the

feature representations of ci and cj (respectively denoted by Φ(ci) and Φ(cj)) as evidence.

The particular features used with this model are introduced in Section 3.3.3, but any set of

features is applicable in the general case. We want to learn some weight vector ~w such that

~w · Φ(ci) > ~w · Φ(cj) holds for all pairs ci and cj that have the relation ci <r cj . In other

words, we want ~w·(Φ(ci)−Φ(cj)) > 0. Merely requiring that ~w·Φ(ci) > ~w·Φ(cj) does not

generalize well to future examples, and so we introduce a margin to help correctly evaluate

unseen candidates. The use of a margin follows the techniques of Support Vector Machine

learning (using max-margin) [29] and has shown to have good performance. In the context

of Support Vector Machines [30], we are trying to find the parameters that minimize:

argmin
~w,ξ

(
1
2

~w · ~w + C
∑

ξi,j

)
(3.15)

subject to the constraints:

∀(ci <r cj) : ~w · (Φ(ci)− Φ(cj)) ≥ 1− ξi,j (3.16)

∀i, j : ξi,j ≥ 0 (3.17)

The margin incorporates slack variables ξi,j for problems that are not linearly separable.

These slack variables essentially allow for violations of the constraints by removing them

from consideration and imposing a penalty in their place. For example, if Φ(cj) < Φ(ci)

for some candidates ci and cj , we can either modify the weight vector ~w and hence the

separating hyperplane in terms of a SVM or we can leave ~w unchanged and instead apply

the penalty ξi,j . In general, slack variables allow for learning a classifier for a problem that

is linearly non-separable, hence a SVM without slack variables would not be able to find

a solution. This ranking task is analogous to the SVM classification task on the pairwise

difference vectors (Φ(ci) − Φ(cj)), known as rank constraints. Unlike classification, no
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explicit negative evidence is required as ~w · (Φ(ci)−Φ(cj)) = (−1)~w · (Φ(cj)−Φ(ci)). It

is also important to note that no rank constraints are generated for candidates for which no

order relation exists under the ranking r.

3.3.2 Preference Ranking in the Context of Answer Typing

Answer typing is not a task that can be easily defined as classification or function approx-

imation. This is in large part because typing must often deal with candidates that are all

related in some way to the question, whether it be by appropriateness or not. The feature

representation of questions cannot always capture the difference between appropriate and

inappropriate and a simple binary classification of is-appropriate or is-not-appropriate is

insufficient. Similarly, we cannot assign a real value representing how appropriate a given

candidate is because such numbers are extremely difficult for even annotators to assess. For

these reasons, we approach answer typing from the perspective of preference ranking.

Preference ranking is not the only possible method by which we can build a model of

answer type. Although classification is not conceptually as fitting as preference ranking, it

still allows for the creation of a typing model should the problem of unbalanced training data

be overcome. Answer typing provides a highly-unbalanced set of labeled examples; there

are far more negative examples (inappropriate candidates) than positive examples (appro-

priate candidates). In general, classifiers have difficulty with unbalanced examples because

there is an incentive to simply label all examples as negative and accept the small number of

errors on the positive side. For example, if we have 100 training examples and 90 are neg-

ative examples, we can achieve a 10% error rate by assigning all 100 training examples as

negative (10 errors for the positive examples). In answer typing we often have an imbalance

close to the above example and so we run the risk of assigning all future examples a nega-

tive label. Attempts to balance the data by both increasing the weight of positive examples

or selecting a balanced set of random negative examples both provide worse performance

than preference ranking [58].

To apply preference ranking to answer typing, we learn a model over a set of questions

q1, ..., qn. For each question qi we have as training data a list of appropriate candidate

answers a(i,1), ..., a(i,u) and a list of inappropriate candidate answers b(i,1), ..., b(i,v). The

partial ordering for our answer type model, r, is the set:

∀i, j, k : {a(i,j) <r b(i,k)} (3.18)

This means that rank constraints are only generated for candidate answers a(i,j) and b(i,k)
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Pattern Description
E(t, γ) Estimated count of candidate t in context γ
N(t, γ) Observed count of candidate t in context γ∑

t′ N(t′, γ) Count of all fillers of context γ∑
γ′ N(t, γ′) Count of candidate t regardless of context

F (t) Count of the times candidate t occurs in the candidate list

Table 3.2: Discriminative feature templates

for question qi and not between candidates a(i,j) and b(l,k) where i 6= l. For example, the

candidate answers for the question what city hosted the 1988 Winter Olympics? are not

compared with those for what colour is the sky? because our partial ordering r does not

attempt to rank candidates for one question in relation to candidates for another. Moreover,

no rank constraints are generated between a(i,j) and a(i,k) nor b(i,j) and b(i,k) because the

partial ordering does not include orderings between two candidates of the same class. Given

the question what city hosted the 1988 Winter Olympics? and two appropriate candidates

New York and Calgary, rank constraints will not be created for the pair (New York, Calgary).

3.3.3 Model Details

The basis of our discriminative preference ranking model is built upon the resources of Sec-

tion 3.1. Using these resources, in combination with the question and the list of candidate

answers, we arrive at the feature templates of Table 3.2. These features are considerably

easier to obtain than the parameters of our generative model and for this reason answer typ-

ing based on discriminative preference ranking is an attractive alternative to the generative

model.

Because our discriminative preference ranking model is learned based on features ob-

tained from both the question and a candidate answer, we must be careful not to provide a

space of too many unique features. For example, if a feature such as N(t, γ) (the observed

count of candidate t in question context γ) contains a γ unique to this question, any values

in the weight vector for the element corresponding to N(t, γ) will have no effect on future

questions; no future question ever uses this question context γ. Although in the limit we

can expect there to be eventual repetition of question contexts (especially when they are

short), we often do not see this for limited training and testing data.

To address the potential uniqueness of question contexts, we remove lexical elements

from question contexts. This step is performed after feature values are obtained for the

fully lexicalized path; the removal of lexical elements simply allows many similar contexts
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to share a single learned weight. For example, the term Calgary in context X ← subj ←

host → obj → Olympics, X hosted Olympics, is used to obtain a feature value of 3 that

is assigned to a feature such as N(Calgary, X ← subject ← ∗ → object → ∗) = 3.

Removal of lexical elements greatly reduces the number of contexts and hence the number

of features produced by the templates of Table 3.2.

The expected number of candidate answer t in context γ, E(t, γ), is based on a portion

of the generative model and is calculated as:

E(t, γ) =
∑
C

Pr(C|t)N(C, γ) (3.19)

Essentially, this equation computes an expected count for candidate t in question context

γ by observing how likely t is to be part of a cluster C (Pr(C|t)) and then observing how

often terms of cluster C occur in context γ (N(C, γ)). This is a simplified version of what

is used in the discriminative model of Equation 3.5 in which the products of probabilities

Pr(in(C, γ′)|C) over all γ′ is computed instead of N(C, γ) for a single γ. The generative

model is unable to assign individual weights to different question contexts, even though not

all question contexts are equally important. For example, the generative model is forced to

consider a question focus context (such as “X is a city”) to be of equal importance to non-

focus contexts (such as “X host Olympics”). However, we have observed that it is more

important that candidate X is a city than it hosted an Olympics in this instance. In fact,

for the results reported in Pinchak and Lin [57] it was shown that higher performance is

obtained by ignoring all contexts other than a focus context when a focus context is present

in a question. We address this problem with the use of discriminative methods.

The observed count features of candidate t in context γ, N(t, γ), are included to allow

for combination with the estimated values described previously. Because the estimated

counts make use of cluster-based smoothing, errors may occur. By including the observed

counts of candidate t in context γ, we hope to allow for the use of more accurate statistics

whenever they are available, and for the smoothed counts in cases for which they are not.

Finally, we include the frequency of a candidate t in the list of candidates, F (t). The

idea here is that the correct and/or appropriate answers are likely to be repeated many times

in a list of candidate answers. Terms that are strongly associated with the question and

appear often in results are likely to be what the question is looking for.

The two features N(t, γ) and F (t) are significantly different than the values used in the

generative model and can be incorporated into the generative model with varying degrees

of difficulty. The value of F (t) in particular is highly dependent on the means used to
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obtain the candidate list, and the distribution of words over the candidate list is often very

different from the distribution of words in the corpus. For this very reason, the generative

model computes the conditional probability Pr(in(t, ΓQ)|t) instead of the joint probability

Pr(in(t, ΓQ), t). However, we wish to include some knowledge of how frequent a word is

in the candidate list into the model even though factors that influence its inclusion in the

candidate list may not be based in any way on the corpus. Because this feature value comes

from a different source than our other features, it would be difficult to use this feature in a

non-discriminative model.

We introduce four variants of the discriminative preference ranking answer typing model,

varying on how the candidates are labeled as appropriate:

Correctness Model Although appropriateness and correctness are not synonymous, this

model deals with distinguishing correct from incorrect candidates in the hopes that

the resulting model will be able to perform well on finding both correct and ap-

propriate answers. For learning, correct answers are placed at a rank above that of

incorrect candidates, regardless of whether or not those candidates are appropriate.

This represents the strictest definition of appropriateness and requires no annotator

labels beyond those for correct answers. Such labels are freely available from TREC

data sets but must be provided by human annotators in other cases.

Appropriateness Model The correctness model assumes only correct answers are appro-

priate. In reality, this is seldom the case. For example, documents or snippets re-

turned for the question what country did Catherine the Great rule? will contain not

only Russia (the correct answer), but also Germany (the nationality of her parents)

and Poland (her modern-day birthplace). To better address this overly strict definition

of appropriateness, we rank all candidates labeled as appropriate above those labeled

as inappropriate, without regards to correctness. Because we want to learn a model

for appropriateness, training on appropriateness rather than correctness information

may produce a model closer to what we desire.

Combined Model Discriminative preference ranking is not limited to only two ranks. We

combine the ideas of correctness and appropriateness together to form a three-rank

combined model. This model places correct answers above appropriate-but-incorrect

candidates, which are in turn placed above inappropriate-and-incorrect candidates.

Reduced Model Both the appropriateness model and the combined model incorporate a
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large number of rank constraints. We can reduce the number of rank constraints gen-

erated by simply removing all appropriate, but incorrect, candidates from considera-

tion and otherwise following the correctness model. The main difference is that many

appropriate (incorrect) candidates are no longer assigned a low rank. By removing

appropriate, but incorrect, candidates from the generation of rank constraints, we no

longer rank correct answers above appropriate candidates.

3.3.4 Summary

The four aforementioned models of answer type based on discriminative preference ranking

are meant to allow for a greater diversity of features and a greater degree of flexibility in

feature weighting than the generative model permits. The only significant drawback of

these models is the requirement of having supervised training data in the form of annotator-

labeled appropriate candidates, although the correctness model variant needs only correct

answers. The discriminative preference ranking method of answer typing can be viewed as

an extension of the generative model in which the feature values are easier to obtain and

more diverse in their composition. As we will see in the following section, this increase in

flexibility provides a considerable performance gain over the generative model.

3.4 Experiments

The ultimate goal of our answer typing models for open-ended noun phrase questions is to

identify a set of high-quality type-appropriate potential answers from a set of answer candi-

dates. In the context of Figure 1.2, we want to reorder the input such that those closest to the

top are those most appropriate as responses. In what follows, we show how our generative

class-free answer typing model improves performance over a strategy based on the use of a

fixed set of types (a class-based approach) and then how discriminative preference ranking

is able to improve upon the performance of the generative model.

It is worth noting here that the proposed answer typing models used in these experi-

ments are often limited in scope due to the relatively small corpus from which the resources

described in Section 3.1 (the AQUAINT corpus) are derived. This means that for some

portion of questions, our models can provide none of the parameters required by the model

(no parameter estimates in the generative model or no feature values in the discriminative

models). For example, a question such as what organelle is responsible for photosynthesis?

would likely have no question context information in a newswire corpus due to the fact

that it uses biology terms. Because of the high degree of performance offered by compo-
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sitional QA approaches (such as that of Prager et al. [60]), we suggest the application of

these models in combination with baseline models and/or other typing strategies. There-

fore, in our experiments we focus on those questions for which we can actually apply our

model and omit those for which our model has insufficient data. Although this set may

seem small, increasing the corpus size for our resources (for example, Web-scale corpora)

will also increase the number of questions to which our models can be applied.

3.4.1 Benefits of the Generative Model

The primary goal of our generative model is to show the opportunity for improvement over

a class-based approach. To this end, we compare our generative model with two alterna-

tive systems, both of which are idealized to some degree. The first of these systems, the

Oracle system, is given perfect knowledge of the question class and a set of only those

candidates that are appropriate for that type (manually labeled in both cases). The AN-

NIE-based approach is also given perfect knowledge of the question class but must make

use of the ANNIE named-entity recognition system [44] to decide which candidates are

type-appropriate. The input candidate list is derived by applying the ANNIE named-entity

tagger to the top 10 matching documents of each question, as ranked by NIST’s PRISE2

search engine. For the class-based comparison systems, we use a set of MUC-based named

entity types augmented with Thing-name representing proper names of inanimate objects

and Miscellaneous to catch unknown questions and entities. Some examples of Thing-name

are Guinness Book of World Records, Thriller, Mars Pathfinder, and Grey Cup. Examples

of Miscellaneous candidates are copper, oil, red, and iris.

We evaluate each answer typing system by measuring its performance in filtering type-

appropriate candidates. Each answer candidate is scored by the answer typing system and

the list is sorted in descending order of score. We then observe the proportion of candidates

that must be accepted by the filter so that at least one correct answer is accepted. A model

that allows a low percentage of candidates to pass while still allowing at least one correct

answer through is favorable to a model in which a high number of candidates must pass.

The evaluation data consist of 154 questions from the TREC-2003 QA Track [70] satisfying

the following criteria:

• The wh-word of the question is what, which, or who. This restricted the evaluation

to questions that often seek open-ended noun phrases as answers. It should be noted
2http://www.itl.nist.gov/iad/894.02/works/papers/zp2/zp2.html
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that this set of questions from this particular TREC conference are primarily factoid,

and include very few definition questions.

• There exists entry for the question in the answer patterns3 so that the question is

known to be answerable.

• At least one of the top-10 documents from which candidates are extracted contains a

correct answer.

The generative model of Section 3.2 assigns a probability value for each candidate, and

these probabilities can be used for the purpose of ranking. For the comparison systems,

the score for a candidate is either 1 if it is tagged as the same type as the question or 0

otherwise. With only two possible scores for each candidate, there are potentially many

ties which results in an arbitrary ranking in which a candidate is ranked low despite having

the same score as a highly-ranked candidate. To address this problem, we compute the

probability of the first correct answer appearing at rank R = k as follows:

Pr(R = k) =

(
k−2∏
i=0

t− c− i

t− i

)
c

t− k + 1
(3.20)

where t is the number of unique candidate answers that are of the appropriate type and c is

the number of unique candidate answers that are correct. The first portion of Equation 3.20

is the probability that the first k − 1 positions are occupied by incorrect answers with a

correct type and the second part is the probability that a correct answer is in the kth position.

Using the probabilities computed by Equation 3.20, we compute the expected rank, E(R),

of the first correct answer of a given question in the system as:

E(R) =
t−c+1∑
k=1

kPr(R = k) (3.21)

The median number or percent of candidates that are accepted by a filter over the ques-

tions of our evaluation data is one measure of overall performance of the model. Another

measure is to observe the number of questions with at least one correct answer in the top

N% for various values of N . By examining the number of correct answers found in the top

N% we can better understand what an effective filter cutoff would be.

The overall results of our comparison can be found in Table 3.3. For a comparison with

a simple, yet effective, strategy, we have added the results of a system that scores candidates

based on their frequency within the top 10 documents. The second column is the median
3http://trec.nist.gov/data/qa/2003 qadata/03QA.tasks/t12.pats.txt
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System Median % Top 1% Top 5% Top 10% Top 50%
Oracle 0.7% 89 (57%) 123 (79%) 131 (85%) 154 (100%)
Frequency 7.7% 31 (20%) 67 (44%) 86 (56%) 112 (73%)
Our model 1.2% 71 (46%) 106 (69%) 119 (77%) 146 (95%)
ΓQ only 2.2% 58 (38%) 102 (66%) 113 (73%) 145 (94%)
ANNIE 4.0% 54 (35%) 79 (51%) 93 (60%) 123 (80%)

Table 3.3: Generative model performance summary

percentage of where the highest scored correct answer appears in the sorted candidate list.

Low percentage values mean the answer is usually found high in the sorted list. The re-

maining columns list the number of questions that have a correct answer somewhere in the

top N% of their sorted lists. This is meant to show the effects of imposing a strict cutoff

prior to running the answer type model.

Oracle performs best, as it benefits from both ideal (manual) assignment of type to

question and ideal named entity recognition. If entity recognition is performed by an auto-

matic system (as it is for ANNIE), the performance drops noticeably. Our generative model

performs better than ANNIE and achieves approximately 2/3 of the performance of Ora-

cle. Table 3.3 also shows that the use of candidate contexts as discussed in Section 3.2.1

increases the performance of our answer type model. Evidence for this claim can be seen

in the fact that the ΓQ only model, our model without candidate contexts, performs slightly

worse than the model including candidate contexts.

To understand where gains are being made by the generative model, and to see if the

generative model offers any performance benefits over the Oracle system, we show a break-

down of performance for questions based on the manually-assigned answer class in Ta-

ble 3.4. When compared with Oracle, our model performs worse overall for questions of

all types except for those seeking miscellaneous answers. For miscellaneous questions,

Oracle identifies all tokens that do not belong to one of the other known categories as pos-

sible answers. This means that the expected rank of the first correct answer is computed

from nearly the entire list of candidates instead of a small subset that are of the appropriate

type. For all questions of non-miscellaneous type, only a small subset of the candidates

are marked appropriate. In particular, our model performs worse than Oracle for questions

seeking persons and thing-names. Person questions often seek rare person names, which

occur in few contexts and are difficult to reliably cluster. Thing-name questions are easy for

a human to identify but difficult for automatic system to identify. Thing-names are a diverse

category and are not strongly associated with any identifying contexts.
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System Measure
Question Type (# of questions)

All Loc Person Org Thing-name Misc Other
(154) (57) (17) (19) (17) (37) (7)

Ours

Median 1.2% 0.8% 2.0% 1.3% 3.7% 3.5% 12.2%
Top 1% 71 34 6 9 7 13 2
Top 5% 106 53 11 11 10 19 2
Top 10% 119 55 12 17 10 22 3
Top 50% 146 56 16 18 17 34 5

Oracle

Median 0.7% 0.4% 1.0% 0.3% 0.4% 16.0% 0.3%
Top 1% 89 44 8 16 14 1 6
Top 5% 123 57 17 19 17 6 7
Top 10% 131 57 17 19 17 14 7
Top 50% 154 57 17 19 17 37 7

ANNIE

Median 4.0% 0.6% 1.4% 6.1% 100% 16.7% 50.0%
Top 1% 54 39 5 7 0 0 3
Top 5% 79 53 12 9 0 2 3
Top 10% 93 54 13 11 0 12 3
Top 50% 123 56 16 15 5 28 3

Table 3.4: Detailed breakdown of generative model performance

Our model outperforms the ANNIE system in general, and for questions seeking orga-

nizations, thing-names, and miscellaneous targets in particular. ANNIE may have low cov-

erage on organization names, resulting in reduced performance. Like Oracle, ANNIE treats

all candidates not belonging to one of the other categories as appropriate for miscellaneous

questions. Because ANNIE cannot identify thing-names, they are treated as miscellaneous.

ANNIE shows very low performance on thing-names because words incorrectly tagged with

types are sorted to the bottom of the list for miscellaneous and thing-name questions. If the

correct answer is incorrectly tagged with a type, then it will be sorted near the bottom,

resulting in a poor score.

The results of Tables 3.3 and 3.4 show the advantages of our class-free generative an-

swer typing model over idealized class-based models. Of particular interest is the miscella-

neous class. These 37 questions are ones that cannot be assigned a more appropriate class

in our simple type set. As was mentioned earlier, such questions will always exist no matter

how carefully the set of fixed types has been specified. Although the relative size of this

class may vary depending on the distribution of new questions and the exact composition of

the question set, we can never hope to truly eliminate it with a class-based approach. The

generative model is shown here to be an especially good choice for use on these questions

and produces reasonable performance for the other types as well.
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3.4.2 Further Improvements with Discriminative Preference Ranking

The generative model improves upon class-based approaches, and we wish to further ex-

tend this model by introducing a greater degree of flexibility as to how various parameters

are used via the discriminative preference ranking model of Section 3.3. The goal of these

experiments is to show that the discriminative preference ranking model improves upon the

performance of the generative model and is even capable of reaching a level of performance

comparable to that of full QA systems on a limited subset of questions (discussed below).

The results presented here (and originally reported in [58]) show that the additional flexi-

bility afforded by discriminative preference ranking provides a better model of answer type

than does the generative model.

Because our discriminative preference ranking models are built using supervised learn-

ing, we require a set of known correct answers and a list of annotated appropriate candidates

for each training question. Correct answers to our set of questions are obtained from the

TREC 2002-2006 results [69]. For appropriateness labels we turn to human annotators.

Two annotators were instructed to label a candidate as appropriate if that candidate was be-

lievable as an answer, even if that candidate was not correct. For a question such as what city

hosted the 1988 Winter Olympics?, all cities should be labeled as appropriate even though

only Calgary is correct. This task comes with a moderate degree of difficulty, especially

when dealing with questions for which appropriate answers are less obvious (such as what

kind of a community is a Kibbutz?). We observed an inter-annotator (κ) agreement of 0.73,

which indicates substantial but not perfect agreement. This value of κ conveys the difficulty

that even human annotators have when trying to decide which candidates are appropriate

for a given question. Because of this value of κ, we adopt strict gold standard appropri-

ateness labels that are the intersection of the two annotators’ labels in which a candidate is

only appropriate if both annotators label it as such, otherwise it is inappropriate.

To compare with the generative model, we use a set of what and which questions with

a question focus; questions with a noun phrase following the wh-word. These are a sub-

set of the more general what, which, and who questions handled by the generative model.

Although the discriminative preference ranking models can accommodate a wide range of

what, which, and who questions, the focused what and which questions are an easily iden-

tifiable subclass that are rarely definitional or otherwise complex in terms of the desired

answer. Additionally, such questions are often composed of more than one question con-

text, which presents an opportunity to weight multiple contexts differently. We took the
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set of focused what and which questions from TREC 2002-2006 [69] comprising a total of

385 questions and performed 9-fold cross-validation, with one dedicated development par-

tition (the tenth partition). The development partition was used to tune the regularization

parameter of the final SVM used at testing time.

Candidates are obtained by submitting the question as-is to the Google search engine4

and chunking the top 20 snippets returned, resulting in an average of 140 candidates per

question. Google snippets create a better confusion set than random words for appropriate

and inappropriate candidates; many of the terms found in Google snippets are related in

some way to the question. To ensure a correct answer is present (where possible), we

append the list of correct answers to the list of candidates.

As a measure of performance, we adopt Mean Reciprocal Rank (MRR) for both correct

and appropriate answers, as well as precision vs. recall for appropriate answers. MRR is

computed as the average of the reciprocal rank (RR) over the set of test questions. Recip-

rocal rank is:

RR(Q) =
1

rank of first correct answer for Q
(3.22)

MRR is often used as a measure of overall QA system performance [69], but is based only

on the top correct or appropriate answer encountered in a ranked list. For this reason, we

also show the precision vs. recall curve to better understand how our models perform.

We compare our models with three alternative approaches, the simplest of which is

Random. For Random, the candidate answers are randomly shuffled and performance is

averaged over 100 runs. The performance of Random is influenced by how often a candidate

appears in Google snippets and is therefore dependent upon Google’s ability to find both

correct and appropriate answers. The snippet frequency approach orders candidates based

on their frequency of occurrence in the Google snippets, and is just the F (t) feature of

Table 3.2 in isolation. Given that question words tend to be very frequent in snippets, we

remove terms comprised solely of question words from all approaches to prevent question

words from being selected as answers. The last of our alternative systems is the generative

model of Section 3.2 with candidates ranked according to their probabilities as assigned by

the model.

Figure 3.4 shows the MRR results and precision/recall curve of our correctness model

against the alternative approaches. In comparison to these alternative systems, we show

two versions of our correctness model (Section 3.3.3). The first uses a linear kernel and

is able to outperform the alternative approaches. The second uses a radial basis function
4http://www.google.com
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Figure 3.4: Results for the correctness model

(RBF) kernel and exhibits performance superior to that of the linear kernel. This suggests a

degree of non-linearity present in the data that cannot be captured by the linear kernel alone.

We do not tune the RBF kernel parameters because the purpose of using the RBF kernel

is to show that higher performance can be achieved by using a non-linear kernel. Custom

kernel functions will likely be able to outperform the RBF kernel, although such extended

kernels are not explored here. Both the training and running times of the RBF kernel are

considerably larger than that of the linear kernel. The accuracy gain of the RBF kernel must

therefore be weighed against the increased time required to use the model.

Figure 3.5 gives the MRR results and precision/recall curves for our additional models

in comparison to that of the correctness model. Although losses in MRR and precision are

observed for both the appropriate and combined model using the RBF kernel, the linear

kernel versions of these models show slight performance gains.

The results of our correctness model, found in Figure 3.4, show considerable gains

over our alternative systems, including our generative model. These results show that our

discriminative preference ranking approach creates a better model of both correctness and

appropriateness via weighting of contexts, preference rank learning, and with the incorpo-

ration of additional related features as listed in Table 3.2. The snippet frequency feature

F (t) is not particularly strong on its own, but can be easily incorporated into our discrimi-

native model. The ability to add a wide variety of potentially helpful features is one of the

strengths of discriminative techniques in general.
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Figure 3.5: Results for all models (RBF kernel)

By moving away from correct answers in the correctness model and incorporating la-

beled appropriate examples in various ways, we are able to further improve upon the perfor-

mance of our approach (Figure 3.5). Training on appropriateness labels instead of correct

answers results in a loss in MRR for the first correct answer, but a gain in MRR for the first

appropriate candidate. Unfortunately, this does not carry over to the entire range of preci-

sion over recall. However, when using a linear kernel instead of a RBF kernel, our three

additional models (appropriateness, combined, and reduced) show consistent improvements

over the correctness model. In this particular instance only the reduced model provides a

meaningful change in performance for the better-performing RBF kernel.

The precision-recall curves of Figures 3.4(b) and 3.5(b) show remarkable consistency

across the full range of recall, despite the fact that candidates exist for which feature val-

ues cannot easily be obtained. Due to errors in obtaining candidates from Google results,

malformed candidates may exist that are judged appropriate by the annotators. For exam-

ple, explorer Hernando Soto is a candidate marked appropriate by both annotators to the

question what Spanish explorer discovered the Mississippi River? However, our corpus and

hence resources do not include the phrase explorer Hernando Soto meaning that many of

the important features will have their values set to zero. The net effect is that these mal-

formed appropriate candidates are likely to receive a lower rank despite the fact that they

are actually appropriate. Despite these occasional problems, our models are able to rank

most correct and appropriate candidates high in a ranked list.
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Figure 3.6: Learning curve (MRR, correct answer, correctness model)

Finally, we examine the effects of training set size on MRR. The learning curve for a

single partitioning under the correctness model is presented in Figure 3.6. Although the

model trained with the RBF kernel exhibits some degree of instability below 100 training

questions, both the linear and RBF models quickly achieve high performance. This learning

curve shows that both the linear and RBF kernels outperform the alternative systems with as

few as ten training questions. Requiring only a relatively small number of training examples

means that an effective model can be learned with relatively little input in the form of

question-answer pairs or annotated candidate lists.

3.5 Conclusions

Open-ended noun phrase questions are some of the most difficult questions on which to

apply answer typing. Given that they can be answered by nearly any noun phrase answer,

or typically anything that can be named, we cannot always predict in advance the range of

possible answers. However, because there is often a great deal of repetition in what people

ask questions about, this class of questions is often addressed with the use of a class-based

answer typing strategy.

This chapter has introduced two alternative class-free answer typing strategies meant to

augment and/or replace class-based strategies typically used for these questions. The first of

our models, the generative model of Section 3.2, shows considerable gains for some answer
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classes over idealized systems based on a fixed set of answer types. This generative model

is carefully built using resources extracted from a small corpus and requires no supervised

training data, making it ideal for domains in which limited data is available. Unfortunately,

due to its generative nature, this model is difficult to update with new statistics that may re-

veal new information about answer type. For this, we require more powerful discriminative

techniques.

Moving from a generative model to a discriminative model provides benefits in terms

of both increased flexibility by adding new features and increased performance because of

this increased flexibility. Whereas the generative model is limited to parameters that can be

accounted for in the probability model, a discriminative preference ranking model (Section

3.3) can make use of nearly any real-valued feature. Aside from incorporating new features

that are difficult to add to the generative model, the discriminative preference ranking model

is able to weight individual question contexts. This was lacking in the generative model

because of the assumptions made here. Preference ranking also allows us to better model

the task at hand by reranking candidate answers according to appropriateness. Experimental

results show an increase in performance and it is possible that new and as-yet unknown

features could increase this performance even further. We will revisit this model when we

introduce the application of answer typing to information retrieval in Chapter 5.
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Chapter 4

Fine-Grained Typing of
How-Adjective Questions

Some questions, such as the how-adjective questions examined in this chapter, initially

seem trivial to type. How-adjective questions, i.e., questions in which the wh-word how is

followed by an adjective or adverb, are always answered with a numerical value. Because

numerical values are very easy to identify, locating type-appropriate answers in text is very

simple. However, a closer examination of these types, from a more fine-grained perspective,

reveals opportunities to improve performance via answer typing.

Although it is true that all how-adjective questions are answered by numerical values,

not all numerical values are equally appropriate. For example, a question such as how tall is

the CN tower? is answerable only in numerical quantities of units that can measure height.

A response of 33 years is inappropriate and unacceptable as an answer even though it is

obviously a numerical value. Making the distinction between a correct answer of 1815

feet and an inappropriate response of 33 years requires consideration of the question and

candidates at a level of detail much finer than is typically used for these questions. We

specifically exclude the how many and how much questions from consideration because

how many questions almost always specify the appropriate units following the word many,

as in how many people live in Canada? How much questions, on the other hand, are very

often answered in terms of monetary values.

The key to fine-grained typing of how-adjective questions lies in the adjective specified

in the question. The adjective (or adverb) is conceptually related to the units that are type-

appropriate for a response. For example, the unit feet is related to the adjective tall via

the concept of height or tallness. We must automatically establish a connection between

feet, height, and tall so that we can build lists of appropriate units for adjectives that may

be used in a how-adjective question. This connection must be made between all adjectives
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used in how-adjective questions and their corresponding candidate units so that we may

decide which potential answers are appropriate and which are not.

Given the limited number of popular adjectives, employing hand-crafted rules to decide

which units are appropriate is an enticing typing strategy. Wu et al. [71] do exactly this

by assigning a specific target based on rules applied to the how-adjective questions. Un-

fortunately, these rules are insufficient in two dimensions: coverage of possible adjectives

and coverage of appropriate units. Rules will often cover the common adjectives such as

high, tall, heavy, and far (among others), but may miss obscure adjectives such as viscous.

Furthermore, even common adjectives such as cool many have obscure units such as Mega-

Fonzies, a fictional unit of coolness introduced in the television show Futurama. It is highly

unlikely that any rule-based system would ever assign MegaFonzies as a unit for cool, even

though it is appropriate in limited cases.

In this chapter, we introduce two variants of an answer typing model specifically for

how-adjective questions, originally presented in [56]. Our models automatically discover

appropriate units for a given how-adjective question by discovering and leveraging the link

from adjective to unit via the use of a structured ontology. The unit discovery can be

performed before any new questions are seen by using adjectives found in a query log so as

to have unit lists available for a large proportion of how-adjective questions. Experimental

results show that fine-grained answer typing of how-adjective questions is superior to that

of coarse-grained typing using only a single numerical class. Our results also show that

our methods of fine-grained answer typing have advantages over baseline systems, some of

which make use of information not available to a real system . Once again, discriminative

preference ranking is employed to further boost performance.

This chapter is organized as follows. A description of the resources available to our

fine-grained answer typing system is given in Section 4.1. Once the available resources

have been established, we describe two variants of our typing model in Section 4.2; one

model is probabilistic and the other is a more complex discriminative model employing

a greater number of features. Experiments detailing the advantages of our models over

both baseline systems and the use of a single numeric type are presented in Section 4.3.

Conclusions are drawn in Section 4.4 before we move on to the final aspect of answer

typing: the application of typing to the domain of information retrieval.
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4.1 Resources

As discussed previously, we wish to create a model of answer type by linking the adjective

of a how-adjective question with appropriate units. Because units are not provided as part of

the question, we must find a means of automatically discovering a set of potential units. For

our purpose, a structured ontology will assist in connecting the adjective with words more

useful for finding units, and online search engines (or some other interface to a very large

corpus) will provide a pool of potential units that may be appropriate to a given adjective.

We discuss the resources available for both of these tasks in the remainder of this section.

4.1.1 WordNet

WordNet [19] is a well-known hierarchically-structured ontology based primarily on the

concepts of synsets and the hypernym/hyponym relationship. Synsets exist for individual

concepts and are comprised of synonymous words that represent that concept. Words with

multiple senses will be found in multiple synsets, one for each sense. Synsets are orga-

nized hierarchically such that they are linked via the hypernym or hyponym relationship

(depending on the direction of the link). A synset X is a hyponym of synset Y if the concept

represented by X entails the concept represented by Y. Inversely, Y is a hypernym of X. For

example, the word cat is a hyponym of mammal, which in turn is a hyponym of animal.

Transitivity applies to these relations meaning that cat is indirectly a hyponym of animal.

These notions of synonymity (via synsets) and specialization (via hyponyms/hypernyms)

are the most popular aspects of WordNet.

In addition to these features of WordNet, additional useful information is also recorded

in the hierarchy. Gloss information exists that allows WordNet to function similar to a dic-

tionary. In particular, the system of Moldovan et al. [46] transforms this gloss information

into predicates that may be used with their logic prover. Of more interest here are the links

representing derivationally related forms that link morphological variants of a word. For

example, an adjective such as tall is derivationally related to the concept of height which

also includes the synonym tallness. The WordNet attribute relation serves a similar purpose

and so words linked via the attribute relation (when available) are considered in combina-

tion with derivationally related forms. These WordNet relations provide a means by which

our answer typing model can connect an adjective such as tall to a related noun such as

height. Figure 4.1 displays this information visually. This alternative noun form will allow

us to automatically discover units that cannot be discovered with the adjective alone due to
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A: {tall} N: {height, tallness}

N: {dimension}

N: {highness, loftiness} N: {lowness}

derivationally
related form

hyponym

Figure 4.1: A portion of the WordNet hierarchy

grammatical restrictions of the English language.

4.1.2 Google Search Results

The World Wide Web represents the largest existing corpus in the world, but accessing

this large quantity of data is not a trivial matter. Because the Web is comprised of many

petabytes of data, we cannot iterate over it without a large amount of computing resources.

The Google search engine addresses this problem by maintaining an index of a significant

portion of the Web. Google accepts user queries in the form of both keywords and phrases

and leverages their index of the Web to find relevant pages. Therefore, we can access

relevant portions of the Web indirectly via queries to the Google search engine.

One of the goals of fine-grained answer typing for how-adjective questions is to auto-

matically discover units that are appropriate for a given adjective. In order for our model

to make a judgement according to type-appropriateness, we must provide it with some can-

didates that are reasonably likely to be units; evaluating the entire vocabulary of English

words is unreasonable in this case. Therefore, we use Web search (via Google) as a means

of discovering a small subset of high-quality candidates taken from all terms on the Web.

To this end, we search for a keyword or phrase and collect nearby terms (or possibly those

terms that co-occur in the snippet). In general, terms co-occurring within a short context

window of query keywords or phrases are related in some way to the query terms.

Google also provides estimates of the frequency of a given query in documents on the

Web, a value known as hits. Even though these estimates are well-known to be inaccurate
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and unstable [32], their relative magnitudes are representative of their true frequencies. For

example, estimates for a word such as cat may be around 900 million one day and 700

million another. The fact that they are closer to 1 billion than 100 million does not change;

the order of magnitude has not changed much even though the counts differ by 200 million.

Often, the best way to deal with this estimation error is to use log values, as the order of

magnitude is often what we wish to measure when thinking in terms of Web counts. Both

the frequency estimates and the ability to search a large corpus make Google an ideal choice

as an interface to the Web as a source of candidate units.

4.2 Models

Like for the open-ended noun phrase questions of Chapter 3, a model of answer type for

how-adjective questions must assign scores to candidates to produce a sorted list. Unlike

open-ended noun phrase questions, we are dealing with candidate units rather than complete

candidate answers. Nearly any noun representing a concrete entity can be used as a unit.

This means that the space of candidates is conceptually the same as for open-ended noun

phrase questions, but in practice the nouns encountered by the how-adjective model are

quite different from the open-ended noun phrase model due to the differing sources of

candidates.

We introduce in this section two models for answer typing of how-adjective questions

mirroring those introduced for open-ended noun phrase questions. The first model is based

on probabilities derived from simple statistics of the resources of Section 4.1. This prob-

abilistic model uses WordNet to connect the adjective in the question with nouns that are

appropriate for use with Google search. These nouns, placed into a specific phrasal pattern,

are then used to discover a set of potential units that must be evaluated according to a model

based on frequency values for the terms.

Our second model builds upon the probabilistic model by introducing discriminative

preference ranking (as was done in Section 3.3). Discriminative preference ranking allows

for the introduction of additional features that contribute to improving performance of unit

ranking. This concept of discriminative preference ranking applies to more than just open-

ended noun phrase questions; any typing that relies on building a sorted list of relevant

responses is well-suited to discriminative preference ranking.
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4.2.1 Probabilistic Model

Our probabilistic answer typing model for how-adjective questions seeks to create a map-

ping T : A → UA in which A is a set of adjectives that may be used in a how-adjective

question and UA is a set of lists of units appropriate to each adjective. We build this mapping

a priori from a set of already encountered or anticipated adjectives so that a list of units is

ready ahead of time and so that we may use statistics based on all lists (which would change

if we add new adjectives).

As described in the resources of Section 4.1, WordNet provides a means to link the

adjective found in the question with related nouns via the derivationally related and attribute

relations. Once we obtain these related nouns, we construct a pattern for each consisting

of the phrase “<adj> is measured in.” This phrase is then used as a phrasal query for

Google search for which documents containing the phrase are returned as results. A relevant

document is guaranteed by the semantics of Google search to contain at least one occurrence

of this phrase, and so we may simply iterate through as many results as we desire to collect

occurrences.

Once occurrences have been located in documents, we use the Minipar dependency

parser [39] to parse the sentence containing the query phrase. From the parse tree, we can

determine which term is prepositionally attached to measured via in. Because the most

straightforward way to state that a particular concept (such as height) can be measured with

a particular unit (such as feet) is via the statement height is measured in feet, we search

for the first portion of this phrase with the expectation that it will lead to a candidate set

rich with appropriate units. In practice this is generally true, although we cannot discover a

large quantity of appropriate units without first analyzing a large number of documents (an

issue we will further address below).

During the analysis of occurrences of the phrasal pattern in documents, we record the

number of times we encounter each candidate unit. If r is a noun related to adjective a via

WordNet, then each single occurrence of the unit u in the pattern containing r contributes

a single count to the statistic N(r, u). That is, N(r, u) is the sum of all occurrences of

the pattern containing r with u as the discovered unit (r is measured in u). Because there

may be more than one noun r related to adjective a via WordNet (the set Ra), the count for

N(a, u) is:

N(a, u) =
∑
r∈Ra

N(r, u) (4.1)

These values are used when filtering the list of candidate units to remove spurious non-
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applicable or inappropriate nouns that are present due to unanticipated pattern matches and

parser errors.

Before moving on to discuss filtering of the unit lists, it must be noted that the lists

created from pattern matches alone are relatively sparse. We cannot request a large number

of documents from Google due to restrictions on Google resources along with the time

required to fetch and process documents, especially from slow to respond servers. Because

of this, we expand the list of candidate units with a list of similar words derived from

clusters used for open-ended noun phrase questions in Section 3.1. Of course, given that

these units are not observed to occur, we must estimate the value for N(a, v) for some

expanded candidate unit v. If Vu are the expanded candidates containing the neighbours of

candidate unit u and Ua is the set of observed units, we calculate N(a, v) for some unseen

v as:

N(a, v) =
∑
u∈Ua

sim(u, v)N(a, u) (4.2)

Essentially, this equation creates counts for unseen units v by observing neighbours of v that

actually occurred and taking weighted fractional counts of them. The counts are weighted

by the similarity between two words, a number between 0 and 1 derived from our cluster

resources. At the end of this process, we have a new set of units Wa:

Wa = Ua ∪
⋃

u∈Ua

Vu (4.3)

For a given adjective a and a particular unit u with instance counts N(a, u), we define

two important statistics:

P (u|a) =
N(a, u)∑

u′∈U N(a, u′)
(4.4)

P (a|u) =
N(a, u)∑

a′∈A N(a′, u)
(4.5)

in which U is the set of all candidate units for all adjectives (i.e., the union over all Wa)

and A is the set of all adjectives for which we build unit lists. Equation 4.4 measures

the likelihood of a unit u being an appropriate unit for a how-adjective question with the

given adjective a. Equation 4.5 measures, for some unit u, how likely a how-adjective

question with adjective a is answered in terms of u. The second measure is particularly

useful in cases where a unit u co-occurs with a number of different adjectives. These units

are inherently less useful for identifying correct responses. For example, if the word terms

occurs on the unit list of adjectives such as high, long, and heavy, it may indicate that terms
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is not an appropriate unit for any of these concepts, but rather a word likely to co-occur with

adjectives in general.

The values for Pr(u|a) and Pr(u|a)Pr(a|u) are useful as ranking functions for unit ap-

propriateness. Pr(a|u) alone showed poor performance on a development set [56] and so is

not further considered as a means of ranking and filtering. Pr(u|a)Pr(a|u) roughly approx-

imates the standard tf.idf measure [61] in which Pr(u|a) is the term frequency tf in the unit

list and P (a|u) is the inverse document frequency idf of the unit over all unit lists. Using

these measures, we can create a final unit list for an adjective a as

Wa = {u : Score(u, a) ≥ T } (4.6)

in which Score(u, a) is one of Pr(u|a) or Pr(u|a)Pr(a|u) and T is some threshold imposed

to deal with the amount of noise present in the unit lists. This threshold allows us to vary the

strength of the association between the unit and the adjective required to consider the unit

appropriate. In the experiments of Section 4.3 we vary this threshold to obtain a tradeoff

between precision and recall of the resulting unit list. The value Score(u, a) can also

be passed to downstream modules of the question answering process (such as the answer

extractor) which may then exploit the association value directly, although this possibility is

not explored in this thesis.

This simple probabilistic model, based on values easily collected from Google search

results, is a powerful fine-grained model of answer type for how-adjective questions. In

combination with this model, we may initially assume that all appropriate answers to how-

adjective questions are numeric responses. This means that our fine-grained model of an-

swer type need only consider numeric entities that are expressed in terms of appropriate

units, a much more restrictive requirement than numeric entities alone. The next section

expands upon this simple probabilistic model with discriminative methods to produce a

more accurate and flexible model of type for how-adjective questions.

4.2.2 Discriminative Model

Discriminative preference ranking is applicable to more than the domain of open-ended

noun phrase questions. We apply the same techniques introduced in Section 3.3 to the how-

adjective questions. Discriminative preference ranking has been established as a means of

increasing both flexibility (in terms of features) and performance, and so we expect a model

based on discriminative preference ranking to further improve upon the performance of our

probabilistic model of Section 4.2.1. Little additional description is necessary regarding
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Pattern Description
N(a, u) Actual count of candidate unit u in pattern for a∑

u′ N(a, u′) Count of all units for a∑
a′ N(a′, u) Total for u over all adjectives

len(u) String length
hits(a, u) Hits where u and a co-occur
phra(a, u) Hits for “a is measured in u”
quant(u, q) Hits where u follows some quantifier q
punct(u) u contains punctuation

Table 4.1: How-adjective question feature templates

the application of discriminative preference ranking to typing how-adjective questions. In

general, discriminative preference ranking can be broadly applied to answer typing by sim-

ply identifying a set of features that may indicate appropriateness of a candidate answer (or

unit) in conjunction with portions of the question, and ranking these candidates according

to a function over these features. Therefore, the remainder of this section describes the

changes necessary for how-adjective questions.

Because discriminative preference ranking can take advantage of a diverse set of fea-

tures, we include additional indicators of appropriateness for units that are different from the

probabilities used by the probabilistic model. The feature templates we use for the discrim-

inative model are summarized in Table 4.1. The features include N(a, u),
∑

u′ N(a, u′),

and
∑

a′ N(a′, u) that are the same features used to obtain the parameters of the proba-

bilistic model of Section 4.2.1. To these basic counts we add values for the string length

of a candidate unit u with the expectation that long lengths are indicative of poor candi-

date units. Considering the number of times u and adjective a co-occur on the same page,

hits(a, u), is meant to somewhat describe whether or not u is a unit related in some way to

a; if u and a never occur on the same page, it is unlikely they are related to one another. The

exact phrase count for “a is measured in u,” phra(a, u) is not intended to produce a large

number of hits but may have a non-zero value for certain adjectives (not related nouns). We

expect that if u is truly a unit of measure then it can follow a quantifier q ∈ {0, 1, 2, 000,

10, 100, 1000, one, two, three, ten, thousand, million} and so we count the number of times

the pattern “q u” occurs on the web. Finally, if u contains punctuation then it may be more

likely as an abbreviated units such as k.p.h. for kilometres per hour.

Unit discovery for the discriminative preference ranking model is identical to that for the

probabilistic model of Section 4.2.1. In particular, the list of units are expanded with similar

terms to provide a more complete set of candidate features after the templates have been
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applied. Due to the increased number of features, the discriminative preference ranking

model has a better chance of correctly identifying which of these expanded candidates are

truly appropriate units and which are noise introduced by this expansion. In the experiments

of the next section (Section 4.3), we will see how expanded units can reduce performance

if they are not carefully weighted by the discriminative model.

4.3 Experiments

Measuring the performance of answer typing for how-adjective questions is as difficult

as for that of open-ended noun phrase questions. The answer typing model is designed

to identify appropriate candidates whereas most QA data available provides only correct

answers. Although correct answers are by definition appropriate, there are a large number

of appropriate candidates that are not correct. For the experiments presented here, we use a

list of known correct units to evaluate the models of Section 4.2.1 and a manually labeled

set of appropriate units to evaluate the models of Section 4.2.2.

Once again, we use our models to produce ordered lists of candidate units such that

highly-ranked units are more likely to be appropriate to a given question. To produce a

list of candidate adjectives for which units must be discovered, we examine how-adjective

questions from TREC 2002-2005 [69] resulting in a total of 15 unique adjectives (accurate,

big, close, cold, deep, far, fast, heavy, high, hot, large, late, long, old, tall). Although this

seems like a small set of adjectives to which this approach applies, we can find 152 unique

adjectives following the phrase how <adjective> is/are/was/were in the set of AOL queries

[52]. We restrict ourselves to the 15 adjectives found in TREC 2002-2005 because they

have a list of known correct answers (which contain units). A total of 94 TREC questions

share these 15 adjectives, 86 of which are used for our experiments and 8 of which are used

as a development set.

For a given how-adjective question and a document of interest selected from the set

of AQUAINT documents known to contain a correct answer, we use a two-stage process

to identify the entities in the document that are suitable answers for the question. First,

the named entity recognition of Minipar is used to identify all numerical entities in text.

Minipar labels times, dates, monetary amounts, and street addresses with special types and

so we exclude these from consideration. We then inspect the context of all numeric entities

to determine if a unit exists on the pre-computed unit list for the given adjective. Textual

entities that pass both stages of our identification process are deemed appropriate by our
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model.

Given that unit discovery is identical for both the probabilistic and discriminative mod-

els, we use the same set of discovered candidate units when evaluating both kinds of models.

Furthermore, the option to expand the candidate units with similar words results in two par-

allel sets of candidates. As we will see in the subsequent sections, the benefits of expansion

come at a price and we cannot assume that expanding the list of discovered candidate units

will always improve performance. We now measure how performance can be improved by

using a probabilistic model of answer type and then the further improvements possible with

the subsequent discriminative model.

4.3.1 High Precision with the Probabilistic Model

The goal of experiments with the probabilistic models is to show that a probabilistic model

of answer type is able to identify units of correct answers more reliably than comparison

systems relying on other indicators of type-appropriateness. Although answer typing seeks

to find the most appropriate candidate for a given adjective, the performance of a QA system

will be evaluated on correct answers and therefore units associated with correct answers. By

being either too general or ineffective at identifying correct units, the system will increase

the number of possible answers that are incorrect. This is the exact opposite of the desired

effect of fine-grained answer typing. By varying the threshold T in Equation 4.6, we can

adjust the number of units deemed appropriate and hence measure the effects on identifying

correct answers (and only correct answers).

We evaluate our models with an approach originally termed Answer-Identification Pre-

cision/Recall (AIPR) [56]. By adjusting the scoring threshold T we obtain a unit list

for each adjective that can be used to identify potential answers in documents. Answer-

identification precision measures the number of correct answers among the candidates iden-

tified as appropriate by our unit list. In contrast, answer-identification recall measures the

number of correct answers extracted among the total number of correct answers in the an-

swer documents (from the list of correct answers provided by TREC).

A plot of AIPR allows for the identification of the best precision/recall tradeoff possible

for the desired use of answer typing in QA. If other stages of QA require a large number

of candidates for which some noise is acceptable, a high recall value may be desired so no

potential answers are overlooked. On the other hand, if answer typing is used as a means

of boosting already-likely answers, high precision may instead be favoured at the cost of

missing some good units. As is often the case with precision and recall, accepting a decrease
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in one of these measures allows for an increase in the other. Because there is no incentive to

use a threshold T that decreases both precision and recall, we report interpolated precision

rather than raw precision [42].

Our probabilistic model is not the only means by which we can filter potential units

for correct answers. By using variable amounts of perfect knowledge, we can observe

how closely our probabilistic models perform to idealized situations that are, in general,

unrealistic. In a similar vein, we compare our models with simplistic strategies that do not

require the development of a complex model of answer type. These simple strategies rely

on properties of the question or the source of candidate answers rather than the resources of

Section 4.1. Specifically, our comparison systems are:

Query-Specific Oracle: This ideal system creates a unit list for each how-adjective ques-

tion separately, choosing only those units known to be correct from the TREC judge-

ments for a specific question.

Adjective-Specific Oracle: This system is designed, like our models, to provide a unit

list for each adjective rather than for a specific question. The unit list for a particu-

lar adjective contains all the units from all the answers of questions containing that

adjective. It is optimal in the sense it will identify every correct answer for each

adjective and only use units necessary for this identification.

Fixed-Category: This system gives the performance of a general-purpose, fixed-category

answer typing approach applied to how-adjective questions. In a fixed-category strat-

egy, all how-adjective questions are seeking numerical answers, and thus all numeri-

cal entities are identified as possible answers.

IR-Document Inferred: Here we infer question units from documents believed to be rel-

evant to the question. The PRISE IR system is given a how-adjective question and

returns a set of documents. Every numerical entity in the documents can be consid-

ered a possible answer to the question, and the units associated with those values can

be collected as the unit list, ranked (and thresholded) by frequency. We remove units

that occur in a list of 527 stopwords, and filter numerical modifiers like hundred,

thousand, million, etc.

Answer-Document Inferred: This approach is identical to the IR-Document Inferred ap-

proach, except only using those documents judged by TREC to contain the answer.
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Figure 4.2: Answer-Identification Precision/Recall

In this way the Answer-Document Inferred approach provides an upper bound on

inferring units by assuming perfect document retrieval.

Inferring answer units from a set of relevant documents is similar in spirit to the work

of Daume and Marcu [18]. In one of their experiments in query-focused summarization,

they show competitive summarization performance without even providing the query, as the

query model is inferred solely from the commonality in relevant documents. In our case,

high performance will be possible if the actual answers have the highest frequency among

the numerical values in the relevant documents. This expectation is reasonable given the fact

that the correct answer is often highly related to the question terms, and this is reinforced

when the answer is found repeatedly in many different sources.

Answer-Identification Precision/Recall for various scoring functions over all question-

answer pairs is shown in Figure 4.2. The first item of interest in Figure 4.2 is the benefit of

ranking with Pr(u|a)Pr(a|u) as opposed to only Pr(u|a). Over most of the range of recall,

using the combined value Pr(u|a)Pr(a|u) results in better precision. The second item of

note is that using expanded units can achieve almost 20% higher maximum recall than the

corresponding unexpanded units, even at the cost of precision at lower recall values. This

provides strong justification for the small overhead of looking up similar words for items

on our unit list when a greater degree of recall is required.
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Figure 4.3: AIPR of our approach versus comparison systems

The AIPR performance of our comparison models versus our best-performing prob-

abilistic model is shown in Figure 4.3. The query-specific oracle is able to achieve the

highest performance because of perfect knowledge of the units appropriate to a given ques-

tion. Still, its precision is only 42.2%. Its accuracy is limited because the correct answer

shares its units with other numerical entities in the answer documents. Slightly worse is the

adjective-specific oracle at 34.2%. Unlike the query-specific oracle, if the question is how

long did WWII last?, entities with the irrelevant units metres and kilometres must also be

proposed as candidate answers because they occur in answers to other how long questions.

This adjective-specific oracle thus provides a more realistic upper bound on our model as

our model also builds unit lists for individual adjectives rather than specific questions.

In terms of recall, both oracles can find units for 78% of questions (with our expanded

systems reaching close to this at about 72%). However, this number is somewhat misleading

in that the oracles are expected to find answers for 100% of questions. On inspecting the

actual misses, we find that 10 of the 16 missed answers correspond to how old questions

that are often answered without units (e.g. at age 52). Because of this, higher recall would

be possible if the system defaults to extracting all numerical entities for how old questions.

This issue contributes to error in all comparison systems (except for the fixed category

baseline) and so is a constant source of error in all results.
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Also of note in the results of Figure 4.3 is the clear disadvantage of using a fixed cate-

gory approach (i.e., numerical entities) for how-question answer typing. The precision for

fixed category typing is just under 5%, roughly one half of the lowest precision of any of

our approaches at any recall value. However, fixed-category typing does achieve high recall,

roughly 96%, missing only numerical entities unrecognized by Minipar. This high recall is

possible because fixed-category typing does not miss answers for the how old questions.

Both answer-document and IR-document inferred models exhibit lower precision than

our model over the entire range of recall. Thus inferring units from relevant documents

does not seem promising, as even the unrealistic approach of inferring only from known

answer documents cannot achieve precision comparable to that of our model. This is sim-

ilar for the more realistic IR-document inferred model. Higher recall is possible with the

answer-document inferred model due to the unrealistic use of documents known to contain

the answer rather than documents returned by the PRISE search engine. Despite their lower

performance, note that these inferred approaches are completely orthogonal to our proba-

bilistic models, so it may be possible to combine variants of these models to achieve further

increases in performance.

4.3.2 Further Improving Performance with Discriminative Techniques

Once again, the goal of building a discriminative preference ranking model of answer type

is to increase the flexibility and performance of typing for how-adjective questions. The

evaluation of our model, however, is changed to better reflect this true goal. Instead of

simply determining which units appearing on a list are used with a correct answer, we wish

to know which units could plausibly be used with some correct answer. For this evaluation,

we label a list of (expanded and unexpanded) candidates for each of the adjectives used in

TREC 2002-2005. Each candidate unit is assigned one of two possible labels:

Appropriate: The unit is judged to be appropriate. This includes both those units com-

monly associated with a particular class of question (such as feet for how high ques-

tions) as well as those units that are acceptable but uncommon (such as microns for

how tall questions).

Inappropriate: The unit is inappropriate for this class of how-adjective questions or the

unit is not a unit at all. These are the majority of discovered units due to the noisy

results from the Google pattern match.
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Figure 4.4: Precision/recall for preference ranking how-adjective questions
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Two annotators were used for annotation resulting in a kappa (κ) agreement [14] of

0.71. This value is due mainly to disagreement on the rare units, especially for questions

such as how large and how big that have a potentially large number of plausible units de-

pending on the annotator’s interpretation of appropriateness. However, a value of κ = 0.71

still indicates a substantial amount of agreement between the two annotators.

To build unit lists with discriminative preference ranking we train 15 individual models,

each predicting a single class of how-adjective question using 13 of the other classes as

training data. For example, the model for how tall questions is trained using the data for

13 other question classes and how tall information is omitted. For development, we omit

a further question class so that a particular set of classes is used to train a model for one

class at development time but another at test time. The SVM regularization parameter was

set using this held-out 14th question for each model. Prediction accuracy for each of the 15

models is averaged (macro-averaging) to obtain a precision and recall score over the entire

set.

Figure 4.4 shows the precision/recall curve for our set of 15 how-adjective question

types obtained by varying the number of units taken from the top of the ranked list. Included

are the new results for the probabilistic models of Section 4.2.1, showing their performance

on a closed set of labeled candidates. As Figure 4.4 shows, the learned model performs
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better than all of the probabilistic models, except for the unexpanded Pr(u|a)Pr(a|u) model

at low recall (< 0.3). In particular, discriminative preference ranking shows the most benefit

at higher levels of recall, an area where precision formerly dropped off dramatically. This

means that appropriate units are often ranked near the top of the list and can be obtained

without permitting too many false positives (i.e., inappropriate “units”).

The results of Figure 4.4 show more consistent precision over recall than those exhibited

by the probabilistic models. This “flatter” precision/recall curve means that some low-

recall precision is sacrificed to obtain greater precision with a larger number of appropriate

units. Often the units sought by a particular class of how-adjective question (such as how

tall questions) can be very diverse, especially when considering those units not usually

associated with a such a class of questions. As an example, consider a question such as

how tall is the Empire State Building? In this case, we would accept an answer in terms of

the expected units feet or meters, but an answer of the Empire State Building is 102 storeys

tall is also acceptable. Our learned model places the unit storey at position 19, but the best

position for the unlearned models is no higher than position 23. Repeating this situation

many times for the various classes of how-adjective questions results in a loss of overall

precision at the low end of recall (at least compared with unexpanded Pr(u|a)Pr(a|u)) but

a gain in precision over the remainder of the range.

From these experiments, we can once again conclude that discriminative preference

ranking shows benefits for answer typing performance. Although we seek to find and rank

units rather than candidate answers, the how-adjective and open-ended noun phrase ques-

tions are similar enough to benefit from similar strategies. Building models unique to each

adjective allows for the rapid application of the model to incoming questions as well as

compartmentalized improvements in the future; handling a new adjective requires the con-

struction of a new individual model rather than the rebuilding of a shared model. This makes

the application of discriminative preference ranking to how-adjective questions somewhat

different from open-ended noun phrase questions, although in a way that further enhances

flexibility for how-adjective questions.

4.4 Conclusions

Applying fine-grained answer to how adjective questions has shown definite benefits in

performance. This is of special interest because how-adjective questions are often thought

of as easily typed. However, the typical strategy of considering all numerical entities as
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potential answers for how-adjective questions results in a large number of incorrect answers

identified as appropriate, leading to poor performance. Although some class-based answer

typing approaches do include specific classes for the type of quantity measured [71], we

cannot easily filter out inappropriate responses. The models introduced in this chapter are

shown to capitalize upon this opportunity for improvement.

Typing how-adjective questions relies on the concept of a unit that must be discovered

and ranked according to how appropriate it is in response to the question. The models pre-

sented here automatically create lists of units for particular adjectives such that these lists

can be applied immediately to new questions. Depending on the amount of time devoted

to answer typing, this could be extended to typing units based on other elements of the

question. For example, the units appropriate for a specific how tall question vary depending

on what entity is included. The CN tower cannot be measured on the same scale as a mi-

crochip. Although this issue is not explored here, even more fine-grained typing is possible

for these questions.

Experimental results show a very meaningful improvement in performance when using

both the probabilistic and preference ranking model. Most comparison systems are ideal-

ized in one way or another and would therefore be difficult or impossible to implement in a

production system. Depending on the application, we may desire a higher or lower degree

of recall from the answer typing model. Should higher recall be required, the discriminative

preference ranking model shows obvious advantages by permitting only an equal number of

incorrect units (precision = 0.5) at a recall level of 80%. If high precision for only one or a

few units is more important, the simple probabilistic models provide excellent performance

for very little overhead in terms of required features.
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Chapter 5

Beyond QA: Answer Typing for IR

The task of information retrieval (IR) is commonly thought of as identifying documents

relevant to a keyword-based query. The notion of relevance has long been a core concept

of IR [43] with the ultimate goal of increasing the quality of documents returned to the

user. However, relevance can be a fluid concept; not all documents that contain information

related to a query are equally desirable to an end user. As a result, popular Web search

engines have shifted from common notions of relevance in IR such as query overlap to

increasing the number of returned pages that a user is likely to click.

Typically, an IR engine creates an inverted index over a document collection that allows

documents to be found with keywords. If position information is also stored in the index,

phrasal queries can be handled and keyword distance can be factored into a measure of rele-

vance. Phrasal or conjunctive queries are ideal for use with an inverted index representation,

and documents containing all possibly adjacent terms are a requirement of these queries.

Although an inverted index allows for the selection of documents based on which contain

query terms, the index itself does not decide the order of presentation of those documents

to the user. Additional processing is required to decide upon such an ordering.

Relevance ranking is an important part of all IR systems. The popularity of the Google

search engine depends largely on the superior ranking it returns, especially given the fact

that many online search engines index roughly the same number of pages. Features such as

term proximity and tf.idf scores [61] generally indicate pages with more relevant content,

whereas features such as PageRank [6] indicate the popularity of a page or the likelihood

that a page is to be visited regardless of the query. Relevance ranking can be performed

by incorporating any number of features, some of which come from the natural language

analysis of both the query and the documents.

NLP techniques have been applied in the past to increase IR performance [64], and we
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focus specifically on the application of answer type. There have also been prior efforts to

transfer QA techniques into the task of document retrieval [4, 66]. This is the first work

to incorporate a notion of automatically-identified answer type into IR, although work on

templated queries [33] allows a user to explicitly specify the type of the desired response.

In this chapter, we apply a modified version of the answer typing model introduced in

Section 3.3 to the problem of IR. IR users interact with the system by specifying keyword

or phrasal queries for which a list of documents, along with snippets, are returned. Instead

of a unique specific answer, we must be sure to order the list of results based on a notion of

relevance to the query. It is left to the user to sort through the results to find the true infor-

mation required, as is the case for any modern IR system. However, we wish to ensure that

high-ranking documents contain some entity that is type-appropriate to the query whenever

the notion of type-appropriateness applies. Therefore, our goal is to provide a meaningful

improvement via answer typing for a subset of queries submitted to an existing IR system.

The remainder of the chapter is organized as follows. Section 5.1 introduces the re-

sources available to our model. Because the model is so heavily based on the open-ended

noun phrase typing model of Section 3.3, we focus on those resources that are in addition

to those of Section 3.1. Once the resources have been introduced, Section 5.2 examines a

means of identifying queries in a query stream for which a notion of type-appropriateness

applies. Many queries in a search engine log are navigational in nature (i.e., seeking some

specific page) and so cannot benefit from a notion of answer type. For those queries deemed

typeable, we apply a model of answer type described in Section 5.3 to improve their results.

Experiments of Section 5.4 show the benefits of applying answer typing to IR queries; con-

clusions are drawn in Section 5.5.

5.1 Resources

The answer typing model for IR relies heavily upon the resources of Section 3.1. We make

use of the same word clusters and context database as discussed in Sections 3.1.1 and 3.1.2.

The model of Section 3.3 can be applied directly to words found in search results, leaving

only the means by which result documents are scored to be decided. The Google search

engine provides snippets, short pieces of text derived from the document often containing

the query terms, for each result. We rely heavily upon these snippets as discussed in the

following section.
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5.1.1 Google Snippets

Along with providing links to result documents for a given input query, the Google search

engine provides short text snippets for each document. Snippets are meant to capture the

essence of a document as it relates to a query by providing the query terms within the

context of the document. A snippet can be viewed as a simple query-directed summary of a

document that ideally captures other nearby important terms. Ideally, a snippet contains all

of the information relevant to a query, although this is often not possible for queries that are

searching for certain pages (navigational) or general concepts (definitional). Because these

snippets are summaries of documents and are the first form of feedback users see, we base

our answer typing model on snippets rather than entire documents.

The quality of snippets is very important to the perceived quality of search results.

As a result, Google has spent a great deal of effort to ensure that the generated snippets

are optimized for both length and content. Although snippets are not guaranteed to con-

tain type-appropriate responses to certain queries, we assume that Google snippets are of

such high quality that any simple attempt to recreate snippets including type-appropriate

responses will fail to provide superior results. Therefore, we leave Google snippets unmod-

ified and instead rerank results based on the existing contents of Google snippets. The only

drawback of this decision is that lower-ranked results may be promoted based on snippet

contents, leading to a situation in which lower-quality results are deemed better than those

previously selected by Google search.

5.2 Finding Typeable Queries

Applying answer typing techniques to IR queries depends greatly on the ability to identify

queries that can benefit from such typing. The queries of interest are often those search-

ing for some sort of short open-ended noun phrase answer rather than a long description

(more definitional), a complex answer (long-response informational), or a particular page

(navigational). Definitional queries are looking for explanations of some particular concept

and often cannot be adequately answered with a short answer. Long-response informational

queries are typeable in some sense, but they require too long of an explanation to be easily

handled by open-ended noun phrase typing (e.g., causes of World War II). Navigational

queries are searching for some particular page(s) and only that particular page(s) is accept-

able as a response. We focus instead on the short-answer informational queries, as they are

likely to have type-appropriate open-ended noun phrases as either sufficient or appropriate
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Pattern Description
LHSw root noun to the left of the preposition
LHSc cluster of the root noun
RHSw preposition and the root of the prepositional attachment
RHSc preposition and cluster of the root of the prep. attachment
has picture query contains the word “picture” or “photo”
has map query contains the word “map”
initial the query starts with the word “the”
rearranged find a non-prepositional wording of this query in the AOL data set

Table 5.1: Typeability classifier feature templates

responses.

Compound noun queries are prevalent in Web search logs, although their exact num-

ber is difficult to measure. Most queries are short (less than three terms) and are likely

to be compound noun queries, as many verbs require both subject and object arguments.

The search for short-answer informational queries begins with the observation of Lapata

and Keller [34] that compound noun phrases can often be interpreted in more than one

way. Lapata and Keller examine ways in which certain noun phrases can be paraphrased

as equivalent preposition-containing phrases. For example, the compound noun phrase war

stories can be paraphrased as the equivalent stories about war. This transformation is of

importance here because preposition-containing queries are easier to identify as being short-

answer typeable than compound noun queries. However, due to the prevalence of compound

noun queries, we wish to develop a strategy that covers this large class of queries. There-

fore, transforming compound noun queries into preposition-containing queries is a form

of query normalization. With this in mind, we now introduce a method for identifying

typeable preposition-containing queries.

Because a typical query stream such as the AOL query log [52] used here contain a

wide variety of queries, we must filter out those queries unlikely to benefit from typing.

For this task, we make use of large-margin discriminative learning as implemented in a

SVM classifier [29]. Our SVM classifier for identifying typeable queries makes use of the

features summarized in Table 5.1. Because we only consider prepositional queries, we can

break each query into a left-hand side (LHS) and right-hand side (RHS). The LHS contains

only the head noun of the query. The RHS includes both the preposition and the head of the

prepositional attachment. For example, the query cities in Canada has a LHS of city and

a RHS of in Canada. Cluster information (Section 3.1.1) is used to increase the amount

of feature overlap between queries that are not identical. For example, cities in Canada
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and towns in Mexico are both typeable and similar. To these features we add flags for

certain words that often indicate untypeable queries, such as queries looking for images,

photographs, or maps. The presence of the word the at the beginning of a query often

indicates the query is a single cohesive phrase and likely to be navigational or definitional.

Finally, we search for rearrangements, or paraphrases, of the query in the query log with

the hope that paraphrasability is an indicator of typeability.

The set of features in Table 5.1 provide information about whether or not a query is

typeable. The features themselves are all simple binary flags and must be weighted such

that the combination of weights and features yields a decision on whether or not a query

is typeable. Learning these weights can be achieved by the use of a SVM classifier [29] in

which we find the weight vector ~w and some scalar b such that:

min
1
2
||~w||2 + C

(∑
i

ξi

)
(5.1)

subject to the constraints:

~w · Φ(xi) + b ≥ 1− ξi when yi = 1 (5.2)

~w · Φ(xi) + b ≤ −1 + ξi when yi = −1 (5.3)

∀ξi ≥ 0 (5.4)

Here ξi are slack variables for the case when the problem is non-separable, Φ(xi) are

the feature vectors for the queries comprised of the features described above, and yi ∈

{+1,−1} is the label of whether or not the query is typeable. Once the weight vector ~w has

been obtained, we can label unseen queries xj by finding yj = ~w ·Φ(xj)+ b. If yj > 0, we

say that query xj is typeable, otherwise it is not.

The purpose of this classifier is to identify queries likely to benefit from our notion of

typing. For training data, a single annotator labeled a set of 2000 preposition-containing

queries according to this single criterion. If the query seems likely to benefit from typing

and can be answered by a short noun phrase then the query was labeled as a positive ex-

ample. Roughly one-third of these queries were labeled as positive examples. A single

annotator was used because of the high degree of subjectivity of the task; it is not clear

what exactly defines a typeable query and some familiarity with the answer typing method

is required to identify cases in which typing is likely to help.

Experiments on a small test set of 200 queries show an accuracy of 87.5% for the

query identification model, with errors being divided according to the proportion of positive

and negative examples (one-third and two-thirds, respectively). Although this number is
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fairly high, precision is only 77%, meaning a number of untypeable queries are incorrectly

identified as typeable. Even though this precision is fairly low, we focus on finding answers

for certain queries and false positives will not have any applicable short answer.

5.3 Model Specifics

The goal of answer typing for IR queries is to find snippets containing appropriate responses

and boosting their position to improve results. We take queries identified as typeable by the

model of Section 5.2 and apply the model of Section 3.3 to words found in the snippets as if

the query were a question and the snippet contents were potential answers. To preserve the

interface of online search engines, we must accept keyword or phrasal queries instead of

fully-formed questions. For responses, we must be sure to preserve snippet contents as-is

and rerank based on the contents of these snippets. These two requirements, along with the

shift in domain from news corpus-based QA to Web-based IR, necessitate a few changes to

the model of Section 3.3.

Because we are dealing with queries rather than fully-formed questions, we extract

contexts from queries in a slightly different manner. IR queries in general do not have a

wh-word that signifies the desired answer. Instead, each prepositional query has a focus

(the LHS) along with additional information (RHS). We create a single context from the

LHS and possibly multiple contexts of maximum length two from the combination of LHS

with RHS. For example, the query cities in Canada generates the context X is a city from

the LHS alone and X is a city in Canada from the combination of LHS with RHS. The

combination of LHS with RHS is used because queries are often short and provide only

a few contexts. This is in contrast to questions in which the conceptual RHS can be used

alone because they are often more context-rich.

Given that these queries were originally intended for information retrieval, we submit

them as-is to the Google search engine and obtain a ranked list of results along with their

snippets. The top 100 snippets, an arbitrary number used to balance quantity of results

against the use of Google resources, are tagged [55] and chunked [54] to extract a set of

noun phrase candidates that are then ranked by the model. These ranked candidates form

an ordered candidate list on which snippet scores and hence results are based.

As was observed in Section 3.3, a discriminative preference ranking model grants the

flexibility of adding additional features on top of basic probabilities derived from the con-

text database. A summary of the feature templates we use for this model can be found in
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Pattern Description
E(t, γ) Expected count of candidate t in context γ
N(t, γ) Observed count of candidate t in context γ∑

t′ N(t′, γ) Count of context γ in the corpus∑
c′ N(t, γ′) Count of candidate t in the corpus

F (t) Count of the times t occurs in the candidate list
W (t) Estimated depth of t in the WordNet hierarchy
LHS(t, q) Flag for when the LHS of query q is a substring of t
U(t) Flag for when t contains capitalized letters
T (t) Number of terms comprising candidate t

Table 5.2: IR typing model feature templates

Table 5.2. The first five of these features are identical to those found in Table 3.2 for the

discriminative model for open-ended noun phrase questions (Section 3.3). To these features

we add four additional kinds of features that do not rely on contexts. The first, W (t), is the

estimated depth of the candidate t in the WordNet hierarchy [19]. Should the candidate not

appear in WordNet, we estimate the depth of the candidate by averaging the depth of terms

with high similarity to the candidate, according to our cluster resources (Section 3.1.1).

Words with named-entity types assigned by Minipar that are not found in WordNet due to

poor coverage of WordNet over proper nouns are assigned an arbitrary fixed depth of 12.

This particular fixed depth was close to the average depth of named entities that can be

found in WordNet. LHS(t, q) is a flag that fires whenever the LHS of a query q (such as

city in cities in Canada) appears as part of the candidate t. We also include a flag, denoted

by U(t), that fires when a candidate contains one or more capitalized letters. The features

also include the integer number of space-delineated words in the candidate as denoted by

T (t). These features allow our model to prefer capitalized terms and terms of a certain

length.

For training data, two annotators labeled appropriate candidates in the top 20 snip-

pets (down from 100 to reduce annotator workload) from a total of 200 queries randomly

selected from the positive training examples for query identification (Section 5.2). We ob-

served an inter-annotator agreement of κ = 0.68, which is relatively low. This indicates the

difficulty both in interpreting the meaning of queries and in finding appropriate candidates.

Because of this relatively low level of agreement, we tested models built on each annotator’s

labels, along with the intersection of the labels, on a held-out development set. Given that

the intersection model showed the best performance, we chose to train on the intersection

of the labels.

81



Once candidates for a question have been ordered by the model, we select the top 20

candidates for scoring snippets. The decision to use the top 20 candidates was based on

experiments with a development set in combination with the fact that most queries have

only a limited number of appropriate responses in the top 100 snippets. The score of a

snippet s is calculated as the average number of candidates per fragment:

score(s) =

∑
t∈top20 in(t, s)

frag(s)
(5.5)

where in(t, s) is 1 if snippet s contains candidate t and 0 otherwise, and frag(s) is the

number of fragments separated by “. . . ” in the snippet. Fewer fragments indicate a more

cohesive snippet; highly-fragmented snippets require more appropriate candidates to re-

ceive a high score. This simple scoring function is designed to avoid relying solely on the

output values of the preference ranker and instead uses membership in the top 20 candidates

as evidence of a high-quality snippet.

Many factors contribute to Google relevance rankings that are not exposed externally.

Therefore, we view the original ranking as a proxy for the combination of such factors.

Given that Google often performs well at returning relevant results, we do not wish to

deviate too greatly from the Google ordering without strong evidence. To this end, we use

an interpolated model most often employed for smoothing [42]. Our final score for a snippet

is therefore:

interpolated(s) = α×MRRscore(s) + (1− α)×MRRoriginal (5.6)

We use the Mean Reciprocal Rank (MRR) [67] of our model combined with that of the

original Google ordering because MRR provides a natural decrease in score that roughly

corresponds to a user’s interest in each subsequent result. Ties under our model are as-

signed an equivalent rank and thus have an equivalent MRRscore(s) value. The parameter

α controls the degree to which we are willing to deviate from the original Google ordering.

5.4 Experiments

When an IR query is seeking a short answer, even if it is only one of many possibilities,

answer typing has a chance to improve results by boosting snippets containing appropriate

terms. Capturing such improvements in an IR experiment is a difficult task. Common

measures for IR performance are precision and recall along with the associated F-measure.

In contrast, QA often uses the MRR measure. Given that we will be dealing primarily

with queries for which an answer is thought to exist (Section 5.2), we adopt the notion
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of first correct answer as is used with MRR. With this in mind, we propose two kinds of

experiments to measure the effect of answer typing applied to IR.

The first kind of experiment is a side-by-side (SxS) experiment in which results from

two alternatives are compared next to one another. Annotators are then asked to choose

which side provides a better result. Consistent selection of one side over another reveals

which alternative better responds to the query. In general, a SxS experiment can only reveal

when one alternative performs better than the other and not when one or both are performing

well overall. Therefore comparing two alternatives that are both exceptionally good or bad

will result in an insignificant difference. Clearly we want to produce a system that performs

well overall and this cannot be measured accurately with a SxS experiment alone.

The second kind of experiment involves only the MRR of a single system. For this kind

of experiment, we look for snippets containing partial or complete answers to a query. This

only applies to queries that actually have short answers and cannot measure anything for

those that do not. Although it may be the case that search results for queries that have no

short answer may be degraded in quality, they do not have short answers for which our sys-

tem was designed to find. This kind of experiment also has the added benefit of measuring

the performance of a system directly rather than in comparison to another. Therefore, the

overall performance of a system will be revealed in the MRR score itself.

The two kinds of experiments are applied in the following sections to both the candi-

dates which we use to rank snippets in a SxS experiment and the reranked snippets them-

selves (MRR experiment). To balance the aggressiveness of our typing model against the

high quality of Google results, we set α = 0.4 in Equation 5.6. This value of α was deter-

mined using a held-out development set. The hope is that our system finds better candidates

for a query than a simple frequency-based method would find. To measure the quality of

candidates, we use a SxS experiment on the top 20 terms sorted according to model score

(Section 5.4.1) and frequency. An MRR experiment on the top 5 snippets provided by our

system versus the original Google ordering (Section 5.4.2) further shows that our system

can make improvements when the query is looking for a short answer.

5.4.1 Candidate Ranking

The candidate ranking SxS experiment is meant to examine the quality of terms selected

to rerank snippets. For this task, we display side-by-side the top 20 candidates according

to the sort order of frequency and our model score. Displaying a list of appropriate terms

does not conform to the task of IR, but allows us to determine whether or not our model can
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Total queries 996
Our terms preferred 365 (37%)
Most frequent terms preferred 194 (19%)
Both good 83 (8%)
Both bad 108 (11%)
Indeterminate 246 (25%)

Table 5.3: Top 20 Terms SxS

find appropriate terms for a query. We hope that in some cases the list contains one or more

terms that fulfill the information needs of the user. For example, a list containing the word

Edmonton would be useful for the query cities in Canada.

Annotations for this experiment are collected from the Amazon Mechanical Turk (AMT)

system.1 AMT allows a Requester to upload a set of Human Intelligence Tasks (HITs), each

of which is a single example to be annotated. Each HIT is annotated by one or more an-

notators (known as Turkers) who are paid small sums of money for their efforts. AMT

results, when averaged, have been shown to have high agreement with expert annotators

[63] even though Turkers are not experts. We take advantage of this by requiring a mini-

mum of five judgements on any one HIT. One side is preferred over the other if and only if

we observe a majority of votes (i.e., ≥ 3) for that side. This leads to a considerable num-

ber of indeterminate results for which no choice has a majority and for which we cannot

confidently assign a single label. These indeterminate results are therefore largely excluded

from further consideration.

In comparison with our typing model, we select the top 20 most frequent terms in the

snippets excluding any query terms. The idea here is that appropriate terms may be repeated

in many snippets. Snippet frequency has previously been shown to be a reasonable measure

for identifying appropriate answers to questions in the model for open-ended noun phrase

questions (Section 3.3). Table 5.3 shows the results of comparing our top 20 terms with the

20 most frequent terms for a set of 996 queries judged as typeable by the model of Section

5.2. This set of queries includes queries erroneously labeled as typeable because useful

terms can exist for queries that are not answerable by short answers alone.

Turkers were asked to judge which of the two lists of 20 snippets were better as a

response to a given query. Both lists were sorted according to score to allow for the implicit

expectation that candidates appearing higher in a list are more relevant. The results in

Table 5.3 show the clear advantage of our model over the most frequent terms indicating
1http://www.mturk.com/
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Ranking method MRR
Original Google order 0.514
Reranked by our model 0.567

Table 5.4: Top-5 MRR

that our model is able to identify terms appropriate to this particular subset of queries. We

would expect that if the terms were largely irrelevant or if the model performed poorly,

the preference would be for the most frequent terms. These results provide motivation for

applying the model to rerank snippets according to Equation 5.6, presented in the following

section.

5.4.2 Snippet Reranking

The encouraging results of the previous section lead to a MRR experiment for snippets

reranked according to our model in comparison with that of the original Google ordering.

The Google search engine is currently the most well-known Web search engine and Google

has spent a great deal of effort to provide both high-quality relevance ranking and high-

quality snippets for each result. Because of this, we expect that Google search results alone

will produce a high MRR score when looking for short answers that are a response to a

query.

This experiment deals only with those queries for which there is some short answer. Of

the 996 queries used in the prior SxS experiment, 331 are strictly determined to be short-

answerable, indicating fairly low precision of our classifier (Section 5.2). However, it is

for these questions that our model of answer type is designed. Snippets provide additional

information and context for answers and are the expected response to IR queries. As a result,

snippets that include a short answer to the query allow a user to find desired information

along with some context without having to visit additional external Web pages.

For this experiment, two annotators were asked to identify the position of the first snip-

pet containing a short answer to the query. Two annotators were used instead of Amazon

Mechanical Turk due to the attention to detail required to identify short answers in snippet

text. The answer was allowed to be partial to cover cases in which a list of answers is sought

or for which more than one answer is correct. Only the top 5 snippets of our two systems

were presented to the annotators to produce a measure of top-5 reciprocal rank in which

annotators can use the label none to indicate that an answer is not present in any snippet

and for which the subsequent reciprocal rank is 0. Top-5 MRR is the average of these top-5
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reciprocal rank values over the set of 331 queries. The results for both systems are pre-

sented in Table 5.4. The two annotators agree on over 80% of the queries, indicating high

confidence in these values. Agreement exists for queries when the same snippet was chosen

by both annotators as having a correct answer. We expect some amount of disagreement for

queries in which the true intention of the user is difficult to discern. This expectation is in

line with inter-annotator agreement numbers observed in Pinchak et al. [58].

The results of Table 5.4 show a slight improvement over the high performance of

Google-ranked snippets. Although the improvement in MRR is slight at about 0.05, the

results are significant (p < 0.01). It should be noted that a system that places the correct

answer at position 2 for every query will achieve a MRR of 0.5 and so any improvement

upon this is conceptually an increase in the number of answers that appear near the top of

the list. Given that Google results are already above this MRR value of 0.5, we conclude

that Google offers relatively few opportunities for which we can improve results. The fact

that we show a statistically significant improvement for this set of queries means that we

are able to capitalize on those rare situations in which Google provides a generic response

rather than snippets containing concrete answers that our model prefers.

5.5 Conclusions

The purpose of information retrieval is to find documents that satisfy a user’s request for

information. Unlike question answering, IR is permitted to return inexact responses with

the expectation that the user will sift through the results for the desired information. This

chapter has applied answer typing to the task of IR in an effort to improve the ability of

users to find specific answers to certain kinds of queries. Although not all IR queries are

appropriate for answer typing, at least some are phrased in such a way as to indicate that

they are looking for short, concise answers. We believe that responding to such queries with

results (or snippets) known to contain appropriate answers improves the IR experience.

The model we employ for this task is a slightly modified version of that described in

Section 3.3 for open-ended noun phrase questions. Typeable queries, partially identified by

the presence of a preposition and further filtered by the classifier of Section 5.2, are often

very similar in form to open-ended noun phrase questions except that they contain less

contextual information that gives clues for type-appropriate responses. Thus the observed

range of possible contexts is reduced due to the more regular structure of the queries. Still,

enough contextual information can be extracted to produce an accurate model of type as
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shown by experiments.

Experiments on applying answer typing to IR queries take the form of comparison with

a very high performing baseline: the Google search engine. Google performs well at finding

relevant results and providing high-quality snippets for most queries. Our goal is to improve

results in those situations for which Google does not include type-appropriate responses in

high-ranking results. To this end, we apply our answer typing model to queries deemed

answerable with short noun-phrase answers and observe a slight, but significant, improve-

ment in performance. When considered against the fact that Google alone performs very

well in many cases, this is an important result that shows the applicability of answer typing

to a domain outside of QA, in this case the domain of information retrieval.
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Chapter 6

Conclusions

The primary goal of this thesis is the investigation of answer typing as an important and

useful component of question answering. All too often answer typing is viewed as a task

of convenience; if one can easily determine that a question is looking for some named

entity, then simply look for those named entities in text. This thesis has shown that answer

typing need not be so simplistic nor opportunistic. There are many opportunities for answer

typing to make a difference, especially in places in which existing answer typing strategies

(overwhelmingly class-based) either do not apply or are insufficient to cover all cases.

Class-based answer typing approaches are applicable for many questions. However,

Light et al. [37] have shown that classes are not a perfect solution. A tradeoff exists be-

tween generality, for ease in identifying members of a class, and specificity, for accurately

focusing the list of appropriate responses, when deciding how to apply a class-based an-

swer typing approach. At one end of the spectrum lies the MUC types for identifying only

the most basic of named entities and at the other the Webclopedia types (over 140 separate

types) [24] used to identify very specific entities. The models we have introduced here

for open-ended noun phrase questions and how-adjective questions do not rely on classes.

Instead, we directly decide whether or not a candidate answer is appropriate. This gives a

very high level of specificity (at the term level) while still maintaining high accuracy.

The techniques applied in this thesis are based on core resources that are, in many

respects, limited. Work on answer projection for QA [5] has shown that the application of

Web-scale resources to the task of QA results in large performance gains. Therefore, we can

view the resources we use here (especially those of Section 3.1), as overly-restricted for the

task of QA in general. Should these ideas be applied to a large- or Web-scale QA system, the

resources would be more comprehensive and contain more accurate information. Therefore,

the performance results presented for each application of answer typing should be viewed
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as a lower bound on potential performance in a production setting.

Chapter 5 introduced the application of answer typing techniques to the related, but

distinct, field of information retrieval. The goal was to show that answer typing is applicable

to domains outside QA. Any system looking for what could conceptually be considered a

short answer may benefit from a notion of answer type. Linking type-appropriate terms with

information contained in queries or requirements is a potentially useful concept. Although

we have used the notion of question (or query) and answer, we have developed a means by

which any linking, such as between query and snippet, can be exploited. IR is only a single

example of such a linking but many others are possible in other diverse domains for which

type-appropriateness is a meaningful concept.

We now return to the contributions of Section 1.2 and summarize how each has been

achieved by this thesis. This is followed by some of the remaining open issues and potential

directions of future work.

6.1 Review of Contributions

The three primary contributions of this thesis were set out in Section 1.2. We now return to

how each of these contributions are achieved.

6.1.1 Class-Free Answer Typing for Open-Ended Noun Phrase Questions

Chapter 3 introduced two models for class-free typing of open-ended noun phrase ques-

tions; one generative and the other based on discriminative preference ranking. The choice

to develop a novel class-free approach rather than refine an existing class-based approach

was one of the primary goals of this thesis. A class-free approach may not offer great ben-

efits for more well-defined classes of questions, but we expect it to offer great benefits for

miscellaneous-classed questions. Light et al. [37] provide strong evidence that miscella-

neous questions do not exhibit high performance under a class-based approach. Ideally, our

class-free model performs as well as or better than class-based methods for all questions

thereby superseding a class-based method in all cases.

The initial generative model of Section 3.2 shows performance improvements over

baselines with varying degrees of perfect information. The Oracle system of Section 3.4.1

is difficult to surpass, but exhibits poor performance on the miscellaneous questions, those

same questions identified by Light et al. [37] as having particularly low performance. The

semi-idealized ANNIE system (in which type assignment is perfect but entity recognition is
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not) is often surpassed by our non-idealized generative model of answer type. These results

alone provide strong evidence for the use of our class-free approach to answer typing.

When moving from a generative probabilistic model to the discriminative preference

ranking model of Section 3.3 we observe further increases in performance, strengthening

the evidence in favour of a class-free model of answer type. Figure 3.4 of Section 3.4.2

shows a dramatic improvement for the discriminative preference ranking model over the

generative model. Both models outperform the snippet frequency model that is a simple

indicator of answer type. With MRR values as high as those shown in 3.4(a), this discrimi-

native preference ranking model achieves nearly the performance of a complete QA system

for focused open-ended noun phrase questions. Because of this, we can conclude that class-

free answer typing is a viable alternative to typical class-based approaches often employed

as the sole means of answer typing in a QA system.

6.1.2 Fine-Grained Typing of How-Adjective Questions

Open-ended noun phrase questions are a class of questions representing almost innumer-

able possibilities; any noun can potentially be the answer to such a question. In contrast,

the how-adjective questions, i.e., questions for which the wh-word how is followed by an

adjective or adverb, appear very narrow in that they are always looking for some numerical

entity. These questions are commonly assigned a type of number by class-based answer

typing, although this is often refined into a few finer classes (such as date, percent, and

money). Even though this class of questions seems restricted at first glance, we need not

take such a general view in our approach to typing them.

Chapter 4 introduces a model for how-adjective questions based on the knowledge that

the answers are almost always expressed in terms of some unit. Moreover, not all units are

appropriate to all how-adjective questions. Kilograms is no more appropriate to a how tall

question than metres is to a how heavy question. Recognizing and exploiting this fact is

key to adequately typing these kinds of questions. Whereas a class-based answer typing

method may assign some generic type, our model is able to provide a list of specific units

appropriate as answers.

To maintain accuracy, we do not type at the level of an individual question (e.g., how

tall is the CN tower?) but rather at the level of individual adjectives (e.g., how tall). This

has the effect of producing one model per adjective rather than one model per question, and

is more fine-grained than class-based answer typing. In addition, we introduce methods

for the discovery of appropriate units from online resources. The resulting model does not
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require fine-grained named-entity recognition to identify appropriate units. Experiments

show that such models of answer type are far better than extracting numeric entities alone,

even though numeric entities are often easy to identify in text. Furthermore, the model of

Section 4.2.2 reinforces the applicability of discriminative preference ranking to the task of

answer typing by producing a superior model for how-adjective questions.

6.1.3 Extending Answer Typing Beyond QA

One often thinks of answer typing only as a component of QA. However, answer typing

techniques apply to nearly any task for which a notion of type-appropriateness is reasonable.

Although the field of information retrieval is closely related to that of QA, the interface and

goals are somewhat different. IR accepts keyword-based or phrasal queries for which a

set of ranked documents are returned. It is left to the user to sift through the resulting

documents for any pieces of information they desire. Not all IR queries are this generic in

nature. Some are, in fact, looking for specific short answers.

Chapter 5 introduces a means of identifying such queries (Section 5.2) and a model for

boosting results that include type-appropriate responses (Section 5.3) such that a user can

find these short, specific answers directly rather than having to sift through results. We use

the snippet returned by Google as the unit of response and attempt to find type-appropriate

noun phrases within the snippets themselves. A variant of the model used for open-ended

noun phrase questions (Section 3.3) is applied because of the similarity of short-answer

queries to questions.

Applying the model of answer type from Section 3.3 to IR queries demonstrates the

flexibility of class-free answer typing models introduced in this thesis. Experimental results

of Section 5.4 show that even when compared to the high quality of Google search results,

our model is able to provide a slight, but significant, improvement in performance. IR

queries known to be looking for a short noun phrase answer can indeed benefit from the

application of an answer typing model even when Google produces highly-relevant ranked

search results. With success in the domain of IR, we believe that answer typing can be

applied to other areas outside of QA for which type-appropriateness applies.

6.2 Open Issues and Future Directions

Question answering is an ever-evolving field of research. Consequently, answer typing

must evolve along with it. Recent progress at NIST-sponsored conferences have taken the

focus away from factoid-based question answering (in which each question is more or less
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independent of other questions) and began to progress toward interactive QA in which a

dialogue is maintained between user and QA system to explore a subject in depth [17]. The

work described in this thesis is not as well-placed for this shift in direction due to the fact

that we view each question as an independent event, much like queries to an IR engine.

Although such events may be related in some way, this assumption is not always safe. As

a result, this thesis has focused on the more general problem of single questions rather than

question dialogues.

A focus on standalone questions is not necessarily a limitation of the applicability of the

ideas contained herein. In fact, this work is much more applicable to the field of domain-

specific QA in which questions and answers are drawn from some specific domain rather

than general text. For example, one could create a specific biomedical QA system utilizing

medical articles as a corpus (such as those indexed by PubMed1) and allowing for specific

biomedical questions to be answered. This would provide obvious benefits to biomedical

researchers over existing simple query interfaces. The models described in this thesis are

built using general resources and often do not rely heavily on Web-scale data sets. As a

result, the model of Section 3.2 could be adapted using a biomedical-aware dependency

parser and biomedical word clusters. Class-based answer typing would require entirely

new classes for answers (such as protein, disease, enzyme, etc.) along with the ability to

identify such entities in biomedical text. In contrast, our model could be applied without

manual intervention. Exploring domain-specific QA would be worthwhile, especially given

the current level of interest in domains such as medicine and the life sciences.

Past work on answer projection in QA has shown obvious benefits of using more data

than is available in a small reference corpus. Unfortunately, using Web-scale data in the

framework introduced in this thesis (the resources of Section 3.1) would require parsing

Web-scale data. Parsing such large quantities of text requires a prohibitive amount of com-

putational resources. However, the context database we extract from the corpus need not

rely solely on parsed corpora. Recent work by Bergsma et al. [2] has explored the estima-

tion of likelihood of a given term appearing in limited contexts from a n-gram corpus of the

World Wide Web. An occurrence need not be observed in this n-gram corpus but can be

estimated in a way similar to the combination of clusters with a context database (Section

3.2). Our models require some measure of how likely a word is to appear in a context,

which is similar to the information provided by Bergsma et al. Because Bergsma et al.

make use of Web-scale resources without the need to perform expensive operations such as
1http://www.pubmedcentral.nih.gov/
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parsing, we expect further improvements in the performance of answer typing models built

upon these much larger resources. This may be of particular use to domain-specific QA for

domains (or languages) in which parsing resources are limited but data is plentiful. Making

use of Web-scale resources in an intelligent way, rather than simple Web search patterns, is

the logical next step of this work, allowing it to continue to improve in usefulness to QA

and extend beyond into other areas in which type appropriateness is a useful concept.
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[48] D. Mollá and M. Gardiner. AnswerFinder - Question Answering by Combining Lexi-
cal, Syntactic and Semantic Information. In Proceedings of the Australian Language
Technology Workshop (ALTW 2004, pages 9–16, Sydney, December 2004.

96
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