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C hapter 1 In tro ductio n

The prime characteristics of traditional hard computing are precision, certainty, and 

rigor. A computer can do a job involving routine computation more efficiently than a 

human being. But hard computing paradigm is seldom suitable for many real life 

problems. For example, a computer is far behind human beings on tasks like driving. By 

contrast, soft computing (SC) exploits the tolerance for imprecision, uncertainty, 

approximate reasoning and partial truth for obtaining low cost solutions. It simulates 

biological mechanisms responsible for generating natural intelligence and, at the same 

time, aims at a formalization of the cognitive processes humans employ so effectively in 

daily tasks [132].

SC consists of several computing paradigms including neural network (NN), fuzzy 

set theory, genetic computing such as genetic algorithms (GA), and probabilistic 

reasoning such as chaotic systems [113].

In general, SC does not perform much symbolic manipulation, in this sense it 

complements conventional AI approaches [37]. Conventional AI manipulates symbols 

on the assumption that human intelligence behavior can be stored in symbolically 

structured knowledge bases: this is known as: “the physical symbol system hypothesis”. 

The knowledge-based system (or expert system) is an example of the most successful 

conventional AI product. Knowledge acquisition and representation has limited the 

application of AI theories (shortcoming of symbolicism). SC has become a part of 

“modem AI”. Researchers have directed their attention toward biologically inspired 

methodologies such as brain modeling, evolutionary algorithm and immune modeling.

l
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These new paradigms simulate chemico-biological mechanisms responsible for 

natural intelligence generation. There are two important aspects of SC [37]. First, SC is 

a consortium of methodologies that aim at exploiting the tolerance for imprecision, 

uncertainty, and partial truth to achieve tractablility, robustness, and low solution cost. 

Second, the constituent methodologies of SC are complementary and synergistic rather 

than competitive, so that in many applications it is advantageous to employ these 

methodologies in combination.

Within SC, the main contribution of fuzzy logic is a mechanism for dealing with 

imprecision and partial truth -  a mechanism in which the principal tools are the calculus 

of fuzzy if-then rules. The premises and conclusions of fuzzy if-then rules are linguistic 

variables, the meanings of which are given by associating the atomic terms with fuzzy 

membership functions via semantic rules.

One important application of fuzzy logic is fuzzy systems in the field of control. 

Fig 1.1 gives the block diagram of a fuzzy system. The key components of a fuzzy 

system are the rulebase and the inference engine. The rulebase uses fuzzy set theory to 

express a set of if-then rules in natural language, while the inference engine executes an 

approximate reasoning strategy based on these rules. Through the use of linguistic rules, 

the fuzzy system becomes intuitively understandable for humans. In any actual control 

system, all inputs and outputs are numeric value, but the inference engine takes linguistic 

inputs only. Therefore, a fuzzifier is used to convert numeric value to linguistic value. 

Likewise, if the inference engine outputs linguistic values, a defuzzifier is needed to 

convert linguistic value to numeric value.
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Figure 1.1 Block diagram of a general fuzzy inference system: The error 

value from a given performance measure is fed back and used to adapt all 

or one of the following: (a) Membership function shapes and cardinality,

(b) & (d) And/Or aggregation operators, (c) The rule base, and (e) The 

defuzzification technique.

One of the current areas of concentration in soft computing research is the area of 

“computing with words” (CW), which refers to a set of techniques for using words from 

natural language as the basic units of information in a computer [38], Using words as a 

basic unit of information instead of numbers will hopefully allow computers to mimic the 

tolerance for imprecision and ambiguity found in human thought processes. CW poses 

certain problems and opens up new directions of research. One important problem is how 

we can analyze a fuzzy system using CW methods. Fuzzy sets and rulebases can be 

defined by human experts [37] or automatically generated by employing various methods 

[2, 39-44]. Even for the same system, different persons or different methods will 

generate different antecedents, consequents and rulebases. Each of these different fuzzy 

systems is an approximate description of the underlying system, and it would be very 

useful to determine how similar these different interpretations are. The algorithm we

3
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propose is a method for measuring similarity between rulebases within the CW 

framework.

There are many similarity measures for fuzzy sets and linguistic variables [45-48]. 

However, there is no such measure for fuzzy rulebases in the literature. One traditional 

measure for comparing fuzzy inference systems is the root-mean-square (RMS) 

difference. This approach has its drawbacks. RMS is computed over a discretized input 

space Zn. The step size (sampling rate) must be set to a very small value that greatly 

affects performance. Larger step sizes improve performance, but may miss significant 

local behaviours. Moreover, the output of a Mamdani system [51] is the union of some 

linguistic values, which need to be defuzzified to get crisp value. The defuzzification 

accuracy also affects the performance.

The field of content-based image retrieval (CBIR) has also faced similar problems, 

and has found mechanisms to overcome them. One possibility is including structural 

information about an image (or a rulebase; we will discuss the common ground between 

these domains later.) In this paper, we defined a new similarity measure for fuzzy 

rulebases called Similarity Confidence Level (SCL). This similarity operator is inspired 

by a CBIR algorithm proposed by J. Rose, et al. [36], which compares the projection 

vectors of gradient maps of 2 images. The SCL algorithm provides a measure of 

similarity based directly on the structural characteristics of a fuzzy rulebase, rather than 

determining a numeric distance from a defuzzified reasoning surface. The final SCL is a 

value in the range [0, 1], with 0 representing no similarity and 1 representing identity.

The remainder of this thesis is organized as follows: Chapter 2 reviews the fuzzy 

systems, SC, and granular computing theory. Chapter 3 presents the major contribution

4
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of this thesis, the definition of the fuzzy systems Similarity Confidence Level based on 

linguistic gradient. Chapter 4 gives the experimental result and analysis. A summary of 

the result and direction of future research in Chapter 5 concludes this thesis.
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C hapter 2 B a c k g r o u n d

This chapter, we first review the history of fuzzy logic, the fuzzy sets theory, and 

fuzzy systems. Second, we describe in details the linguistic mathematic and linguistic 

gradient operator, which is the foundation of our research. Then, we present the new 

development in a sub-area of fuzzy theory, granular computing. At the end of this 

chapter, we introduce other methodologies of soft computing (SC), the artificial neural 

network and genetic algorithm.

2.1 H istoric Notes

Classical prepositional logic and predicate logic handle binary values, i.e. 0 and 1, 

or true and false. They have achieved great successes in many areas. But the binary 

values limit their ability to represent imprecision and uncertainty. Thus, people invented 

some ways to represent partially truth or probability, using gray scale between 0 and 1 or 

values between true and false.

Theory of fuzzy sets was founded by Lotfi Zadeh [7] in 1965. In his paper, Zadeh 

presented a new set whose boundaries were not well defined, although most of the though 

in this idea was envisioned by Max Black [49] in 1937. In fact, Zadeh was influenced by 

multi-valued logic. Along with another paper by Zadeh in 1973 [50], this paper forms the 

theoretical basis for the field of fuzzy systems. The first axiomatic treatment of fuzzy set 

operations was presented by Bellman and Giertz [14] in 1973. A thorough investigation 

of properties of the max and min operators was done by Voxman and Goetschel [15]. 

However, the axiomatic skeletons for fuzzy operations based on triangular norms (or t- 

norms) and triangular conorms (or t-conorms) can be dated back to the early 1960’s by

6

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Schweizer and Sklar [16-18]. The extension principle was introduced by Zadeh [19] that 

provided a general procedure for extending crisp domains of mathematical expression to 

fuzzy domains. A further elaboration of the principle was presented by Yager [20]. The 

development of fuzzy system applications began with a paper by Mamdani in 1974 [51] 

and continued with papers by Takagi and Sugeno in 1985 [52], and Sugeno and Kang in 

1986 [53]. Fuzzy techniques were used to implement an expert system called Linkman 

[21], by Blue Circle Cement and SIRA in Denmark. The system incorporates the 

experience of operators in a cement production facility and has been in operation since 

1982, making it the first major industrial fuzzy system application. The success of the 

Sendai City subway in 1987, the first large-scale project utilizing fuzzy control, spurred 

the commercial applications and research in Japan and United States [4], The field of 

fuzzy systems is currently the principal application of fuzzy set theory. This field is 

essentially split into two camps: Mamdani fuzzy systems [51] and Sugeno fuzzy systems 

[52, 53]. These two types of fuzzy systems both rely on fuzzy rules for their functionality. 

However, their implementations of these rules are different. Sugeno fuzzy systems are 

more amenable to classical analytical techniques [3, 54-56, 58, 59], whereas Mamdani 

fuzzy systems are more intuitive.

Zadeh distinguished two main directions in fuzzy logic [22], Fuzzy logic in the 

broad sense is older, better known, heavily applied but not asking deep logical questions, 

serving mainly as apparatus for fuzzy control, analysis of vagueness in natural language 

and several other application domains. Being one of the techniques of soft computing, it 

is a method tolerant to sub-optimality and impreciseness and giving quick, simple and
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sufficiently good solutions. Novak [23], Zimmermann [24], Klir et al. [25], and Nguyen 

[26] address developments in this direction.

Fuzzy logic in the narrow sense is symbolic logic with a comparative notion of truth 

developed fully in the scope of classical logic, including syntax, semantics, 

axiomatization, truth-preserving deduction, completeness, etc.; both propositional and 

predicate logic. It is a branch of multi-valued logic based on the paradigm of inference 

under vagueness. This fuzzy logic is a relatively young discipline, both serving as a 

foundation for the fuzzy logic in a broad sense and of independent logical interest. A 

basic monograph is by Hajek [27], further monographs are by Turunen [28], Novak et al. 

[29],

2.2 Fuzzy set theory

2.2.1 Fuzzy Sets

The most widely used tool for passing information is natural language. Natural 

language is intuitive, at the same time vague and imprecise. However, it is still the most 

powerful tool for human communication. The basic function of fuzzy sets theory is to 

use linguistic variables instead of numeric variables to represent imprecise concepts. 

Linguistic variables can take values from a collection of atomic terms that are given 

meaning by associating with fuzzy sets. For example, a numeric variable “age” can take 

a real value greater than 0; a linguistic variable “age” can take a linguistic value “young”, 

“mid-age”, or “old”, where “young”, “mid-age”, and “old” are fuzzy sets. Therefore, our 

review begins with fuzzy set theory.
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A classical set is a set with crisp boundary, i.e. an element belongs to the set or 

otherwise does not belong to the set. It does not reflect the nature of abstract and 

imprecise human concepts and thoughts. For example, we define a classical set of “tall 

person”, of which the boundary is that the height is over 6 ft or any other precise value. 

This is unnatural and inadequate to represent our usual concept of a “tall person”. It 

makes no sense that we classify a person of 6 ft as tall and a person of 5.99ft as not tall. 

The flaw comes from the sharp transition between inclusion and exclusion in a set. Fig 

2.1 (a) shows an example of crisp set.

A = Set of tall people 

a Crisp se t a
Fuzzy s e t  A

1.

S’10 Heiaht

Membership
Function

5-10” 6-2” Height

(a) Crisp set of “tall people” (b) Fuzzy set of “tall people’

Figure 2.1 Crisp set and fuzzy set definition of “tall people”

A fuzzy set is a set without a crisp boundary, i.e. the transition from membership in 

a set to non-membership is gradual and characterized by membership functions that give 

fuzzy sets flexibility in modeling commonly used linguistic expressions.

9
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Definition 2.1

X  is a collection of objects denoted by x, then a fuzzy set A in X is defined as a set 

of ordered pairs:

A = {{x,£iA(x)) | x e X , f i A e [0,1]}, (2.1)

where juA(x) is the Membership Function (MF) for the fuzzy set A.

The MF maps each element x of X  to a membership value in the interval [0, 1] 

representing the grade of membership of x in A. The universe of discourse, X, can be 

discrete nominal, discrete ordinal or continuous. Fig 2.1 (b) gives an example of the 

definition of a fuzzy set “tall people”.

For simplicity of notation, a fuzzy set A can be denoted as follows:

A =
X! eZ l 1 a  (xi) / x i if X  is a discrete space.
f ' (2-2) 
j x n A(x)lx,  ifX is a continuous space.

The MF provides a mathematically rigorous representation of uncertainty [4]. The 

classical set (crisp set) is a special case of fuzzy sets, in which the MF can take values 

from (0, 1}.

Here we provide a review of some properties and operations of fuzzy set that will 

be important in the remainder o f this thesis .

Definition 2.2

The support of a fuzzy set A is the set of all points x in X  such that fiA (x) >0: 

support^) = (x| /uA (x) >0}. (2.3)

10

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Definition 2.3

The core of a fuzzy set is the crisp set of elements whose membership in the fuzzy 

set equals 1.

core(A) = {x\ fiA (x) = 1} (2.4)

Definition 2.4

A crossover point of a fuzzy set is a point x <sX at which /uA (x) = 0.5 :

crossover(A) = (x | f i A (x) = 0.5} (2.5)

Definition 2.5

The a  -cut or a  -level set of a fuzzy set A is a crisp set defined by 

Aa  = {x\jUA(x)>=a } (2.6)

The strong a  -cut or strong a  -level set is defined by:

A ’a = { x |^ ( x ) > a }  (2.7)

The a  -cut provides a means of transforming a fuzzy set into a collection of crisp

sets.

Definition 2.6

A fuzzy set A is convex iff for any xj, X2 e X  and any X e [0, 1],

HA{tex + (1 - X)x2) > {x,) ,/uA(x2)}, (2.8)

11
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Convexity is important in the definition of a fuzzy number, and in the interpretation 

of fuzzy sets; convex fuzzy sets tend to have a clear intuitive meaning, while non-convex 

fuzzy sets do not.

Definition 2.7

A fuzzy set A is normal if its core is nonempty. In other words, A fuzzy set is 

normal if  3x e X  such that ju(x) = 1

Normality is a standard requirement o f fuzzy sets used in fuzzy inferential systems, 

as it simplifies the mathematics involved.

Definition 2.8

A fuzzy number A is a fuzzy set in the real line R  that satisfies the conditions for 

normality and convexity.

Because fuzzy sets are a generalization of the classical set theory, the embedding of 

conventional models into a larger setting endows fuzzy models with greater flexibility to 

capture various aspects of incompleteness or imperfection in a real process. The 

flexibility of fuzzy set theory is associated with the elasticity property of the concept of 

its membership function.

The specification of membership function is subjective, which means that the 

membership functions specified for the same concept by different persons may vary 

considerably. It is convenient to employ standardized functions with adjustable

12
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parameters, such as Triangular MFs and Trapezoidal MFs, which are piecewise 

differentiable. Fig 2.2 gives an example of a triangular fuzzy set “mf2” and its core, 

supports and crossover points. There are other types of everywhere-differentiable MFs 

such as Gaussian MFs, Generalized bell MFs and Sigmoidal MFs. However, besides 

being defined by human experts, other methods for assigning MFs to fuzzy sets were 

proposed to reduce subjectivity. Hadipriono and Sun [30] introduced angular fuzzy set. 

Takagi and Hayashi [31] employed neural network to create MFs. Karr and Gentry [32] 

proposed using genetic algorithm (GA) to compute MFs. De Luca and Termini [33] 

defined non-probabilistic entropy to assign MFs.

mf2

crossover
p o in t

crossover
p o in t

0.4 O.S 0.6 
support

u n iv erse  o f  d iscou rse

Figure 2.2 Core, supports and crossover points of a triangular fuzzy set “mf2”

Union, intersection, and complement are the most basic operations on classical sets. 

Corresponding to the ordinary set operations of union, intersection, and complement, 

Zadeh defined similar operations for fuzzy sets [7]:
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Definition 2.9

The union of two fuzzy sets A and B is a fuzzy set C, written as C = AuB or C = A 

OR B, whose MF is given by

/ ' c W  = / ij W v / ij W  (2-9)

where V denotes max.

Definition 2.10

The intersection of two fuzzy sets A and B is a fuzzy set C, written as C = AnB or C 

= A AND B, whose MF is given by

Ac (*) = M a  (x) A B b  (*) (2-10)

where A denotes min.

Definition 2.11

The complement of fuzzy set A, denoted by A or NOT A, is defined as 

/ j 1 ( x )  =  1 - jU a ( x )  (2 .11)

There are many other viable ways to define operations on fuzzy sets. The only 

restriction is that these functions must obey certain axioms for each operation.

A fuzzy complement operator is a continuous functions N: [0, 1] -> [0, 1] which 

meets the following axiomatic requirements:

14
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♦ N(0) = 1 and N(l) = 0 (boundary)

♦ N(fl) >= N(b) if a <= b (monotonicity)

Another optional requirement is

♦ N(N(a)) = a (involution)

Obviously, these axiomatic requirements for fuzzy complements do not determine 

N(.) uniquely. Other possible fuzzy complement definitions include Sugeno’s 

complement [8] and Yager’s complement [9].

The intersection of two fuzzy sets A and B is specified in general by a function T:[0, 

1] x [0,1] -> [0, 1], This class of operators satisfies:

♦ T(0, 0) = 0, T(a, 1) = T(l, a) = a (boundary)

♦ T{a, b) <= T(c, d), if a <= c and b<— d (monotonicity)

♦ T(a, b) = T(b, a) (commutativity)

♦ T(a, T(b, c)) = T(T(a, b), c) (associativity)

Besides min, other most frequently used intersection operators are: algebraic 

product, bounded product, and drastic product [37],

The fuzzy union operator is specified in general by function S: [0, 1] x [0, 1] -> [0, 

1], This class of fuzzy union operations satisfies:

♦ S(l, 1) = 1, S(0, a) = S(a, 0) = a (boundary)

♦ S{a, b) <= S(c, d) if a<=c and b<= d  (monotonicity)

15
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♦ S(a, b) = S(b, a) (commutativity)

♦ S(a, S(b, c)) = S(S(a, b), c) (associativity)

Some union definitions other than max are algebraic sum, bounded sum, and drastic 

sum [37],

These essential requirements for these operators cannot uniquely determine the 

classical fuzzy intersection and union. Intriguingly, the axioms for the fuzzy intersection 

operator are identically the axioms satisfied by a class of functions called t-norms. 

Likewise, the class of fuzzy unions is identical to the class t-conorms.

Basic identities of classical sets may not be true for fuzzy sets, e.g. law of 

contradiction and low of excluded middle do not hold for Zadeh’s union and intersection 

definitions. For other definitions of t-norm and t-conorm, distributions laws, law of 

contradiction, law of the excluded middle, and absorptions laws need to be checked [10].

2.2.2 Fuzzy Relations

We start with crisp relations and then generalize to fuzzy relations. If X  and 7  are 

two sets, then X  x Y is their Cartesian product. A crisp relation R between X  and 7  is a 

subset of A x  7, i.e. I ? c l x 7 .  Crisp relation R can be represented by its characteristic 

function

(2 .12)

16
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where x c l  and y  c z Y . R(x, y) = 1 means that x and y  are related through relation R 

and i?(x, y)  = 0 means that they are not related. The inverse of R, written R \  is defined 

by i?'!(x,y) = R(y, x).

If R is a crisp relation between X  and Y, and S  is a crisp relation between Y and Z, 

then the composition R °  S = T creates a new crisp relation between X  and Z. The 

definition of T is T(x, z) = 1 iff there is a y  e Y so that R(x, y) = S(y, z) = 1. We may 

write T as follows:

T (x ,z ) = max{min(i?(x, y),S(y,  z))} (2.13)
y

the min can be replaced by any t-norm. All t-norms will give the same result.

A fuzzy relation R is just fuzzy subset of X  x 7. So now R(x, y) can be any number 

in the interval [0, 1]. R(x, y) gives the strength of the relationship between x andy. Now 

let R be a fuzzy relation on A x  7  and S  a fuzzy relation on 7  x Z. Then T= R ° S  is defined

as

T(x, z) = max{f -  norm(R(x, y),S(y,  z)} (2.14)
y

In general, t-conorm and t-norm can be used to interpret OR and AND operations, 

respectively, in composition operations. Most commonly used are max-min composition 

and max-product composition. The max-min composition of R and -S’ is a fuzzy set 

defined by

Ar z ) = max min[//* (x, y), jus (y,z)] (2.15)

The max-product composition is defined as

jUT(x,z) = m&x[jUR(x,y)fis (y,z)] (2.16)

A generalization to n-array relations is straightforward.

17
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2.2.3 Linguistic Variables

One of the key concepts in fuzzy systems theory is the idea of linguistic variable 

(LV). LV was proposed by Zadeh [19, 50] as an alternative approach to modeling human 

thinking. In an approximate manner, this approach serves to summarize information and 

express it in terms of fuzzy sets instead of crisp numbers.

Definition 2.12

A linguistic variable is characterized by a quintuple {x, T(x), X, G, M) in which x  is 

the name o f the variable; T(x) is the term set of x, i.e., the set of its linguistic values or 

linguistic terms; X  is the universe of discourse; G is a syntactic rule which generates the 

terms in T(x) through the application of linguistic hedges (in general, a context-free 

grammar); and M  is a semantic rule which associates with each linguistic value A its 

meaning M(A), where M(A) denotes a fuzzy set in X.

The term set of a LV consists of several atomic terms modified by negation (not) 

and/or hedges (very, more or less, quite, etc.), and then linked by connectives (and, or, 

either and neither). The connectives, hedges, and negation are treated as operators that 

change the meaning of their operands in a specified, context-independent fashion. Hedge 

is a word from natural language that alters the meaning of a term. In fuzzy systems, a 

hedge is taken to be an operator that modifies the fuzzy set associated with a term by the 

semantic rule M. In [60], Zadeh defined a language as a fuzzy relation from a set of terms 

T to a universe of discourse U. In this paper, Zadeh defines the “meaning” of a term t to

18
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be a fuzzy set on U. The language L defined by the mapping from a given set of terms T

to a given U., pL(f y), is presented as a context-free grammar. The meaning of a 

composite term is determined by constructing a parse tree for that term, substituting the 

fuzzy set associated with the atomic portion of the term for the atomic entry in the parse 

tree, and then applying hedge functions in the order defined by the parse tree. Several 

hedges are defined by the use of the standard fuzzy set operators, as well as the operators 

concentration (CON), dilation (DIL), and contrast intensification (INT):

Using these operators, Zadeh derived expressions for the hedges very, plus or 

minus, highly, much, more or less, slightly and sort of. These fall into a class of hedges 

called Type I, which do not require knowledge concerning the actions of the hedges on 

different elements of the fuzzy set.

2.2.4 Fuzzy if-then rules

Definition 2.13

A fuzzy if-then rule assumes the form 

Ifx  is A theny is B,

where A and B are linguistic values defined by fuzzy sets on universes of discourse X  and 

Y, respectively, “x is A” is called the antecedent or premise, while “y is B” called the 

consequence or conclusion. This expression sometimes abbreviated as A —» B .

M c ON(A) ~ (2.17)

B d IL(A) ~  (/U (-*0) (2.18)

Bint(A) (2.19)
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The meaning of if-then rule has to be formalized before we employ it to model and 

analyze a system. In essence, a fuzzy if-then mle is defined as a binary fuzzy relation R 

on the product space X x Y ;  There are two ways to interpret the fuzzy mle A-> B, 

as A  coupled with B :

R = A -> B  = A x B  = jx^ t -  norm(juA (x), jUB (y))/(x, y) (2.20)

or A entails B:

R = A B -  A B (2.21)

Based on these two interpretations and various t-norm and t-conorm cooperators, a 

number of qualified methods can be formulated to calculate the fuzzy relation [61].

2.2.5 Fuzzy Reasoning

Fuzzy reasoning is an inference procedure that derives conclusions from a set of 

fuzzy if-then rules and known facts. Before introducing fuzzy reasoning, we shall discuss 

the compositional mle of inference, which plays a key role in fuzzy reasoning. The 

compositional rule of inference is proposed by Zadeh [50].

Assume that F  is a fuzzy relation o n l x  7  and A is a fuzzy set of X, B  is the 

resulting fuzzy set to be found of Y. Let fix, Mb , and m f  be the MFs of A, B and F, 

respectively. The process of inference in fuzzy systems theory is based on the 

Compositional Law of Inference:

M b  O ')  = max* mint/U (*)> M f  0> y )] (2-22)

Conventionally, B is represented as B -  A ° F  . Using the compositional mle of 

inference, we can formalize an inference procedure on a set of fuzzy if-then mles.
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A well-known rule of inference in traditional two-valued logic is modus ponens, 

according to which we can infer the truth of a proposition B from the truth of A and the 

implication A —>B:

Premise 1 (fact): x is A,

Premise2 (rule): if x is A then y  is B

Consequence(conclusion): y  is B

However, in much of human reasoning, modus ponens is employed in an 

approximate manner:

Premise 1 (fact): x is A ’

Premise 2 (rule): if x is A then y i s B

Consequence (conclusion): y  is B ’

where A ’ is close to A and B ’ is close to B. When A ’ and B ’ are fuzzy sets of a

appropriate universe, this procedure is called approximate reasoning or fuzzy reasoning;

it is also called generalized modus ponens. In a formal manner, approximate reasoning 

can be defined as follow:
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Definition 2.14

Let A, A and B be fuzzy sets of X, X, and Y, respectively. Assume that the fuzzy 

implication A -» B is expressed as a fuzzy relation R on X  X Y. Then the fuzzy set B 

induced by “x  is A” and the fuzzy rule “if x i s A  then y  is B” is defined by

B' = A 'oR  = A 'o (A -* B )  (2.23)

Now the inference procedure of fuzzy reasoning can be used to derive conclusions, 

provided that the fuzzy implication R is defined as an appropriate binary fuzzy relation.

2.3 Fuzzy Systems

The fuzzy inference system is a popular computing framework based on the 

concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. A general fuzzy 

inference system consists of three parts (see Fig. 1.1 in page 3). A crisp input is fuzzified 

by input membership functions and processed by a fuzzy logic interpretation of a set of 

fuzzy rules. This is followed by the defuzzification stage resulting in a crisp output. The 

rule base is typically crafted by an expert; though self organizing procedures have been 

suggested [57, 62-70].

There are a number of different ways to implement the fuzzy inference engine. 

Among the very first such proposed techniques is that due to Mamdani [51], which 

describes the inference engine in terms of a fuzzy relation matrix and uses the 

compositional rule of inference to arrive at the output fuzzy set for a given input fuzzy 

set. The output fuzzy set is subsequently defuzzified to arrive at a crisp control action. 

Other techniques include sum-product and threshold inferencing.
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The basic fuzzy inference system can take either fuzzy or crisp inputs, but the 

outputs are always fuzzy sets. If it needs a crisp output, defuzzification is employed to 

extract a crisp value that best represents a fuzzy set. In the case of crisp input and output, 

a fuzzy inference system implements a nonlinear mapping from its input space to output 

space. Furthermore, the outputs of a fuzzy system are independent values. Hence, any n- 

input, m-output fuzzy system can be decomposed into m separate n-input, single-output 

fuzzy systems [3]. Therefore, without loss of generality, we will restrict our research to 

multiple-input, single-output fuzzy systems [3,4],

The most widely used fuzzy system models are Mamdani fuzzy systems and 

Sugeno fuzzy systems.

Rules in Mamdani fuzzy models [51] are of this form: 

if x is A andy is B  then z is C.

Given the input (x, y) then the goal is to determine the output “z is C”. First step is 

to map the input x, to fuzzy set A\, y\ to fuzzy set Bx. The next step is to evaluate the firing 

strength for the premise of each rule, and then apply the result to the conclusion part of 

each rule using the fuzzy implication. The next step is to find the output Q  of each rule. 

In the aggregation step, all fuzzy subsets assigned to each output variable are combined 

together to form a single fuzzy subset C ’ for each output variable. Using min and max for 

t-norm and t-conorm, the result can be expressed as:

C= (A'*B')o(A*B-> C)
premisel premise2 / \

p c (z) = y Ip A x) a  p  ̂  (x)]|a a  /gO )]}a p c (z) (2.24)
^ .------------ ' U---------- ,------------ -

iv 2

= (w, a w 2) a p c{z)
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A defuzzifier is used to convert a fuzzy set to a crisp value. In general, there are 

five methods for defuzzification: centroid of area, bisector of area, mean of maximum, 

smallest of maximum, Largest of maximum. The most commonly used defuzzification 

method is the centroid of area (COA):

where fi(x) is the membership function of x  in the fuzzy set to be defuzzified. This 

equation is for finding the centre of gravity of a 2-dimentional shape [4],

In consideration of computation efficiency or mathematical tractability, a fuzzy 

inference system in practice may have a certain reasoning mechanism that does not 

follow the strict definition of the compositional rule of inference. For instance, product 

may be used for computing firing strengths.

The goal of Sugeno fuzzy models [52, 53] is to generate fuzzy rules for a given 

input-output data set. A typical fuzzy rale in a Sugeno fuzzy model has the form: 

if x is A and y  is B then z = / (x, y)

Where A and B are fuzzy sets in the antecedent, while z =fix, y) is a crisp function 

in the consequent. is very often a polynomial function. If is a first order 

polynomial, then the resulting fuzzy inference is called a first order Sugeno fuzzy model. 

If/[.,.) is a constant then it is a zero-order Sugeno fuzzy model (special case of Mamdani 

model, in which each rale’s consequent is specified by a fuzzy singleton).

The output of a zero-order Sugeno model is a smooth function of its input variables 

as long as the neighbouring MFs in the antecedent have enough overlap. In other words,

(2.25)
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the overlap of MFs in the consequent of a Mamdani model does not have a decisive effect 

on the smoothness; it is the overlap of the antecedent MFs that determines the 

smoothness of the resulting input-output behaviour.

Since each rule has a crisp output, the overall output is obtained via weighted 

average, thus no defuzzification required.

Mamdani and Sugeno model are similar in that both rely on fuzzy rules for their 

functionality, but their implementations of these rales are different [35], Sugeno fuzzy 

systems are more amenable to classical analytical techniques [54-56, 58, 59, 72], where 

as Mamdani fuzzy systems are more intuitive. Our research will exclusively focus on 

Mamdani fuzzy systems.

Turksen and Zhong [73] proposed similarity-based fuzzy reasoning, which does not 

require the construction of a fuzzy relation. It is based on the computation of the degree 

of similarity between the fact and the antecedent of a rale. Then based on the similarity 

value, the membership value of each element of the consequent fuzzy set of the rale is 

modified to obtain a conclusion. Raha et al. [74] improved this method by proposing a set 

of axioms to compute a reasonable measure of similarity between two imprecise concepts 

represented as fuzzy sets.

2.4 Granular Computing

2.4.1 Introduction

Granular computing (GC) is an emerging conceptual and computing paradigm of 

information processing [2]. It concerns processing of information granules, which are 

collections of entities that are arranged together due to their similarity, functional
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adjacency, indistinguishability, coherency or alike [2], Information granules as an 

abstraction of the reality are aimed at building efficient and user-centered models of the 

external world and supporting our perception of the physical and virtual world. In this 

sense, fuzzy sets are also information granules. Some concepts and ideas in granular 

computing play important roles in our research, therefore it is appropriate to introduce 

granular computing here.

The research agenda of granular computing includes a series of key and well-defined 

methodological and algorithmic issues [2 ]:

1) Construction of information granules. There are a number of formal frameworks for 

building information granules. They are set theory and interval analysis, fuzzy sets, 

rough sets, shadowed sets, probabilistic sets, probability-based granular constructs, 

and higher-level granular constructs. These frameworks are thoroughly investigated 

and have a vast array of applications. The process of granulation and the nature of 

information granules imply a certain formalism that is most suitable to capture the 

problem at hand.

2) Characterization of dimension (granularity) of information granules. One of the 

common characteristics for different frameworks is granularity, which describes how 

specific the granule is and how many details it embraces. One commonly used 

notation is cardinality, which can be computed by counting the number of elements in 

the information granule. The higher the cardinality, the higher the abstraction of the 

granule and the lower its granularity. We use information granules to perceive and 

describe the problem as well as plan some interaction with the external world. The 

type of description and interaction dictates the level of granularity: The most suitable
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level is selected. The level of granularity also influences the computational efficiency.

3) The development of the encoding and decoding mechanisms. Granular worlds rarely 

exist and operate independently without interaction with the environment. Hence 

communication mechanisms are needed. There are two categories of the 

communications tasks. One involves two granular worlds built on the some 

formalism. The other has no constraint on the formalism of the granular information. 

Communication mechanisms for granular worlds at different level of granularity are 

referred to as encoding and decoding. For example, A/D and D/A conversions are 

encoding and decoding mechanisms for communications between analog world and 

digital world.

4) Interoperability between different formal platforms of information granules. This 

issue is crucial to the design of hybrid models operating within the realm of various 

formalisms of information granularity.

Pedrycz et al. [2] identified 5 types of data: intervals, fuzzy sets, rough sets, 

shadowed sets, and probabilistic sets. These types of data are viewed as different 

granularities of information.

2.4.2 Intervals

Interval arithmetic was introduced by Warmus [12, 13]. Intervals are connected 

subset in the real set R, so the interval analysis can be considered as a special case of set 

analysis. An interval I  can be represented by an ordered real pair [a, b], where a is its 

lower bound and b is its upper bound. Note that the interval [a, Z>] may be closed or not,
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i.e., the lower and upper bounds may or may not belong to the interval. When a = h, the 

interval /  is converted to a real.

Using the lower and upper bounds, the width and center of the interval can be

defined as:

Definition 2.15

width([a, b]) = b - a  (2.26)

center([a, bj) = (a + b) / 2 = a + width([a, b\) / 2 (2.27)

Dual operations {+, *, /} for two intervals [a, b] and [c, d] result in another

interval, whose value depends on the value and sign of a, b, c, and d. For the 6 possible

combinations of a, b, c, and d, where a < b and c < d, Table 2.1 gives their set operations

AND and OR.

Table 2.1 SET OPERATIONS FOR TWO INTERVALS

Situation AND n ORu

a >  d <P [c, d] u[a, b]

c > b 9 [a, b] u [c, d]

a > c, b < d {a, b] [c, d]

c > a, d < b [c,d] [a,b]

a < c < b < d [c,b] [a, d]

c < a < d < b [a, d] \c,b\

Based on Table 2.1, interval arithmetic operations are as follows:
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[a,5] + [c,(f] = [a + c,b + d~\ (2.28)

[a,b]-[c,d] = [ a -d ,b - c ]  (2.29)

[a,b]* [c, d] = [min(ac, ad, be, bd), max(ac, ad, be, bd)\ (2.30)

[a,b]/[c,d] = [a,b]*[l/d,l/c ] , 0  £[c,d] (2.31)

{ \aa ,ab \a  > 0
a [ a ,b ] H  (2.32)

}[«£, aa\,a  < 0

Note that the distributivity doesn’t hold for + and *, because two intervals may have 

the same lower and upper bounds [11], For three intervals 1, Jand  K,

I * [ J  + K ] c : I * J  + I * K  (2.33)

2.4.3 Rough sets

In the past decade, the field of rough sets has grown rapidly. Rough set data 

analysis (RSDA), developed by Z. Pawlak and his co-workers in the early 1980s [92], 

has become a recognized and widely researched method. RSDA is generally regarded as 

part of the “Soft Computing” paradigm [93]. However, while other soft methods require 

additional model assumptions such as the representability of the collected sample, prior 

probabilities, fuzzy functions, or degrees of belief, RSDA is unique in the sense that it is 

“non- invasive” i.e. that it uses only the information given by the operationalised data, 

and does not rely on other model assumptions. In other words, instead of using external 

numbers or other additional parameters, rough set analysis utilizes solely the structure of 

the given data.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An information system Sis a formal structure viewed as a four-tuple of the form S = 

<X, Q, V, />, whose components assume the following roles. AT is a finite universe 

including all elements we are interested in some problem description,X  = (xi, X2, . . . ,xn}, 

Q is a finite set of attributes used in the description of elements of X; Q= {q\, <72,

n
}. V describes values of all attributes, that is V -  U Vt with Vi forming a set of values of

<=i

the z'-th attribute, is called a decision function and reads as follows:

f : X x Q - > V  (2.34)

We have f  (x, ) e Vt where qt denotes an z'-th attribute in Q and x is confined to X.

Any pair (q, v), is called a description of the information. An equivalence relation 

(indiscemibility) in X  brings together all objects that are not distinguishable in the 

selected subset of the attributes A,

IND(A) = {(x,y) € X  x X  \ f ( x , a )  -  f (y ,a ) , fo rV a  e A} (2.35)

As the objects which satisfy the above relation cannot be distinguished one from another, 

we can form a notion of an equivalence class [x]  ̂induced with respect to A 

[xL = { y e X \ ( x , y ) e  IND(A)} (2.36)

An ordered pair AS = (X, IND(A)) is called an approximation space.

Lower approximation of X in AS is defined as:

I  = { x e J |  [x]^ c  X}  (2.37)

Upper approximation of X in AS is defined as

X + = { x e X \  [x]A n l ^ )  (2.38)

A rough set is a construct represented by means of two approximations, <X, X+>. We 

would like to stress that rough sets are defined vis-a-vis a certain approximation space.
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The selection of the approximation space implies the definition of the rough set. In other 

words, the same concept X  may lead to different descriptions depending upon the 

assumed approximation space AS.

2.4.4 Shadowed sets and probabilistic sets

The underlying motivation behind shadowed sets [138] is the one about the 

localization of uncertainty of the member ship grades and its “centralized distribution 

across a fuzzy set. Formally, a shadowed set A defined in X  is a granular construct 

realizing the mapping

A: X-*{0, [0, 1], 1} (2.39)

A(x) = 0 states that x  is excluded from the concept A, A(x) = 1 expresses that x  fully 

belongs to A. A(x) = [0,1] quantifies a situation when nothing is known about the 

membership of the element (x) to A. The set of arguments of X  where this property holds 

is call a shadow of A.

In 1981, Hirota [94] proposed probabilistic sets in which for a given element of the 

universe of discourse X  the grades of membership there are governed by some probability 

function, denoted as px(u), u e  [0, 1], This model captures the non-uniqueness of the 

membership grades and attaches to each of them some useful probabilistic characteristics.

2.4.5 Recent developments in granular computing

A recent development is that Ronald R. Yager [95] introduces a new aggregation 

technique based on the ordered weighted averaging (OWA) operators. An OWA operator
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of dimension n is a mapping F:Rn —> R, that has an associated n vector w = (wj, w?, . . . ,  

w„)J such as wt e [0,1] , 1 < i < n, and

wi + • • • + wn = 1. (2.40)

Furthermore

F(a\, . . . ,  a„) = wibi + • • • + wnbn (2.41)

where bj is the j-th largest element of the bag < a\ , . . . ,  a„>.

The OWA operator orders the set A and applies a weighted average to the ordering 

of the elements, as opposed to the elements themselves. Obviously, this is a nonlinear 

function. In addition, the maximum, minimum, mean and median functions can all be 

implemented by an appropriate selection of weights. An important refinement of this idea 

is the Induced Ordered Weighted Averaging (IOWA) operator [96], The IOWA operator 

aggregates ordered pairs (a, u), where a is a numeric value to be averaged, and u e U is 

an ordering value. The pairs are ordered by the value of u, and then the ordered weighted 

average of the values a is taken. The importance of this refinement is the U need only be 

an ordinal universe of discourse. Thus, values of a linguistic variable defined over U are 

perfectly valid candidates for IOWA ordering values.

Another research direction in granular computing is the type-2 fuzzy sets. The 

knowledge used to construct a fuzzy logic system is often uncertain. The uncertainties 

may arise form the following sources: 1) the words used in the antecedents and the 

consequents of the rules can mean different things to different people, 2) consequents 

obtained by polling a group of experts may differ, 3) the training data are noisy, and 4) 

the measurements that activate the FLS are noisy [97-99]. Zadeh introduced type-2 fuzzy 

sets [19] to deal with these uncertainties. Formally, a type-2 fuzzy set A is an ordered pair
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(x, in which x is a real number, and //(x) is a fuzzy set representing the membership 

of x in A. [100] elaborated the use of type-2 fuzzy sets. In a recent work [101], Wu et al. 

designed a new method, based on the bound sets, which could relieve the computation 

burden of an interval type-2 fuzzy logic system during its operation. Furthermore, a type- 

3 fuzzy set would be a fuzzy set whose membership grads are type-2 fuzzy sets, and so 

on. Type-n fuzzy sets are a way of capturing types of uncertainty that, while falling under 

the general category of fuzziness, are not represented well by type-1 fuzzy sets.

Many approaches have been developed to convert numeric data into information 

granules. In [39], Pedrycz elaborates granulation with fuzzy sets and fuzzy clustering. In 

a recent paper [42], Bargiela et al. propose recursive information granulation. Bortolan et 

al. propose fuzzy descriptive models, an interactive framework of information 

granulation [41]. [40] introduces a hybrid two-phase approach that starts from a rough 

specification of the support of the fuzzy sets that is followed by detailed computation 

involving a specific type of membership function and an estimation of its parameters. In 

1993, Sugeno and Yasukawa (SY) propose qualitative fuzzy modeling [43], which 

creates a linguistically interpretable fuzzy rule based model from input-output sample 

data. Tikk et al. [44] improve the SY modeling by proposing algorithms for trapezoid 

approximation, for the determination of the number of rules. In a recent work, Pedrycz 

[102, 2] proposes a new scheme of building information granules in the collaborative 

fashion to capture both the relational and directional aspects of information granulation. 

Auephanwiriyakul et al. [103] develope a linguistic fuzzy c-means that works with 

vectors of fuzzy numbers. It employs distance calculations, a fuzzy membership update 

equation and fuzzy center vector update equations that are extensions of Euclidean
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distance and the standard FC’M membership and center update equations via the 

extension principle. As a generalization of classical automata, Ying [104] introduces a 

new kind of fuzzy automata whose inputs are instead strings of fuzzy subsets of the input 

alphabet. Finding the reduct is the core theme in rough set theory, Yin [134] proposes a 

granular data model to compute a reduct; each granule is represented by a bit string. Ling 

et al. [135] extend the quotient space model to the fuzzy granular world, the result 

provide a powerful mathematical model and tool for granule computing. In [136], Q. Liu 

constructs a granular deductive reasoning system, in which an object is presented by an 

ordered pair: an assertion and a semantic set corresponding to the assertion. Temporal 

and spatio-temporal aggregations are costly operations for maintaining time-evolving 

data [141], Zhang et al. propose that aggregates can be maintained using multiple levels 

of temporal granularities: older data using coarser granularities while more recent data 

using finer.

In [139], Zadeh gives a summary for using Granular Computing as a basis for a 

computational theory of perception.

2.5 Fuzzy mathematics

2.5.1 Basic concepts

The Mathematics based on fuzzy set theory is a very broad topic, subsuming 

arithmetic operations on fuzzy numbers, possibility theory, fuzzy relations, fuzzy logic, 

and many others. One classic unifying work on this topic is a textbook by Kandel [75]. 

Our discussion in this section will be limited to arithmetic operations on fuzzy numbers 

and linguistic terms. A fuzzy number is a fuzzy set that represents a number that is not
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precisely known. Given this basic definition, there is a considerable amount of work that 

has been done in defining arithmetic operations whose operands are fuzzy numbers. Also, 

the traditional numeric operators are useless in this context. A statement such as “hot + 

cold = warm” makes perfect linguistic sense, but if the “+” operator is the numeric sum, 

then the statement becomes an absurdity. Hence, we require new definitions for operators 

on fuzzy numbers.

There are two methods in general use for defining arithmetic operators on fuzzy 

numbers. The first and best-known is the extension principle, which “fuzzifies” an 

operation, shifting its domain and range from the set of real numbers to the set of fuzzy 

numbers. The second method of defining fuzzy arithmetic operators is restricted to a 

class of fuzzy numbers called LR fuzzy numbers.

Definition 2.16

An LR fuzzy number is a fuzzy number whose membership function is of the form

where a is the unique value for which A(a)= 1, a fi  > 0 are respectively the left and right 

spread of the fuzzy number, and L, R are shape functions for which 1,(0) = i?(0) = 1 and

Fuzzy arithmetic operators on these kinds of fuzzy numbers can be defined using 

the a- cut of A(x). Since <7- cuts are necessarily closed intervals on the real line, the

L[(a -  x) / a] 
A(x) = < R[(x -  a) I fi] 

0

(a -  a) < x < a 
a < x < (a + P)
otherwise

(2.42)

£(1) = R(l) = 0.
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definitions of classic interval analysis can be used directly. Indeed, this method is far 

more computationally efficient than using the extension principle, which generally 

reduces to solving a nonlinear programming problem [76, 77]. Dubois and Prade have 

produced a large body of work on LR fuzzy numbers [78-82].

One important property of arithmetic operations is called closure. We say that the

set of real numbers is closed under an operation y(x) (* = (xi, X2, ..., x„)) if, for any xeRn,

fix) eR. This simply means that a function of n real values will evaluate to a real number.

In the context of fuzzy numbers, we wish to know that given an operator °, if  A°B is 

closed on the set of fuzzy numbers. In [24], Zimmermann answers this question in the 

affirmative; any increasing or decreasing function of two fuzzy numbers will take its 

values exclusively from the set of fuzzy numbers. This means that the operations defined

by either the extension principle or the a-cut method will be closed on the set of fuzzy 

numbers [77].

A related question is: given a fuzzy mathematical operator, is a finite set of fuzzy 

numbers closed under this operator? This question arises from the nature of linguistic 

variables: the term set T of the linguistic variable is finite, and thus the semantic rule M  

associates the elements of T  with a finite set of fuzzy numbers. In general, fuzzy 

mathematical operators defined by the methods discussed are not closed for a finite set of 

fuzzy numbers [83]. This relates to the problem of description pointed out by Zadeh in 

[60]. Description is essentially the inverse of the semantic rule of a LV. Given a fuzzy

number F in  a universe of discourse U and a LV defined on U, what term t eT  of the LV
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best represents FI The difficulty with this problem is that F  can be any convex, normal 

fuzzy set on U. The mapping A f l: F>T where Tis the set of fuzzy numbers on U, does

not normally exist. When using fuzzy mathematical operators, M 1 must normally be 

computed as an approximation. Further criticisms of the standard fuzzy mathematical 

operators may be found in [77] and [84].

A paper by Delgado et al. [85] resolves this difficulty. In this paper, the authors 

introduce the idea of changing the semantic rule of a linguistic variable following a 

mathematical operation on that LV. In other words, while the term set of a LV does not

change under an n arithmetic operation, the fuzzy sets associated with each term do

change. Using this idea, Delgado et al. [85] provided definitions for addition, subtraction 

and scalar multiplication, all of which are closed on a term set. This method is also call 

label arithmetic.

2.5.2 Fuzzy set distance measures

The linguistic gradient operator relies heavily on the idea of a distance metric.

Definition 2.17

A  distance metric is a function 8  on a universe of discourse U, which must satisfy 3 

properties [83]:

1 ) S : U 2 - > R + (2.43)

2) 8 (x], xj) — 0 (2.44)

3) 8 (xj, X2) < Sfa,  xfi, i fX3 < xj < X2 < X4 (2.45) 

where xf (i = 1, 2, 3, 4) is a fuzzy set.
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The first property requires the distance has to be a non-negative real number; the 

second property means that the distance from a fuzzy number to itself is 0 ; the third 

requires the distance of two fuzzy numbers is greater than the distance of any other two 

numbers between them.

[83] pointed to the Minkowski family of distance metrics (includes the Euclidean

distance as a special case) as an excellent group of candidates for <5. Numerous other

definitions for fuzzy distance metrics have also been proposed. One such definition is 

based on the Hausdorf metric [86]. This definition is based on interval arithmetic, and 

measures the sum of the distances between the corresponding a-cuts of the two fuzzy sets:

i
8 {u,v) = Jmax(| u, (a) -  v, (a) |, | uu (a) -  v„ (a) \)da (2.46)

o

where u and v are fuzzy sets, u(a) is the closed interval formed by an<7-cuts of u, and u^a)

and u ja ) are the lower and upper bounds of the interval u{a), respectively. A more 

general form of the distance between two intervals is used in definition 2 of [87], The 

distance formula itself does not change, but the underlying measure of the distance 

between two closed intervals includes the Hausdorf metric as a special case. Two other 

distance measures are also proposed in this paper. One uses the difference between the 

expected values of two fuzzy numbers. The other is specific to trapezoidal fuzzy 

numbers, and uses geometrical principles to generate a distance metric [87].

2.5.3 Linguistic space

In modem control theory, a system is represented as a set of first-order differential

equations on the state variables of the system. This state space approach is often less
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mathematically complex, and at the same time enables the designer to analyze key system 

characteristics such as stability, controllability and observability [88]. A state space is a 

space defined by the cross product of the state variables of some system [19]. In crisp 

control systems, all n state variables take real or integer values, so the space is normally 

Rn or Zn. However, in fuzzy systems, linguistic variables are used. So the state space of a 

fuzzy system is the cross product of the linguistic variables involved in the system. In

[89], a discussion of the 2-dimensional case is presented. This book summarizes the idea 

of a linguistic trajectory, which is an analogue of the system trajectory in crisp systems. 

The book also introduces the idea of a partition of the underlying universe of discourse 

induced by a linguistic variable. However, the n-dimensional case is not covered, as the 

graphical techniques used do not extend well to higher-dimensional spaces. C. Liu et al.

[90] defines a linguistic state space, and formalizes the ordering of linguistic terms on 

each axis of the space by using a standard vector. This standard vector contains all atomic 

terms of a linguistic variable, which are arranged in a “reasonable” order. For an n- 

dimensional state space, this means that there will be n standard vectors, each associated 

with one dimension of the space. The standard vector provides an ordering of the 

linguistic terms to define other operations on the linguistic terms.

2.6 Linguistic arithmetic and linguistic gradient operator

2.6.1 Linguistic arithmetic

Dick proposed a set of linguistic arithmetic operators [35] and linguistic gradient 

operator [1]. These papers introduce a distance metric and a difference vector on a term 

set, a generalized linguistic variable, linguistic arithmetic operators, linguistic gradient
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operator, and linguistic neural network. The linguistic gradient operator is the foundation 

of our research. Therefore, I would like to discuss them in details here.

The following assumptions were set forth in [1], These assumptions are also held 

for the remaining chapters, except otherwise specified:

1. All rulebases of the fuzzy systems in question are complete and consistent

2. The term sets of all n linguistic variables contain only atomic terms.

3. The semantic rule of each linguistic variable associates each term of the linguistic 

variable with a LR fuzzy number.

4. When ordered in a reasonable manner, the term set is symmetric about some “zero” 

term.

5. The semantic rule of each linguistic variable induces a uniform partition on the 

respective universe of discourse.

6 . The rules of the fuzzy system are to be of the form below:

If x\ is A\ and xt is At and ... and xa is An Theny\ is B\ andyt  is B2 and ... andym is 

Bm-

where x; is the z-th input variable defined on a universe of discourse £/,, A\ is a fuzzy 

set on Uu yj is the y-th input variable defined on a universe of discourse Vj, By is a 

fuzzy set on Vj.

As an analogue of the traditional state-space representations for crisp system, a 

linguistic state space is a mathematical representation of an n-input, single-output fuzzy 

system. The linguistic state space is defined by the input variables of the system, and the
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system output is a function in this space. It is a discrete, finite space, the coordinates of 

which are linguistic values.

Definition 2.18

The linguistic state space of a fuzzy system is a space UiX ... x Uf X  ... x U n, in 

which the z-th dimension of the space takes its possible values from the term set of the zth 

linguistic variable of the fuzzy system, and Ut is the universe of discourse for the z-th LV 

of the fuzzy system in a closed interval form [-a, a].

Obviously, the term sets of the linguistic variables must be ordered to make the 

coordinates have meaning. The “reasonable” ordering of terms is defined to be the same 

as the ordering of the fuzzy numbers associated with each term by the semantic rule M. 

Fuzzy sets are ordered by their families of a-cuts as follows:

Definition 2.19

For two fuzzy sets A and B generated by the semantic rule M  of a linguistic variable 

L, A < B iff V a e (0,l],inf(“/4) < inf(“5 ) and sup(“,4) < sup(“i?), where aA is the a  -cut 

of fuzzy set .4, inf denotes the infimum, and sup denotes the supremum.

Since we assume that every fuzzy set in the system is an LR fuzzy number, every 01- 

cut necessarily forms a closed interval on the universe of discourse. Furthermore, this 

ordering of the fuzzy sets meets the criteria of “reasonableness” set forth in [90], 

Because the rulebase is complete and consistent, it is a right-unique mapping from the 

rule antecedents to the rule consequents, i.e., it is a function in the linguistic state space.
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As classic gradient, the linguistic gradient evaluates the change rate of a function at a 

point in linguistic state space. Hence, before defined the linguistic gradient operator, a 

definition of difference vector for the term set of a linguistic variable (an axis of the 

linguistic space), based on a distance metric [91] for that term set, is required. The 

difference between two terms is defined by counting transitions:

Definition 2.20

The distance X between two terms in a standard vector W equals the number of terms 

appearing between the source and goal terms plus 1. X is 0 if the source and goal are the 

same term.

Based on the distance metric, the difference D between two terms of a term set is 

defined as a one-dimensional vector:

Definition 2.21

The difference D between two terms, tj and t2, in a standard vector W is a one- 

dimension vector,

D{tl,t2) =
X(fi ,t2')
0

— X(tj , t2)

if h < h 
if h = t2 
if tx > t2

(2.47)

To express the difference in linguistic form, the linguistic difference is defined as
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Definition 2.22

The linguistic difference ^between two terms in a standard vector W is

NL if D <= -3
N M if  D = -2
NS ifD  = -1
A Z ifD  = 0
PS i f D =  1
PM i fD  = 2
PZ i fD >= 3

where Wg = (NL, NM, NS, AZ, PS, PM, PL) is the standard vector of 5, and D  is the 

numeric difference. Although these atomic terms can be named arbitrarily, as widely 

used in literature, they are named NL, NM, NS, AZ, PS, PM, and PL, which stand for 

negative large, negative middle, negative small, zero, positive small, positive middle, and 

positive large, respectively. The semantic rule of 5 is given in Fig. 2.3

NL PSNM NS AI PM

P 60

•t o
- 0.8 - 0.4 - 0.2 0.2 0.4 0,6 0,8 1U

3£

Figure 2.3 Semantic mle of S 

This definition only works for a standard vector with exactly 7 entries. Later, it will

be extended to include term sets of arbitrary size so long as those term sets obey the

assumptions.
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In section 2.2.3, the syntactic rule of a linguistic variable is a context free grammar, 

associating a fuzzy set with an atomic term. This means that any adaptation must be 

undertaken by altering the semantic rules o f each linguistic variable via numeric 

procedure.

The definition of generalized linguistic variable replaces the context free grammar 

with a phrase-structure grammar to generate new terms. New terms are generated by 

adding hedges and applying crossover operator.

2.6.2 Linguistic gradient operator

The linguistic gradient operator acts in the linguistic rule space formed by a fuzzy 

rulebase. As the gradient operator in calculus, the linguistic gradient operator determines 

the direction of the greatest local increase in the consequent function C, so that it makes 

possible the extraction of additional information about a rule base, which may help 

determine various characteristics of the rulebase. This additional information is obtained 

without performing any numerical computation, thus follows the “computing with 

words” paradigm.

The linguistic gradient was inspired by gradient in digital image processing, thus their 

computations are also very similar. The gradient operator in digital image processing is 

based on some difference operators. Computing the gradients for an image is 

convolution over the image.

Analogue to defining image gradient operator, some sort of difference operator on 

term set are require, thus the difference ratio and the term set difference vector are 

defined.
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Definition 2.23

Given a linguistic variable L with term set T, and two terms tj, t2 e  T, the difference 

ratio Dr is defined as

where D  is the numeric difference and | T\ is the cardinality of T.

Definition 2.24

Given an ordered term set T, two terms of interest -  source and goal -  and the relation 

“the difference between source and goal”, the term set difference vector A is defined as:

The standard vector A is Wa= (NL, NM, NS, AZ, PS, PM, PL), with AZ  the zero 

term. Definition 2.24 maps the numeric difference into a standard linguistic variable, 

thereby insuring that differences for different term sets are comparable quantities, and 

returning linguistic quantities. The ranges used in equ. 2.50 are based on the similarity of 

partition intervals in different term sets that meet the assumptions set forth in section 

2.6.1. Justification can be found in [1]. Semantic rule of A is shown in Fig. 2.4.

(2.49)

NL,Dr < -5 /1 4  
NM,-5 /14  < D r < -3 /1 4  
N S ,-3 H 4 < D r <0

A {source, goal) = 1 AZ, Dr = 0 (2.50)
PS,0 < D r <3/14  
PM,3/14 < D r <5 /14  
PL,Dr >5/14
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Figure 2.4 Semantic rule for A

The linguistic gradient is a mapping from the universe of discourse of consequence to 

the n-dimensional rule space. The result of the gradient operator is an n-vector of 

linguistic difference values.

Definition 2.25

The linguistic gradient is a mapping

where V is the universe of discourse of C(x), and A; is the term set difference vector 

defined for the f-th dimension of the n-dimensional rule space. The mapping is defined as

V => Ax x A2 x ...x A„ (2.51)

(2.52)

where

^  = a\c (x ,) ,C (Xi71, x l2, . . ,  x{ , x/( i+Y),..., xln )] (2.53)

A/l ’ Xn ’■■■’ ’ X(I+l)i ’ Xl(i+1) -'"In
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where “+” is defined in Table 2.2, / denotes an index on the standard vector for each 

dimension, / = (1,2, ..., n). The subscript I is used to identify the neighbours of the point 

x in the z-th dimension of the rule space.

Table 2.2 LABEL ADDITION

NL NM NS AZ PS PM PL

NL NL NL NM NM NS NS AZ

NM NL NM NM NS NS AZ PS

NS NM NM NS NS AZ PS PS

AZ NM NS NS AZ PS PS PM

PS NS NS AZ PS PS PM PM

PM NS AZ PS PS PM PM PL

PL AZ PS PS PM PM PL PL

These difference values do not generally belong to the term sets of the linguistic 

variable underlying each dimension of the rule space. They belong to a single term set, 

and are therefore directly comparable. A definition of the direction of the linguistic 

gradient is: the gradient vector is the sum of n vector Vi, where Vt lies on the z-th axis of 

the rule space, and the magnitude of V, is the /-component of the linguistic gradient 

vector. The linguistic gradient will point in the direction of the maximum rate of change 

in C(x). This yields new information concerning the structure of a fuzzy rulebase.

Because the linguistic gradient operator acts at a linguistic level, we are able to 

avoid using numerical technique.
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Example 1 in Chapter III section 3.2 demonstrates how to compute the linguistic 

gradients.

2.7 Introduction to Artificial Neural Network and Genetic Algorithm

ANN and GA are two important paradigms in SC. We introduce basic concepts of 

ANN and GA in this section.

2.7.1 Neural Network

The field of Neural Networks has a history over 60 years. McClulloch and Pitts in 

1943 [105] developed a basic threshold neuron. Since then, many researchers have 

published a large number of works on neural networks. Hebb developed a learning 

algorithm for a neural network in 1949, and Rosenblatt designed the perceptron in 1958 

[106, 107]. In 1986, Rumelhart et al. proposed the backpropagation algorithm [108], 

which allows multilayer neural networks to learn from experience. Multilayer perceptron 

has become the most popular neural network architecture in use today [109].

Inspired by biological nervous systems, many researchers have been exploring 

artificial neural networks, which model the brain as a continuous-time nonlinear dynamic 

system in connectionist architectures that are expected to mimic brain mechanisms to 

simulate intelligent behavior.

A neural network is a massively parallel distributed processor made up of simple 

processing units, which has a natural propensity storing experiential knowledge and 

making it available for use. Thereby, it endows machines with some of the cognitive 

abilities that biological organisms possess.
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ANNs store information among the synaptic connections. Here a neuron is an 

elementary processor that performs primitive types of operations, like summing the 

weighted inputs coming to it and then amplifying or thresholding the sum. These 

networks can be trained by examples and sometimes generalize well for unknown test 

cases. Performance is improved over time by iteratively updating the weights in the 

network. Neural networks are naturally parallel computing devices. Various models are 

designated by the network topology, node characteristics, and the status updating rules.

Wko = bk (bias)
Fixed input 

xo = +1 WkO

A ctivation
function

X1 Q Wk1

output ykV k

W k2Inputs

S u m m in g  junc tion

\ Xm o Wkm

S ynap tic  
w eigh ts  

(including b ias)

Figure 2.5 Nonlinear model of a neuron

A neuron is an information-processing unit that is fundamental to the operation of a 

neural network. Fig. 2.5 shows the model of a neuron, which consists of three basic 

elements [109]:
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♦ A set o f synapses, each of which is characterized by a weight of its own. A signal xj 

at the input of synapse j  connected to neuron k is multiplied by the synaptic weight 

wkj.

♦ An adder for summing the products of the input signals and the respective synapse 

weights.

♦ An activation function for limiting the amplitude of the output of a neuron. Typically, 

the normalized amplitude range of the output of a neuron is [0, 1], or alternatively [-1,

!]•

Such a neuron is referred as the McCulloch-Pitts model. In this model, the output of 

a neuron takes on the value of 1 if the induced local field of that neuron is nonnegative 

and 0 otherwise. This is called the all-or-none property of the McCulloch-Pitts model. A 

simple generalization of McCulloch-Pitts neuron, by replacing the threshold function 

with a more general nonlinear function, enhances the power of the networks built from 

such neurons. A synchronous assembly of such neurons is capable of universal 

computation for suitably chosen weights. Such an assembly can perform any computation 

that an ordinary digital computer can.
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input signal 
(stim ulus)

O utput layerFirst h idden 
layer

Input layer S eco n d  hidden 
layer

O utput signal 
(respones)

Figure 2.6 Architecture graph of a multilayer perceptron with two hidden layers

Typical multilayer perceptron (MLP) consists of a set of sensory units (source 

nodes) that constitute the input layer, one or more hidden layers of computation nodes, 

and an output layer of computation nodes. The input signal propagates through the 

network in a forward direction, on a layer-by-layer basis. Fig. 2.6 depicts the architecture 

of a MLP.

Each hidden or output neuron of a multilayer perceptron is designed to perform two 

computations: 1. The computation of the function signal appearing at the output of a 

neuron, which is expressed as a continuous nonlinear function of the input signal and 

synaptic weights associated with that neuron; 2. The computation of an estimate of the 

gradient vector, which is needed for the backward pass through the network.

The Backpropagation Algorithm consists of a forward pass, which maps input to 

output, and a backward pass, which updates the weights of each node according to the 

difference between actual output and expected output.

The MLP has been proven to be universal approximator [109], It can approximate

any nonlinear mapping after training. Tasks that MLP can perform include pattern
51
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classification, clustering or categorization, function approximation, prediction or 

forecasting, optimization, retrieval by content, and control.

The back-propagation algorithm for the design of a MLP may be viewed as the 

application of a recursive technique known in statistics as stochastic approximation [109]. 

There are various ways for the design of a neural network. Radial basis function network 

designed as a curve-fitting problem in a high-dimensional space [110]. Hopfield network 

[111] has a deterministic behavior. It is described by a set of nonlinear differential 

equations that define the exact evolution of the model as a function of time.

2.7.2 Genetic Algorithm

Most symbolic AI systems are very static. Most of them can usually only solve one 

given specific problem, since their architecture was designed for whatever that specific 

problem was in the first place. Thus, if the given problem were somehow to be changed, 

these systems could have a hard time adapting to them, since the algorithm that would 

originally arrive to the solution may be either incorrect or less efficient. In 1975, GA was 

created by J. Holland [34] to combat these problems. GA is based on natural biological 

evolution. The architecture of systems that implement GA is more able to adapt to a wide 

range of problems. A GA functions by generating a large set of possible solutions to a 

given problem. It then evaluates each of those solutions, and decides on a "fitness level" 

for each solution set. These solutions then breed new solutions. The parent solutions that 

were more "fit" are more likely to reproduce, while those that were less "fit" are less 

likely to do so. In essence, solutions are evolved over time. This way we evolve our
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search space scope to a point where you can find the solution. GA can be incredibly 

efficient if  programmed correctly.

GAs are convenient to program or understand, since they are biological based. 

Here is the general algorithm for a GA:

1. Create a Random Initial State. An initial population is created from a random 

selection of solutions, which are analogous to chromosomes. This is unlike the 

situation for Symbolic AI systems, where the initial state in a problem is already 

given instead.

2. Evaluate Fitness. A value for fitness is assigned to each solution (chromosome) 

depending on how close it actually is to solving the problem. These “solutions” are 

not “answers” to the problem. They are possible characteristics that the system would 

employ in order to reach the answer.

3. Reproduce and Children Mutate. Those chromosomes with a higher fitness value are 

more likely to reproduce offspring, which can mutate after reproduction. The 

offspring is a product of the father and mother, whose composition consists of a 

combination of genes from them. This process is known as "crossing over".

4. Next Generation. If the new generation contains a solution that produces an output 

that is close enough or equal to the desired answer then the problem has been solved. 

If this is not the case, then the new generation will go through the same process as 

their parents did. This will continue until a solution is reached.

It's important to understand that the functioning of such an algorithm does not 

guarantee success. We are in a stochastic system and a genetic pool may be too far from 

the solution. For example, a too fast convergence may halt the process of evolution.
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These algorithms are nevertheless extremely effective, and are used in fields as diverse as 

stock exchange, production scheduling or programming of assembly robots in the 

automotive industry.

2.7.3 Hybrid Systems

An active trend is various forms of hybrid system of fuzzy logic, neural networks 

and genetic algorithms. Neuro-fuzzy computing [113, 114, 116-119], which is a 

judicious integration of the merits of neural and fuzzy approaches, enables one to build 

more intelligent decision-making systems. This incorporates the generic advantages of 

artificial neural networks like massive parallelism, robustness, and learning in data-rich 

environments into the system. The modeling of imprecise and qualitative knowledge as 

well as the transmission of uncertainty is made possible through the use of fuzzy logic.

ANFIS by Jang [115] implements a Sugeno-like fuzzy system [52] in a five-layer 

network structure. Backpropagation is used to learn the antecedent membership functions, 

while least mean squares algorithm determines the coefficients of the linear combinations 

in the consequent of the rule. The linguistic neural network (LNN) [35] replaces the 

numeric connection weights of a standard neural network with linguistic values, thus 

promotes an understanding of the network at the level of individual nodes. The induced 

local field, activation function, weights updating algorithm is also similar to counterpart 

in MLP, only replace the numeric variables with linguistic variables, and use the 

linguistic mathematics operators instead of numeric operators [1], Hayashi et al. [120] 

fuzzified the delta rule for multilayer perceptron (MLP) using fuzzy numbers at the input,
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output, and weight levels. But there were problems with the stopping rule. Mitra and Pal 

have used the fuzzy LP for inferencing and rule generation [121].

Applications of genetic algorithms combined with fuzzy control are being 

investigated not only at the academic level but also at the commercial level [21], Genetic 

algorithms are particularly suited for tuning the membership functions in terms of placing 

them in the universe of discourse. Properly configured GA/Fuzzy architectures search 

the complete universe of discourse and find adequate solutions according to the fitness 

function [112]

Ishibuchi et al. [122] select a small number of significant fuzzy IF-THEN rules to 

construct a compact and efficient fuzzy classification system. GAs are used to solve this 

combinatorial optimization problem, with an objective function for simultaneously 

maximizing the number of correctly classified patterns and minimizing the number of 

fuzzy rules. Wang and Yen [123] have designed a hybrid algorithm that uses GAs for 

extracting important fuzzy rules from a given rulebase to construct a parsimonious fuzzy 

model with high generalization ability. The parameters of the model are estimated using 

the Kalman filter.
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C hapter 3 F u z z y  R u l e b a s e  S im ila r i ty  C o n f id e n c e  L e v e l

This chapter presents the major contribution of this thesis, the Similarity Confidence 

Level (SCL) for fuzzy rulebases. The SCL is a novel similarity measure for comparing 

two fuzzy rulebases based on linguistic gradients [1], and is inspired by a content-based 

image retrieval algorithm [36].

Manipulating fuzzy rulebases is similar to digital image processing in many ways. 

First, both rulebases and images are presented in discrete finite spaces, which have well 

defined borders. Second, their outputs (for rulebases, the output is the consequent; for 

grey image, the output is the grey value) are also discrete interval scales. There are also 

some differences between them. One is that, as our assumptions in Chapter II held, the 

consequent variable may take negative values, but the grey value of an image can only 

take non-negative values. Furthermore, a fuzzy rulebase may have an arbitrary number 

of inputs, while images have limited dimensions. Overall, image processing algorithms 

can provide inspiration for defining our fuzzy rulebase similarity operator.

Our objective is to measure the structural similarity between fuzzy rulebases within 

the computing with words (CW) paradigm, i.e. our algorithm will only compare linguistic 

outputs, avoiding comparison over the defuzzified reasoning surface. The question is 

how we can obtain structural information from rulebases and how to compare this 

structural information. To solve this problem, we direct our attention to a sub-area of 

image processing called content-based image retrieval (CBIR). One major task of CBIR 

is to recognize contents in multimedia data which relates to recognition of semantics of 

the contents of media data [124]. For this purpose, CBIR has found mechanisms to
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extract some sort of structure invariants, and developed many similarity measures based 

on these invariants. Our fuzzy rulebases similarity operator is inspired by a CBIR 

algorithm proposed by J. Rose, et al. [36], in which the similarity of two image is 

computed in 5 steps: First, the gradients are computed at each point of the two images to 

be compared; Second, threshold these gradients, images are converted into binary map; 

Third, project binary numbers to horizontal, vertical, and diagonal axes; Fourth, compute 

the Euclidean distance between projection vectors; Finally, normalize the result. Our 

algorithm is very similar to it, however, we made some changes according to the 

characteristics of fuzzy rulebases.

3.1 Definition of SCL

The SCL for two fuzzy mlebases is a mapping from the universes of discourse of the 

two fuzzy rulebases’ consequents to the interval [0, 1]:

SCL:Vx*V2 =>[<d,Y\ (3.1)

where Vj and V2 are the universe of discourse of consequent LVs. The calculation of 

SCL consists of 6 major phases: computing the gradient maps of the two mlebases, 

thresholding the gradient maps, projecting the thresholded vectors to each axis, 

regranulating the projection vectors, calculating the Euclidean distance, and normalizing 

the result.

Suppose that we have two n-dimensional fuzzy mlebases, Fj and F2, of which 

corresponding universes of discourse are identical. The SCL(E), F2) is calculated as 

follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1) Compute the gradient vector maps o f Fi and F2

We denote the cardinality of the z-th dimension in rulespace as c,-. Plainly, the number 

of points in rulespace (equivalently, the number of rules in the rulebase) is given by cj-c2 

c„, where c, is the cardinality of the z-th dimension. For each point in rulespace, the 

gradient vector vc(x) is calculated using the algorithm described in Chapter II Section

2.5.2. Note thatvc(f) is the vector sum of n vectors vfx), wherev,(jc) lies on the z-th axis 

of the rule space.

2) Threshold the gradient vectors

The thresholded gradient fields will be coarser granulations of the gradient vector 

field; each component may take the values -1, 0, or 1. This simplification of vc(x) 

allows us to focus on the most important differences between two rulebases, while 

suppressing minor ones. This also retains the basic directional information contained in 

each Vj. (Jc); experimentation indicates that discarding the direction of the gradient vector

at this point is undesirable.

A fuzzy inference system may have different linguistic variables for different 

universes of discourse. For instance, one LV might use 6 membership functions, while 

another might use 3 MFs. We have dealt with these differing granulations by restricting 

the linguistic gradient to a single, common term set. However, the magnitude of the 

linguistic gradient will still tend to be greater for coarser granulations, all things being 

equal. Hence, we adopt a thresholding rule for linguistic gradients that still takes 

different values of c( into account. We set the linguistic threshold for each dimension in a 

rulebase according to c,.
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For all z and x,  threshold vjx),

v , ( 3 0  =

1, i f  | vi (x) |> thresholdt, v(. (x) > AZ 
0, i f  | v;(x) |< threshold;
- 1, i f  | v; (x) |> threshold., v(. (x) < ZZ

(3 .2)

where thresholdi is the threshold for the z-th dimension given by

threshold.
PS,
PM,
PL,

if c,->4 
if a  =3,4 
if c, = 2

(3.3)

where c{ is the cardinality of the output linguistic variable. The conditions in equ.3.3 are 

determined by experiment. Because the possible values of c,- are 2-9, we use all possible 

combinations of these values for the conditions to run the validating experiment. The 

combination used in equ.3.3 gives the best result.

3) Compute the projection to every axis

The z'-th dimension projection P, = (pfl, pi2,---,pici) is a 2c,-dimension vector, where

r
Ci cz

a//jti =  /,57V i ( x ) = - l  allxi ~ j ,S T v i ( x ) - l

k = l k=1

(3-4)

where n is the number of inputs, c, is the cardinality of the z'-th dimension, V|.(x) is the 

linguistic gradient lies in z'-th axis for partition x. Vj(x) is used in Equ. 3.4 instead of 

V C (x ) , because the projection from vc(x) to the z'-th axis depends on Vj (x) solely, 

projections of other vectors Vj(x),j*i to this axis equals 0. py is a 2-d vector, one

dimension of which represents the number o f-Is , the other represents the number of Is.

This vector is calculated by counting the number o f-Is  and Is separately, and normalized
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by divided the number of points involved, which is equal the product of all input 

cardinalities other than the z-th.

4) Regranulate the projected vectors

Two different fuzzy systems may use different TVs for the same universe of 

discourse. One rulebase might granulate a particular universe of discourse into 3 

membership functions, while the other might use 4. However, in order to compare the 

projections for these 2 rulebases, we need to have a common granularity for 

corresponding universes of discourse. Thus, in order to generalize our algorithm beyond 

requiring common granulations in the original rulebases, we will regranulate one of the 

projections to match the other. During this process, we must retain as much information 

as possible.

Regranulation is a term defined by Dick in [142] to describe the process of changing 

the granulation of some universe(s) of discourse. An example of regranulation is image 

resizing, in which the number of points representing the image changed, but important 

information is retained so that we can still recognize the image.

Hereafter, the first digit of a subscript denotes a rulebase, the second digit denotes a 

dimension in that rule space and the third digit denotes an index on that dimension.

Suppose that P}i and P2i, representing the z'-th axis projection vectors of Fj and F2 are 

of cardinality c2i and c2i, respectively. We want to regranulate P2i to P ’2i -  ip ’m, p 'm ,

Our regranulation is very similar to the first-order image resizing algorithm, in which 

the value in a new point is the weighted average of its nearest neighbours [128], The
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intersections of membership functions of the z-th input of Fj divide the z'-th universe of 

discourse into cn intervals, [am, bw ], [aU2, bli2], and [au(cH), b^cu)], corresponding to 

Pin, Pu2, ■ • Pn(cii), respectively. Similarly, the z'-th universe of discourse of F2 is divided 

into c2t intervals, [a2u, b2,1], [a2i2, b2i2], ..., and [a2i(c2i), b2i(c2i)], where am and am  are the 

lower bound of the universe of discourse, bu(di) and b2i(c2i) are the upper bound of the 

universe of discourse. We calculate the regranulated projection vectors as a weighted 

sum of the original projection values, based on the overlap of the numeric partitions 

underlying the rulespace.

0.2 n,8

a.E

0 s  h 1

Figure 3.1 Example of regranulation

By using interval algebra, for the z'-th dimension, the P ’2i = (p ’2ii , p ’2i2, . . . , p ’2icIi) is 

computed as follows

2 ij > . £ (mini 1, > | p 2ik x
i=l

width([a2ik, bm ] n  [aUJ, bUJ ])
width([am ,b2ik]) JJ

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where cni is the cardinality of z'-th dimension for Fn, anij  and bnij are the lower bound and 

upper bound of the y-th interval on z-th dimension for Fn, respectively.

Fig 3.1 gives an example of regranulation. Suppose that two LVs A and B are 

corresponding inputs of two fuzzy rulebases. A has two atomic terms Small and Big, the 

intersection of whose MFs divides the universe of discourse into two intervals [0, x] and 

[x, 1], Similarly, the intersections of MFs of B divide the universe of disourse of B into 3 

intervals [0, a], [a, b], and [b, 1]. If these intervals are drawn on the same real segment, 

[0, x] will contain [0, a] and overlap with [a, b], [x, 1] will contain [b, 1] and overlap with 

[a, b]. The length of projection vector of A is 4 (2 times its cardinality) and that of B is 6. 

Then we can use following equations to regranulate the projection vector of B:

Since the original projection vectors are normalized, the regranulated value is 

saturated when it reaches 1. In general, regranulating Fj or F2 will result in different SCL 

values, but the difference is very small. Experimental result on this issue will be 

presented in Chapter IV. After the projection vectors being regranulated, the remaining 

steps are straightforward.

5) Calculate the Euclidean distance

Calculate the Euclidean distance using

\
P'Small = min 1, (PAZ + PpS )V b - a

x - a

/
(3.6)

min 1,(- (3.7)
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d̂ t=J'E(i(Pn;/-P2ij)2) (3.8)
i=l M

where n is the number of inputs, c; is the cardinality of the /-th dimension, p  is the 

projection vector, p  ’ is the regranulated projection vector.

6)  Normalize the result

The Euclidean distance depends on the sum of the cardinalities of the input LVs for 

each of the rulebases in question; hence, it has to be normalized so that the result is a 

meaningful representation of similarity. The Similarity Confidence Level between two 

fuzzy rulebases is defined as:

The SCL ranges from 0 to 1. 1 means that the two rulebases being compared are

structurally identical, while 0 means their structures are completely different.

3.2 Examples

Example 1

This example demonstrates the computation of linguistic gradients, Fj is a Mamdani 

fuzzy system taken from [125]. Semantic rules of the linguistic variables are given in Fig.

Max -  dist
(3.9)

Max

where Max is the maximum possible value of dist, given by

(3.10)
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3.2, and the rulebase is presented in Table. 3.2. The linguistic gradient is computed for 

each point in Fj as follows:

For the point (dist, angle) = (ZE, ZE) in F;,

VC(ZE,ZE)
= (NULL + A (PM, PS), NULL + A (PS, PS))
-  (PM, AZ)

As with digital images, the rulespace has a defined border, and the points in 

rulespace along this border must receive special treatment. We elect to insert a NULL 

value into Equ. 2.53 at every point where an out-of-bounds value would be called for, and 

extend the label addition defined in Table 2.2 to include this situation. Label additions 

involve NULL are defined in Table 3.1

Table 3.1 LABEL ADDITIONS INVOLVING NU LL

NL NM NS AZ PS PM PL

NULL NL NM NS AZ PS PM PL

The point (dist, angle) = (PS, PS) is a normal case. The linguistic gradient at this 

point is given by

NC(PS,PS)
= (A (PM, PS) + A (PB, PM), A (PM, PM ) + A (PS, PM))
= (PM, NS)

Gradient vectors for other points can be calculated in the same way. The gradient 

map for F/ is shown in Table 3.3.
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PS PM

0.

0.1 0.2 0 0.4 0,5 0.70 0.6 0 0.3

(a) Input variable “dist”

PS PM PB

0.5

0.1 0.2 0.3 0,4 0.5 00

(b) Input variable “angle”

PS PM PBZE

0.5 j~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) Output variable “adj-var” 

Figure 3.2 Membership ftmcions of Fj
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Table 3.2 RULEBASE OF Fj

Adj-var Dist

ZE PS PM PB

PB ZE PS PS ZE

PM ZE PS PS PS

d
< PS PS PM PB PB

ZE PS PM PB PB

dist

Figure 3.3 Reasoning Surface of Fj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.3 GRADIENT MAP OF Ft

V C(adj- Dist

var) ZE PS PM PB

PB PM,AZ PS,AZ NS,AZ NM,NM

13)
PM PM,NS PS,NS AZ,NM AZ,NL

&
< PS PM,NS PM,NS PS,NM AZ,NM

ZE PM,AZ PM,AZ PS,AZ AZ,AZ

Gradient Vectors of FI

— — S '

- X

- - \

.■.—.■Cp- >

ZE PS PM PB
d i s t

Figure 3.4 Linguistic Gradient Vector Field of Fj
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dist

Figure 3.5 Quiver plot of the control surface of Fj

The gradient vector field of Fj is shown in Figure 3.4, while the numerical gradient 

vector field for the control surface of Fj as computed by the Matlab ® Fuzzy Logic 

Toolbox is shown in Figure 3.5. The relationship between them is obvious. The gradient 

vector field map is a coarse approximation of the numerical gradient vector field.

Example 2

In this example, we calculate the SCL for the two Mamdani fuzzy inference systems 

Fi [125] and F2 [126], for which membership functions are shown in Fig. 3.2 and Fig. 

3.6, and rulebases are shown in Table 3.2 and Table 3.5, respectively. The computation 

of the gradient map of Fj is shown in Example 1. The respective gradient maps for Fi 

and F2 are shown in Table 3.3 and Table 3.6.
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After the gradient maps are created, they are thresholded as follows:

ForF/,

• c n ~  4, threshold/; = PM;

• ci2 = 4, .". thresholdn = PM;

For F 2 ,

• C21 -  3, threshold2i ~ PM;

• c22 = 4, threshold22 = PM;

where threshold^ and thresholds are thresholds for the dimensions dist and angle of F j ,  

threshold2I and thresholds are thresholds for the dimensions xi and x2 of F? respectively. 

The thresholded gradient maps for F j  and F 2 are given in Table 3.4 and Table 3.7, 

respectively.

o  

o
Ci 
o
G
o
o '

Tr-J

P n=  {(0,4) (0,2) (0,0) (1 ,0)}/4
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Table 3.4 THRESHOLDED GRADIENT MAP OF F,

t h r e s h o l d e d d i s t

V  C ( a d j - a r )
ZE PS PM PB

PB 1,0 0,0 0,0 -1,-1

JU
Tb

PM 1,0 0,0 0,-1 0,-1

5 PS 1,0 1,0 0,-1 0,-1

ZE 1,0 1,0 0,0 0,0
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mf2

0

.7 0.90.2 0.4 3 . 5 0.80 0.1

(a) Input variable “x l”

mf3mf2

0.5

0,5 0.6 0.7 0.8 0.90 0.1 0.2 0.3 0.4

(b) Input variable “x2”

mf3mft mf2

0.5

0.8 0.90.4 0.5 0.6 0 70 0.2 0.30

(c) Output variable “output”

Figure 3.6 Membership functions for F2
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Table 3.5 RULEBASE OF F2

output xl

mfl mf2 mO

mf4 m f2 mf2 mf3

<N

mf3 mf3 mO m£3

X mf2 mfl mf2 mf2

mfl mfl mfl m£2

Figure 3.7 Reasoning Surface of F2
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Table 3.6 GRADIENT MAP OF F2

V C(output) xl

mfl mf2 Mf3

mf4 AZ,NM PS,NM PM,AZ

$

mf3 AZ,PS AZ,AZ AZ,PS

mf2 PM,PM PS,PM AZ,PS

mfl AZ,AZ PS,PM PM,AZ

Table 3.7 THRESHOLDED GRADIENT MAP OF F?

Thresholded V C(output) XI

Mfl Mf2 MB

Mf4 0,-1 0,-1 1,0

<N
X

MB 0,0 0,0 0,0

Mf2 1,1 0,1 0,0

Mfl 0,0 0,1 1,0

P21 ~ { ( 0 , 1) (0,0) (0, 2)}/3

©.

O
o '

(N
o '

The projection vectors are calculated by counting the number of Is and -Is separately 

along each axis in the thresholded gradient map and then normalizing as in Equ. 3.4. We 

obtain 2 projection vectors for each rulebase, Pu  and P n  for Fj, P21 and P22 for F2,

Pn = [(0, 1) (0, 0.5) (0, 0) (0.25, 0)]
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P 12 ~ [(0 , 0 ) (0 .5 , 0) (0 .5 , 0) (0 .25 , 0)]

P2I = [(0, 0.25) (0, 0) (0, 0.5)]

P22= [(0, 0.3333) (0, 0.6667) (0, 0) (0.6667, 0)]

Pji and P2i are not of the same length so one of them needs to be regranulated. Here 

we regranulate Pu  to the same granularity as P2j. The intersections of membership 

functions of dist in F, are 0.16665, 0.5 and 0.83335. They divide the universe of 

discourse o f dist into 4 intervals: [0, 0.16665], [0.16665, 0.5], [0.5, 0.83335] and 

[0.83335, 1]. Similarly, the universe of discourse of xl in F2 is divided into 3 intervals, 

[0, 0.25], [0.25, 0.75] and [0.75, 1], Pu  is regranulated using Equ. 3.5 as follows:

p ’] n ~ p u i+p ii2 * (0.25 -0.16665) / (0.5 — 0.16665)

= (0, 1) + (0, 0.5) x 0.08335 / 0.33335

-  (0,1)

p ’in  = P m  * (0.5 -  0.25) / (0.5 -  0.16665) + p m  *(0.75 -  0.5) / (0.83335 -  0.5)

= (0,0.5) x 0.25 / 0.33335 + (0,0) x 0.25 / 0.33335

= (0, 0.3750) + (0, 0)

= (0, 0.3750)

p  ’n3=P m  x (0.83335 -  0.75) / (0.83335 -  0.5) + p U 4
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=  (0 , 0) x 0 .08335  /  0 .33335 +  (0 .25 , 0)

= (0.25, 0)

Combining these 3 pairs together, we obtain

P ’u = {p’m , P ’ 112, p  ’113}

= {(0, 1) (0, 0.3750) (0.25, 0)}

The Euclidean distance between (P ’u , P 12) and (P21, P22) is 

dist = sqrt((0 -  0)2 + (1 -  0.25)2 + (0 -  0)2 + (0.3750 -  0)2 + (0.25 -  0)2 + (0 -  0.5)2 + (0 -  

0)2 + (0 -  0.3333)2 + (0.5 -  0)2 + (0 -  0.6667)2 + (0.5 -  0)2 + (0 -  0)2 + (0.25 -  0.6667)2 + 

(0 -0 ) 2)= 1.4983

The maximum possible value fora 3x4  rulebase is

Max = -y/2 x (3 + 4) = 3.7417

Finally, we obtain the SCL

3 7417-1 4983SCL(K ,F2) = ■ ■ -  -- - ---- -  0.5996
1 2 3.7417

If we regranulate P2i instead of Pu, the SCL is 0.6210, which is close to the above result.
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Example 3

Fig.3.3 shows the reasoning surfaces of 3 Mamdani systems F3, F4 and Fs. The 

reasoning surface of F3 looks very close to that of F4 -  the most important difference 

between them is their output range. F j’s output range is [0, 0.8]; F / s  output range is [0,1]. 

The reasoning surface of Fs is very different from that of F3 and F4. Table 3.6 gives their 

pair wise SCL values and RMS differences. SCL (F3, F4) = 0.9000 means that F 3 and F4 

are structurally close, while SCL (F3, Fj) = 0.1101 and SCL (F4, F5) = 0.1180 means both 

F 3 and F4 are very different from Fs in structure. Although the pair wise RMS 

differences are fairly close, the SCL has the ability to reveal crucial structural differences. 

That is because the RMS comes from both the dynamic behaviours (shapes of the 

reasoning surfaces) and the difference of output range, while SCL depends only on the 

dynamic behaviours.

1 0
inpufl input2

(a) Reasoning Surface of F 3
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1 0
inputl input2

(b) Reasoning Surface of F 4

inpull

(c) Reasoning Surface of Fs 

Figure 3.8 Reasoning Surface of F 3 , F 4  and F5
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Table 3.8 PAIR WISE RMS AND SCL OF F3, F4 AND F5

Rulebases Pair RMS SCL

f 3, f 4 0.3173 0.9000

f 4, f 5 0.4392 0.1180

F3, Fs 0.3794 0.1101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 4 Ex pe r im e n t a l  R esult

This chapter describes our validation experiment for the SCL. We had expected a 

negative correlation between SCL and RMS, so we designed a test based on a set of 2- 

dimensional fuzzy rulebases collected from the literature. After normalizing and 

applying some restrictions, we totally got 603 pairs of 2-d rulebases. This test took pair­

wise RMS and SCL of these rulebases as two variables, and computed the Spearman rank 

correlation coefficient between them. The result showed that the SCL significantly 

negatively correlate to RMS.

Another important aspect of an algorithm is computational performance. Although 

the computational complexities of SCL and RMS are of similar order, SCL is computed 

at a higher level of granularity, so we were expecting a higher performance for SCL. In 

our experiment, the SCL demonstrated a much faster running time than RMS.

In what follows, we first describe the validation strategy. We then present our 

experimental design and method, followed by the results. Finally, we give the analysis 

and experimental result for computational performance.

4.1 Validation Strategy

Validating a new measure needs a ground truth. Widely used ground truths are 

human expert ranking or other measures. Unfortunately, we couldn’t find a qualified 

expert to help us in our research, so we have to use another measure to validate SCL. As 

mentioned in Chapter 1, there is no such measure for fuzzy rulebases in literature, thus, 

we choose to compare SCL with a more traditional difference measure for two systems,
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the RMS difference, over a fuzzy rulebases library, in which all rulebases’ universes of 

discourse are normalized. Example 3 shows that RMS difference tends to be larger for 

two fuzzy rulebases that have different universes of discourse, even though they have 

similar reasoning surface. In our experiment, we normalized all rulebases, made their 

corresponding universes of discourse identical, such that their pair wise RMS consisted of 

only dynamic part. Since SCL compares the dynamic behaviours of two fuzzy rulebases, 

over a normalized fuzzy rulebases library, RMS can be a suitable ground truth.

The root-mean-square (RMS) of a variate X, sometimes called the quadratic mean, 

is the square root of the mean squared value of x: [6]

The RMS is often used to quantify the deviation of a signal from a given baseline or 

fit. In the case of crisp inputs and outputs, a fuzzy inference system implements a 

nonlinear mapping from its input space to output space [3, 4]. Therefore when the 

number of inputs and respective universe of discourse of two fuzzy systems are identical, 

we can use the RMS difference as an index to measure the similarity o f these two systems, 

the smaller the RMS difference, the more similar the two systems are.

The Spearman rank correlation coefficient is a nonparametric (distribution-free) 

rank statistic proposed by Spearman in 1904 as a measure of the strength of the 

associations between two variables [5]. It can be used to discover the strength of a link 

between two sets of data. The Spearman rank correlation coefficient is defined by

for a discrete distribution

J P(x)x2dx
(4.1)

for a continuous distribution
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(4.2)

where d is the difference in statistical rank of corresponding variables, N  is the number of 

samples. The Spearman rank correlation coefficient is an approximation to the exact 

correlation coefficient

computed from the original data.

There are some advantages to a rank-based test. Because it uses ranks, the 

Spearman coefficient is much easier to compute than the exact correlation coefficient. 

We do not need to assume any parametric family of distributions for the data. The 

Spearman coefficient is also robust: not sensitive to occasional errors in the data or to 

outliers.

We use the Spearman coefficient because, while both RMS and SCL map to 

numeric values, the underlying quantities they represent have fundamentally different 

granulations (i.e. they compare numeric reasoning surfaces and linguistic rulebases). The 

rank-based Spearman statistic is therefore more appropriate than Pearson’s coefficient. 

Spearman correlations with an absolute value of roughly 0.3 or greater (out of a possible 

range of [-1, 1]) are generally taken to denote significant relationships. Moreover, in our 

experiment, all universes of discourse of the rulebases have been, such that the RMS only 

contains of dynamic part. Since SCL and RMS reveal contradistinctive properties of a 

pair o f rulebases, they should negatively correlate.

A further technique is required to test the significance of the relationship. The 

significance gives the probability of the relationship we have found being a chance event.

r = Hxy (4.3)
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The significance value is determined by the Spearman rank correlation coefficient and the 

degree o f freedom (population of data set minus 2). This value must be looked up on the 

Spearman Rank significance table. Usually, a significance level of lower than 5% or 1% 

indicates that the correlation is not a result of chance [5].

For summary, the criterion for validating SCL is that in the experiment, we can 

obtain a Spearman rank correlation coefficient between SCL and RMS less than -0.3 with 

significance less that 0.01, over a normalized fuzzy rulebases library.

4.2 Constraints

We collected all 89 fuzzy rulebases that appeared in the proceedings of the FUZZ- 

IEEE ‘98 for validation purpose. All universe of discourse of these rulebases were 

normalized. For symmetric dimensions, the universe of discourse was normalized to [-1,

1]; for asymmetric dimensions, the universe of discourse was normalized to [0, 1], Not 

all possible pairs of rulebases were comparable. Some restrictions applied:

1. As the assumptions indicated in chapter II, this research is limited to MISO Mamdani 

systems only;

2. In order to calculate the RMS difference and the SCL, 2 rulebases must have these 

properties in common: number of dimensions, universe of discourse of corresponding 

dimension;

3. Output ranges of the two rulebases should be identical. Although we can calculate 

the RMS difference and SCL of a pair of rulebases with different output ranges, the result 

is meaningless for our objective;
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4. Rulebases of more than 2 dimensions are seldom reported in the fuzzy systems 

literature, and so our collection contains very few of them. Because a data set with too 

few samples is statistically meaningless, the experiment on higher dimensional fuzzy 

systems has to be left for future research.

Another constraint concerns incomplete rulebases. When computing RMS, if  a 

particular input fired no rule, we computed the system output in the same way as that in 

Matlab®, in which the system output is set as the mean value of the output range. When 

computing linguistic gradient, if one rule was missing, it was set according to following 

rules:

1). If the output LV was symmetrical, the missed rule was assigned the zero term.

2) If the output LV was asymmetrical, the missed rule was assigned a pseudo term. This 

pseudo term was a singleton located at the middle of the output universe of discourse and 

the term set distances between this pseudo-term and its neighbour terms are set to 0.5.

Given these constraints, we were able to compare 603 pairs of 2-d rulebases.

4.3 Experimental Result

Programs implementing the SCL and validation were developed in C++ and 

Matlab®. A C++ fuzzy library reads the Matlab fis files, does the Mamdani inferencing, 

computes the RMS difference, and generates the gradient vector map. A group of Matlab 

scripts implement the rest of the algorithm described in Chapter III, and compute the 

Spearman rank correlation coefficient.
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First, we calculated the RMS differences and SCL of the 603 pairs of rulebases. 

Then, we calculated the Spearman Rank Correlation Coefficient between the RMS 

differences and SCL.

Regranulating rulebase of higher granularity and regranulating that of less granularity 

resulted in slightly different SCL values. In this experiment, when regranulating the 

rulebase which has a greater sum of all input cardinalities, we got a Spearman Rank 

correlation Coefficient o f -0.5639, which gave a significant level much less than 0.01. In 

fact, the significance factor is of the order e-11. When regranulating the rulebase which 

has a less sum of input cardinalities, we got a Spearman Rank Correlation Coefficient of 

-0.5651 with a significant level of the order e-11. These results fulfill our validation 

criteria, and so we are prepared to assert that the SCL is a valid measure of the difference 

between two fuzzy rulebases.

4.4 Performance Analysis

Performance is an important aspect of algorithm analysis. One of the advantages of 

CW scheme is that it provides high computational efficiency [38]. Efficiency means 

using fewer resources including CPU cycles (time) and computer memory (space). Time 

and space are both important, but we are usually more interested in time efficiency rather 

than space efficiency these days - relative memory prices are quite low compared to the 

past.

In the situation of continuous mapping, for the convenience of computation, we 

have to discretize the input variables. One disadvantage of this method is that it causes 

transformation distortion, because during the discretization process, part of the input
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space is ignored. We were facing this problem and paying tremendous time cost to 

minimize the error when computing RMS difference between 2 fuzzy systems.

Computing RMS includes 4 steps. First, discretize the universe of discourse of 

every input; second, for all points in the discretized input space, compute the outputs; 

then, compute the differences of corresponding points between two fuzzy systems; finally, 

compute the RMS using Equ 4.1. The pseudo code for computing RMS is listed as 

follows:

Algorithm 1

function RMS(fisl, fis2)

cursor = inf //inf: an array storing the infimums of the universe of discourse 

num, denom = 0

while (cursor[n] < sup[n]) //sup: supremum array; n: number of inputs 

num = num + (fireFis(fisl, cursor) - fireFis(fis2, cursor))A2 

denom = denom + 1

cursor[l] = cursor[l] + sr //sr: step size 

for i = 1 to n

if cursor[i] > sup[i] then 

cursor[i] = inf[i] 

cursor [i+1] = cursor[i+l] + sr

end if

end for 

end while
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return sqrt(num / denom) 

end function

function fireFis(fis, x)

num = 0, denom = 0 

fireAllRules(fis, x)

for cursor = consequentinf to consequent, sup step sd //sd is defuzzification 

accuracy

y = consequent.eval(cursor) 

num = num + y * cursor 

denom = denom + y

end for

return num / denom 

end function

From above code, we can observe that RMS is computed over a high-dimensional grid of

points. The computation of RMS involves great amount of numeric operations. The

, . _ . ^  . ^.width(Vn) r-r widthiVf). , . ,
complexity for computing RMS is 0{  — I I ----------- —), where Sd is the accuracy

Sd  i=l

for defuzzification, sr is the step size for computing RMS difference, n is the dimension 

of the input space, V, and VQ are the universes of discourse of the input and output, 

respectively. Simulating an actual continuous system in a discrete space induces 

distortion. Obviously, the smaller we set the step size, the more precise the simulation is. 

In [127], Ross gives a fuzzy inferencing example, in which using 63 sampling points for
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every fuzzy MF gives a relatively good precision, while lower sampling rates result in big 

distortion. In our experiment, where each LV contains at least 2 atomic terms, it is 

reasonable to set width(F)/5 greater than 100, even though it will significantly affect the 

time performance. Large step sizes improve the efficiency, but without structure 

knowledge, may miss important local behavior.

SCL is computed at every point in the linguistic input space. The complexity for

n

computing SCL is 0 ( f P  ,.). Generally, n ranges from 1-7 and the maximum value of c,
<=i

is 7-9. Complexities of both RMS and SCL increase exponentially with respect to the 

number of dimensions. However, in all cases, c,- is greatly less than width(Fi)/^, which 

reflects the fact that RMS and SCL are computed at different level of granularity. 

Consequently, we could expect that the SCL is much more time efficient that RMS.

Our experiment testified our expectation. The experiment was run on a computer 

with AMD2200+ CPU, 512M RAM, 30G HDD, and windows XP. Parameters were set 

as Sd -  0.005, sr=0.01. In our test data set, n was 2, the maximum c, was 9. Note that, as 

described in Section 1.3, RMS was computed using compiled C++ code, while the SCL 

was a mixture of C++ and Matlab® scripts, which are slower. For computing RMS of 

the 603 pairs of FISes, it took over 10 hours for the computer to run the program. 

Contrastively, it only took about 65 seconds for computing linguistic gradients and SCL 

of the same data set. The experiment has shown that SCL is much more efficient than 

RMS. This computational efficiency is extremely important when querying high-volume 

rulebase library.
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C hapter 5 C o n c lu sio n

Soft computing (SC) is a set of computing paradigms including Neural Network (NN), 

Fuzzy set theory, approximate reasoning, derivative-free optimization methods such as 

genetic algorithms (GA) and simulated annealing (SA). SC is a complement to 

conventional AI approaches. SC has become a part of “modem AI”. One of the most 

successful applications of SC methods is the application of fuzzy systems in fields where 

intuition and judgment play critical roles. So far, the most promising and valuable 

application of fuzzy systems is control systems, such as temperature controller, traffic 

controller and process controller. This success lies on two characteristics of fuzzy 

systems: first, being universal approximators, they are able to model and control highly 

non-linear plants. Second, a qualitative description of the process to be controlled is 

sufficient for fuzzy systems.

The idea of computing with words was introduced by Zadeh [38] to emulate human 

thinking. Computing with words employs words in computing and reasoning, arriving at 

conclusions expressed as words from premises expressed in a natural language. The 

importance of computing with words derives from two facts. Firstly, there are many 

problems in which the available information is not precise enough. Secondly, there are 

many situations in which there is a tolerance for imprecision which can be exploited 

through the use of CW to achieve tractability, robustness, low solution cost and better 

rapport with reality [129].

Fuzzy rulebase is the key component of a fuzzy system. Therefore, analyzing the 

fuzzy rulebase rather than the numeric system I/O makes possible the comprehension of
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the nature of the system. Since fuzzy rulebases are expressed in linguistic if-then rules, it 

is more appropriate to analyze them at the linguistic level of granularity, following the 

CW paradigm.

In this thesis, we introduce the SCL as a novel similarity measure for fuzzy rulebases. 

Analogous to a CBIR algorithm, SCL uses linguistic gradient operator to extract 

structural information from rulebases, then compares rulesbases based on this information. 

The proposed algorithm is able to reveal the structure similarity between 2 fuzzy 

rulebases rather than comparing the defuzzified system output, and thus follows the CW 

framework. By avoiding time-consuming numeric operations over high-dimensional 

input space, The SCL has a much higher computational efficiency than RMS difference. 

Hence, it is more suitable for time-critical applications such as querying libraries of 

rulebases. Thus, it provides the user a better heuristic alternative to the traditional 

method.

A validation experiment has been performed, and demonstrated a strong negative 

correlation between SCL and RMS difference. Our objective is achieved. However, this 

experiment was based on 2-dimensional fuzzy rulebases. Further validation experiments 

need to be done on higher-dimensional rulebases. In addition to further database testing, 

comparison of SCL results with human expert rankings would be a useful next step.

The inputs of a rulebase are independent, so their order is unimportant in practice. 

However, when comparing two rulebases, if the order of inputs of one of them is 

changed, both the RMS difference and SCL will change. This is similar to the rotation of 

image around the diagonal axis. Many CBIR algorithms addressing this issue have been
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proposed [130, 131], In the future, we intend to develop a new algorithm to extract an 

input-order invariant and use it to design a new similarity operator.

One possible application for such a measure is to use this measure as an index in 

libraries of reusable software components. In this approach, the description of a 

component in the library could be a fuzzy rulebase, and a query to the library could take 

the form of another fuzzy rulebase representing the desired functionality. This application 

will be a future topic of research.
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