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Abstract

A key problem in the theory of meta-learning is to understand how the task

distributions influence transfer risk, the expected error of a meta-learner on a

new task drawn from the unknown task distribution. In this work, focusing

on fixed design linear regression with Gaussian noise and a Gaussian task

(or parameter) distribution, we give distribution-dependent lower bounds on

the transfer risk of any algorithm, while we also show that a novel, weighted

version of the so-called biased regularized regression method is able to match

these lower bounds up to a fixed constant factor. Notably, the weighting is

derived from the covariance of the Gaussian task distribution. Altogether, our

results provide a precise characterization of the difficulty of meta-learning in

this Gaussian setting. While this problem setting may appear simple, we show

that it is rich enough to unify the “parameter sharing” and “representation

learning” streams of meta-learning; in particular, representation learning is

obtained as the special case when the covariance matrix of the task distribution

is unknown. For this case we propose to adopt the EM method, which is

shown to enjoy efficient updates in our case. The work is completed by an

empirical study of EM. In particular, our experimental results show that the

EM algorithm can attain the lower bound as the number of tasks grows, while

the algorithm is also successful in competing with its alternatives when used

in a representation learning context.
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Preface

This work is based on the paper [24] accepted for ICML 2021 and done in

collaboration with Ilja Kuzborskij and my supervisor Csaba Szepesvári. My

contributions include proving the lower and upper bounds for the general case,

showing equivalence with weighted biased regularized least squares, proposing

to use EM algorithm for the studied problem and for the subspace estimation

task, deriving equations for both steps of the EM algorithm, and implementing

all of the experiments.
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Chapter 1

Introduction

In meta-learning, a learner uses past tasks in an attempt to learn faster on

a new task. Whether this will be possible depends on whether the new task

is similar to the previous ones. In the formal framework of statistical meta-

learning [5], the learner is given a sequence of training sets. The data in each

set is independently sampled from an unknown distribution specific to the set,

or task, while each such task distribution is independently sampled from an

unknown meta-distribution, which we shall just call the environment. Define

the learner’s transfer risk as the expected prediction loss of a learner on a target

task freshly sampled from the environment. Can a learner achieve smaller

transfer risk while using data from the possibly unrelated tasks? What are the

limits of reducing transfer risk? These are the questions we seek answers to

in this thesis.

As an instructive example, consider a popular approach where each of the

n tasks is associated with ground truth parameters θi ∈ Rd, each of which

is assumed to lie close to an unknown vector α that characterizes the envi-

ronment. To estimate the unknown parameter vector of the last task, one

possibility is to employ a biased regularization [25], [32], [39], solving

min
θ
L̂n(θ) +

λ

2
‖θ − α̂‖2,

where L̂n(·) is a convex empirical loss on task n, λ > 0 is a regularization

parameter the governs the strength of the regularization term that biases the

solution towards α̂, an estimate of α, which could be obtained, for example,

by averaging parameters estimated on previous tasks [10]. This procedure
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implements the maxim “learn on a new task, but stay close to what is already

learned”, which forms the basis of many successful meta-learning algorithms,

including the above mentioned ones, or MAML [15].

Early theoretical work in the area focused on studying the generalization

gap, which is the difference between the transfer risk and its empirical coun-

terpart. Maurer [30] gives an upper bound on the generalization gap for a

concrete algorithm which is similar to the biased regularization approach dis-

cussed above. In particular, the author shows that a simple modification of a

regularized least-squares estimator will perform well on a future task, as long

as empirical loss can be made small, while the number of tasks and the num-

ber of examples per each task is large. However, this result, as also discussed

by others (e.g. [11]), does not show any benefits to meta-learning; it merely

shows that using data from the other tasks does not hurt, which is unsurpris-

ing given the worst-case nature of the bound. Numerous other works have

shown bounds on the generalization gap when using biased regularization, in

one-shot learning [26], meta-learning [32], and sequential learning of tasks [9],

[10], [16], [21], [22]. While some of these works introduced a dependence on

the environment distribution, or on the “regularity” of the sequence of envi-

ronments in the sequential setting, they still leave open the question whether

the shown dependence is best possible.

In summary, the main weakness of the cited literature is the lack of (prob-

lem dependent) lower bounds : To be able to separate good meta-learning meth-

ods from poor ones, one needs to know the best achievable performance in a

given problem setting. In learning theory, the most often used lower bounds

are distribution-free or problem independent. In the context of meta learning,

the distribution refers to the distribution over the tasks, or the environment.

The major limitation of a distribution-free approach is that if the class of en-

vironments is sufficiently rich, all that the bound will tell us is that the best

standard learner (which ignores the meta-learning aspect of the problem) will

be competitive with the best meta-learner since the worst-case environment

will be one where the tasks are completely unrelated. As an example, for a

linear regression setting with d-dimensional parameter vectors, [29] gives the
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worst-case lower bound Ω̃(d/(r2(2r)−dM + m)) for parameter identification,

where errors are measured in the squared Euclidean distance, and M is the

total number of data points in the identically-sized training sets, m is the num-

ber of data points in the training set of the target task, and r ≥ 1 is the radius

of the ball that contains the parameter vectors.1 It follows that as r →∞, the

lower bound reduces to that of linear regression and we see that any method

that ignores the tasks is competitive with the best meta-learning method.

This pathological limit can be avoided by restricting the set of environ-

ments. This approach is taken by Du et al. [11] and Tripuraneni et al. [38] who

consider linear regression where the tasks share a common low-dimensional rep-

resentation. Their main results show that natural algorithms can indeed take

advantage of this. In addition, Tripuraneni et al. also shows a lower bound

on the transfer risk which is shown to be matched by their method’s transfer

risk up to some logarithmic factors and some problem dependent, conditioning

constants.

1.1 My contributions

In the present thesis we revisit the framework underlying biased regularized

regression. In particular, we propose to study the case when the unknown

parameter vectors for the tasks are generated from a normal distribution with

some mean and covariance matrix. First, we consider the case when the mean

is unknown and the covariance matrix of this distribution is known. For this

case, in the context of fixed design linear regression, we prove essentially match-

ing, distribution-dependent lower and upper bounds. The lower bound is a di-

rect lower limit on the transfer risk of any meta-learning method. The upper

bound is proven for a version of a weighted biased regularized least-squares

regression. Here, the parameters are biased towards the maximum likelihood

estimate of the unknown common mean of the task parameter vectors, and the

1This result is stated in Theorem 5 in their paper and the setting is meta linear regres-
sion. For readability, we dropped some constants, such as label noise variance and slightly
generalized the cited result by introducing r, which is taken to be r = 1 in their paper. The
analysis in the paper is modified to get the dependence shown on r in Section B.1.
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weighting is done with respect to the inverse covariance matrix of the distribu-

tion over the task parameter vectors. We show that the maximum likelihood

estimator can be efficiently computed, which implies that the entire procedure

is efficient.

As opposed to the work of Tripuraneni et al. [38], the gap between the lower

and upper bounds is a universal constant, regardless of the other parameters

of the meta-learning task. The matching lower and upper bounds together

provide a precise and fine-grained characterization of the benefits of meta-

learning. In particular, these bounds show that meta-learning can outperform

standard supervise learning. Our algorithm shows how one should combine

datasets of different cardinalities and suggest specific ways of tuning biased

regularized regression based on the noise characteristics of the data and the

task structure. Our lower bounds are based on a technique that we have

not seen before applied in learning theory and which may be of independent

interest on its own.

Second, we consider the case when the covariance matrix of the task pa-

rameter vector distribution is unknown. Note that this case can be seen as a

way of unifying the representation learning approach, in which the parameters

are assumed to lie in a lower-dimensional subspace, with the approach of regu-

larizing towards a common parameter. In particular, if the covariance matrix

is such that d− s of its eigenvalues tend to zero, while the other eigenvalues s

are allowed to take on arbitrarily large values, the problem becomes essentially

the same as the representation learning problem stuided by Du et al. [11] and

Tripuraneni et al. [38].

While we provide no theoretical analysis for this case, we give a detailed

description of how the Expectation-Maximization (EM) algorithm can be used

to tackle this problem. In particular, we show that in this special case the EM

algorithm enjoys an efficient implementation: we show how to implement the

iterative steps in the loop of the EM algorithm in an efficient way. The steps

of this algorithm are given as closed-form expressions, which are both intuitive

and straightforward to implement.

We demonstrate the effectiveness of the resulting procedure on a number
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• Experimentally show that EM attains the lower bound given a sufficient

number of tasks and that it could successfully be applied in represen-

tation learning approach to meta-learning, i.e. that it can learn the

lower-dimensional subspace to which the parameter vectors belong.
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Chapter 2

Related Work

Early generalization analysis in meta-learning [5], [30] focused on bounds on

the generalization gap in a problem-independent setting showcasing the in-

teraction between the number of tasks, the sample size, and the capacity of

the parameter class. Later on, the community started to pay attention to

the problem-dependent setting where the generalization gap is also controlled

by the quantities capturing task relatedness, such as τ 2 or eigenvalues of Σ

featuring in this work. To name a few, [2], [28], [32] gave a PAC-Bayesian

analysis of the generalization gap while [25] revisited an algorithmic stability

analysis for the case of n = 2.

However, as pointed out earlier, the notion of generalization gap might fall

short to fully explain learning abilities of algorithms and to compare them.

To this end, the literature on meta-learning also considered the excess risk

(the gap between the risk and the risk of the best-in-the-class): in particular,

[31] proved upper bounds on the excess risk in multi-task and meta-learning

scenarios when learning with dictionary representations. The rates in the same

setting were recently improved by [11] to O(1/(nm) + 1/m) for excess risk in

expectation. In this work we try to address less studied topic of lower bounds

on the excess risk in a problem-dependent setting.

In the recent years, the meta-learning community dedicated considerable

effort to the design and analysis of meta-learning algorithms able to learn in

a sequential setting. An early notable line of research here is meta-leaning

for non-i.i.d. sequence of tasks investigated in [33], [34]. With the advent
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of the tremendous success of Gradient Descent (GD)-based meta-learning in

deep neural networks [15], the field focused largely on the design of GD-type

algorithms and their analysis, inspired by the online learning with individual

sequences [1], [14], [16], [17], and recently demonstrated optimality of such

algorithms [21], [36]. Although online meta-learning goes beyond the scope of

this work, we note that estimators studied in this work can easily be extended

to sequential setting through rank-one updates of matrix inverses.

Biased regularization revisited in this work has been a topic of interest in

transfer learning for a long time in applications [23], [39] and theory [6], [26].

To the best of our knowledge, in this work we show the first result regarding

optimality of the weighted biased regularization. Biased regularization and the

regression model discussed in this work can be naturally described from the

Bayesian point of view [18]. Indeed, it is well-known that ridge regression with

regularization biased to α arises as Maximum Likelihood Estimator (MLE) of

a regression model with Gaussian-distributed parameters centered at α. The

Bayesian point of view has been, for a long time (see discussion in [5]), a

source of inspiration for design of transfer learning algorithms [35], [37] and

even recent interpretations of GD-based techniques such as MAML [18]. While

algorithms discussed in this work are Bayesian, the analysis we follow is fully

frequentist.

Several works investigated a principled way of setting the bias in biased

regularization [3], [9], [10], [12], such as by averaging parameter estimates of

previously observed or held-out tasks [10]. In this work we propose an optimal

setting of the bias in the considered regression problem based on MLE, and

demonstrate that in order to achieve optimality one has to use a weighted

biased regularization.

Finally, very recently [29] established universal minimax (that is by taking

sup over task distributions) lower bounds for meta learning. In this work we

explore a rather different, problem-dependent characterization of meta-learning

which demands the dependence on task distributions. Beyond linear regression

setting, no-free-lunch results in meta-learning and multi-task learning have also

recently received attention in nonparametric prediction [20].
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Chapter 3

Setup and Preview of the
Results

In the statistical approach to meta-learning [4], [5] the learner observes a

sequence of training tuples D = (Di)
n
i , distributed according to a random

sequence of task distributions (Pi)
n
i , i.e. Di ∼ Pi, and furthermore task distri-

butions are sampled independently from each other from a fixed and unknown

environment distribution P . The focus of this work is linear regression with a

fixed design and therefore each training tupleDi =
(
(xi,1, Yi,1), . . . , (xi,mi

, Yi,mi
)
)

consists of mi fixed training inputs from Rd and corresponding random, real-

valued targets satisfying

Yi,j = θ>
i xi,j + εi,j, (3.1)

where εi,j
iid∼N (0, σ2), θi

iid∼N (α,Σ) ,

where (εi,j)i,j and (θi)i are also independent of each other. Technically, Pi con-

sists of Dirac deltas δxi,j
on inputs and the normal distribution N (θ>i xi,j, σ

2)

on the labels: Pi(x
′
i,j, Yi,j) = δxi,j

(x′
i,j)N (Yi,j|θ>

i xi,j, σ
2). A meta-learning en-

vironment in this setting is thus given by α and the noise parameters (σ2,Σ).

Initially, we will assume that (σ2,Σ) is known, while α (just like (θi)i) is

unknown. The learner observes D and needs to produce a prediction of the

value

Y = θ>
nx+ ε

where ε ∼ N (0, σ2) and where x ∈ Rd is a fixed (non-random) point. Our

theoretical results will trivially extend to the case when the learner needs to
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produce predictions for a sequence of input points or a fixed distribution over

these. The (random) transfer risk of the learner is defined as

L(x) = E

[(
Y − Ŷ

)2 ∣∣∣∣ D
]
.

The setting described above coincides with the standard fixed-design linear

regression model for n = 1 and Σ → 0, for which the behavior of risk is well

understood.

In contrast, the question that meta-learning poses is whether having n > 1,

one can design an predictor which achieves lower risk compared to the standard

model, by exploiting the structure in the environment distribution. Naturally,

this is of a particular interest in the small sample regime when for all tasks,

mi � n, that is when facing scarcity of the training data but having many

tasks. Broadly speaking, this reduces to understanding the behavior of the

risk in terms of the interaction between the number of tasks n, their sample

sizes (m1, . . . ,mn), and the task structure given by the noise parametrization

(σ2,Σ).

3.1 Discussion of the Setup

The considered setup of eq. (3.1) is simple yet we do not see the linearity, or

the normality of the distributions appearing in our model as strong limita-

tions. The linear model could be generalized to any feature map, and possibly

beyond, to the use of kernels. In fact, because we show equivalence to biased

regularized regression and ridge regression is known to be capable of operating

with kernels, we hypothesize that the proposed algorithm could also be made

to work with kernels. Practical adaptation via EM operates with similar for-

mulas (equations for the posterior distribution) at E-step and might also be

used with the kernel trick. Our lower bound in the unbiased posterior mean

estimator case could be generalized to any distributions (Pi)
n
i=1 and P such

that the posterior mean E[Y |D] and variance V[Y |D] are computable and the

marginal distribution over the labels (yi,j)
n,mi

i,j=1 and the estimator of the poste-

rior mean satisfy the two weak regularity conditions of the Cramér-Rao bound.
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If the marginal distribution over the labels belongs to exponential family and

maximum likelihood estimator is unbiased, then we immediately get matching

lower and upper bounds for the of unbiased posterior mean estimation-based

algorithms. For EM algorithm we require the computation of the posterior

distribution over the labels which is easily computable if P is conjugate prior

for the likelihood functions (Pi)
n
i=1 or if P is finite and not very big.

Finally, we emphasize that the setting we study is practical: Fixed design

linear regression is a relevant setting on its own, in statistics, economics and

other fields. We compare different algorithms on the real-world dataset of high

school exam scores where each Pi is a distribution associated with a different

school and (xi,j, Yi,j) are feature map and the score of the student j in the

i-th school respectively. Similar dataset could be obtained, for example, by

considering treatments of patients in different hospitals.

Our setting is also similar to the setting of multi-task learning. The primary

distinction, however, is in the fact that we are looking for how well algorithms

can perform when adapting to a new task as opposed to how well an algorithm

could perform on all n tasks.

3.2 Result 1: Special Cases of the Lower Bounds

Lower bounds. Our first contribution is a problem-dependent lower bound

on the risk of any estimator for the considered regression problem (Theo-

rem 5.1.1), which we elucidate here through a number of special cases.

To make the interpretation of the results easier, assume for now that inputs

are isotropic, meaning that the input covariance matrix of task i is mi

d
I. Fur-

thermore, assume a spherical task structure: Σ = τ 2I. Thus, the coordinates

of the parameter vectors θi are uncorrelated and share the same variance τ 2.

For this specific case, our lower bound implies that for all estimators and x

on the unit sphere,

E[L(x)]− σ2

σ2
≥ Hτ2

16
√
e
· d2σ2

n (τ 2mn + dσ2)2
+

dτ 2

τ 2mn + dσ2

where Hz is the harmonic mean of the sequence {z + dσ2

mi
}ni=1. The first term
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decreases with adding more tasks (n growing) while to decrease the second,

mn needs to increase. In particular, as n→∞, we get

E[L(x)]− σ2

σ2
≥
(
mn

d
+

σ2

τ 2

)−1

(3.2)

where mn

d
+ σ2

τ2
can be interpreted as an effective sample size. Thus, while

having infinitely many previous tasks has the potential to reduce the loss, the

size of this effect is fixed and is related to the noise variance ratios. If τ 2 → 0,

having infinitely many tasks will allow perfect prediction, but for any τ 2 > 0,

there is a limit on how much the data of previous tasks can help. Finally, for

the case n = 1 and τ 2 = 0 we recover the standard lower bound for linear

setting E[L(x)]− σ2 = Ω(dσ2/m1).

Now, when Σ is an arbitrary positive semi-definite (PSD) matrix of rank

s ≤ d, letting λ1 be its largest and λs to be its sth largest eigenvalue, a slightly

loosened version of our bound gives

E[L(x)]− σ2

σ2
≥ Hλs

16
√
e
· sdσ2

n (λ1mn + dσ2)2
+

sλs

λsmn + dσ2
.

The first term scales with sd/n, where sd is the number of parameters in

a matrix that would give the low-dimensional representation and the second

term scales with s/mn for mn � dσ2/λs. Somewhat surprisingly (given that

here Σ is known), these essentially match earlier discovered upper bounds

of Du et al. [11] and Tripuraneni et al. [38] implying that their results are

unimprovable.

3.3 Result 2: Optimality of weighted biased

regularization.

In the second contribution we show two results. First, we show the maximum

likelihood estimator α̂mle of α can be efficiently computed. Second, we show

that that the predictor that predicts Y using Ŷ = x>θ̂n where θ̂n is the

minimizer of the biased, Σ-weighted regularized least-squares problem

min
θ∈Rd

mn∑

j=1

(Yn,j − θ>xn,j)
2 +

σ2

2
‖θ − α̂‖2

Σ−1 ,
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is near-optimal when we set α̂ = α̂mle in the sense that its transfer risk

matches the lower bound that we prove up to a universal constant factor.

Note that this result is established without making specific assumptions on

the data beyond those that are mentioned in the setup.

3.4 Result 3: EM algorithm for unknown co-

variance structure

The lower and matching upper bounds assumed that the covariance structure

(σ2,Σ) is known. As a first step towards addressing the setting when these pa-

rameters are unknown, here we consider the instantiation of the EM algorithm

and show that this leads to a natural algorithm that alternates between refining

the covariance structure and using an assumed covariance structure to refine

parameter estimates. We empirically test the new algorithm on a number of

synthetic and real-world problems. The experimental results suggest that the

EM algorithm, in line with our prior expectation, performs reasonably well. In

particular, under a number of scenarios we find that it is competitive with the

oracle algorithm which is given the task covariance structure. Finally, we reit-

erate that the setting of unknown covariance matrices is appealing as it unifies

the common parameter vector approach with the common lower dimensional

subspace approach to meta-learning.
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Chapter 4

Sufficency of Meta-mean
Prediction

In this section we show that there is no loss of generality in considering pre-

dictors of a special form that predict first the unknown meta-mean. We also

show that biased regularization belongs to this family. We start with some

general remarks and notation. Throughout the rest of the text, for real sym-

metric matrices A and B notation A � B indicates that the matrix A−B is

PSD. For x ∈ Rd and PSD matrix A, a weighted Euclidean norm is defined as

‖x‖A =
√
x>Ax. In what follows, without the loss of generality, we assume

that x 6= 0. We will use matrix notation aggregating inputs, targets, and

parameters over multiple tasks. In particular, let the cumulative sample size

of all tasks be M = m1 + · · · + mn and introduce aggregates for inputs and

targets as follows:

Xi =



x>
i,1
...

x>
i,mi




︸ ︷︷ ︸
mi×d

, Ψ =



X1
...

Xn




︸ ︷︷ ︸
M×d

, Yi =



Yi,1
...

Yi,mi




︸ ︷︷ ︸
mi×1

, Y =



Y1
...
Yn




︸ ︷︷ ︸
M×1

X =



X1 . . . 0
...

. . .
...

0 . . . Xn




︸ ︷︷ ︸
M×nd

, Θ =



θ1
...
θn




︸ ︷︷ ︸
nd×1

.
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4.1 Marginal Distribution over the Labels

The matrix representation allows us to compactly state the regression model

simultaneously over all tasks. In particular, for theM -dimensional noise vector

ε ∼ N (0, σ2I):

Y = XΘ+ ε ⇔ Y ∼ N (Ψα,K) (4.1)

where α is a meta-mean of model (3.1) and K is the marginal covariance

matrix defined as K = X(I ⊗Σ)X> + σ2I where ⊗ stands for a Kronecker

product. Note that the above equivalence comes from a straightforward obser-

vation that a linear map Xi applied to the Gaussian r.v. θi is itself Gaussian

with mean E[Yi] = XiE[θi] = Xiα and covarianceXiΣXT
i +σ2I which follows

from the property that for any random vector ξ with covariance matrix C,

and matrix A of appropriate dimensions, covariance matrix of Aξ is ACA>,

ultimately giving eq. (4.1).

4.2 Estimators for the New Task

Both our lower and upper bounds will be derived from analyzing a family of

estimators that aim to estimate θn through estimating α. As we shall see,

weighted biased regularization is also member of this family.

The said family is motivated by applying the well-known bias-variance de-

composition to the risk of an arbitrary predictor A : supp(P1)×· · ·×supp(Pn)×
Rd → R. Namely, for a given x, random Y = x>θn + ε and random dataset

D

L(x) = E
[
(Y − A(D,x))2

]

= E
[
(E[Y | D]− A(D,x))2 + V[Y | D]

]

where we used the law of total expectation and that for any r.v. ξ, E[ξ2] =

E[ξ]2+V[ξ]. Since the variance term does not depend on A, it follows that the

prediction problem reduces to predicting the posterior mean E[Y | D], which
in our setting (recall that we assume θi ∼ N (α,Σ)), can be given in closed

form:

15



Proposition 4.2.1. Let Y = θ>
nx + ε for ε ∼ N (0, σ2) and some x ∈ Rd.

Then, E[Y | D] = x>T
(
Σ−1α+ 1

σ2X
>
n Yn

)
and V[Y | D] = x>T x+σ2, where

T is defined as T =
(
Σ−1 + 1

σ2X
>
n Xn

)−1
.

Proof. Recall that from Bayes rule it follows that

pn(θn | D) ∝ N (Yn |Xnθn, σ
2I)N (θn |α,Σ) .

Using this, we will derive the following expression for the log-density of the

posterior distribution:

ln pn(θn) = −
∑mn

j=1(x
>
n,jθn − Yn,j)

2

2σ2
− 1

2
(θn −α)>Σ−1(θn −α) + const(θn)

= −
∑mn

j=1(θ
>
nxn,jx

>
n,jθn − 2Yn,jx

>
n,jθn)

2σ2

= −1

2
(θ>

nΣ
−1θn − 2α>Σ−1θn) + const(θn)

= −1

2

(
θ>
n T

−1θn − 2

(
Σ−1α+

1

σ2
X>

n Yn

)>
θn

)
+ const(θn)

= −1

2
(θn − µ)T −1(θn − µ) + const(θn) .

where we introduced the notation:

T =

(
Σ−1 +

1

σ2
X>

n Xn

)−1

,

µ = T

(
Σ−1α+

1

σ2
X>

n Yn

)
.

Since log of the density takes quadratic form, we know that the posterior

distribution is normal with mean µ and covariance T . From this the desired

result follows by using the definition of Y together with standard properties

of expectation and variance.

Since the only unknown parameter here is the meta-mean α, we expect that

good predictors will just estimate the meta-mean and use the above formula.

That is, these predictors take the form (D,x) 7→ x>θ̂n(α(D,x)), where

θ̂n(a) = T

(
Σ−1a+

1

σ2
X>

n Yn

)
a ∈ Rd , (4.2)
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giving our family of predictors. In fact, it also holds that there is no loss in

generality by considering only predictors of the above form. Indeed, given some

predictor A, we can solve A(D,x) = x>θ̂n(α) for α. One solution is given by

α(D,x) = x
xTT Σ−1x

A(D,x) − σ−2ΣX>
n Yn which could easily be verified by

plugging it into the equation x>θ̂n(α(D,x)). Hence, to prove a lower bound

for any regressor A, it will be enough to prove it for algorithms that estimate

α and then plug in into the above formula.

One special estimator of α is the MLE estimator:

α̂mle = (Ψ>K−1Ψ)−1Ψ>K−1Y . (4.3)

The formula for the estimator is obtained analytically as a solution to the

generalized least squares problem thanks to the established equivalence (4.1),

that is α̂mle = arg maxa∈Rd lnN (Y |Ψa,K) = eq. (4.3). Finally, note the

dependence of the estimator in eq. (4.2) on the target noise σ2 and the task

covariance matrix Σ.

4.3 Biased Regularization

Biased regularization is a popular transfer learning technique which commonly

appears in the regularized formulations of the empirical risk minimization

problems, where one aims at minimizing the empirical risk (such as the mean

squared error) while forcing the solution to stay close to some bias variable b.

Here we propose the Weighted Biased Regularized Least Squares (WBRLS)

formulation defined w.r.t. bias b and some PSD matrix Γ:

θ̂brls

n = arg min
θ∈Rd

{
L̂n(θ) +

λ

2
‖θ − b‖2

Γ

}

where L̂n(θ) =
mn∑

j=1

(
Yn,j − θ>xn,j

)2
.

Remarkably, an estimate θ̂brls

n produced by WBRLS is equivalent to estimator

θ̂n(α̂) of eq. (4.2) for the choice of b = α̂,Γ = Σ−1, and λ = σ2. Thus, WBRLS

is a special member of the family chosen in the previous section.
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To see the equivalence, owing to the convenient least-squares formulation,

we observe that

θ̂brls

n =
(
X>

n Xn + λΓ
)−1

(X>
n Yn + λΓb)

and from here the equivalence follows by substitution. A natural question

commonly arising in such formulations is how to set the bias term b. The

reasoning above suggests that a good value is b = α̂mle.

18



Chapter 5

Problem-Dependent Bounds

We now present our main results, which are essentially matching lower and

upper bounds. The proofs of the main results are provided at the end of this

chapter after we state and explain the results. The upper bounds concern the

parameter estimator that uses the MLE estimate of α, while the lower bounds

apply to any method. We also present a (stronger) lower bound that applies

to estimators that are built on unbiased meta-mean estimators α̂. Notably,

the general lower bounds, which apply to any method, differ from this lower

bound only by a universal constant. We also give a high-probability variant

of the same general lower bound.

5.1 Lower Bounds

The following theorem gives a lower bound for the expected loss of of the meta-

learner that predicts Ŷ = x>θ̂n(α̂). As was noted in the previous chapter,

such meta-learner is general enough in that it can agree with the prediction of

any other algorithm A(D,x) for the right choice of α̂.

Theorem 5.1.1. Let x ∈ Rd and consider the linear regression model (3.1).

Let α̂ be any unbiased estimator of α based on D. Then the transfer risk L(x)
of the predictor that predicts Ŷ = x>θ̂n(α̂) satisfies

E[L(x)] ≥ x>Mx+ x>
T x+ σ2 (5.1)

where M = T Σ−1(Ψ>K−1Ψ)−1Σ−1
T .
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Moreover, for all predictors we have

E[L(x)] ≥ x>Mx

16
√
e

+ x>
T x+ σ2. (5.2)

Finally, with probability at least 1− δ, δ ∈ (0, 1) for all predictors we have

L(x) ≥ 1

2
log

(
1

4(1− δ)

)
x>Mx+ x>

T x+ σ2.

Proof. See section 5.4.

Note that the presented bounds are problem-dependent since they depend

on a concerete task structure of the environment characterized by (Σ, σ2).

The following proposition specializes the lower bound and is the basis of the

summary that was given earlier in section 3.2.1

Proposition 5.1.2. Assume the same as in case of eq. (5.2). In addition, let

Σ = τ 2I, suppose that X>
i Xi =

mi

d
I, and let ‖x‖ = 1. Then,

E[L(x)] ≥ Hτ2

16
√
en
· d2σ4

(τ 2mn + dσ2)2
+

dσ2τ 2

τ 2mn + dσ2
+ σ2

where Hz is a harmonic mean of a sequence (z + dσ2

mi
)ni=1.

Moreover, let Σ be a PSD matrix of rank s ≤ d with eigenvalues λ1 ≥
. . . ≥ λs > 0,2 and suppose that ‖x‖2

P>
s Ps

= s/d where Ps = [u1, . . . ,us]
> and

(uj)
s
j=1 are unit length eigenvectors of Σ. Then,

E[L(x)] ≥ Hλs

16
√
en
· sdσ4

(λ1mn + dσ2)2
+

sσ2λs

λsmn + dσ2
+ σ2 .

Proof. See appendix B.2.

This result was discussed in detail in section 3.2.

5.2 Upper Bounds for the Maximum Likelihood-

based Estimator

Next we present a risk identity for θ̂n(α̂
mle), that is the one which employs

unbiased MLE meta-mean estimator α̂mle defined in eq. (4.3). We also give a

high probability upper bound.

1proposition 5.1.2 is for the setting of eq. (5.2), however it is straightforward to give
analogous bounds for other cases.

2When s < d, we replace Σ
−1 with its pseudo-inverse Σ

†.
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Theorem 5.2.1. For the estimator θ̂n(α̂
mle) and for any x ∈ Rd we have

E[L(x)] = x>Mx+x>T x+σ2. Moreover for the same estimator, with prob-

ability at least 1− δ, δ ∈ (0, 1) we have

L(x) ≤ 2 log

(
2

δ

)
x>Mx+ x>

T x+ σ2.

Proof. See section 5.5

This result, together with our lower bound shows that (i) the predictors

based on α̂mle is optimal, with matching constant within the set of predictors

that is based on unbiased estimators of α. It also follows that (ii) apart from

a constant factor of 16
√
e of the transfer risk, this predictor is also optimal

among all predictors.

5.3 Proof of Problem-Dependent Bounds for

the General Case

In this section we provide proofs for the general case — that is when there

are no additional assumptions on the feature covariance matrices X>
i Xi and

covariance matrix Σ. The proofs of the proposition 5.1.2 is deferred to sec-

tion B.2 as it is the proof which is done by my collaborator Ilja Kuzborskij.

We start by establishing the following corollary of the bias-variance de-

composition, proposition 4.2.1 and the form of estimator θ̂n(α̂) defined in

eq. (4.2).

Corollary 5.3.1. For θ̂n(α̂) defined in eq. (4.2), any task mean estimator α̂,

and any x ∈ Rd we have E[L(x)] = E

[(
x>T Σ−1(α− α̂)

)2]
+ x>T x+ σ2.

Proof. Using the law of total expectation and that for a r.v. ξ we have E[ξ2] =

E[ξ]2 + V[ξ],

L(x) = E

[
(Y − θ̂n(α̂)>x)2

]

= E

[(
E[Y | D]− θ̂n(α̂)>x

)2
+ V[Y | D]

]

= E

[(
x>

T Σ−1 (α− α̂)
)2]

+ x>
T x+ σ2
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where identities for E[Y | D] and V[Y | D] come from proposition 4.2.1 and

identity for θ̂n(α̂) is due to (4.2).

5.4 Proof of the Lower Bounds

By corollary 5.3.1 our task reduces to establishing lower bounds on

E

[(
x>

T Σ−1(α− α̂)
)2]

(5.3)

for any choice of estimator α̂, which in combination with corollary 5.3.1 will

prove theorem 5.1.1. In the next section we first prove a lower bound for any

unbiased estimator relying on the Cramér-Rao inequality. In what follows,

in section 5.4.2, we will show a general bound in lemma 5.4.4 valid for any

estimator (possibly biased) using a hypothesis testing technique (see, e.g. [27,

Chap. 13]). Finally, in lemma 5.4.5 we prove a high-probability lower bound

on eq. (5.3).

5.4.1 Lower Bound for Unbiased Estimator α̂

Theorem 5.4.1 (Cramér-Rao inequality). Suppose that α ∈ Rd is an un-

known deterministic parameter with a probability density function f(x |α) and

that α̂ is an unbiased estimator of α. Moreover assume that for all i, j ∈ [d],

x : f(x |α) > 0, ∂2

∂αi∂αj
ln f(x |α) exists and is finite, and ∂2

∂αi∂αj

∫
α̂f(x |α) dx =

∫
α̂
(

∂2

∂αi∂αj
f(x |α)

)
dx.

Then, for the Fisher information matrix defined as

F = −E
[
∇α ln f(X |α)∇α ln f(X |α)>

]

we have

E
[
(α̂− E[α̂])(α̂− E[α̂])>

]
� F−1 .

Lemma 5.4.2. For any unbiased estimator α̂ of α in eq. (4.1) we have

E

[(
x>

T Σ−1(α− α̂)
)2] ≥ x>

T Σ−1(Ψ>KΨ)−1Σ−1
T x. (5.4)
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Proof. Recall that according to the equivalence (4.1) Y ∼ N (Ψα,K) and the

unknown parameter is α. To compute the Fisher information matrix we first

observe that

∇α lnN (Y |Ψα,K) = Ψ>K−1(Y −Ψα)

and so

F = E

[
∇α lnN (Y |Ψα,K)∇α lnN (Y |Ψα,K)>

]

= Ψ>K−1E
[
(Y −Ψα)(Y −Ψα)>

]
K−1Ψ

= Ψ>K−1Ψ.

Thus, by theorem 5.4.1 we have

E
[
(α− α̂)(α− α̂)>

]
� (Ψ>K−1Ψ)−1 .

Finally, left-multiplying by x>T Σ−1 and right-multiplying the above byΣ−1T x

gives us the statement.

5.4.2 Lower Bound for Any Estimator α̂

The proof of is based on the following lemma.

Lemma 5.4.3 ([7]). Let P and Q be probability measures on the same mea-

surable space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp(−DKL(P,Q)), (5.5)

where DKL(P,Q) =
∫
Ω
ln (P (ω)/Q(ω)) dP (ω) denotes Kullback-Leibler diver-

gence between P and Q and Ac = Ω \ A is the complement of A.

Lemma 5.4.4. For any estimator α̂ of α in eq. (4.1) we have

E

[(
x>

T Σ−1(α̂−α)
)2] ≥ x>Mx

16
√
e

.

where M = T Σ−1(Ψ>K−1Ψ)−1Σ−1T .
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Proof. Throughout the proof let q = Σ−1T x. Consider two meta-learning

problems with target distributions P and Q characterized by two means:

αP = 0 and αQ = ∆(Ψ>K−1Ψ)−1q where ∆ > 0 is a free parameter to

be tuned later on. Thus, according to our established equivalence (4.1), in

these two cases targets are generated by respective models P = N (0,K) and

Q = N (∆Ψ(Ψ>K−1Ψ)−1q,K).

Recall our abbreviation M = T Σ−1(Ψ>K−1Ψ)−1Σ−1T . By Markov’s

inequality gives us

EP

[
(α̂>q −α>

P q)
2
]
= EP

[
(α̂>q)2

]
≥ ∆2

4

(
x>Mx

)2
P

(
|α̂>q| ≥ ∆

2
x>Mx

)

EQ

[
(α̂>q −α>

Qq)
2
]
≥ ∆2

4

(
x>Mx

)2
Q

(
|α>

Qq − α̂>q| ≥ ∆

2
x>Mx

)

≥ ∆2

4

(
x>Mx

)2
Q

(
|α̂>q| < ∆

2
x>Mx

)

where the last inequality comes using the fact that |a − b| > |a| − |b| for
a, b ∈ R and observing that α>

Qq = x>Mx. Summing both inequalities above

and applying lemma 5.4.3 we get

EP

[
(α̂>q −α>

P q)
2
]
+ EQ

[
(α̂>q −α>

Qq)
2
]
≥ ∆2

8

(
x>Mx

)2 · exp (−DKL(P,Q))

(a)
=

∆2

8

(
x>Mx

)2 · exp
(
−∆2

2
x>Mx

)

where step (a) follows from KL-divergence between multivariate Gaussians

with the same covariance matrix. Now, using a basic fact that 2max {a, b} ≥
a+ b, we get that for any measure P given by parameter α we have

E
[
(α̂>q −α>q)2

]
≥ ∆2

16

(
x>Mx

)2 · exp
(
−∆2

2
x>Mx

)
.

The statement then follows by tuning ∆2 = (x>Mx)−1.

Now we prove a high-probability version of the just given inequality.

Lemma 5.4.5. For any estimator α̂ of α in eq. (4.1) and any δ ∈ (0, 1) we

have

P

((
x>

T Σ−1(α̂−α)
)2 ≥ ln

(
1

4
· 1

1− δ

)
x>Mx

)
≥ 1− δ .
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Proof. The proof is very similar to the proof of lemma 5.4.4 except we will not

apply Markov’s inequality and focus directly on giving a lower bound the devia-

tion probabilities rather than expectations. Thus, similarly as before introduce

mean parameters αP = 0 and αQ = ∆(Ψ>K−1Ψ)−1q/
(
x>Mx

)
and their as-

sociated probability measures P = N (0,K) andQ = N
(

∆Ψ(Ψ>K−1
Ψ)−1q

x>Mx
,K
)
.

Note that

P

(
|α̂>q| ≥ ∆

2

)
= P

(
|α>

P q − α̂>q| ≥ ∆

2

)
,

Q

(
|α>

Qq − α̂>q| ≥ ∆

2

)
≥ Q

(
|α̂>q| < ∆

2

)

and so by using lemma 5.4.3 we obtain an exponential tail bound

P

(
|α>

P q − α̂>q| ≥ ∆

2

)
+Q

(
|α>

Qq − α̂>q| ≥ ∆

2

)
≥

≥ exp(−DKL(P ||Q)) =
1

2
exp

(
− ∆2

x>Mx

)
.

Setting the r.h.s. in the above to 2(1− δ) where δ is an error probability, and

solving for ∆ gives us tuning

∆2 = 2 ln

(
1

4
· 1

1− δ

)
x>Mx .

Thus, we get

P

((
α>

P q − α̂>q
)2 ≥ 1

2
ln

(
1

4
· 1

1− δ

)
x>Mx

)
+

+Q

((
α>

Qq − α̂>q
)2 ≥ 1

2
ln

(
1

4
· 1

1− δ

)
x>Mx

)
≥ 2(1− δ)

and using the fact that 2max(a, b) ≥ a + b we get that for any probability

measure P given by parameter α we have

P

((
α>

P q − α̂>q
)2 ≥ ln

(
1

4
· 1

1− δ

)
x>Mx

)
≥ 1− δ .

5.5 Proof of the Upper Bounds

Theorem 5.2.1 (restated). For the estimator θ̂n(α̂
mle) and for any x ∈

Rd we have

L(x) = x>Mx+ x>
T x+ σ2.
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Moreover for the same estimator, with probability at least 1 − δ, δ ∈ (0, 1) we

have

L(x) ≤ 2 ln

(
2

δ

)
x>Mx+ x>

T x+ σ2.

Proof. Recall that

α̂mle = (Ψ>K−1Ψ)−1Ψ>K−1Y .

The first result follows from corollary 5.3.1 where we have to give an identity

for

E

[(
x>

T Σ−1(α− α̂mle)
)2]

(5.6)

and the missing piece is a covariance of the estimator α̂mle

E
[
(α− α̂mle)(α− α̂mle)>

]

= (Ψ>K−1Ψ)−1Ψ>K−1Cov(Y ,Y )K−1Ψ(Ψ>K−1Ψ)−1

= (Ψ>K−1Ψ)−1 . (5.7)

To prove the second result we have to give a high probability upper bound

on eq. (5.6).

Let q = Σ−1T x and observe that q>α̂mle is Gaussian (since Y is com-

posed of Gaussian entries) with mean q>α by equivalence (4.1), and covari-

ance (Ψ>K−1Ψ)−1 by eq. (5.7). Then, by Gaussian concentration for any

error probability δ ∈ (0, 1) we have

P

(
(q>α− q>α̂mle)2 ≥ 2q>(Ψ>K−1Ψ)−1q ln

(
2

δ

))
≤ δ

which completes the proof.
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Chapter 6

Learning with Unknown Task
Structure

So far we have assumed that parameters (σ2,Σ) characterizing the structure of

environment are known, which limits the applicability of the predictor (though

does not limit the lower bound). Staying within our framework, a natural idea

is to estimate all the environment parameters E = (α, σ2,Σ) by maximizing

the data marginal log-likelihood

J(D, E ′) = ln

∫

Rnd

p(D |ϑ) dp(ϑ | E ′)

over E ′, where p(D,Θ, E) stands for the joint distribution in the model (3.1).

The above problem is non-convex. Furthermore, while the marginal distri-

bution is available in analytic form by eq. (4.1), in preliminary experiments

direct optimization proved to be numerically unstable. As such, we propose

to use EM procedure [8], which is known to be a reasonable algorithm for

similar settings. In this chapter we introduce EM algorithm for our setting

and subsequently provide derivation of equations for the E- and M-steps of it.

6.1 EM Algorithm for Meta-Learning

EM can be derived as a procedure that maximizes a lower bound on J(D, E ′):
Jensen’s inequality gives us that for any probability measure q on Rnd,

J(D, E ′) ≥
∫

ln

(
p(ϑ,D | E ′)

q(ϑ)

)
dq(ϑ).
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This is then maximized in E ′ and q in an alternating fashion: Letting Êt to
be a parameter estimate at step t, we maximize the lower bound in q for

a fixed E ′ = Êt, and then obtain Êt+1 by maximizing the lower bound in

E ′ for a fixed previously obtained solution in q. Maximization in q gives us

q(ϑ) = p(ϑ | D, Êt), while maximization in E ′ yields

Êt+1 ∈ arg max
E ′

∫
ln (p(ϑ,D | E ′)) dp(ϑ | D, Êt) . (6.1)

After some calculations (cf. section 6.2), this gives algorithm 1. During the

E-step (lines 4-5), the algorithm computes the parameters of the posterior

distribution N (θi | µ̂t,i, T̂ t,i) relying on Êt, and during the M-step (lines 7–

9) it estimates Êt+1 based on (µ̂t,i, T̂ t,i). We propose to detect convergence

(not shown) by checking the relative difference between successive parameter

values.

Algorithm 1 EM procedure to estimate (α, σ2,Σ)

Input: Initial parameter estimates Ê1 = (α̂1, σ̂
2
1, Σ̂1)

Output: Final parameter estimates Êt = (α̂t, σ̂
2
t , Σ̂t)

1: T̂ 1,i ← 0, µ̂1,i ← 0 i ∈ [n]
2: repeat
3: for i = 1, . . . , n do . E-step

4: T̂ t,i ←
(
Σ̂−1

t + σ̂−2
t X>

i Xi

)−1

5: µ̂t,i ← T̂ t,i

(
Σ̂−1

t α̂t + σ̂−2
t X>

i Yi

)

6: end for
7: α̂t ← 1

n

∑n

i=1 µ̂t,i . M-step

8: Σ̂t ← 1
n

∑n

i=1

(
T̂ t,i + (µ̂t,i − α̂t)(µ̂t,i − α̂t)

>
)

9: σ̂2
t ← 1

n

∑n

i=1
1
mi

(
L̂i(µ̂t,i) + tr

(
XiT̂ t,iX

>
i

))

10: t← t+ 1
11: until Convergence (see discussion)

6.2 Derivation of EM Steps

Recall that our goal is to solve

max
E ′

∫
ln (p(ϑ,D | E ′)) dp(ϑ | D, Êt) .
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First, we will focus on the integral. The chain rule readily gives

ln p(Θ,D | E ′) = ln p(Θ | D, E ′) + ln p(Θ | E ′)

Using the same reasoning and notation as in the proof of proposition 4.2.1 we

get
∫

ln p(ϑ | D, E ′) dp(ϑ | D, Êt) =

=
n∑

i=1

mi∑

j=1

(
1

2
ln

(
1

σ2

)
− 1

2σ2

∫
(Yi,j − x>

i,jϑi)
2 dp(ϑi | D, Êt)

)
+ const(E ′)

=
n∑

i=1

mi∑

j=1

(
1

2
ln

(
1

σ2

)
− 1

2σ2
(Yi,j − x>

i,jµi)
2 − x>

i,jT ixi,j

)
+ const(E ′)

using the fact that
∫
(Yi,j −x>

i,jϑi)
2 dp(ϑi | D, Êt) = (Yi,j −x>

i,jµi)
2+x>

i,jT ixi,j

where we took θi ∼ N (µi,T i) according the proof of proposition 4.2.1.

Now we compute the expected log-likelihood of the vector of task param-

eters:
∫

ln p(ϑ | E ′) dp(ϑ | D, Êt) =

=
n

2
ln detΣ−1 − 1

2

n∑

i=1

∫
(ϑi −α)>Σ−1(ϑi −α) dp(ϑi | D, Êt) + const(E ′) .

M-step for σ2. Now, note that since the likelihood of the vector of task

variables Θ does not depend on the parameter σ2 we can solve for σ2 based

on the first order condition of the problem above. Differentiating the above

equation with respect to σ−2 (and ignoring the constant) gives

n∑

i=1

mi∑

j=1

(
σ2 −

(
(Yi,j − x>

i,jµi)
2 + x>

i,jT ixi,j

))
. (6.2)

while setting the derivative to zero gives

σ2 =
1

n

n∑

i=1

1

mi

mi∑

j=1

(
(Yi,j − x>

i,jµi)
2 + x>

i,jT ixi,j

)
. (6.3)

M-step for α. Differentiating the objective w.r.t. α (and ignoring the con-

stant) gives
∑n

i=1 Σ
−1(E[θi]−α) from which we get

α =
n∑

i=1

µi . (6.4)
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M-step for Σ. Differentiating the expected log-likelihood of the vector of

task parameters with respect to A = Σ−1 gives

n∑

i=1

tr(ΣdA)− tr

∫ (
(ϑi −α)(ϑi −α)>dA

)
dp(ϑi | D, Êt) (6.5)

from which we get

Σ =
1

n

n∑

i=1

E[(θi −α)(θi −α)>]. (6.6)

Finally, computing the expectation

n∑

i=1

(
E[θiθ

>
i ]− 2µiα

> +αα>) =
n∑

i=1

(
(µi −α)(µi −α)> + T i

)
(6.7)

shows the update for Σ.
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Chapter 7

Experiments

In this section we present experiments designed to verify three hypotheses: (i)

Under ideal circumstances, the predictor x>θ̂n(α̂
mle) is superior to its alterna-

tives, including biased, but unweighted regression; (ii) The EM-algorithm re-

liably recovers unknown parameters of the environment and is also suitable for

representation learning; (iii) our distribution-dependent lower bound eq. (5.1)

is numerically sharp. In addition, we briefly report on experiments with a

real-world dataset. For all of the experiments we show averages and standard

deviations of the mean test errors computed over 30 independent runs of that

experiment.

7.1 Baselines

We consider two non-meta-learning baselines, that is Linear Regression

(All) — Ordinary Least Squares (OLS) fitted on D\n = (Di)
n−1
i=1 , which

excludes the newly observed task, and Linear Regression (Task) — OLS

fitted on a newly encountered task Dn. Next, we consider meta-learning algo-

rithms. We report performance of the unweighted Biased Regression proce-

dure with bias set to the least squares solution (
∑

i 6=n X
>
i Xi)

−1
∑

i 6=n X
>
i Yi

and λ found by cross-validation (cf. section A.1). Note that the bias and

the regularization coefficient are found on D\n, while Dn is used for the final

fitting. EM Learner is estimator (4.2) with all environment parameters found

by algorithm 1 on D\n. The convergence threshold was set to 10−6 while the

maximum number of iterations was set to 103. Finally, we report numerical
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with (σ2,Σ) = (1, 1
s
BB>). Here, columns of B ∈ Rd×s are sampled from a

uniform distribution on a unit d-sphere. Finally, the number of examples per

previously observed task is set as m1 = ... = mn−1 = 5, the representation

rank is s = 5, the input dimension is d = 100, and the experiment is repeated

30 times. Since we only estimate the subspace matrix we do not use the data

from the test task (Xn,yn).

We report our results in fig. 7.5, plotting the max-correlation between B̂

found by the respective algorithm andB, while increasing the number of tasks.

We see that EM learner considerably outperforms MoM Representation in

terms of the subspace estimation to the degree captured by max-correlation.

While we suspect that the improvement is due to the joint optimization over

the covariance of environment and the mean of the environment (the bias in

biased regularization), the detailed understanding of this effect is left for the

future work.
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Chapter 8

Conclusion

We gave a precise, distribution-dependent characterization of the transfer risk

(matching lower and upper bounds) for meta-learning in the context of linear

regression when the linear regression parameter vectors for the different tasks

are randomly chosen from a normal distribution. While simple, this is a nat-

ural problem to consider. In fact, we found that the variant of this when the

covariance is low-rank, generalizes the “common parameter” and the “common

representation” approaches to meta-learning. For the unknown covariance set-

ting we proposed to use the EM algorithm. Encouraging experimental results

confirmed that this the EM algorithm is highly effective.

While ours is the first work to derive matching, distribution-dependent

lower and upper bounds, much works remains to be done: our approach to

derive meta-learning algorithms based on a probabilistic model should be ap-

plicable more broadly and could lead to further interesting developments in

meta-learning. The most interesting narrower question is to theoretically an-

alyze the EM algorithm. It is known that optimization of the likelihood via

EM algorithm achieves local maximum of the likelihood but unknown whether

it achieves global likelihood in our setting. Additionally, one might want to

study the convergence rate of EM algorithm in our setting. Doing this in the

low-rank setting looks particularly interesting. An additional question for fu-

ture work would be to study the same problem but in random design setting.

Another direction for future work is extending the results from our work to

more broader settings. In section 3.1 it was mentioned that our results could
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potentially be generalized to kernels and different distributions. We hope that

our work will inspire other researchers to do further work in this area.
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learning via transformation functions,” in Conference on Neural Infor-
mation Processing Systems (NIPS), 2017, pp. 574–584.

[13] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online].
Available: http://archive.ics.uci.edu/ml.

[14] A. Fallah, A. Mokhtari, and A. Ozdaglar, “On the convergence theory
of gradient-based model-agnostic meta-learning algorithms,” in Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS),
2020, pp. 1082–1092.

[15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine
Learing (ICML), 2017.

[16] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-learning,”
International Conference on Machine Learing (ICML), 2019.

[17] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil, “Bilevel
programming for hyperparameter optimization and meta-learning,” in
International Conference on Machine Learing (ICML), 2018.

[18] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths, “Recasting
gradient-based meta-learning as hierarchical bayes,” International Con-
ference on Learning Representations (ICLR), 2018.

[19] J. Hamm and D. D. Lee, “Grassmann discriminant analysis: A unify-
ing view on subspace-based learning,” in International Conference on
Machine Learing (ICML), 2008.

[20] S. Hanneke and S. Kpotufe, A no-free-lunch theorem for multi-task learn-
ing, arXiv:2006.15785, 2020.

[21] M. Khodak, M.-F. Balcan, and A. Talwalkar, “Provable guarantees for
gradient-based meta-learning,” in International Conference on Machine
Learing (ICML), 2019, pp. 424–433.

[22] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-
based meta-learning methods,” Advances in Neural Information Process-
ing Systems, vol. 32, pp. 5917–5928, 2019.

[23] W. Kienzle and K. Chellapilla, “Personalized handwriting recognition via
biased regularization,” in International Conference on Machine Learing
(ICML), 2006, pp. 457–464.

[24] M. Konobeev, I. Kuzborskij, and C. Szepesvári, “On optimality of meta-
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Appendix A

Experimental Details

A.1 Selecting λ in Biased Regression

The parameter λ is selected via random search in the following way. For each

of the 50 samples of λ from log-uniform distribution on interval [0; 100] we

perform the following procedure to estimate the risk L̂. Firstly, we split the

training tasks intoK = 10 groups S1, . . . ,SK of (approximately) equal size and

compute the estimates α̂k using the data S\k from all of the groups excluding

the group k: S\k := ∪i 6=kSi. For each of the estimated values α̂k we perform

adaptation to and testing on the tasks in the group Sk using the given value of

λ. We split the samples of each task data Di ∈ Sk randomly into adaptation

and test sets 10 times each time such that the size of adaptation set is close

to the size of adaptation sets used with the actual test data. For each of the

splits we compute an estimate of the parameter vector θ̂k,i,l where k is the

index of the group which was not used to estimate α̂k, i is the index of a task

data Di ∈ Sk, l is the index of a random split of the samples in that task into

adaptation and test sets. With this parameter vector and using the test set

of the task Di ∈ Sk we can also estimate the loss L̂k,i,l after which all the loss

values are averaged:

L̂ =
1

K

K∑

k=1

1

|S\k|
∑

i:Di∈S\k

1

10

10∑

l=1

L̂k,i,l.

At the end we select the value of λ which lead to the smallest value of L̂ using

this cross-validation procedure.
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Appendix B

Supplementary Statements

B.1 Generalization of the Lower Bound of Lu-

cas et al. [29]

Consider PLR to be the set of distributions over the set of labels Y with the

space of input-output pairs Z = X × Y :

PLR = {N (Xθ, σ2I) : θ ∈ B2(r),X ∈ Rm×d},

where B2(r) = {x ∈ Rd : ‖x‖2 ≤ r} is the 2-norm ball of radius r and define

the minimax risk R∗
PLR

to be

R∗
PLR

= inf
θ̂

sup
P1,...,Pn∈PLR

ES1:n−1∼Pm
1:n,

Sn∼Pm′
n

[
‖θ̂S1:n−1

(Sn)− θPn
‖22
]
,

where θPn
is the result of a mapping PLR → Ω where Ω is some metric space

and θ̂ is a two-stage estimator of θPn
that maps S1:n−1 7→ θ̂S1:n−1

which is itself

a mapping from Zm′
to Ω.

Proposition B.1.1. With the definitions as above and for d ≥ 4, r ≥ 1 we

have

R∗
PLR

= Ω̃

(
d

r2(2r)−dnm+m′

)
.

Proof. The proof consists of two steps, we first construct a 2δ-packing of PLR.

Then we upper bound the two KL divergence between two distributions of this

packing and use Corollary 2 from [29].
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The maximal packing number J(δ) with packing radius δ for the 2-norm

ball of radius r could be bounded by

(r
δ

)d
≤ J(δ) ≤

(
1 +

2r

δ

)d

.

Through this bound, by setting δ = 1/2 we can get (2r)d ≤ J(δ) ≤ (1 + 4r)d.

Let the maximal packing set with packing radius 1/2 be denoted by V and

define θi = 4δvi for all vi ∈ V . Then for all i 6= j we have

‖θi − θj‖2 = 4δ‖vi − vj‖2 ≥ 2δ.

Next, we bound the KL divergences:

DKL(Pi, Pj) =
1

2σ2
‖Xiθi −Xjθj‖22

=
1

2σ2

(
θ>
i X

>
i Xiθi + θ>

j X
>
j Xjθj − 2θ>

i XiXjθj

)

≤ 1

2σ2

(
niγ

2
i ‖θi‖22 + njγ

2
j ‖θj‖22 − 2θ>

i X
>
i Xjθj

)
,

where γi = supθ
‖Xiθi‖2√
ni‖θi‖2 . Denote n = maxk nk and γ = maxk γk, then

DKL(Pi, Pj) ≤
nγ2

2σ2

(
‖θi‖22 + ‖θj‖22 −

2

nγ2
θ>
i X

>
i Xjθi

)

≤ nγ2

2σ2

(
‖θi‖22 + ‖θj‖22 + 2‖θi‖‖θj‖

)

=
nγ2

2σ2
(‖θi‖2 + ‖θj‖2)2 ≤

32nγ2δ2r2

σ2
,

where the second line is derived using the Cauchy-Schwarz inequality and the

final inequality uses ‖θi‖ = 4δ‖vi‖ ≤ 4δr.

Next, using Corollary 2 from [29] we get

R∗
PLR
≥ δ2

(
1− mn((2r)d − 1)−1 +m′)32γ2δ2r2/σ2 + 1

d(1 + log2(r))

)
,

and choosing

δ2 =
d(1 + log2(r))σ

2

64γ2r2(mn(2r)d − 1)−1 +m′

leads to

R∗
PLR
≥ d(1 + log2(r))σ

2

64γ2δ2r2((2r)d − 1)−1 +m′

(
1− d(1 + log2(r))/2 + 1

d(1 + log2(r))

)

≥ d(1 + log2(r))σ
2

256γ2δ2r2((2r)d − 1)−1 + 4m′ ,

where to get the last inequality we used the facts that d ≥ 4 and r ≥ 1.
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B.2 Special Cases of Our Lower Bounds

Proposition B.2.1. For M (see eq. (5.1)) we have

M = σ4 ·
(
ΣX>

n Xn + σ2I
)−1

A−1
(
ΣX>

n Xn + σ2I
)−1

where we denote

A =
n∑

i=1

X>
i (XiΣX>

i + σ2I)−1Xi .

Proof. Recall that

M = T Σ−1
(
Ψ>K−1Ψ

)−1
Σ−1

T

and observe that

K−1 =




(X1ΣX>
1 + σ2I)−1 0 . . . 0
0 (X2ΣX>

2 + σ2I)−1 . . . 0
...

. . .
...

0 0 . . . (XnΣX>
n + σ2I)−1




which in turn implies

Ψ>K−1Ψ =
n∑

i=1

X>
i (XiΣX>

i + σ2I)−1Xi .

On the other hand,

T Σ−1 =

(
Σ−1 +

1

σ2
X>

n Xn

)−1

Σ−1

= σ2
(
σ2I +ΣX>

n Xn

)−1
.

Combining the above gives the statement.

Lemma B.2.2. In the following assume that X>
i Xi =

mi

d
I for all i. Let λj(Σ)

be the jth eigenvalue of Σ. Then,

λj(M ) = σ4 · d2

(mnλj(Σ) + dσ2)2
·
HM

(
λj(Σ) + dσ2

mi

)n
i=1

n

where HM(zi)
n
i=1 denotes the harmonic mean of sequence (zi)

n
i=1. Moreover,

λj(T ) =
dσ2λj(Σ)

dσ2 +mnλj(Σ)
.

Finally, the eigenvectors of M and T coincide with the eigenvectors of Σ.
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Proof. We first characterize eigenvalues of matrix M . By proposition B.2.1,

M = σ4 ·
(
ΣX>

n Xn + σ2I
)−1

A−1
(
ΣX>

n Xn + σ2I
)−1

.

We start withA−1, and by the spectral theorem, Σ = UΛU> for some unitary

U and diagonal Λ:

A−1 =

(
n∑

i=1

X>
i (XiΣX>

i + σ2I)−1Xi

)−1

=

(
n∑

i=1

(ΣX>
i Xi + σ2I)−1X>

i Xi

)−1

=

(
n∑

i=1

(
Σ · mi

d
+ σ2I

)−1 mi

d

)−1

=

(
n∑

i=1

(
UΛU> · mi

d
+ σ2I

)−1 mi

d

)−1

= U

(
n∑

i=1

(
Λ+

dσ2

mi

· I
)−1

)−1

U> .

Now,

(
ΣX>

n Xn + σ2I
)−1

=
(
Σ · mn

d
+ σ2I

)−1

=
(
UΛU> · mn

d
+ σ2I

)−1

= U
(
Λ · mn

d
+ σ2I

)−1

U>.

Thus,

M = U

((
Λ · mn

d
+ σ2I

)2 n∑

i=1

(
Λ+

dσ2

mi

)−1
)−1

U> .

and moreover the jth eigenvalue of M is

λj(M ) =
1

(
mn

d
λj(Σ) + σ2

)2 ·
1∑n

i=1
1

λj(Σ)+ dσ2

mi

=
1

(
mn

d
λj(Σ) + σ2

)2 ·
HM

(
λj(Σ) + dσ2

mi

)n
i=1

n

where recall that HM(zi)
n
i=1 denotes the harmonic mean of sequence (zi)

n
i=1.
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Using the same arguments as above

T =

(
Σ−1 +

1

σ2
X>

n Xn

)−1

=
(
UΛ−1U> +

mn

dσ2

)−1

and so

λj(T ) =
1

1
λj(Σ)

+ mn

dσ2

=
dσ2λj(Σ)

dσ2 +mnλj(Σ)
.

Finally, in both cases of M and T we observe that their eigenvectors are

eigenvectors of Σ.

Proposition 5.1.2 (restated). In the following assume that X>
i Xi =

mi

d
I

for all i. For Σ = τ 2I, any x ∈ Rd, and any c > 0,

cx>Mx+ x>
T x+ σ2 = c · Hτ2

n
· d2σ4

(τ 2mn + dσ2)2
· ‖x‖2 + dσ2τ 2

τ 2mn + dσ2
· ‖x‖2 + σ2 .

where Hτ2 is a harmonic mean of the sequence
(
τ 2 + dσ2

mi

)n
i=1

.

Moreover, let Σ be a PSD matrix of rank s ≤ d with eigenvalues λ1 ≥ . . . ≥
λs > 0. Then for any x ∈ Rd and any c > 0,

cx>Mx+ x>
T x+ σ2 ≥ c · Hλs

n
· d2σ4

(λ1mn + dσ2)2
· ‖x‖2P>

s Ps

+
dσ2λs

λsmn + dσ2
· ‖x‖2P>

s Ps
+ σ2

where Ps = [u1, . . . ,us]
> and (uj)

s
j=1 are eigenvectors of Σ.

Proof. Recalling that by proposition B.2.1,

M = σ4 ·
(
ΣX>

n Xn + σ2I
)−1

A−1
(
ΣX>

n Xn + σ2I
)−1

.

and using lemma B.2.2 with Σ = τ 2I we get the first result.

Now we turn to the low-rank case. We start by considering a PSD matrix

Σε with s eigenvalues λ1 ≥ . . . ≥ λs > 0 and remaining d−s are ε > 0. Denote

also by Mε, T ε matrices w.r.t. Σε. The idea is to lower bound x>Mεx and

x>T εx and then analyze a limiting behavior as ε→ 0.

48



By lemma B.2.2, Mε, T ε, and Σε share the same eigenvectors u1, . . . ,us,

and so

cx>Mεx+ x>
T εx =

= c
d∑

j=1

(
u>

j x
)2

λj(Mε) +
d∑

j=1

(
u>

j x
)2

λj(T ε)

= c ·
s∑

j=1

Hλj

n
· σ4

(
λj

mn

d
+ σ2

)2
(
u>

j x
)2

+ c · Hε

n
· σ4

(
εmn

d
+ σ2

)2
︸ ︷︷ ︸

(a)

(
d∑

j=s+1

(
u>

j x
)2
)

+
s∑

j=1

σ2λj

λj
mn

d
+ σ2

(
u>

j x
)2

+
σ2ε

εmn

d
+ σ2

(
d∑

j=s+1

(
u>

j x
)2
)

.

Now,

lim
ε→0

(
cx>Mεx+ x>

T εx
)

= c ·
s∑

j=1

Hλj

n
· σ4

(
λj

mn

d
+ σ2

)2
(
u>

j x
)2

+
dσ2

M

d∑

j=s+1

(
u>

j x
)2

+
s∑

j=1

σ2λj

λj
mn

d
+ σ2

(
u>

j x
)2

≥ c · Hλs

n
· σ4

(
λ1

mn

d
+ σ2

)2
s∑

j=1

(
u>

j x
)2

+
σ2λs

λs
mn

d
+ σ2

s∑

j=1

(
u>

j x
)2

where we note that the limit of term (a) is handled as

lim
ε→0

1∑n

i=1
1

ε+ dσ2

mi

· σ4

(
εmn

d
+ σ2

)2 =
dσ2

M
≥ 0 .
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