
What if everything is an illusion and nothing exists? In that case, I definitely overpaid for my
carpet.

– Woody Allen

University of Alberta

INDOOR LOCALIZATION WITH PASSIVE SENSORS

by

Meisam Vosoughpour Yazdchi

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Meisam Vosoughpour Yazdchi
Spring 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

To my parents
With whom I can hope.

Abstract

In this thesis, a framework is described that is designed to perform indoor localization in the

SmartCondo
TM

. A significant aspect of the framework is that it mainly operates on the basis of

binary sensors – including motion sensors and occupancy sensors – and it primarily involves geo-

metric computations. In addition, switch-type sensors have been incorporated. We have specifically

designed and implemented a geometry library to facilitate the necessary computations, as well as a

simulation tool to simulate the environment and its sensors. Compared to previous related research

work, we adopt a more realistic environment model, as well as models for a person’s body, and

models for the sensors. In the experiments conducted, when the sensors are assumed to behave in

an ideal fashion, we have achieved 67cm and 49cm as mean localization error for minimum cover-

age and dense coverage sensor configurations respectively. Under a more realistic sensor behavior

model the corresponding numbers are 69cm and 62cm respectively.

Table of Contents

1 Introduction 1
1.1 Overview . 4

2 Background 6
2.1 Wearable (instrumented) methods . 8
2.2 Non-wearable(uninstrumented) methods . 9
2.3 Binary sensors . 10
2.4 Summary . 12

3 The geometry library 13
3.1 Polygon . 14
3.2 Region . 15
3.3 Map . 16

4 Indoor localization framework 20
4.1 Problem definition . 20
4.2 Models . 21

4.2.1 Physical model of entities . 22
4.2.2 Noise model . 23

4.3 Simulator . 24
4.4 Localization using ideal binary sensors . 24

4.4.1 Computing binary sensor ranges (pre-computation) 26
4.4.2 Building maps and unifying codes (pre-computation) 27
4.4.3 Finding probable regions (real-time computation) 28
4.4.4 Pruning probable regions using short history (real-time computation) . . . 29
4.4.5 Computing a single-point guess (real-time computation) 31

4.5 Including switch-type sensors . 32
4.6 Localization using real binary sensors . 32

4.6.1 Body thickness . 33
4.6.2 No-motion no-trigger . 34
4.6.3 Oscillating signals . 34
4.6.4 Doors . 35
4.6.5 False-negative signals . 36
4.6.6 Too many false-negative signals . 38

5 Experiments 40
5.1 Bursty vs. smooth movement . 42
5.2 Sensor configuration . 44
5.3 Pruning step . 45
5.4 Effect of noise and the no-exclusion algorithm . 46

6 Conclusions and future work 48

Bibliography 51

List of Tables

5.1 The mean localization error for fn0 and exon. The first number in the parenthesis
is the standard deviation and the second number is the standard error. 44

5.2 The mean localization error for min and exon. The first number in the parenthesis
is the standard deviation and the second number is the standard error. 44

5.3 The mean localization error for fn0 and exon. The first number in the parenthesis
is the standard deviation and the second number is the standard error. 44

5.4 The mean localization error for fn0, S, and exon. The first number in the parenthe-
sis is the standard deviation and the second number is the standard error. 45

5.5 The mean localization error for min, fn0, and exon. The first number in the paren-
thesis is the standard deviation and the second number is the standard error. 45

5.6 The mean localization error for dns, fn0, and exon. The first number in the paren-
thesis is the standard deviation and the second number is the standard error. 45

5.7 The mean localization error for min and S. The first number in the parenthesis is
the standard deviation and the second number is the standard error. 46

5.8 The mean localization error for dns and S. The first number in the parenthesis is
the standard deviation and the second number is the standard error. 46

List of Figures

3.1 The gray area shows the visible area from the source point. 13
3.2 The left polygon is the original polygon, which is dotted in the right figure and

surrounded by its minimum convex hull polygon. 14
3.3 The non-convex polygon is partitioned into three convex polygons. 14
3.4 If this polygon is expanded by more than d/2 units of distance, the resulting shape

will be a collapsed polygon. 15
3.5 In the left figure, the square is accurately expanded which results in a (dotted) se-

quence of segments and arcs. The right figure shows our polygon approximation. . 16
3.6 A ring-like region; the gray area shows inside the region, and the white square is a

hole. 16
3.7 A 2D topology represented by a Region object with three holes. 17
3.8 (a) originalRegions[0] (b) originalRegions[1] (c) All regions detected in the

map, along with their codes. For example, code[5] shows that region no.5 is inside
originalRegions[0] but outside originalRegions[1]. 18

3.9 (a) Three arbitrary regions. (b) A Map object is created and regions are added to it.
(c) A method in the Map class integrates all the regions inside the Map object into
the minimum number of regions. 19

3.10 (a) A non-convex polygon to be expanded. (b) Partitioning into some convex poly-
gons. (c) Expanding each convex polygon separately. (d) Integrating the results into
a region. 19

4.1 A side view of a motion sensor’s pyramid. The lighter part of the pyramid contains
those points of it whose height is less than bodyH . The projection of this lighter part
on the floor forms the motion sensor’s ISR. 26

4.2 (a) Map of the room from the top view; the small square in the middle of the room is
a column. (b) Initial sensing range (ISR) of a motion sensor whose center is shown
by a small circle. (c) The final visible sensing range of the motion sensor (SR), after
taking into account all obstacles. 27

4.3 A map built for a rectangular room with four binary sensors. ‖rooms[0].SR‖ = 4
and ‖rooms[0].map.codedRegions‖ = 10. 28

4.4 (a) In step 1, we have two arrays of regions: initialPRs[t0] and prunedPRs[t−1].
(b) expDist is computed and all regions inside prunedPRs[t−1] are expanded by
expDist units of distance to obtain expandedPRs[t−1]. (c) Finally, the intersection
of prunedPRs[t0] and expandedPRs[t−1] results in prunedPRs[t0]. 30

4.5 prob(P0) = prob(P1) = prob(P2) = 1/3. (a) The guess point is CoM which is
the center of mass of the three points, so expectedError(CoM) = 2 ∗ (1/3) + 1 ∗
(1/3)+1∗(1/3) = 4/3.(b) The guess point is g, so expectedError(g) = 3∗(1/3)+
0 ∗ (1/3) + 0 ∗ (1/3) = 1. So expectedErr(g 6= CoM) < expectedErr(CoM). 31

4.6 Two sensors are installed in a room. The center of each sensor is shown with a small
circle and a rectangle shows the range of each sensor. In both cases the person’s
body (the circle) has entered a region while realPos (center of the circle) is not
inside that region. (a) realPos belongs to a region whose code is (0, 0), so (0, 1)
in an incorrect code, and since there is a region with the same code, this code is
misleading. (b) realPos belongs to a region whose code is (0, 0), so (1, 1) is an
incorrect code, and since there is no region with the same code, this code is invalid. 33

4.7 (a) Expanded sensing range of the motion sensor in figure 4.2. (b) After expanding
the sensing range of figure 4.6.a realPos belongs to a region whose code is (0, 1)
which is the same as tuple0.code. So a correct code is read from sensors. (c)
Following figure 4.6.b, after expansion of sensing ranges, a new region with the
code (1, 1) is generated, so the sensor signals are no longer incorrect at this moment. 34

4.8 (a) original received signal over time. (b) Enhanced signal by the first approach:
sacrificing responsiveness to maintain accuracy. 35

4.9 In each of the two rooms a motion sensor is installed. CR stands for codedRegions.
(a) shows the map of regions made by sensing ranges when the door is closed;
here ‖codedRegions‖ = 4. (b) shows the same map when the door is open; here
‖codedRegions‖ = 6. In the ideal model, map (a) is used; so if the door is open
and realPos is inside A, then tuple0.code = (0, 1) but this code belongs to CR[2]
which does not include realPos; therefore the code is misleading. Also, if the door
is open and realPos is inside B, then tuple0.code = (1, 1) but this code is not in
the ideal model (a); therefore the code is invalid. 36

4.10 (a) The map of a building with four rooms and three connecting rooms. CR stands
for codedRegions. There are nine coded regions in the building. The distance be-
tween two regions in the same room is calculated directly with our geometry library,
e.g. regionsDist[1][3] = 1.5m. (b) To compute the distance between regions not
in the same room, a graph is constructed. The weight of each edge is the mini-
mum planar distance between the two nodes. According to this graph, for example
the shortest restricted path between CR[1] and CR[8] is 9.9 meters. The shortest
normal (non-restricted) path between these two regions would be 1.9m which is
obviously wrong; because it illegally bypasses the 5m edge from D[2] to D[1] by
going through CR[6] which is connecting the two nodes with 0m edges. The same
thing also happens from D[1] to D[0] by illegally going through CR[5]. 37

4.11 (a) Seven coded regions are created by the intersection of three sensor ranges. As-
sume sensors[1]’s signal be false-negative; so, tuple0.code is (1, 0, 1). Previously,
it would be considered as an invalid code. But, with the no-exclusion method, every
region whose code is 1 in the first and the last bit is a probable region. So, the region
which is coded as (1, 1, 1) is the only probable region. (b) With this new configura-
tion, if again sensors[1]’s signal be false-negative, the tuple0.code is still (1, 0, 1)
which is incorrect but misleading this time. Without no-exclusion method, the very
small region coded as (1, 0, 1) would be the only probable region. But, with the
no-exclusion method, two regions with (1, 0, 1) and (1, 1, 1) are probable regions. . 38

5.1 A top view of the building with three rooms: (1) The main hall which is the biggest
room in the image, (2) The small washroom on the top left corner of the image, and
(3) The huge balcony on the bottom of the image. These rooms are connected by
two small doors. Five pieces of furniture are placed in the building: four in the main
hall, and one in the washroom. The entire building is almost 120m2 and the ceiling
height is 2.62m. The start and end points of the tour are marked accordingly. It
should be noted that the bed and any area with occupancy sensors are not considered
as obstacles and the person can walk through them. 41

5.2 A min-coverage configuration of 21 binary sensors (20 motion sensors and a single
occupancy sensor installed in the bed). All motion sensors are installed under the
ceiling and vertically facing the floor. Small dots show the XY position of the
motion sensors. The range of each sensor on the floor is expanded by bodyR =
0.25m to support a much more realistic model of the person’s body as discussed in
section 4.6.1. Big dots show the XY position of nine switch-type sensors. Small
squares next to switch-type sensors are their bodyRange as introduced in section
4.2.1 and 4.5. These nine switch-type sensors are enabled in minswt and disabled
in min. 42

5.3 A fairly dense configuration of 32 binary sensors (31 motion sensors and a single
occupancy sensor installed in the bed). All motion sensors are installed under the
ceiling and vertically facing the floor. Small dots show the XY position of the
motion sensors. The range of each sensor on the floor is expanded by bodyR =
0.25m to support a much more realistic model of the person’s body as discussed in
section 4.6.1. Big dots show the XY position of nine switch-type sensors. Small
squares next to switch-type sensors are their bodyRange as introduced in section
4.2.1 and 4.5. These nine switch-type sensors are enabled in dnsswt and disabled in
dns. 43

Chapter 1

Introduction

[6] introduces the term “Smart Home” as “a home that has both a set of sensors to observe the en-

vironment and the actions of its occupants, and a set of actuators to automatically control home de-

vices to improve the occupants’ experience”. The SmartCondo
TM

is an instance of the ”Smart Home”

agenda, but more specific to healthcare related concerns [6]. For the most part, the SmartCondo
TM

aims to constantly monitor the location and activities of a patient or an elderly person living alone

in a condo. The latest version of the SmartCondo
TM

infrastructure and implementation consists of

three main layers: (1) Sensor network layer, (2) Data storage and processing layer, and (3) Visu-

alization layer. Briefly, in the sensor network layer, the data from all sensors are collected to a

collecting “sink” node; the sink node then feeds the data storage layer using the MQTT protocol 1.

In the second layer, all received data are stored and processed. In the third layer, the results from

the various types of processing performed at the second layer are visualized and analyzed. Analy-

ses and visualizations are considered for various groups of end-users, notably including clinicians

[6]. In this structure, any kind of processes which are demanded by the end-users can be added in

the second layer. Currently, the most important requirement is the updated location of the person

staying in the SmartCondo
TM

. From the location information, clinicians can assess the degree of

activity of the patient, e.g., visits to the washroom or time spent preparing food or time spent lying

in bed. Apart from assessing the overall level of energy of a patient, the clinicians can gain valu-

able insights from relating activity with the medication protocol followed by the patient and patients

physical condition. This is because, even coarse-grained location of the patient can be used as a

proxy for his/her activity while, additionally, the temporal aspect of the location (e.g., how much

time spent in the kitchen area preparing food) can also be an indicator of the subject’s health dispo-

sition. Hence, there are ample reasons to consider that the most important processing performed in

the second layer is the task of indoor localization which is precisely the topic of this thesis. Towards

this end, we have studied previous methods of indoor localization and proposed a different indoor

localization algorithm which better suits the specific application.

The problem of indoor localization has been extensively researched over the past decade. Natu-

1Information about MQTT is available at http://mqtt.org

1

rally, the problem most similar to the indoor localization is the outdoor localization. Today, outdoor

localization is considered an essentially solved problem due to the use of the Global Positioning

System (GPS). However, GPS is not suitable technology indoors because the satellite transmissions

are usually impossible to receive due to walls and other obstructions [19]; hence, the problem of in-

door localization requires a different approach. The investment on solving indoor localization is not

surprising due to its various real-world applications: (1) medical and health-care applications such

as indoor navigation systems for the blind [15][23], constant measurement of a person’s vital signs

in a room [20][27][16], or proof-of-concept environments such as the SmartCondo
TM

[6] which is

aimed to monitor and locate patients or elderly living alone in a condo, (2) inferencing applications

such as activity recognition of children at different ages [42], (3) security applications such as mon-

itoring and tracing people in highly secure and strategic buildings [25], (4) everyday applications

such as extending GPS-based localization once a user enters a mall or shopping center [3], etc.

There are literally many reported methods for indoor localization. In a recent survey, [35], ap-

proximately 20 different technologies used for indoor localization are reported and are classified

by the type of sensors used and the general technique they employ. The same survey, provides a

long list of relevant technologies: contact sensors, pressure sensors, chemo sensors, photo detectors,

cameras, thermal images, break beam sensors, scalar range-finders, scanning range-finders, tomo-

graphic sensors, EF sensors, Doppler-shift sensors, motion sensors, seismic and inertial sensors,

microphones, wearable environment recognition, wearable SS device-to-device rangers, wearable

TOA/TDOA device-to-device rangers, etc. It is interesting to note that the listed technologies can be

used in a variety of ways and, hence, each of them has led to the production of various research pa-

pers demonstrating different solutions to the localization problem. Based on whether the localization

method requires the target to wear a device or not, indoor localization methods are classified into

two categories: “wearable” and “non-wearable” (the survey in [35] calls them “instrumented” and

“uninstrumented” systems). Additionally, major wearable methods sub-categories are (a) methods

based on “Dead Reckoning” [9] [12] [36] [28], (b) methods based on properties of wireless packet

transmission between a mobile device and some stationary nodes such as TOA/TDOA [43] [2] [13],

and (c) methods based on the perceived pattern of radio signals such as WiFi and GSM [31] [39].

Non-wearable methods also use a variety of technologies: regular (visible light) cameras, thermal

imagers, passive infrared sensors, contact sensors, pressure sensors, etc [35].

Despite the fact that some of the previously proposed methods have been reported to achieve

remarkably higher values of accuracy than some others, we cannot necessarily call the method with

the highest accuracy a “universally best” indoor localization method. Specifically, while the goal

of all these methods is the same, i.e. indoor localization with the minimum error, there are several

application-dependent criteria to decide if a specific indoor localization method is feasible (or in-

feasible) and acceptable (or unacceptable). Some of the factors that come into the picture in order

to determine feasibility and acceptability are: equipment and deployment cost, number of individu-

2

als/objects localized, desirable precision, user acceptance, and the deployment environment. These

are explained with examples in the next chapter.

Our indoor localization system is an uninstrumented method; because of our application we

insisted not to use an instrumented technology. In SmartCondo
TM

[6], it is often the case that a

single elderly person or a patient is going to be localized, and it is strongly preferable for them not

to wear any devices. On the other hand, we wanted to have a localization system that could be

easily and quickly installed in a new personal condo or a new room inside a hospital. The privacy

of people did matter as well, meaning that we could not use cameras. For all the above reasons, in

the beginning we decided to use passive infrared motion sensors. Our system evolved and now we

have used several types of sensors: (1) passive infrared motion sensors, (2) occupancy sensors for

beds and chairs with fixed locations, and (3) switch-type sensors. By (3) we mean any sensor which

has on/off or open/close states that can be changed by the person, such as magnetic reed switches

and electrical current sensors. (1) and (2) can be considered as general cases of binary sensors or

abstract binary sensors [35]. The design of our localization framework is heavily influenced by the

use of binary sensors as the primary available devices. At certain points, we treat motion sensors and

occupancy sensors differently, while in other points we just view them as abstract binary sensors.

In addition to the main product of this thesis, our work also resulted in two side artifacts: (a) a

geometry-library which is designed to make the localization algorithms easy to use and fast (in

practice, the processing time for every location update in our framework - using Windows R© 7 OS

and Intel R© Core
TM

i7-2860QM CPU at 2.50 GHz - is less than 20 milliseconds in our framework);

this library will be discussed in chapter 3, and (b) a simulator which simulates the environment, the

sensors, the noise, and the movement of individuals to provide the localizer with sensor readings as

it would receive from real sensors.

Next, we enumerate our algorithmic contributions in relation to three papers on localization with

binary sensors (Kim et. al. [18], Shrivastava et. al. [34], and Wang et. al. [41]). There are certain

aspects that all these papers share in common and are improved by our method:

• For simplicity, all the mentioned papers consider the sensing range of each sensor to be cir-

cular. In our method, it can be any shape according to the real sensor’s specifications. Due

to this, in case of real passive motion sensors, all of them have to assume that all sensors are

positioned vertically facing down so that the borders of the sensor’s sensing range on the floor

form the shape of a circle. In fact, by default they assume a two-dimensional field with sev-

eral sensors each of which has a two-dimensional point as its center and a circle as its sensing

range.

• They actually assume that the target is moving in an infinite two-dimensional field, with no

wall that can potentially block a sensor’s range. In comparison, we precisely take into account

walls and other obstacles which can partially block a sensor’s range. We even consider that a

sensor’s rays in one room can penetrate the other rooms through open doors.

3

• The geometry part of all of them is based on the intersection and subtraction of circles, but

they do not necessarily describe the relevant algorithmic details. Most of them appear to

be performing all the necessary geometric computations at every iteration, while, as it will

become clear later, we emphasize the pre-processing step to create an efficient geometric

model that will be subsequently used for real-time localization.

• The final output of all mentioned papers is a single point which is a guess for the last known

location of the individual. But, in addition to this point, we also output an area of confidence

along each estimate. By exploiting the short-term history of our computed person’s positions,

we prune and narrow down this area of confidence as much as possible.

• All above methods, consider, for simplicity, that a localized person is a single point in space,

i.e., without any “thickness” whereas we extend the model to considering each individual as

a cylinder, thus approximating the 3-dimensional nature of the individuals.

• With respect to motion sensors, they simply assume that a person is always moving or, in

other words, even a stationary object in the sensing range triggers a sensor. We have taken

into account the fact that the person may be stationary sometimes, in which case sensors may

not be triggered even if the person is inside their sensing range.

• Finally, they do not consider the nature of the sensor signals in the real world. For instance,

even when a motion sensor is triggered, its signal is not constant but it may be oscillating,

and this oscillation is not necessarily regular. We include simple algorithms to handle this

oscillation and obtain a more accurate motion detection signal.

In addition to binary sensors, we have also used switch-type sensors. The successful integration

of data from switch-type and binary sensors is an important achievement of our framework. We have

run experiments in a 3-room ≈ 120m2 house. We have achieved a mean error of ≈ 69cm using a

minimum-coverage configuration of non-ideal binary sensors. This mean error improves to≈ 62cm

when we increase the number of sensors by 50%. By integrating the signals from nine switch-type

sensors, an average improvement of ≈ 16% is further obtained.

1.1 Overview

In chapter 2, important characteristics of the application of indoor localization are introduced with

examples. Then, inspired by the classification of indoor localization methods in [35], we roughly

categorize such methods. In the most important section of this chapter, the most relevant sub-

category of methods to our method – methods using passive binary sensors – is introduced in more

detail. In chapter 3, our geometry library is explained. This library is an important piece of the

infrastructure needed to support our algorithms.

4

In chapter 4, first the general specifications of our localization system is described. Then we

explain how we model different entities and concepts in the environment. Continuing, our simulator

component is introduced. Next, our framework using ideal and noise-free sensors is elaborated

upon. Finally, five main challenges in the real-world employment are enumerated and our solutions

to overcome each of them are described.

In chapter 5, five main dimensions of variability for our localization system are introduced to

setup appropriate experiments. Then, according to the results of experiments, the effect of each

dimension on the accuracy of our system is investigated. Finally in the last chapter, we conclude the

thesis and express the most interesting future directions.

5

Chapter 2

Background

A plethora of indoor localization methods, based on various technologies, have been proposed over

the last decade. The desirable qualities of an indoor localization method are application-dependent.

Knowing the details of an application and its crucial characteristics, the question becomes: “Which

localization method is the best match for the particular application?”. As outlined in the previous

chapter, we consider five facets of an application’s requirements. Here, we illustrate the five facets

we consider:

• Cost: Cost is playing an important role in determining the best method for indoor localiza-

tion and its accuracy. For example, in the case of binary sensors, the deployment density of

sensors can range from being just enough to provide minimum coverage (with a low expected

accuracy) to a super dense sensor placement resulting in a very precise localization. In such

a case, if high accuracy is demanded, the number of required binary sensors might become

so high that another localization method using a different technology could accomplish the

same accuracy at much lower cost. Cost usually includes both the device cost as well as the

deployment (man-hours required) cost of the devices and/or their calibration.

• Number of People: There are two determining factors related to this criterion: (1) the number

of people which are supposed to be simultaneously localized and (2) the total population

in the environment who can act as “disturbers.” Based on the two characteristics, it might

be impossible to localize using a particular technology, whereas another technology can do

so. For example, if the number of persons to be localized is more than one, almost none of

uninstrumented methods (i.e. methods which do not require the localized person(s) to wear

any devices) are capable of performing accurate localization.

• Desirable Precision: Every application of indoor localization requires a particular precision;

e.g. for guiding a blind person, an accuracy of less than half a meter is required, while in

the SmartCondo
TM

project [6] this precision is just too much and 1.5 meters is sufficient.

Of course, once there is a method which accomplishes the “good enough” precision for an

6

application, employing another method at a higher cost to acquire a better precision would

just be a waste of money.

• User Acceptance: This characteristic is very similar to the “user-friendliness” for software

products. For instance, people are not normally comfortable to be monitored by cameras in

more private areas. Therefore, indoor localization inside a house using a method which uses

cameras is not acceptable by tenants. Another contributing factor to the user acceptance is

the setup complexity of a method. For example, if there is no infrastructure for installing

pressure sensors on the floors of an ordinary house, all methods based on such sensors will be

ruled out. Another factor is whether the method requires the person to wear a device or not.

Localization methods requiring wearable devices are in general less accepted by users, though

it is not always true; this factor will be discussed in more detail in the rest of this chapter.

• Environment: Based on the type of the building there may exist restrictions on using specific

devices, e.g., because of the inability to power devices if they are placed far from a mains

plug. The size of the building also matters; the optimal indoor localization solution for a

mall is certainly different from that of a condo. Furthermore, for different building layouts,

different localization methods are needed; the optimal solution for an open space with very

few walls and obstacles is not necessarily the same for a building with lots of walls, small

rooms, and corridors; also most methods assume that the building is flat, while there are

special methods suited for multi-storied buildings. It is also possible that, in more varied

buildings, hybrid localization technologies could co-exist. For example, in narrow corridors,

motion sensors can be readily used since people tend to be non-stationery there, while other

technologies (like RFID readers) might be employed at the exit points of the corridors and in

other locations in the building.

Because of all above application-dependent criteria, there is no universally best solution for

indoor localization. In the absence of the above criteria, all methods would have converged to a

single best solution. Based on the technology used as well as the above criteria, indoor localization

methods are categorized into various classes. The first thing that branches all the methods into two

coarse categories is the way the final indoor localization product is going to be used. In continuation

of what we mentioned before for the “User Acceptance” criterion, based on weather the target

person has to wear a device or not, indoor localization methods are classified into two categories:

“wearable” and “non-wearable”. There are three groups of localization applications regarding those

two categories:

1. The first group has to employ an uninstrumented localization method. In other words, all

instrumented methods are infeasible/unacceptable for this group of applications. This usually

happens when the target person is unaware of the existence of a localization system and that

they are monitored. For example, for localization of people entering a highly secure building

7

at night, it is meaningless to ask them to wear a device before entering. In this case, they

might not even be aware they are monitored.

2. The second group has to employ an instrumented localization method. This usually happens

when the target person is not going to be monitored and the localization data is not going to be

used by a third party, but the “end-user” is the target person himself. A tangible example is the

well-known outdoor localization system via GPS. It is usually the person who is using the GPS

data that acquires them, and hence they have to carry a capable device. The same holds for

indoor navigation systems for blind people. In all such applications the wearable device has

a double functionality: (a) a device aiding the localization system, and (b) a localization data

receiver and a visualization/feedback device to inform the target person being the end-user.

3. The third group of applications have the option to employ both instrumented and uninstru-

mented methods. But almost all of them prefer uninstrumented methods. This usually hap-

pens when the target person is not the end-user and a third party is monitoring them, while at

the same time they are aware of being monitored, so they may cooperate. A good portion of in-

door localization applications belong to this group. For example, in the SmartCondo
TM

project

[6] the patient can be localized by an uninstrumented method or can wear a device if required

by an instrumented method; but, obviously an uninstrumented method is much more prefer-

able as long as the minimum accuracy is obtained.

In the rest of this chapter, major technologies of both instrumented and uninstrumented types are

briefly introduced and those methods based on uninstrumented binary sensors – which are the most

relevant to our localization method – are explained in more detail.

2.1 Wearable (instrumented) methods

Our localization method is an uninstrumented method, so there is not really that much similarity

between instrumented methods mentioned here and ours. However, for the sake of completeness,

this section briefly introduces the most important instrumented methods according to [35]. In [35],

instrumented indoor localization methods are categorized into three main groups:

• One group of localization methods use an approach which is called “Dead Reckoning”. They

assume that a person’s new position can be computed by summing the displacement, given a

particular movement vector, with the previously known position. These methods use various

devices to measure the velocity and/or the acceleration of the person. By these pieces of infor-

mation as well as knowing the person’s position at some previous point in time, they produce

position estimates at future time points. Due to this cumulative approach, the localization

error may also accumulate, and grow with the distance traveled [35]. Hence, it is common

to report error as a function of distance. There are many methods using this approach. They

8

have evolved over years and their errors range from 2% to, as low as, 0.2% of the distance

traveled [35] [9] [12] [36] [28].

• Another group of instrumented methods are based on properties of packet transmission be-

tween a mobile device and some stationary nodes. They include methods that use the time

of arrival (TOA)[13] [8] of packets to different stationary nodes and compute the distances of

the mobile node to the stationary nodes. The mobile node’s location is then computed out of

those distances via e.g., multilateration. Time difference of arrival (TDOA) [43] [2] and angle

of arrival (AOA) [7] [21] are two other techniques used for the same purpose. Some methods

in this group can provide under 0.5 meters of localization error.

• The third group of instrumented methods use the pattern of radio signals to localize the mobile

node. WiFi [39] [22] and GSM [31] [38] are two kinds of radio signals which are commonly

used for this purpose. Their common characteristic is that they are based on inferring the

location based on a “map” of known signal vectors collected at known locations.

2.2 Non-wearable(uninstrumented) methods

In this section, the most important uninstrumented methods are introduced; they are roughly clas-

sified based on the technologies they employ: (visible light) cameras, thermal imagers, passive

infrared sensors, contact sensors, pressure sensors, etc.

Cameras are almost an outlier in this field compared to other types of sensors. While they are

relatively cheap and easily found, they provide high resolution and high quality images of the area

with a lot of information in them. In one sense, one can think about them as millions of very tiny

color sensors covering an area corresponding to the camera view. As cameras provide complex and

informative data, extracting information and building the final indoor localization system out of them

is very challenging as well. Image processing techniques have contributed to the relevant challenges.

The biggest challenge is to person(s) in an image; followed (or complemented) by computing the

distance of person(s) to the camera, and eventually estimating the location of the person(s) in the

viewed space. Three major techniques are employed in image processing to detect persons in images

[35]:

1. Background subtraction is the most common technique, and it is based on the fact that the

background of an image corresponds to stationary objects in the environment and, hence, by

subtracting the current image from the background image, one can isolate moving objects,

and specifically human forms [1] [17]. As long as only a single person is moving in the

environment, this algorithm is perfectly suitable, but in environments of frequent and non-

smooth movement of other objects, the algorithms could produce errors. To overcome this

problem, one good solution is using multiple cameras and utilize a system of stereo imaging

[14].

9

2. Image pattern recognition is another well-known technique in image processing to detect a

person in an image. In this technique, numerous sample images of the target person are fed

into a classifier and a pattern of the target person’s image is trained using machine learning

techniques. This trained classifiers are later used in real-time to detect the person in the image

[37] [40] [11].

3. Thermal imaging is a relatively newer image processing technique for human detection. The

main advantage of this method over “background subtraction” is that it is not sensitive to most

of the movement of objects in the background, because the body temperature of the target

human is the actual distinguishing factor. By using stereo thermal imagers, high accuracy of

human detection is obtained [5]. The main problem with this method is its relatively high

cost.

Pressure sensors (e.g. in the form of touch sensitive floor mats) are a tested technology for unin-

strumented indoor localization [35][32]. One big problem with this technology is its difficulty of

installation. Additionally, the localization algorithm itself is non-trivial than it seems at first glance.

If there is only one person in the environment and the person has only one contact point with the

floor, both the localization and calculation of the speed would be trivial. In case of a single person,

with possibly one or two contact points with the floor (corresponding to the person’s two feet), the

localization is still not that difficult, but the speed calculation could be complicated. Finally, the

most complicated example is one where there are more than one person in the environment each of

whom has one or two contact points with the floor at a moment. In this state, different algorithms

are proposed to map the contact points to the persons’ feet; such as looking at the short history of

the movements and assuming that people tend to move in a smooth path, or taking into account the

exact amount of pressure by force measurement based on this observation that this force is different

for different people [24][30].

2.3 Binary sensors

Ideal binary sensors are a group of sensors which output 1 if and only if the target person in inside

the sensor’s sensing range; otherwise, they output 0. According to this definition, it does not matter

if binary sensors are working in an instrumented or uninstrumented framework; but in this section

we specifically mean binary sensors which work in uninstrumented frameworks. In the real world,

there is no 100% ideal binary sensor, but, we define a “binary sensor” as an “ideal binary sensor”

which is allowed to have an acceptably low rate of error, i.e. it could output 1 when the target

person is not in the sensing area (false positive) and vice versa (false negative). Examples of binary

sensors are: passive infrared sensors (PIRs), binary pressure sensors, contact sensors, etc. However,

in the most comprehensive works in this area, the algorithms are not limited to any particular binary

sensor technology; in fact, most methods are working for any type of binary sensors as long as

10

they meet the general definition of a binary sensor. Therefore, in the following mentioned papers

in this subsection, unless explicitly mentioned, all methods by default consider the general model

of a binary sensor without limiting it to any specific technology. In the following three papers [18]

[34] [41] all binary sensors have circular ranges of radius R, with the center of the sensor being the

center of the circle.

In [18] , Kim et. al. first employ the traditional Centroid method which determines the target’s

position by the centroid of all sensor centers which have detected the presence of the target. They

then introduce their weighted centroid algorithm which assigns a weight to each sensor’s center.

They compute this weight mainly based on the distance of the target to the sensor’s center. They

explain an algorithm to compute the target’s distance to each sensor at a given time. This algorithm

works as follows: for a given sensor in [t1, t2] period of time which is the detection time range

of that sensor, a constant speed on a straight line for the target is assumed. So, the length of the

segment by which the target’s trajectory has intersected the sensor’s circle of radius R is easily

computed as (t2 − t1) ∗ s, where s is the assumed constant speed of the target. Using the length of

the intersecting segment and also knowing R, the average distance of the target to the sensor during

[t1, t2] is computed. This procedure is performed on all sensors and separate weights are assigned to

different sensors based on their distances to the target at a given moment. The final estimate of the

target’s position will be computed as the weighted centroid of those sensors which have detected the

presence of the target at a given time. It is important to be noted about this paper that, they consider

all sensors which have 1 signal at a given time, but they do not take the 0 signals of other sensors

into account which could have a lot of information, and is usually called the exclusion information.

Shrivastava et. al. [34] consider a sequence of time stamps : {t0, t1, t2, ..., tn−1} where ti

represents the i-th time that the target entered or exited a sensor’s circle, i.e. the i-th time that the

sensors’ signal array changed in one bit. They compute an arc for each ti, let’s call it arci. They do

not go into details how they compute it, but it appears that they adopt several assumptions to simplify

this process. Finally, determine the best trajectory, they try to cross all arcs (arc0 to arcn−1) with

the minimum number of segments.

The work of Wang et. al. in [41] is very similar to [34], as they also focus on {t0, ..., tn−1} and

find proper arcs corresponding to these moments: {arc0, ..., arcn−1}. However, the way they pass a

trajectory across these arcs is different. They consider n points which are the mid-points of the arcs.

Then, they define an appropriate k < n, and calculate the best line (in the least-squares sense) from

the first k points of the array of n points; then, they proceed forward by one point and calculate a

new line for the next set of k points. At any stage, if the slope of the line differs from the slope of the

previous stage’s line by more than a threshold, a new segment will be constructed and the algorithm

continues with the new slope. In general, this technique is very similar to the work in [34].

11

2.4 Summary

Papers on localization with binary sensors contain at least two possible areas of improvement: First,

they tend to lack clarity in explaining details of the used algorithms. This makes it very difficult to

replicate a completely functioning version of such systems. For example, when describing geometric

computations on circles and arcs, they do not elaborate; so, even some obvious special cases and

counter-examples are left unexplained. It is reasonable to assume that they often apply even more

simplifying assumptions to avoid corner cases. For example, in the models of [41] and [34] no

description is provided as to what happens when one circle is completely contained within another

one. In such a case, the border between them is not well-defined, because they do not intersect at

two points, while such assumptions of intersection are crucial for their proposed techniques. This

case is avoided by further assuming that all circles have the same radius. Similarly, their algorithms

are unable to account for obstacles – e.g. pieces of furniture – even if the shape of all obstacles

were limited to be circular. They consider many other simplifications, such as adopting a 2D model,

avoiding the real 3D nature of the problem, or not taking into account walls and obstacles that may

completely block sensing ranges, etc.

Secondly, the mentioned previous work ignores some real-world requirements: (a) Body model:

Since their space model is 2D, the person’s body has no height. In addition, it has no thickness and

is simply considered as a single point in the 2D plane. (b) Physical details of the environment: They

do not model the building at all. So, any detailed information about the building model is obviously

lacking, such as the floor-plan of each room, the height and model of the ceiling in different parts,

the exact model and location of doors and obstacles, the impact of various types of obstacles on

the sensing ranges, etc. (c) Real model of sensors: Their model of sensors are abstract to the point

of being too abstract to be useful. Each sensor is modeled as a 2D point with a 2D circle of a

constant radius that represents its sensing range. They neglect the fact that a motion sensor is not

triggered when the person is stationary in its sensing range, or that it can produce false positive or

false negatives. The real signal pattern of sensors are also ignored, e.g. the oscillating pattern of

positive signals in motion sensors, not to mention the corner case of (some) malfunction sensors.

In this thesis, we have attempted to address all the above points in a coherent, and as complete as

possible, fashion with the purpose of deploying the algorithms and techniques to actual real-world

environments.

12

Chapter 3

The geometry library

Our localization framework contains several modules which rely heavily on geometric computations.

Most of these computations consist of interactions between ordinary geometric objects: points, seg-

ments, polygons, and regions. In other words, the better we can design and implement an efficient

geometric computation component, the easier we can examine various localization algorithms, ex-

pand our localization framework, and consequently improve the accuracy of the localization. To-

wards this goal, we have designed and implemented a geometry library which supports a dynamic

query facility. This facility allows one to query the interaction between two or many geometric

objects of three varieties: Point2D, Polygon, and Region. This is supported by a class named Map

which will be discussed in the last section of this chapter. In the following subsections, all above-

mentioned identities except for Point2D, which has a trivial definition, will be introduced. Since we

have used an object-oriented design to implement the geometry library, all five identities are actu-

ally classes in our model and the conventions of object-oriented literature will be used to describe

them. Methods of classes are presented in C++ style. It should be noted that those methods whose

algorithms are not described are all well-known algorithms in computational geometry which we

have found in, e.g., textbooks [10][29][4][33].

Figure 3.1: The gray area shows the visible area from the source point.

13

Figure 3.2: The left polygon is the original polygon, which is dotted in the right figure and sur-
rounded by its minimum convex hull polygon.

Figure 3.3: The non-convex polygon is partitioned into three convex polygons.

3.1 Polygon

A Polygon object is specified by an array of Point2D objects; every two consecutive points as well

as the first and the last points in the array are connected by an edge in the polygon. The important

methods of the Polygon class are as follows:

• bool Polygon::isVisible(Point2D source, Point2D destination): Knowing that a light ray trav-

els in a straight line and assuming that edges of a polygon are rigid and do not let the light

pass through them, this method checks if two given points are visible from each other.

• Polygon Polygon::getVisibleArea(Point2D source): This method computes the set of all points

which are visible from a given source and returns this set of visible points as a Polygon object.

Figure 3.1 shows an example of this method’s operation.

• Polygon Polygon::getConvexHull(): This method returns a Polygon object that represents the

minimum convex hull of the current polygon. Figure 3.2 shows an example of this method’s

functionality.

• vector<Polygon> Polygon::partitionIntoConvexPolygons(): This method, divides a polygon

into the minimum possible number of convex polygons. Figure 3.3 shows an example of this

14

method’s functionality.

• Polygon Polygon::expandPolygon(double dist): This method expands the polygon by dist

units of distance. More precisely, Polygon b is a dist-expansion of Polygon a if and only if

b includes a, and for all single points named p on edges of b, the minimum distance of p to

any point on a is exactly dist. Two important points should be noted here: (1) If polygon a

is not convex, polygon b, with the given definition, does not necessarily exist. This is shown

in figure 3.4 by an example. Therefore, we assume this method only operates on convex

polygons, otherwise first the minimum convex hull of the polygon is computed and then the

expansion is performed. (2) As shown in figure 3.5, the precise expansion of a convex polygon

does not result in a sequence of segments to form a new polygon, but a sequence of segments

and arcs are generated. Since we want to express the result as a simple polygon, we convert

all arcs to segments which results in an acceptable approximation for the purpose of indoor

localization.

• double Polygon::getArea(): This method computes and returns the polygon’s area.

• Point2D Polygon::getCenterOfMass(): This method computes the center of mass of the poly-

gon and returns it as a Point2D object. The center of mass of an area is the average of the

coordinates of all points in that area.

3.2 Region

The class Region is designed to be able to represent geometric shapes that cannot necessarily be

represented by a polygon. A simple example of such figures is a ring-like shape which is shown in

figure 3.6. A Region is specified by an object of Polygon called big–polygon as well as an array

of Polygon objects named holes. Any 2D connected topology has a surrounding polygon around

it; in the Region representation of this topology, big–polygon refers to this surrounding polygon

around the topology. Any 2D connected topology also has a set of internal holes which are all

included within big–polygon; these holes are stored in an array of Polygon objects named holes in

the Region class. Figure 3.7 shows a 2D topology and explains how it is represented as a Region

object. Any 2D connected topology can be represented by a Region object. The important methods

Figure 3.4: If this polygon is expanded by more than d/2 units of distance, the resulting shape will
be a collapsed polygon.

15

Figure 3.5: In the left figure, the square is accurately expanded which results in a (dotted) sequence
of segments and arcs. The right figure shows our polygon approximation.

of the Region class are:

• double Region::getArea(): Computes the region’s area, which is the area of its big− polygon

minus the total area of its holes.

• Point2D Region::getCenterOfMass(): Computes the center of mass of the region.

• Region Region::expandRegion(double dist): Logically, in expanding a region, we should ex-

pand its big polygon and shrink each hole. We apply an approximation and neglect shrinking

the holes.

3.3 Map

The Map class is aimed to support the interaction between instances of polygons and/or regions.

The most important application of this class in introduced in the next chapter. We will see that,

in the precomputation stage of our localization framework, the sensor ranges are modeled as 2D

regions on the floor. The Map class is used to build the geometric model of all the regions which

are generated by the intersection of these sensor ranges. Although we briefly explained the most

important application of the Map class, this class is still a general geometric tool and does not

belong to any specific application.

Conceptually, an object of Map is initially like a blank page. The Map class has a method named

addRegion; by adding any new region to the map, that region is actually drawn on the map page.

After all target regions are added to the map, the preprocessAll method can be invoked. After this

method is invoked, a model of the entire page is built up and will be used in future queries. In order

Figure 3.6: A ring-like region; the gray area shows inside the region, and the white square is a hole.

16

Figure 3.7: A 2D topology represented by a Region object with three holes.

to give a more clear understanding of Map’s functionality, we will explain its role in a particular

scenario:

• In the first step, once an instance of the Map class called map is defined, it is blank and

contains no regions. The method Map::addRegion(Region) allows us to add as many polygons

and/or regions in map. It should be noted that any polygon should be added as a Region object,

as it is simple to see that any polygon is actually a region with no holes. This list of added

regions is stored in an array named originalRegions.

• Second, after all the regions are added to map, preprocessAll is ready to be invoked. This

function operates in two steps. First, it invokes the method Map::initializePlanarGraph().

This method models all the regions in the map as a planar graph. To do so, it first ini-

tializes an array of points named eventPoints. All vertices of all polygons inside each

region in originalRegions (including each region’s bigPolygon and holes) are added to

eventPoints. Also, the intersection points of any edges of different polygons inside all re-

gions are added to eventPoints too. The array eventPoints contains all nodes of the planar

graph, and any pair of nodes which are immediately (with no other node in between) con-

nected by a polygon’s edge in map are considered as connected nodes in the planar graph.

• Third, after the planar graph is initialized, in the next step, preprocessAll invokes the method

Map::findRegions(). It executes an algorithm to determine the faces of a planar graph [26].

After all faces of the planar graph are found, all detected regions are stored in an array of

regions called mapRegions. It should be clarified that, during this process, two points are

considered to be in the same region if and only if they are reachable from each other; and two

points are reachable from each other if and only if there is a path from one point to another

which does not pass through any edge.

• Finally, an array of CodedRegion objects are generated which is named codeRegions which

has the same length as mapRegions. A CodedRegion object is specified by a Region ob-

ject named region and a boolean array of length ‖originalRegions‖ which is named code.

17

Figure 3.8: (a) originalRegions[0] (b) originalRegions[1] (c) All regions detected in the map,
along with their codes. For example, code[5] shows that region no.5 is inside originalRegions[0]
but outside originalRegions[1].

codedRegions[i].region contains the same object as mapRegions[i]. The value of

codedRegions[i].code[j] can be either true or false. In case it is true, it means the en-

tire codedRegions[i].region is inside originalRegions[j]; and in case it is false, it means

the entire codedRegions[i].region is outside the originalRegions[j]. Figure 3.8 shows a

simple map which is created by adding two original regions.

After all computations, the Map object uses the computed codeRegions to support a wide range

of queries. For example the following query returns the intersection of originalRegions[0] and

originalRegions[1]:

RETURN all codedRegions WHERE code[0] == true AND code[1] == true

Numerous simple and complex queries can be requested from a Map object which makes it a

flexible geometric tool to support our localization framework. Other than the query facility, this

class also has an important method which is used by our localization framework: vector<Region>

integrateOriginalRegions(). This method “integrates” (i.e., constructs the union) of the set of all

regions inside the map into the minimum possible number of regions and returns the resulting set.

Figure 3.9 shows an illustration of this method’s operation. This method allows us to perform

expansion of non-convex polygons too, which may result in a region with holes. We first use the

method partitionIntoConvexPolygons to partition the non-convex polygon into the minimum

possible number of convex polygons. We then expand each convex polygon separately, and finally

the expanded polygons are integrated to form a region, possibly with holes. Figure 3.10 shows the

steps for such an example.

18

Figure 3.9: (a) Three arbitrary regions. (b) A Map object is created and regions are added to it. (c) A
method in the Map class integrates all the regions inside the Map object into the minimum number
of regions.

Figure 3.10: (a) A non-convex polygon to be expanded. (b) Partitioning into some convex polygons.
(c) Expanding each convex polygon separately. (d) Integrating the results into a region.

19

Chapter 4

Indoor localization framework

4.1 Problem definition

Indoor localization, in the most general sense refers to a system employable in a set of building

environments where a set of sensors record some environmental data; then a set of algorithms

process that set of data to localize a number of targets. An indoor localization system has certain

expectations with respect to the timeliness of its estimates.

There are seven bolded items in the above definition, each of which may vary in different indoor

localization methods. By specifying this set of seven variants, a specific indoor localization method

is well defined, thus, for our framework these seven variants have the following specifications:

Type of building environment: Any flat indoor area with ceiling height of less than 6 meters

can be covered by our localization system, provided that sensors can be somehow attached, at least,

at the ceiling. This 6-meter constraint is due to the limited range of PIR motion sensors that we use.

Multi-storey buildings do not make any difference to our system’s functionality except for stairways

which are not flat areas and cannot be covered by our system.

Sensors: We have used three types of sensors: (1) passive infrared motion (PIR) sensors, (2)

occupancy sensors for beds and chairs with fixed locations, and (3) switch-type sensors. By (3) we

mean any sensor which has on/off or open/close states that can be changed by the person, such as

magnetic reed switches and electric current sensors (determining whether current flows or not to

a device). After this, almost everywhere we categorize (1) and (2) under the umbrella of binary

sensors. Regarding the non-ideal behavior of the sensors in the real world, we consider two groups:

the first group simplifies the problem assuming that all the sensors are ideal, while the second group

tries to account for all kinds of problems caused by the sensors’ imperfections. Contrary to the

methods in the first group, the methods in the second group can be directly employed in a real-world

application. The final product of this thesis is definitely in the second group and can be installed and

run in any building.

Environmental data: Passive infrared motion sensors are triggered when any object (ideally,

the target person) moves within their range. Occupancy sensors are installed in beds and chairs with

20

fixed locations; they are triggered when someone lays on the place. Magnetic reed switches are

often installed on doors (including entrance doors, bedroom doors, fridge doors, etc.); we assume

that they output 1 if the door is open and 0 otherwise. Electrical current sensors are installed on

electrical switches such as light switches and in mains plugs; we assume that they output 1 if the

circuit is close (i.e., current flows) and 0 otherwise.

Localization algorithms: This chapter is about describing our indoor localization algorithms

in detail. Briefly speaking, our algorithms are mainly geometric and are extensively using our own

geometry library which was described in the previous chapter.

Number of targets: In the current version we support the localization of one person in the

building. We further assume that there is no other moving person in the environment.

Timeliness: There are two extreme points characterizing the timeliness of the localization: (a)

real-time, which is representing a completely online localizer, and (b) off-line which represents a

completely offline localizer, i.e., one that none of the localization estimates are produced during

the observation period. A system can be either completely online (real-time) or completely offline

or something in between, i.e. localizing within a delay lag, e.g. 8 seconds. Our system is almost

completely real-time, except for one special case required to overcome false negative signals. We

will see in the following that one solution for handling false-negative signals requires that we add one

second of delay which sacrifices the real-time nature of the system. In fact, there is a compromise

between the timeliness of localization estimates and accuracy. Obviously, a real-time system can be

used as an offline system, but the reverse does not hold, although, in general offline systems can be

more accurate due to their ability to perform extensive calculation, that are prohibitive in a real-time

setting.

In section 4.2, we explain how we have modeled different entities in our localization framework.

In order to simulate a building with its sensors we have developed a simulator software. In section

4.3, use cases of this simulator are briefly described. The evolution of our framework is step by step

introduced through three sections: In section 4.4, our complete framework which works with only

ideal binary sensors is explained. In section 4.5, the switch-type sensors are integrated with our

system. In section 4.6, a real-world version of our framework is described. The main challenges in

the real-world application are enumerated and our solutions for each of them are described.

4.2 Models

In this section, we describe how we model each of the three main entities in our localization frame-

work: (1) the building, (2) the person (avatar in the simulations), and (3) the sensors. We also model

the noise in the sensor readings. It should be noted that, geometrically the environment is modeled

as a three-dimensional Cartesian system. XY plane (with Z = 0) represents the building’s floor

plane, and the positive Z-axis extends to the building height.

21

4.2.1 Physical model of entities

The building is a set of interconnected rooms and a set of doorways:

• Each room is modeled as a sequence of walls, a set of light-blocking obstacles, and a set of

non-light-blocking obstacles in the room. A light-blocking obstacle is the one which is too

tall and thus blocks the sensors’ rays, e.g. a column in the middle of the room. A non-light-

blocking obstacle is the one which is short enough not to block the sensors’ rays, e.g. a chair

or a table in the room. The sequence of walls are modeled by a polygon, where each edge of

the polygon represents a wall of the room. Each obstacle is modeled by a polygon as well.

The person cannot walk through an obstacle regardless of its type. Obviously, each wall has

the same impact on limiting the sensor “view” as any light-blocking obstacle.

• Each doorway is modeled as a polygon, usually a rectangle. A doorway has an anti-blocking

impact. It means, if a part of a wall is covered by a doorway’s polygon, that part of the wall is

actually “destroyed” and no longer blocks the sensors’ view.

We model the person’s body as a cylinder with height bodyH and base radius bodyR. These

two are settable parameters. However, bodyR should be almost half the length a person’s normal

stride. The walking speed of the person is also represented by walkingSpeed which is a settable

parameter.

We model three types of sensors: (1) PIR sensors, (2) occupancy sensors, and (3) switch-type

sensors. The signal of a type (1) or type (2) sensor is stored in a single bit which indicates whether

the event (assumed to be associated with the activity of a person) is detected or not. The status of a

type (3) sensor is also stored again as a bit to indicate the on/off or open/close status. The physical

model of each sensor follows:

• PIR motion sensors: These sensors have a pyramid-shaped sensing range. The base of the

pyramid is a rectangle. We use the spot-type motion sensor 1 for which the pyramid’s height,

base length, and base width are respectively 5m, 5m, and 3.5m. This sensor can be attached

to a wall or installed under the ceiling. We may also tune its orientation to have the desired

sensing range.

• Occupancy sensors: Occupancy sensors are usually installed inside a beds and chairs with

fixed locations. They are triggered when the person sits on the area. We model each occupancy

sensor as a polygon which shows its sensing area. In the example of a bed, the entire bed

would be the sensing area (assuming there is only one switch triggered regardless of where

the person rests on the bed).

1The assumed specifications for PIR motion sensors are consistent with a typical motion sensor, e.g., a pyroelectric Na-
PiOn sensor (such as the Panasonic AMN43121 and similar models http://pewa.panasonic.com/assets/pcsd/catalog/napion-
catalog.pdf).

22

• Switch-type sensors: Examples of switch-type sensors in real-world are magnetic reed switches

and electric current sensors. We model all such sensors as a general type of switch-type

sensors. A switch-type sensor is defined by a point showing the sensor’s position called

switchPos and a polygon which shows the area in which the person has to be present in

order to can change the switch. This polygon is called the sensor’s bodyRange.

4.2.2 Noise model

In order for our simulations to resemble the real-world with reasonable fidelity, we need to simulate

the noise, imperfections, and malfunctions of the sensors too. Yet, we need to keep it as simple as

possible, so we have considered two distinct models: (1) Ideal model where all sensors are ideal

with no noise or malfunction, and (2) Realistic model. We have closely observed the performance

of different types of sensors in the real-world. According to those observations, the malfunction

and noise rates of switch-type sensors and occupancy sensors are almost zero; so in our framework,

the realistic model of these two sensor types is equal to their ideal model. But for passive infrared

motion sensors, four factors contributing to signal noise are modeled: (a) detection pattern, (b) signal

pattern, (c) false-negative occurrence, and (d) false-positive occurrence.

• Detection pattern: In the realistic model, a motion sensor does not detect a stationary person

even if it is within its sensing range.

• Signal pattern: When a motion sensor is not detecting the person, the signal is a constant 0.

But, in case of detection, the signal is not a constant 1. It usually alternates between 0 and 1.

The time period of this oscillation depends on the update period of the motion sensor and, of

course, on the movement of the subject within the area of coverage. In our realistic model,

the update period of the motion sensors is 0.5 seconds, so every 0.5 seconds a transition in

the signal could occur. Any sequence of transitions (regardless of how long this sequence is)

where each 1→ 0 (0→ 1) and its subsequent 0→ 1 (1→ 0) transition are no more than 0.5

seconds apart are regarded as an oscillation

• False-negative occurrence: In our realistic model, a true positive signal can turn into a false-

negative signal with probability Pfn which is computed by the following formula:

Pfn =

{
Pbase if fn−1 = 0
Prep otherwise (4.1)

where Prep ≥ Pbase, and fn−1 is 1 if the previous signal has been false-negative, and is

0 otherwise. In simpler words, when the true signal is positive, with probability Pbase it

may turn into a false-negative signal. But, if the previous signal has been false-negative, this

probability increases to Prep. This simulates the burstiness of false-negative signals that we

have observed in the real-world. In the default realistic model, Pbase = 0.15 and Prep = 0.5.

We have modeled this function and set these numbers intuitively according to our observation

of the real sensors’ behavior.

23

• False-positive occurrence: In real motion sensors, false-positive signals happen so rarely that

we have neglected it in our realistic model.

4.3 Simulator

The simulator simulates a real environment to provide a sequence of data called an event trace. An

event trace is a sequence of event tuples which contain time-stamped data from sensors in the same

format as the real sensors would generate. Formally, each event tuple is in the form of (code, t)

which means the status of sensors at time t has been code, where code is an array of bits such

that codei shows the status of the i-th sensor. The process of generating an event trace requires a

preparatory step, the generation of an actual location-time trace of the person. This trace is called a

raw trace which is a sequence of raw tuples. A raw tuple is in the form of (p, t), which means the

person’s center of body mass has been in point p at time t. In order for the simulator to generate a

raw trace, it requires to input the person model and the building model. After the simulator’s start,

the clock starts running and the user can use an avatar to traverse the space by mouse-clicking on the

desired destination point. Concurrently, a new raw tuple is generated every rawCycle seconds. By

default, rawCycle = 0.5secs, but it can be set to any number prior to the start. It should be noted

that a raw trace is independent of sensor readings, that is why no sensor model is loaded in this step.

Once the user terminates the simulator, the generated raw trace is stored in a file which can be later

used to generate various event traces.

To generate an event trace out of a raw trace, the simulator requires two additional inputs: the

sensor configuration, and the noise model. In this mode, the simulator iterates on the sequence of

raw tuples in the raw trace. For each raw tuple (p, t), it takes into account all the models to check

if the person’s body has touched any sensor’s sensing range. And according to the noise model it

decides about the signal of each of the sensors at time t. In this way an event tuple (code, t) is

generated out of a raw tuple (p, t). By iterating over the entire raw trace, an event trace is generated.

The generated event trace is the final product of the simulator which is later directly input to the

localizer.

4.4 Localization using ideal binary sensors

In this section, we explain the first phase of our localization algorithm which is only using ideal

binary sensors. In this phase, we simply set bodyR = 0, meaning that the person’s body is modeled

as a vertical line with a settable height along the Z axis (e.g. bodyH = 180cm). So, in this phase,

the projection of the person’s body on XY plane is just a single point; so the person’s body has no

thickness and bodyR = 0. In next two sections, we will proceed to integrate switch-type sensors

as well as to enable our system to work in real-world conditions with non-ideal sensors and a more

realistic model of the person’s body too. The following pseudo-code step by step shows how the

24

localizer works in this phase:

1: function LOCALIZER(BuildingModel, SensorConfiguration, PersonModel, NoiseModel)

2: PRECOMPUTE-GEOMETRIC-MODELS

3: LOCALIZATION-LOOP

4: end function

5: function PRECOMPUTE-GEOMETRIC-MODELS

6: for i = 0→ ‖rooms‖ − 1 do

7: rooms[i].SR← COMPUTESENSINGRANGES(rooms[i])

8: rooms[i].map← COMPUTESENSINGRANGEMAP(rooms[i], rooms[i].SR)

9: globalCodedRegions[i]← UNIFYCODES(rooms[i].map.codedRegions)

10: BUILDING.CODEDREGIONS.APPEND(globalCodedRegions[i])

11: end for

12: end function

13: function LOCALIZATION-LOOP

14: while system is running do

15: eventTuple← GETNEXTEVENTTUPLE

16: probableRegions← FINDPROBABLEREGIONS(eventTuple)

17: prunedPRs← PRUNEPROBABLEREGIONS(probableRegions)

18: guessPoint← COMPUTESINGLEPOINT(prunedPRs)

19: STORERESULTS(prunedPRs, guessPoint)

20: end while

21: end function

The localizer has two main stages: (a) pre-computation stage and (b) a real-time loop. In the

pre-computation stage, three steps are performed for each room: (1) In line 7 for a given room,

the sensing range of each binary sensor in the room is computed on the XY plane. (2) In line

8 for a given room, using the Map class introduced in chapter 3, a map of all computed sensing

ranges is built. (3) In lines 9 and 10 for a given room, the local codes2 (valid only in the room) of

regions detected by the computed map are converted to globally (building-wide) valid codes and the

resulting coded regions are added to the list of all sensing coded regions in the building. Each of

those three steps are explained in detail in three following subsections. After the pre-computation is

done, the real-time loop of localization starts. In each iteration, a new event tuple is received. Then

three steps are done to compute an updated location of the person: (1) In line 16, according to the

status of sensors in the event tuple, regions which are probable to include the person at the moment

are found. (2) In line 17, according to the person’s last-updated position and the time difference

between the current and the previous event traces, regions found in the previous step are pruned. (3)

2We introduce here the concept of a “code” which is elaborated upon later. Suffice is to say for the time being that the
code is a representation of the sensors’ value vector.

25

Figure 4.1: A side view of a motion sensor’s pyramid. The lighter part of the pyramid contains those
points of it whose height is less than bodyH . The projection of this lighter part on the floor forms
the motion sensor’s ISR.

In line 18, finally the single-point guess of the person’s position is computed. The three steps in the

pre-computation stage and the three steps in the real-time loop stage are explained in detail in the

six following subsections.

In this thesis, the term rooms[i] refers to the i-th room in the building. Also, in this section

rooms[i].sensors[j] refers to the j-th binary sensor inside the i-th room, and building.sensors[i]

refers to the i-th binary sensor inside the entire building.

4.4.1 Computing binary sensor ranges (pre-computation)

A binary sensor in our work can be either a motion sensor or an occupancy sensor. Occupancy

sensors are often installed in beds and chairs with fixed locations. Hence, the range of an occupancy

sensor is not a 3-dimensional volume, but is actually a 2-dimensional surface. We can therefore

define their range as 2-dimensional regions in XY plane. But, a motion sensor has a 3-dimensional

pyramid-shaped range in XY Z space. To simplify our next computations and algorithms, it is de-

sirable to reduce the 3-dimensional model of their sensing ranges in XY Z space to a 2-dimensional

model in XY plane. For this purpose, according to the exact position and the orientation of the

pyramid, we need to compute the set of all points in XY plane such that if the person stands straight

on them, at least one point of the person’s body enters the pyramid and triggers the sensor. This set

of points form a region in XY plane which we call the initial sensing range (ISR) of the sensor. We

used the term “initial”, because we have not yet taken into account the walls and obstacles which

block the rays of motion sensors. A motion sensor’s ISR is computed by projecting those points of

26

Figure 4.2: (a) Map of the room from the top view; the small square in the middle of the room is a
column. (b) Initial sensing range (ISR) of a motion sensor whose center is shown by a small circle.
(c) The final visible sensing range of the motion sensor (SR), after taking into account all obstacles.

the sensor’s pyramid (in XY Z space) whose Z < bodyH on the XY plane. Figure 4.1 shows the

side view of a motion sensor’s pyramid and how ISR is computed. Finally, the sensing range (SR)

of a motion sensor is computed out of ISR. SR is actually a subset of ISR which is visible from

the projection of the sensor’s center on XY plane. This computation is performed by our geometry

library. Figure 4.2 shows steps of computing a motion sensor’s SR.

Now that the range of both types of binary sensors are modeled in XY plane, we can collect

the sensing region of all binary sensors of the i-th room in a single array of regions : rooms[i].SR.

Obviously, the length of this array is equal to the number of binary sensors in the i-th room and

rooms[i].SR[j] is a region showing the sensing range of the j-th binary sensor in the i-th room.

4.4.2 Building maps and unifying codes (pre-computation)

After rooms[i].SR is computed for all rooms, we compute rooms[i].map for each room.

rooms[i].map is an instance of the Map class. We simply add all regions in rooms[i].SR to

rooms[i].map and as described in section 3.3 the map automatically finds an array of CodedRe-

gion objects called rooms[i].map.codedRegions. rooms[i].map.codedRegions[j].code[k] is a

boolean value which says if the j-th region in the map is inside rooms[i].SR[k] (i.e. inside the

sensing range of the k-th binary sensor in the i-th room). Figure 4.3 shows a room with four binary

sensors. For simplicity the room as well as the sensing ranges are all rectangular in this example.

‖rooms[0].SR‖ = 4 and ‖rooms[0].map.codedRegions‖ = 10. The list of codes (representing

the vector of values of the binary sensors) is as follows:

27

Figure 4.3: A map built for a rectangular room with four binary sensors. ‖rooms[0].SR‖ = 4 and
‖rooms[0].map.codedRegions‖ = 10.

rooms[0].map.codedRegions[0].code = {0, 0, 0, 0}

rooms[0].map.codedRegions[1].code = {0, 1, 0, 0}

rooms[0].map.codedRegions[2].code = {1, 0, 0, 0}

rooms[0].map.codedRegions[3].code = {1, 1, 0, 0}

rooms[0].map.codedRegions[4].code = {0, 0, 1, 0}

rooms[0].map.codedRegions[5].code = {0, 1, 1, 0}

rooms[0].map.codedRegions[6].code = {0, 1, 0, 1}

rooms[0].map.codedRegions[7].code = {0, 1, 1, 1}

rooms[0].map.codedRegions[8].code = {0, 0, 1, 1}

rooms[0].map.codedRegions[9].code = {0, 0, 0, 1}

Codes inside rooms[i].map.codedRegions are local codes inside the i-th room with the length

of ‖rooms[i].sensors‖. In the next step, we make building.codedRegions. Regions inside

building.codedRegions are the union of all regions inside rooms[i].map.codedRegions for all

i’s. But, the code inside each CodedRegion object is converted from the local format (valid inside

the room) to the global format (valid inside the entire building). After this globalization of codes,

all codes in building.codedRegions have the same length of ‖building.sensors‖.

4.4.3 Finding probable regions (real-time computation)

So far, we have had three steps of computation all of which are performed prior to the real-time

running of the system (i.e. the localization loop): (1) computing binary sensor ranges, (2) building

maps, and (3) unifying codes. This subsection, describes the next step which is the first of three steps

in the localization loop. The input to this step is a new event tuple which is just received. As we

explained in section 4.3, an event tuple is in the form of (code, t) which means the status of binary

28

sensors at time t has been code, where code is an array of bits such that codei shows the status of

the i-th binary sensor. For example suppose the room in figure 4.3 be the only room in the building.

So if sensors in the figure are all ideal, the presence of the person in region 5 at a given time would

make an event tuple whose code = {0, 1, 1, 0}. The following terms will also be used throughout

the rest of this thesis:

• tuple−1 refers to the previous event tuple. tuple0 refers to the current event tuple. t−1 refers

to the time-stamp of tuple−1 and t0 refers to the time-stamp of tuple0.

• realPos[t] is a two-dimensional point which shows XY coordinates of the actual posi-

tion of the target person’s center of mass at time t. realPos with no specified time means

realPos[t0].

In this step, the localizer searches into the array building.codedRegions. It collects every coded

region whose code exactly matches tuple0.code. The regions of all such coded regions are collected

in an array of regions called “initial probable regions” at time t0 (initialPRs[t0]).

4.4.4 Pruning probable regions using short history (real-time computation)

initialPRs[t0] is a maximal set of regions which may possibly contain the target person at time t0.

By maximal we mean that the target person is certainly in one of those regions, but we may still

prune parts of those regions and narrow down the probable regions; the result is an array of regions

called “pruned probable regions” at time t0 (prunedPRs[t0]) which is computed as follows:

We compute prunedPRs[t0] out of three inputs: (1) initialPRs[t0], (2) prunedPRs[t−1],

and (3) the time difference between t0 and t−1, i.e. (t0 − t−1). It should be noted that at the start,

since there is no t−1, there is no pruning step either. Depending on the application and the specific

person that we are localizing, we can consider a value for the person’s normal walking speed. By

normal speed, we specifically mean the average speed over 25% fastest moments. We call this

value as walkingSpeed. If the person does not walk surprisingly faster than walkingSpeed, then

logically, at time t0, the person could not have deviated from borders of prunedPRs[t−1] by more

than maxDeviation meters which is simply calculated in the following equation:

maxDeviation = walkingSpeed ∗ (t0 − t−1) (4.2)

Thus, the three stages below are followed:

1. A parameter called expDist (standing for “expansion distance”) is calculated as follows:

expDist = maxDeviation ∗ expCoef (4.3)

where expCoef is a real number usually between 0.5 and 2 which should be tuned. By

default, expCoef = 1.

29

Figure 4.4: (a) In step 1, we have two arrays of regions: initialPRs[t0] and prunedPRs[t−1].
(b) expDist is computed and all regions inside prunedPRs[t−1] are expanded by expDist units
of distance to obtain expandedPRs[t−1]. (c) Finally, the intersection of prunedPRs[t0] and
expandedPRs[t−1] results in prunedPRs[t0].

2. Second, we expand all regions inside the array prunedPRs[t−1] by expDist units of distance

to generate another array named expandedPRs[t−1].

3. Finally, prunedPRs[t0] is calculated by intersecting two sets of regions:

prunedPRs[t0] = initialPRs[t0]

∩ expandedPRs[t−1]
(4.4)

The intersection of two or more sets of regions is calculated by our geometry library in linear

time complexity in the total number of regions’ vertices.

4. If prunedPRs[t0] = Ø, then increase expCoef by 0.1 and go to the step 1.

If everything is ideal, i.e. (a) value of walkingSpeed is not underestimated, and (b) all binary

sensors are ideal and never malfunction, prunedPRs[t0] never becomes empty in the step 4. In

30

Figure 4.5: prob(P0) = prob(P1) = prob(P2) = 1/3. (a) The guess point is CoM which is the
center of mass of the three points, so expectedError(CoM) = 2 ∗ (1/3) + 1 ∗ (1/3) + 1 ∗ (1/3) =
4/3.(b) The guess point is g, so expectedError(g) = 3 ∗ (1/3) + 0 ∗ (1/3) + 0 ∗ (1/3) = 1. So
expectedErr(g 6= CoM) < expectedErr(CoM).

fact, if prunedPRs = Ø in the step 4, there are two possibilities: (a) The person may have moved

with an abnormally high speed that exceeds walkingSpeed. (b) Some sensor events may have

been missed or noticed with delay. In this case, a jump in the pace of localization might happen.

Figure 4.4 shows the step by step computation of prunedPRs[t0] in an example.

4.4.5 Computing a single-point guess (real-time computation)

Up to this point, we have computed an array of regions called prunedPRs[t0] which contains all

regions which can potentially contain the target person at time t0. In the final stage of localization,

we should output a single-point which shows our best guess of the target person’s position. But,

what we mean by the best point, is a point that minimizes the expected value of the error, i.e. the

distance between guessPoint[t0] and realPos[t0]. The expected error for a given guessPoint at

time t is calculated as follows:

expectedError(guessPoint, t) =

∫∫
prunedPRs[t]

dist(guessPoint, dA).prob(t, dA) dA (4.5)

where 0 ≤ prob(t, A) ≤ 1 represents the probability that region A contains the target person at time

t. One simple heuristic to compute guessPoint[t0] is:

guessPoint[t0] = prunedPRs[t0].centerOfMass (4.6)

Center of mass of an area is the average of the coordinates of all points in that area. Using the center

of mass of the probable regions as guessPoint[t0] has two problems:

• Points inside prunedPRs[t0] do not actually have the same probabilities of being realPos[t0].

But, this solution does not consider this fact.

• Even if we assume the probability of containing the actual person at time t0 is evenly dis-

tributed over all points of prunedPRs[t0], it can be mathematically proven that the center of

mass of probable regions does not minimize the expected error. In case of even probability

distribution, expectedError function is simplified as below:

expectedError(guessPoint, t0) =

∫∫
prunedPRs[t]

dist(guessPoint, dA) dA (4.7)

31

A counter example shown in figure 4.5 proves the non-optimality of the center of mass even

in case of even probability distribution.

Although as we proved the center of mass of the probable regions does not necessarily minimize the

expected error, it is still a very good approximation of the optimal answer and also very simple to

compute. Therefore, guessPoint[t0] is simply computed as below:

guessPoint[t0] = prunedPRs[t0].centerOfMass (4.8)

4.5 Including switch-type sensors

Now that we have explained everything about ideal binary sensors, we can easily include the in-

formation that we occasionally receive from switch-type sensors. As described in section 4.2.1, a

region named bodyRange is assigned to every switch-type sensor. In our model, this has an approx-

imate size of 0.5× 0.5 located close to switchPos. When a transition happens in the output signal

of a switch-type sensor, the person must be normally in the sensor’s bodyRange. This region is

made in a way that its center has the most probability of being the target person’s center of mass at

the moment of transition. It should be noted that a switch-type sensor’s bodyRange quite often does

not even contain switchPos. For example, suppose a sensor is installed on the door of a fridge. A

transition happens in its output signal when the person opens or closes the door; obviously, at this

moment the person is not standing right on the sensor which is installed on the door. Normally he

must have a distance of 0.4m with the door and tend to the same side as the door opens. This is the

way we hardcode bodyRange for each switch-type sensor. Having this region for every switch-type

sensor, it is easy to include the information from these sensors with our previous system: Whenever

we detect a transition in a switch-type sensor’s signal, we assign its bodyRange to initialPRs[t0],

and the rest of stages (pruning, etc.) are the same as explained before. Since, switch-type sensors

are highly reliable, we completely trust their signals; so, we did not need to add any intermediate

stage to check if the signal is reasonable and correct.

4.6 Localization using real binary sensors

In section 4.4 we explained all stages of localization using binary sensors, on the condition that

all sensors are ideal and work perfectly. But, those algorithms alone do not work in a real-world

scenario. In this section, we adjust those algorithms to make a robust system which can work in

real world with non-ideal binary sensors. In order to achieve this goal, we have to resolve five

main problems which are caused by imperfection of the real sensors and the real environment. The

imperfections generate incorrect sensor readings, i.e. incorrect tuple0.code. An incorrect code can

be either invalid or misleading which are defined as follows:

32

Figure 4.6: Two sensors are installed in a room. The center of each sensor is shown with a small
circle and a rectangle shows the range of each sensor. In both cases the person’s body (the circle) has
entered a region while realPos (center of the circle) is not inside that region. (a) realPos belongs
to a region whose code is (0, 0), so (0, 1) in an incorrect code, and since there is a region with the
same code, this code is misleading. (b) realPos belongs to a region whose code is (0, 0), so (1, 1)
is an incorrect code, and since there is no region with the same code, this code is invalid.

Definition 1. tuple0.code is invalid is a sensor reading that does not match any code inside

building.codedRegions.

Definition 2. tuple0.code is misleading is a sensor reading that matches a coded region in

building.codedRegions whose region does not include the actual realPos[t0].

With ideal sensors and a perfect environment we always have correct codes. But, in this section

we introduce five main sources of incorrect codes (either misleading or invalid) in the real-world.

We then explain how we address each of these five anomalies in separate subsections.

4.6.1 Body thickness

So far we have considered the person’s body as a cylinder with normal height (e.g. 180 cm) but

with radius of 0. In fact, the projection of the person’s body on XY plane has been a single point

in section 4.4. Now, we will consider a reasonable radius – called bodyR – for the body cylinder

according to a normal body size and step length. In figure 4.6 two examples are shown where

the person’s body thickness causes misleading and invalid codes in the previous model. We claim

without proof that modeling a person’s body as a thick cylinder (i.e. bodyR > 0) is equivalent to

expanding all sensing ranges on the XY plane by bodyR units of distance. So, we claim:

“Taking into account bodyR = nonZeroR”

≡

“The previous body model (bodyR = 0)”

+“Expanding sensing ranges by nonZeroR”

(4.9)

So, our solution is simply this: in the first stage of pre-computation (computing sensor ranges),

we expand all regions inside the array rooms[i].SR by bodyR units. Figure 4.7 shows how this

33

Figure 4.7: (a) Expanded sensing range of the motion sensor in figure 4.2. (b) After expanding the
sensing range of figure 4.6.a realPos belongs to a region whose code is (0, 1) which is the same as
tuple0.code. So a correct code is read from sensors. (c) Following figure 4.6.b, after expansion of
sensing ranges, a new region with the code (1, 1) is generated, so the sensor signals are no longer
incorrect at this moment.

expansion happens in the examples of figure 4.6. This clearly explains how the body thickness

problem is addressed.

4.6.2 No-motion no-trigger

In the model of ideal binary sensors, the sensor’s signal is 1 if and only if realPos is inside the

sensing range. But, in the real-world if the person is inside the sensing range but not moving, the

sensor is not triggered. So, the incorrect all-zero code frequently occurs in practice. To solve this

problem, whenever we observe an all-zero code, we replace it with the most recent valid non-zero

code. The logic behind this decision is because the person has been moving for a while when

correct codes have been generated and then he has stopped at a point after which all-zero codes are

generated. So, the most recent non-zero code represents the place the person has last stopped.

4.6.3 Oscillating signals

In practice, motion sensors do not output a constant 1 signal when they sense a moving object, but

an oscillating signal will appear on the output. There are two solutions:

34

Figure 4.8: (a) original received signal over time. (b) Enhanced signal by the first approach: sacri-
ficing responsiveness to maintain accuracy.

• The first solution sacrifices real-time localization to enhance accuracy. This is shown in fig-

ure 4.8 in an example. We actually convert each 0 value of shorter than one second to 1.

For this purpose, we logically need one second of delay to determine the actual signal at a

moment.

• The second solution sacrifices accuracy to maintain real-time operation. In this approach,

when a transition from 1 to 0 happens in the input signal, we still consider it as a 1 signal for

one more second. This way we actually extend the life of any 1 signal for one more second.

To achieve this signal enhancement, we can still be real-time and no delay is required to be

added. On the other hand, since not all zero-to-one transitions are oscillations and some of

them are real transitions, the calculated signal occasionally becomes a false-positive.

We just use the first solution in our framework. So, to maintain accuracy, our localization has one

second of delay.

4.6.4 Doors

So far we have assumed that all doors are closed all the time in the sense that the sensing range of a

sensor in a room can never penetrate other rooms through doors. This assumption works perfectly in

simulations where we can decide about the world’s configurations. But in the real-world, doors are

not guaranteed to be closed all the time, and when they are open they do not block rays to the sensor.

This can potentially make cause invalid and misleading codes. Figure 4.9 shows a simple example

with two rectangular rooms with a small connecting door. Figure 4.9.a shows the map of the building

with all coded regions made by sensing ranges. In the pre-computation stage of localization, this

map is computed since the door is assumed to be closed all the time. But if the door is open, the map

in figure 4.9.b represents the actual map of the regions in the building. Now, assume a real-world

scenario where the door is open and the person walks in the region A in figure 4.9.b. If both sensors

work perfectly, tuple0.code will be (0, 1); Although this code is actually correct and sensors have

worked well, this is counted as an incorrect code since in the real map of the building shown in

figure 4.9.a the code for region A is (0, 0). And since there is already at least one region with code

35

Figure 4.9: In each of the two rooms a motion sensor is installed. CR stands for codedRegions. (a)
shows the map of regions made by sensing ranges when the door is closed; here ‖codedRegions‖ =
4. (b) shows the same map when the door is open; here ‖codedRegions‖ = 6. In the ideal model,
map (a) is used; so if the door is open and realPos is inside A, then tuple0.code = (0, 1) but this
code belongs to CR[2] which does not include realPos; therefore the code is misleading. Also, if
the door is open and realPos is inside B, then tuple0.code = (1, 1) but this code is not in the ideal
model (a); therefore the code is invalid.

(0, 1) in our pre-computed model, this incorrect code is misleading. Assume a similar scenario if

the person walks in the region B while the door is open. In such a case, tuple0.code becomes (1, 1)

which is actually correct but according to our model it is counted as an invalid code.

In order to resolve this problem, for every door, we assume the door is open and then for any

region which is generated by a “foreign” sensor (i.e. a sensor from another room) we consider

two different codes: the normal code of that region, as well as a code by canceling all 1 bits of

foreign sensors. For example, in the building of figure 4.9, the original map of coded regions are

pre-computed according to figure 4.9.b, where A is a region with two different codes assigned to it

: (0, 0) and (0, 1). And B has two different codes too: (1, 0) and (1, 1).

4.6.5 False-negative signals

For whatever reason a binary sensor may not detect the target in its sensing range. In the case of

motion sensors, it might be because of small movements by the person which are occasionally left

undetected. If no sensor detects the presence of the person at the same, tuple0.code becomes all zero

and it will be easily handled the same way as we handled “no-motion no-signal” case. But, in case

some sensors output a false-negative signal while others correctly detect the person, an incorrect

code is produced. This incorrect code can be of both possible types: invalid or misleading. For

invalid codes, all we do is treat them exactly the same way as explained in “no-motion no-signal”

sub-section. It is reasonable to do the same thing about misleading codes too. But, how can we

detect misleading codes? Invalid codes are easily detectable, because by definition they are not in

the list of valid codes in the map; but misleading codes are those incorrect codes which are still found

in building.codedRegions. We distinguish between a valid correct code and a valid incorrect code

36

Figure 4.10: (a) The map of a building with four rooms and three connecting rooms. CR stands for
codedRegions. There are nine coded regions in the building. The distance between two regions in
the same room is calculated directly with our geometry library, e.g. regionsDist[1][3] = 1.5m. (b)
To compute the distance between regions not in the same room, a graph is constructed. The weight
of each edge is the minimum planar distance between the two nodes. According to this graph, for
example the shortest restricted path between CR[1] and CR[8] is 9.9 meters. The shortest normal
(non-restricted) path between these two regions would be 1.9m which is obviously wrong; because
it illegally bypasses the 5m edge from D[2] to D[1] by going through CR[6] which is connecting
the two nodes with 0m edges. The same thing also happens from D[1] to D[0] by illegally going
through CR[5].

(i.e. misleading code) through the following procedure:

After pre-computing building.codedRegions as explained before, we compute a two-dimensional

array called regionsDist such that regionsDist[i][j] represents the minimum distance between

building.codedRegions[i].region and building.codedRegions[j].region. The minimum distance

between two regions which are in the same room is simply calculated by our geometry library. But,

for calculating the minimum distance between two regions in the building which are not in the same

room, another solution is proposed. We construct a graph with weighted edges. Nodes of this graph

are regions in the building plus doors which connect rooms. Two nodes are connected if (1) they

correspond to two doors of the same room, or (2) one of them corresponds to a region in a room and

the other one corresponds to a door of the same room. The weight of an edge is the planar minimum

distance between the corresponding nodes: either two doors, or a region and a door. After construct-

ing this graph, we find the shortest restricted path between any two nodes like n0 and n1 such that

both nodes correspond to coded regions. We define a restricted path from n0 to n1 as a path in which

a transition from a door node to a region node that is not the destination (i.e. n1) is not allowed. The

length of such a path is assigned to regionsDist[n0][n1]. Figure 4.10 shows how the graph is made

for a sample building. In this figure, it is shown in an example why we have to apply this restriction

for a path. All the process of computing regionsDist occurs in the pre-computation stage, but in

real-time this array is used to distinguish between a correct valid code and a misleading code. When

a new tuple0.code appears that is valid (i.e. found in the list of codes in building.codedRegions),

we check the minimum distance between initialPRs[t0] and initialPRs[t−1]. If this distance is

too big to be explainable according to (t0 − t−1) and the person’s normal and maximum speed,

37

Figure 4.11: (a) Seven coded regions are created by the intersection of three sensor ranges. As-
sume sensors[1]’s signal be false-negative; so, tuple0.code is (1, 0, 1). Previously, it would be
considered as an invalid code. But, with the no-exclusion method, every region whose code is 1 in
the first and the last bit is a probable region. So, the region which is coded as (1, 1, 1) is the only
probable region. (b) With this new configuration, if again sensors[1]’s signal be false-negative,
the tuple0.code is still (1, 0, 1) which is incorrect but misleading this time. Without no-exclusion
method, the very small region coded as (1, 0, 1) would be the only probable region. But, with the
no-exclusion method, two regions with (1, 0, 1) and (1, 1, 1) are probable regions.

the current code is considered an incorrect code of misleading type. A detected misleading code is

treated the same was as an invalid code and an all-zero code.

4.6.6 Too many false-negative signals

In the previous section, we mentioned that we treat invalid codes and detected misleading codes

the same way as we treated all-zero codes in “no-motion no-signal” section. It means we replace an

incorrect code with the most recent correct code that we have recorded. This is a successful approach

if the frequency of incorrect codes is reasonably low. But in the case of too many false-negative

signals, the current method would no longer be appropriate. In such a case, we use a method called

no-exclusion. There is no theoretical definition for “too many false-negative signals” but in practice

there is a threshold on the frequency of false-negative signals after which no-exclusion method

performs better than the default setting. In experiments, we will see that this threshold depends on

the sensor configuration. So far, whenever a new event tuple – i.e. tuple0 – is received, probable

regions are those regions whose codes exactly match tuple0.code. In fact, we care about both 0 and

1 bits to decide if two codes are equal. In other words, probable regions are the intersection of those

sensor ranges whose corresponding bit in the code is 1, excluding the other sensor ranges whose

bit is 0. With our binary sensors, we have almost never experienced false-positive signals, so we

are confident about 1 bits in the code. But, when false-negative signals are too frequent, it actually

means that 0 bits are not as reliable. Therefore, in case of too many false-negative signals, we skip

the exclusion of sensor ranges with 0 bits in the code from the probable regions. More precisely,

now a region is one of the probable regions if its code is 1 in all 1 bits of tuple0.code; values of

the rest of its bits do not matter. By this change, the precision of probable regions is lowered, but in

turn the system becomes a lot more confident and robust against false-negative signals. Figure 4.11

38

shows conditions in which before using the no-exclusion method, false-negative signals could lead

to invalid and misleading codes with significant impact. This figure shows how the no-exclusion

method cancels the effects of a significant false-negative signal where it leads to an invalid code in

part (a) and a misleading code in part (b). The other positive consequence of this method is that,

it makes the system 100% robust against complete malfunction or removal of binary sensors. For

instance, if a binary sensor suddenly breaks while the system is running, with the logic of the no-

exclusion method, this sensor is automatically removed from the computational models as if it was

not existing at all. In summary, by this simple method we lose a little in localization precision, but

in turn a remarkable degree of robustness is obtained.

39

Chapter 5

Experiments

We run all experiments in a simulated setup using the simulator framework. Our building model is

built with little changes to the building map of the EvAAL indoor localization and tracking challenge

that took place in Madrid in 2012. We have considered five dimensions of variability to setup the

experiments:

• Raw trace: We create two different traces in the building. The path of both traces are the same

in order for their results to be comparable. This is called the tour of the building which is a

long enough path to cover various parts of the building. Both traces follow the tour, but they

are different in terms of smooth vs. bursty movement of the person. In the smooth trace –

referred to as S – the person walks at 0.7m/s with very few occasional stops. In the bursty

trace – referred to as B – the speed is the same, but with very frequent stops on the way.

Figure 5.1 shows the building model as well as its tour.

• Sensor configuration: We test four different sensor configurations. In two of them, only binary

sensors are employed: (a) A minimum-coverage configuration consisting of 21 binary sensors

(one occupancy sensor and 20 motion sensors). This configuration is labeled min. (b) A fairly

dense configuration consisting of 32 binary sensors (a single occupancy sensor and 31 motion

sensors). This configuration is labeled dns. By adding nine switch-type sensors to each of

these two configurations, two new configurations are obtained, respectively labeled minswt

and dnsswt. Figure 5.2 and figure 5.3 show these configurations.

• Algorithm mode I: We test two variations: (1) Enabled pruning step as discussed in section

4.4.4, and (2) Disabled pruning step. By default we assume that the pruning step is enabled in

all experiments unless marked by the symbol Pruneoff .

• Noise model: We test five noise models:

– Ideal model labeled by fn0 (“fn” stands for false-negative. Although the noise-model

is not just about false-negative signals, we traditionally use this naming.).

– Default realistic model labeled fn1 in which Pbase = 0.15 and Prep = 0.5.

40

Figure 5.1: A top view of the building with three rooms: (1) The main hall which is the biggest
room in the image, (2) The small washroom on the top left corner of the image, and (3) The huge
balcony on the bottom of the image. These rooms are connected by two small doors. Five pieces
of furniture are placed in the building: four in the main hall, and one in the washroom. The entire
building is almost 120m2 and the ceiling height is 2.62m. The start and end points of the tour are
marked accordingly. It should be noted that the bed and any area with occupancy sensors are not
considered as obstacles and the person can walk through them.

– A non-default realistic model labeled fn2 in which Pbase = 0.3 and Prep = 0.5.

– A second non-default realistic model labeled fn3 in which Pbase = 0.5 and Prep = 0.5.

– A third non-default realistic model labeled fn4 in which Pbase = 0.7 and Prep = 0.7.

All three non-default realistic models are only different in the frequency of false-negative

signals; they are exactly the same in other aspects of a realistic model as discussed in section

4.2.2.

• Algorithm mode II: We examine the effect of the no-exclusion method explained in the pre-

vious chapter. Experiments in which the no-exclusion method is enabled are marked by the

symbol exoff and others are marked by the symbol exon.

In the following sections we investigate the impact of each of the above dimensions on the local-

ization error. In all experiments, the mean error, the standard deviation, and the standard error are

41

Figure 5.2: A min-coverage configuration of 21 binary sensors (20 motion sensors and a single oc-
cupancy sensor installed in the bed). All motion sensors are installed under the ceiling and vertically
facing the floor. Small dots show the XY position of the motion sensors. The range of each sensor
on the floor is expanded by bodyR = 0.25m to support a much more realistic model of the person’s
body as discussed in section 4.6.1. Big dots show the XY position of nine switch-type sensors.
Small squares next to switch-type sensors are their bodyRange as introduced in section 4.2.1 and
4.5. These nine switch-type sensors are enabled in minswt and disabled in min.

reported. It should be noted that, as we will see throughout the rest of this chapter, the standard de-

viations are of such magnitude that the overall results are not statistically comparable. Fortunately,

in almost all of them, the standard error is small enough to compare the mean errors.

5.1 Bursty vs. smooth movement

In all experiments of this section, the no-exclusion algorithm is disabled. In the first part, we also

fix the noise model to fn0 to investigate the impact of the smooth (S) vs. bursty (B) movements

on two sensor configurations : min and dns. The results are reported in the table 5.1. In both

pairs of experiments, the localization error for the smooth movement is lower than for the bursty

one. This result could be expected, because the pruning algorithm considers a constant speed for the

target person which is satisfied by a smooth trace while the bursty trace does not always satisfy this

assumption. Another observation is that the amount of improvement for the smooth movement is

42

Figure 5.3: A fairly dense configuration of 32 binary sensors (31 motion sensors and a single occu-
pancy sensor installed in the bed). All motion sensors are installed under the ceiling and vertically
facing the floor. Small dots show the XY position of the motion sensors. The range of each sensor
on the floor is expanded by bodyR = 0.25m to support a much more realistic model of the person’s
body as discussed in section 4.6.1. Big dots show the XY position of nine switch-type sensors.
Small squares next to switch-type sensors are their bodyRange as introduced in section 4.2.1 and
4.5. These nine switch-type sensors are enabled in dnsswt and disabled in dns.

about 6cm (8%) of the mean error using the min sensor configuration, whereas this improvement

for the dns configuration is just about 2.6cm which is almost 5%. Besides, according to the standard

error in the plot, the difference between the two errors for the dns configuration is very close to be

insignificant. This observation can be explained based on the characteristics of the pruning algorithm

which improves the accuracy in sparser sensor configurations with larger coded regions. This claim,

along with some relevant experiments, will be explained in the section about the impact of the

pruning algorithm. Therefore, since the impact of the pruning algorithm in the dense configuration

(dns) is weaker, the improvement added by the smooth movement – which is in fact because of the

pruning algorithm – is lesser.

In the second part, we use a fixed sensor configuration: min. In this part we examine the effect

of S and B, when using ideal (fn0) or realistic (fn1) noise models. The results are reported in the

table 5.2. The only new observation here is that, the improvement added by the smooth movement

with the realistic noise model (10cm or 12.6%) is higher than that with the ideal noise model (6cm or

43

Table 5.1: The mean localization error for fn0 and exon. The first number in the parenthesis is the
standard deviation and the second number is the standard error.

Sensor Configuration

Raw Trace min dns

S 0.666 m (0.293, 0.017) 0.485 m (0.277, 0.016)
B 0.725 m (0.293, 0.013) 0.511 m (0.25, 0.011)

Table 5.2: The mean localization error for min and exon. The first number in the parenthesis is the
standard deviation and the second number is the standard error.

Noise Model

Raw Trace fn0 fn1

S 0.666 m (0.293, 0.017) 0.692 m (0.298, 0.017)
B 0.725 m (0.293, 0.013) 0.790 m (0.291, 0.012)

8%). This difference in the amount of improvement is explained by the behavior of motion sensors

in the realistic model. They are not triggered when the person is stationary. Hence, the bursty

movement which has frequent stops will result in extra error when using a realistic noise model.

5.2 Sensor configuration

In this section, we analyze the correlation of the sensor configuration and the localization error.

Throughout this section we fix the states of the noise model and the no-exclusion algorithm to fn0

and exon respectively. In the first part, we rearrange the results from the previous section to compare

the accuracy of localization using min and dns, under the conditions of S and B movements.

Results are reported in the table 5.3. The straightforward observation here is that, when using dns

with 32 binary sensors the mean error is lowered by around 28% compared to when using min

with 21 binary sensors. In fact, the number of sensors has increased by 52%, so if the mean error

was lowered by 34%, then the localization error would be in a reverse relation with the number of

sensors. But this improvement is 28%, which shows the localization error is not improved as much

as we have increased the sensor density (reaching, conceivably, a point of diminishing returns). This

improvement is actually 27% with the smooth movement and 29% with the bursty movement. This

little difference in the amount of improvement was analyzed in the previous section.

In the last part of this section, we observe the improvement added by switch-type sensors. We

Table 5.3: The mean localization error for fn0 and exon. The first number in the parenthesis is the
standard deviation and the second number is the standard error.

Raw Trace

Sensor Configuration S B

min 0.666 m (0.293, 0.017) 0.725 m (0.293, 0.013)
dns 0.485 m (0.277, 0.016) 0.511 m (0.25, 0.011)

44

Table 5.4: The mean localization error for fn0, S, and exon. The first number in the parenthesis is
the standard deviation and the second number is the standard error.

Sensor Configuration

Switches min dns

Off 0.666 m (0.293, 0.017) 0.485 m (0.277, 0.016)
On 0.571 m (0.31, 0.018) 0.415 m (0.262, 0.015)

Table 5.5: The mean localization error for min, fn0, and exon. The first number in the parenthesis
is the standard deviation and the second number is the standard error.

Raw Trace

Pruning Step S B

On 0.666 m (0.293, 0.017) 0.725 m (0.293, 0.013)
Off 0.882 m (0.306, 0.018) 0.893 m (0.308, 0.013)

fix the type of movement to S and compare the localization error using min vs. minswt and dns vs.

dnsswt. Results are reported in the table 5.4. The straightforward observation here is that the nine

switch-type sensors improve the mean error by 9cm (14%) when using min. This improvement for

dns is 7cm (14%).

5.3 Pruning step

In this section, we investigate the improvement added by the pruning step discussed in section 4.4.4.

In the experiments, we fix the noise model and the state of the no-exclusion algorithm to fn0 and

exon respectively. Then for two sensor configurations – min and dns – we compare the error of the

localization system with the enabled and disabled pruning step, for the smooth and bursty traces.

Results are reported in tables 5.5 and 5.6. The straightforward observation here is that, as expected,

the pruning algorithm significantly improves the mean error of localization. This improvement is

22cm (25%) when using min and with the smooth trace. It is 17cm (20%) when using min and B,

14cm (22%) when using dns and S, and finally 13cm (20%) when using dns and B. We can see

that the amounts of improvement in experiments using the smooth trace are generally higher. This is

because the pruning algorithm assumes a constant speed for the target person. So it naturally works

better for a smooth trace rather than a bursty one. We can also see that, this improvement is slightly

higher for min sensor configuration compared to dns. Although, this difference is really small and

Table 5.6: The mean localization error for dns, fn0, and exon. The first number in the parenthesis
is the standard deviation and the second number is the standard error.

Raw Trace

Pruning Step S B

On 0.485 m (0.277, 0.016) 0.511 m (0.25, 0.011)
Off 0.630 m (0.3, 0.017) 0.644 m (0.262, 0.011)

45

Table 5.7: The mean localization error for min and S. The first number in the parenthesis is the
standard deviation and the second number is the standard error.

Noise Model

No-exclusion fn0 fn1 fn2 fn3 fn4

exon 0.666 m 0.692 m 0.719 m 0.799 m 0.914 m
(0.293, 0.017) (0.298, 0.017) (0.333, 0.019) (0.444, 0.025) (0.47, 0.027)

exoff 0.680 m 0.708 m 0.739 m 0.791 m 0.895 m
(0.299, 0.017) (0.308, 0.017) (0.335, 0.019) (0.431, 0.025) (0.607, 0.035)

Table 5.8: The mean localization error for dns and S. The first number in the parenthesis is the
standard deviation and the second number is the standard error.

Noise Model

No-exclusion fn0 fn1 fn2 fn3 fn4

exon 0.485 m 0.616 m 0.660 m 0.789 m 1.192 m
(0.277, 0.016) (0.406, 0.023) (0.386, 0.022) (0.442, 0.025) (0.685, 0.039)

exoff 0.606 m 0.676 m 0.705 m 0.770 m 0.986 m
(0.297, 0.017) (0.357, 0.02) (0.315, 0.018) (0.414, 0.024) (0.727, 0.042)

may be even negligible in these experiments, there is an interesting analysis for why the pruning

algorithm has a generally stronger impact for sparser sensor configurations. The pruning algorithm

is practically extrapolating the person’s position from the moment they enter a coded region to the

moment they exit it and enter the next region. In the min-coverage configuration, the coded regions

are larger and this extrapolation better improves the accuracy. But, in dense configurations, coded

regions are smaller and the extrapolation done by the pruning algorithm still helps but not as much.

For a more clear understanding, imagine an extreme case with an abnormally super-dense sensor

configuration where coded regions are as small as 10cm ∗ 10cm squares. Obviously in such a case,

extrapolation is meaningless; so, the pruning algorithm wouldn’t help at all.

Finally, we observe that using ideal binary sensors, the localization with a disabled pruning step

has almost the same mean error for either of the movement types. It is simply because the only stage

of the localization algorithm which takes into account a presumed value for the person’s speed is

the pruning stage. If we have noise-free and ideal binary sensors, without the pruning algorithm the

system’s performance is not impacted by the person’s speed and style of movement.

5.4 Effect of noise and the no-exclusion algorithm

The no-exclusion algorithm – as discussed in section 4.6.6 – is aimed to handle the most challenging

type of noise i.e. frequent false-negative signals and it therefore makes sense to test it jointly with the

noise model. To do so, we have setup two sets of experiments: one with min and one with dns. In

both sets, we fix the type of movement to S. In each set, for five different noise models we measure

the localization error for exon and exoff . Results are reported in tables 5.7 and 5.8. In the table 5.7,

using the min-coverage configuration, the mean error of localization is increased as the probability

46

of false-negative signals increases in the noise models. This increase was obviously expected. We

furthermore observe that using min, there is no significant difference in the mean error whether

using exon or exoff . The explanation is that the no-exclusion algorithm makes a difference in the

result only if the sensor ranges have considerable overlaps. In fact, for a non-overlapping sensor

configuration, the logical outcome of the localization algorithm with the enabled or disabled no-

exclusion part is exactly the same. Our min configuration is not completely non-overlapping, and

that explains the little difference in the mean error of exon and exoff states; those small overlaps

are not enough to make a significant difference in the mean error.

In the table 5.8, using the dense sensor configuration, we observe that the enabled no-exclusion

algorithm increases the mean error for the first three noise models : fn0, fn1, and fn2. Yet, the

amount of this increase in error is reduced as the probability of false-negative signals increases in

the noise models. In fn3, for the first time the mean error for exoff becomes lower than that for

exon, but the difference is still insignificant. Finally, in the last noise model – fn4 – which has a

very probability of false-negative signals, the enabled no-exclusion method achieves a significantly

better mean error than the default system.

Generally, for any sensor configuration there is a threshold on the frequency of false-negative

signals. Before this threshold, the false-negative signals are not actually frequent enough to use the

no-exclusion method. So, if we use the no-exclusion method before this threshold, we practically

do not use important information in the zero signals which convey information that the person is

not located in certain areas, and consequently we lose accuracy. Around this threshold, using or

not using the no-exclusion method does not make a significant difference. Above this threshold,

the frequency of false-negative signals is high enough that ignoring the information in zero signals

improves the accuracy. This threshold has a reverse correlation with the amount of sensing range

overlaps in a sensor configuration. For sensor configurations which use motion sensors with wide

ranges where the range of a motion sensor may overlap with the range of many other sensors, the

threshold can be very small. For such configurations, the no-exclusion method should be always

enabled in real-world applications, in order to have a robust system.

47

Chapter 6

Conclusions and future work

In our indoor localization framework we used three types of sensors: (1) passive infrared motion

sensors, (2) occupancy sensors for beds and chairs with fixed locations, and (3) switch-type sensors.

We first elaborated the main part of our framework that only uses binary sensors and assumes they

are ideal. We then integrated switch-type sensors. Finally, we enumerated five main challenges that

we have encountered in a real environment with real sensors : (i) the real person’s body model which

has thickness and is not a single point, (ii) the oscillation of the positive signal of motion sensors,

(iii) doors which are not guaranteed to be always closed or open, (iv) motion sensors which are

not triggered when the person in their range is stationary, and (v) false-negative signals of motion

sensors. We described how each of these challenges may cause problems with making invalid and/or

misleading sensor readings. We explained our solutions to address each problem.

In experiments, we focused on five dimensions of variability: (a) the type of the person’s move-

ment, i.e. smooth vs. bursty movement, (b) the sensors’ configuration, i.e. minimum-coverage vs.

dense, and enabled vs. disabled switch-type sensors, (c) enabled vs. disabled pruning step, (d) en-

abled vs. disabled no-exclusion approach, and (e) the noise model, i.e. ideal vs. realistic vs. three

heavily noisy models. In summary, using ideal sensors, we have achieved 67cm and 49cm of mean

localization error with a minimum-coverage and a fairly dense sensor configurations respectively.

For a realistic model of sensors, these numbers are 69cm and 62cm respectively. We have drawn

conclusions from two important observations of the experiments.

Experiments show that in the case of ideal sensors, the localization error is lowered by 28%

when the sensor density was raised from 0.175 to 0.267 binary sensors per squared meters. Hence,

in terms of accuracy – i.e. 1/error – the localization accuracy has improved by 39% with a 52%

increase in the sensor density. Therefore, the localization accuracy has not improved as much as

the sensor density has increased. It should be emphasized that these numbers were for the case of

ideal sensors, whereas with a realistic noise model (fn1) the situation is very different. With 52%

increase in the density of real sensors, only 13% improvement in the accuracy is obtained. This is

because as the sensor density increases, the overlaps of sensor ranges increase too. As a result, the

negative impact of false-negative signals in a realistic model is magnified with more range overlaps.

48

This partially cancels the improvement added by the increase in the sensor density. In summary,

using real binary sensors, if we incur additional cost to place more sensors of this type, we cannot

expect to gain proportional degree accuracy.

The last set of experiments demonstrated that with the minimum-coverage sensor configuration,

the no-exclusion method almost does not change the localization accuracy. This is because in the

min-coverage sensor configuration, sensor ranges have little overlaps. Therefore, for such a sensor

configuration the logic of no-exclusion algorithm has almost the same outcome as the default set-

ting (without no-exclusion). But, with the dense sensor configuration, the no-exclusion algorithm

worsens the accuracy for fn0, fn1, and fn2 noise models. For fn4 it slightly improves and for

fn5 it remarkably improves the mean error of localization. We conclude that even using a fairly

dense configuration of narrow-range motion sensors, the no-exclusion method only improves the

localization accuracy for very noisy models. So, by default and for a normal realistic noise model,

we should certainly disable the no-exclusion method.

There are three important future directions pertaining to the results of this thesis: (a) an auto-

matic optimal sensor placement, (b) employing wide-range motion sensors, and (c) combining the

information about the geometry of sensor coverage with a traditional state estimation framework.

We can see in the experiments that the sensor configuration contributes significantly to the perfor-

mance of our localization framework. Currently, the process of sensor placement is completely

manual. This makes it very time consuming. Besides, for a given number of sensors, the result

of a manual sensor placement are arguably non-optimal. An optimal sensor placement of a fixed

number of sensors is the one that minimizes the expected mean error of localization. Due to the

above-mentioned reasons, it is crucial to design and implement an automatic sensor placement sys-

tem. This system should be able to take as input the building model and the number of sensors of

each type, and output an optimal sensor configuration.

The second work that should be done in the future is to add wide-range motion sensors. Cur-

rently, we only use the narrow-range motion sensors. This makes the system more robust to false-

negative signals and other sources of noise. By using wide-range motion sensors, we can obtain fine

grained coded regions with significantly smaller number of sensors. On the other hand, we observed

in the experiments that the no-exclusion algorithm is not effective when using sensor configurations

with little overlaps. With wide-range motion sensors, the no-exclusion algorithm could be more ef-

fective. A good future strategy would be to employ wide-range sensors and develop the no-exclusion

algorithm to still maintain robustness against false-negative signals.

The presented work is heavily influenced by the attention to the geometry of the sensor cover-

age. In the future, it would be interesting to consider how information about the geometry of sensor

coverage can be combined with a traditional state estimation framework, using e.g., state estima-

tion techniques applicable to binary sensors. This future work will also help assess the degree to

which accuracy of geometric coverage representation has a significant impact on the state estimation

49

outcomes.

50

Bibliography

[1] Olivier Barnich and Marc Van Droogenbroeck. Droogenbroeck, vibe: a powerful random
technique to estimate the background in video sequences. In in International Conference on
Acoustics, Speech, and Signal Processing (ICASSP 2009, pages 945–948, 2009.

[2] Richard J. Barton and Divya Rao. Performance capabilities of long-range uwb-ir tdoa local-
ization systems. EURASIP J. Adv. Signal Process, 2008:81:1–81:17, January 2008.

[3] Esteban Tobias Bayro Kaiser. Indoor simultaneous localization and mapping for pedestrian
with wearable computing. In Proceedings of the 12th international conference on Human
computer interaction with mobile devices and services, MobileHCI ’10, pages 487–488, New
York, NY, USA, 2010. ACM.

[4] Mark d. Berg, Otfried Cheong, Marc Kreveld, and Mark Overmars. Computational Geometry.
Springer Berlin Heidelberg, 2008.

[5] M. Bertozzi, A. Broggi, C. Caraffi, M. Del Rose, M. Felisa, and G. Vezzoni. Pedestrian
detection by means of far-infrared stereo vision. Comput. Vis. Image Underst., 106(2-3):194–
204, May 2007.

[6] N. M. Boers, D. Chodos, P. Gburzynski, L. Guirguis, J. Huang, R. Lederer, L. Liu, I. Nikolaidis,
and E. Stroulia. The smart condo project: Services for independent living. Smart Healthcare
Applications and Services, 2011.

[7] Mustapha Boushaba, Abdelhakim Hafid, and Abderrahim Benslimane. High accuracy local-
ization method using aoa in sensor networks. Comput. Netw., 53(18):3076–3088, December
2009.

[8] Hongyang Chen, Bin Liu, Pei Huang, Junli Liang, and Yu Gu. Mobility-assisted node local-
ization based on toa measurements without time synchronization in wireless sensor networks.
Mob. Netw. Appl., 17(1):90–99, February 2012.

[9] J. Cobos, L. Pacheco, X. Cufi, and D. Caballero. Integrating visual odometry and dead-
reckoning for robot localization and obstacle detection. In Proceedings of the 2010 IEEE
International Conference on Automation, Quality and Testing, Robotics (AQTR) - Volume 01,
AQTR ’10, pages 1–6, Washington, DC, USA, 2010. IEEE Computer Society.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

[11] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 886 –893 vol. 1, june 2005.

[12] E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. Computer Graphics and
Applications, IEEE, 25(6):38 –46, nov.-dec. 2005.

[13] Kazutaka Fukuda and Eiji Okamoto. Performance improvement of toa localization using imr-
based nlos detection in sensor networks. In Proceedings of the The International Conference
on Information Network 2012, ICOIN ’12, pages 13–18, Washington, DC, USA, 2012. IEEE
Computer Society.

[14] Michael Harville and Dalong Li. Fast, integrated person tracking and activity recognition
with plan-view templates from a single stereo camera. In IN: IEEE CONF. ON COMPUTER
VISION AND PATTERN RECOGNITION, pages 398–405, 2004.

51

[15] Andreas Hub, Joachim Diepstraten, and Thomas Ertl. Design and development of an indoor
navigation and object identification system for the blind. SIGACCESS Access. Comput., (77-
78):147–152, September 2003.

[16] Shahram Jalaliniya and Thomas Pederson. A wearable kids’ health monitoring system on
smartphone. In Proceedings of the 7th Nordic Conference on Human-Computer Interaction:
Making Sense Through Design, NordiCHI ’12, pages 791–792, New York, NY, USA, 2012.
ACM.

[17] Omar Javed, Khurram Shafique, and Mubarak Shah. A hierarchical approach to robust back-
ground subtraction using color and gradient information. In Proceedings of the Workshop on
Motion and Video Computing, MOTION ’02, pages 22–, Washington, DC, USA, 2002. IEEE
Computer Society.

[18] Wooyoung Kim, Kirill Mechitov, Jeung-Yoon Choi, and Soo Ham. On target tracking with
binary proximity sensors. In Proceedings of the 4th international symposium on Information
processing in sensor networks, IPSN ’05, Piscataway, NJ, USA, 2005. IEEE Press.

[19] Mikkel Baun Kjærgaard, Henrik Blunck, Torben Godsk, Thomas Toftkjær, Dan Lund Chris-
tensen, and Kaj Grønbæk. Indoor positioning using gps revisited. In Proceedings of the 8th
international conference on Pervasive Computing, Pervasive’10, pages 38–56, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[20] T. Klingeberg and M. Schilling. Mobile wearable device for long term monitoring of vital
signs. Comput. Methods Prog. Biomed., 106(2):89–96, May 2012.

[21] Yang Sun Lee, Ji-Min Lee, Sang Soo Yeo, Jong Hyuk Park, and Leonard Barolli. A study on
the performance of wireless localization system based on aoa in wsn environment. In Proceed-
ings of the 2011 Third International Conference on Intelligent Networking and Collaborative
Systems, INCOS ’11, pages 184–187, Washington, DC, USA, 2011. IEEE Computer Society.

[22] Chin-Heng Lim, Yahong Wan, Boon-Poh Ng, and C. M.S. See. A real-time indoor wifi local-
ization system utilizing smart antennas. IEEE Trans. on Consum. Electron., 53(2):618–622,
May 2007.

[23] Felix Mata, Andres Jaramillo, and Christophe Claramunt. A mobile navigation and orientation
system for blind users in a metrobus environment. In Proceedings of the 10th international
conference on Web and wireless geographical information systems, W2GIS’11, pages 94–108,
Berlin, Heidelberg, 2011. Springer-Verlag.

[24] T. Murakita, T. Ikeda, and H. Ishiguro. Human tracking using floor sensors based on the
markov chain monte carlo method. In Pattern Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, volume 4, pages 917 – 920 Vol.4, aug. 2004.

[25] Wayne Chelliah Naidoo and Jules-Raymond Tapamo. A model of an intelligent video-based
security surveillance system for general indoor/outdoor environments. In Proceedings of the
2008 annual research conference of the South African Institute of Computer Scientists and In-
formation Technologists on IT research in developing countries: riding the wave of technology,
SAICSIT ’08, pages 159–168, New York, NY, USA, 2008. ACM.

[26] T. Nishizeki and N. Chiba. Introduction to Algorithms. Elsevier Science Publishers, 1988.

[27] S. Noimanee, T. Tunkasiri, K. Siriwitayakorn, and J. Tuntrakoon. Wireless c45 based vital-
signs monitoring system for patient after heart operation care. In Proceedings of the 7th WSEAS
International Conference on Electronics, Hardware, Wireless and Optical Communications,
EHAC’08, pages 239–243, Stevens Point, Wisconsin, USA, 2008. World Scientific and Engi-
neering Academy and Society (WSEAS).

[28] L. Ojeda and J. Borenstein. Personal dead-reckoning system for gps-denied environments.
In Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on,
pages 1 –6, sept. 2007.

[29] Joseph O’Rourke. Algorithmic Geometry. Cambridge University Press, 1998.

[30] Robert J. Orr and Gregory D. Abowd. The smart floor: a mechanism for natural user identifi-
cation and tracking. In CHI ’00 extended abstracts on Human factors in computing systems,
CHI EA ’00, pages 275–276, New York, NY, USA, 2000. ACM.

52

[31] Veljo Otsason, Alex Varshavsky, Anthony LaMarca, and Eyal de Lara. Accurate gsm indoor
localization. In Proceedings of the 7th international conference on Ubiquitous Computing,
UbiComp’05, pages 141–158, Berlin, Heidelberg, 2005. Springer-Verlag.

[32] R. F. Pinkston. A touch sensitive dance floor/MIDI controller. Acoustical Society of America
Journal, 96:3302, November 1994.

[33] Franco P. Preparata and Michael I. Shamos. Computational geometry: an introduction.
Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[34] N. Shrivastava, R. Mudumbai U. Madhow, and S. Suri. Target tracking with binary proximity
sensors: fundamental limits, minimal descriptions, and algorithms. In Proceedings of the 4th
international conference on Embedded networked sensor systems, SenSys ’06, pages 251–264,
New York, NY, USA, 2006. ACM.

[35] Thiago Teixeira, Gershon Dublon, and Andreas Savvides. A survery of human-sensing: Meth-
ods for detecting presence, count, location, track, and identity. ACM Computing Surveys, 2010.

[36] Jorge Torres-Solis and Tom Chau. Wearable indoor pedestrian dead reckoning system. Perva-
sive Mob. Comput., 6(3):351–361, June 2010.

[37] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In Computer Vision and
Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer Society Conference on,
pages 586 –591, jun 1991.

[38] Alex Varshavsky, Eyal de Lara, Jeffrey Hightower, Anthony LaMarca, and Veljo Otsason. Gsm
indoor localization. Pervasive Mob. Comput., 3(6):698–720, December 2007.

[39] Harshvardhan Vathsangam, Anupam Tulsyan, and Gaurav S. Sukhatme. A data-driven move-
ment model for single cellphone-based indoor positioning. In Proceedings of the 2011 Inter-
national Conference on Body Sensor Networks, BSN ’11, pages 174–179, Washington, DC,
USA, 2011. IEEE Computer Society.

[40] Paul Viola and Michael Jones. Robust real-time object detection. In International Journal of
Computer Vision, 2001.

[41] Zijian Wang, Eyuphan Bulut, and Boleslaw K. Szymanski. Distributed energy-efficient target
tracking with binary sensor networks. ACM Trans. Sen. Netw., 6(4):32:1–32:32, July 2010.

[42] Tracy L. Westeyn. Child’s play: activity recognition for monitoring children’s developmental
progress with augmented toys. PhD thesis, Atlanta, GA, USA, 2010. AAI3425169.

[43] Le Yang and K. C. Ho. An approximately efficient tdoa localization algorithm in closed-
form for locating multiple disjoint sources with erroneous sensor positions. Trans. Sig. Proc.,
57(12):4598–4615, December 2009.

53

