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Abstract

We study the baroclinic dynamics of buoyancy-driven flows over a
sloping bottom, as described by a two layer Shallow Water model derived in
Swaters (1993). The model filters out barotropic instabilities and, in contrast
with traditional two-layer Quasigeostrophic models, allows for O(1) variations
in the upper layer thickness. It also couples the two layers, unlike models
based on the reduced-gravity ansatz. The resulting system of partial
differential equations allows us to study the dominant physical processes and,

though highly nonlinear, is still amenable to analytical investigation.

First, we derive the Shallow Water equations and the model itself.
Then, conditions for linear stability/instability are demonstrated and, in
particular, the role of bottom topography is elucidated. Next, we derive an
amplitude equation to examine the growth of perturbations in a marginally
unstable, highly idealized flow. It is found that such perturbations oscillate in
time due to the interaction of linear and nonlinear terms, but under certain
conditions, may also exhibit explosive growth. The latter situation

corresponds to rapid evolution of the mean flow. A modified, space-dependent



amplitude equation is also derived, which allows soliton solutions.

Various numerical experiments were performed by integrating the
mode] equations forward in time using a finite difference scheme. The results
of linear theory were easily verified, however the search for weakly-nonlinear
oscillations proved problematic due to a peculiar numerical instability. Some
evidence of weakly-nonlinear interaction was found. Encouragingly,
experiments involving very realistic isolated and coupled front profiles yielded
meandering, warm-core and cold-core vortex shedding, as well as vortex

merging/splitting.
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Chapter 1

Introduction

Buoyancy-driven surface currents play a major role in ocean circulation. These
“rivers” in the ocean can exist wherever a thin layer of fluid overlies a thicker
laver with greater density. The density difference may be a manifestation of
differences in temperature or salinity. or both. and while the density gradient is
never discontinuous. it is often quite sharp. When isopycnals (surfaces of constant
density) intersect the surface. the interfacial region is called a front. If the spatial
extent is large enough. and the time scale on which motion takes place is long
enough. effects due to the rotation of the earth become important. In fact, when
these effects are roughly equal to buoyancy stresses, the flow is in geostrophic
balance and it is this relationship which. to a first approximation. determines the
motion and drives the current.

Many of the world’s currents are close to geostrophic balance (Robinson, 1983).
Examples include the Brazil (South Atlantic) Current. the Kuroshio (North Pa-
cific) Current. the Agulhas (Indian Ocean) Current. as well as the archetypal Guif
Stream off the eastern coast of North America. All of these are western boundary
currents whose courses run, at least in part, through the shallow water atop a

continental shelf. A buoyancy current may also form at the freshwater overflow



from a river (e.g. Mertz et al., 1989 and 1990) or where cold. fresh water from
the Arctic meets the ambient ocean to the south (Griffiths & Linden. 1981).

A great deal of attention has, in recent years. been focused on departures
from geostrophy and the apparent instability of such flows to perturbations (e.g.
Griffiths & Linden. 1982. Olson & Evans, 1986, Ghil & Paldor, 1994). It is these
effects which give rise to interesting and significant features, most noticeably in
but not limited to. the Gulf Stream. For example, as it leaves the continental
shelf off Cape Hatteras. N.C., this intense jet begins to meander and shed large,
stable vortices (Bush et al., 1995). The Gulf Stream lies at the boundary between
the warm waters of the Sargasso Sea and the colder. denser water of the ambient
ocean. A warm vortex. composed of Sargasso water. will propagate north into the
slope water region. while a cold vortex will move into the Sargasso (Verzicco et
al.. 1997). In this way. eddies are able to transport the physical. biological and
chemical components of the water across the Stream (Chassignet & Cushman-
Roisin. 1991). Indeed. eddies are ubiquitous along the whole length of the Gulf
Stream. as well as other surface currents.

Many models. mathematical and numerical. have been proposed in order to
understand the basic instability mechanism and the subsequent evolution of the
flow. A considerable amount of progress has been made using layver models. which
assume that an interface between two layers is in fact marked by a density discon-
tinuity. Some results have been obtained using Quasigeostrophic theory which, in
a two-layer context, requires that interfacial variations be small in relation to the
overall depth of the upper layer (see, for example, Flierl, 1984). The stipulation
that isopycnal deflections are small, however, explicitly prevents the possibility of
a true front (which outcrops on the surface, as described previously).

The frontal model introduced by Griffiths et al. (1982). (hereafter referred
to as “GKS”) and the one introduced by Cushman-Roisin (1986) both relied on



the approximation of an infinitely deep lower layer whose motion does not feed
back into the upper layer. These so-called “reduced gravity” models. however.
effectively decoupled the dynamics of the two layers, an approximation which
may not be valid, especially if the length scale is somewhat larger than the Rossby
deformation radius (Chassignet & Cushman-Roisin, 1991). GKS also reported the
existence of an instability unaccounted for by their theory. and possibly resulting
from the influence of the lower layer.

Swaters (1993) has proposed a two-layer model based on an intermediate length
scaling which does allow isopycnal outcroppings and couples the two layers. It fo-
cuses on baroclinic instability. known to play a major role in the evolution of
buoyancy fronts (Robinson. 1983. Griffiths & Linden. 1981). Baroclinic insta-
bility is the release of potential energy stored in density gradients within the
fluid. which inevitably leads to horizontal motion. through a process called vortex
tube stretching (Cushman-Roisin. 1994). This is fundamentally different from
barotropic instability. which relies on the release of kinetic energy only. as is usu-
ally observed in flows with horizontal shear. While the lower layer in this model is
quasigeostrophic. the upper layer is not. The velocities in the lower layer are small
compared to the upper layer. Interaction takes place via vortex tube stretching.
and the model also includes the effect of bottom topography.

The governing equations are derived in an asymptotic expansion of the ap-
propriately scaled shallow water equations. High frequency waves and barotropic
instability are filtered out through an appropriate choice of velocity scalings and
the rigid-lid approximation. both to be discussed later. It should be pointed out
that a similar model, with no bottom topography, was derived by Cushman-Roisin
(1992) in the context of a midlatitude 3-plane. The Swaters (1993) paper discusses
the relevant linear stability problem and presents a comprehensive analysis of sta-

bility characteristics within the framework of a Hamiltonian formulation. Karsten



& Swaters (1996) have extended the Hamiltonian analysis.

The goal of this thesis is two-fold. We develop a finite amplitude theory for a
wedge-shaped front. building on the earlier linear work. and we motivate further
analysis using a series of numerical experiments. The results of computational
integration of the governing equations have been very encouraging. Meandering,
formation of warm and cold core eddies. mean flow - eddy interaction, eddy merg-
ing and splitting have all been observed. In fact. it is suggested that the reader
can start with Section 6.5 for inspiration. before tackling the main body of the
thesis. The finite amplitude analysis examines the development of a perturbation
on a marginally unstable flow, taking into account weakly-nonlinear interactions.
It is found that the equation which governs the behavior of the perturbation ad-
mits oscillatory solutions. as well as solutions which become unbounded in finite
time. A more general equation is also derived (by including spatial dependence)
which is known to allow soliton solutions.

The advantage of the Swaters model seems to be a concise formulation which
nevertheless captures the essential physical processes involved in the evolution of
buoyancy fronts over sloping topography. Results of linear and weakly nonlinear
theories as well as numerical simulations up to this point are very much in keeping
with real-world observations. laboratory experiments and primitive equation nu-
merical models. Research contained in this thesis marks the end of the first stage
of model analysis. The ideas presented here can be extended and investigated in

more detail.



Chapter 2

Derivation of the Governing

Equations

2.1 Introduction

The essential equations governing fluid flow are the Navier-Stokes (conservation
of momentum) equations and the Continuity (conservation of mass) equation.
However this system contains more unknowns than equations. and in order to
close it. additional relations or assumptions must be introduced. In this form, the
primitive set of equations has no known general solution and is all but impossible
to analyze theoretically in any direct manner. Luckily. by carefully considering
the relative magnitudes of all the terms. and focusing on one or two aspects of
the particular physical problem at hand. we can arrive at a reduced system which
does lend itself to analytical treatment. In this chapter we will derive our model
with the aid of scaling arguments and asymptotic expansions. Large-scale motion
in the oceans is, for the most part, horizontal and the fluid is stably stratified.
This will lead us to the Shallow Water equations, often the first step in model

derivation.



Scalings. appropriate for buoyancy-driven fronts, will ensure that geostrophic
balance is maintained to leading order. and that high frequency (superinertial)
waves are filtered out. Next. we will expand all variables in powers of a small
parameter and systematically match terms of similar magnitude. generating a se-
ries of problems. Finally. we must consider a sufficient number of these problems
to obtain equations which involve only the leading order terms in the asymptotic
expansions. This will determine the leading order behavior of the unknown quan-
tities. For a more detailed discussion of asymptotic methods we refer the reader
to the book by Zauderer (1989). In the last section of the chapter we present an

alternate derivation of the model using the concept of Potential Vorticity (PV).

2.2 The Two-Layer Shallow Water Equations

Our starting point will be the inviscid form of the Navier-Stokes (i.e. momentum)
equations for a rotating. incompressible fluid of constant density. Unlike gases,
water is not compressible to any significant degree. and viscosity may be neglected
on large scales. except perhaps at boundaries. If we consider fronts which are
located far enough away from any boundary. then this last assumption is also
justified. The equations for conservation of momentum and mass. respectively,
can be written

ut+(u-V)u+f(kxu)=—%Vp—kg. (2.1)
V. -u=0. (2.2)

where u(z.y.z.t) = (u,v,w) is the fluid velocity with u, v. and w the along-
channel. cross-channel and vertical velocities respectively, p is the fluid density,
p(z.y, z,t) is the total pressure, V = (8;,8,,8.) is the usual gradient operator,

and k is the unit vector normal to the earth’s surface. The rotation of the earth is



taken into account by the Coriolis parameter f. We will assume that the spatial
extent of the phenomena to be studied is small enough that f will not vary greatly
from its value at some reference latitude. 8,. For the oceans, it is usually adequate
that the horizontal scale is less than about 100 km (Pond & Pickard. 1983). This
is certainly true for the mesoscale phenomena we wish to study, we thus take f
to be the constant f, = 2Qsin(§,). where Q = 27 rad / day. This is known as the
f-plane approximation.

Now. the typical depth of the ocean is 5 km. Moreover, on continental shelves,
where we are likely to find surface currents. the oceanic depth is even less. The
Shallow Water equations are obtained by arguing that the vertical scale of motion

is much smaller than the horizontal. We express this statement as

D=>-<«1. (2.3)

)

where L is the typical horizontal scale. H is the vertical scale. and D is the aspect
ratio.

We can rewrite the continuity equation (2.2) with appropriate scales under-
neath the terms. where U’ and 11" represent the typical horizontal and vertical

velocity scales. respectively:

up + vy +w, = 0. (2.4)
v v w
L L H

It is certainly possible that W/H « U/L or W/H ~ U/L to achieve a balance
between these terms. However, it is not possible that W/H > U/L since the sum
of the first two terms is still O(U/L) and there is nothing to balance with the

third term. Effectively. U/L is an upper bound for the scale of w,. Rearranging,



we may write

W < O(UH/L). (2.5)

Let us now examine the momentum equations (2.1) in component form, where

again. the appropriate scales are written underneath:

1
U, + ULz + VUy + WU, — for = —;p,. (2.6)
u vv vu uw fU
T L L H

1
vy + Uy + vy, + wre + fou = —;py. (2.7)
v v U Uw ]
T 7T  # I*

1

Wy + UWy + Wy + Ww; = —~p—p: -9. (2.8)

w Uuw Uvw Www
r L L H

If we take T to be simply the ratio of the typical length scale L over the
horizontal velocity U (i.e. an advective time scale). then all the terms on the left

hiand side of (2.8) are of the same magnitude. which then implies

1 HU?
—;P; -—g= O( L2 ) (29)

The right-hand side of (2.9) is a very small quantity for the mid ocean. Even
considering the rather large values H ~ 5 km, U ~~ 0.5 m/s and the modest length
scale L ~ 50 km. we conclude that the right hand side is O(107%). Therefore, the

fluid is hydrostatic to a very good approximation. i.e.

p: = —pg. (2.10)



One may now argue that, since p is simply a linear function of z. its gradients
in (2.6) and (2.7) will be independent of z. It is reasonable to expect that, if u and
i are initially independent of z. they will remain this way indefinitely. We will
assume this is the case in our investigation. Furthermore, the vertical velocity w
is small. For example. typical scales for the Gulf Stream are U =1 m/s, L = 10°
m. H = 103 m (Pond & Pickard. 1983), which sets the upper bound for w at
about 107" m/s. These arguments all suggest that the fluid motion is essentially
two-dimensional. which is the main tenet of Shallow Water theory.

Because surface undulations of the fluid will be small compared to the vertical
extent of the atmosphere. we can take the pressure at the surface to be essentially
constant. In fact we can scale the pressure so that this constant is zero. In our
model the upper laver thickness and the deformation of the fluid surface will be
denoted by A and 7. respectively. The assumption of constant density within each
layer allows for a simple relationship between pressure and depth. Exploiting the
hyvdrostatic condition (2.10). the pressure on a fluid parcel at vertical position =
will be equal to the weight of water directly above it. Using Figure 2.1 we obtain

the following expressions for the pressure in the upper and lower layer respectively

p = pg(H+n-1z) (2.11)

= pg(H ~- z) + p1gn.

p2 = pglh+n) + pog(H — h - z) (2.12)

= p2g(H - Z) +p-27

where p;gn and p; = pi1gn — g(p2 — p1)h represent the dynamic pressures.



!

Figure 2.1: Model Geometry
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We now transform the mass conservation condition (2.4) into a statement
of mass conservation appropriate for shallow water. This is accomplished by
requiring that a fluid parcel on the surface remains there for all time. and similarly
for a parcel at the interface between the two layers. Here we will use the operator
D/Dt = 0, +u -V . known as the total derivative (or material derivative), where
u refers to the velocity in the layer under consideration. This derivative is a rate
of change. following the fluid motion. Throughout the thesis the coordinates r
and y will refer to the along-channel and cross-channel coordinates respectively.
while z will measure vertical distance. We consider y to increase in the off-shore
direction. and z to increase upward. Also. from this point on. V will represent
the two-dimensional gradient operator (J..d,). The above kinematic conditions

for layer one are stated as follows

D . _
wy =E(\H+r;) on :=H+n (2.13)
w—ﬂ(H—h) :=H-h (2.14)
I—Dt on = . .

However because we wish to examine situations where n < H . we will approx-
imate H + n as H. imposing the rigid lid approrimation. This effectively filters
out all surface gravity waves. which are superinertial (and barotropic) in nature.
Then (2.13) reduces to

w; =0 on :=H. (2.15)

We then integrate the continuity equation (2.4) in z (recall that u. = v, = 0) over

the thickness of the upper layer. to obtain.

(u1z + vyy)[H = (H = h)]+ wy(z.y. H.t) — wi(z.y. H = h.t) = 0. (2.16)

11



Exploiting (2.14) and (2.15).

(V- w)h + he +u,-Vh = 0. (2.17)

Simplifying,
he + V-(u;h) =0. (2.18)

The kinematic condition for layer two on the interface is analogous to above.
Meanwhile on the bottom. we require that the component of the flow perpen-
dicular to the bottom is zero. For the purposes of this research, we will assume
a linearly sloping bottom with slope s. as depicted in Figure 2.1. It should be
emphasized however. that the model derivation can account for general bottom
topography if that is desired. Defining n to be the vector (0.s.1). normal to the

bottom surface. we state these conditions as follows

= H-h (2.20)

(]

D
Wy = E(H —h) on

Once again. integrating (2.4). this time over the thickness of the lower laver.
(s, + o) [H — h — (—sy)] + wa(z. y. H — h.t) — wa(z.y. —sy.t) = 0. (2.21)
Substituting in (2.19) and (2.20),
(V-w)(H-h+sy)—h —uyVh+svy =0. (2.22)

Simplifying.
he + V-[ua(h — sy — H)] = 0. (2.23)



Let us now write down all the equations we have derived. We will use asterisks

here to emphasize that we are dealing with dimensional variables.

g, + (U] V)l + folk x u}) = —gVn". (2.24)
hy + V"-(ulh") = 0. (2.25)
3+ (43 V") + folle x ) = =V, (2.26)
h + V- ui(h” — s*y" — H)] = 0. (2.27)
where
P> = p1gn” — pag'h”. (2.28)

and g/ = g(p2—py)/p2 is called the reduced gravity. We now have a closed system of
seven equations (two of the above equations are in vector form) in seven unknowns

ui. v{. h*. u3. v3. p5 and n*.

2.3 Scalings for the variables

Our dimensional variables should now be scaled appropriately (see Swaters. 1993).
so that all nondimensional variables are O(1). While this step is not conceptually
essential. it does make the derivation more straightforward. We first introduce a

parameter é. which will be of prime importance,

(2.29)

| =

where the constant h is a representative thickness of the upper layer and H is a

scale for the total fluid depth.

13



Horizontal spatial coordinates will be scaled by
(z°,y7) = L(z.y). (2.30)

where L =6 3R .and R = \/g’_f-z/ fo 1s the internal Rossby radius of deformation
for the upper layer. Typically. we expect 5~% to be somewhat larger than unity,
which implies that we are considering spatial scales slightly larger than the inter-
nal Rossby radius. This is not physically unreasonable. as was observed in lab
experiments by Griffiths & Linden (1982). More importantly. this scaling ensures
leading order geostrophy (i.e. a balance between Coriolis terms and the pressure
gradient) in the final equations.

The scaling for time will be subinertial. i.e.

t
fob

t* =

(2.31)

This means we are only concerned with processes which occur on longer time
scales than the earth’s rotation. Moreover. these time scales will become longer
still. as the ratio & decreases and the lower laver becomes less important. We scale

the thickness of the upper layer according to

h* = hh, (2.32)

where A is simply 6 H.

To obtain a scaling for u,; we argue as follows. In this model the dynamics of the
lower layer are driven through vortez tube stretching (and necessarily. contraction).
Qualitatively. the strength of this process is measured by the parameter & times
the ambient vorticity f,. We require that the relative vorticity of layer two,

Uz. — Ug.. is roughly in balance with vortex tube stretching. Mathematically, the
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scale of relative vorticity U/L must equal §f,. Solving for the velocity scale U,
we conclude that

u; =0 f,Lu,. (2.33)

The scaling for u, is chosen in order that the model includes the advection of

upper layer vorticity while filtering out higher frequency gravity waves,
ul =61 f,Lu;. (2.34)

Because we require that the flow be geostrophic to leading order, the scalings

for n and p are necessarily

n. (2.35)
B5 = p2b(foL)’p.
We also introduce a scaled slope parameter through

s = %s. (2.36)

The effect of this scaling may be easily verified a posteriori. by examining the final
equation for the lower layer in its PV form (2.83). We shall see that the bottom
slope term. sy. will be the same order of magnitude as the relative vorticity. This

is indeed the situation we wish to study.
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2.4 Governing Equations

Substituting the above scalings into the equations (2.24) through (2.28) we obtain

buy, + 5%(u1-V)u1 +kxu +Vnp=0. (2.37)
§ih, + V-(uyh) = 0. (2.38)

Sug, + 6(uy-Vius + k x ug + Vpa = 0. (2.39)
V - uy = 6h, + 6V -[uz(h — sy)]. (2.40)
n=h+6%p. (2.41)

where we neglected terms of O(gr/g) in (2.41) since we assume that (p2 — p1) is
small in comparison to ps. This is the second part of our rigid lid approzimation.

We now assume an asymptotic expansion of the form
(uj.us.h.p.n)= (u;.uy. h.p.n)® -i-é%(ul.u-g,h.p. )t +0(8). (2.42)

and substitute into (2.37) through (2.41). We shall first discuss the lower layer
equations since the details are more straightforward.

If the variables in (2.39) are expanded. then to leading order.
kxul +vp® =0, (2.43)
or, taking —k x (2.43),
uf’ =k x Vp© = (= p’. pi7"). (2.44)

Thus the leading order velocity in layer two is geostrophic. i.e. strictly determined
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by a balance of the Coriolis terms and the pressure gradient. as we required.
To obtain an equation for the time evolution of p. we first write down (2.39)

in component form.
O(ug + usuaz + Vougy) — V2 + pr = 0. (2.45)

O(vay + UgUag + Ualgy) + U + py =0. (2.46)

Taking the curl (that is. —2 (2.45) +£ (2.46)) we obtain.
8(vaz — uay)e + 6(Uarlar + Uslozy — UsyUsr — Uslagy

+UorUsy + UaUazy — V2, Uny — l.'gu-g_yy) + Upy + Vay = 0. (247)

or simply.

08, + O(uak: + vaby + uag€ + roy€) + uay + 1oy, = 0. (2.48)

where we have defined 1y, — uy, = €. the relative vorticity for the lower layer. We

can rewrite the equation more compactly using the total derivative.

D
65§ +(1+66)V-up =0, (2.49)

Solving for the divergence of u, in the mass conservation equation (2.40).
V -ug = 6hy + 6V -[ua(h — sy)]. (2.50)
and substituting this into (2.49). gives

5% + (1 + 8€) (6he + 6V-[us(h ~ sy)]) = 0. (2.51)
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Now expanding the variables as in (2.42). and dividing through by 6.

D§(0)
Dt

+(1+669) (RY + V- ulh® 4+ o). v (h - sy)) =0. (2.52)

0)

where £ = vy ~u3) . and since (uf” . v)”) = (~p(®, 2" .

€0 = Ap®. (2.53)

Here we have introduced the Laplace operator. A = 8;;+9,,. We have also written
down just the first term of each expansion because the higher order terms will not
be needed. as we will see shortly.

The leading order (that is O(1)) problem is given by

%;\p“’) +h2 + V- u"h® L 4T~ sy) = 0. (2.54)

where D/Dt = 8, +u'®-V. Now. the term h\” may be written (h‘® — sy), since sy

is independent of time. Also. the third term. ¥ - u$”’'2® vanishes. since ¥ - u\?) =

—-p\Y + piY = 0. Therefore the above equation reduces to

D
;399 + (9 — sy), + u” V(RO ~ sy) = 0. (2.55)
or simply
D
- (0) ) _ — =
T (Ap +h sy) =0. (2.56)

This is a statement of the conservation of leading order Potential Vorticity,
a concept which will be discussed in the next section. Finally. let us rewrite the

equation using the Jacobian operator defined by

J(A.B) = A,B, ~ A,B,. (2.57)
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Recalling the definition of the material derivative. and that (u!9.¢®) = (- p{®.

p{?) . our governing equation for layer 2 becomes

(Ap© + 2?), + J (p9. Ap®@ + h® — sy) = 0.

(2.58)

Now we work with the upper layer. Expanding the variables in the momentum

equation (2.37). we see immediately that the leading order velocity is geostrophic,

ul? =k x VhO.

(2.59)

To determine the time evolution of h. we employ the same method as with the

lower layer. by writing down the components of the momentum equation (2.37).

1
5‘&1[ -+ (52(211‘!111 + vluly) — U+ = 0.

L
Svye + 82wy + vpvyy) +uy + 1, = 0.

Taking the curl.
1
S(v1z — uyy)e + 02 (UrzViz + U V1zr — Uylyr — Ul ry

+Ur Uy + U1l1ry — Viylly — Vilyyy) + Uiz + U1y = 0.

or simply.

5(; “+ 6%(111(1- + Ule -+ UIIC -+ U1yC) + U + Uy = 0.

where ¢ = vy, — u;,. More compactly,

8¢+ 6%uy-V( + (1 +62¢)V - u, = 0.
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Now from the continuity equation (2.38). we find

1 h 1
V-u = —55-,1-‘ - Eul-Vh. (2.65)
Substituting this into (2.64),
1 1 1
6G +63uy-VC = (1+63¢) 5 (82h, +ur-Vh) = 0. (2.66)

Expanding all variables as in (2.42). we arrive at the O(1) problem:
ul”. wA® =0. (2.67)

However here we encounter a significant difference with the derivation of the
lower layer governing equation. The leading order problem is in fact trivial. When
(2.59) is substituted for u\”. any sufficiently smooth A‘® will satisfy the relation.
We still have the hydrostatic relation (2.41) and after expanding all variables in

a series we obtain the following first order approximation:
79 = pi0), (2.68)

Unfortunately this still does not enable us to determine h'®. We therefore must
consider the 0(6%) problem. But before we do. it is worth emphasizing at this
point. that the leading order reduced pressure n(?) is decoupled from the lower layer
pressure p(®. This is in marked contrast with a similar model. which describes
bottom-dwelling density currents (Swaters & Flierl. 1991 and Swaters. 1991).

Continuing our analysis. we write down the next approximation (0(6%) prob-
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lem) for (2.37). (2.38) and (2.41).

kx ul? + Vi = (- v)ul®. (2:69)
P® + V- + oA = 0. (2.70)
M = pM) 4 p® (2.71)

We obtain ul" and A" from (2.69) and (2.71) respectively.
uf’ =k x Vo + J (VA p®) (2.72)

S R (2.73)

Next we expand (2.66). extract the 0(6%) problem. and substitute in (2.73).
—h? + ROu? O — (O TR (2.74)

—u®. (Y ~ p9) — V. Tr® =0

Substituting (2.59) for u\”. (2.72) for u!"’. and keeping in mind that (9 = AR,

R® + RO J(ARQ RO) + ARO J(RO RO (2.

no
-\]
n

+(=hP . BD) - () + J(p9. A1)

+(=n{". 7)Y - (R, B + T (VA h@) . Wr® = 0.

x

After simplification, we finally we arrive at the upper layer governing equation,

RO 4 g (p(O) +hOARO %Vh(o)-Vh(O), h(o)) =0. (2.76)
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Like the lower layer equation. this too is a statement of Potential Vorticity con-
servation. However. it is not the leading order approximation. but rather the next

order approximation.

2.5 Derivation from Potential Vorticity

One may derive the exact same equations (2.58) and (2.76) using the principle of
Potential Vorticity conservation. For shallow water equations in the context of

our problem. Potential Vorticity is defined as

_ relative + planetary vorticity

PV = )
thickness of layer (2.77)
and it is conserved following the flow. that is
D
— /" == . 9 —
D (PV)=0 (2.78)
For the lower layer. in dimensional variables.
D™ [v5. —uy. + fo
—_— had P D)
Dt ( H—~h*+ sy ) 0 (2.79)

where D*/Dt denotes the dimensional total derivative. Employing the scalings

introduced in Section 2.3.

8 foltae — uny) + fo) .y (2.80)

(6foB: + 6 foua- V) ( H — 6Hh + 6Hsy

Dividing by é6f,/H and invoking the quotient rule for derivatives,

(1 —5h-¢-(5sy)%(6(v2¢—ugy)+ 1) (2.81)



— (6(vor — ugy) + 1) %(l —b0h + bsy) = 0.

Expanding the variables in a series, we obtain the O(1) problem, given by

D D
i (vg) - ugg)) + Di (h‘o) - sy) =0. (2.82)

which may be written

D (2~ g+ 1~ sy) =0 289
or simply.
(Ap© + RO, + ] (pw),Ap(O) +AO — sy) =0. (2.84)

which is identical to (2.58).
Now we derive the upper layer governing equation. in a similar fashion. Again
we start with conservation of Potential Vorticity,

D (v —uj.+ fo) - 5
D ( o = 0. (2.85)

We apply the scalings (2.30) through (2.36).

L 6-1. o\l1z — + Jo
(65,00 + 64 fyuy9) ( et ) -0 (286)

Then we divide through by 6 3 fo/H and invoke the quotient rule for derivatives,

Sh(viz — w1y )e + 62 huy-V (viz —uyy) — [62 (v1z — 1) + 1][62he +1,-Vh] = 0. (2.87)
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Expanding the variables in a series, we obtain the O(1) problem. given by
ul?.vhr® =0. (2.88)
Again, this is trivial and we must examine the next order problem,

ROuQ. T (AR®) = AROuP. RO _ 0 _ O grW _ y{V.wh© = 0. (2.89)

Expanding and substituting in for A" and u!", we obtain

h? + ARO(k x VAY).TR® ~ hD(k x VAY).T(AR?)

+(k x VAO). v (nV) ~ pi9) 4 (k x V). WO (2.90)
+J(VRY p9).ThO = 0.

which reduces to
he + 7 (p“” +h QAR + %Vh“”-Vh(o’. h(m) = 0. (2.91)

This is the same equation as (2.76) which we derived in Section 2.4.

As the final step in this chapter. we write down both equations of motion.
he +J (p +hAh+ %Vh-Vh. h) ~0. (2.92)

(Ap+h)+J(p.Ap+h —sy) =0, (2.93)

for easy reference in the future. Here we have dropped the superscript notation
for a cleaner appearance. but it must be stressed that we are still dealing with

the leading order variables A¥ and p®. For a discussion of general boundary
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conditions appropriate for the model, we refer the reader to Swaters (1993). In
this thesis we will utilize a simpler set of boundary conditions. better suited to

the theory about to be presented. These will be discussed as necessary.



Chapter 3

The Linear Stability Problem

3.1 The Linear Stability Equations

There is much evidence to support the claim that large scale time-dependent
motions in the world’s oceans (or. for that matter. in the atmosphere) are simply
waves. which start out as small perturbations to some unstable mean state. If
circumstances allow such a perturbation to extract energy from the mean flow.
then the wave amplifies. Eventually it may grow to a size which completely distorts
the mean flow itself. and other processes come into play. If we are to understand
this cycle of events. then a mean state appropriate for the physical system under
study must be found. upon which a perturbation is to be superimposed.

[t is usually very difficult to determine what the correct mean state is (Ped-
losky. 1987). however we can find out a great deal about the instability of the
flow by considering some intuitively reasonable steady state. Since a perturbation
is assumed to be initially small, all terms in the governing equations which are
quadratic in the perturbation may be considered infinitesimally small. and can be
neglected. That is, the perturbation will, at least initially, be governed by linear

dynamics. Fortunately, this greatly simplifies the first steps in the analysis.
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We begin. therefore. by linearizing the governing equations about some known.
steady solution and look for conditions which will make the flow stable or unstable
with respect to small perturbations. For the purpose of this thesis, we will take our
spatial domain to be a channel of width L. with periodic boundary conditions in

the along-channel direction. To derive the linear stability equations. we introduce

h = ho(y) + h'(z,y,1), (3.1)

p=p.(y) +p(z.y.t). (3.2)

where h,(y) and p,(y) are exact. time independent solutions to (2.92). (2.93). and
h' and p’ are small perturbation quantities.

Since any function of y will satisfy the nonlinear equations. and such a flow
is not unreasonable physically. this is an obvious choice for the steady state. We
substitute (3.1) and (3.2) into (2.92) and (2.93). and neglect all terms where
primed terms are multiplied together. As previously mentioned. such terms are
initially very small compared with all other terms in the equations and will not

make any significant contribution for some time. Dropping the primes. we obtain

he + hoypr + [Us + hoyho + (hy)?8, — (Rohoyy)ylhz = 0. (3.3)
(00 + Uo02)(Ap + h) + (hoy — Usyy — 8)pz = 0. (3.4)
in a channel 0 < y < L, where U, = —p,, is the lower layer mean flow.

We assume that the steady solution for the upper layer thickness takes the

form of a simple wedge.

holy) = 1 +aly~ 2). (33)

[\]
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Here a is the slope in the cross-channel direction of the interface between the two
layers. For example, with « positive. the minimum and maximum thickness of the
upper layer is given by 1 — a% >0and1 +a§ > 0 . respectively. The dimensional

slope is given by
(3.6)

R

I
& &

Q

By setting the mean flow in the lower layer, U, = 0 we prevent shear instabil-
ities. and are able to focus on the pure baroclinic problem (Swaters. 1993). We

now obtain the linear stability equations for our model,

L N
he + ap; +a(l + a(y - 7)—))13/1I +a“hyy, =0. (3.7)

(Ap+h) + (o —s)p; =0. (3.8)

3.2 Perturbation Energetics

It is possible to obtain a stability result from the averaged-energy form of the
linearized equation for the upper layer. Here. we follow the work of Swaters
(1993). Much of the derivation is actually possible for the more general problem
(3.3). (3.4). having set U, = 0, and we choose to present it here. We will invoke
the special wedge-front solution in the last step. Let us assume that the interface
does not actually outcrop on the fluid surface. and therefore the cross-channel
width of the upper layer is simply the width of the channel itself. L. We multiply
(3.3) by the perturbation amplitude h(z.y.t), integrate over y from 0 to L, and

over the length of the channel from ~X to X (X constant). defining the operator

() = /_Z(...)dx. (3.9)
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Since we are interested in baroclinic instability. we set U, = 0. and obtain the

following
/0 - (hhy + hoyhpy + hoyhoh Dby + (Roy)hhay = (hohoy)yhbs ) dy = 0. (3.10)
Since h, has no z dependence, we may rewrite this as
/OL (1] + Poyho[2] + Royho[3] + (hoy)?[4] + (Rohoyy)y[5]) dy = O, (3.11)

where [1] = (3(h?)¢ + hayhpe ) . [2] = (Rhezz). 3] = (Rhayy) . 4] = (hhzy) and
[3] = (hh). Integrating by parts. we see that the second integral [2] vanishes. as

does the last integral [3], since

/—.ihhzxzdx = [h;hzz]fx—é/_i(hi)zdr (3.12)
lr,,
= o-3 M),
)
/_);hhfd"” -5/ i(hg)zdx (3.13)
1y, 570
= 5[¥

where we have used the periodicity condition at X and —X. The third and fourth

integrals then combine to form

hoyho[3] + (hoy)?[4] = (hoyh(hohayy) + hoyh(hoyhay)) - (3.14)
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Factoring out hoyh and using the product rule for derivatives in reverse, this

simplifies to
hoyho[3] + (hoy)?[4] = (hoyh(hohay)y) (3.15)

which we must integrate by parts several times.

L
/0 (hoyh(hohzy)y) dy (3.16)
X L X L
_ /_ * [hohoyhhe ]t dr — /_ i /0 hohay(hoyh)ydydz

= [[hohwhhng]fx - /_Z (Rohoyhahy]s dz

X L
- / ) /0 hohzy(Roggh + hoghy)dydz.

Now. in the above result. the first integral vanishes due to periodicity in z, and
the second one vanishes because h, = 0 at y = 0. L (no normal flow at boundaries).
Only the third integral remains, and we can perform further simplifications on it.

as follows.

X L
- / / hohay(hoygh + hoyhy)dydz (3.17)

- _// hohogyhhzydzdy — /0,/ hohay(h2)zdzdy

= - / Pohoyyhhy) dy + /0 /- . hohayhahydzdy
- / [hohayh2]”  dy

= hohoyyhoh,dydz.
[T

Here again, we have used the fact that both h and h, are periodic in z. Now,

if we substitute in the wedge front (3.5) for h,. clearly h,yy, = 0 and so the above
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integral also vanishes. In effect. (3.10) reduces to

gf/oL % <h2> dy = - /OL (ahp.) dy. (3.18)

Therefore, a necessary condition for the growth of the perturbation is that the
product ahp; is negative somewhere. Conversely, if ahp, is positive for all (z,y) in
the domain. then this is sufficient to prevent the growth of the initial disturbance.

Heuristically, we can gain a physical appreciation of the above result in the
following way. The flow is geostrophic to leading order, so p, may be thought
of as simply the cross channel perturbation velocity of the lower layer. Because
h represents small variations in the upper layer thickness. a region where A > 0
corresponds to a warm anomaly in the slope water (and conversely. a region with
h < 0 corresponds to a cold anomaly). For clarity, let us deal with an upper
layer profile such that & > 0. Since a is a constant. we may take it outside
the integral. Then from (3.18) we can see that growth of the instability will
occur if the transport of warm anomalies. averaged over the domain. is toward
the shore. i.e. fOL (hp:)dy < 0. Similarly. when o < 0, the instability will grow

if the area-averaged transport of warm anomalies is in the off-shore direction, i.e.

fOL (hpr)dy > 0.
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3.3 Normal Mode Analysis

[t is reasonable to assume that each perturbation field will be a superposition of

waves. We therefore introduce instabilities of the form
p = p(y) explik(z ~ ct)] + c.c., (3.19)

h = h(y) explik(z — ct)] + c.c., (3.20)

where c.c. refers to the complex conjugate. k is the real-valued along-channel
wavenumber. and c is the along-channel complex phase speed. We note that. with
the above definitions, p and h are real. An instability of the basic flow arises when
a perturbation begins to grow in time. In this section we will determine under
what conditions this can or cannot happen.

As can be seen from (3.19) and (3.20). p and A will grow in time (and do so
exponentially) if the imaginary part of the phase speed is positive. Substituting

these expressions into (3.7) and (3.8),

1+aly— é)][ayy — Kh+ afzy -~ gi'z +p=0. (3.21)
By — Kp+ >+ h = 0. (3.22)

The fluid must also satisfy the condition of no normal flow on the channel walls.
Thus h, and p, must vanish on y = 0. L. However. because of the form we have

assumed for h and p. the boundary conditions, in general, reduce to

y=0.L. (3.23)

7]
il
o>
il
[an]
Q
o]

Examining (3.21) and (3.22), we encounter an immediate difficulty. As far as

we have been able to determine, the presence of the o terms makes this problem

32



analytically intractable. Let us assume therefore that a is small, and that s. the
bottom slope. is O(a). As we will see later, ¢ will then also be O(a), so we will
neglect all O(a) terms in the above equations, but retain terms of O(Z) and O(£).
In effect. we are considering a gently sloping wedge front. Dropping the tildes,

this leads to a pair of ordinary differential equations

h”—(§ +k)h+p =0, (3.24)

& L k)p+h=0. (3.25)

p"—(

where the primes refer to derivatives with respect to y. and the boundary condi-

tions on the channel walls are given by

p(0) = p(L) = h(0) = h(L) = 0. (3.26)

The normal-mode solutions are necessarily of the form

p(y) = Asin(ly) . h(y) = Bsin(ly). (3.27)

where A and B are constants. and [. the quantized cross-channel wavenumber is

given by
nw

== ne{l23.} (3.28)

We now have the general form of the normal mode perturbation solutions, i.e.

p(z.y.t) = Asin(ly) explik(z ~ ct)] + c.c., (3.29)

h(z,y,t) = Bsin(ly) exp[ik(z - ct)] + c.c. (3.30)
Using these solutions, we can write (3.24) and (3.25) in matrix form,
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K24es ] A 0
= . (3.31)

-1 K*+ £ B 0
where K2 = k% + (2 is the total wavenumber squared. We remark that the above
system puts a constraint on A and B, so that we can express one in terms of
the other. Only one of the constants is free. For the problem to allow nontrivial
solutions we require that the determinant of the coefficient matrix is identically

zZero.

(cK®*+a—s)(aK?+c)—ac=0. (3.32)

which gives a second-degree polynomial in c¢. Using the quadratic formula. we

obtain the following dispersion relation

—aK*+ [(aK* — 5)2 — ¢ - s)K4]z
Al (G - dale - Jh I (3.33)

We note that. as long as K2 ~ O(1) then ¢ ~ O(a). as we required. Now. ¢
can become complex if the expression in the square brackets (the discriminant) is
negative. This gives two complex phase speeds. which are of course conjugates of
each other. Here we point out that an instability takes place when two neutral
modes (i.e. waves whose phase speed is real) coalesce, giving one real phase speed

and two growth rates. Now, if we decompose ¢ into

c = cp +1cy. (3.34)

then as long as ¢; # 0, we are guaranteed that ¢; > 0 for one of the two conjugates,
i.e. we have an instability.
Moreover, whenever the discriminant is positive, c is strictly real, ensuring

that the system is stable to perturbations. This happens whenever (aK* — 5)2 ~
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da(a — s)K* > 0, and one way to ensure this is to make o positive and (a — s)

negative. Thus. we can easily see that

0<ac<s. (3.35)

is a sufficient condition for stability, that is. whenever the slope of the interface
is positive but less than the bottom slope (Swaters. 1993). Conversely, one of the

conditions

a < 0 or a > s. for s > 0. (3.36)

a > 0 or a < s. for s < 0.

is necessarv for instability.
The boundary between stability and instability may be examined by setting

the discriminant equal to zero,

(aK* - 5)? = 4a(a — s)K*. (3.37)

Simplifying. we obtain the Marginal Stability Curves (MSC). given by

= K?(2 - K?) (3.38)

Rlw

and

= -K?(2+ K?). (3.39)

s

a

Figure 3.1 shows the Marginal Stability Curves. with stable and unstable re-
gions of the parameter space labeled. From here on we will call (3.38) the Upper
Branch of the MSC and (3.39) the Lower Branch of the MSC. The point of mar-
ginal stability occurs at (1. 1) on the Upper Branch. i.e. K? = 1. 2 = 1. Thus,
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whenever the ratio 2 is less than unity, we can find wavenumbers for which the
flow is unstable. There is also a high-frequency cutoff. defined simply by the Up-
per Branch of the MSC for K? > 1. Treating (3.38) as a polynomial in K?, we
find the cuttoff by taking the rightmost root, i.e.

K2

cu.

toff =1+4/1— s whenever 2 <1 (3.40)
« o

This means that as long as the ratio £ is not too big (negatively). the flow is
stable for all wavenumbers above some critical wavenumber. In the context of
this analysis. 2 must be an O(1) quantity. since we assumed that s is O(a).

The existence of a high-frequency cutoff ensures that the model is not subject
to ultraviolet catastrophe. In models which are prone to this kind of instability,
particularly Planetary Geostrophic models, ¢, is nonzero for all k as k — oc.
and so the growth rate. kc,, grows with k£ (de Verdiére. 1981). This is problem-
atic. both theoretically and computationally. in that the shorter the wavelength
of a perturbation. the faster it grows. A given flow has the potential of degen-
erating into a turbulent wavefield of small-scale noise. whose amplitude becomes
unbounded and therefore unphysical.

For a given s. we define a. to be the critical slope which satisfies one of (3.38)
and (3.39). It was mentioned before that there exists a relationship between A
and B. If we write down this relationship for points on the MSC. we find that on
the Upper Branch A = B. while on the Lower Branch, A = —B. We call the first
case, where the two solutions are in phase, the barotropic mode. The other case,
where h and p are 180 degrees out of phase, the baroclinic mode.

Figure 3.2 is also a graph of the relations (3.38) and (3.39), but this time
the ordinate axis is 2. The graph looks somewhat more complicated. and the

region of instability has split in two. Therefore we will not refer to it later in
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the thesis. It is worth pointing out however. that the plot is verv reminiscent
of the Marginal Stability Curves for the Phillips model (Pedlosky. 1987). where
the critical shear velocity is graphed versus the total wavenumber. Introduced
by Phillips in 1954. this was a simple two-layer Quasigeostrophic model. One
further comment about the MSC may prove instructive at this point. relating
our wedge-profile linear theory with that of Mooney & Swaters (1996). Their
analysis was for a two-layer. non-quasigeostrophic model appropriate for gravity
currents and bottom-dwelling cold domes derived by Swaters (1991). Mooney &
Swaters showed that the associated linear problem becomes singular at the point
of marginal stability (where K2 = 1). in that it cannot be described as a limit
of the A” # 1 modes. In our model however. the linear system (3.31) does not
become degenerate at the point of marginal stability.

Solving for a in terms of s and A in the relations (3.38) and (3.39). we can
substitute the results into the dispersion relationship (3.33). This provides the

real phase speed for the Upper and Lower branches of the MSC respectively. given

by
_ s(1-A?)
G = _——_K2(2 — KQ), (341)
oy =SB+ (3.42)

These speeds (normalized by the parameter s) are plotted in Figures 3.3 and 3.4

versus K.
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Chapter 4

Weakly Nonlinear Analysis

4.1 Introduction

Linear theorv has provided us with the Curves of Marginal Stability. and solutions
for the perturbations h and p. which are valid whenever the nonlinear terms are
small. However. as a perturbation grows. the nonlinear terms which we neglected
start to become more and more important. Even though we cannot solve the
fully nonlinear equations. we can study the evolution of a wedge front which is
weakly unstable. that is the nonlinear terms are small but significant. We assume
the initial perturbation is small. and utilize the asymptotic methods introduced
in the derivation of the governing equations (Section 2.4). This will enable us
to find the Amplitude Equation. which governs the slow time evolution of the
perturbation.

Although a wedge profile without isopycnal outcroppings is rather idealized,
it does allow us to study available potential energy release and nonlinear interac-
tions which will (hopefully) halt the growth predicted by linear theory. Griffiths
& Linden (1981) were confident that their theory, which made use of such a pro-

file, explained many of the instability characteristics observed in their laboratory
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experiments. The derivation of an amplitude equation for even this simple front
is rather involved, but the procedure itself is a standard one. and here we follow
Pedlosky (1987). More in-depth studies may be found in a series of papers by
Pedlosky (1970. 1972, 1982 and 1983).

4.2 The nonlinear problem

4.2.1 Nonlinear Perturbation Equations

Introducing the perturbed quantities (3.1) and (3.2) into the governing equations

(2.92) and (2.93). we arrive at the Nonlinear Perturbation Equations
he + hoyhoAhy + (Roy)?hzy — (Rohoyy)y + RoyP: (4.1)

+hod (AR, ) + hoy (AR, + 2hyhey — Brhyy + hohag)

~Royyhzhy — hoygyhhz + J(p.h) = 0.

(Ap+h)e+ (hoy — 8)pz: + J(p- Ap+h) = 0. (4.2)

where U, has been set to zero and we have again dropped the primes for cleaner
notation.

Unlike in the previous chapter. here we did not neglect the nonlinear terms.
Again we choose the gently-sloping wedge front h, = 1 + a(y — %), a K 1. Now
we rescale via

a = sa and t=t/s, (4.3)
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which forces a scaling on the phase velocity,

c = SC. (4.4)

From now on we will drop the tildes when referring to these new quantities. For

clarity. let us write down the new critical slope a. and phase speed ¢,

2
- 1

e = ! _ oK n the Upper Branch (4.6)
Qe = K2 = K3 c= K3 - K7 o pp ch. )

In order to push the nonlinear interaction into a higher order problem. we also

rescale the perturbation quantities.

(4.7)
Substituting into (4.1) and (4.2). and dropping the tildes.
2 2 L
he + adh; +ap: = ~sa”h,, — sa™(y — ;)Ahx (4.8)
9 L
—-sJ(Ah +p.h) - s*a(y — ;)J(Ah, h)
~s*a [hAh, + 2hyhyy ~ hohyy + hehez] + O(s3).
(Ap+ k) + (a ~ 1)p; = sJ(Ap + h.p). (4.9)

where we have neglected terms of O(s®) and higher, since they do not appear in

our subsequent analysis.
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4.2.2 Scaling for slow time

We must now find an appropriate scaling for the slow time 7T". during which nonlin-
ear interaction will become significant. We begin by introducing a supercriticality

in a,

a=qa.— A, (4.10)

where A is some small, positive quantity. This corresponds to a shift from the
Lower Branch of the MSC slightly into the unstable region (see Figure 4.1). We
are assured that c¢; is non-zero. and can recast it in terms of the new (scaled)

parameter a:

1l

[da(a - 1)K* — (aK* ~ 1)}

4.11
2K? (411)

c; =

where we have chosen the positive root. Substituting the perturbed o into (4.11).

as well as the expression (4.5) for the critical a., we arrive at

Wl

[KQ(K"’ +2) ( ~ KA~ z)A)} . (4.12)

2K? K?+2

Since all terms in the square brackets are assumed to be O(1). this tells us that
the growth rate kc; will be on the order Az,

The small parameter. s, is intimately tied to the stability of the linear system
as shown in (3.35) and (3.36). Moreover. we would like to study the instability
as it is influenced by small changes to the bottom slope (which will affect the
stretching of vortex tubes). We therefore want the growth rate to be dependent
on s, and we define A = §2s%. Here s is squared to prevent numerous square roots
from appearing in future calculations, and é is an O(1) free parameter which will

give us precise control over the size of the supercriticality. Now. if the growth rate
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is an O(s) quantity. then this implies slow time should be scaled as
T = st (i.e. 8y — 0, + sOr). (4.13)

The above argument is similar for the Upper Branch of the MSC (except that a
must be increased, rather than decreased) and the scaling for time is the same.
For convenience, we introduce a parameter p. which will facilitate discussion
of both branches of the MSC at the same time. In all future calculations, we
will assume g = 1 on the Upper Branch and 4 = —1 on the Lower Branch.

Accordingly. our scaled slope takes the form

= a. + pué*st. (4.14)

while the critical slope and phase speed may be written as. respectively.

L - pK?
K¥2-pK?) K¥2-pk?) (4.15)

Qe =
The resulting equations are

he + acAhz + acpr = —safhzy - 302(2/ -

[

JAh, (4.16)

—shr — sJ(Ah + p.h) — s2a.(y — =)J(Ah.h)

|t~

—u8253 (AR + p); ~ s2ac [AAhy + 2hyhgy — hohy, + hahog)

(Ap+h)e + (@c = 1)p = —sJ(p, Ap + h) = s(dp + h)r — p6°s°p;.  (4.17)
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4.2.3 O(1) Problem

Now we expand h and p in the small parameter s.
plz.y.t:T)=pz.y.t:T) + sp(z,y, t:T) + s°p Pz y. :T) + ....  (4.18)

hz.y.t:T) = Az, y. t; T) + sh®(z,y. t: T) + >R (z.y. t: T) + .... (4.19)

with the implicit requirement that p(®, A(® pI) A etc. are all O(1) quantities.
P q

Substituting into (4.16) and (4.17), the O(1) problem becomes.

A + o ARO + ap® = 0. (4.20)
(Ap? +r'), + (ac ~ 1)pY =0. (4.21)

Assuming normal mode expressions for p® and h'?'. the problem turns out to
be equivalent to (3.24). (3.25). so that the O(1) solutions are simply the linear
solutions.

p'% = A(T) exp[ikd] sin(ly) + c.c.. (4.22)
r® = B(T)explik8]sin(ly) + c.c.. (4.23)

where we have defined the phase § = z — ¢t for convenience. The amplitude
coefficients A and B are now assumed to be functions of the slow time T'. In this
section we want to find an equation for the evolution of A(T). realizing that the

relation B(T) = pA(T) holds as before.
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4.2.4 O(s) Problem

The O(s) problem is

R+ acARY + apll) = —a3(y - g JARD) — a2hQ — h. (4.24)
(Ap™Y + A1), + (ac — 1)pY) = —(AP® + A O) 7. (4.25)
The solutions are assumed to be of the form
p'V = p(y. T) exp[ikb] + c.c. + U(y. T). (4.26)
R = h(y. T)explikf] + c.c. + ®(y.T). (4.27)

where we have introduced the mean-flow correction terms ¥ and ¢. These are
needed to account for changes to the mean flow caused by interaction of nonlinear
terms. as will be evident in the O(s?) problem (Pedlosky. 1987). ¥ and ¢ have no
fast-phase oscillation and, being modifications to the O(s) streamfunction. they
are streamfunctions themselves.

Substituting (4.26) and (4.27) into (4.24) and (4.23). and dividing through by

iack and —ick respectively. we obtain

{Byy -k~ —] h+p=—acpAcos(ly) (4.28)

()

#-AT sin(ly).

L., ..
+a.(y - —2—)K'uA sin(ly) + "

ac—l -

By — k2 ~ +h= 7:;(1{214 ~ pA)rsin(ly). (4.29)

c

To establish the existence of the solutions k and p. we first consider the associated
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homogeneous problem.

Oy — k> — £ 1 h 0
o = : (4.30)
1 Oy —k*—2=L | | p 0

with the boundary conditions.
h(L) = h(0) = (L) = p(0) = 0. (4.31)

This selfadjoint Boundary Value Problem is identical to the O(1) problem so that
the two-tuple [uAsin(ly). Asin(ly)] is clearly a solution.

Integrating by parts. it can be verified that the inner product of [p A sin(ly). Asin(ly)]
with the left-hand side of (4.28) and (4.29) is zero, that is

y . ayy - k* - QL 1 B .
/ Asin(ly) [u.1] : | dy =0. (4.32)
0 1 ayy -k - Q‘:c—_l p

It follows. by the Fredholm Alternative (Nagle & Saff. 1993). that the inhomoge-

neous problem (4.28) and (4.29) has solutions if and only if

L
/ [-—ac,ulA cos(ly) + a K3(y ~ %—)uA sin(ly) (4.33)
/ 2
iy . .
l
ok ( y)] pAsin(ly)dy

L
+{[ (K2A — ,uA)Tsm(ly)] Asin(ly) dy = 0.

We integrate term by term. Clearly,
L
—al / A2 cos(ly) sin(ly)dy = 0. (4.34)
0
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Next. using integration by parts. we obtain

L
acKzf(y-

0

)~

yA?sin®(ly) dy = 0. (4.35)

Finally. the remaining expressions yield

1

K?—
" p

(—1- YA A7 sin®(ly) dy = 0. (4.36)
Qe C

Eol|
O'\‘[\

where we had to make use of the respective expressions for a., ¢ and u appropriate

for the Upper and Lower branches. The integral in (4.33) trivially vanishes. Thus,

the O(s) problem is degenerate in the sense it gives us no new condition on A.
We are forced to examine the next order problem. but first we have to deter-

mine the solutions A. p. Solving for & in (4.29) gives

v . 9 c = 1 ~ - ) . .
ho=—[, — k-2 — 5+ Af—C(A-Asm(zy) — pAsin(ly))r. (4.37)

Before we determine p. we simplify the operator on h in (4.28). and the operator

on p in (4.29) as follows.

2 c )
[ayy - a—c] = [8, + 22— 4]. (4.38)
[aw—k%acc 1] = [ayy+12—#]. (4.39)

Substitution of (4.37) through (4.39) into (4.28) allows us to write
- 1
{[ayy+12—#]2 - 1}P= k—c[ayy‘*‘l2 ~ ¢l (4.40)

x (KzA sin(ly) — pA sin(ly))T + a luAcos(ly)



1

L ) .
—ac(y - 5) K uAsin(ly) — —pArsin(ly).

(22
Substituting in for A(® and p'®. simplifying the right hand side. and writing
the left hand side operator (a difference of squares) as a product of two operators
yields the system
By + 2 = 2u]p =€, (4.41)

[Oyy + PP)€ = adpAcos(ly) — aly — =)K uAsin(ly). (4.42)

S

where we have introduced the intermediate solution, £&. The particular solution

§p1. associated with a.lpAcos(ly) in (4.42) may be written down immediately.

1 .
€p1 = suac(y — 5)Asin(ly). (4.43)

o]

The other particular solution. &ps. satisfies

2 2 L. .
[Oyy + F)epr = —pa K A(y — 3)sin(ly). (4.44)
We assume the solution has the form
L . L.,
§p2 = 3(y — ) sin(ly) +v(y — ) cos(ly). (4.45)

and determine 3 and v by substitution into (4.42).

1o |

2081 cos(ly) + 27y cos(ly) — 4v(y — é-)lsin(ly) = —pa K2A(y — =)sin(ly). (4.46)

Exploiting the linear independence of sin(ly) and cos(ly), we obtain

L pacK2A

K
:B = _#acA(-r)—l-)zf 2

(4.47)
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The general solution £ is given by

§ =&p1 +Ep2 + I cos(ly). (4.48)

where I' cos(ly) is the homogeneous solution. The sum £p; + £po cannot satisfy
the boundary conditions by itself, but it is possible to choose I' so that p(0) =
p(L) = 0. We remark that the homogeneous solution does not need a sin(ly)
term. because any such term may just be absorbed into the O(1) solution. For

convenience. we will write

L Y
E=T(y~ g)sin(ly) + oy — é)’cos(ly) + [ cos(ly). (4.49)
where
po KA poeA K, _
[ = 3 . [, = 5~ ,ua,_.A(a) . (4.50)

and I is still to be determined.
Now we must determine p from (4.41). The following form for the particular

solution is assumed.

Pp ="y~

NI R

9 L .
)" cos(ly) + 12(y — 7 ) sin(ly) + 73 cos(ly). (4.51)
Substitution into (4.41) gives

[Opy + 12 — 2P, = 2(71 + 72l) cos(ly) (4.52)

L, .
=202l + pm)(y - 3)sin(ly)
L.,
—2uni(y — 5)' cos(ly) — 2pu~y; cos(ly),
where the right-hand side must also equal £&. Exploiting linear independence of
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the functions involved. we obtain

I, r
2 Y=o +1Ty . T=2y +2p+2mn. (4.53)

where 73 is still free. All other constants are determined, at least up to 7.

The homogeneous part of p depends on the sign of 2 — 2u.

Case 1: °~2u>0

We remark that this is always true for the Lower Branch (since u = —1). and
can be true for the Upper Branch if { is large enough. In this case the homogeneous
part is

Prn = vasin(ry) + yssin(r(y — L)). (4.54)

where r* = > — 24 > 0.

The new constants v; and v; are determined using the boundary conditions.

"~

“L

p(0)=0= 5 + 73 —ssin(rl). (4.55)
~ L'z
L) =0= (—1)"—“—4—+(—1)"73+74sin(rL). (4.56)
so that
el A L+ -
= (=1 4sin(rL) ° = Ysin (rL) - (4.57)

We now simplifv (4.37) to obtain an expression for A.
h=—[8,+ 12— up+ kic(K’-’ — ) Arsin(ly). (4.58)

When the boundary condition is applied to h, we obtain

O+ —ulp=0 on y=0,L, (4.59)



ie.

L, .
(2m + 272l — pys) cos(ly) — (4lm + py2)(y — ) sin(ly)

9|t~

~um(y — =) cos(ly) + pyssin(ry)

+uvyssin(r(y — L)) =0 on y=0,L.

which simplifies to

L? .
(2- u—4-)71 + 21y — py3 ~ pyssin (rL) = 0,

9

<

L A
(=1)"(2 - u—i-)'n +2(=1)"ly2 — (=1)"uy3s + pyasin(rL) = 0.

These two conditions in fact reduce to one. and this determines ;.

2

Y3 = (p — T)% + plys.

(4.60)

(4.61)

(4.62)

(4.63)

All constants are now defined. and so are the solutions p and h. To summarize.

for the case where [ — 2 > 0. the O(s) tilde solutions are

1ot~

L
By.T) = mly— )QCOS(Iy)+72(y—5)Sin(ly)

—

+73 cos(ly) + v4 sin(ry) + vs sin(r(y — L)).

hy.T) = =By, + 1* = plp + (K* - p)sin(ly) Ar.

with
X2 pK?2-1 1K,
= = 8l acA. Yo = [ 1 + 5(5) acA.
K2L? (K% - ) I(K? — p)(=1)"*!
B=1733 T T4 acd.  m= Lsin(rL) e,

(4.64)

(4.65)

(4.66)



I(K? = )
= ————aA. = /12 = 2pu.
s 4sin(rL) acA TEV H

Case 2: °-2u <0
We remark that this can only be true on the Upper Branch (where px = 1).
We will thus set 4 = 1 without loss of generality. In this case the homogeneous

part of p must be of the form

Pr = Y4 exp(—7y) + Fsexp (F(y — L)), (4.67)

As before. the new constants 7, and 5; are determined using the boundary

conditions on p.

o L2
P0)=0= "+ 93+ 3, = 55exp (—FL). (4.68)
~ n L2 n = . =
BIL) = 0= (—1)" 2 + (=1)"5 + 3 exp (~7L) + 7. (4.69)
so that
i} L? _ _
T4 = "”/IT — 73— Fsexp(—FL). (4.70)
S (1L? + 4v3) exp(—FL) — (=1)* (71 L? + 473)
s 4(1 — exp(—2rL)) '

We apply the boundary conditions to A.
O+ ~1p=0 on y=0.L, (4.71)

i.e.

2|

(27 + 272l = 73) cos(ly) — (4lm + v2)(y ~ ) sin(ly) (4.72)



L
~n(y - 5)2 cos(ly) + 7, exp(—7y)

+¥5exp (Fly— L)) =0 on y=0.L.

which simplifies to

L2
(2- ’:{)’71 + 2l — 13— ¥sexp(FL) = 0, (4.73)

2
(12 = S+ 2= — (-1 + Tep (FL) 0. (474)

These two conditions again reduce to one. resulting in

9

L
13 =(1- T)'ﬂ + lys, (4.75)

which is the same as 3 in Case 1 with u = 1. All constants are now defined. and
so are the solutions j and A.

To summarize. for the case where {? — 2 < 0, the O(s) tilde solutions are

L, .
BY.T) = (s~ 5)?coslly) + nly ~ <) sinfly) (4.76)

2
+73 cos(ly) + 7, exp(—Fy) + 75 exp(F(y — L)).

.1, .
h(y.T) = =[Oy + 1 = plp + = (K* = p)sin(ly) Ar. (4.77)
with v;. ¥2 and 73 as before. and

- _ ((=1)"exp(=FL) - 1)(K* - 1)l
"= 4(1 — exp(=27L)) acA. (4.78)

(exp(=FL) — (=1)")(K? —1)I

A F=VI-LE
i —exp(27L)) et T

¥s =
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4.2.5 O(s®) Problem

The O(s?) problem is given by

c

hgz) + Ochhgz) + acp:(z2) = —02(3/ - g_)Ah-’(tl) - a;lh-'('-'il) (479)

—J(Ah(l),h(o)) - J(Ah(o).h(”)
=J@?.h") = IV hO) — by — ub* (AR + p),
0) 0 0)p (0 0)4(0 0) (0
—ac [P AR + 2hRD) — ROAL) + RO R

(Ap® + h?), + (@c = 1)p?) = —(Ap™) + aV)g (4.80)

—J(P(O).Ap“) + h(l)) _ J(p“).L\p{O) +h(0)) _ uézpw)

r -

Substituting in our expressions for the solutions to the O(1) and O(s) problems.

R + a AR +apl? =

= (4.81)
- .3 2 Loz . o
exp(ik8) |ik’a (y — 3)h —ikach,
.2 L~ 7 . £20 12 .
—ika (y — E)hyy — hr + k6 (K* — p)sin(ly)A
+ikpsin(ly) A(®yy + Uy) + ik(uK? — 1) sin(ly) A®, | + c.c.
l
~2-(K? + 1)sin(ly) cos(ly) (AA7 + A"Ar) - &r.
(AP + h®), + (ac = 1)p = (4.82)

exp(ikf) [kzﬁT — BT ~ hr — ik6%usin(ly) A
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—iksin(ly) A(¥yyy + By) — ik(K? — 1) sin(zy)A\py]
+ik exp(2ikd) [—m cos(ly) A(1%h + hyy) + psin(ly) A(I%hy + hyyy)
~lcos(ly) A(I°p + Pyy) — sin(ly) APy + Pyyy)
+K?%a, sin®(ly) A% — 212acA2] + c.c.
-2%(1{2 — p)sin(ly) cos(ly)(AAy + A"Ar) — U1 — 7.
Terms on the right hand side without fast-phase oscillation lead to particular
solutions which will grow linearly in ¢. so to avoid this secular growth. the sum

of these terms must be set equal to zero. Emploving the identity 447 + A*Ar =

(1A|*)7. we obtain
l 3 . 2
O  + QE(K‘ — p)sin(ly) cos(ly)(JA|")r = 0. (4.83)

., . 3
Uy + &1 + QE(K' — p) sin(ly) cos(ly)(|A|")r = 0. (4.84)

Forming (4.84) —(4.83). and making use of the identity 2sin(ly) cos(ly) = sin(2ly).

results in

U1 = 0. (4.85)

! , )
or=—-(K ? — p) sin(2ly)(|A]%)r. (4.86)

We integrate both equations.
U(y.T) =a(T)y +b(T) + d(y). (4.87)
l .

®(y.T) = -E(K2 — ) sin(ly) (|4 — |A.|%). (4.88)

where a(T'), b(T') and d(y) are as yet unknown, and A, = A(T = 0).
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We now derive a boundary condition on ¥ 7 at y = 0. L as follows. On either
of the two boundaries. the no-normal-flow condition requires that v = 0. Recalling
that the domain is periodic in z. Kelvin’s Circulation Theorem (Pedlosky, 1987)

takes the form
d X
—/ updz =0 ony=0.L, (4.89)
dt J-x

where the integral is over a closed curve of length 2X. We can write this in terms

of the lower layer streamfunction,
5 / p%dz +0(6%) =0 ony=0,L (4.90)

where p'%) refers to the leading order term in the original expansion (2.42). This.
together with the asymptotic expansion (4.18). the solutions (4.22) and (4.26).

and the time scaling (4.13). vields

(0 + sOr) /_i {(A sin(ly) + sp), explik(z — ct)] + s\IJy} dz=0 ony=0.L.
(4.91)
if we consider terms up to O(s) in (4.18). Now:. all terms associated with exp[ik(z~
ct)] integrate to zero. and since ¥ has no z or ¢t dependence. we conclude that. to

leading order.

U,r=0 ony=0L. (4.92)

Upon application of this condition to (4.87), we obtain a’(T) =0, i.e. a(T) =a
is a constant for all T'. Since the mean flow correction is zero when the perturbation
is first introduced at T = O (Pedlosky, 1987), we find that ay + d(y) = —b5(0).
Indeed. ay + d{y) retains this value for all T', being dependent on y only, so that
¥ = b(T) — b(0). Finally, since V¥ is a streamfunction, and a streamfunction is
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only defined up to a constant (with respect to  and y), we can write

v

I
©

(4.93)

without loss of generality.
Upon substituting ® and ¥ into the O(s?) problem. we consider all the terms

associated with ezp(Zikf). Assuming the O(s®) solutions are of the form
p® = p(y; T) exp[ikd] + c.c.. (4.94)

h® = h(y: T) exp[ikd] + c.c.. (4.95)

then dividing (4.81) by iko. and (4.82) by —ikc. the equations become

5 A . L - -
O = K = —Jh+5 = ack®(y ~ )k - ach, (4.96)
L. i: & ., o
—ac(y = )hy + kachT + a—c(A — p)sin(ly)A
+2— (K* - )’ sin(ly) cos(2ly) A(|AI* ~ |4,
4 o 5 9
—8a C(K' — p)sin(ly) cos(2ly) A(JAl” — |4.]7).
QC - 1 - - l > . - Z g
[6yy - k2 - . ]p +h= E(k'pT - pny) - EhT (4.97)
& [ . 2 2
+u-c— sin(ly)A — 2-03(1{ — p)sin(ly) cos(2ly) A(JA|" — |A.l°)-

As in the O(s) problem, the solvability condition is that the homogeneous solution
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to (4.96) and (4.97) must be orthogonal to the inhomogeneity.

L
L.- - L.- i -
[(uack®(y = 50 - poch, — pacly = )by +ppehr  (4.98)
0
‘52(1\'2 ) sin(! )A+ﬁ~ LIPS S LI (ly)A
+/.LQC ) sin(ly CpT kcpny ke T #CSH Yy
2 _ 2
—21'-’K4(—K——2—#)—[412(K2 —u) - K¥K? - 2p)]

K?—pu
x sin(ly) cos(2ly) A(JA|® ~ | 4,]*)} sin(ly) Ady = 0.

By the Fredholm Alternative. this a sufficient (as well as necessary) condition for
the existence of solutions to the inhomogeneous problem (4.96) and (4.97).

Now we must substitute in the following expressions: a. and c from (4.15).
as well as § and h from (4.64) and (4.65) (or (4.76) and (4.77). as appropriate).
Having performed the integration in y. we divide through by the coefficient of

Arr and. after rearranging, we obtain the Amplitude Equation.
Arr = o4 = NA(JAP - |4.]). (4.99)

The coefficients ¢ and .V depend on the wavenumbers k and [. and the parameter
u (in addition. o involves the parameter §). The expression for the nonlinear

coefficient. V. may be written down easily. Substituting in the appropriate value

of p.
242 : 12
N=kPFP2+K?- 4K2 (K% +1)] on the Lower Branch, (4.100)
2 12
N=kP2-K*+ 4F(K2 ~1)]  on the Upper Branch. (4.101)

Analogous expressions for the linear coefficient o were computed symbolically
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using the software package Maple, and may be found in Appendix B. They contain
very many terms. and are more readily examined in the form of a graph. The
coefficients o and N are plotted in Figures 4.2 and 4.3 for the Lower and Upper
branches respectively, with typical values of the flow parameters (n = 1, L = 4,
6 = 1). It is evident from both plots, that the growth rate o is of the form
prescribed by linear theory.

At this point we want to make sure that in the limit of a very small amplitude,
we recover the growth rate predicted by linear theory (Chapter 3). According
(4.12), which is a direct result of the dispersion relation (3.33). the growth rate
kec; should be O(sA2/K?). where A = 62s%. We see that in terms of slow time
T taking into account the scaling (4.13). kc; >~ O(6k/K'). Now, neglecting the
nonlinear term. the amplitude equation (4.99) reduces to Arr = g A. If we also ne-
glect all terms of O(a.), then o simplifies to §2k%/K?. This implies an exponential
growth rate of 6k/K. and we have recovered the linear result.

A word of explanation is also required for the vertical asymptote in the plot of
o. in Figure 4.3. The region where ¢ becomes unbounded corresponds to the point
(2.0) on the Upper Branch of the MSC. A value of zero for the ratio s/a implies
that s — 0 (for a bounded) or @ — oc (for s bounded). either of which clearly
violates our assumption that s >~ O(a). Therefore we should avoid referring to
this area of the plot. since our analysis is not meaningful there. We also note. that
in each graph, there is a region where N < 0. This has important ramifications
for the behavior of the Amplitude Equation.

When N > 0. the nonlinear term serves to damp exponential growth. Thus,
the amplitude obeys the following cycle. When the amplitude is small. the non-
linear term is negligible, and o > 0 causes exponential growth. After a time, the
nonlinear term is large enough that it begins to damp the growth of the distur-

bance, eventually reversing the growth altogether. The amplitude then becomes
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small again, and the process repeats. On the other hand, if N < 0. then there
is nothing to counteract the linear term, and the disturbance exhibits explosive
growth. Both types of behavior will be discussed in the next section.

[t is also interesting to investigate what happens when we relax the condition
that terms involving o, are very small. The effect on the coefficients ¢ and N is
dramatic, as Figures 4.4 and 4.5 illustrate. If we let the channel width L slowly
increase. this causes the growth rate ¢ to dip down below the k axis. This yields
two new regimes. i.e. one which is linearly stable and nonlinearly unstable, and

one which is stable both in the linear and nonlinear sense.

64



Region IV

Region III

4

Figure 4.2: Plot of ¢ and N for Lower Branch of
MSC, withn =1, L =4, 6 = 1.
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Region IV

Region III

Figure 4.3: Plot of o and N for Upper Branch of
MSC, withn=1, L =4, § = 1.

66



Region III

-0‘4--

or Lower Branch of

dNf£
d =1

Plot of ¢ an
L=17,

with n = 1,

Figure 4.4
MSC,

67



Region IV
2

Region III

Figure 4.5:
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4.3 Solutions to the Amplitude Equation

To obtain solutions to (4.99), we follow Pedlosky (1987). The amplitude A is

written in the form

A(T) = R(T) exp[i©(T)], (4.102)

where R is real and © is the phase in slow time T Substituting this into (4.99)

and separating real and imaginary parts.

M
Or = ‘ﬁg, (4.103)
M 2 2
Rpr - -1?23 =ocR - fVR(R - R;) (4.104)

where M is constant and R, = R(0). If we assume that © does not vary with

time. then necessarily \/ = 0 and (4.104) reduces to

Rrr = oR - NR(R? - R?). (4.105)
We will also make use of the initial condition
=2(0) = \/lo|Ro. (4.106)

which means that initially the amplitude grows at the linear growth rate. Multi-

plying equation (4.105) by Rr and integrating. we may rewrite it as

R:=0oR?+ (o] — 0)R2 - %(RZ ~ B%)2. (4.107)
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4.3.1 Region I

We now discuss the cases when the o, terms are not negligible. according to Figure

4.5. In Region [. 0 < 0 and N < 0, so that, after a little algebra. equation (4.107)

becomes
N o
Ry 5 (R~ R N

g

)? - (RS~ o

). (4.108)

We define the following transformation.

20 20 T
R = \/ -NP, R, = ”WP"' T = T (4.109)

and after simplification. (4.108) can be written

” ) 1 2 1
PP = (P’ - P} - )+ P}~ 1 (4.110)

This problem splits up into three cases. i.e. P? = 1. P} < { and P?> L
Case 1: P2 = ;

Equation (4.110) reduces to

P? = (P? - 2)2 (4.111)

First let us assume that P, = ;. Then P; (0) = > 0. We will show a posteriori

that |P| < ? which allows us to conclude

P, =lp2_%‘=_(p2_§)_ (4.112)

Using separation of variables,

/P EQdf 7 == ]dr, (4.113)
P, 0




then integrating both sides and substituting P, = . we obtain

1 |V3+2PV3~1
"= AR AP VAt (4-114)
It is now possible to solve for P(r)
_ (V3 1= V3 +(1+ V3)exp[V3r]
Pir) = ( 2 ) V3 —1+(1+ V3)exp[V3r] (4.113)

We note that P(0) = § as we required and |P| < 32@ as we assumed. Also, it is
interesting to point out that this solution monotonically approaches the constant

value ¥2 as 7 — x.
3

The argument is almost exactly the same for P, = ~3 and the solution is
found to be
3\ 1 - 1 3
P(r) = - (—‘/:) V3+ (1 + v3) explv/ar] (4.116)
2 ) V3-1+(1+ V3)exp[V3r]
which approaches —32@ as T — <.
Case2: P; < i
In this case the constant term P2 — % 1s negative. and (4.110) may be viewed as
a difference of squares. Decomposing the right hand side into two factors.
P? = (3 - P%)(¢* - P?), (4.117)
where
1 1
.52=P3+;+,/Z—P3>o, (4.118)
and

1
CZ=P3+§— E—Pg>o. (4.119)

For convenience, let us take 8 and ¢ (without loss of generality) to be positive
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quantities and define

P =3Q, P, = 3Q,. (4.120)
Then (4.117) becomes
Q% = B*(1 - Q%) (m? - Q?), (4.121)
with
m=S (4.122)
61

and 0 <m< 1.
Let us first deal with the possibility that P, > 0. i.e. that P, (0) > 0. It is

evident from (4.121) that |Q| < m always holds. so that

Q- = 3\/(1~Q%)(m? - Q?). (4.123)

which we rewrite as

/ =0 / dr. (4.124)
Ja-e m2§% ]
This elliptic integral yields the solution (Milne-Thomson. 1950),

Q@ = m sn (3(1 - 7,)|m?), (4.125)

where sn( ) refers to the Jacobi elliptic snoidal function and 7, is given by

(4.126)

Qo
To = __1’/ dE .
Ig Ju-e)m - ¢
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If P, < 0. a similar argument produces the solution
Q = -m sn (3(1 — ,)|m?), (4.127)

with

Qo
1 d¢
== ) (4.128)
84 J1-e)(m2-¢2)

The solution (4.125) is plotted, for typical values of the parameters. in Figure

To

4.7 versus slow time T. We see that this snoidal wave oscillates in a sinusoidal
manner about zero. with a short period (about 0.2) and O(1) maximum amplitude.
Case 3: P} > ;
This third case introduces the possibility of explosive growth of the disturbance.
We will first show that the solution is unbounded. and then show that the solution
becomes arbitrarily large in a finite time. Since P2 — i is a positive quantity
bounded away from zero. so is the right hand side of (4.110). Taking the square
root of both sides leads to the conclusion that P monotonically tends to oc or
—x. depending on the value of P; (0). In the following proof we assume that
P. (0) > 0. The argument is similar for P; (0) < O.
Claim: P becomes arbitrarily large in finite time, if P? > 1.

Proof: P grows monotonically. without bound. We may express the time

required for P — oc as the integral

T dP
= / : (4.129)
A
Now, 7* satisfies
i dP e dP
T=/ (PQ—P2—1)2+P2_1+/ P2—~P2—-l2+P2_l. (4130)
Po o 2 o 4 P ( o 2) ° 1
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for some P* > \/P? + 3. Therefore.
<@+, (4.131)

where

I = / ) — (4.132)

is finite. since the radicand is never zero, and

L= /|P2 el (4.133)

Because P? — P? — 3 > 0 for all P > P*. we can remove the absolute value signs

and easily integrate [o:

: 2 o 1
L, = [IEBO T where a —Po+§ (4.134)
P-
— lim 1 {—a P*—a
T i=x2a |l+a| 2a (P +a
1 1 —a
= —In(1) - —
2a (1) 2a P‘+a
= Fra_ o
= I .

Now. since I; and [ are finite, this implies that 7* is finite. QED

A similar result was found by Meacham (1988) in his analysis of a resonant
triad of neutral Rossby waves in a marginally unstable, baroclinic flow. This
finite amplitude study was done in the context of the Phillips (Pedlosky, 1987)
model. Unbounded growth in finite time is clearly unphysical. and we may ask
what are the implications of such a finding. One of two possibilities arises. The
first is that an assumption of weakly nonlinear theory no longer holds, and the

explosive growth is a spurious result. The second possibility is that the rapid
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growth is real, but after the perturbation amplitude is no longer small (as we
assumed) weakly nonlinear analysis breaks down and other effects may come into
play. Fully nonlinear interactions may halt the growth, but this is beyond the
small-amplitude regime we are studying.

The latter possibility seems very likely in this case. For unbounded growth
to occur, the initial scaled amplitude must be greater than some threshold value,
i.e. P2 > . Since, by (4.106), the initial kinetic energy 3 R7(0) is directly related
to the initial unscaled amplitude R,, it is reasonable that with a high enough
input of energy the system would enter a more nonlinear state. At that point.
the methodology described here can no longer provide a sensible picture of flow
development. However. the onset of unbounded growth in the weakly nonlinear
sense is noteworthy. because it pinpoints conditions under which the flow can
deform dramatically in a very short time. This behavior will again be discussed

in relation to Region IV. We present two plots of 7" versus P, in Figure 4.8.
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Figure 4.7: Snoidal wave solution at k=0.1 in Region I, corresponding
to Lower Branch of MSC with n=1, 6=1, L=8.
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4.3.2 Region I1

Here 0 < 0. N > 0. Equation (4.107) becomes

Rp=~ SR - R~ 2) (R~ 5T (4.135)
We define the following transformation,
R= \/—_%P, R, = -%v‘fpo, T = \/i_a (4.136)
and after simplification. (4.135) can be written
P? =P3+i —(PQ—P§+é)2. (4.137)

Since P? + i is strictly positive. we can immediately write the right hand side in

factored form
1 1 : 1 1
P;’=(P2+\/P3+1—P3+§)(\/P3+1+P3—5—P2). (4.138)

Because /P2 + § + P; ~ 4 > 0. the problem now hinges on the sign of /P2 + } -
P} + 1 ie whether P? =2 P?<2or P?>2.
Case 1: P> =2

Equation (4.137) reduces to

9 3
2 _ Y _ 2 _ Yy2
P! = < (P 2) (4.139)
= P*3- P?.
Defining
P =30, P, = V3Q,, (4.140)
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and using separation of variables. we find that

/ 3 / dr. (4.141)
e —52
We make the change of variable
& =siné, d€ = cosd#, (4.142)
and obtain
1
T = ——=In|cscf ~ cotb| + const (4.143)
1 ll+\/1-§'2 ?
= ——=Inj———| .
\/-3 S Qo
but since .
Q, = lP— /2 (4.144)
o \/5 o \/3 .
we can write
1 - Q- 2/V3
+VI=QF V2/V/3 . (4.145)

expl=ViEr = =3 1+/1-2/3

where we have taken the exponential of both sides. After some algebra. it is

-1

V3+ )exp[—ﬁr]) : (4.146)

possible to solve for Q
Q= f((‘/. )exp[f ]+<

and P(T) is given by (4.140).

80



Case2: P2 <2

In this case the decomposition of the right hand side of (4.137) takes the form

P? = (P?+(})(3% - P?). (4.147)
where
52=P3—%+,/P3+§>0. (4.148)
and

C2=_Pf+é+,/Pf+i>0. (4.149)

If we substitute the transformation

P = 3Q. P, = 3Q,. (4.150)
then (4.147) becomes
Q2 =34Q*+m)(1 - Q). (4.151)
with
m = E (4.152)
3

and0<m< 1.

We take the square root of both sides. and write (4.151) as the integral

/ [ +m2 — - 3 0/ dr. (4.153)

This elliptic integral yields the solution (Milne-Thomson, 1950).

= en (VT T 18(r = )| ——). (4.154)

m?2+1
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where cn( ) refers to the Jacobi elliptic cnoidal function and 7, is given by

€

1
1
oo WmZHQ/o V@ +m)(1-e)

(4.155)

A graph of the solution (4.154) versus slow time 7" can be seen in Figure 4.9.

As in the case of the snoidal wave, this cnoidal function oscillates about zero. Its

period and amplitude are both O(1) quantities.
Case 3: P, >2

In this third case we write

where

and

If we substitute the transformation

P=8Q. P,=3Q..

then (4.156) becomes

with

and 0 <m < 1.
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We take the square root of both sides. and write (4.160) as the integral

T

/ =5/m: (4.162)
e - m2) 1-€2)
This elliptic integral yields the solution (Milne-Thomson, 1950).

Q =dn (3(r — 7)|1 — m?), (4.163)

where dn( ) refers to the Jacobi elliptic dnoidal function and 7, is given by

1
1
To 5/ - 1—8) (4.164)
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Figure 4.9: Cnoidal wave solution at k=0.5 in Region II, corresponding
to Lower Branch of MSC with n=1, =1, L=8.
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4.3.3 Region III

Region III covers most of the wavenumber spectrum in Figure 4.3. Here both o

and N are positive. Let us first apply the transformation

20 20 T
R = ’/ 7V—P. R, = ”_JVP‘" T = 7 (4.165)

so that (4.107) becomes

)

P? = —P*+ (2P? +1)P? - P2 (4.166)

We can proceed toward the solution mechanically. as for previous regions,
however at this point we choose to present a more physically meaningful argument.
If R is thought of as displacement. then (4.105) is a special case of the equation
governing the rectilinear motion of a particle under the action of a restoring force,
which depends on displacement only (Ross. 1974). Then. it is possible to view the
above equation as a decomposition of total energy. E. into kinetic energy. 1P2.

and potential energyv. V' (P).
E = éPf + V(P), (4.167)

where E = —3 P} is a constant and V (P) = $P* — (P2 + 1) P2

To determine the maximum and minimum values of P for this harmonic os-
cillator, we demand that the total energy consist only of potential energy, or
equivalently. we set the kinetic energy %Pf equal to zero. By virtue of (4.166),
this means that

~P*+ (2P*+1)P - P* =0. (4.168)

o
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By the quadratic formula,

—

VAPZ +1, (4.169)

which allows us to write (4.166) in the factored form,

Prae: Prin = (Py +5)

N =

2

P? = —(P* - P2 )(P*- P%.). (4.170)

T

For convenience. we introduce the normalized amplitude

a scaled time
7' = PpaxT. (4.172)
and the quantity 3. defined as
P..
— min 4.17
7™ P (4.173)
so that (4.170) becomes
d 2
(27 = (1- Q)@ - 3. (4174)
le.
dr’' = dQ : (4.175)
V(1 - Q2)(Q2 - 3?)
The problem is now posed in the form of an elliptic integral
Q
-1 = / 49 , (4.176)
g, /(1-Q2)(Q2 - 42)

86



which yields the Jacobi elliptic dnoidal function (Milne-Thomson. 1950)

Q =dn (7 - 7|1 - 5%, (4.177)

where the phase shift 7, ensures that P, = P(0) and is given by

1
= / dQ . (4.178)
g /(1-Q2)(Q*- /)
Finally. the solution to (4.107) is
20 "
R= \ meaxdn (r' = 7l|]1 = 3°). (4.179)

with Pn.. defined above.

The solution (4.177) is plotted. for typical values of the parameters. in Figure
4.10 versus slow time T. We see that. unlike snoidal and cnoidal wave solutions.
the dnoidal wave oscillates about some positive quantity and never crosses zero.
Also. the pattern of the oscillation is such that the peaks are fairly sharp and the
troughs rather gentle. Finally. while the amplitude of the solution is O(1). the

period is markedly longer than in the previous two cases.
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Figure 4.10: Dnoidal wave solution at k=1.5 in Region III,
corresponding to Lower Branch of MSC with n=1, 3=1, L=8.
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4.3.4 Region IV:

This pathological case. which occurs for small & in Figure 4.2 and large & in Figure
4.3. yields explosive growth of the perturbation. Unlike in Region I, this growth
does not require that the initial amplitude be above some threshold value. Since

o >0 and N < 0. we define the transformation

20 20 T
R= ‘/~FP, R, = \/__]VP“ T= —\/—. (4.180)

which allows (4.107) to be written

q

]. 9 9y 1
P? =(P2—P3+3)-+P;-Z. (4.181)

If P} > : then both terms on the right hand side are positive and their sum is
never zero (the second term P? — i is a strictly positive quantity). The equation

may also be recast as
P? = P*+ (1 -2P2)P% + P (4.182)

If P? < 1 then the coefficient of P? is positive, and again P? can never vanish.
Indeed. a nonzero F, ensures that the right hand side of (4.181) is bounded away
from zero. Thus, we conclude that P (and therefore R) grows, positively or
negatively. without bound. As in Region I, this occurs in a finite time, as we now
demonstrate. For conciseness, we consider the case P —  (i.e. P, (0) > 0) only.
The case P — —oc follows similarly.

Claim: P becomes arbitrarily large in finite time in Region IV.

Proof: P grows monotonically, without bound. Using separation of variables
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in (4.182), we may express the time required for P — oc as the integral

(4.183)

oC
/\/P4+ 1-2P2)P2+ P4

If we first assume that P? < 3, then (1-2P2)P? is a positive quantity. Neglecting
the uninteresting possibility that P, = 0, P2 is strictly positive. It is therefore

true that

- </\/ﬁ (4.184)

where the rightmost integral is clearly finite because the exponent on P is greater

than 1.

If. on the other hand, P? > 1, then we rewrite (4.183) in the form

-

™= . (4.185
/ - P2+ )2 + P2 — ;i' )

Now. P2 — i is strictly greater than zero. which implies

<

T‘</

Po

dP

R 150

Moreover, P? — P2 + 1 will be strictly positive for all time. so that the absolute

value signs may be omitted. Integrating,

x< oC

dP dP . 1
/————Pg_PQ_*_l = | gz with a2=Po2——§ (4.187)
o732
— lim [1 P—a]‘
" == {2a |P+a P,
P,—-a
h %(ln(l)— Po+a)
1 P, +a
= 5° < Q.
2  —a
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Therefore 7* is finite. QED

We present a plot of 7* versus P, in Figure 4.11. Since (4.183) contains only
even powers of P,. we only plot the blow-up time for P, > 0. The above result
requires some qualification. Let us first consider Region IV as it appears in Figure
4.3, that is, for the Upper Branch of the MSC. The region covers all wavenumbers
above k >~ 1.8, a value which at first glance does not seem unreasonably high. One
must realize however, that our analysis is constrained by certain relationships
between parameters, which were explicitly, or implicitly, assumed throughout.
The plot in Figure 4.3 corresponds to a cross-channel wavenumber of [ = 0.79,
and if we take & = 1.8. then we obtain a value for the total wavenumber squared,
K? = 3.85. The fundamental assumption of this chapter is that the perturbation
is supercritical. i.e. close to the MSC.

Now, the plot of the MSC in Figure 3.1 shows that the Upper Branch decreases
(becomes more negative) as K — oc. In fact. it is easy to estimate that for
R? = 3.85. the Upper Branch requires 2 ~ —7. Clearly. the interfacial and bottom
slopes differ by a factor of 7. which is no longer O(1). This violates one of the
assumptions of our Linear Analysis (Chapter 3). namely that s ~ O(a). In effect,
this argument limits the range of wavenumbers where weakly nonlinear analysis
can be trusted. Qutside this range the results may still be true, but more evidence
should be sought. Finally, we point out that for Region IV as it appears in Figure
4.2. no such inconsistencies were found and explosive growth seems intrinsic to
the system.

Given a value of T'. it is possible to demonstrate that adjacent solutions ap-
proach one another at the boundaries between regions. That is, the composite
solution is continuous in wavenumber space. Figure 4.12 shows this solution, for
a particular initial amplitude R, and time T. For the parameter values specific

to this solution, the cusp at k ~ 1 corresponds to a change of sign for o, that
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1s. o becomes positive. For the physical system. this means a shift from linear
stability to linear instability. It is not clear whether the same initial condition
(4.106) should be used in both cases. In our research, we have tried to follow
Pedlosky (1987) which. unfortunately, only considers a situation like Region III.
The graph in Figure 4.12 is however, continuous. Analytically. we can show this
by taking the limit of R. as N and o approach 0 from the left and the right. Such

calculations are tedious and can be found in Appendix A.
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PO

Figure 4.11: Time required for blow-up of solution
in Region IV

93



L1

"T=L e 9oeds IoqUNUSAEBM UT 9INJONIIS 9p3trduy :z[°'p oInbIJ

Yy ‘“Jaqunuasem jsuueyd-3uojy

1 €T 't 60 90 vo ¢0 00
1 |

1 )| 1 1 1 1 I | Oo.,ﬁl
SL°0-
' 1 0g°0-

0 -

00°0

-GS¢0

- 0S°0

—SL°0

00T

o ‘opmyndwe [say

94



Chapter 5

Dependence on Spatial Scales

It would be useful to explore the along-channel spatial structure of the pertur-
bation presented in the last chapter. We may also examine weakly nonlinear
interactions on an even slower time scale than before. Here we derive a more
general amplitude equation. which includes three new variables, X, x and 7, cor-
responding to “large” space. “very large” space (both proportional to z) and “very
slow™ time. respectively. The calculations are a straightforward extension of the
previous work. and we do not discuss them in detail. It will be found that the
amplitude. A. has no dependence on X or 7 but the new equation will admit

soliton solutions in x and 7. Let us now introduce
X =sz. x=s1. T = s%t. (5.1)
These new scales modify spatial and time derivativeé as follows,
8, — O, + sBr + s°0, , (5.2)

0z — 0, + s0x + s20; . (5.3)
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Substituting into (2.92), (2.93), after a little algebra. we obtain

o L
hy + acAhy + acp, = —safh,y —sai(y — E)Ahx — shr — sa.px

—sJ(Ah +p, h) — sacAhx — 25achsx — ub?s?(Ah + p)z — s2h.

—szaCAhx - 3s2o<chI XX — 232achux — szacpx - s*a.h Xy
9 L 2 2 L 2
—s“ac(y — -‘)-)Ahx ~25%a;(y - ;)—)hnx ~25°J(hzx.h)
—s?ac [RAhz + 2hyhay ~ hohyy + hehyy] — s2Jx (AR +p. k)

~s?a.(y — —é)J(Ah.h) + O(s%).

4

(Ap+h)e + (ae = 1)p: = —sJ(p. Ap + h) ~ s(Ap + h)T — 25p,x,

~s(ac = )px — ué’s’p; — s> Jx(p. Ap + h) — s*(Ap + h)-

—5*Pxxt = 28%Pree — (@ — 1)py — 28%pexr — 252J(p. pax) + O(s%).

where Jx(A.B) = AxB, — A,By.

We expand A and p in an asymptotic series. as in Section 4.2.

(.h) = (V. R9) + (W, hV) + $2(p® A®) 4

(5.4)

(5.6)

where now p(9. h®, pM_ A1) p® and h® are functions of z, y. t. X, x. T and .
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5.1 O(1) Problem

The O(1) problem is the same as before.

P’ + @R + apl® =0, (5.7)
(Ap® + h ), + (ac = 1)p® =0. (5.8)

Recalling the definition § = z — ct. the O(1) solutions are again,
(P.h®) = (A. B) expliké]sin(ly) + c.c.. (5.9)

with the one exception. that A and B are now formally functions of X. x- T and

T.

5.2 O(s) Problem

The O(s) problem has five new terms on the right hand side.

. , s, L
Mt aARY +apl) = —a2(y - )ARY — o2 ~ ' (5.10)

c'‘ry

—aCAhf\?) - QQCh(IOI)X - acpf,?),
(Ap" + D)o + (e = 1)pV = —(Ap® + £@); (5.11)
(e~ 1)p% - 290,
The solutions are once again assumed to be of the form
(. hY) = (5. h) exp[ikb] + c.c. + (V. ®), (5.12)
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where. now. . h. ¥ and ¢ are considered to be functions of y. X.x. T and 7

Substituting in and dividing through by ia.k and —ick respectively, we obtain

[aw k- f-} h+ 5 = —auAcos(ly) (5.13)

L
+a(y — —2-)K2uA sin(ly) +

)

+E(A ~ PuA)x sin(ly) — 3ipkAx sin(ly).

ki(K A~ pA)r (5.14)

~2ik Ay sin(ly) — é(ac ~ 1)Ay sin(ly).

A necessary condition for the solvability for this pair of equations is

L .2 c
/ (0) yy 1\ - Z: 1
0

h

-~

p

} dy = 0. (5.15)

By the Fredholm Alternative. this is also a sufficient condition. Utilizing the right
hand side of (5.13). {5.14). we obtain

(—aculAcos(ly) + aK3(y —

O\‘l‘

Mlh

JuAsin(ly) +

in(ly) (5.16)

]

+—(A — PuA)xsin(ly) — 3ipkAy sin(ly)|pAsin(ly)dy

L

+ / [i( K?A ~ pA)rsin(ly) — 2ikAx sin(ly)
0

-kic(ac ~ 1) Ax sin(ly)] A sin(ly) dy = 0.
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However. we can split this integral into a sum of two integrals. where the first
is identical to the integral in (4.33), and the second consists of derivatives with
respect to X. By the results of Section 4.2, the first integral vanishes. and we are
left with

L
/ L (A — I2uA)x sin(ly) — 3ipkAx sin(ly)|uA sin(ly)dy (5.17)
0

L .
- / [2ik A sin(ly) + kic(ac ~ 1) Ax sin(ly)| Asin(ly) dy = 0.
0

Simplifying. and substituting in for a. and c, results in

Z[,uAAx —PAAx — 3k AAx — 2k2 Ay (5.18)

K@ - pK®) p— K*(2 - K?)
1—pK? K22 - puk?)

L
AAX]/O sin?(ly)dy = 0.

Since the integral of sin®(ly) cannot be equal to zero, we conclude that
(p— 1> =5k + K? — u)AAx = —4k>AAx = 0. (5.19)
Because we are not interested in the trivial case A = 0. this implies in turn. that
Ax =0. (5.20)

Thus. the amplitude coefficients A and B = pA are not dependent on the large
spatial variable X. This being the case, our O(s) problem reduces to (4.24), (4.25),

and the solutions p{}) and A() are the same as in Chapter 4.
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5.3 O(s®) Problem

First. we note that no new secular terms arise in the O(s?) problem due to the
presence of the new variables. Therefore, we may define the mean flow corrections
¥ and ¢ as in (4.85) and (4.86). which will make all secularities vanish. (It must
be noted however, that both ¥ and ¢ are now functions of y, x. T and 7.) As
another simplification, no derivatives of p'® or (¥ with respect to X appear on

the right hand side. since Ax = Bx = 0. Thus, we can state the O(s?) problem

as follows.

JARD — o2h{l) (5.21)

c'tzy

hEQ) + o AR® + o pl? = —al(y —

rO |t~

—hOARD — KVARD + ROARM + AV AR
—J(PO. A1) — J(pV RO) = Y — pE2ARD) — uép
—a [h AR + 2RORG) — HORD + AORO KDY
~h® — e ARY — 20.R0 — acp?.
(AP + AP + (ac = 1)p) = =(Ap™ + A7 (5.22)
=250 — (Ap + 2¥); — (e - 1)p{
~J(p@. ApY + RW) = J(pV Ap©@ + B — &P

We assume solutions of the form
(»?, h?P) = (p, h) exp[ikd] + c.c., (5.23)

where p and h are functions of Y, X, T and 7, and consider only terms associated

100



with exp(+ik6]. Dividing (5.21) by ika,. and (5.22) by —ikc, the equations become

B,y — k> — ai]iz +p=aki(y - =)k — ach, (5.24)

_ 2

~adly - 3) = (K? = p)sin(ly) A
— )2 sin(ly) cos(2ly) A(|AI* — | Ao|%)

8 (K2 — ) sin(ly) cos(2y) AUAP — | Aof?)

a.c

- LA,. sin(ly).

i 9 9 . . .
+E(K' + 1) sin(ly)A, + 2iksin(ly)A, ro.

G —

. o 1.. - T, - 1 -
(Oyy — K~ — b+h= k—c(k-pT = PyyT) — k_chT (5.25)

2 2

(5 l 9 . 2 2
—+—y? sin(ly)A — 2§(K' — p) sin(ly) cos(2ly) A(|Al* — | 4,]7)
—2iksin(ly)4, — fg(ac ~ )sin(ly)4, + Zf—c-(K2 + 1) sin(ly) A, .
where 4, = A(x.T = 0). The solvability condition is

/ {pack?

Yh — pach, — pocly —

lolh
ro| b~

7 -
—hr (5.26)

C

u B~ ysiny A+ Eor— Laor - b+ S sin(iy)A
”ac p)sin(ly) TPT = £ Pwr — o+ g sinlly

K? —2u)?
—212K4-(K2—_Z)—[412(K2 - p) = K2(K2 - 2#)]

x sin(ly) cos(2ly) A(|A]? — | Ao|?)

-%(K'Z — p)sin(ly) Ay — 2iksin(ly) A, + k; sin(ly)A, — 2iksin(ly)A,

C
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1 1
— (e — in(ly)A —
kc(a 1) sin(ly)A, + s

(K? — p)sin(ly)A; }sin(ly)Ady = 0.
By the Fredholm Alternative. it is also a sufficient condition for the existence of
solutions to (5.24) and (5.25).

Substituting in the expressions for ¢, and ¢ from (4.15) we encounter a sim-
plification, i.e. terms which involve A, sum to zero. Now, the terms associated
with the new variable x are imaginary. Moreover. after replacing p and h by the
expressions (4.64) and (4.65) (or (4.76) and (4.77) as appropriate). it becomes
clear that these are the only imaginary terms in the equation. Therefore, carrying
out the above integration results in an Amplitude Equation whose real compo-
nents are exactly the same as (4.99), plus an imaginary term proportional to A, .
Having divided through by the coefficient of Arr and rearranged the terms. we
obtain

Arr = A+ iPA, — NA(A]P = |4P). (5.27)

where
KK~ p)

T (5.28)

P=4

and the coefficients & and N are defined in Subsection 4.2.5.

The remainder of this chapter will follow the study by Tan & Liu (1995). First,

we introduce

F(x) = (0 + N4,

with A,(x) = A(x.T = 0), and rearrange (5.27) to obtain
Arr+GA—1iPA, + NA|A> =0. (5.29)

This is known as the Unstable Nonlinear Schridinger (UNS) equation. and is a
special case of the Ginzburg-Landau Equation. If T and yx are interchanged, (5.29)
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becomes the conventional Nonlinear Schrédinger equation.
The UNS equation may be cast in standard form by eliminating all terms

proportional to A. Imposing the transformation
AGT) =exp (-5 [* 5(0)a) Cx 7). (5.30)
substituting in. and dividing through by exp (-7‘5 I o€ )df), yields
Crr +6C + iPigc —iPC, + NC|C[?* =0. (5.31)
After simplification. we obtain the standard form of the UNS equation.

Crr —iPC, + NC|C|*> =0. (5.32)

Equation (5.32) may be solved by the Inverse Scattering Transform. and it admits

soliton solutions.

2.4 Steadily Travelling Solitons

Presently. we demonstrate that the steadily travelling solitary wave is a possible
solution to (5.32). The function C is assumed to be the product of a wave field
dependent on x and 7. and an unknown function Z. dependent on x — UT only,
where U is the speed of the soliton. We define

C = expliry — isT] x Z(©), (5.33)

where © = x — UT, while r and s are constant parameters. Both parameters will

be related to other constants shortly.
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Upon substitution of (5.33) into (5.32) we obtain the ordinary differential

equation

U*Z" +i(25U ~ P)Z' + (rP = $)Z + NZ|Z* = 0. (5:34)

S 2[y’ (:'55)

eliminates the Z’ term from the equation. As there are no longer any imaginary
coefficients, we now assume that Z is real. For convenience, we also define r in

terms of a new quantity 7,

S ;’7 , (5.36)
to obtain
UZ" -n*Z+ NZ% =0. (5.37)
Multiplying by Z’ and integrating once, yields
2U2 "2 4 2772 2 i
-AT(Z) =-7"+ TZ -7, (5.38)

where Z* is a constant of integration. Taking the square root of both sides and

rearranging. gives

2 dZ 9 2 2v\ 3
J20Z - (5 - 2z - ) (5.39)
with
2
B = ”N + 3:',—2 -z (5.40)
= N V N2 . .
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Equation (5.39) can be written in terms of an elliptic integral.

/ \/(62—62 —— \/‘ [de. (5.42)

and we will show. e posteriori, that ( < Z < 8.

After integration of (5.42) (Milne-Thomson. 1950) and a little algebra. we find

that

N3 3% -¢?
U(e o) 3

Z =8dn( ). (5.43)

for some constant of integration. ©*. We now argue that, for a soliton solution,
Z and its derivatives should vanish for x — *2c (holding T fixed). Therefore,
equation (5.38) implies that the constant Z* must in fact be zero (Pedlosky. 1972).
In this limiting case. one may easily verify that 3 — \/%n ¢ — 0 and the limit
of the solution is

[2

Z = V,vr]sech (x -UT -0 (5.44)

[L
since dn (u|l) = sech (u) (Milne-Thomson. 1950). We note that Z is a non-
negative function with a maximum amplitude of \/j%‘ 1. so that it oscillates between
¢ and 3 as we required.

Setting ©* = 0 for clarity, the amplitude function can now be expressed as
. | 2 "y P
A(x.T) = &7 exp[z(-ﬁ +r)x — Zfl_J_T] (5.45)

expli [ 14,(€)de] x sech (Z(x - UT))

where U and n are free parameters, while o, N. P and r have been defined

previously. This may be simplified in the following manner. We first write down
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the expression for A(x,0)

A(x.0) = \/-.%’-" expli {(; +rix + = y= / l2d€}] (5.46)
xsech [-g-x],

and take the modulus of both sides,

2 n
/ ch (11, 5.47

noting that the modulus of the exponential term is unity, since every term in the
curly brackets is real.

We can now evaluate the integral in (5.45).

[ raderde = ot [* sech? Lejae (5.48)

‘)UTI
- ’\l ta‘nh [[]X]

Finally. the amplitude 4 becomes

Ax.T) = /-2-

2Un
VTV—,r)exp[(;+r)x+z 2 tanh(Ux)—z——T] (5.49)

xsech [U(x UT)].

It is evident that, while the velocity of the envelope is amplitude independent,
the velocity of the carrier wave does depend on the amplitude. The real part of
(3.49) is plotted in Figure 5.1 for the times T =0, 8, 16 and 24. The dotted lines
represent the envelope only. The parameter values used were o ~ 0.8, N ~ 0.4

and P =~ —0.3. which corresponds to k = 1 in Figure 4.4.
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Figure 5.1: Soliton solution to Amplitude Equation in large space
and slow time for T=0 and T=8. Continued on next page.
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Figure 5.1, continued: Soliton solution to Amplitude Equation in
. large space and slow time for T=16 and T=24.
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Chapter 6

Numerical Analysis

6.1 Introduction

There are numerous advantages to the computational approach when solving non-
linear PDEs in fluid dynamics. Most importantly, numerical simulations provide
actual solutions to the fully nonlinear model. Of course, these solutions do con-
tain a certain degree of error. but they are usually accurate enough for most
purposes. Each computed solution also requires a set of specific parameters. and
due to time constraints. the parameter space can only be sampled in a few places.
However. such sampling often produces a meaningful picture of the influence of
the parameters on the flow in general. A simulation may be initialized with data
closely resembling real-world observations, which is difficult to do analytically.
The behavior of the virtual flow can indicate whether the model captures enough
of the relevant physical processes to describe, at least qualitatively, the real-world
phenomenon under consideration. Numerically computed solutions can serve to
verify the validity of an approximate theory based on the model, and often point
the way toward further fruitful analytical investigation. Lastly. once a general

analytical result is obtained. the exact physical structure of the evolving flow may
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be visualized. for the parameter values assumed by the analytical work. Here we
present numerical results for the original model equations, in a periodic channel

of width L. for both realistic as well as highly idealized flow configurations.

6.2 The Algorithm

As a note to the reader, this section deals with the details of the numerical soiver
and may be skipped. with no loss in overall continuity. The algorithm is an
explicit. finite-difference scheme which is leapfrog in time and central in space.
while the Jacobian terms are approximated by the Arakawa (1966) scheme. The

equations (2.92). (2.93) are first written in the form

hy=—J (p+mh+ éwz-wz.h). 6.1)
¢ =—J(p.q). (6.2)

where ¢ = Ap + h — sy.

Approximating the time derivatives by the central differences

Rkl _ pk-t k-1 _ k-1
hilt =te) = ————.  qlt=t) > ith—. (6.3)
we have
R = pE1 oAt (pk + hFARF + éVh" - VhE, h’°> : (6.4)
qk+1 = qk—l _ 2AtJ (plc’qk) , (65)

where the superscripts & — 1. k, and k + 1 refer to evaluation at time tk-1. tx and
tk+1 respectively. The time scheme can be thought of pictorially in the following

way. For a time dependent quantity Q,
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Q*! = Q%'+ correction terms.

Q*+? = QF+ correction terms,

Q*+3 = Q%"+ correction terms. and so on.
We may view this as two processes working in tandem, exactly one iteration out of
step. That is. the two processes follow a “leapfrog” pattern. where one calculates
the quantities Q**, and the other computes Q®*+!, for A € {0.1.2....}. Such
a procedure requires initial data at the first two time steps. However. it has
the advantage that the error is only O(At?). rather than O(At) as is the case
with procedures based on one-sided derivatives. It is worth mentioning, that in
approximating the lower layer equation (6.2) by (6.5). we are in fact tracking the
evolution of the lower layer Potential Vorticity ¢ = Ap + h — sy (see Section 2.5).

We divide the spatial domain into an m x n grid where z,., — z, = Az for
i€ {0.m— 1} and y,.; —y, = Ay for j € {0.n — 1}. Standard central difference
formulas with an O(Az?) error (or O(Ay?). whichever applies) are utilized for the

spatial derivatives.

h.(zx = z1,) / hz(z = z,) 5 (6.6)
2Azx Ax
hi -1 ht, - h-‘, +1 = 2h1 + hq_ -
hyly = y;) =~ ——J—;TJI- hyy(y =y,) =~ —2 L Ay; =1 (6.7)

where 1 i <m —1.1<j < n-1, with analogous formulas for p,. p... p, and
Pyy-

Special formulas are necessary at the boundaries of the (z.y) domain. The
periodic boundary condition at z, and z,, is easily applied as follows. The ex-
pressions in (6.6) still hold, but whenever subscript i = —1 is called for, it is
replaced by i = m, and similarly, : = m + 1 is replaced by i = 0. Application of
the Dirichlet boundary conditions on the channel walls is not so straightforward.

If j = n. we do not have the luxury of looking at the j + 1 node as it lies beyond
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the boundary (similarly for j —1 when j = 0). However we can utilize more points
within the domain, to arrive at formulas which are still O(Ay?): For the boundary

defined by y = y,. we have

3hi,n - 4hi,n—1 + hi,n—2

hy(y = yn) ~ e , (6.8)
2h-i,n - 5h—i.n— + 4hi,n- - h'i.n-
Py (y = yn) = - Ay : 3 (6.9)

while for y = y,,

~ —3hio + 4h;i; — hip

hy(y = o) = Ay (6.10)
2R, 0 — SRy + dhis — b,
hyy(y = yo) = =2 ./lky2 =3 (6.11)

Setting Az = Ay for simplicity. the formula for the Jacobian of A(z.y) and
B(z.y). evaluated at (z,.y;) is (Arakawa. 1966)

1
T 12Az2 [

+(Aij — Aic1;)(Bicyj-1 + Bij_1 — Bi—1;+1 — Bij+1)

J(A.B) Aiv1; = Ai;)(Bijo1 + Bigryjo1 — Bijo1 — Bis1j41)
(A a1 = Ay)(Bisr, + Bii1;41 = Bisy; — Bi_1;+1)

+(Ai; — Aiy21)(Bisrj-1 + Bisyy = Biy o1 — Bizy)
+(Aiv1j41 ~ Aij)(Birr; — Bijs1) (6.12)
+(Ai; = Aic1j-1)(Bij-1 — Bicyy)

+(Ai-1j+1 = Aij)(Bijer — Bicyy) -

+(Aij — Ais1j-1)(Bis1rj — B;i ;1))

Along-channel periodicity is enforced as explained above, and no special formulas
are required at the channel walls since the Jacobian is only evaluated at Vil

through y; ;. This scheme preserves energy and enstrophy. two quantities whose
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accurate calculation is very desirable in fluid dynamics. Again. the associated error
is only O(Az?) and O(Ay?).

Finally. it is necessary to solve the Poisson problem.
Ap=gq—h+ sy, (6.13)

to recover p from q. If this is the last calculation performed at each time iteration,
then all quantities on the right hand side are already known. Thus. for each time
step we want to solve

Ap**l = f(z.y). (6.14)

where f(r.y) = ¢*™! — A**! + sy, or in terms of central differences.

Pit1; = 2Di; + Pim1j | Pije1 — 2Pij + o1
r,. = + .
UCRY Az? Ay?

(6.15)

all evaluated at t;.;. Now. if we stipulate that Az = Ay = ¢ for some small

constant c. then (6.15) reduces to

ip;; — Pi+1; = Pi-1j — Pij+1 — Pij—1 = "C2f(Iz'- yJ)-, (6-16)

for each i € {0...m} and each j € {1...n — 1}, where periodicity is again enforced
on the subscript i. If boundary data is prescribed at j = 0 and j = n. then there
are r = (m + 1)(n — 1) nodes in the domain for which p is unknown.

Numbering all these nodes sequentially from 1 to r we obtain a system of r
equations in r unknowns. This can be written in the form Au = b where u is
composed of p; ;. b is composed of the right hand side of (6.15), and the entries
of A select the appropriate combinations of pi; (Burden & Faires. 1993). Since

A is symmetric, positive-definite, we have a choice of several efficient routines.
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Here we implement the Conjugate-Gradient scheme. which relies on the idea that

solving Au = b is equivalent to minimizing the quadratic form
q(u) = (u. Au) — 2(u.b), (6.17)

where the angle brackets represent the inner product of two vector quantities.
To see this. we consider ¢ evaluated at u + tv, where u and v are vectors and

t is some scalar. After a little algebra, it can be shown that
g(u+tv) =gq(u) + 2t (v.Au —b) + t? (v, Av). (6.18)

Because A is positive-definite, the coefficient of ¢? is positive and so g has a
minimum in ¢{. not a maximum. By taking the derivative of ¢ and setting it equal

to zero. we can determine the value of ¢ where the minimum occurs. This value

is given by
- (v.Au-b)
= (6.19)
When we substitute ¢ into (6.18) and simplify. we obtain
. b — Au)?
glu+tv) =gq(u) — (v__u) (6.20)

(v.Av)

Thus. q(u + £v) is always closer to the minimum than q(u) unless v is orthogonal
to the residual b — Au, i.e. unless (v.b — Au) = 0. More importantly, if Au=b
then ¢ cannot be reduced any further. This fact sugé&sts an iterative process for
finding the minimum g. Successive vectors v{") are chosen, each appropriate value

t(") is computed, and each approximation

a™ D = ) 4 4yt (6.21)
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is closer to the solution of Au =b. We note that the algorithm will be most
efficient if the v(”) are orthogonal to each other. A thorough discussion of the
method is beyond the scope of this thesis. and we refer the reader to the book by
Kincaid & Cheney (1991).

The above procedures have all been implemented in standard C. and the source
code is given in Appendix C. The program was compiled and executed on Silicon
Graphics workstations (Indigo, Indigo 2 and Power Challenge). Computation time
required for one simulation ranged between several hours and two days. depending
on the size of the domain, the resolution of the grid, and the number of time steps.
The evolution of the flow was analyzed visually using GASP and NCAR libraries
as well as the Spyglass software package.

6.3 Linear Theory Results

We can always align the model geometry so that the r axis is parallel with the
mean flow. Following the same convention as in the rest of the thesis, z denotes
the along-channel coordinate and y the cross-channel (or cross-shelf) coordinate.
All experiments are performed in a channel which is periodic in x. For no normal
flow on the channel walls we require that the z-derivatives of the streamfunctions
h and p vanish on the boundaries. In practice. we fix the boundary data for all
time. The upper layer thickness is initialized with an appropriate front profile,
independent of z. To focus in on baroclinic effects, we initially set p equal to zero,
which corresponds no mean flow in the lower layer. An appropriate perturbation is
always imposed on p. and sometimes on h as well. The simulation then runs until
numerical error begins to obscure important flow features (usually after several
hundred thousand iterations).

We would first like to verify that the linear theory presented in Chapter 3 and
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our numerical scheme are consistent with one another. These experiments will
proceed as follows. The upper layer height is initialized with the gently sloping
wedge front discussed in Section 3.3, plus a perturbation.

hiz,y,t=0)=1+ca(y - é) + h'(z.y), (6.22)

while the lower layer pressure is initialized with a perturbation only,
p(z,y.t =0)=p'(z.y). (6.23)

The perturbations are determined by the expressions in (3.30) and (3.29), and the
parameters a and s are chosen so that linear theory holds (i.e. we are somewhere
on the MSC). In this case we expect that the wavefields will not grow. but will
simply propagate with the linear (real) phase speed given in (3.33). We therefore
have the luxury of initializing the second time step (necessary in a leapfrog scheme)
with the expected solutions at ¢ = Af.

Here we present two such experiments. at Points 1 and 2 (see Figure 3.1) on
the MSC. For the Upper Branch. we chose Point 1. with K2 = 1.01. s = o = 0.01.
so that 2 = 1. This is almost exactly the point of marginal stability, (1,1). The

perturbations imposed on h and p are

h' =p =amp sin(zi) cos(%), (6.24)
where the amplitude amp is made sufficiently small that linear theory should
be operative (see Figure 6.1). The perturbations are exactly the same for both
streamfunctions, as is required on the Upper Branch. The complete profile of
the upper layer is shown in Figure 6.2. Since Point 1 is exactly on the MSC, no

growth (or decay) should be visible. The phase speed cg has the value —1.6 x
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1074, from (3.33). Figure 6.3 is a time series of the upper layer perturbation. It
demonstrates that the perturbation does not deform in any appreciable way, and
its propagation speed is very small. A more precise calculation using the original
data can show that any given point of constant phase propagates to the left. at a
speed of —2.0 x 10~* which closely matches the theoretical value.

A similar experiment was performed on the Lower Branch of the MSC, at Point

o

. This time the initial parameters were K? = 0.49, s = 0.012, a = —0.01, so that
2 = ~1.23. The phase speed cp was calculated using (3.33) to be approximately
0.015. This time the wave speed is positive and the wave anomaly moves in the
opposite direction to the first experiment. A time series of this process can be
seen in Figure 6.4. Again. the wave perturbations in both layers move in unison.
without much alteration. A peak which is followed throughout the simulation
covers about 5 nondimensional length units in 400 nondimensional time units.
for a phase speed of 0.016. remarkably close to the predicted value. To determine

whether the flow was unstable in either experiment. the lower layer Kinetic Energy.

maxz L
KE = % / / Vp- Vp dydz. (6.25)
0

< Jminz

was tracked throughout both simulations. Some instability is inevitable in numer-
ical simulations due to round-off errors. however in both cases the KE maintained
its initial value to within 5% over a long time period. suggesting that very little

growth had occurred.
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Figure 6.1: Typical éaerturbation imposed on upper layer thickness.
Figure 6.2: Wedge front plus perturbation.
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Figure 6.3: Time series of upper layer perturbation for wedge front
at t=1 and t=126 (nondimensional time) on Upper Branch of MSC.
Theoretical phase speed is -0.00016. Continued on next page.
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Figure 6.3 continued: Time series of upper layer perturbation for
wedge front at t=251 and t=376 (nondimensional time).
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Figure 6.4: Time series of upper layer perturbation for wedge front
at t=1 and t=126 (nondimensional time) on Lower Branch of MSC.
Theoretical phase speed is 0.015. Continued on next page.
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Figure 6.4 continued: Time series of upper layer perturbation for
wedge front at t=251 and t=376 (nondimensional time).
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6.4 Weakly Nonlinear Results

To investigate the behavior of a marginally unstable wedge front. we introduced
the perturbed a and initialized the perturbation with the linear solution for the
associated a.. Moreover, the choice of the along-channel wavenumber k£ depended
on the region under consideration (see Figures 4.2 through 4.6). A simulation was
performed with K? = 2.0, s = 0.078, a. = —0.01 in a channel domain 10 units
long by 5 units wide. The parameter § was taken to be unity, which meant that
a = —1.048 x 1072 by (4.14). To investigate the behavior of the perturbation in
Region III (tvpical linear instability and nonlinear saturation) the value of k& was
taken as 1.26. which corresponded to two full waves in the z-direction.

The lower layer KE was tracked. which indicated the development of the flow.
Figure 6.5 is a plot of the KE. normalized by its initial value. versus time. We see
that there is an initial growth of the perturbation. followed by a saturation. This
consistent with the linear growth and nonlinear decay which our theory predicts.
At time t = 120 however. the KE begins to increase rapidly and the flow becomes
unphysical. The perturbation fields in both layers develop sharp peaks. often at
the grid resolution. which may be a sign of numerical instability.

Many other precise wedge-front experiments were performed. at various points
on both branches of the MSC. Unfortunately. the oscillatory signature of the
perturbation, though predicted by weakly nonlinear theory. was never observed.
Numerical error always prevented the onset of clearly periodic behavior. This
is not to say that the numerical scheme is inapprop.riate, nor that the model is
ill suited for computational integration. Indeed, many results were obtained for
more complex initial configurations, which were not subject to such instability
and agreed very well with real-world observations. Moreover, periodic weakly

nonlinear interaction was observed for an isolated front, however this front did
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not fall under the strict assumptions of our finite-amplitude theory. All these
simulations will be discussed shortly.

Regarding the wedge-front (without an outcropping), we conclude that numer-
ical verification is difficult, an assertion which may be worth investigating in itself.
At this point in the research, it appears that the clamped Dirichlet boundary con-
dition could be the origin for the difficulty. By fixing the upper layer thickness on
both channel walls, we prevent the average slope of the isopycnal from changing.
Individual anomalies are allowed to develop but the wedge shape is largely un-
changed. which may be unphysical. On the other hand. if an outcropping exists.
then the location of the front is determined by the dynamics of the model. and
the front profile can deform accordingly. Such simulations are. in general. well
behaved. It would be worthwhile to experiment with a fixed boundary condi-
tion on one wall. and a free boundary on the other wall. still requiring that the
z-derivatives vanish there.

While investigating an isolated front with an outcropping, we found evidence
for weakly-nonlinear interaction. The initial configuration was that of an upper
layer jet (to be discussed further in the next section). A time series of the upper
layer evolution can be seen in Figure 6.6. The front deforms horizontally into a
gentle wave. then returns to its initial shape, then deforms again. This process
repeated itself throughout the simulation. A plot of the lower layer KE versus
time in Figure 6.7 demonstrates growth and decay at more or less equal intervals.
Aside from the constant but small upward trend in the KE, we believe this periodic
behavior indicative of weakly nonlinear processes. However, comparing this result
with our analytical predictions is problematic, since the front is not linear in the
cross-channel direction, and outcrops on the surface. Both are features which the

theory does not take into account.
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Figure 6.6: Time series of upper layer thickness for a weakly
unstable isolated front at t=1 and t=350 (nondimensional time).

Continued on next page.

126



8.0

6.0 — —
—.19 19 '19—\\\———"____——

-’—-‘; 4.0 = -15——“_*\.15&__:
s —— 11 ——
S N —
) .07
QE) 20 - <> —
3
2
‘; 0.0 L | | 1 |
= 0.0 1.0 2.0 3.0 4.0 5.0 6.0
= 80 T T T T T
o
)
o
Q
2 8.0 —
c
<
=
T ___,/—’/-'NMJQ\‘\—‘\\—\_ _
R e T ————A
E //’:‘_\
U -

2.0 —

0.0
0.0

1.0 2.0 3.0 . 4.0 5.0 6.0

Along-channel coordinate (nondimensional)

Figure 6.6, continued: Time series of upper layer thickness for a
weakly unstable isolated front at t=400 and t=490 (nondimensional

time).

127



2.00

1.80

1.60

1.40 —

Lower layer normalized KE

1.20 -

1.00 : - :
0.0 200.0 400.0 600.0 800.0

time

Figure 6.7: Normalized lower layer Kinetic Energy versus time
for weakly—unstable isolated front simulation.

128



6.5 Jet Simulations

The isopycnal lines in cross-sections of surface currents such as the Gulf Stream
or the Agulhas Current usually form a distinct, isolated front, which outcrops on
the ocean surface (Gill, 1982). To leading order. the current is geostrophically
determined (Robinson, 1983), so that along-channel velocities are greatest at the
outcropping. where the y-derivatives of the isopycnals are at their maximum. In
an attempt to mimic such conditions, a number of numerical simulations have been
performed with a geometry shown in Figure 6.8. To excite the instability, the lower
layer pressure was initialized with a random superposition of small waves. It was
found that such a front readily deforms. after which warm-core eddies are shed.
a process which seems to be heavily influenced by the bottom slope. Cold-core
eddies were also observed.

In the following sections we will often give dimensional values for the space and
time variables. Such quantities were calculated using the nondimensionalization
scheme in Section 2.3 and typical scales for an oceanic shelf region (see Swaters.
1993). With ¢’ ~ 0.01. A ~ 30 m, H ~ 300 m and f, >~ 10~%. (2.29) defines
6 ~ 0.1 and (2.30) predicts a lengthscale L ~ 10 km. The internal Rossby radius
associated with the upper layer is then approximately 6 km. The internal Rossby
radius for the lower layer (or indeed. for the system as a whole) is §~% L. or in this
case roughly 17 km. Finally, the time scale as defined implicitly in (2.31) is 10°

sec. or about 1.2 days.
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6.5.1 Warm-Core Eddy Simulation

In a series of simulations, the initial upper layer thickness. h. was of the form

0 on ye(0,Y])
3 hmax (S0 55757 (4 — Ymia)] + 1) on ye(Y1L.Y2) (6.26)
Pmax on yE [Y2, L]

where ym.a = (Y1 +Y2)/2 and the bottom was flat. Figures 6.9 and 6.10a show
the evolution of & for Y1 = 2, Y2 = 5, and hpa = 0.1 at £ = 0, 51, 102, 154
and 207. This corresponds to approximately 0. 59. 118. 178 and 240 days. The
channel length and width were 6 and 8 units respectively, or in dimensional units.
60 and 80 km. In general. for a channel of this length, the front initially develops
a wavenumber 2 instability. This wave then breaks and forms meanders. The
meanders begin pinching off. i.e. warm-core eddies are shed by the current.

The resulting eddies are very reminiscent of vortices often observed near the
afore-mentioned currents. In Figure 6.10a. one eddy has already split off and
propagated away from the front while another eddy is just beginning to break
away. Figure 6.10b shows that the lower layer pressure closely mimics the structure
of the upper layer. An oblong high pressure cell whose center lies at r ~ 4.5,
y =~ 3.5 1s clearly discernible. These coordinates coincide with those of the isolated
upper layer eddy. Since p is a streamfunction, a high pressure anomaly implies
that an induced vortex exists in the lower layer.

The maximum current depth and velocity were va-ried in other simulations, as
were the size of the domain and the size of the initial perturbation in the lower
layer pressure. It was found that the dominant wavenumber of the deforming
front (and therefore the number of vortices shed) is determined by the length of

the channel. However this does not affect the intrinsic deformation wavelength.

131



Isolated Eddies are slightly elliptical in shape and most have a maximum diameter
of 20-30 km (certainly larger than the Rossby radius of the upper layer).

Our studies show that the eddies may interact with each other. interact with
the current. and eventually be reabsorbed by it. While outside the current. they
propagate parallel to it but in the opposite direction. This behavior was noted
in, for example. Chassignet et al. (1990) for a double gyre experiment using a
multilayer, isopycnic numerical model. It is worth pointing out that, barring a
serious asymmetry in the generation process, the eddies in our experiments have
no tendency to propagate across the channel. This is in contrast with bottom-
dwelling cold domes. which can acquire a cross-shelf velocity in the down-slope
direction. An eddy’s motion may, however, be perturbed through interactions

with the lower layer.
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Figure 6.10 a: Upper layer thickness at t = 206.
b: Lower layer geostrophic pressure at t = 206.
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6.5.2 Cold-Core Eddy Simulation

The isolated front simulations described above sometimes produced cold-core ed-
dies. This process seemed to be most affected by the bottom slope and the exact
initial distribution of perturbations in the lower layer. The process usually begins
with horizontal deformation of the front and meandering, as with the warm eddy
simulations. However in some cases one of the waves is seen to break vigorously
enough that it touches the crest of an adjacent wave. The two crests then merge,
‘trapping’ a pool of cold water within the jet. Thus, the cold-core eddy is just a
(more or less) circular area away from the original front, where the upper layer
thickness vanishes.

Here we present a simulation with the same initial conditions as above, but
with a bottom slope of 0.039. In Figure 6.11 we see the time series of the upper
layer thickness at ¢t = 0, 369, 416 and 465 (i.e. 0, 427, 481 and 538 days). The
lower layer pressure does not show an induced eddy, however the model was never
designed to capture such features. The vortex persisted largely unchanged for
a long time. It propagated parallel to the current but. again. in the opposite
direction.

Cold-core eddies are often seen in the vicinity of the Gulf Stream. especially
where it leaves the coast. They cross the front and migrate into the warmer
Sargasso Sea. Cold eddies in nature are usually circular for the majority of their
existence (Robinson, 1983), a result which was also observed here. The cold eddies
in this series of runs were generally smaller than warm eddies. This trend, while
not usually observed in association with the Gulf Stream. was also noted in a

numerical study by Bush et al. (1995).
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Figure 6.11, continued: Time series of the upper layer thickness for
an isolated front at t=418 and t=466 (nondimensional time).
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6.5.3 Effect of Bottom Slope

The present model incorporates a linearly-sloping bottom. which approximates the
slanted topography of a continental shelf. The velocities of surface currents and
fronts often become intensified near coastlines, where the ocean is typically very
shallow (see Pond & Pickard (1983) for a discussion of westward intensification).
This is when the ocean bottom plays an important role. In these simulations the
bottom slope seemed to correlate directly with the time of the first warm eddy
pinch-off. The results can be seen in Figure 6.12. We found that when s is between
-0.195 and 0.039. the flow is most conducive to eddy formation. For s > 0.039 the
instability is suppressed and the wave does not grow large enough to meander.
For s < -0.195. there is too much shear for coherent structures to form. or if
they do form. they are very short-lived. The reason for this behavior is as follows.
The bottom slope induces a topographic Rossby wave field in the lower layer. The
Rossby waves naturally tend to propagate with the shallow water on their right.
If the upper layer mean flow propagates in the same direction. then the lower layer
is able to stabilize any developing large scale structures. If, on the other hand,
waves in the slope water propagate in the opposite direction from the current.
then instabilities are suppressed. This result is consistent with the observation
that most warm and cold eddies are shed only after the Gulf Stream leaves the

continental shelf. Bush et al. (1995) also proposed this possibility.
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6.6 Coupled Fronts

A current, such as the Gulf Stream. sometimes exhibits two outcroppings of one
density surface (Gill, 1982). There are ample data involving these surface “coupled
fronts” from laboratory experiments, most notably GKS, and Griffiths & Linden
(1981). As an added motivation for this series of experiments. we can compare
our results with those of primitive equation numerical models, for example Pavia
(1992). A coupled front induces a shear flow (along-channel velocities in both
directions). This is because the leading order z-velocity is proportional to the
y-derivative of the isopycnal. as was explained in Chapter 2, the derivation of
the model equations. The upper layer profiles we tested were a gaussian curve.
a parabola. a cosine wave (from trough to trough) and several piecewise linear
fronts. We required that the y-structure was approximately bell-shaped. but the
exact function used did not have any crucial effect on frontal development. As for
the coupled fronts in the previous section. a random perturbation was introduced
into the lower layer pressure field to induce an instability in the flow.

Here we present results for a gaussian curve in the upper layer. where initially.
h = hmax exp[—a*(y ~ Ymea)?]- (6.27)

for all (z.y) in the domain. The general configuration is depicted in F igure 6.13.
It should be stressed that, while the gaussian curve is strictly positive, its shape
does approximate a coupled front fairly well. Profiles which actually outcrop on
the surface were also tested, and did not exhibit markedly different behavior.
These will be discussed later in the section.

A typical simulation can be summarized as follows. The current deforms asym-
metrically and promptly breaks up into distinct eddies (in accordance with GKS)
whose size is comparable to the width of the current, as reported by Griffiths &
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Linden (1981). The eddies are elliptical, but with a very small eccentricity. They
rotate clockwise. i.e. anti-cyclonically, where we mean that there is an overall
rotation of the ellipse about its center. This is quite separate from the rotation
of the fluid within the eddy, which is also anti-cyclonic due to the negative radial
derivatives of h and leading order geostrophy.

Figure 6.14 shows four frames from a time series of such a break-up, where
the parameters Apy.x. a and yms had the values 0.5. 2.0 and 5.0 respectively.
The domain was 12 units in the along-channel direction and 10 in the cross-
channel direction (approximately 120 km by 100 km). The first frame is the
initial configuration. and the other frames are at t = 2, 4 and 8 (i.e. 2. 5 and 9
days). Similar eddy development on a temporal scale of several days was observed
by Pavia (1992) in numerical experiments using a Lagrangian, “particle-in-cell”.
primitive equation algorithm.

Once formed. vortices in our simulations tend to be staggered about the line
of horizontal shear and do not usually propagate in any direction. Their locations
and translation can be influenced by a sloping bottom through strong anomalies
in the lower layer pressure. However this effect is transitory. and vields no consis-
tently preferred direction of motion. With a flat bottom. the arrangement of the
eddies seems to be dictated by conservation of total momentum, which is zero for
the initial current. We have observed that the emergent vortices are quite stable
when isolated. but if any two come close to one another, they are likely to merge.
The resulting oblong body is not so stable and can easily split into two separate
eddies again. A merger can be seen in Figure 6.15a and a subsequent splitting in
Figure 6.15b. These figures are a continuation of the time series in F igure 6.14.

The formation of nearly circular eddies for a coupled front was also noted
by Pavia (1992) for the numerically-integrated 13 layer model introduced by

Cushman-Roisin (1986). Since this is a barotropic model, and because the cou-
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pled front does create a strong horizontal shear in the upper layer, it is likely that
this particular instability is not primarily baroclinic. As in the jet simulations,
the number of vortices produced is heavily influenced by the length of the channel
domain. It should also be noted that the eddy development in a shear flow is very
rapid. at least an order of magnitude faster than in the isolated front simulations.
described above. This qualitative difference suggests another instability mecha-
nism. in addition to the release of available potential energy. This is. again, a

topic for future research.
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Figure 6.13: Coupled front profile
(i.e. a shear flow)
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6.7 A word about comparisons

Throughout this thesis we have referred to observational data from the world’s
oceans. In many ways this data compares favorably with results stemming from
the present model. However, in cases where scales of motion differ to some degree,
such comparisons can only be qualitative. Using the scalings discussed in Section
6.5. we find that warm core eddies in our jet simulations typically had a diameter
of 30 km. This is considerably smaller than vortices produced in the Gulf Stream
and other western boundary currents. which are often more than 100 km across
(Robinson. 1983). In fact. the Gulf Stream exists mainly in the open ocean. not
in the continental shelf region. Based on these considerations alone, a better
analogy for our model may be the smaller “Algerian” and “California” currents,
which exist close to the coast. and exhibit meandering and vortex-shedding on
smaller spatial scales. (Paldor & Ghil. 1991).

As was mentioned previously. the time required for the first warm eddy pinch-
off in our simulations is quite long. i.e. several months. However. there is nothing
in the scaling for time (2.31) to suggest such a requirement. In fact. with the
above mentioned depth ratio 6 = 0.1. we would expect the time scale to be quite
reasonable and future numerical simulations may verify this claim with a better
choice of parameters. such as perturbation size and maximum current depth.
Finally, it is important to realize that the same physical processes are often at
work on different scales. The present model and the analysis presented herein
aim to elucidate the relative importance of these proéesses in general, rather than

providing an accurate description of any particular oceanic feature.
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Chapter 7

Conclusions

A two-layer model for buoyancy driven currents on a sloping shelf has been pre-
sented. based on Swaters (1993). The model investigates baroclinic destabiliza-
tion. but unlike many previous models. does not rely on the quasigeostrophic
approximation. The linear problem for a wedge-front profile vielded sufficient cri-
teria for stability, and marginal stability curves involving the ratio of the interfa-
cial slope to the bottom slope, and the along-channel wavenumber. We presented
a weakly nonlinear theory for the said wedge profile. While this was a highly
idealized configuration which did not actually allow for isopycnal outcroppings,
the analysis retained the essential features of baroclinic instability through the
release of available potential energy and saturation of growth through nonlinear
interactions.

It was found that linear growth and nonlinear damping lead to oscillating
solutions, namely Jacobi elliptic functions. It was also found that, under certain
circumstances, a perturbation can experience explosive growth. The model is
not, however. subject to ultraviolet catastrophe in the linear sense, as are some
models with larger spatial scales. A more general equation. involving a large

spatial variable as well as slow time, was also derived, and the existence of steadily
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travelling soliton solutions was demonstrated. We believe this to be a significant
result. in that it confirms the possibility of the emergence of stable. coherent.
eddy-like structures.

Numerical experiments were performed in order to verify the theory, as well
as to explore more realistic flow scenarios. Linear analysis results can be demon-
strated computationally with little difficulty. Nonlinear saturation could be seen
in some simulations, but a peculiar numerical instability prevented observations of
oscillatory behavior. Simulations corresponding to realistic isolated and coupled
fronts produced meandering, warm and cold core eddies in the upper layer, as well
as lower layer induced eddies. Moreover. the rapidity of vortex shedding could be
correlated with the bottom slope in a way consistent with observations of the Gulf
Stream.

The research presented herein is a first step towards a full understanding of
the Swaters (1993) model. The initial results have proven encouraging. Our finite
amplitude theory predicts saturation of linear instabilities and the development of
stable. large scale structures. Numerical experiments demonstrate behavior which
mimics the most interesting aspects of buoyancy fronts, and is similar to behavior
seen in much more robust. continuously stratified numerical models. This leads
us to conjecture that the model embodies a good balance of appropriate scalings,
simplifying assumptions and essential physical relationships. Future work should
include establishing a clearer link between finite amplitude theory and numerical
integration of the full equations. More realistic flow configurations should also be

considered, perhaps a piecewise linear coupled front.
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Appendix A

Some Limits

A.1 Point a

At this point N =0 and o < 0. as in Figure 4.6. Equation (4.107) reduces to

so that if we take the square root of both sides.

Rr = /=0\/2R? ~ R2,

le.

——L =V —O’dT
V2R2 — R?

Integrating from R, to R and from 0 to T, results in the limiting case

R = V2R, sin(v=oT + g).
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A.2 Point b

Here 0 = 0 and N > 0, as in Figure 4.6. Equation (4.107) becomes
2 N o2 2y2
Rr=-5(R"-R)"<0. (A.5)

This is only possible if R = R, identically. We note that this solution does indeed

satisfy the initial conditions

as we require. Thus the solution for all T is

R=R,. (A.7)

A.3 RegionlI

In this region ¢ < 0. N < 0. We first want to make sure that the snoidal solution
in this region (i.e. Case 2) reduces to the solution (A.4) at Point a. Using the

results of Subsection 4.3.1.

20
R = TV:P (A.8)
20
= 3¢ s (BV=oT = 75)m?).
where
2_p2 1 (1 _ 5 a_p2 1_ 1 _p
6—P0+2+ 4 Po’ C—Po+2 4 Po? (Ag)
Qo
1 d€ 2 C2
T, = — , m? = 2. (A.10)
f’o/ J(1 =€) (m? - ) g2



N
P, =/ R,. (A.11)

20

Taking the limit of the coefficient of sn (3(7 — 7,)|m?) as N — 0~. we obtain.

i = T g ] 2 p
Nu_x%_,/ ¢= ILI{)I_\JJV-FRO \/Nz RZ = V2R, (A.12)

Taking the limit of the coefficient of T,

—
p—t

lim 3v—o = lim \J NR2 + - - —R2\/—a =1. (A.13)

N—O- N—0~ 2

e

Taking the limit of the parameter m> = %;

2 Np2yl_ /L Np2
Nl By e Al (A14
- - §;R5+§+\/Z—§;R;
Now we write T, as
1 3Q,, ¢?
n=-g s (). (A.15)

where @, = %P,, and sn~!( ) refers to the inverse Jacobi elliptic snoidal function.
Taking the limit of 7,. after a little algebra. we obtain

8Qo, ..
—‘0_ C INh_’r%_ :3—2) (A.16)
510)

2) = —1.sn7!

= —sn”}(

g

)

= — arcsin(

Nl -

™

1
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Now. since sn (u|0) = sin(u) (Milne-Thomson. 1950). the limit of R is
lim R = V2R,sin(v=oT + g). (A.17)

which is the limiting case (A.4).
We now show that Case 1 of Region I is a limit of Case 2. With R defined
by (A.8) through (A.11), we take all the limits. as P, — 3 :

lim ¢? = §. (A.18)
Po—1 4
: , 3
lim 3° = -. (A.19)
Po—1 4
lim m? =1, (A.20)
Py—3
Qo
. . 1 d€
P—1 Pomi 3 0/ \ﬁ1 ~ £2)(m2 — £2)
_ 2
T 3J 1-¢
3 |11+V3
Now we take the limit of P,
lim P = sn (-\/—5(1 - To)|1> (A.22)
P,—3 2 -
V3 V3

3
-5 tanh(—‘?-(T - To))

1 - V3 + (1 + V3) exp[v/37]
V3 =1+ (1 + v/3) exp[v/37]

which agrees with the solution (4.115).
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A.4 Region Il

In this region ¢ < 0, N > 0. We wish to check that the cnoidal solution reduces

to the solution (A.4) at Point a. Using the results of Subsection 4.3.2. Case 2,

-9 2 2
R= "5 en( é; +18(r = 7)l(1+ )7,

where
1 /1
8% =P+ 5+~ B (A.23)
and
11
C=Prey- ;P2 (A.24)

Taking the limit of the coefficient of the cnoidal function, as N — 0~.

]

) | —_
lim \/%5 = lim \JRg TR \/(——” +R)2~ R (A.25)

N—Q+ N—0O+ ] N

T 2,2 il 2)2
NLLI%—\’R°+N+\/(N + o)

- 2,2 _ 9% p
Jim, \/Ro+ - TR
= V2R,.

Taking the limit of the coefficient of .

) ¢ L o
Nh—.nc:)l*- 32 *18 = Nh—.rg+ ¢G+5 (A.26)

N 1
= — R2 —
N—o+ \ 2 —20R° + 4

. 1

- Nh-.nc}+ \ 2 4

= 1.
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Taking the limit of m? = _%3;

¢ R+l
N0 B2 Nhn(:)1+ N p2 B N1 (A-27)
~C—ER -3+ g
1.1
= lim 21+ 4
N—Q+ -3 + 3
Clearly. m? tends to infinity, therefore.
¢ A
Nll_.I](:)l+(1+ﬁ2) =0. (A.28)
We must also take the limit of 7,:
. = . _1/’) .2
Nh—rf)l*r To .vvh-.nol«* 3 ) / \/(52 C? /52 £2) (A.29)
= hm(( + 3)" Y2 en7Y Rll-’rc—) h
- N—0~ 3\/ 32
1
- 1 cen—l(_t_
= Nh_r.& l-cn (\/§|O)
1
= \h_’m? arccos(v_g)
Therefore. the limit of R becomes
T
i = 2 —_ - .
lim R V2R, cos(t 1 )' (A.30)
= V2R,sin(v=oT + g)

which exactly matches the solution at Point a, (A.4).

We now turn to Region II. Case 3. We show that it reduces to (A.7) at Point
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b. Here the solution may be written as

R=\[58 dn (Q(r = m)i1 - 55), (A31)
where
62=P3—%+,/P3+i>0, (A.32)
and
Cz-—Pf—l— P2+->0 (A.33)
2 4
The limit of the coefficient of the dnoidal function is
—20 o N o?
. = — . 2 il - 2 .
A R 3 JR" TNt TN (4.34)
= lim /R?
a—0—
= R,.
Taking the limit of the parameter.
: P -y~ JRE+]
lim 1 - C— = lim 2 2 (A.35)
o—0- 32 o0~ p2_ 14 [p2 L
~2,/3¥R2 + 1
= ali.r(x)l— N R2 1 = -NR47 1
it T2tV oty

since the highest power of ¢ appears in the denominator. We see that the solution

approaches

im R = lim R, dn ({(r —7))|0)

g—0~

= Ro’
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because dn (u|0) = 1 for any argument u (Milne-Thomson, 1950). This limit
matches the solution (A.7), at Point b.

Presently we demonstrate that Case 1 can be obtained as a limit of both
Case 2 and Case 3. The same procedure is followed as in Region I, above, and
so we only give the highlights. We take the solution @ as defined in (4.154) and
find the limit as P, — v/2.

. . 1
AimgQ = fimy on (1 VA =l a3
= lim sech (\/5(7'—7-0))
Po“'\/—é

= sech (\/g'r — In( \/5;- 1))

= V2 ((ﬁ,)_ 1) exp[V37] + (\/§+ 1) exp[—ﬁ-r]) B

2

which agrees with (4.146). Now taking Q as defined by (4.163).

P}i_mﬁQ = P}iinﬂ dn (V3(r - 7)|1) (A.38)
= p}l_rn‘/5 sech (\/3(7' - ro))
— sech (\/ﬁr — In( ‘/§2+ 1))

- V2 ( (‘/5,)' 1) exp[v/37] + (ﬁ; 1) exp[—\/§T]> B

and this again matches (4.146).
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A.5 Region III

The solution is

R= \/NPW dn (Pmax\/—T—T -

P2
p2

with
N 1 1 [2N
2 2 n2 N_ 2" po
Pmm (QO'RO :)) 2 o R0+1’
5 N , 1 2N
2 —=(_R2 = 02 p2
PFrux = (R; 2)+ —~ R +1
and
- _/ Q
\/ 1-— Qo (Pmm/Pmax)

Taking the limit of the coefficient of the dnoidal function.

_min )
b

—
lim /22 P lim \R2+Z + /2Ry &
1 — = —_ —_— —_
oo | T = UL N N N?
— 3 / 2
= SR VR
= R,
Taking the limit of the parameter.
N p2 1 1 /2N
him 1— Fon o Gefota) ~ 5y BRI+
o—0* P2, o0 TR+ 1) +3/8R2 4
. 2,/&R2+1
= m
0" NR2 14 ,/2R2 4
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since the denominator increases faster than the numerator. Now.

lim R = lim R,dn (me\/gT —7)0) (A.45)

og—0—

= R,.

Again. this matches the solution (A.7) at Point b.
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Appendix B

Expressions for o

B.1 Upper Branch, 2 -2 >0

-9-15/;2(—21:316%1-48k216K4%2\/1'2—“_—4818K4%2\/12j
+3PRBIL + 48K (-1 )" K*VIE =2+ 4815 K* %2 V2 — 2
+48(—1)"VIZ =218 K* - 4RI LIBK* +24%1 LK 15 K*

+ LK %11* +1536 82 KB L%11% +48(—1)1+m) 8 /2 2 *
+96 K LA -~ LPK2 %114 — K2 L3 K %1 12

—-3072 KO L% +96(—1)1+") k26 /2 9 K2

+2RP LK RIS 496 (~1)(1+0) 8 /2 — 2 K2

+2304 K2 SFLRBLI +2 L3 IS K %1 + k2 L3 K2 %1 12
+48(—1)+m)5/12 29 — 768 K4 52L%114-2k2L3%1z4
+15K° K* L%l +24%1 L 18 — 48 %1 L k2 16 K2

—12K° K L%114 - 361 K* L%l — 12k2 K* L %1 12

+T72%1 LI K? —48%1 LIBK? +24%1 L k%16 — 36 %1 L 16
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— 12K LI %1 +48k% (~1)"I5VIZ =2 - 9616 %2 K2 V2 — 2
+96%2 B K2V =2+ 4K LIK %1 + 96 (~1)" I8 K212 =2
+96K° K2 %2 12 -2 - 48K 15 %2VIZ ~ 2 — 48 %218 VIZ — 2
+4815%2VI2 -2+ 48(-1)"VIZ - 218 — 15k2 L K2 %1
~3LEK*%L+ 12k LI2%1) /(K™ L %1

(16 —32K2+24K* —8KS + K®))

% :=sin(\/l2_—§L)

%2:=cos(\/l7r§L)

Upper Branch, 2 -2 <0

1
96
+96%18V2—2K? —96k215%1 V2 — I2 K2

+ 48K %1 V2 — 12 ~ 96 B %1 V2 - I2 K2
+192( 1) %28 V2 12 K2+ 96 (—1)1"") 892 /2 — 2

—24 LK +96(—~1) 1™ k216702 _ 2

2 (— 18RILEBK?>+24%1 LKk?16 — 4861 L k218 K2

+96( 1) B%2 K42 - 12 +1536 82 KB4 L%1 — 215 L3 %1
+488V2 P K — 481V~ K*+215L%+15 Lk K %]

— 2L K* %1 + 96 %21 V2 — 12 (~1)" K* — 12k 12 L K* %1
—3072 2K L%1 +96 2K 1A L% + 312 K* L%1

—768 KM L%+ 2k L3I K %1 + 216 L3 K* %1

+24 %I LK +24%1 LKA IPK* — 48%1 16 V2 ~ 2 K*

+48KP P BIV2 — 1P K + 4818 %1 V2 — 2K + 48 K215 /2 — 2 K*

+ P KL%~ P K2LP %1 +2304 82 K214 L%1 —2k2 L3141
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B.3

-36°K* L% +K LPI°PK®%1 — K> L* 1> K*%1 — 24 LK I° K*
+12K2P LK ~15LEP K+ 12L K2 I K4 — 2 kK> L3 1* K
+768 P KMI*L -96 2K L+ kL3P K — KL} 12K?
—-1536 82 K8I*L +3072 62 K1 L — 2304 82 K2 1L —24 L I®
+96(—1)1*) 2o K42 2+ 48LISK? — 12 L k212

+ 12k L+ 3615 L -31PK*L ~48%115vV2 —12+24%1 L8
— 23K 4+ P K? [P+ 48 LK K2 —I*K* [ +36(°K*L
+2K2 L3+ 15K L K2 — 4Lk 1P K% - 4815V =12
+4818V2 2 —ULBK* +488%1 V2 — 2+ 48Kk216 V2 — 2
— T2 LK*+ 3L K2+ 192k 15%2(-1)" V2 - 2 K?
+1928%2(~1)"K2V2 -2 - 12LK* I*%1 + 7215 L %1 K2
—3PK L% — 15K LK*%1 - 9618 V2 — 2 K? — 361° L %1
+2 LK K% + 12K P L%1 — 96 K2 15 V2 — 2 K2
+96%21° V2~ (-1)"+961°V2 - PK?) /(I* L(~1+%1)

(=2 + K?)*K™)
%l = o(—2v2-2L)

%‘) c== e(—m L)

Lower Branch

%kz (-—48(—-1)"18K4\/l2+2—48(—1)"1c216K“\/12+2
48 (=1 I°K*VI2+2 -~ 152 K*L%1 — 12 kK2 K* L %1 12
+36 K L%l + 12k KA L%11* —2L315%1 — LB K* %114

+ 23K %11 +2304 K2 2L %114 — L3 K2%1 14
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+96 K SPLBIA + 2K L3K* %114 — 3K %112 L
+4818%2VIZ + 2K +24 %1 LK IS K* + 481 K* %2 VIZ 1 2
+24%1 LIPK* + 48K 1P K %2 VI + 2 + 1536 62 K8 L %114
—2KP LA %11 +2 L3 P K %1 + 3072 2 K L %114

+K LK% + 768 K™ 2 L%1I* +24%1 L 18

+24%1 LK* I +36%1 LIS+ 12k*%1I4L —~ 15 k2L K2 %1
—48(-1)"VI2+ 218 +48%1 LK2IS K2 + 4818 %2 VIZ 1 2
+ 4818 %2 V2 +2 — 48 (~1)" I V2 + 2 — 96 k2 (—1)" I8 VIZ + 2 K2
+96k216K2%2\/12—m+48%1L18K2+24k2LK2%114
+T2LK*%1 ~3LK %112+ 12k2 %112 L

+96 8 %2VE +2K2 — 18k (~1)"I6 VI + 2
~96(-1)" VR +2K>+96 1 K292V + 2
—96(—1)"18K2\/m+48k216%2ﬂ2)/(K“’L%U‘*
(16 +32K*+24 K* + 8 K® + K%))

%1:=sin(\/m[,)

%2:=COS(ML)
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Appendix C

Numerical Solver

/#****t###*#**t*#*t**##t*###*t*t*###t*t#**t*#t****#*ttt*t‘***t*** */

/* Program DDC12.C */
/* Density Driven Current */
/* Programmer: Matt Reszka */
/* Department of Mathematics */
/* University of Alberta */
/* 16 06 97 */
/* Finite Difference Scheme for the coupled PDE pair contained in */
/* ON THE BAROCLINIC DYNAMICS, HAMILTONIAN FORMULATION  */
/* AND GENERAL STABILITY CHARACTERISTICS OF DENSITY- */
/* DRIVEN SURFACE CURRENTS AND FRONTS OVER A SLOPING */
/* CONTINENTAL SHELF by Gordon E. Swaters, Professor of Mathematics */
/* Phil. Trans. R. Soc. Lond. A 345, 295-325 */

/*##*#*##tt*‘*#**##t*****tt##‘#**#**t**#*#*##**ttt*tt*#t**#*****t t/

/t‘ttt**#****t**##*****#*ttt**#*t#**t#t#**#**t********##**#****** #/

/* Programming notes: */
/* Compiled on a Silicon Graphics Indigo workstation, using the syntax */
/* cc -03 -0 ddc12 ddcl2.c -Im */
/* Leapfrog finite difference in time. Central finite difference in space. */
/* Jacobian terms approximated using Arakawa (1966) Scheme. */
/* Variables h and q integrated forward in time, p recovered from q using a */
/* Conjugate-Gradient Poisson-problem solver. Smoothly periodic channel in x.  */
/* Clamped Dirichlet boundary conditions on y. Data dumped to 3 */
/* files: one for h, one for p (both in binary format), and one control */
/* file (text format) containing derived quantities such as the KE. */

/###*###tt****t*#*tt****tt*****tt**#t***t*#**t**t***t***t**t***#* */
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/* "Si apud bibliothecam, hortulum habes, nihil geerit." */

/* include necessary header files */
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/time.h>

/* define constants */

#define PI 3.1415926535897932
#define MINX (0.0)

#define MAXX (6.0)

#define MINY (0.0)

#define MAXY (8.0)

#define s 0.0

#definea 2.0

#define hmax 0.1

#define XINC 80

#define YINC 160

#define TINC 1000000

#define TSKIP 2000

#define XSKIP 1

#define YSKIP 1

#define dx (MAXX - MINX) / XINC)
#define dy dx

#define dx2 (dx * dx)

#define dy2 (dy * dy)

#define dt 0.0004

#define N (XINC * (YINC - 1))
#define TNODES (TINC / TSKIP + 1)
#define YNODES (YINC/ YSKIP + 1)
#define XNODES (XINC / XSKIP)

#define H_FILE "jet1b-h.dat"
#define P_FILE "jet1b-p.dat"
#define HAM_FILE "jet1b-ham.dat"
#define digits 10000

#define HFRIC 0.0

#define FRIC 0.0

#define ROBFIL 0.005

#define TITLE "DDC 1.2"
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/* double precision PI */

/* minimum x value for xy region */

/* maximum x value for xy region */

/* minimum y value for xy region */

/* maximum y value for xy region */

/* bottom slope (assumed positive) */

/* parameter within hO */

/* half of h0_max */

/* x increments for xy region */

/* y increments for xy region */

/* t increments for time */

/* save data every TSKIP t-increments */
/* save data every XSKIP x-increments */
/* save data every YSKIP y-increments */
/* delta x for xy region */

/* delta y for xy region */

/* delta x squared */

/* delta y squared */

/* delta t for time */

/* size of system for poisson solver */

/* number of time-slices saved */

/* number of nodes saved in y dir. */

/* number of nodes saved in x dir. */

/* file name for h data */

/* file name for p data */

/* file name for Hamiltonian data */

/* factor used in saving real numbers */
/* horizontal friction coefficient */

/* upper layer friction coefficient */

/* value of Robert filter */

/* program title */



/* declare variables */
double x, v, t;

/* x, y and time */

double H; /* Hamiltonian (invariant) */

double KElo, KEup; /* KE of upper and lower layers */

double M, M2; /* Mass, Mass”2 (invariant) */

double Ens; /* Enstrophy */

double PertKE,; /* Perturbation KE (upper layer) */
double initH; /* initial Hamiltonian */

double initKElo; /* initial KE of lower layer */

double initKEup; /* initial KE of upper layer */

double initM, initM?2; /* initial Mass and Mass~2 */

double initEns; /* initial Enstrophy */

double initPertKE; /* initial upper Perturbation KE */

int i, j, k, ip, im, jp, jm; /* counter variables */

int ipp, imm, jpp, jmm,; /* counter variables */

time_t thetime; /* current time from system clock */
double hO [XINC+1][YINC+1]; /* solution matrix for h at t - 2dt */
double h1 [XINC+1][YINC+1]; /* solution matrix for h at t - dt */
double h [XINC+1][YINC+1]; /* solution matrix for h at t */
double p0 [XINC+1][YINC+1]; /* solution matrix for p at t - 2dt */
double p1 [XINC+1][YINC+1]; /* solution matrix for p at t - dt */
double p [XINC+1][YINC+1]; /* solution matrix for p at t */
double qO0 [XINC+1][YINC+1]; /* intermediate solution at t - 2dt */
double q1 [XINC+1][YINC+1]; /* intermediate solution at t - dt */
double q [XINC+1][YINC+1]; /* intermediate solution at t */
double vfrc [XINC+1]J[YINC+1]; /* used in friction for q */

double Al [XINC+1][YINC+1]; /* term 1 of equation 1 */

short int output [XINC+1]; /* binary output array */

short int tagl, tag2;

double b [N+1];
double soln [N+1];

FILE *H_stream;
FILE *P_stream;
FILE *Ham_stream,;

void ret (int car) /* force carriage return */
{
int mm;
for (mm = 1; mm <= car, mm++)
printf ("\n");
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/* needed for FORTRAN-readable data */

/* RHS vector in Poisson solver */
/* solution to Poisson equation */

/* output file (h data) */
/* output file (p data) */
/* output file (Hamiltonian) */



}

double fmax (double num1, double num2) /* return the max of two f. p. numbers */

{
if (num! >= num?2) return (num1);

else return (num2);
}
double Sqr (double num) /* square a floating point number */
{
return (num * num);
}
double f (double x, double y) /* IC and BC for h */
{

/* return (hmax * exp (- Sqr (a * (y - MAXY / 2.0)))); */
/* return (hmax + a * (y - MAXY / 2.0)); */

if (y < 4.0) return (0.0);

if (y > 7.0) return (2.0 * hmax);

else return (hmax * sin ((y - 5.5) * PI/ 3.0) + hmax);

}
double g (double x, double y) /* IC and BC for p */
{
return (0.0);
}

/* finite difference approximations for derivatives */

double Dx (double ar [J[YINC+1], int m, int n)

{
if ((n==0) || (n = YINC)) return (0.0);
if (m = 0) return ((ar [1][n] - ar [XINC-1]{n]) / (2.0 * dx));
if (m == XINC - 1) return ((ar [0][n] - ar [XINC-2][n]) / (2.0 * dx));
else return ((ar [m+1][n] - ar [m-1]{n]) / (2.0 * dx));
}
double Dxx (double ar [J[YINC+1], int m, int n)
{

if ((n ==0) || (n == YINC)) return (0.0);

if (m == 0) return ((ar [1][n] - 2.0 * ar [0][n] + ar [XINC-1][n])
/ dx2),

if (m == XINC - 1) return ((ar [0][n] - 2.0 * ar [XINC-1][n]
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+ar [XINC-2][n]) / dx2);
else return ((ar [m+1][n] - 2.0 * ar [m][n] + ar [m-1][n]) / dx2);

}
double Dy (double ar [J[TYINC+1], int m, int n)
{
if (n == 0) return ((4.0 * ar [m][1] - 3.0 * ar [m][0] - ar [m][2])
/(2.0 * dy));
if (n = YINC) return ((ar [m][YINC-2] - 4.0 * ar [m][YINC-1]
+3.0 * ar [m][YINC]) / (2.0 * dy));
else return ((ar [m][n+1] - ar [m][n-1]) / (2.0 * dy));
}
double Dyy (double ar [J[lYINC+1], int m, int n)
{
if (n == 0) return ((2.0 * ar [m][0] - 5.0 * ar [m][1]
+4.0 * ar [m][2] - ar [m][3]) / dy2),
if (n = YINC) return ((2.0 * ar [m][YINC] - 5.0 * ar [m][YINC-1]
+4.0 * ar [m][YINC-2] - ar [m][YINC-3]) / dy2);
else return ((ar [m][n+1] - 2.0 * ar [m]([n] + ar [m][n-1]) / dy2);
}
double Top (double y) /* bottom topography */
{
return (s * y);
}
void Solver (void) /* Poisson equation solver */
{
int i, j; /* counter variables */
double sum,; /* temporary sum */
double norm; /* norm squared */
double d, w; /* weights */
double ¢ [N+1]; /* temporary vector */
double r [N+1]; /* temporary vector */
double z [N+1]; /* temporary vector */

/* set up b, using BC, q and h */
for (i=0;i <= XINC - 1; i++)

{
b [i+1] = - dx2 * (q [i][YINC-1] - h [i][YINC-1]
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+ Top (MAXY - dy)) + g (MINX +i * dx, MAXY);
b [XINC*(YINC-2)+1+i] = - dx2 * (q [i][1] - h [i][1]
+ Top (MINY + dy)) + g (MINX +i * dx, MINY),

}
for (j = 2; j <= YINC - 2; j++)
{
y =MINY +]j * dy;
for (i =0; i <= XINC - 1; i++)
{
b [(YINC-j-1)*XINC+i+1] = - dx2 * (q [i]{j] + Top (¥)
- h [11GD);
}
}

/* conjugate gradient algorithm for Ax =b (note: x is 'soln') */
norm = 0;

for(1=1;i<=N;i++)

{
r [i]=b [i] - 4.0 * soln [i];
}
for 1= 1;1<=N - XINC; i++)
{
r [i] = r [i] + soln [XINC+i];
r [XINC+i] = r [XINC+i] + soln [i];
}
for (j =0;j <= YINC - 2; j++)
{
for(i=1;i<=XINC - 1; i++)
{
r [[*XINC+i] = [j*XINC+i] + soln [j*XINC+i+1];
r [j*XINC+i+1] =r [j*XINC+i+1] + soln [j*XINC+i];
}
}
for(G=1;j<=YINC- I;j++)
{

r [G-1)*XINC+1] = r [(j-1)*XINC+1] + soln [j*XINC];
r [[*XINC] = r [j*XINC] + soln [(j-1)*XINC~+1];
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}

fori=1;1i<=N;i++)

{
c [i] =r[i];
norm = norm + Sqr (r [i]);
}
while (norm >= 0.00000001)
{

sum = Q;

for(i=1;i<=N; it++)

{
z[i]=4.0 * c[i];
}
for (i=1;i<=N - XINC; i++)
{
z [i] = z [i] - ¢ [XINC+i];
z [XINC+i] = z [XINC+i] - ¢ [i];
}
for (j = 0; j <= YINC - 2; j++)
{
for(i=1;1<=XINC- I, i++)
{
z [j*XINC+i] = z [j*XINC+i] - ¢ [j*XINC+i+1];
Z [[*XINC+i+1] = z [j*XINC+i+1] - ¢ [j*XINC+i];
}
}
for j=1;j <= YINC - 1; j++)
{
z [(-1)*XINC+1] = z [(-1)*XINC+1] - ¢ [j*XINC];
z [[*XINC] = z [j*XINC] - ¢ [(-1)*XINC+1];
}
for(i=1;i<=N;it++)
{
sum = sum + ¢ [i] * z [i];
}
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}

w = norm / sum,;
d=0;

for (i=1;i <=N; i++)

{
soln [i] = soln [i] + w * ¢ [il;
rli}=r[i]-w*z[i};
d=d+r[i]*r[i];

}

for(i=1;i<=N;i+t+)

{
}

norm =d;

cli]=r[i]+d/norm * ¢ [i];

}
/* update p */

for(G=1;j<=YINC- 1;j++)

{
for 1=0;1<=XINC - 1, i++)
{
p [i1[j] = soln [(YINC-j-1)*XINC+i+1];
}
}

void Setup (void) /* initial housekeeping */

{

double amp, tr, num, wn0, wnl;
double max_hOy;
intil, j1, nO, nl;

double arcl [XINC+1][YINC+1];
double arc2 [XINC+1][YINC+1];

tagl =0;
tag2 =2 * XNODES;

/* save header info */

fprintf (Ham_stream, "%14.10f\n", 0.0);
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/t

*/

fprintf (Ham_stream, "%14.10f\n", TINC * dt);
fprintf (Ham_stream, "%14.10f\n", MINY);
fprintf (Ham_stream, "%14.10f\n", MAXY);
fprintf (Ham_stream, "%14.10f\n", MINX);
fprintf (Ham_stream, "%14.10f\n", MAXX);
fprintf (Ham_stream, "%14. lOt\n", dr);
fprintf (Ham_stream, "%14.10f\n", dy);
fprintf (Ham_stream, "%14.10f\n", dx);
fprintf (Ham_stream, "%d\n", TNODES);
fprintf (Ham_stream, "%d\n", YNODES);
fprintf (Ham_stream, "%d\n", XNODES);

/* set initial b, p and q */

n0 =2;

wnO = n0 * PI/ MAXX;
nl =5;

wnl =nl * PI/ MAXX;
amp = 0.02;
max_hOy = 0.0;

printf ("n0 = %d nl = %d wn0 = %5.2f wnl = %5.2f\n", n0, n1, wnO, wnl);,

for 1=0;1<=XINC - 1; i++)

{
x=MINX +1i * dx;
for = 0; j <= YINC; j++)
{
=MINY +j * dy;
ho [i]j] = £ (x, y);
} pO [i]j] =g (x, y);
}
time (&thetime);

srand48 (thetime);
for (i=n0; i <=nl; i++)
{
for (j =n0; j <=nl; j++)
{
tr=2.0 * PI * drand48 ();
num = drand48 ();
arcl [i][j] = num * cos (tr);
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arc2 [i][j] = num * sin (tr);

}
}
for (j = 0; j <= YINC - 1; j++)
{

y =MINY +j * dy,
for(1=0;1<=XINC- 1;i++)
{

x=MINX +1 * dx;

for (il =n0; il <=nl; il++)

{
for (j1 =n0; j1 <=nl;jl++)

{
amp = 1.0/ sqrt (Sqr (il * 2.0 * PI/ MAXX)
+ Sqr (j1 * PI/ (MAXY - MINY)));
pO [1]] = pO [i](j] + amp
* (arcl [i1][j1] * cos (2.0 * PI * x * il / MAXX)
-arc2 [i1][j1] * sin (2.0 * PI * x * il / MAXX))
*sin (j1 * PI * (y - MINY) / MAXY - MINY))
*(cos ((2.0*j1 +1.0) *PI * (y - MAXY /2.0)/ MAXY) + 1.0) * 0.5;
} }
if (Dy (hO, i, j) > max_hOy) max_hOy = Dy (h0, i, j);

}
printf ("max hOy = %8.5f\n", max_hO0y);

initKElo = 0;
initKEup = 0;
for(1=0;i<=XINC - 1; i++)
{
for j=0;j <= YINC - 1; j++)
{ )
initKElo = initKElo + Sqr (Dx (p0, i, j))
+ Sqr Dy (p0, i, )));
initKEup = initKEup + h0 [i][j]
* (Sqr (Dx (0, i, }))
+ Sqr (Dy (h0, i, j)));
}
}
initKElo = dx * dy * initKElo;
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initKEup = dx * dy * initKEup;
amp = sqrt (initKEup / initKElo * 0.5);

for (i=0;i<=XINC - 1; i++)
{
for (j =0; j <= YING; j++)
{
pO [i](j] = amp * pO [i](];
pl [1]0] = pO [i](j];
ht [i][j] = hO [i]];
h [i](] = h1 [i]G];
p [ili] = p1 10T

}

for (j =0; j <= YINC; j++)
{
y = MINY +j * dy;
for (i=0;i<=XINC - 1; i++)
{
q0 [i](j] = hO [i][j] + Dxx (pO, i, j) + Dyy (p0, i, j)
. - Top (y);
ql [i](] = h1 [i]] + Dxx (pl, i, j) + Dyy (p1, i, )
- Top (y);
vire [i][j]1 = 0.0;

}

for G=1;j<=YINC- 1, j++)

{
for 1=0;i<=XINC - 1; i++)

{
}

soln [(YINC-j-1)*XINC+i+1] = p1 [i][j];

initKElo = 0;
initKEup = 0;
initM = 0;
initM2 = Q;
initEns = 0;
initPertKE = 0;
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for (i=0;i <= XINC - 1; i++)
{
x=MINX +1i * dx;
for j =0; j <= YINC - 1; j++)
{
y =MINY +j * dy;
initKElo = initKElo + Sqr (Dx (po, i, j))
+ Sqr (Dy (p0, i, j));
initKEup = initKEup + hO [i]{j]
* (Sqr (Dx (ho, i, j))
+ 8qr (Dy (ho, i, j)));
initM = initM + hO [i][j];
initM2 = initM2 + Sqr (hO [i][j]);
initEns = initEns + Sqr (qO [i](j] - hO [i][j] + Top (¥));
initPertKE = initPertKE + (hO [i][j] - f(x, y))
* (Sqr (Dx (ho, i, j))
+ Sqr (Dy (hO, i, j) - a));
}
}
initKElo = dx * dy * initKElo;
initKEup = dx * dy * initKEup;
initH = 0.5 * (initKElo - initKEup);
initM = dx * dy * initM
initM2 = dx * dy * initM2;
initEns = dx * dy * initEns;
initPertKE = dx * dy * initPertKE;
printf ("ef = %8.5f\n", initKElo / initKEup);

/* save initial h0, p0 */

for (j =0; j <= YNODES - 1; j++)

{
y =MINY +j * dy;
fwrite (&tagl, 2, 1, H_stream);
fwrite (&tag2, 2, 1, H_stream);
for (i =0; i <= XNODES - 1; i++)
{

}

fwrite (output, 2, XNODES, H_stream);
fwrite (&tagl, 2, 1, H_stream);

fwrite (&tag2, 2, 1, H_stream);

output [i] = digits * h0 [i*XSKIP][j* YSKIP];
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/* save initial pO */

for (j = 0; j <= YNODES - 1; j++)

{
fwrite (&tagl, 2, 1, P_stream);
fwrite (&tag2, 2, 1, P_stream);
for (i = 0; i <= XNODES - 1; i++)
{

}

fwrite (output, 2, XNODES, P_stream);,
fwrite (&tagl, 2, 1, P_stream);

fwrite (&tag2, 2, 1, P_stream);

output [i] = digits * p0 [i*XSKIP][j* YSKIP];

}
/* save initial H, KElo, KEup, M, M2 and Ens */

fprintf (Ham_stream, "%16.10f", 0.0);
fprintf (Ham_stream, "%16.10f", initH);
fprintf (Ham_stream, "%16.10f", initKElo);
fprintf (Ham_stream, "%16.10f", initKEup);
fprintf (Ham_stream, "%16.10f", initM);
fprintf (Ham_stream, "%16.10f", initM2),
fprintf (Ham_stream, "%16.10f", initEns),
fprintf (Ham_stream, "%16.10f", initPertKE);
fprintf (Ham_stream, "\n"),

/* if any term is O, set it to 1 (for future normalization) */

if (initH == 0) initH = 1.0;

if (initKElo == 0) initKElo = 1.0;
if (initKEup = 0) initKEup = 1.0;
if (initM == 0) initM = 1.0;
if (initM2 == 0) initM2 = 1.0;

if (initEns == 0) initEns = 1.0;

/* save initial normalized H, KElo and KEup */

fprintf (Ham_stream, "%16.10f", 0.0);

fprintf (Ham_stream, "%16.10f", initH / initH);

fprintf (Ham_stream, "%16.10f", initKElo / initKElo);
fprintf (Ham_stream, "%16.10f", initKEup / initKEup);
fprintf (Ham_stream, "%16.10f", initM / initM);
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fprintf (Ham_stream, "%16.10f", initM2 / initM2);
fprintf (Ham_stream, "%16.10f", initEns / initEns);
fprintf (Ham_stream, "%16.10f", initPertKE);
fprintf (Ham_stream, "\n");

/* save initial hl, p1, and Hamiltonian data */

if (TSKIP = 1)
{
for (j =0; j <= YNODES - 1; j++)
{
fwrite (&tagl, 2, 1, H_stream);
fwrite (&tag2, 2, 1, H_stream);
for 1= 0; i <= XNODES - 1; i++)
{

}

fwrite (output, 2, XNODES, H_stream);
fwrite (&tagl, 2, 1, H_stream);

fwrite (&tag2, 2, 1, H_stream);

output [i] = digits * h1 [i*XSKIP][j*YSKIP];

}

for (j = 0; j <= YNODES - 1; j++)
{
forite (&tagl, 2, 1, P_stream);
fwrite (&tag2, 2, 1, P_stream);
for (i = 0; i <= XNODES - 1; i++)
{
output [i] = digits * p1 [i*XSKIP][j*YSKIP];

fwrite (output, 2, XNODES, P_stream);
fwrite (&tagl, 2, 1, P_stream);
fvrite (&tag2, 2, 1, P_stream);

}

fprintf (Ham_stream, "%16.10f", dt);

fprintf (Ham_stream, "%16.10f", initH / initH),

fprintf (Ham_stream, "%16.10f", initKElo / initKElo),
fprintf (Ham_stream, "%16.10f", initKEup / initKEup);
fprintf (Ham_stream, "%16.10f", initM / initM),
fprintf (Ham_stream, "%16.10f", initM2 / initM2),
fprintf (Ham_stream, "%16.10f", initEns / initEns);
fprintf (Ham_stream, "%16.10f", initPertKE);
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}

fprintf (Ham_stream, "\n");

fllush (NULL),

}

void SaveData (void) /* save data to disk files */

{

/* save h */

for j =0; j <= YNODES - ; j++)

{

}

fwrite (&tagl, 2, 1, H_stream);
fwrite (&tag2, 2, 1, H_stream),
for (i =0; i <= XNODES - 1; i++)
{

}
fwrite (output, 2, XNODES, H_stream);

fwrite (&tagl, 2, 1, H_stream);
fwrite (&tag2, 2, 1, H_stream);

output [i] = digits * h1 [i(*XSKIP][j*YSKIPJ;

/* save p */

for j =0; j <= YNODES - 1; j++)

{

}

fwrite (&tagl, 2, 1, P_stream);
fwrite (&tag2, 2, 1, P_stream);
for (1 =0; i <= XNODES - 1; i++)
{

}

fwrite (output, 2, XNODES, P_stream);
fwrite (&tagl, 2, 1, P_stream);

fwrite (&tag2, 2, 1, P_stream);

output [i] = digits * p1 [i(*XSKIP][j*YSKIP];

/* determine Hamiltonian */
/* (invariant if h and p are zero on the boundaries) */

KElo =0;
KEup =0;

M=0;
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M2=0;
Ens =0;
PertKE = 0;
for (i=0;i<=XINC - 1; i++)
{
x=MINX +1i * dx;
for G=0;j <= YINC- 1; j++)

{
y = MINY +j * dy;
KElo = KElo + Sqr (Dx (p1, i, j))
+8qr Dy (pL, §, j));
KEup = KEup + hl [i][j]
* (Sqr (Dx (h1, i, j))
+8qr (Dy (h1, i, j)));
M =M +hl [i][j];
M2 =M2 + Sqr (hl [i][j]):
Ens = Ens + Sqr (q1 [i](j] - b1 [i][] + Top (y));
PertKE = PertKE + (h1 [i][j] - £ (x, Y))
* (Sqr (Dx (hl, i, j))
+ Sqr (Dy (hl, i, j) - ));
}

}

KElo = dx * dy * KElo;
KEup =dx * dy * KEup;
H=0.5 * (KElo - KEup);
M=dx *dy * M;

M2 =dx * dy * M2;
Ens = dx * dy * Ens;
PertKE = dx * dy * PertKE;

/* save Hamiltonian and its 2 terms */

fprintf (Ham_stream, "%16.10f", t);

fprintf (Ham_stream, "%16.10f", H/ initH); )
fprintf (Ham_stream, "%16.10f", KElo / initKElo);
fprintf (Ham_stream, "%16.10f", KEup / initKEup);
fprintf (Ham_stream, "%16.10f", M / initM);

fprintf (Ham_stream, "%16.10f", M2 / initM2);
fprintf (Ham_stream, "%16.10f", Ens / initEns);
fprintf (Ham_stream, "%16.10f", PertKE);

fprintf (Ham_stream, "\n");
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printf ("%14.10f\n", H / initH);

fllush (NULL);
}
void main (void)
{

printf ("%s", TITLE);
ret (1);

/* open data files */
if ((H_stream = fopen (H_FILE, "wb")) = NULL)

{
printf ("Cannot open output file.\n"),
exit (1); /* exit program */
}
if ((P_stream = fopen (P_FILE, "wb")) == NULL)
{
printf ("Cannot open output file.\n");
exit (1); /* exit program */
}
if ((Ham_stream = fopen (HAM_FILE, "w")) = NULL)
{
printf ("Cannot open output file.\n");
exit (1); /* exit program */
}

/* initial setup of all variables and conditions */
Setup (),
/* finite difference approximation loop */
for (k =2; k <= TINC; k++)
{ t=k*dt;
if (abs (H / initH) > 1000) exit (0);
for = 0; j <= YING; j++)
{ for 1=0;i<=XINC - 1; i++)

{
Al [i]i] = p1 [i]0]
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+hI[i]] * (Dxx (h1, i, j)

+Dyy (hl, i, j))
+0.5 * (Sqr (Dx (hl, i, j))
, +Sqr Dy (hl, i, j)));
}
for (i = 0; i <= XINC - 1; i++)
{
ip=i+1;
im=i-1;

if (ip = XINC) ip = 0;
if (im == - 1) im = XINC - I;

for j =1;j <= YINC - 1; j++)
{ . .

Jp=j+1

jm=j-1;

h [i]03] = ho [i][3]
+2.0*dt/(12.0 * dx2)
* (b1 [i]jm] + b [ip](jm] - h1 [i]{ip] - h1 [ip]ip])
* (Al [ip](] - A1 [{]GD
*+ (bl [im]{jm] + h1 []jm] - b [im][jp] - h1 [i)(jp])
* (AL [i][] - Al [im](j])
* (b1 [ip][j] + h1 [ip]Gip] - h1 [im][j] - h1 [im](jp])
* (Al [i]ip] - A1 [i][j])
* (bl [ip]{jm] + h1 [ip](j] - h1 [im](jm] - h1 [im][j])
* (AL [i][j] - Al [i][jm])
* (b1 [ip](j] - b1 [i]Gip]) * (A1 [ip][ip] - A1 [iI(i])
* (b1 [i]{jm] - hl [im][]) * (A1 [i][j] - Al [im](jm])
*+ (b1 [i](jp] - h1 [im](j]) * (A1 [im][jp] - A1 [il[i])
+ (bl [ip][j] - h1 [i]{im]) * (A1 [i][j] - Al [ip][jm]))

+(2.0 * dt * HFRIC / dx2) * (h0 [im](j] + h [ip][]
+ 10 [i][jm] + ho [iljp] - 4.0 * ho [i][j]);

if (h [i]{j] < 0.0) h [i][j] = 0.0;
q [i](] = 90 [i]J[]
+2.0 * dt/(12.0 * dx2)

* ((q1 [i]jm] + q1 [ip](jm] - q1 [i](ip] - q1 [ip]Lip])
* (p1 [ip](i] - p1 GIGD
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+(q1 [im]jm] + q1 [i]{jm] - q1 [im]{jp] - q1 [i]Gip])
* (p1 [i]G] - p1 [im]G]) .

*+(ql [ip](i] + a1 [ip]lip] - q1 [im](] - q1 [im][jp])
* (p! [i]0pI] - p1 GIGD _ _
*+(ql [ip]Gm] + q1 [ip][j] - q1 [im](jm] - q1 [im]G])
* (p1 [i]0] - p1 [i]Gm])

+(q1 [ip]01 - q1 [ilGpD) * (@1 [ip)Gp] - p1 (10D
*+(q1 [i]jm] - q1 [im](j]) * (P! [i][] - p1 [im][jm])
+(q1 [ilGp] - q1 [im]G]) * (p1 [im](jp] - p1 [iIG])
+(ql [ip]0] - q1 [i1Gm]) * (p1 (]G] - P! [ip]GmD)

+(2.0 * dt * FRIC/ dx2) * (vfrc [im][j] + vfrc [ip][j]
+ virc [i][jm] + vire [i]{jp] - 4.0 * vfrc [i][i]);

} /* jloop */
} /* iloop */

/* solve Poisson equation to obtain p from q */
Solver ();

/* extrapolate values of q on boundaries */

{
for(i=0;i<=XINC- I;i++)
{
q [i][0] = h [i][0] + Dyy (p, i, 0)
- Top (MINY);
q [1][YINC] = h [i][YINC] + Dyy (p, i, YINC)
- Top (MAXY);
}
}
/* update h, p and q */

for (i=0; i <= XINC - I; i++)
{ for §=1;j <= YINC - 1; j++)
{ y=MINY +j * dy,
ql [i]i] = q! (][] + 0.5 * ROBFIL
* (q0 [i](1] - 2.0 * q1 [i]({]
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+q[i]G]);

h1 [i]{j] = h1 [i]j] + 0.5 * ROBFIL
* (hO [i](j] - 2.0 * hI [i][j]
+h [i]iG];

ho [i]j] = h1 [i][j];
hl [i]G] = h [i]j];
pO [i](] = p1 (iG]
pl (1G] = p [10G);
q0 (111 = q1 [i][};
ql [i]G] = q [i](];
} vire [i](j] = q0 [i](j] - ho [i]j] + Top (y);
q0 [i][0] = ql [i][0];
q1 [i][0] = q [i][0];
q0 [i][YINC] = ql [i][YINC];
ql [i][YINC] = q [i][YINC];
vire [i][0] = qO [i][0] - hO [i][0] + Top (MINY);

virc [i][YINC] = q0 [i][YINC] - ho (][YINC] + Top (MAXY);
}

/* save data at certain intervals of t,x,andy */

if (k % TSKIP = 0)
{

}

} /* kloop */

SaveData ();

/* close data files */
fclose (H_stream);
fclose (P_stream);
fclose (Ham_stream);
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