National Library
l *l of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfiiming.
Every etfort has been made to ensure the highest quality of
reproduction possible.

¥ pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and
subsequent amendments.

NL-339 (r. 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de |a
qualité de la thése soumise au microfilmage. Nous avons

tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'il manque des pages, veuillez communiquer avec
I'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dacty'ogra-
phiées a laide d'un ruban usé ou si l'université nous a tait
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de celte microforme esl
soumise A la Loi canadienne sur le droit d'auteur. SRC
1970, c. C-30, et ses amendements subséquents.

| Ll

Canada

UNIVERSITY OF ALBERTA

GRAPHICAL INTERFACE DESIGN FOR REAL TIME ROBOT/WORKCELL
SIMULATION

BY

ARA SIMONIAN

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment

of the requirement tor the degree of Master of Science.

DEPARTMENT OF MECHANICAL ENGINEERING

Edmonton, Alberta
Spring 1992

A |

National Library

Bibliothéque nationale
of Canada

du Canada

Canadian Theses Service

Ottawa, Canada
Ki1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sefl
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Service des théses canadiennes

L’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése 2 la disposition des personnes
intéressées.

L'auteur conserve {a propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©-315-73118-9

| L&

Canadi

UNIVERSITY OF ALBERTA
RELEASE FORM
NAME OF AUTHOR: ARA SIMONIAN

TITLE OF THESIS: GRAPHICAL INTERFACE DESIGN FOR REAL TIME
ROBOT/WORKCELL SIMULATION

DEGREE: MASTER OF SCIENCE

YEAR THIS DEGREE GRANTED: SPRING 1992

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatever without the author’s prior written permission.

. S T

Ara Simonian

3A 9006, 112 street
Edmonton, Alberta

Date: 2 2 I/ 1992

UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommended to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Graphical Interface
Design for Real Time Robot/Workcell Simulation submitted by Ara Simonian in partial

fulfillment of the requirements for the degree of Master of Science.

Dr. R. W. Toogood

........ RS AU

Dr. K. R. Fyfe

..............................

Dr. H. Zhang

Date: 2/, /Jprf'/' 1992

Abstract

Computer graphics simulation has proven to be an effective tool in robot design, on-line
control, off-line programming and development of advanced control systems. A few
commercial programs are available for modelling industrial robots. These often use
expensive graphics hardware and offer sophisticated, complete models of the manipulator
(for example, solid modelling, surface rendering multiple light sources, etc.). Such

systems are very expensive, often equivalent to the cost of a robot.

The present work consists of the development of a real time graphical simulation
software for an Excalibur robotic arm. The study describes the different aspects of an
interactive graphical interface for the robotic systems. The usefulness of the system is
demonstrated for the cases of off-line programming and remote on-line manipulation.
Two different virtual view cameras are evaluated and the results reveal the advantages
of each. In particular, the gripper view camera has proven to be very a powerful viewing

tool.

Furthermore, the study investigated the factors involved in the man-machine interface.
The human factors engineering aspects of the interface were thoroughly considered to
provide the user with a practical and user friendly interface. The study investigated the
ditfferent input devices and also the command tools that are made available to the

program.

The result of this work reveals the possibility of successful implementation of such an
interface on the PCs. This will make robotics more accessible to small and medium sized
companies and promote the use of robotics in industry. Also the affordable programming
system on PCs promises an even easier development and testing tool for high level

command languages for robotic systems.

Table of content

Chapter 1 - Introduction

1. Introduction |

2. Components of the System

................................ 7
System Outline L e 7
Manipulator L e e e 8
Master Arm L e e e e 8
Controller e 9
Host comiputer L e e e e e e 1l
Programming Language e 1

Chapter 2 - Principles of human computer interaction

2.1 Introduction e e e 12

2.2 Basic principles L L oL e e e 12

2.3 Interface Analysis L. e e e e e e e e 13
User analysis L e e e e 13
Task analysis L. 14

2.4 Screen and display requirements L. oL oLl e e e 14
Menu . .. L e 14
Color . . e 15
Displayed information e 15
Help o e 15
GraphiCs e e e e e 16
Status Information L e 16
Command language e 16
System response timel e e e 16
Command and Input Devices L0 17
Error messages and On-line assistance 18
Design concepts for the program oo 18

Chapter 3 - Program Design

3.1 Introduction L L e e e e e 20

3.2 Interface considerations L e 22

3.3 Graphical display e 22

3.4 Program SITUCIUTE vt it et e e e e e e e e e e e 26

Communication with thearm 000, 28

World object data file 29

View cnnsiderations it e e e e e e e e e e e e e e e e 29

VICW CAMETIAS .« . v v o v e v e e i e e e e e e e e e e e e e e e e e e e 31

"Move arm"” mode L L e e e e e e e e e e e e e 34

Command toolIS e e e e e 35

Individual jointcontrol L o e 36

Inverse Kinematics L e e e e e e e 37

Directly specifying the position and orientation 38

Using 3-D cursor to position the end effector 38

Relative moves in world coordinates 39

Relative moves in gripper coordinates 40

Problems with the inverse kinematic related tools 41

Simulation L e e e e e 42

Teach and playback 42

OPLONS e e e e e e e e e e 43

Use of a mouse as an alternative input device 43

Communication CONCEIMS . - . . . v v vt v vt v v e e et e e et e e e e e e s 44
Chapter 4 - Program evaluation

4.1 Introduction L e e e e e e e 45

4.2 Performance of the Program 45

Expectations L e e e e e e 45

On-line commanding 46

Off-line programmingottt it v e uunuenn. 46

EXCAL evaluation e e e e e e 47

Interface analysis L e 47

Animation and framing rate 49

On-line commanding 55

Oft-line programming e 57

Compatibility with thecontroller 57

4.3 Program teStiNg i e e e e e e e e e e e e e e e e e e 58

The workcell L e 61

Testing procedure L e e e e e e e e e e e e 61

User approved features 64

User disliked features L 65

Chapter S - Conclusion e e e e 66

References L e e e e e e e e e e e e 68

Appendix A - Kinematic Modelling

Introduction 70
Conventions used by Denavit-Hartenberg model 71
Notation e e 71
AT MALriCeS ... L L e e e e e 72
Joint coordinate convention L 73
Specification of Ty in terms of A matrices 74
Kinematic Equations for Excalibur Manipulator 76
Forward Solution 78
Inverse Solutiono oL L e 79

Appendix % - Implementation of the ;::i>vram in the 'C’ language

Introduction L e 89
Frame coordinates 85
Graphic representation of the objects 86
Data-Base design 86
Transformations 87
Perspective projection 89
Hidden surface removal e e e e e e e e 90
Drawing a frame e 91
Grid . . . e 92
Armbase e 92
AXIS L L e e e e 92
World objects e 92
ATIND L L e e e e e e 93
Transformation of the grasped object 93
Object grasping procedure 95
Object dropping procedure 96
Animation e 99
View camera transformations L ... 99
Relative moves e 101
Moves relative to world coordinate 101
Moves relative to gripper e 101
Menu e e e e 102

List of Tables

Table | - Summary of some of the robot simulation programs. 2
Table 2 - Time comparison for different polygon drawing methods 50
Table 3 - CPU time usage for image generation on the microcomputers 50
Table 4 - Display time of an image for different number of world objects 53
Table 5 - Display time of an image for different number of world objects 54

Table 6 - Denavit-Hartenberg parameters for Excalibur 76

List of Figures

Figure 1 - Excalibur manipulator system 8
Figure 2 - Manipulatorarm e 9
Figure 3 - Master arm e e e e e e 10
Figure 4 - Excalibur’s program structure 26
Figure 5 - Main screen of the EXCAL 27
Figure 6 - View of the workcell using the main camera 31
Figure 7 - Virtual camera mounted on the gripper 32
Figure 8 - Move arm environment 34
Figure 9 - Inverse mode with 3D cursor 39
Figure 10 - Gripper coordinate frame 40
Figure 11 - Time usage on 486/33 i Sl
Figure 12 - Time usage on 386/33 51
Figure 13 - Display time for the EXCAL program on 486/33C machine 53
Figure 14 - Display time on 386/33C and 486/33C machines 54
Figure 15 - Errors in position before calibration 59
Figure 16 - Errors in joint positions after electrical calibration 60
Figure 17 - Test user’s workcell layout 62
Figure 18 - Test user’s generated task, 63
Figure 19 - Link parameters «, §, danda 73
Figure 20 - Coordinate frames for the Excalibur 76
Figure 21 - Frame coordinates it vunennn.. 85
Figure 22 - Perspective projection parameters 89
Figure 23 - Hidden surface removal 91

Figure 24 - Relative position of an object and the gripper
Figure 25 - Dropped object 96

Chapter 1

1. Introduction

Simulation of a robot manipulator and its workcell provides a cost effective basis for
research and development in robotics. These applications include manipulator design,
task and work-cell design, human factors engineering, investigation of robot dynamics
and control strategies. The use of an interactive graphical interface facilitates
development of advanced robot programming languages, ccntrol systems and input
devices for remote manipulators. From the early stages of the development of robotics,
commanding of robot manipulators has been a demanding task. In this thesis
"commanding"” refers to the communication between the user and the robot that directs

the system to perform the desired moves.

A few commercial programs are available for modelling industrial robots. These often
use expensive graphics hardware and offer sophisticated visual models of the manipulator
(for example, solid modelling, surface rendering, multiple light sources, etc.). Such
systems are very expensive, often equivalent to the cost of a robot. This high price
suggests the need for more affordable animation systems. This thesis describes the study
and design of such a program for microcomputers. This program allows the user to

simulate and control a robot manipulator in real-time.

The graphical simulation program can benefit two main areas in robotics, off-line
programming and on-line control. Many simulation programs have been developed to
deal with the ofi-line programming. Such products include McAuto’s PLACE {1, 2],
CATIA [3] and MnCELL [4] which use powerful and very expensive hardware. For

moderately priced hardware such as Sun and Apollo and Silicon Graphics IRIS, the

2
ROPS(Robot Programming System) [3, 7] from Cincinnati Milacron, CimStation (5] of
Silma Inc., GALOP/2D {[7] of IBM and I-GRIP [S, 1] are available. For the PC
microcomputers the PC-Grasp [7] which has evolved from Grasp (General Robot Arm
Simulation Program) is available. These programs are mainly written to handle off-line
programming. There are no reports on any work done for the real-time on-line control

and commanding. Table 1 shows a more detailed list of the robot simulation programs

commercially available.

Table 1 - Summary of some of the robot simulation programs.

" Previous Works j

" PC-GRASP: Developed from GRASP, 1986 [7] F
Hardware: Application: cost: not
IBM-PC and compatible Off-line programming and Simulation | available

Cycle time evaluation

" Graphically Interactive Robot Simulation On PCs [8]

Hardware: Application: Cost: not

IBM-PC and compatible Simulation and off-line programming |availabiz
Using accelerator card I

lamL2 5] |

Hardware: Application: Lost:
IBM-PC and compatible Data not available $4.250
CimStation [5]
Hardware: Application: Cost:
SGI-4D, SUN, APollo Basic CAD tools, $65,000
Robot modelling, Path generation
Kinematic and dynamic simulation

Hardware: Application: Cost:
Silicon Graphics 4D series |Basic CAD tools, $50,000
Robot modelling, Path generation
Kinematic simulation

" I-GRIP [5, 1]

! Previous Works
| McAuto’s PLACE [1, 2]
Hardware: Application: Cost: not
VAX series, Cell design, check reach available
R-100 Graphics terminal Task Programming and Simulation
Cycle time evaluation

CATIA [3] J|
Hardware: Application: Cost: not
IBM 4300, IBM 5080 for Robot/Workcell modelling available
graphics system, IBM 3279 | Simulation and task programming

for text display Cycle time evaluation

MnCELL [4] Ji
Hardware: Application: Cost: not
VAX 11/780, EVANS & Robot modelling available
SUTHERLAND DS300, Simulation of several robots

RAMTAK color terminal, REAL-time animation

TEKTRONIX vector Collision avoidance using

display interference detection

in on-line commanding, the operator of the manipulator has to deal with many problems
simultaiwwously . The nature of on-line commanding is therefore stressful and operations
are subject to human error. In an ordinary command interface, all the actions taken by
the operator are final and the real-time nature of the interface will affect the robot almost
instantaneously. This means that the moves can be wrong or inefficient and potentially
disastrous. The requirements on the system (which involves the manipulator, workcell
and the objects in the cell) can be very demanding and expensive. The operator needs to
be abie to view the manipulator at will from different directions, and has to be able to

manoeuvre the arm through obstacles with ease and confidence.

These problems are magnified for the remote manipulators, for which direct view is
impossible and in many instances indirect view can be impractical and inefficient. Also,
in this application. long delays exists between commanding the remote manipulator and

the subsequent response from the manipulator.

4
These difficulties suggest the need of an easy and more dependable interface. A
graphical simulation program can be viewed as a high level commanding interface. The
interface can provide the operator with many advanced features to ease the command
task. The obvious advantages of such an interface are its ability to view the robot
manipulator from any view direction required. Moves can also be planned ahcad of time
and pre- /iewed to enable the operator to visually check for collisions. Time delay, for
example with space-based teleoperation, can significantly aftect the operator’s ability to
carry out the teleoperation tasks. Simulation will allow the operator to plan the motion

with a real-time simulation. The pre-planned mction can then be downloaded to the
remote robot site.

This interface can also be used for off-line programming. The only additional

requirements for the program is the ability to store the robot path, and replay the stored
path at a later time.

In designiny a real-time simulation program three main problem areas are identified. The
first problem is tne dynamic control of the robot. This problem is raised by the multi-link
nature of the manipulator. Such a structure has highly non-linear dynamic responses, and
in most cases an exact mathematical modelling of the system is impractical. The second
problem area, morion coordination and trajectory planning, is also a consequence of the
multi-body nature of the robot mechanism. The third problem is the inreraction of the
robot with the world. This area covers the actions taken by the operator in commanding
and programming the robot manipulator. This includes the methods used to avoid

collision, grasping consideration, force of the gripper and the sensory feedbacks from the

manipulator.

This study is mainly concerned with the third problem, interaction of the robot with the
world. However the other two problems can have major bearing on the overall

performance of the program. A good simulation program has to be real-time, and for off-

5

line programming, it has to be able to simulate the dynamic behavior of the robot in
clo: : approximation. It is obvious that the simulation program needs to be real time for
on-line commanding. In off-line programming the program has to reflect the changes in
the moves due to changes in the inertia of the arm. The robot controllers are designed
to achieve the requested moves regardless of the payload on the robot. However, it is
possible that the arm will have increased overshoots for heavy loads. This can pose a
safety problem if the simulation does not reflect the altered path. This problem is more

significant for the older robots where the linkage system is not very rigid.

The uncertainty in accuracy can introduce large errors for accurate jobs. Most robot
manufacturers quote the repeatability and not the accuracy of the robot. Repeatability
refers to the ability of the arm to repeat a taught position within some small tolerance.
The repeatability of the robot is mainly dependent on the accuracy of the joint encoders
and the servo mechanism for the actuators. Therefore if a position is taught on-line, the
manipulator can repeat the position within the accuracy of the encoders. This

repeatability is usually adequate if the robot is programmed on-line.

With off-line programming, however, it is necessary to know how accurate a commanded
position can be achieved. The accuracy of the robot depends on many factors. First a
calculation based on the kinematic model must be performed to find the required joint
angles. This calculation and the kinematic model usually are based on the assumption that
the robot linkages are perfectly rigid. However, this assumption is not true and the
robotic arms are designed with substantial flexibility in their joints. Neglecting the effects
of the flexibility of the robot can introcuce unacceptable errors in the robot positioning.

The following factors increase the effects of the flexibility [9]:

increased payload

longer links

increased mass of the links

increased operational speed of the robot

6
However, some robot manufacturers are moving toward producing more accurate robots
with rigid linkages and accurate drive mechanisms. This will eliminate many of those
concerns. By incorporating direct drive electrical motors in the joint, the gear and its
related problems are eliminated. Control characteristics can be made programmable by
putting the computer inside the motor. By changing EPROMs, and hence the software

they contain, one can alter the velocity and torque profile of the drive mechanisms[10].

This study consists of the following components:

aspects of human factors engineering

development of a three dimensional graphical animation program
examination of different user input devices as means of interfacing the robot
real-time serial conimunication with the remote manipulator.

development of a test procedure

¢ & ¢+ & O o

evaluation of the developed interface.

The computer program EXCAL is written for an "EXCALIBUR" robot. The support
material includes a user’s manual [11] for the software and the technical manuals [12]

for the operation of the Excalibur arm.

The program was tested from two points of view. First the graphical interface was
studied for its apparent visible aspects such as computer screen display features, view
capabilities and the input devices. Then the commanding tools provided by the program
were evaluated for their effectiveness and usefulness. This part of the study, known as
"Human factors engineering", is where the programmers can have direct feedback from
the potential users. The user’s comments were then used as a guide for further

improvement of the system.

2. Compenents of the System

System Outline

In this section the main components of the system are introduced. These are:
the Excalibur manipulator arm (slave)

the Excalibur controller

the small scale master arm

the Gateway 2000 486/33C host computer

® & o o

Figure 1 shows the Excalibur system. The multi-jointed arm is the manipulator, the part
of the robotic system that does the actual work. The smaller jointed arm is the master
arm . This is a scaled model of the manipulator and can be used to control its motions

in some types of operations.

The electronics of the robot are contained in the cabinet referred to as the controller. An

outline of the function of each of these components follows.

Figure 1 - Excalibur manipulator system

Manipulator

The manipulator arm shown in Figure 2 is the working end of the Excalibur. The
manipulator (also known as manipulator arm or “slave arm") is a six-link mechanical
arm with a hand or tool, known as the end effector. The Excalibur’s six degrees of
freedom, allow the end erfector to reach any location in the robot’s work envelope with
any orientation. The Excalibur is equipped with a parallel-jaw gripper. The manipulator

has a reach of 76.2 cm and can carry up to 3.5 Kg payload at a maximum linear speed

of 0.4 meters per second.

Master Arm

In essence, the master arm is a small-scale, unpowered model of the manipulator. It is
equipped with potentiometers to sense the joini angles. Motions generated by the user at
the master are recreated by the manipulator (slave). The controller attempts to drive the

manipulator’s joint angles to agree with those of the master arm. This is known as

WRIST FLEX 1o0OL ROTATE

UPPER ROTATE
L (

Elbow

| Wrist

Lower Forearm

Shoulder

'c-,‘, ' Upper Forearm

S ‘, \

Upper Arm

N — Uprights

Figure 2 - Manipulator arm

spatially correspondent system. A number of switches and controls on the base of the
master arm allow the user to control various fusnctions of the Excalibur. These controls
include wrist roll, gripper open/close, storing of current position in the controller

memory, and specifying point to point or continuous path motion (Figure 3).

Controller

Virtually all the electronics. a complete microcomputer system. and the power supply are
enclosed in this unit. The front of the controller is shows: in Figure i. This unit processes

commands trom the host computer or master arm.

A scries of analog servo controls provide continuous voltage commands which represent
error signals between the actual and desired manipulator joint angles. These signals are
in turn fed to the motor controllers which amplify and condition the signals used to

actually drive the manipulator joints to the desired positions.

aLi3u3 §

Figure 3 - Master arm

In addition, the controller can communicate with an external coniputer through a serial
interface. The controller is a microcomputer, consisting of a Motorola 6809

microprocessor with 1 MHz clock, RAM and EPROM memory and various input/output

peripheral channels.

Cables from the manipulator, the master arm and the host computer carry all the required
signals to and from the controller. These signals include feedback values for joint angles
(master and manipulator), switch closures and messages to and from the host computer.
The controller can independently set the operating mode for the robot. Four operating

modes are available:

- Host mode: In this mode the host computer can communicate with the controller.

- Manual mode: In this mode the master arm is used to control the slaved arm.

- Teach mode: A serics of robot movements generated by the master arm are stored in
the memory of the controller and can be played back at later stages.

- Playback mode: The taught path can be played back.

11
All these modes can be accessed through the host computer. It is also possible to

disconnect the analog servo controls from the motor controls. In this case the host

computer can run alternative servo control programs.
Host computer

The heart of the graphical simulation interface is the host computer. The DOS-based
computer communicates with the controller through a serial communication interface
RS-232c in ASCII format. The computer used is a GATEWAY 2000, 486/33C

computer.

The computer is equipped with 640 KByte standard RAM memory and eight MByte
extended memory. The VGA/EGA graphics driver is available with one MByte of

graphics memory.

Programming Language

The simulation program is written in the C language using Microsoft’s Quick C version
2.5.

Serial communication is done through the IBM based 8250 UART integrated circuit,
which is the standard board for serial ports. The software used to drive this board is the
"C ASYNCH MANAGER" [13], by Blaise Computing INC. This package provides an
interrupt driven communication interface and its functions are callable from the QUICK

C programming environment.

Chapter 2

Principles of human computer interaction
2.1 Introduction

This chapter discusses the basis of human factors engineering relevant to the interface
design. The principles and guidelines are based on the previous experience of the
industry [14, 15]. Humans have excellent visualization and reasoning capabilities and can
adapt to changes and unexpected conditions effectively. On the other hand machines are
much more effective at routine, high volume and repetitive tasks. An effective interface

can utilize both human and computer resources with a balanced and logical division of
the task.

2.2 Basic principles

Design and performance of an interface can be significantly improved using simple
guidelines. Based on human psychology, the following guidelines can be used to decrease

the learning time and make the interface natural.

1. Using familiar patterns improves the learning process and significantly lowers the
human memory requirements. The interface can use the previously developed ideas and
benefit from the familiarity of the user with the concept. However, this principle should

be used cautiously since overdoing this may limit the degree of innovation in new

systems.

13
2. The steps required to perform a task should be organized. The predictability and

presence of iogical order can improve the efficiency of the whole operation.

3. The job frame should be devised to relieve the user from repetitive tasks. The
computer can handle many repetitive tasks independently but the interface must maintain
full user con:re! at all times. Considering the inherent limitations on human’s short-term
memory, only relevant information should be presented through the interface. A screen
futt of unrelated information will only overload the user’s memory. Excessive error

messages and nuanerical data can confuse the users and affect their reasoning ability.

4. One important factor in the design of an interface is simplicity. The task should be

achieved with the minimum number of steps and input from the user.

2.3 Interface Analysis

Information on the nature of the job and the type of users involved can be used to
establish the basis for the design of the interface. Using this knowledge, the job can be

systematically divided between the human and the computer.

User analysis

The type of users and their ability has a major influence on the design of the interface.
The interface should match itself to the ability of the most common group of the users.

This fact determines the sophistication of the interface and its support system.

The users are evaluated for their knowledge of the system and the skill level they are
expected to achieve. The skill is affected by the frequency of use, familiarity with
computers and knowledge of the task to be performed.

14
Task analysis

To divide the job effectively between the human and the computer a thorough analysis
of the nature of the job is a necessity. Tasks can be measured in terms of their

complexity, attention to details, monitoring requirements and consequences of their
failure.

Simple and repetitive tasks can be handled by computers with minimum supervision. The
more complex jobs can be reasonably divided between human and computer. The

interface should effectively use the human reasoning capabilities without overloading the

human side of the interface.
2.4 Screen and display requirements

Menu

Menus provide a useful way to make computers more user friendly and accessible by
reducing the demand on the user’s memory. Ideally, menus should be designed to
accommodate different levels of users. However, overly simplified and menu dependent
systems can be frustrating for experienced users who prefer short cut keys. Response

to menus should be reascnably fast. Graphical symbols can be used instead of words for

ease of recognition.
Important factors in menu design are:
- Menu display style

- Activating/Selecting a menu

- Menu setup and hierarchy

15
Menus should be easily accessible. Too many sub-menus can make the process of finding
and selecting a menu item frustrating. The menu display should be in harmony with the

rest of the screen.

Color

Color can be effectively used for many purposes if implemented carefully and
conservatively. Color can help the user locate classes of information by highlighting data,
categorizing information, establishing relationship between separated fields and
clar fication of the overall view. The effective use of color requires consideration of

several factors [15]:

- How the selected color can improve the readability of the display.
- The effect of the color coding on the performance of the user.
- The impact of color codes on the capabilities of the computer and compatibility with

systems not supporting the colors used.

Displayed information

There should be adequate information to let the user identify the current work
environment. Also to reduce the memory requirements on the user, relevant help can be
displayed to guide the user. The status of the program and peripheral equipment should
be clearly displayed.

Help

Help text should be readily available to the user at any time. The program should be
designed to provide the user with the help relevant to the task he/she performs at the time

help is requested (ie: context sensitive). The help text should be clear and concise.

16

Graphics

The use of graphical and pictorial representation has become an integral part of the
user-friendly interfaces. The command language and menus use graphical symbols
extensively. Graphical simulation has opened the doors to a virtual world where the
testing and development of almost anything is made possible. The effectiveness of
graphics for simulation can be measured in terms of visibility, clarity, depth information

and relations between distinct objects.

Status Iaxformation

The program must always provide an indication of the system status. After a request,
users need acknowledgment. The program should let the user know its status especially

if the process time for the request is long.

Command language

The command language, traditionally as typed-in words, lets the user make a request.
The modern approach often presents a list of available commands on the display.

Commands can be selected using a pointer, or by entering the command’s short cut key

from the keyboard.
System response time

"System response time" [15] and “"user response time" [15] (think time) are two
important factors in the design of an interface. These factors depend on the complexity
of the program logic and on the nature of the task and responsibility involved in the
decisions made. A fair balance between these two factors is vital for the efficiency of the

overall interface.

17
System response time depends on the structure of the program and also the computer
hardware used. The long delays can adversely affect the performance of the user. A fast
system response time is always desirable, however, an acceptable system responsc time
can depend on the "level of closure” [15]. Usually the delays after the user has
completed a major unit of work are quite acceptable. Whereas slow response in minor

steps in a major unit of work can cause the user to forget the next planned step.

The user response time also known as think time, is the time required by the user to
respond to the updated information. There is a close relationship between the user
response time and the system response time. A well established balance between these
two factors is vital to the performance of the program. The system response time affects

the user response time in the following ways:

- Long delays can disrupt the flow of thought and the short term memory for the next
planned step.

- When long delays are expected the users can spend more time on organizing and
checking their moves and thus avoiding errors.

- Conversely, fast system response time allows the user to respond quickly, not afraid

of making errors, because the errors can be recovered quickly.

Command and Input Devices

Traditionally, human-computer interfaces have relied heavily on the keyboard as the
control device by which the user communicates with the computer. In commanding the
robotic arm a more natural command device is preferable. The master arm (with
master/slave relationship) can be used as a command/input device. A mouse or joystick
is an alternative input device that can be considered to command a move for the robotic
arm. These two devices can be used to point to icens representing different commands.
Basically these devices are suitable to control two and three degrees of freedom, where

in robotics input devices require to control six degrees of freedom. This makes them

18
unnatural for direct manipulation of the position of the arm. Vvuice command entry can
be used to enter simple discrete commands keeping the user's hands free. Voice

recognition can be slow and frequently misunderstood by the computer.

In robot control, the user is concerned with 3-D object manipulation. A hand gesture can
be effective for specifying position and orientation. The DataGlove [16] is a new device
(1987) that can be used for hand tracking. The DataGlove is a device that the user wears.
Analog sensors measure the bending of fingers and the position and orientation of the

hand in 3-D space is tracked by a Polhemus sensor.

Error messages and On-line assistance

Error handling is a critical feature and requires careful consideration. The main elements
of error handling are error correction, error message dialogue, and on-line guidance to
help users understand the system and thus avoid errors. Adequate error handling
unfortunately, requires a considerable amount of programming code which must be

written in anticipation of a broad range of errors which can occur on either side of the

interface.
Design concepts for the program

Based on the subjects discussed in this chapter, a preliminary design idea for the program
is deduced. The interface is for use of robot operators and in general for people with
knowledge of computers. Therefore this interface is designed for skilled users. This
means that the program should have efficient and short-cut paths to accomplish tasks.

The user is assumed to be required to use the program as part of a routine jou.

The program has a fair level of sophistication and will require a reasonable learning

time. The nature of robot operation does not require frequent innovation in the operation

19

of the routine tasks and commanding of the arm, therefore the program is not designed

to create an advanced command language through the software.

To accomplish the needs of the user, the program uses structured menus alongside the
short-cut keys. Context sensitive on-line help is available. The program is structured with
the needs of the user in mind and each environment accomplishes a specific task. This
makes the purpose of the environment clear, however, the flexibility of the program is

compromised.

This program would be considered rather complex. Nonetheless, a large portion of the
overall job is given to the user and the user is expected to reason well and have a sound
judgment. This is inevitable in the light of the current state of the Artificial Intelligence,
Al. In order for the computer to have a larger portion of the job, an efficient Al system
is necessary. For . ample, the user’s work would be substantially simpler if the
computer could automatically detect collision and lay a new path to avoid collision. Also
the role of Al is obvious in the design of high level commands. For example a command
to pick an object can be simplified to the level where the user issues the command with
the object number as its single argument and the move is carried out by the interface.
Proper execution of this command would require the arm to choose an appropriate path
and orientation. The grasp orientation can be limited by the approach constraints or may
depend on the next move. In either case large amount of decision making is required.
The trend in industry is toward reducing the human side of the job handling, so the
human operator can concentrate on more important issues. Also ideally the computer
should handle the errors, and take care of the task failures. More complex errors will

require the operator to intervene.

The next chapter will discuss the design of EXCAL in the context of human factors

engineering presented here. This will be followed by a discussion of the success of the

program design.

Chapter 3

Program Design
3.1 Introduction

In this chapter, the basic layout and design of the EXCAL program is reviewed. The ideas
behind the design and inclusion of the different parts of the program are discussed. The

additional parts that could be included, but are not currently implemented are also
addressed.

The chapter covers the view cameras, mainly the second camera mounted on the gripper,
and the command tools included in the program. The benefits of each tool and its

shortcomings are addressed and recommendations for further improvements are made.

The objective of this work was the development of a graphical interface for robots in a
microcomputer environment. These computers are generally more affordable, but they
have their inherent limitations. The main PCs under consideration are IBM compatible
DOS based machines. These computers have no special hardware (eg: graphics
accelerator) to handle graphics. However, the latest generation of this series is very fast

and efficient at floating point operations.

Since the software is to be real-time, the goals are set keeping in mind that these
machines have limited graphical capabilities. That is, if more sophisticated graphical
display is planned, then the operational and animation speed would probably degenerate.
Therefore, complexity of the graphics is limited by the overall operational speed of the

combined hardware and software system.

21

Another factor that should be kept in mind is that this study focuses on the specific area
of the graphical representation of the arm and its workcell. Robotics is a rapidly growing
and changing field. There are still enormous problems left to be dealt with in almost any
part of robotics. Thus the program ignored many parts that can be important in the
overall performance of a robot programming system. As an example of such a case, this
software does not have a collision protection routine” even though such a routine is vital
to safe operation of the robot, and can be of great assistance to the user. Collision
protection (i.e. obstacle avoidance) methods are numerous and the subject of extensive
study. However, current algorithms are neither fast enrcugh nor general enough to handle
complicated real world situation. For example, a simple 2-D obstacle avoidance
algorithm was presented in a graduate thesis by Eugene Cao [17]. This reference also
contains a discussion of cother obstacle avoidance algorithms. Without implementing a
completely automatic obstacle avoidance routine, it can be argued that the graphical

representation presented here can assist the operator in identifying a potential collision.

" A simple routine was implemented to prevent the gripper from striking either the bench

top or its own base.

[
[}

3.2 Interface considerations

This section has close ties to human factors engineering. The software design should
be such that the user is not overloaded by information, or is facing a cluttered display

or has to deal with clumsy input devices in order to interact with the robot.

There are two major parts to be considered. The first consideration is how the screen
display should be designed. This screen is the immediate interface panel between the user
and the machine. Some concerns would be: menu system, amount of information

displayed to the user at any time, amount of information available to user as help, color
and command tools.

The second consideration involves the methods available to the user to interact with the
robot. To command the robot and communicate with the machine, the user has to use
some input devices. The standard input device is the keyboard. Therefore, the keyboard
layout and availability of shortcut keys is very important. The program can use the
master arm as an alternative input device, so that the best control devices can be

evaluated, and if possible other input means can be explored.

3.3 Graphical display

The most significant element of a graphical simulation interface is the display of the
manipulator and the amount of information that this display provides. This display is the

immediate feedback from the robot and workcell.

Often it is not possible to view the robot directly. Even if the robot is in direct view, the
operator has only a limited point of view. To overcome this, a video camera can assist
the operator, but a video camera is also bound by its movements and limited view

direction. Therefore a powerful synthetic viewing capability is a necessity to command
a robot manipulator.

23

The display should have powerful features to produce adequate visual feedback for the
user. The display should clarify the position and orientation of the robot manipulator. It
is favourable to have a detailed simulation of the arm, that is a graphical display with
solid surfaces, good lighting and proper shading. However considering the inherent
limitations of the host computer, it was decided to limit the arm display to a wire frame

representation.

The data-base of the program stores the coordinates of each rectangular prism, used for
constructing the arm and the objects in the workcell, in two dimensional arrays. A
second 2-D array holds the connectivity values between surfaces and the vertices. For
more detailed description see "Data-Base design" in Appendix B. A simple hidden
surface removal technique is used to eliminate the hidden surfaces from the displayed
image. Although this algorithm removes the hidden surfaces there are still some
undesired hidden lines left. The hidden lines can sometimes cause confusion by cluttering
the picture. This fact becomes obvious when there are many objects present in the
workcell, or at certain views that create many undesirable partially hidden lines. Hidden
line removal techniques are computationally intensive [18]. If these were used, the

operational speed of the program would severely degenerate.

The best method for hidden surface/line removal for an application depends on many
factors. Proper consideration of the requirements on the displayed image can help
choosing the appropriate method. If the surfaces in a scene are spread out in the z
direction a depth sorting method can be the best. If the surfaces are well separated in the
x-y plane, a scan-line or area sub-division method might be the best. Factors such as the
above mentioned cnes can help in selecting the suitable method for the application. When
wire frame images are used, hidden line removal is considered. A direct method to
eliminate hidden lines involves comparing each line in the scene to each surface in the
scene. This process is similar to clipping the lines against the window or viewport of the
screen, except that in this case the part of the line inside the window is to be eliminated.

If a hidden line method is to be used, there are some techniques that can improve the

24
efficiency of the algorithm. However, hidden line removal methods are all
computationally intensive and require increasingly more time as the number of the objects
increase. For complex scenes it will be preferable to use a scan-line method or if there
is available memory on the machine, a z-buffer method can be used. These methods,
unless implemented on the hardware, severely degenerate the performance of the

program for animated scenes. Therefore it was decided not to use the hidden line

removal algorithms.

The operational speed of the program is affected cumulatively by different factors. When
a command 1is issued from the input device the new position is calculated. The Inverse
kinematics solution provides the joint angles that can move the arm to this configuration.
The animation routine then increments the joint angles and for each increment a picture
frame is generated. The previous image is then deleted selectively by redrawing the
image lines using the background color. Finally the new image is drawn. This procedure
continues until the new position is achieved. Thus the operational speed of the program
consists of the time required for calculating the new position and orientation, the time

required for the animation routine to find the proper increment values and the time

required for redrawing an image.

The process of generating a frame starts with the related transformation/rotation
calculations for the arm links, world objects and grid lines representing the workcell.
These transformations position the entities at their respective position in the world. Each
transformed entity is further projected onto the two dimensional view plane by
perspective projection. The hidden surface removal technique is applied to each entity.
The previous image on the screen is deleted by redrawing the previous frame using the
background color and then the new image is drawn on the screen. The frame generation
time can be divided to two distinct components: the calculation time and the time
required to transfer this image information onto the graphics screen. The speed by which

the video information is refreshed depends on the hardware. Therefore, to speed up

25

frame generation the calculation time should be minimized. This fact prohibits the use

of sophisticated methods for hidden line removal.

The framing rate is the number of the displayed images per second in the animation
sequence. This rate depends mainly on the time required to generate a picture frame. If
the picture generation is fast then the framing rate will be high and a smooth animation

is achieved.

The animation is directly affected by the time that frame generation requires. To have
real-time animation a high framing rate is necessary (more than 10 frames per second).
Smoothness of the animsation can be sacrificed in favor of achieving real-time
performance. This is done using large increments in the animation routine. In this case
the animation looks more abrupt and stepped. The increments can be adjusted through

the software to control the apparent speed of the animated arm.

The best achievable 3-D representation on a two dimensional display screen is through
perspective transformation. This transformation can create the illusion of depth in the
displayed image. To further enhance the depth recognition, different colors are used to

distinguish the arm and the workcell.

Stereo image processing can enhance depth recognition. A number of (expensive) systems
are available which can produce stereo image pairs. This simulation technique in its
simplest form generates the image from two different view points. Superimposing these
images that are drawn in different colors, and using special polarized glasses can create

3-D images. However, this technique would decrease the framing rate by a factor of two.

3.4 Program Structure

Figure 4 shows the basic structure of the program. It would be ideal for the program to
have access to a library of different robots, so that user can specify the type of the robot

under study. The current version of the program is designed for Excalibur robot and

relevant data and transformations are integrated into the program.

BASIC STRUCTURE OF THE EXCAL

| WORLD FILE / /'?@——— KINEMATICS cONTROL
. S :
2 —
=
Q USER INPUT AND CENTRAL GRAPHICS AND
Q MENU SYSTEM PROCESSOR ANIMATION
5 J/ B
O S—
x PAYRAGK HLES COMMUNICATION
5 CONTROLLER
o
O
e MASTER ARM ROBOT

Figure 4 - Excalibur’s program structure

Data describing the world objects (ie: the objects present in the workcell) is read from
disk files. The user can add or replace an existing world object. There is currently no
sensory feedback from world objects into the program, which assumes that the real world
is arranged as the data files indicate. The user has to make sure that the world cbjects

are the way they are defined in world data files (or vice versa). It would be possible to

27

use an advanced vision/sensory system and update the data structures of the program, but
this requires a vision system and probably another computer to calculate the position of

the world objects.

Once the data structures and global variables are set, the program displays the arm and
main menu. The Excalibur is displayed as a wire frame image in the default home
position (Figure 5). If the arm is turned on then the program reads the arm position and
the displayed arm moves to that configuration. From this screen the user can select the

sub-functions available and perform the desired tasks.

Arm World B View Simulate Mouve arm Teach Options Quit

T D
Pt e
Z pr >
=]
o -\-— I \-I
I e
X ¥ A Roll Pitch Yaw

current: 646.6 0.8 344.1 6.0 -38.00 8.68
CSHIFT + arrow keys) move camera (ALT+F1) refresh (SHIFI+F1) help
KSH | PqUP/DH> zoom <ALT+VU/U> change view {CTRL+PgUP/DN> grip zoom

Figure 5 - Main screen of the EXCAL

28
Communication with the arm

Through the communication menu ("Arm"), the user establishes or discontinues

communication with the robot controller via the two way asynchronous serial data line.

To keep track of the events happening to the robotic arm, the controller is designed to
send messages whenever something happens to the robot. These messages can refer to
errors in communication or when the robot is unable to achieve the requested move.
Since the controller can send messages at any time, the host computer must handle the
communication regardless of the execution state of the main program. Therefore an
interrupt driven communication module is used. In this method, whenever data is ready
to be transmitted or a message is sent from the controller, an interrupt signal halts the
execution of the main program and the interrupt handler routine takes care of the
transmission. In the case of an incoming message, the transmission is read and stored in
an internal buffer. For an outgoing message to the controller, the message is read from
the internal memory buffer and sent to the controller. This procedure allows the program
to continue its operation until there is a need to communicate. The communication
routines of the program (such as READCH(), WRITECH()) read and write to the internal
memory buffers, allocated for serial data storage, and not directly to the communication

ports.

Other controls provided to the user are setting the communication port number and the
operating mode of the controller (ie: manual, host modes). Also a global variable

determines if the actions taken by the program should affect the robot or not.

It is valuable to isolate the program and the robot manipulator at will. This enables the
user to simulate the desired moves and eventually downiocad the move command to the

robot manipulator when the user is satisfied.

29
World object data file

The configuration of world objects is defined in data files. These files contain
information on the size and shape of the objects and their positions in the workcell. The
objects can be assigned different colors. The program assigns a number to each object

as it 1s read into the program.

There are two types of objects that the program recognizes: Fixed and moveable. The
fixed objects are identified by a negative color value in the data file, and they become
a part of the robot workcell. The objective of having fixed objects is to allow the user
to introduce existing obstacles to the simulated workcell. Also these fixed objects can be

used as target locations for Off-Line task programming.
View considerations

It is important for the operator to have a clear and infortnative view of the robot. Even
if the robot is in direct view of the operator, it is unlikely that the operator can have a
proper view of the robot at all the times and for every position of the robot in the
workcell. For example, there will be instances when the view of the gripper is blocked
or when during the approach of the gripper to an object, view direction and approach
directions are normal to each other. In these cases the visual information is not enough
for the operator to easily guide the arm through the task and the operator must physically
move to the robot site or in more advanced cases a mobile camera can be guided to the
site. It is possible to use video cameras and TV screens to provide view for the command

level. In either case it is not very convenient and the speed of the whole operation can

be impaired.

Achieving proper visual feedback becomes more difficult for remote manipulators. For
these the only visual information is through the video cameras. This may require many

cameras to be present on the site or an efficient mechanism to be implemented to move

30
the camera to the proper position and orientation. However, there are many instances
where the video cameras will be of limited or no use. A clear video display requires
proper lighting and mobility capabilities. There might be cases where there is no clear
and transparent media for the camera to function, such as under water or in dusty
environments. Video information also requires wide bandwidth for transmission, which
can be a problem on the whole system. Another problem is with space applications where
there is considerable time delay between transmissions. In real time operations, this

factor can render the whole view system practically useless.

Graphical simulation does not have any of these physical limitations for its cameras, and
such an interface can view the workcell from any view point and any direction required.
Since the computer database holds all the information about the manipulator arm,
workcell and the objects in the cell, it is easy to generate simulated or synthetic views

of the robot and workcell from any direction and view point.

One advantage of such a program is that as many virtual cameras as necessary can be
implemented and thus the most advantageous view is generated when required. This can
be of great help to the operator in his/her efforts in guiding the end effector. For
example, the proper view will assist the operator to avoid a collision with the objects in
the cell. One goal of the present work is to investigate and find out the most favourable

view points and cameras for most of the commonly performed tasks.

Two virtual cameras were implemented as a standard part of the program. These are the
main camera and the gripper camera. The gripper camera views the world (i.e.
robot/workcell) in the approach direction of the gripper. This camera facilitates the
guiding of the gripper during approach to objects. These cameras have zooming
capabilities so that the user can zoom in and out as required. The perspective
transformation is used to generate a two dimensional representation of the 3-D objects.
The parameters of the perspective transformation can be used to set the zoom factor and

the degree of perceived depth perspective.

31

View cameras

As already mentioned there are two virtual cameras available to the program. The main
(default) camera, provides the user with a full view of the workcell (Figure 6). The user

can view the robot and workcell from any angle and magnification.

“rm vorld 3 iew Zimulate “ove arm ‘each ‘ptioms Tuit

X ¥ z Roll Pitch VYau

current: 646.6 8.8 344.1 6.00 -36.80 8.08

KSHIFT + arrow keysz) move camera (ALT+F1} refresh (SHIFT+F1) help
KSH | PgUP/DN> zoom {ALT+U/U> change view <CTRL-PgUP/DN> grip zoom

Figure 6 - View of the workcell using the main camera

The viitual camera replaces a real video camera with the difference that the virtual
camera can move to any point and there are no physical barriers. This has both benefits
and limitations. As it is observed in the performance of the program, certain positions
of the camera can confuse the user. It takes a small time for an average user to
reestablish a proper understanding of the position of the robot. An example is when the
camera is moved under the surface of the workcell. If the program was designed to
remove all the hidden lines this cases would pose no problem in creating a proper mental
picture of the position of the robot. However, the current limitations on the program are
such that hidden line removal techniques cannot be utilized. Still, the main camera

provides very useful display and the ease of control and flexible placement distinguishes

32
this virtual camerz from any real video camera. The main camera can lock on the gripper

and follow it along its path. This mode offers continuous focused view of the gripper

which is difficult to achieve with a real camera.

However, one should not deny the value of the presence of real cameras. It is always a
possibility that something will go wrong during normal operation of the robot. In this
case, the amount of information returrned from the robot (i.e. joint angles) is not adequate
to reestablish the correct situation of the cell such as world object positions. For example
the position of the world objects is assumed in the data file. The presence of a video
camera can assist the operator to judge the real sitnation in the workcell and take

necessary actions. This is specially important for the remote manipulators.

The second virtual camera is "mounted” on the gripper and views the workeell in the
approach direction of the gripper. This camera provides the user with valuable
information on the relative position of the gripper with the objects (Lower right corner

in Figure 7 shows the two fingers centred on the object number 1).

Arn Uorld 6 View Simulate Mouve arm Teach Options Quit

[T
...... o Een |

Ky

X b VA Roll Pitch Yau
current: 1Z2.4 417.4 44.7 8.81 -98.08 B.00

(SHIFT + arrow keys)> moue camera (ALT+F1) refresh (SHIFT+F1) help
(SH | PgUP/DN> zoon <ALT+U/U> change uiew (CTRL+PgliP/DBN> grip zoom

Figure 7 - Virtual camera mounted on the gripper

33

This camera is extremely useful in positioning the gripper during final approach to an
object. The automatic updating of the two views provides the user with two view screens,
and generates information on the relative position and orientation of the gripper from the
object. The two screens are not updated simultaneously (due to computational
constraints). The program updates the second active screen every few frames of
animation. The primary active camera can be toggled between the two camera so that the

view control commands can a‘ ;. :t the desired camera.

Proper viewing of the robot/workcell and easy control of the view are of prime
importance to the graphical simulation interface. Therefore the view control is offered
as a menu, and also as keyboard commands. Since it is very important to have easy
access to different views the shortcut keys are available to the user at any time. These
keys control the view angle, view camera and zoom, during all programming and

animation sequences.

34

"Move arm" mode

This environment is the main working environment of the program. Figure 8 is a
schematic of this environment. The program provides the user with elementary tools to
command each individual joint of the manipulator. Using the inverse kinematic routines,
the position of the end effector is manipulated as a whole. The inverse kinematic

commanding tools are more sophisticated in terms of the specific type of move they can

generate.

MOVE ENVIRONMENT STRUCTURE

MAIN
MENU
VIEW
CONTROL
COMMUNICATION UPDATE THE

MENU DATA BASE

(S

\
ANIMATION
SIMULATEASTORED | __— ﬁ T

TASK FROM FiLE.

MANIPULATE THE ARM
USE MASTER ARM TO JONTM:KP;éPéILATm RELATIVE TO WORLD OR
MOVE THE ARM. GRIPPER COORDINATE.

Figure 8 - Move arm environment

The moves can be 1ccorded into disk files or played back and simulated. These features
enable the user to generate off-line programs for the robot. Also by storing the path in

a file the operator can preplan a task for on-line commanding. The communication mode

35

can be set to off-line and a task can be generated and stored in a temporary task file. If

the generated motion is satisfactory then the file can be downloaded to the arm.

The master arm can be accessed and used as input for joint angles. The master arm has
the advantage of being more natural in the sense that it physically resemiries the
manipulator arm. The master arm together with the simulated graphical arm can be an

efficient commanding tool.

Command tools

The main idea behind the design of these tools was to make the command procedure as
easy and as natural as possible. The command tools can be accessed through the "move

arm" environment.

The *-~'itionally available systems are limited to the use of teach pendant with master-
slav. .lationship. The teach pendant or master arm generates a position which is
duplicated by the manipulator. In practice, the operator performs the necessary moves
on the master arm and the robot manipulator follows. This is a good input device in the
sense that all the joint angles are generated simultaneously. The physical resemblance of
the master arm to manipulator arm ("spatial correspondence") is also of great help to the

operator in the commanding stage.

However, having the master arm as the sole means of commanding impose. certain
limitations. For example it is difficult to generate specific types of moves such as moving
the gripper in a straight line or keeping its orientation constant during a move, or guiding
the gripper during a grasping process. Also, it is difficult to orient the present master

arm using one hand only, therefore the operator will require the use of both of his/her
hands.

36
The command tools can be thought of as high level program commands. These
commands are made available to the user through the interface and are developed in a
way that will be useful together witl: the graphical simulation interface. Practically there
is no limitation in developing these commands. Examples of command tools are the
commands that will enable the user to move the gripper in one of the world coordinate
axes keeping its orientation constant or altering its orientation without changing the
position of the end effector. A similar commanding environment is developed in the
gripper coordinates, which can be extremely useful at the grasping stage in an operation.

One of the goals of this work was to evaluate several of these alternatives for command
structure.

Since the real world robot can interact with the world objects and manipulate them, the
program should reflect the changes imposed on the world by the actions of the robot.
Therefore, the program should simulate grasping of the objects and moving them around

in the workcell (pick and place operation). The benefits and shortcomings of these tools

are discussed in the following sections.

Individual joint control

The single key-strokes allow the user to change the joint angle of each joint. This is very
similar to the use of a standard industrial robot teach pendant. This rather low level
control allows for certain moves that can be useful in testing and calibration of the arm.
The individual command of each separate joint requires understanding of the kinematic
structure of the arm, and overall, it is an extremely slow command tool. The user has

to set each joint angle separately and using the simulated arm, take the necessary steps

to position the robotic arm.

A similar command mode is through the use of the master arm, which can act as an
input source for the joint angles. The use of the master arm provides the user with a fast

tool to set a new position for the arm. All the joint angles are read from the master arm

37
simultaneously and the simulation follows the master arm. In this way, the new position
of the arm can be established almost instantaneously. The simulation should follow the
arm instantly, but the serial communication slows down the joint angle data acquisition
process. Hence, there is a small but noticeable delay between altering the configuration
of the master arm and the subsequent simulation of the arm. To use the master arm, of

course, the robot controller has to be available and on-line.

Inverse kinematics

It is possible to move the end effector or gripper to a new position and orientation
without having to go through tedious manual setting of the joint angles. The host
computer, given the desired final position and orientation of the gripper, calculates the
joint angles of the robot. If the angles are valid, the robotic arm assumes the final
position. These command tools are based on the inverse solution of the robot kinematics.
(Appendix A) The accuracy of the final position for the real robot depends on the
accuracy of the geometric parameters used in the kinematic equations. (For more
information on the inherent limitations on the accuracy of the inverse kinematic solution

see Appendix A.)

EXCAL contains four separate command tools for specifying the world position and

orientation of the gripper:

- Directly specifying the position and orientation in world coordinates
- Using a 3D cursor to position the end effector
- Relative moves in world coordinates

- Relative moves in gripper coordinates

A discussion of this set of tools follows.

38

Directly specifying the position and orientation

In this mode, the user supplies the necessary information for the final position (X-Y-Z)
and orientation RPY (Roll, Pitch, Yaw) of the gripper. The program finds the
appropriate joint angles for the requested position and if the position is reachable the arm
follows. If the position is out of reach or is denied for the reason of safety, a message

lets the user know why the move is not performed.

The positive aspect for this command tool is that the user can specify a known position
and orientation. This can be very useful in the design of certain types of tasks. This
mode will have limited use in real-time on-line operation of the arm. Most people tend
to avoid using this mode because of the more mathematically involved nature of the
process. This might be due to the more abstract mental model required to analyze the
position and orientation. Specifying the orientation using RPY is particularly aw!-ward,
since these angles are hard to visualize. The user has to enter the position and orientation

data manually through the keyboard, which limits the speed of the whole operation.

Using 3-D cursor to position the end effector

To overcome some of the problems of the previous tool, a 3-D graphical cursor is
introduced. This cursor is of the size and shape of the gripper. The reason for choosing
a similar shape for the cursor is to help the user visualize the final position of the
gripper. The user can set the position and orientation of the cursor using the cursor
keypad of the keyboard. This tool is actually an extension of the previous mode. The
position of the cursor is displayed numerically and is updated as the cursor moves. The
user can either view the cursor and guide it purely based on the screen display or move
the cursor until all the position and orientations are what they should be numerically.

This is a quick way of positioning the arm. If the position is achievable, the arm

proceeds to the cursor position.

39

Foruard joint move EXCALIBUR MOVER ACTIVE Arn: OFF

Position Cursor/Entar
X_nove pgup/pgdn

¥ move LT 7/ R

Z novs UP 7 DN
Rotations:

Yaw: CTIRL+ 11 / R1
Pitch CTRL* UP / DM
Roll CTRL+ PygUP/FgpN

B

X ¥ 2 Roll Pitch VYaw
current: 646.6 9.8 344.1 9.0 -38.89 0.88 Check ON

current: 656.6 -288.8 464.1 a.68 -8.80 -26.99

Figure 9 - Inverse mode with 3D cursor

Theoreticaily this cursor could be replaced by the whole arm. A rubber band link
between keyboard and arm can be utilized to move the arm (cursor). These moves are
not final and the main screen arm is left at its original position and can be used as the
reference. This mode is perhaps preferable to the 3D cursor, however, current hardware
limitations do not allow implementation of this mode. The cursor moves are to be fast
otherwise the user will be frustrated. The main obstacle is the speed by which graphics

on the screen can be updated.

Relative moves in world coordinates

In certain operations, the operator is required to move the gripper in one world direction

while other parameters are held constant. This tool and the one following are designed

40
to accommodate this need. The world coordinate is the coordinate located at the base of
the arm. This tool enables the user to move the gripper in one of the world coordinate
principle axes (X-Y-Z) relative to the current position of the gripper, while all other

parameters of the gripper are held constant.

Gripper Coordinate noa

Figure 10 - Gripper coordinate frame
Relative moves in gripper coordinates

This tool performs an action similar to the previously explained tool. The only difference
is that these moves are performed relative to the 7 § g coordinate frame (Figure 10)

embedded in the gripper. This tool is very effective in guiding the robot in its final

approach to an object. It functions well in combination with the virtual camera mounted
on the gripper, since the 7 g 7 frame is fixed relative to this view, i.e. 7 is in the

top/bottom and ¢ 1is in the right/left direction.

41

Problems with the inverse kinematic related tools

When using the inverse kinematic tools, there are a few problems that the user must
consider. First, the program does not have a general collision detection routine. The
program does check the position of the gripper against the surface of the table (Z < 0)
and the base of the manipulator (R < Rg,,). The arm does not use any algorithm to
establish a safe path between initial and the final position. If the outcome of these tools
is an achievable position, the arm will attempt to reach that configuration. Therefore, it
is quite possible that the arm may collide with an object. If this collision is left
undetected then arm may be damaged. This of course will not damage the simulated arm
and is the main reason for the use of a simulator. It is possible for the user to detect a
possible collision in the preview of the move and insert intermediate "via" points which

are collision free.

The other problem using these tools arises from the fact that the real robotic arm has
limited accuracy. The accuracy of the robot depends mainly on the accuracy of the
potentiometers and the resolution of the A/D convertor. Also the electrical calibration of
the controller and the mechanical calibration of the arm has to be considered. Thus if the
user commands the robot to a given position, the real arm will achieve that position with
certain uncertainty involved. The program is designed to update the position of the
simulated arm if the move is not achieved within a certain tolerance. Updating the arm
position is also an option available to the user at any time. This problem does not pose
any difficulty in real-time operation of the arm, but in off-line programming the accuracy
of the positions remains a problem to be considered. This problem can be increasingly

troublesome when the robot is out of calibration, mechanically or electronically.

In the on-line commanding the inaccuracies can create unexpected results. Because of the
inaccuracies present in the position achieved by the arm, when relative moves are
commanded (in world coordinate or gripper coordinate), the other parameters defining

the position and orientation of the gripper, tend to change. The program attempts to keep

42
all other parameters constant while altering only one (direction or orientation) parameter
(for example, in world relative mode, when a move in X direction is requested, the
program keeps the Y, Z, roll, pitch and yaw values of the gripper constant). The actual
arm usually cannot achieve the exact joint angles requested. By default, the program
checks the position of the arm and compares it with the requested position and updates
the joint angles based on the last inquiry made from the controller. The cumulative
errors in joint angles eventually drive the gripper away from the initial fixed position or
orientation. If repeated moves of this nature are requested with the arm connected and
following, the cumulative small errors present in the joint angles become large and

noticeable. Due to this the end effector position can go off the original alignment to an

unacceptable degree.

A limited solution for this case is to disable the default position attaining check. This
forces the program to assume that the robot has achieved the requested position. This will
keep the moves close to what the user intends to achieve (4-0.3 deg). However, if the

robot does not achieve the requested position the user may not be aware of the difference

with the real world robot and the simulation may be misleading.

Simulation

The stored tasks are simulated using this feature in which the task is played back line by
line or in continuous manner. The user can either forward or backward step in the task
file. The objective is to provide enough flexibility so the motion of the robot can be

visually verified against collision. As always, the view control can be used at any time.

Teach and playback

Teach and playback introduced in this section are different from the record and simuiate

that have already been discussed. These features follow the exact protocol set by the

43

controller of the robot. (For more information on these two functions consult the

Excalibur’s user rnanual [12]).

These functions are included for compatibility. The only differerice with the teach and
playback commands of the robot controller is that here the program uses the disk as
external storage for the task files. The controller has limited memory of 24 KByte (about
80 seconds of recording at 10 Hz). The task files generated for continuous teaching mode

can grow rapidly and they require large storage.
Options

At start-up, the program initializes many of its parameters to the default values. The
following parameters can be altered: display color, perspective transformation constants,
help file path, serial communication delay values, text lines mode and animation
adjustment. The User Manual for the EXCAL program [11] explains the functions of the

program in more detail.
Use of a mouse as an alternative input device

In this section the possibility of using the mouse to command the arm is explored. A two
button mouse can be easily programmed to generate six controllable variables. This can
be done with a combination of the x-y moves of the mouse on the mouse pad with its
buttons. Two x and y variables are controlled by mouse moves on the mouse pad. The
third z variable is signailed by holding down one of the mouse buttons. To generate the
next set of variables the same procedure is utilized and holding down the other mouse

button signals that next set of variables.

These two set of variables can be used to alter the position and orientation of the end
effector. The idea would be to establish a "rubber band" linkage between the mouse and

the end effector. A test routine was written and the mouse moves were used to command

44
the arm. However at the testing stage it became obvious that the unnatural spatial relation
between mouse and arm prohibits the mind from establishing a meaningful relationship

between the hand movements and the arm positioning. Therefore at this stage the idea

of using the mouse was dropped.

Communication concerns

Regardless of the type of operation, (ie: remote manipulation or on-site manipulation) the
host computer and robot controller have to communicate with each other. The interface
available with the existing equipment is serial communication with ASCII text format
through an RS-232c line. Of prime importance is the reliability of the data transfer. A
continuing problem with the existing system is that the hardware for communication
differs on the controller and the host computer. It is easy to control and set the
communication protocol of the host computer based on the settings of the controller side
of communication hardware. However, it was very difficult to debug the commuiication
problems. Therefore, the host computer program had to make sure that the

communication was without error or that proper action was taken in case communication
broke down.

As a direct consequence of human factors engineering considerations, the serial
communication error handling should be transparent to the user. When communication
fails the spatial correspondence between real world robot and simulated arm is
questionable. For example if improper or incomplete position informaticr is received by
the robot then the robot can be in position where the next move request could cause a
collision. In these cases tiic user is informed of communication failure. The user then can

.ateract and take the necessary actions such as resetting the program or the controller of

the robot.

45
Chapter 4

Program evaluation
4.1 Introduction

This chapter discusses the overall performance of the EXCAL program, that is, whether
it meets its goals and satisfies the users. Also the test user’s comments are addressed.
Based on the discussion, some conclusions are drawn on the effectiveness of such micro

computer based interfaces.
4.2 Performance of the Program

The two distinct cases of off-line programming and on-line commanding of the
manipulator are evaluated separatels. Although these two parts have many aspects in
common, the behavior of the program can be considerably different when the arm is

connected and the program has to communicate with the robot controller constantly.
Expectations

The expectations from a typical robot commanding interface have already been described
in detail. The program is evaluated here to see if these expectations have been met and

satisfied.

Throughout this work, two distinct subjects are studied. One is related to the interface,
its appearance and the human factors engineering aspects of the interface. The general

expectations from a good interface were described in chapter one. The second study is

46
the general behavior of the interface and its command tools. The latter is more specific
to robot programming and commanding and distinguishes this interface from other

computer interfaces. A brief discussion on the requirements of the program for off-line

and on-line commanding follows.

On-line commanding

The interface shoulc pro :Ge a natural and safe command environment. The view of the
arm and workcell shou.d aicw the user to guide the arm visually and solely based on the
simulation. The simulation and the real arm should be spatially correspondent. The
animated arm shculd be in phase with the real arm and satisfy the real time nature of the

interface.

To avoid user frustration, a fast system response time is essential. The user requires
adequate information on the status of the arm and the objects in the workcell.

Transparent error handling can increase the effectiveness of the whole interface.

Off-line programming

The off-line programminrg requires the same features as the on-line commanding. Due
to the absence of the real arm, the simulation has to be exact in terms of the spatial path
that the arm follows between two points. The path planning and recording stage requires
trial and error sequences and ease of task generation and manipulation is very important.

The requirements on the real-time performance arc relaxed but an accurate task

performance timing can be useful.

47
EXCAL evaluation

Interface analysis

The interface is task oriented and accommodates the needs of the user. The menu driven
interface with on-line help makes the interface friendly and easy to use. The menu names
are suggestive of their usage and require minimum knowledge of the robotic systems.
The environment dependent help is available and the function of each menu item or
command key is explained. The help text explains the function of each tool and not
where the tool should be used. The interface design assumes that the user knows what

he/she wants to do and therefore the help shouild suffice.

The response time of the program running on a 486/33 MHZ computer is very fast and
the response to commands is almost instantaneous. The menu responses are equally as
fast as the short cut key responses. The menu system has only one level of nesting. The
simple menu structure eases menu selection. The commands not represented in the menu

system are displayed at the bottom of the screen.

The program always displays messages indicating the state of its execution. In some cases
the program cannot process the keys as fast as would be desirable. The reason for this
is that the arm moves require a finite time to accomplish (in the physical world and in
the simulation). Thus pressing and holding a command key can overflow the keyboard
buffer, which can adversely affect the program. On the computer used for testing, once
the keyboard buffer fills, the program execution halts and operating system beeps to
indicate this fact. This has little effect on the performance of the program in off-line
programming mode, but if the program communicates with the arm, this affects the

communanication line and communication breaks down.

48
Each environment of the program is devised to perform a specific task. By limiting the
choices that each environment offers the user can focus on the iask and function in an

organized manner.

The task division between the computer and the user is such that the user is required to
have a basic knowledge of robotics and the commonly performed tasks. The reason for
this is that the current state of Al in microcomputer environment does not provide

adequate algorithms to reduce the decision making requirements on the user.

Color is used extensively in the display. Links of the arm are drawn in different colors.
This allows each link to be distinguished from its adjacent links and other objects present

in the workcell. Color coding is used for different messages. Blinking is used to attract

the user’s attention and to indicate that the program is processir, . "¢ user has to
wait. Tests indicated that the user responds to color coding mu:. ..~ than to text.
The status of different elements of the system is displayed. 1. .: «-.clude the state of the

arm (on or off), the mode of the arm controller, accuracy of the moves, timeout value

of the ~ontroller and whether position checking is in effect or not.

When the program operates in off-line mode there are no errors that can occur. Once the
arm is turned on, the communication status is extensively checked and line errors are
corrected by resetting the port. The controller is reset to the exact conditions prior to the

error. If the error persists the user is asked to take an action.

View capabilities

The simulation provides satisfactory image information for object manipulation. The main
view camera covers the workcell and can be positioned with ease to cover different view
angies. The gripper view provides valuable information on the relative position of the

gripper and other parts of the workcell. This view is crucial in grasping operations and

49

allows very easy positioning of the gripper. Two simultaneous views are available and

each view is updated for every move performed.

Shortcut keys provide quick view control. Also, the main camera can be set to follow the
gripper and keep the gripper at the centre of its focus. This mode is useful in object

manipulation. The zoom feature provides close ups when required.

Automatic updating of the two views was not originally implemented, but tests indicated
that if the views are updated without explicit interaction the user needs are better

accommodated. The two views are updated for every task point in the path.
Animation and framing rate

Quality of the animation and the degree of virtual reality it can create were two of the
main concerns in the design and implementation of the interface. The simplified wire
frame images allow the interface to achieve an acceptable animation effect. The
animation quality determined by the framing rate is affected by many factors. The
framing rate is not constant and depends on the complexity of the screen in terms of the
number of objects present, the type of view camera and the number of the view cameras

active.

Table 2 shows the CPU time for different drawing modes used for creating polygons
using the Microsoft C library functions. The results show that drawing an object using
filled polygons at its best, requires at least twice the time as compared to the use of wire
frame polygons, The time required for filled polygon rises sharply with the size of the
polygon (ten times more CPU time is required if the polygon is very large, %80 of the
screen size). The table is compiled for the windowed screen coordinate and vertices are

supplied as double floating point numbers.

50

Table 2 - Time comparison for different polygon drawing methods

Rectangle Draw Time (seconds), 486/33 MHZ
Microsoft C Library

Case (Windowed screen coordinates) Line draw | Wire frame |Filied

Small (aligned along the window axes) 0.0010 0.0011 0.0021
" Medium (aligned along the window axes) 0.0012 0.0013 0.0044
|Erge (aligned along the window axes) 0.0023 0.0024 0.0234

Small (rotated in the window) 0.0012 0.0013 0.0023
“ Medium (rotated in the window) 0.0015 0.0016 0.0047
“I;arge (rotated in the window) 0.0039 0.6040 0.0290

In order to determine the maximum framing rate achievable. the time used by different
operations in generating one image on the screen is displayed in table 3. The results on
486/33 MHZ and 386/33 MHZ machines, also different in magnitude, follow a similar
pattern. The graphs shown in Figure 11 and Figure 12 show the percentage of time used
with different operation in image generation. In general, about one third of the time is
used for calculation (transformation, inverse solution and hidden surface removal) and
the reminder of the time (two third of the overall time) is used by line drawing functions.
The results indicate the limits for animation on the PC machines are mainly due to the

time required by the screen 1/0 operation.

Table 3 - CPU time usage for image generation on the microcomputers

CPU Usage for Image Generation

CPU type |Inverse |Collision |Transformations | Hidden Image Image
solution |check surface |deletion |redraw
486 (sec) 0.00116 0.0010 0.013} 0.00389 0.020 0.023

386 (sec) 0.00284 0.0023 0.028} 0.00928 0.028 0.038

51

CiPU Usage for Image Generation

48B/33 ‘I‘n‘&ﬂfﬁﬂ Sotuttion (2 C%)

Collision check (1.6%)

imnoe draw (37.5%)

imape deletion (32.6%)

Figure 11 - Time usage on 486/33

CPU Usage for Image Gerneration

388,33 Irverse Solution (2 6%

Coltfsion check (2 %)

Image O=letion (25.7%)

Figure 12 - Time usage on 386/33

In the simplest operating mode, with a reasonable number of objects (five or six) and

using the main camera, a satisfactory real-time animation is achieved. The framing rate

52
decreases crnice the two view screens are activated or the main camera is set to follow the
gripper. The framing rate decrease as the cameras zoom in where the size of the
polygons drawn increases. On the average, the framing rate is fifteen images per second
(EGA/VGA mode 16). If the simulation falls behind, then the number of steps for the
move can be adjusted to satisfy the real-time nature of the interface. This of course will
reduce the quality of the animation in terms of reduced continuity between images. The
following two tables and associated graphs show the performance of the EXCAL program
in terms of the time required to display an image on the screen. The data is obtained

from the tests of the progran. on two different machines (486/33C and 386/33C).

Figure 13 shows the displav time vs. the number of world objects in the workcell for
different operating modes of the screen cameras. The display time increases as the
number of world objects increases. The world objects affect the calculations required as
well as the number of polygons to be redrawn. The worst case is for the gripper follow
mode where all the entities on the screen are updated for every image. Figure 14
compares the display time on 486/33C and 386/33C based machines. The framing rate

on the 386 machine is about two third of the framing rate on the 486 machine.

Table 4 - Display time of an image for different number of world objects

53

Display Time (Seconds) - 486/33 MHZ
EXCAL Program

No. of Normal Gripper | Zoomed In Two Gripper Follow
Objects view view View Cameras Mode
0 0.04 0.030 0.049 0.037 0.0766
2 0.04 0.0334 0.051 0.04 0.0834
4 0.041 0.0393 0.054 0.044 0.0932
I 6 0.042 0.045 0.057 0.048 0.0941
8 0.045 0.050 0.058 0.0511 0.103
12 0.052 0.0618 0.064 0.0598 0.137
18 0.061 0.0775 0.073 0.0716 0.179
" 24 0.07 0.093 0.081 0.083 0.22
i DISPLAY TIME
- 486 /33 MHZ, VGA GRAPHICS DRIVER_ -
0.200 —: Normel View
1 2052029252 Gr tppor View
0175 § 33690 ue Cameres
—~ . HHt¥ Zoom On Gr lpper
-5 0.150 3
c .
O 0.125 3
q) -
N .
20,100
©]
€ 0.075]
= .
0.050 %
g
0.025 %"’A
0.000ofll'llll']'l‘»Yl'lIIJBIUIY]'IIYII]'I'I-T'I"l*'llTTllﬁI_r
No. of Worid Objects

Figure 13 - Display time for the EXCAL program on 486/33C machine

Table 5 - Display time of an image for different number of world objects

54

Display Time (Seconds)

386/33 MHZ
No of Objects Normal View Zoomed In View
0 0.061 0.074
6 0.066 0.083
12 0.078 0.092
18 0.089 0.103
24 0.099 0.115

. COMPARING DISPLAY TIME ON
0.200] DIFFERENT COMPUTERS
g DISPLAY IMAGES TIMED FOR ZOOMED IN CASE
0.175
o . +4444 386/33 MHZ
5 0.150 e 486/33 MHZ
-]
8 0.125
@]
o100 - ///
3 —
Q . ;
< 0.075 1»-«-*‘*””““” T
-
0.050
0.025
.
0-000 '1'-7_1’_'#1'“!"!_1_—7‘1—[-1_!*7_1“!_'7""‘7_1‘71 T T T YT T T T T T T
0 5 10 15 20
No. of World Objects
Figure 14 - Display time on 386/33C and 486/33C machines

55
Due to the absence of technical information on torque-velocity characteristic of the joint
motors or of the controller specifications, the dynamic behavior of the arm is not
simulated. It is assumed that if the simulation can accomplish a move at least as fast as

the real arm, then the real-time requirements of the on-line commanding interface can
be satisfied.

On-line commanding

The on-line tasks are either pick and place type or object manipulation. These tasks differ
from off-line programming in the accuracy requirements and the tolerance in position
errors. In either case the arm is required to perform a grasping action. The moves consist

of two parts, the coarse movement and the final fine adjustments.

To be consistent with the previous practice of the robotic systems the program offers a
joint manipulation feature much like the teach pendant. Using this mode, the user
performs much of decision making on the individual joint moves to configure the arm
properly. This has proven to be inefficient and slow. However this is the preferred mode

for performing coarse moves.

The possibility of manipulating the arm relative to its current position allows fine moves
and orientation corrections. The coordinate system at the base of the robot known as
world coordinate allows relative moves in one of the principle directions of the
coordinate and is useful in linear moves. The second coordinate frame is the gripper
coordinate. This coordinate is associated with the orientation of the gripper. This tool has
proven to be very useful at the grasping stage and allows very fine adjustment of the

gripper position when used in conjunction with the gripper view.

These two relative tools allow the user to alter the orientation of the gripper while its tip

position is held constant. This enables the user to align the gripper before closing its

56

fingers on the object. Without the gripper view feature, the relative mode tools would
be of diminished effectiveness.

The program by default obtains the current position of the arm from the controller and
compares it with the requested position. The position checking can be used to signal the
completion of one move and allow the piogram to proceed to the next step. This can -
keep the simulation synchronized with the real arm. However, due to the slow
communication interface, the position check feature slows the on-line operation. For
example it is not possible to achieve ‘mooth and continuous moves. Use of this feature
with the current communication system is questionable especially when the robot
controller checks the requested positions. The user can become very frustrated by slow
responses from the arm when the delay between consecutive moves is long. One possible
solution to overcome this limitation and achieve smooth continuous moves, is to turn off
the position checking feature of the program and decrease the accuracy setting of tlie

controller. However these actions violate the safety requirements of the robotic arm

operation.

To preview a move and check for collisions the arm can be set to off-line mode. In this
mode, the simulated moves are not automatically downloaded to the arm. Once satisfied
with a move then a single key stroke will move the actual arm to its corresponding
screen position. Visual collision avoidance is possible and the tests performed confirm

this. The tests were performed with simple rectangular prisms representing obstacles. A

more complex workcell has yet to be investigated.

The controller side of communication is slower in data handling than the host computer.
The communication board on the controller does not keep up with the rate of incoming
characters (the controller does not keep up with its published baud rate). This is mainly
due to the CPU speed of the controller and hardware modification is required to
overcome this problem. This often causes comimunication errors. The frequency of error

occurrence increases with more stringent position checking. The communication errors

57

are handled without user interaction. If software fails to correct the communication line
or if the controller does not respond, then the user has to manually reset the controller.

This shortcoming can disrupt the on-line commanding to an unacceptable degree.

The availability of the master arm is beneficial and allows easy coarse moves. The
master arm, by solving the inverse kinematics of the arm mechanically, reduces the
computational load of the program and theoretically the animation should benefit.
However due to slow communication, there is a noticeable lag between the moves of the

master arm and the simulation.

Off-line programming

There is no basic difference in the features offered in the off-line programming and the
on-linc vcommanding. The simulation performs all the moves possible by the real arm and
detects potentially dangerous situ.:.-“s such as collision with the table and prevents the
move. The simulation gencrates ac.-urate joint angles to be recorded and provides record

and playback facilities.

It is very easy to record the position of the arm. A single key stroke stores the position
in a file. The stored path can be played back and new positions can be inserted or deleted
from the task file.

The traditional programming using a teach pendant is awkward and time consuming. This
package provides an affordable and very competitive off-line programming utility. The

graphical interface allows the tasks to be verified by simulating the robot motion.

Compatibility with the controller

To fulfil the compatibility requirements of the interface with the robot controller, the

program emulates the controller teach and playback mode. In these modes the program

58
provides external storage for the controller. The task files generated in this mode can be
played back and simulated. The only difference in the task files generated in this mode
is the stored value for the gripper which is either open or closed. The normal record
feature of the program stores the steps for open/close of the gripper relative to its current
aperture. The simulation is designed based on the relative open/close values and thus the
simulation can behave differently if these teach files are simulated. Otherwise the file

formats are exactly the same and cannot be distinguished by their appearance.
4.3 Program testing

Calibration notes

The accuracy of the robot (that is the accuracy by which a requested position in world
coordinates can be achieved) depends on the proper electrical and mechanical calibration.
The possible problems related to calibration are discussed. Small errors in the joint
angles can produce large position errors for the end effector. Therefore the robot must

be calibrated so that the robotic system will operate properly.

Usually, the electrical accuracy is fixed and depends on the quality of the position
encoders and the resolution of the A/D, D/A conversions. This elecirical circuitry 1is
designed to produce an acceptable error level, and is quoted as the inaccuracy present
in each joint angie. Ior the present system the eiectrical accuracy is + 0.30 degrees for
each joint angle. The uncertainty due to electrical inaccuracies is fixed and the software
progra:n asn:d robot controller deal with these inaccuracies by introducing a tolerance in
the accuracy by which each joini position is achieved. The default value for tolerance is
set to 1.0 degree by the robot controller. This value is adapted by the host computer. The

software can change this value as required.

59

The A/D and D/A boards may also require calibration. As an example of the possible
electrical calibration problems the case for the excalibur’s controller, encountered during
the performance evaluation of the program, is discussed. The EXCAL program has the
option of checking the achieved position against the requested position. During initial
testing, it became obvious that there were discrepancies between the requested position
and the reported position. The problem was not obvious since the defauit contrcller
position check did not report any problems related to position achievement. To diagnose
the problem the difference between requested position and the position reported after the

move was completed was recorded for every joint along its range (Figure 15).

Error in Position for Joints No. 4, No. 5, No. 6
240 wwaaat Joint Moo 4 P
] i Joint No 5 A
7 ——— Joint Mo B8 /r
80
180 2 s
. 1 //(
‘o 120 NS imi
&] S s Upper Limit
Q B y 3
-
E so- —
60 ——
< p N /
o p
-] \J)\
< 0 -] " el
- B \
: W] i **\‘» MY** /Fw\"/"‘ /7\\
g - */4‘—(NN
. __60_4 "/ N
I B -4 N ..
— . v TN Lower Limit
v : e
< -
v —120 P
L - e
] r
-180]
—,)40—"_"-7'7"7—11ﬁ."‘["11‘.7'11]‘!7"TY71711’-TYin']lTlI'11.'l¥]'ll '1|I!]_f7r'llli|[I|
[we) [we) [(e
© S 3 2] & &2 S 2
-~ n 1 1 — — '
Reauested Pasition (deal)

Figure 1S - Errors in position before calibration

60
The upper and lower limits are the tolerance setting of the EXCAL program. The
program execution under this condition often resulted in over flowing the controller’s
buffer, and subsequent crash of the Excalibur arm. The previous graph shows a linear
deviation from horizontal level (zero error) for each joint. Through adjusting the
potentiometers on the A/D convertor board (zero and gain potentiometers) the slope of
the line was brought to about zero and the zero offset control allowed minimizing the

error for each joint. The tfollowing graph (Figure 16) displays the errors in position after

the electrical calibration.

Error in Position for Joints No. 4, No. 5, No. 6
2404 Aot Joint Noo 4
1 HHH Joint HNol B
7] ——- Joint Mo, €
180
o 1207 Upper Limi
v — e . e e
il <
2 3
o 60 ,
o a ‘/**\ ¢ _J',*
—' \ « e “k -
5] 1 — — B —
£ 0 - ,-%JT S '—7~‘7~‘ S —— -
Ry 4
S 3 ,
o]
ot =
:g —60- P
— E Lower Lirnit
. d e o e e e
e
T —1204
wl]
—180-
—240:‘7—Fr1‘7—r'7—r‘ﬁ1'1‘7'r‘r7‘7—r—r7*,—v#’r’rr‘r'r T77T7‘T'Y'FY TP rTrITTUN Y Ty .r""'T Ty Y'T'Y“[rvyvrrror Y’T'rl"l
(=} < =] o o [o
0) < 2 2 i~ Y I~
- —] | -t ——
i 1
Heaqueasted BPositiorn taen

Figure 16 - Errors in joint positions after electrical calibration

The mechanical inaccuracy on the otker hand is a problem that can repeatedly occur. The

mechanical zero position of each joint is set by the joint potentiometer to produce

61

clectrical zero. As the robot is being operated, this setting can change. Therefore the
mechanical calibration is a procedure that has to be performed from time to time. It
would be preferable to have the computer program perform the calibration. One possible
way to perform mechanical calibration through software is to find the difference between
requested electrical zero angle and actual mechanical zero for each joint. The errors in
each joint are then noted in the computer program and the necessary correction can be
applied through software. This procedure requires an external sensory system to report
the mechanical zero positions. The current version of the robot under study is not
equipped with this kind of external sensors and manual mechanical calibration is the only

possibility.
The workcell

Because of the uncertainties present in the accuracy of the robot, the workcell has to be
mapped to match the program. In doing so, a grid paper is used to map the floor of the
workcell. The arm is moved to known positions and repeating this procedure for different
positions in the world coordinates will enable the user to map the floor of the workcell

with the program.
Testing procedure

The objective of the study is to evaluate effectiveness of the interface. This evaluation
consists of two distinct parts. First the interface has to be studied for the human factors
engineering aspects. This includes the evaluation of screen setup, keyboard layout, menus
and so on. Secondly. the interface has to be evaluated in terms of its effectiveness in real

time commanding of the arm and in off-line task planning.

The available test users were mainly engineering students with some knowledge of
computers but with no exposure to robotic systems. Some comments from more

experienced computer programmers were collected. The user’s views as reflected through

62
the questionnaire (Appendix C) were compiled and the points approved and the parts
disliked are discussed below. Each test user on the average spent three hours to become
familiar with the software and its capabilities. At this stage little or no help was offered.
Once the users were familiarized with the setup of the program, they were asked to
perform simple on-line tasks and oft-line programming. To simulate remote
manipulation the view of the robot was blocked and the graphical interface was the main
visual information available to the users. Also there was a fixed video camera providing
video information from the arm and the workcell. The use of the camera proved to be

difficult to manage and very dependent on the lighting and view -iirection.

The on-line task performed was either picking a block and placing it in a prespecified
position or moving the arm in a straight path (Figure 17). In the latter case, an external

device would notify the user if the arm was off the desired course.

Arm World B View Sinulate Move arm Teach Options Quit Play rec

Rerun
Back atep
orward
ontinua
rn OFF LINE
layback
Delete
ndo delete

Pitch VYaw
current: 1Z2.4 417.4 44.7 .01 -99.98 .09
KSHIFT + arrow keys) move camera {ALT+F1> refresh <SHIFT+F1)> help
KSH | PgUP/DN> zoom <ALT+U/U> change wieu {CIRL+P4gUP/DN> yrip zoonm
ecord no. 18: 8831 -2681 174 86 -3491 8832 85

Figure 17 - Test user’s workcell layout

63

In either case, the users had to make a world data file describing the setup of the
workcell. Generating the description file is simple and requires little time. On the
average users could make these files in five to ten minutes. The pick and place task
(Figure 18) was relatively simple and could be performed in less than five minutes.
Moving the arm in predefined paths (between the two parallel objects shown in
Figure 17) proved to be difficuli and several trials were necessary to be able to

accomplish the task. The test users spent more than an hour to be able to do this task.

Arn Uorld 0 View Sinulate Move arm Teach Options Quit

ot

X ¥ z Roll Pitch Yau
current: 1Z2.4 419.1 91.7 .01 -92.88 8.0
KSHIFT + arrow kuys?y move camera {ALT+F1> refresh {SHIFI+F1)> help
KSH ! PgUP/DN> zoom <ALT+U/U> clange view <CTRL+PgUP/DN> grip zoom
ecord no, 23: -8792 -1429 -762 @ -3888 8812 B

Figure 18 - Test user’s generated task

The test for off-line programming consisted of 1) setting up a world description file for
two or more blocks, 2} specifying the target position and 3) creating a task file to move
the blocks. The users had to repeat the process of creating the task file a few times.

Difficult aspects of this task were the orientation of the gripper during approach and the

o4
amount of the gripper closure to grasp an object. The latter problem arises from the fact
that the gripper's aperture is not fed back to the program and can be different from the

simulation. Once the test users became aware of this deficiency they could create a task
file in half an hour.

The familiarity level that the test users achieved can be rated as skilled in working with

the software and novice in working with the arm.

User approved features

Generally the users approved the performance ot the program. The f4st response of the
program makes the software easy to use. The graphical simulation of the arm does raise
concern at certain operations but overall, the information enables the user to perform the
required tasks. The image can be confusing when the gripper approaches an object to

grasp it.

The users were pleased with the dual view capability ot the program and the automatic

updating of the views allows the user to have a better picture of the relative position of

the arm.

The relative move tools (world and gripper coordinates) proved to be very useful. Thc
relative to gripper tool along with gripper view was very effective in accurate positioning

of the arm relative to the objects.

The record and playback utilities of the program were easy to operate and task generation

and manipulation were very easy.

The simulation is not dynamically exact and can be faster than the real arm in many

instances and the real time requirements for on-line commanding were satisfied.

65

User disliked features

There were concerns for the quality of the graphics and viewing information. When the
gripper is very closc «u the objects or the table it is hard to judge the exact situation. For
example it is difficult to visually determine if the tip ¢ the gripper is in contact with an
object or the surface of the table. If the numerical position display and color changes
were not implemented it would be difficult even to judge if the gripper is below the table
or not. These deficiencies are due to the nature of the wire frame images used in the
simulation. For close object manipulation a more detailed graphical representation is

required (solid surfaces with proper shading and shadow).

The joint manipulation mode of the move arm was quite slow and inefficient. The users
preferred other means of control for coarse moves (eg: the master arm). Also the lack
of high level commands (for example a command to move the arm to the grasping

position of an object) raised users concern.

The slow serial communication interface was very frustrating at times. The program
performs much faster when the arm is set to off-line. In the operation requiring constant
communication with the arm controller, the performance of the program deteriorates. The
performance of the software is limited by the capabilities of the controller side of the

serial communication line.

66
Chapter §

Conclusion

The EXCAL software seeks to provide a realistic imicro computer based robot simulation
package. The research program was developed for studying the graphical interface and

tool development. The wire frame graphical representation was selected over solid

modelling. This selection is based on several reasons:

The most restricting factor is the slow graphics hardware. The program requires

real-time operation. Simulation based on wire frame representation allows for smooth

animation in real-time.

Wire frame representaticn along with hidden surface removal provides satisfactory

visual information for most of the applications.

Overali the program performance was satisfactory and very competent. Although the

graphical simulation depends on the simulation model used, the program shows that it

does not have to be overly complex.

The inexpensive programming interface for the PCs allows testing and evaluation of
different programming and commanding tools (e.g. master arm, view cameras, etc.).

High ievel command tools can be designed and implemented using this system.

The two views explored have proven to be very useful. The gripper view in particular,
is very helpful and is esser:ii tn the system. With growing capabilities of the graphics
hardware for the PCs, othe . ..~ aiieras can be added as required. One possibility is

the simultaneous generatic~ ¢: urs for better depth perception.

67

A detailed image is required for the view of the gripper in close interaction with other

objects (solid surface rendering, shading etc.).

The communication interface is very slow and hardware improvement is required.

The joint manipulation mode (simulating a teach pendant) is inefficient and very

awkward.

The relative move modes are very useful especially for performing fine moves and

accurate positioning of the arm near grasp points.

The master arm is still a preferred input device and very useful for coarse moves.

This interface offers easy and very competitive off-line programming utility.

The future plans call for an interface to CAD packages for workcell setup. Also an end
effector selection option for testing different tools is desirable. More high level
commands are required along with automatic and efficient path generation. These

improvements would produce a package of considerable usefulness in actual production

nranoacocac

68

References

1-

10-

11-

12-

13

Stauffer, N. Robert, "Robot System Simulation”, The Robotics Today, volume 6,
number 3, June 1984.

Howie, Phil, "Graphic Simulation for Off-line Robot Programming", The Robotics
Today, volume 6, ::umber 1, February 1984.

Speed, R., "Off-line Programming for Industrial Robots", Proceedings of the 17"
International Symposium on Industrial Robots and Robots 11, April 1987.

Larson, G. and Donath, M. "Animated Simulation of Intelligent Robot Workcells",
Proceedings of the Robot-9 Conference, volume 2, June 1985.

Zhang, H., Through private communication, University of Alberta, Department of
Computer Science, February 1992.

Yoffa, A. Nathan, "Workcell Simulation Case Study: A Spot Welding Application",

Proceedings of the 17" International Symposium on Industrial Robots and Robots
11, April 1987.

Derby, Stephen, "In Position: Simulating Robotic Workcells on a Micro”, CIME,
volume 5, number 2, September 1986.

Gonschior, Martin and Schunke, Andreas, "Graphisch Interaktive
Robotersimulation auf Personal Computern”, VDI-Z, volume 131, number 10, Okt.
1989, p. 51-54.

Ravani, B. CAD Based Programming for Sensory Robots, Young, K., Bennaton,
J., "Off-line Programmiug of Robots using a 3D Graphical Simulation System”,
Berlin / Springer-Verlag, NY, c1988.

Khatib, O., Craig, John J., Lozano-Perez, T. The Robotics Review 1, Brady, M.,
"Problems in Robotics", The MIT Press, c1989.

Simonian, A. EXCAL’s User’s Manual, University of Alberta, 1991.

Excaiipur User’s Manual, Part A and B, Version 1.5, RSI Robotic System
International Ltd., 1986.

C ASYNCH MANAGER, user reference manual, Blaise Computing INC., 1987.

14

]

15-

18-

19-

69

Sutcliffe, A. Human-Computer Interface Design, MacMillan Education, 1988.

Brown, C. Marlin Human-Computer Interface Design Guidelines, ABLEX Pub.
Co., c1988.

Laurel, B. The Art of Human Computer Interface Design, Addison-Wesley Pub.
Co., c1990.

Yuguang (Eugene), Cao, "Thesis: Collision-free Motion Planning And Application
to the PUMA 560 Manipulator”, University of Alberta, October 1990.

Hearn, D., Baker,M. Paulin, Computer Graphics, Prentice-Hall Inc. c1986.

Paul, Richard P. Robot Manipulators, The MIT press, c1989.

Stone Henry W. Kinematic modelling, Identification, and Control of Robotic
Manipulators, Kiluwer Academic, Boston, ¢1987.

70
Appendix A

Kinematic Modelling
Introduction

Kinematic models are required for analysis and control of the robot manipuiators. These
models describe the relaiionship between the robotic arm parameters and a coordinate

frame. Kinematic models relate the position and orientation of the end effector to the

joint angles of the arm.

Usually these models are based on the manufacturer’s specification of the robotic arm.
Therefore real world factors such as gear backlash, friction, link compliance, encoder
resolution, joint wobble, and manufacturing errors are neglected [19]. These affect the
accuracy of the model, but ease the formulation of the analytical solution. Usually

simplified models result in a closed form of inverse kinematic solution.

The Denavit-Hartenberg model is used, and this appendix will introduce the basic

approach taken by this model {20]. The forward and inverse kinematic equations for the
EXCALIBUR arm will be derived.

71

Conventions used by Denavit-Hartenberg model

Manipulators consist of links connected in series by joints. Rigid body, homogenous
transformations can describe the position of each link. Traditionally the transformation
matrices describing the relation between one link and the next one are called A matrices.
An A matrix is simply a transformation that defines the relationship between two
coordinate systems at the two ends of a link. Thus A, describes the position and
orientation of the link n relative to link n-1. Using matrix multiplication the relation

between different links can be established. For Example,

T:;_ = A]A2

the T, describes the position and orientation of the coordinate attached to the end of link
2 relative to the coordinate located at the beginning of link 1. Usually industrial robots
have six links and the T matrix will be:

Te = A AAAAA,

The present Excalibur arm is a six link manipulator with six degrees of freedom. The
forward kinematic and inverse kinematic solutions for this manipulator are determined

in closed form. The notation T is historically used to represent the product of A matrices.

Notation

The T, matrix is a homogenous rotation translation transformation matrix that contains

the position and orientation of the end effector.

nX o.l a.x p X
n o, a. p
b ¥ ¥ »
T, =
n.'. OZ al p <
0 01

72
The following three miatrices are :he basic rotation matrices used to determine A matrices

for each link cf the arm. The last mairix is a general translation matrix.

—

1 O 0 0
Rot(x.0) = 0 cosf -sinf 0| ;
' O sin@ cosfd Of
0 0 o 1
[(cos® O sinfd O
0 1 0 O
Rot3:0 = 1 _Gno 0 cosd 0
| 0 0 0 1
cosf -sin@ 0 O
Roi(z.60) = sinf cosf@ 0 O
’ 0 0 10
0 0 01
1 00 x
Trans(x,y,z) = 010y
001 z
0001

"A" matrices

The A matrix is a homogenous transformation consisting of a series of rotations and
translations.

73

loint coordinate convention

fo be consistent the Denavit-Hartenberg model uses the following convention to assign
:vordinate frames to each link of the manipulator. For the case under study with revolute
oints, ¢, is the joint variable. The parameters used to determine the A matrices using

denavit-Hartenberg method (Figure 19) are defined as follows:

. 1s the distance along x, between the axis z,, and z,.
x. is a rotation about x,, that orients the z, based on z, .
iy the distance between x,, and x,, along the z,, axis.

}, is the angle between x,, and x, measured around z,,.

A
. Zn-1 ”
H E =" 4 n
\ Zn-1
3 ':/ 6 n
\'v‘ ' —_— - ————
JOint n "§.~ T "‘ %' ~
L "-, oA
\ RN .\v‘.
.\; - i!
68 L v
e
-~ " n
(5.
n: . K;
\,_" /

Figure 19 - [ink parameters «. #. d and a

74
Following the above convention and the assigned coordinate frames to each link of the
manipulator (Figure 20), the relationship between successive frames n-1 and n is

established by performing the following sequence of the rotations and translations:

rotate about z,; by angle 6,

translate along z,,, a distance d,;

translate along rotated x,_,, now parallel to x,. a length a,;

- rotate about x, by the twist angle «

n°

A= Ror(zNTrans(0.C. N Truns(@ O 0.0

n

cosd -sinf@ O O

1 0 0 « 10 0O 0
4 - sinf cos6é@ O O 0100 0 cosa ~sina O
g 0 0 1 0 001 d 0 sine cosa O
0 0O 0 lJ ¢ 001 U 0 0 1
cosf -sinfcosa sinfdsina wcosd
A - sinf cosfcosa -cosfsina asing
" 0 sina COS d

0 0 0 1

A, represents the composite transform for link n.
Specification of T, in terms of A matrices

The general relationship between the T and A matrices is:
MUT = ALALL L. A
hence the end of manipulator with respect to the base, T, is given by:
T, = A AAAAA,
For additional transformations the relation between homogenous rigid body

transformation can be used to determine the position of the manipulator. Suppose that the

75

position of the manipulator with respect to the world coordinate frame is given by
transformation matrix Z, and the position and orientation of the end of the aached tool
with respect to the end of manipulatoi is given by E. Then the position and orientation

of the end of the tool with respect to the world coordinate frame can be found using:

X = ZT.E

76

Kinematic Equations for Excalibur Manipulator

Figure 20 shows the attached coordinate trames for the Excalibur manipulator. Based on

the assigned coordinates the Denavit-Hartenberg parameters are determined and shown

in table 6.
Ze
g =X
QG ™ °)
%
8§‘ | Xa Xg
24, da
L z,
z, _az 84 -
62/-@1:-3--"’ Jo X oy X, X,
Py Y, =7 /8
Z1 T 01 Z2 ’
XO
Figure 20 - Coordinate frames for the Excalibur
Table 6 - Denavit-Hartenberg parameters for Excalibur
Link Variable 6 o a d i
1 0, S0 0 d,
2 4, 0 a, 0
3 9, -90 0
4 6, 90 0 d,
5 05 -90 0 0
6 0, 0 0 d,

77

‘The A matrices are simplified using the following definitions:

C, = cosf,
S, = sind,
6, = 6,+ 6,

C,, = cos(f, + 6y

A - Matrices:

—C! 0 S, OW —Cz -5, 0 azC'_’T —C3 0 -5 O—i
S, 0 -, 0 S, C, 0 a5, s, 0 C ©
AI = A} = A; = ;
01 0 d, c 01 0 0 -1 0 0
00 0 1 0 0 0 1 (0 0 0 1
C, s, 0] c. 0 -S, O] C, -5, 0 0]
s, 0 -C, 0 S, 0 C, 0 S ¢, 00
A, = A, = A, =
1 0 d, -1 0 0 0 0 1 d
(00 0 1] (0 6 0 1 0 0 0 1]

Note: The zero joint angles viewed by the Excalibur controller are defined differently
from the zero jcint angles 8, of the kinematic solution. The relation between these two
set of angles are as tollows:

02 = 6'2 + 30
0, 85 - 150

I

“ indicates angles for Excalibur controller.

The software program supplies the conversion to account for the difference when a move
is requested or the joint angles of the Excalibur are inquired.

78
Forward Solution

B -

noo 4a. p,

n, o, a, p,
T, = - = AAdA 4,44,
n, o, da. p.

|0 0 01

n. = [(C;C23C4 - 5154)6'5 - stz.\Ss]Co - (C!CZJSJ * 51C4)So
no= [($,55C, + C|S4)C5 = 8,55,5,1C, ~ §,C, 8, - CC)HS,
n. = (5,,C,C + C,5)C, - 5,,5,5,

o = -[(CC.C - SS)C, - CS§5, 815, ~(CC. S + §8S)C,
o, = -I(8,GC.C, + CS)C - stz_%sslsf,_(slcn‘ - C\CHC,
0. = ~(5.C,C + CpS)S, — 5,.8,C

a, = —(C,CC, - §5)5; - C.3,.0
I, = ~($,CC, + CS)S; - §,5,,C
a. = ’523(:455 * C‘zscﬁ

p, = [—(C1C23C4 - 5154)55 - C.PNCS'](.’,, - CIS_,,}L/J + UECIC:,
[-(5.C,C, +~ CS)Ss = §,5,,C)d, - §,5,d, + a,5,C,
= [-55C,8 + C,,)Cldg + Cod, + 4,5, ~ d

SR
l I

79

Inverse Solution

This procedure is based on the method described by Paul, see refrrence [20].

Step 1:
£, fi,0) fu@ fip)]
= .1] ()_d
AT, Sia(n) ffb(o) f@ fop-d | AAAAA,
L0 fi(o) fi(@) fi(P)
| 0 0 0 1

-~ (18]
1l 1}
ty ™
=
]
9!
S~

from the right hand side of the 'Tj:

3.3) jf@) = Sa, - La, = 8,5

(3.4) f;(» =Sp, - Cp, =554,

uy

Solving for 6,:

S, _ b, - ady)
Cx P, - a,‘dé)

6, = ATAN2(p, - ad, , p. - ad)

Note that the solution degenerates if S,S; is zero. See the discussion for this case and the

similar cases at the end of this section.

80
Step 2:

Using the same mairices as step 1, we have:

(1,4) fp) = filayd, - S.d, - a,C,
(2.4) [Py - d, = fil)d, + Cod, + S,

P, = [1,(P) - f(«)d,
P, = f,(P) - d, - fi,(a)d,

i
Rearranging the above equation:

~Spdy + a,C, = P
Cod, + a,5, = P,

Now squar. . doth sides and adding, and using the trigonometric identity sin(6,; - 8,) =

sinf; we get:

We cannot find an independent expression to evaluate C,. So we must use
C, = tx/lw _

Note two points:

1. If the absolute value of S; > |, the SQRT function fails. This is caused by the
desired position given by T, being illegal (out of the envelope of the arm).

2. Also we must choose the + or - value of the square root. To resolve this problem
we will take the positive square root and check the compute 1 joint angle against its

limits. If the angle is out of range, we will adjust it by adding or subtracting 180

81

degrees from the angle (8; = ATAN(S; , C;)). The computer program uses the

corresponding value for the elbow up solution.

Step 3:
Rewriting the above set of equations, and expanding the terms Sy, and C,; , we obtain:

(-Cd)S, + (a, - §:d)C, = p,
(a, = 5:d)S, + (Cd)C, = p,

Solving this set of equations:

S = p.Cd, — pla, - 5d)
’ ~(Cd)y - 4y = 5dy)

and
-p,Cyd, - pa, - Sd,}
- ~(Cd) - (a4, - S,d)

Therefore:

6, = ATAN2(S,,C,)

Step 4:
Now we will obtain the matrix products on both sides of:

—fu(") f;x((’) f;l(a) f;,([l) - 523‘11 - a2C3—
ACAS AT, = .f?z(”) f?z(”) f?z(a) ' J2(P) = A,AA,
! 0 0 0 1 |
where:
Ju = Cu(Cx + S)y) + 8,2
f:n = —SIX + Cly

=5(Cx + §y) + G2

fi

From the elements (2,3) and (1,3) we obtain:

(2.3) filu, = -8,§,

L

(1.3 fil@) = -CS,
which yields:

S, = (-Sa, + Clu.\,) /S
C, = (C(Cya, + Sia) + Sya)l S
6, = ATAN2(S,,C))

Note that again, we have assumed that S is not zcro. See the discussion at the end of this
section.
Step 5:

Obtain the matrix product on both sides of:

Fu D) fu0) ful@) fup) - $,Cd, - a,C,C,]
ATATATA, I Jm) f%z(”) f.:n(a) .f;‘z(P) = (j‘z.?d‘l +a,S, - i’{4 - AA,
f“;3(n) f43(()) ./43(”) f.n(p) - LS2354611 - aZC3(’4
i 0 0 0 1
where:

f:.l = C23C4(C1x - Sxy) - S-:(Slx - Cny) * S”C‘,Z
Jo = ~Su(Cx + §)y) + G2

f43 = _C23S4(C1x + Sly) + C4(Sxx - Cx)’) * Sz:sS:tZ

83

From eclements (1,3) and (2,3) we obtain:

(1,3) fi(a) = -8

(2,3) fi,{a) = C;
So that

6, = ATAN2(S,,Cy)
Step 6:

From the same matrix product as step 5, we get:

./:u(”) = =5, = CBSA(CIHJ + SlN_\-) - C4(Si".‘ - Cn"v\\‘ - 52334”:
Ju(0) = ~C, = -C,;5,(Clo, + §0)) - C(So, - C,()_‘_) - §,35,0.

So that
6, = ATAN2(S,,C,)

Procedure to handle the case when 6; = O:

In deriviag the inverse kinematic equations we assumed that S; was not zero. In
implementing this method therefore we must deal with two problems:
1. How to detect when §; is zero?

2. What to do about it!

If 6 is zero, this means that the g vector points directly away from the robot base.

Examining the (3,3) and (3,4) elements of step 1, using S5 = 0 gives the results:

1
O

(3,3) fi;(@)
(374) .fn(.p) = S|px - Cxp)- =0

Sa, - Ca, =

84
So that

This relation p, / p, and a, / a, can be checked as soon as the inverse solution is called
with the input T, matrix. If this condition is true, then S, is zero. 6, can be determined

using either of the equaticns above.

Furthermore, if 05 is zero, the axes of joints 4 and 6 coincide so that the contribution of
each joint to the roll orientation is indeterminate. We can arbitrarily set 6, = 0 and let

joint 6 take all of the roll.

Appendix B

Implementation of the program in the *C’ language
Introduction

This appendix covers the programming concepts and actual implementation of different
routines. The data-base of the program and graphics techniques used for animation and
menu display are discussed. This material with the comments in the actual code can be

used for future modification of the code.
Frame coordinates

In the following material there are occasional referrals to frame coordinates. In the
development of the program two coordinate frames are used. These frames are cailed

kinematic (world) coordinate and the screen coordinate (Figure 21).

3
[

Y ¥ o
///
P
S .
X zZ
Kiremat! ~ coozdinatces Screen coordinntea

Figure .1 - Frame coordinates

86

Graphic representation of the vhjects

Data-Base design

Data for each three dimens: ubject is stored in a two dimensional array. These arrays
store the coordinates of t..- ructangular r-isms representing the arm links and the objects
in the workcell. The oi+i: <5 can be classified in two groups. One set is the rectangular
prisms used to construct the arm, which is composed of six links, two fingers and the
base. Except for the base of the arm, all parts are represented using rectangular prisms.

A twelve sided polygon prism is used to represent the cylindrical base.

The other set of three dimensional objects contains the world objects. Any object
introduced to the workcell as a foreign object is known as world object. These objects
are stored in data structures as they are read into the program. The arm links could be
stored in similar data structures. However, since comnputer calculation with data of type

"structure” requires more time it was decided to use arrays.

The relationship between vertices and surfaces for each object type is stored in two
dimensional arrays. The first subscript in these arrays represents the surface (poly side)

and the second dimension holds the indices of the vertices composing that surface.

The program EXCAL stores the world objects in interne’ data structures defined in the

following format:

struct world _cube{
REAL xyz{ORJIECT _SIZE[{3];
REAL rxyz{3/,
REAL tzvrf3), /* nor used */
int vertices;
char obj _num;
char g; /* set ro yes if object picked */
int color;
struct world_cube *next_object:

»

87
The program dynamically allocates memory for the data structure as more objects are
read into the program. This structure holds information on the number of vertices,
coordinates of the object, transfer vector that defines the position of the cbject, color
value for the object, object number, a flag that indicates whether the object is grasped

or not and a pointer to the next data structure of its own kind. The final item is used to

create a linked list of the objects.

This structure can hold data for as many vertices as required. However, the current
version of the program limits the number of vertices to eight for rectangular prisms.

Some functions use the explicit orthogonal characteristics of the prisms.

Transformations

To coustruct the arm each component of the arm (arm link) is transtormed to its
corresponding position. The transformation matrix for each link T, (Appendix A) for link

n is applied to the coordinates of the link in kinematic coordinates. This procedure is

repeated for each link and the arm is constructed.

To increase the efficiency of the calculations a dedicated function is developed for each
link. Two additional transformations are required to correct the position of the projected
objecis for changes in the view point. The default view point lies on the z axis of the
world coordinate as defined in Figure 22. A combination of pitch and yaw rotations
correct the position of the objects for any other view point. After the new position of a

link is calculated the vertices are projected onto the two dimensional screen planc using

perspective projection.

88

Shown here s a sample code that transforms the coordinates of link no. 2 .

void transform2(ine no_of points, REAL abs_rot_pt[J[[PNTS],REAL rot pt[]{3].\
REAL pi{j[3],REAL vxy[])

{

int i;
pitch_rot(no_of points,abs_ror_pt.pt,scr_arm_ang{1]+SHOULDER_HOME);
Jor (i=0; i<no_of points; i+ +)

abs_rot_ptfiff1] += LI:

yaw_rotfno_of painis,abs_rot_pt,abs rot_pt,scr_arm_ang{O]+camera_pyr{1}]);
pitch_roifno_of poinis,abs_rot_pt,abs_rot_pt,camera_pyr[O]);
perspecrive{no_of points, abs_rot_pr, rot_pt, vxy);

The names of the functions called in this function are self explanatory. Notice that the
camera_pyr{/ array holds the pitch and yaw angle for the main camera’s position. These
two angles relocate the camera on the surface of an imaginary sphere that covers the arm

and the workcell.

The first parameter passed to the function is the number of vertices and determines the
number of points to be transformed by the function. The original points defining the
coordinates of the link n are passed to the function by ptf] array. The array abs_rot_pt[]
hold the coordinates of the transformed object. The array ror_pr/] is used for the internal
calculation in the function. The array wxy// holds the projected screen coordinates.

Perspective projection generates the coordinates for screen images.

For each link a similar function is called with the appropriate transformation sequence.
The functions pirch_rot, yaw_rot, and roll_rot do not perform full matrix multiplication.
Many elements of each rotation matrix are zeros and full matrix multiplication would be

a waste of processor time.

Perspective projection

To obtain a two dimensional

representation of a three dimensional
object, perspective projection method
can be used. Perspective projection

creates the illusion of depth.

Figure 22 shows the basic

arrangement used for this projection.
The program performs this
transformation using the following

formulas:

89

’//’ Projection Plane

p{x,x,2)

PR
\\~\
(o IS — Do | cbsesver
-z . / d
- Xp

Figure 22 - Perspective projection parameters

. d
x\z+d

74
i

]

The actual code performing this transformation is shown here.

void perspecrive(int no_of points, REAL abs_rot_pt[][PNTS|.REAL rot_ptl [[PNTS] . REAL vxyl])

int i;
Jor (i=0; i <no_of points; i+ +)

{

rot_pifil{O] = abs_ror_pt[i}][0] + mx;

ror_pilil{1] = abs_ror_pt[i]{1] + my;

ror_ptfil{2] = abs_rot_pt[i]{2] + mz;

vxy{2*i] = (d*rot_pt[i][O])/(d-rot_pt[if{2])+ off x; /*-d*x/z +off x*/
vxy[2*i+ 1] =(d*rot_pifi]{1])/(d-rot_ptfi][2])+off y./*-d*v/z +off y*/

90

The mz is added to the z axis of the object to translate the object to negative z
coordinates. The distance between observer and projection plane is controlled by
parameter d. The parameters nwx and my are used to control the position of the projected
image on the screen (pan). If mx and my are set to zero then the image is centred on the

screen.

At this stage the screen coordinates are ready and the image can be put on the screen.

Before calling line/polygon drawing functions the hidden surfaces have to be determined.

Hidden surface removali

An object-space based hidden surface removal technique determines the visibility index

for each surface. This method uses the plane equation:

Ax + By + Cz +D = 0

The method calculates the dot product of the view vector and the outward normal vector
to the plane. (Figure 23) The dot product determines the angle between view vector and
normal to the plane. If the result of dot product is negative the surface is visible. The

function surface_test shown below returns the result of this dot product.

REAL surface_test(REAL xI1,REAL my v1 ,REAL z1, REAL x2,REAL y2,REAL 72,REAL x3,REAL y3,REAL
z3)
{

REAL stest,a,b,c;

a =(view_dir_xyzfO[fO]-x1)*(my_yI*(z2-z3) + y2*(3-21) +y3*(zl-z2));

b =Wview _dir xyg[Off1]-my_y1)}*(z]1*(x2-x3) + 22 *(x3-x1) + 23*(x1-x2));

c =view_dir_xyz[OJ[2]-21)*(x1*(y2-y3)+x2 * (v3-my_yl} + x3%(my_vyl-y2));

stest = a+Db+c; /* dor product of view_vec and normal of plane */

rerurn stest;

91
This functions uses the three points on the plane to find the normal vector to that plane.
Components of the normal vector to the plane are found from the cross product of the
two lines in the plane. The dot product of the view vector and the normal vector to the

plane generates the visibility index of that surface.

n=ul x uZ

stesr=n . v

Note that vector y is directed from view y

point to the first vertex of the surface under Dn AB.C)
2 W
=

study. If stest returns a negative value then "
the surface is marked as visible. The A e
e : , View point = x
visibility information of each polyhedron is 7
e
stored in an array. //

Z

Figure 23 - Hidden surface removal

Once the screen x and y coordinates and visibility information for all the links are

determined, the screen image can be generated. The polygon() function of the Quick-C

library is used.

Drawing a frame

The following material covers the necessary steps in generating one complete frame.
There are five types of objects in each frame. First the grid representing the table is
drawn. Then the base of the arm is drawn followed by a frame axis. The world objects

laying on the table are plotted next. The last item is the moving part of the frame "the

Excalibur arm".

92
Grid

The grid coordinates are generated at the initialization stage of the program. The grid is
five by five, and only the coordinates for the outer points are generated. These grid
coordinates go through the necessary transformations for the view camera. The grid
plotting function generates the grid by plotting five rectangular polygons. This method
takes less time than plotting ten separate lines. The current plotting coordinates are saved

for later calls to this function.
Arm base

Excalibur’s base is a truncated cone very close in shape to an upright cylinder. The base
is approximated by a twelve sided polygon prism. The procedure for generating the plot

coordinates is the same for any other objects.
Axis

An axis frame is plotted to show the x-y-z conventions used by the program. To plot this

frame, four points are defined and transformed (rotated) by the camera angles.

World objects

World objects are read into the program whenever the user wants to add/replace objects.
The objects can be either moveable or non-moveable. This is determined by the color
value of the object when loaded. Negative value for color marks the object as fixed and
the program assigns the grid color to these objects. The gripper cannot move these
objects. Moveable objects can be attached to the gripper and moved around. The world
objects are drawn after the axis frame is plotted. If an object is attached to the gripper
it is not plotted at this stage. The grasped object located between the gripper’s fingers

will be plotted following the arm.

93
The objects set on the table undergo the viewing transformations (rotations). The object

(only one) grasped by the gripper has to be transferred to the gripper's current position

and orientation. The grasped object is plotted in red color.

Arm

Six rectangular prisms representing the links of the arm and two more prisms as the
gripper fingers compose the simulation of the arm. The coordinates for each link are
stored in a static array in the function that plots the arm. Using the global values of the
joint angles, each link is transformed to its appropriate position and then plotted. The
transformation for the gripper’s fingers, accounts for the fact that the tip of the gripper
moves back and forth as the gripper opens and closes. (ie: the distance from the wrist

to the finger tips increases as the fingers are closed).

A global flag indicates if an object is grasped by the gripper. If there is a grasped object
the value of this flag points to the number of the grasped object. A set of transformations

are applied to this object to position the object according to the gripper’s position and

orientation.
Transformation of the grasped object

The forward kinematic solution generates the T, in the kinematic coordinates.

n, o, a p,
n: 0: a: P z
|0 0 0 1

94
The objects are defined in screen coordinate. To transform the grasped object to gripper’s
configuration the final transform should be applicable to screen coordinates. The

foliowing formula can be used for coordinate transformation.

T, =CT, thus T, =CT,'

C is the transform between world coordinate and screen coordinate. The T,” in the screen

coordinate is:

o100][ne apn]l [noap]
T‘ C—l T 0010 n_" 0_\' a.\' p,\' n: 0: az P:
’ i ’ i l 0 0 0 n: (): a: p: nJ O.(a.l' p.l'
0001jlo oo 1] |00 O 1]

This transformation will transfer any point (in screen coordinate) to the position and
orientation of the gripper. To keep track of the relative configuration of the grasped
object with respect to the gripper, the procedure initially applies the inverse of the above
transformation to the object when it is first grasped. This lets the program keep the
current relative configuration of the object with the gripper. This transformation is

applied only once at the time when the gripping command is issued. The inverse

transformation is;

-
n, n.n_ -n.p

. o, 0. 0, -0.p
[7s]_l = ot
a, a, a, -a.p

The forward kinematic transformation at later stages positions the object in its correct

configuration.

95
To reduce the computational load, the program does not check for the presence of an
object at the gripper. Therefore to make a logical connection between the gripper and the
object an explicit request is required. Once the command is issued the program has to
confirm the presence of the object between the gripper’s fingers and recalculates the new

configuration of the object in the data-base list.
Object grasping procedure

To confirm the presence of an object at proper grasping position the routine finds the
closest object to the zripper. This is done by calculating the distance between the tip of
the gripper and i objects present in the *vorkcell. A more detailed check follows once
the closest object is found. This chect i Gt mine if the gripper’s coordinates fall
inside this object. The procedure assigns a coordinate frame to one corner of the object.
Then a transformation based on the following formula is applicd to view the tip of the

gripper in the newly established coordinate.

; E S Ql
r=0Q0'% -0
The coordinates of 7 are evaluated in the Y
constructed frame (Figure 24). The Q e OF ipper
\

transformation (rotation) in the above 22X (x 2a3",

o))) < Ny
equation is generated using the coordinates of e
the object (right angle prisms only). Thex x
represents the position of the gripper and ¢ is ;/
the coordinates of the base of the constructed Figure 24 - Relative position of an

frame (this is available in the data-base of the o©Object and the gripper

program.). If the 7 has positive coordinates

96

then this procedure is repeated for the diagonally opposite corner of the object. If againy

has positive coordinates it means that gripper is inside the object and can be picked up.

This procedure is very fast and there are no transcendental calculations involved. The
only problem is that it can only be effective for rectangular prisms since its successful

operation depends on the construction of orthogonal coordinate frames.

Object dropping procedure

The program uses a simple algorithm to approximate the position and orientation of the
object once the gripper opens its fingers. The position of the dropped object is calculated
by first rotating the object to bring the bottom surface of the object to horizontal x-z

plane, and then translating it directly under its rotated position (Figure 25).

To find the bottom surface of the

—r

grasped object the normal vector of
each surface is dotted with the unit
vector of the vertical direction. This is

equivalent of calculating the B 2

component of the N(A,B,C), the

x
normal vector to each surface. The / T)
/s s

closest to 1 (if normalized vectors are

used) determines the bottom surface. - -
) ¢ F igure 25 - Dropped object
To minimize the required calculation

the program simply finds the surface with the largest B component.

The following transformation [T] positions the object under the current coordinates of the

gripper (the projection of the gripper on the table).

97
[T] = [Tri][R1]{R2)[Tr2]

where:
1 006 p,
01 0 O This translation locates the object at its position on the table based
Trl = 001 p on the coordinates of the gripper's projection on the table.
(000 1]
—n 0 -n 0— This rotation matrix is based on the projection of thej;
01 0 0 vector on the horizontal plane x-z (Figure 25). This rotation
RI = : - . . .
n, O n 0 determines the final orientation of the object on the table.
00 O 1 The components of the n direction vector are normalized.

The second column is the vertical direction and the third

column is the cross product of the first and second columns.

The [R2] transform rotates the object to the horizontal plane. The rotation is found by
first constructing an orthogonal frame based on the coordinates of three points on the

bottom surface. The components of this frame represent a rotation. The inverse of this

rotation is [R2]. The components of 5 are found from the cross product of the other two

coordinates. The coordinates of the three points on the bottom surface are passed to the

function from the calling function.

-XZ_xl YooY %27 O— —Xl Xz X.; O-
o, o, o. 0 Y Y, ¥, 0
R2 = ' ’ - = '
X3=Xy Y37, 2372, O £ Z, 2Z 0
i 0 0 0 1_ _O 0 0 1_

This translation transfers the object to the base of the coordinate before the rotation is
applied.

98

(100 -p]
010 -p
Tr2 = P:
001 -p,
000 1 |

The final transform matrix [T] is shown here. The ’p’ represents the position of the

gripper. The 57,5 and g vectors are the direction vectors shown in Figure 25.

r—) .1
nX, -nZ, r/}Xz—n:Z2 n"X3-n:zf3 P

-

Y, Y, Y, P,
T = - ’
nX+nZ nX,-nZ, nX,-nZz, P’
i 0 0 0 i
LN -p_v(".(xl—nzzl) - p:(n.rxz_nzzz) - pnX;-nz) + py
I).\' = _pyyl - p:Y'_’ - pxy3

P = -pnX+nZ) - pnX,*nz,) - p(nX,;+nZ,) + p,

99

Animation

The animation routine produces the simulated motion of the arm between the initial and
final position of the arm whenever the position of the arm changes. The joint angles of
the arm are stored in a global array. These values are accessed by the transformation
routines. Once a move is requested, the new joint angles are calculated and animation
routine is called. This routine keeps the values of the joint angles from the last animation
session and the new joint angles are available in the global array. To find the appropriate
number of frames between initial and final positions, the program calculates the largest
angle change of the joint angles and multiplies this number by a parameter that controls
the animation rate (fine or coarse steps in animation). The result is the number of frames
between the initial and final position. If this number is less than one only the final
position is drawn, otherwise the incremental value for each joint is calculated and for

each step the old image is deleted and the new image is drawn.

Smooth animation requires a high framing rate. The framing rate depends on the amount
of calculation required to generate a frame and the time required to update the graphics
on the screen. To create a proper animation effect the old images are deleted and the new
ones are drawn. It is possible to issue a clearscreen command to completely clear the
screen but this command is slow. If the changes to each frame are limited to a smail part
of the screen or a few polygons then it is much faster to selectively delete the parts of

the old image. This is done by redrawing the old images in tke background color.

View camera transformations

The arm can be viewed using two different view screens. The default camera views the
arm and workceell from a fixed view point. The transformations for this mode are already
explained. The second camera is a moving view point attached to the gripper. Simulation
of this case requires an additional transformation of the arm and workcell o the

coordinates of the gripper. From calculations for the default camera all the data points

100

(coordinates of the objects) are positioned properly and available to the new view

camera. To achieve the desired view all these points have to be transferred to (viewed

from) the gripper coordinate. jlence the 775 plane of the gripper coordinate is now the
view plane for the screen perspective projection and the view point resides on the

direction of the g axis.

The [T,] transformation can transform any point to the position and orientation of the
gripper. Thus the [T]! matrix can perform the necessary transformations for the new
view screen. For the final perspective projection two additional transforms are required.
One is to find the mirror image of the transformed objects with respect to the view plane.
This is required because the camera is looking to the world in the ‘a direction of the
gripper. Without this transformation camera would see the world and arm as if looking
into the gripper and not from the gripper. The next transformation is a 90 degree rotation
that corrects the alignment of the transformed objects for viewing purposes. This

transformation is applied to object coordinates expressed in screen coordinate frames.

[T gripper] = [Rot z, 90°][mirror about x-y plane][is 1"

0-100] [-1 00 O] [7 ™ n -np
1 . 1 1 06 00 01 0O o, 0.0 -0p
(T grippery =)

0 010 0 0-10 a, a_ a, -a.p

0 0 01 0 0 0 1 000 1

L i |

-
-0, -0, -0, n.p

(7 gripper] -n, -n, -n,ap

i

~a, -a. -a_ o.p

101

Relative moves
Moves relative to world coordinate

The term relative signifies that moves are performed relative to the current position or
orientation of the gripper. The world coordinate is the orthogonal coordinate at the base
of the arm. For convenience the coordinate frame is positioned at the workbench level
(grid level). In this mode the gripper can move in one of the principle dircctions of the

world coordinate where its orientation and other coordinates remain constant.

The program reads its input from the keyboard and increments the position based on the

specific key entry. This new position is the input for the inverse kinematic solution and

thus the new configuration of the arm is calculated.

Also, this mode allows changing the orientation of the gripper in the same way it alters
the position of the gripper. The orientation change is signalled through keyboard and the
new value of one of the principle angles (pitch, yaw or roll) defining the orientation of
the arm is altered respectively. The angles and the current position of the gripper
generate the new T, matrix. The inverse kinematic solution recalculates the necessary

joint angles for the new configuration.

Moves relative to gripper

Moves relative to gripper are similar to the moves relative to world. The only difference
is the coordinate frame used as reference for the moves. As the name implies, the gripper
coordinate is the reference coordinate. The availability of the T, matrix enables easy
calculation of the new position in the world coordinate. Once the required moves are
found in the world coordinate the rest of the routine behaves exactly the same way it

does in the relative moves in world coordinates.

102

The T, provides the directional vectors for the three principle directions of the gripper

coordinate 7; o g. Using these directions the position of the gripper can be altered in one
of the principle directions of the gripper. Once a move is requested the increment in the
requested direction is calculated by multiplying the unit vector representing that direction
with the requested move step size. The result is added to the current position of the

gripper in the world coordinate. The rest is as explained for the relative to world moves.

Menu

The menu function generates a pop-up mernu and enables the user to choose a menu item
either by entering the highlighted word of the menu items or by moving the menu bar
and selecting. Most menu libraries are developed for menus in the text mode screens. In

the EXCAL program, the screen is in graphics mode as soon as the program 1is loaded.

‘The menu function saves the content of the screen where it pops up. The content of the
screen is saved to the second graphics page memory. The second page is not used and
its memory is always available. The menu function can pose compatibility problems if
the graphics display is incapable of supplying two pages of graphics screen. It is possible
to overcome this problem using the dynamic memory allocation techniques. However,

the limited availability of large contiguous memory prevents effective implementation of
this method.

Appendix C

EXCAL program verification/testing data sheet

The following table is compiled based on the "Human Factors Engineering" concepts,
applicable to software design for engineering systems. This table was used during test
procedures and users were asked to comment on their experience with the program. The

obtained information was then used to improve the program as discussed in chapter 6.

104

The information in this questionnaire is for statistical analysis and evaluation of the

software program "EXCAL" for the robotic arm Excalibur.

Test User Information

What is your opinion about the view capabilities of the program?

What do you think about the on-line controlling capabilities of the program?

What do you think about off-line capabilities of the program?

What would you suggest to improve the program?

In completing the questionnaire use appropriate wording to describe your acceptance or

dislike of each field. Suggested words are:

Poor --- did not like, disapprove
Fair --- acceptable
Good --- liked the usaze, feature

Very good --- completely approving the method

Departiment of Mechanical Engineering

106

EXCAL program verification/testing sheet

Human-computer interface

|

Case

Rating

Additional comment

display locations.

Reserved Display Areas: Evaluate the display locations and the consistent use of fixed

Fixed fields

Consistent conventions

consistent use of terms

Alphabetic Data: Evaluate ease of understanding and also readability of data.

Justification

Data grouping

Clarity of text

Essentiality of information

Numeric Data

Decimal numbers

Data order

Location

Can user differentiate
between data and

instruction?

Roborics Lab.

Department ot Mechanical Engineering

107

EXCAL program verification/testing sheet

Human-computer interface

Case

Rating

Additional comment

Units

Clutter

Spacing

Highlighting

Use of highlighting

Brightness highlighting

Two color highlighting

Effective wording

Abbreviation consistency

Clarity of abbreviation

Length of abbreviation

Familiar wording

Consistent wording

Color

Use of color, overuse?

Color as highlight

Color for status

Robotics Lab.

Deparunent of Mechanical Engineering

108

EXCAL program verification/testing sheet

Human-computer interface

Case

Rating Additional comment

Color coding (error,

warning)

consistency of color coding

Color visibility

Background color

Blinking

Color Graphics

Coloring

Consistent coloring

|| Color changes

Il Graphics and Animation

Display density

“ Multi_window screen

Visual interface

Information and status display

Intermediate feedback

Input acknowledgment

Robotics Lab.

Departiment of Mechanical Engir

leering

109

EXCAL program verification/testing sheet

Human-computer interface

Case

Rating

Additional comment

Inactive screen

Mode designator

System messages

Error messages

Warning messages

Visibility

Menus

Main menu accessibility

Menu bypass

Menu wording

Consistent titles

Menu order

Inactive menu options

Commands

Command wording

Abbreviated commands

Command consistency

Robotic v Lab.

Departiment of Mechanical Engineering

110

EXCAL program verification/testing sheet

Human-computer interface

(Case

Rating Additional comment

Compatible commands

Distinctive commands

Command clarity

Delay in responding an

action

Interactive delay

|rSystem response tiie

File delay

Control and Input Devices

Function key setup

Cursor key setup

Alt key setup

Control key setup

Shift key setup

Original key setup

Consistency of key use

Common key usage

Robotics Lab.

Department of Mechanical Engineering

111

EXCAL program verification/testing sheet
‘' an-computer interface
" Case Rating

Additional comment “

LProgram mable keys

Master arm availability

Preferences

Error Messages and On-line Assistance

Program response

Error recovery

Error message display

Old message removal

Auditory error signals

Usefulness of error
messages

" Phrasing of messages

" Length of messages

Il Message content

Help on error

Effect of error on system

System protection on error

Robotics Lab.

Departnent of Mechanical Engineering

112

EXCAL program verification/testing sheet

Human-computer interface

Case

Rating

Additional comment

On-line Guidance

On-line assistance

“ Help key

Help content

Help on commands

Help in context

Concise help

Robotics Lab.

