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Abstract 

In this thesis, we investigate the formation and movement of self-organizing 

collectives of animals in homogeneous environments. For this, we propose a 

general modeling framework that incorporates how individuals perceive infor­

mation from neighbors, and the amount of information perceived. In par­

ticular, we construct and analyze a new one-dimensional nonlocal hyperbolic 

model which assumes that the interactions with neighbors (that is, attraction 

towards individuals that are far away, repulsion from those that are nearby, 

and alignment with individuals at intermediate distances) are determined by 

the information perceived. The model is used to investigate the effects of these 

social interactions on the emergence and the structure of group patterns. 

For the first part of the thesis, we assume that the social interactions influ­

ence only the individuals' turning behavior. In this case, the one-dimensional 

model generates a wide range of spatial and spatiotemporal patterns. More 

precisely, the model displays at least 13 different patterns which depend on 

the assumptions we make about how individuals receive information from their 

neighbors. Some of these patterns are classical, such as stationary pulses, trav­

eling pulses, or traveling trains. However, the majority of these patterns are 

novel, such as the patterns we call zigzag pulses and feathers. To investi­

gate the conditions under which these patterns arise, the transitions between 

them, as well as the structure of the patterns, we use numerical and analytical 

techniques such as bifurcation theory, linear and weakly nonlinear analysis. 

In the last part of the thesis, we assume that the social interactions in­

fluence the turning rates, as well as the individual's speed. To compare the 

effects of these two assumptions, namely density-dependent speed, and density-

dependent turning rates, we use formal parabolic limit, linear analysis and 



numerical simulations. 

This modeling framework presents a unitary approach for the investigation 

of animal group formation and movement. More precisely, all the patterns 

obtained with other parabolic and hyperbolic models existent in the literature 

can be understood in terms of a single model operating in different parameter 

regimes, represented by different communication mechanisms. 
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Chapter 1 

Introduction 

1.1 Overview 

Pattern formation is one of the most studied aspects of animal communities 

(see for example [1, 4, 24, 35, 61, 78, 86, 96, 101, 104, 106, 118, 131, 136, 143] 

and the references therein). Some of the most remarkable examples of patterns 

observed in animal groups are related to the behavior displayed by these groups 

[104]. Stationary aggregations formed by resting animals, migrating herds of 

ungulates, zigzagging flocks of birds, and milling schools of fish are only a few 

of the patterns. 

There are two types of factors that influence group formation: (a) external 

factors that, for example, give rise to phototaxis [49] or thermotaxis [135], 

and (b) internal factors, such as social interactions between individuals [7, 

13, 61, 124, 143]. This second type of factors leads to self-organized animal 

aggregations. In this research, we will focus only on aggregations formed by 

social interactions since it represents a main interest of complexity theory [104]. 

There are different reasons why animals self-organize into aggregations. 

For example, being in a group increases the possibility of finding a mate, as 

well as the foraging efficiency [104, 112]. Also, it might increase the chance of 

survival [46, 140]. However, there are still some open issues regarding these 

aggregations. For example, it is still unknown what factors decide the shape 

of an aggregation, and how this shape is maintained over a certain period of 

time [21]. Also, what triggers the transitions between different patterns? An­

other important aspect that has to be considered when trying to understand 

1 



these aggregations is animal communication. Empirical results suggest that 

there might be a relation between how individuals receive information from 

conspecifics, the quantity of information, and the social interactions between 

group members [34]. However, this aspect has not been investigated yet. It 

should be mentioned that understanding these aggregations has not only the­

oretical significance, but also more practical applications. For example, un­

derstanding schooling behavior can be useful in establishing fishing strategies 

[103, 115], while understanding desert locust aggregations can be useful in 

managing and controlling this species' outbreaks [124, 135]. More recently, 

aggregative, schooling and swarming behavior has attracted the attention of 

physicists, computer scientists, and engineers interested in autonomous robots 

and traffic flow in intelligent transportation systems [38, 69, 70]. 

The main question that scientists are trying to answer in regard to these an­

imal aggregations is: How do we integrate what we know at the individual level, 

to be able to understand the behavior at the group level [104, 106, 130, 142]? 

Mathematical models can shed light on this aspect, by identifying which 

individual-level mechanisms lead to the spatial and spatiotemporal group pat­

terns observed in animal communities. The models fall into two frameworks: 

Lagrangian models (individual-based models), and Eulerian models (contin­

uum models). A summary of the most significant models is shown in Tables 

1.1 and 1.2. In the following two sections, we will give an overview of some of 

the Lagrangian and Eulerian models that had a great impact on the direction 

of the research in this area. In Section 1.2, we will review some Lagrangian 

models that have been most successful at obtaining patterns similar to those 

observed in nature. In Section 1.3, we will focus on the Eulerian models. We 

discuss parabolic versus hyperbolic modeling approaches, and the resulting 

spatial and spatiotemporal patterns. In Section 1.4, we will discuss an im­

portant aspect of animal ecology that is only indirectly considered by both 

Lagrangian and Eulerian models, namely animal communication, and its rela­

tion to group behavior. In Section 1.5, we give an outline of this thesis. 

2 
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1.2 Lagrangian models for group formation and 
movement 

In the Lagrangian approach, a set of decision rules that govern the movements 

of individuals is given (see for example [5, 24, 43, 52, 61, 87, 101, 105, 117, 

118, 136] and the references therein). Most of these models are in two or three 

spatial dimensions, and include three types of social interactions that can alter 

the position of an individual: attraction towards individuals that are far away, 

repulsion from those that are in close vicinity, and a tendency to align with 

those neighbors that are at intermediate distances [5, 24, 52, 61, 117, 118]. In 

two spatial dimensions, the ranges over which the interactions have effect are 

concentric (as in [52, 61, 105]), while in three dimensions, they are spherical 

[24]. Note that the social interactions are introduced in an additive manner 

(see the reviews in [42] and [105]). 

We should stress here that the majority of the Lagrangian models assume 

that the behavior of individuals is influenced by all three social interactions 

(see for example [5, 24, 51, 52, 61, 117]). These interactions can affect the 

direction of movement of an individual, as well as its speed. However, most 

of the Lagrangian models existent in the literature concentrate only on the 

changes in the direction, and assume that the speed is constant or random (as 

in [24, 52, 61, 136, 139, 143] and the review in [106]). 

To understand the effect of the social interactions, the models investigate 

the structure of the groups (e.g., geometry of the group, degree of alignment, 

etc.) through numerical simulations. In this context, Aoki [5] and Niwa [96] 

showed that the group structure and movement depend on the attractive and 

alignment interactions. More precisely, both attraction and alignment interac­

tions are necessary for polarized groups to form and maintain their cohesion. 

In general, numerical simulations with constant (or random) speed and 

density-dependent directional changes are in close agreement with the group 

structures observed in nature [24, 61, 118, 136]. Couzin et. al. [24], for exam­

ple, described four types of groups: swarm, tori, dynamic parallel groups, and 

highly parallel groups. This particular paper changed the direction of the re-
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search with the Lagrangian approach, by investigating the transition between 

these types of group structures as the size of the interaction zones is varied. 

This procedure can shed light on the influence of individual differences on the 

group structure. Moreover, this model shows that depending on the values 

of the parameters, there is a hysteresis phenomenon between different group 

structures. More precisely, the previous history of the group structure deter­

mines the evolution of the group behavior, even if individuals do not know 

what this history is [24]. 

Very few models assume that the speed also is influenced by the interactions 

with neighbors [17, 43, 51, 118]. For example, Gueron et. al. [43] considered 

that individuals have an intrinsic speed which is complemented by a second 

component determined by the social interactions with neighbors. Thus, indi­

viduals accelerate or decelerate in response to neighbors that are within the 

repulsion or attraction ranges. The results show that this variable speed can 

account for the splitting and merging behavior observed in different animal 

groups (e.g., herds and fish schools). Moreover, group splitting can also occur 

if the size of the attraction range is too small. 

Buhl et. al. [17] derived a one-dimensional model which assumes that in­

dividuals turn to align with their neighbors, and adapt their velocity to the 

average velocity of these neighbors. The model predicts a phase transition 

between disordered movement and highly aligned collective movement, when 

the total group density is increased. This prediction was then confirmed em­

pirically through experiments using locust nymphs. 

Similar phase transitions are obtained with traffic models [122], and models 

for pedestrian movement [47], where cars (pedestrians) accelerate and decel­

erate due to interactions with other cars (pedestrians). The models exhibits 

phase transitions between free flow and traffic jams. These phase transitions 

are also determined by the density of vehicles (pedestrians). 

Due to analytical difficulties in studying Lagrangian models, as well as some 

computational limitations, this approach is applied mostly to small groups 

of organisms. To investigate the formation and movement of large, dense 

groups of organisms, scientists use Eulerian models. We will discuss some of 

6 



these models in the next section. Before this, we should mention that there 

are models that try to bridge the gap between the Lagrangian and Eulerian 

approaches (see for example [35, 40, 99, 89]). These models start with a 

Lagrangian formulation of the interactions between individuals; in the limit, 

under reasonable approximations, an Eulerian model is obtained. Note that 

the resulting continuum models are usually described by parabolic equations 

[1, 10, 20, 35, 40, 89, 99]. 

1.3 Eulerian models for group formation and 
movement 

Eulerian models are used to study the dynamics of the density of individuals, 

which is typically described by partial differential equations. Usually, these 

models are applied to large populations of insects, fish, bacteria, and so forth. 

Eulerian models for animal aggregations can be divided into two categories: 

parabolic and hyperbolic equations. These models also incorporate social in­

teractions, namely attraction towards neighbors, repulsion from them, and 

alignment with others. However, compared to the Lagrangian models which 

usually incorporate all three interactions, the Eulerian models generally focus 

on attractive and repulsive interactions alone [85, 86, 133], or on alignment in­

teractions alone [78, 109]. There are very few models that incorporate all three 

social interactions [15, 85], and these models are usually two-dimensional. For 

both parabolic and hyperbolic models, the social interactions between group 

members can be local, when immediate neighbors or local effects of the envi­

ronment are important [27, 76, 78], or nonlocal, when distant individuals or 

nonlocal effects of the environment play an important role [15, 85, 86, 132,133]. 

In the following, we provide an overview of the models most relevant to 

this research, and the spatial and spatiotemporal patterns that they generate. 

1.3.1 Parabolic models 

The great majority of the Eulerian models for animal group formation and 

movement are described by parabolic equations (advection-diffusion equations, 
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or advection-diffusion-reaction equation) [3, 15, 35, 62, 63, 74, 83, 84, 85, 86, 

88, 98, 132, 133, 134]. These models can be derived using a correlated random 

walk approach [74, 134], or using Fick's law [42, 62]. They usually take the 

form 

/ . = V - ( 2 > V / ) - V - ( V 7 ) +<?(/), (1.1) 

where f(x, t) is the population density at location x and time t, D is the diffu­

sion coefficient, and V is the advection coefficient. Some models also include 

a reaction term (?(/), which describes the contributions of the population dy­

namics to the changes in the density [83]. In the following, we will assume 

that the growth of organisms happens on a much larger time scale compared 

to the formation of groups and their movement. Therefore, we will ignore the 

reaction term. 

One of the most intriguing aspects that scientists have tried to elucidate 

in regard to moving animal groups such as swarms of locusts, is the long­

time existence of these groups. Note that such groups also have well defined 

boundaries, with the population density dropping to zero at the edges. Math­

ematically, this can be described by traveling pulses. To solve the traveling 

pulse problem, researchers focused first on local mathematical models that in­

corporated biologically realistic assumptions [27]. When these models failed to 

exhibit traveling pulses, scientists directed their attention to nonlocal models 

[86, 132, 133]. In one dimension, these models are described by the following 

equation 

ft = (Dfx - V(f)f)x , (1.2) 

where / denotes the swarm density, D is the diffusion coefficient, and V(f) is 

the nonlocal, density-dependent velocity. The earliest integral formulations of 

the density flux define 

V(f) = K*f= f K{x- x')f(x', t)dx', (1.3) 
JD 

where K is an antisymmetric convolution kernel [42]. 

Mogilner and Edelstein-Keshet [86] extended this model to include a local 

and a nonlocal group drift, as well. Moreover, the convolution kernel is consid­

ered to have two components: an attractive and a repulsive component. The 

8 



velocity is therefore described by the following equation 

V(f) = aef + Aa(Ka * / ) - Arf(Kr * / ) , (1.4) 

with the odd kernels 

*r(*) = -^~x2,2r\ Ka(x) = -^e-*2/2*2. (1.5) 

Here a and r are the spatial ranges for the attractive and repulsive interactions, 

Ar and Aa are the coefficients of these interactions, while Kr and Ka are 

the kernels modeling the interactions. The term ae gives the effect of local 

interactions on the velocity. Both analytical and numerical results have shown 

that when diffusion is density-independent, it is not possible to obtain a true 

traveling pulse solution, even if the groups can persist for a long time. Mogilner 

and Edelstein-Keshet then introduced an even, nonlocal drift term: 

V(f) = a J + (Aa - Arf)(K0 * / ) + Ae(Ke * / ) , (1.6) 

where K0 is an odd nonlocal kernel, while Ke is an even nonlocal drift kernel. 

The numerical results show that very few individuals get lost in this case, and 

thus the swarm is preserving its initial shape quite well. Moreover, Mogilner 

and Edelstein-Keshet [86] studied analytically the effect of density-dependent 

diffusion. In this case, the results show that it is possible to obtain a true 

traveling pulse solution. It should be mentioned here that their results with 

different types of kernels suggest that the symmetry of the kernel, rather than 

the particular form of the kernel, is important for the final pattern. 

Considering these models as a starting point, different authors have in­

vestigated other types of spatial and spatiotemporal patterns that arise in 

nonlocal models with attractive and repulsive fluxes. For example, Topaz 

and Bertozzi [132] derived a two-dimensional model t ha t shows vortices and 

stationary clumps, depending on the type of interaction kernels used (i.e., 

kernels for rotational motion, and kernels for motion towards and away from 

concentration density). Topaz et. al. [133] derived a one-dimensional model 

that incorporates density-dependent diffusion, and only nonlocal attraction 

(i.e., the repulsion is considered to arise as an anti-crowding mechanism). The 
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model shows stationary pulses that have well-defined boundaries. Moreover, 

the authors extended the model to higher dimensions, and the results were 

similar. 

A different type of social aggregation that has captivated the interest 

of scientists is observed in Myxobacteria colonies. Under starvation condi­

tions, these organisms form stationary aggregations called "fruiting bodies". 

However, during the initial phase of aggregation, they display what is called 

rippling behavior: right-moving and left-moving waves which appear to pass 

through each other. In an attempt to understand this behavior, researchers 

focused on local mathematical models that can describe the interaction be­

tween cells moving in opposite directions, that meet head-on [62, 63]. This 

interaction depends only on the contact between cells, with no signals that 

diffuse. The resulting parabolic equations show remarkable agreement with 

the experiments: waves that pass through each other, giving rise to the rip­

pling behavior. The models proposed in [62, 63] are described in terms of 

diffusion, convection, and alignment. This alignment is the result of direction 

reversals caused by interactions with other cells moving in opposite direction. 

There are a very few other parabolic models that also incorporate align­

ment. Two such examples are proposed by [85] and [15]. Both models are 

two-dimensional and show three types of spatial patterns: alignment without 

aggregation, aggregation without alignment, and patches of aligned objects. 

To summarize this section, the results of the parabolic models are inter­

esting: local models do not support traveling waves [27], but can give rise to 

ripples [63], while nonlocal models can give rise to stationary pulses [133], or 

to traveling pulses, provided that diffusion is density-dependent [86]. Con­

sidering that one-dimensional models have not explained the complexity of 

the patterns observed in biological systems, scientists have directed their at­

tention towards two-dimensional models. The results are more complex (e.g., 

ripples [63], stationary aggregations [133], vortex-like groups [132], patches of 

aligned individuals [15, 85] ), but they still cannot account for the multitude 

of observed patterns. 
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1.3.2 Hyperbolic models 

Since the parabolic models have the unrealistic property of infinite propaga­

tion speed, a few authors have focused on hyperbolic models to study animal 

movement (e.g., [33, 45, 56, 76, 77, 78, 100, 109, 110, 111]). In all these cases, 

the basic equations are derived using the classical Goldstein-Kac theory for 

correlated random walks (see [39, 66]). To exemplify this theory, let us divide 

the domain into intervals of length Ax, and consider the time step At. Define 

p+(x,t) (p~(x,t)) to be the probability that a randomly chosen right-moving 

(left-moving) individual is at (x,t), and A+ (A-) be the probability of turning 

if the individual is moving right (left). Then, the probability that a right-

moving individual is positioned at x at the next time step t + At, is given 

by 

p+(x, t + At)= p+(x - Ax, t)(l - A+At) + p~(x + Ax, t)\~At. (1.7) 

Similarly, the probability that a left-moving individual is positioned at x at 

the next time step t + At, is given by 

p~{x, t + At) = p~(x + Ax, t)(l - A-At) + p+(x - Ax, t)A+At. (1.8) 

Expanding these two equations in Taylor series about (x, t) leads to 

Ax 
p+{x, t) + —p+ (x, t) = -X+p+(x, t) + \-p~(x, t) + AxX+p+ + Ax\-p~, 

Ax _ _ 
Vt (M) - ~^Px fat) = X+p+ (x,t)- \~p-(x,t) - AxX+p+ - AxX px. 

(1.9) 

For Aa; —>• 0 and At —>• 0 such that ^ —> 7, we obtain 

p+(x,t) + (jp+(x,t))x = -X+p+(x,t) + X'p-(x,t), 

P7(.x,t)-(rfp-(x,t))x = X+p+(x,t)-X-p-(x,t). (1.10) 

Note that now p+(x, t) and p~(x, t) are interpreted as probability density func­

tions for the right-moving and left-moving individuals [145]. These individuals 

move at a constant speed 7, and change direction randomly according to Pois-

son processes with rates A± (i.e., the probability not to change direction within 

the time interval [0, t) decreases as e~x *). 
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Almost all the hyperbolic models for animal group formation assume that 

individuals turn in response to interactions with other neighbors, that is, the 

turning rates X^ are density-dependent. The majority of these models consider 

local interactions with neighbors [76, 77, 78]. Only a few hyperbolic models 

assume that the turning rates are influenced by more distant individuals [109, 

110]. 

For example, Lutscher and Stevens [78] investigated the rippling behavior 

in Myxobacteria colonies using turning rates that have a random (fi) and a 

directed component (fJ^): A± = // + ^±(u+,u~). The authors discussed ana­

lytical and numerical results obtained with different types of turning functions 

H^. In particular, when the turning rates are equal and depend only on the 

left-moving neighbors (i.e., Ju
±(u+,ti_) = f(u~)), the results show ripples and 

stationary aggregations. 

Modeling the behavior of the same Myxobacteria swarms, Pfistner [109] 

started with equations (1.10) and assumed that cells turn only as a result of the 

interactions with distant cells. More precisely, cells turn to align themselves 

with other cells within a perception interval [—R, R]. The turning rates are 

defined by the following nonlocal terms: 

A+ = A[ / (a(s)u+(x + s,t) + p(s)u-(x + s,t))ds) 

\~ = A( I (a(s)u-(x-s,t) + p(s)u+(x-s,t))dsj, (1.11) 

where a and (3 are the weight functions for the surrounding densities, and the 

functional A is monotone increasing and positive. The results show stationary 

swarms. Later, Pfistner modified this model to incorporate moving boundaries 

for the swarm edges [110]. The dynamics of the swarm is thus analyzed numer­

ically through the retraction and expansion of the boundaries. An extension 

of this model in two spatial dimensions can be found in [111]. 

The models we mentioned above assume that the speed is constant, while 

the turning rates are determined by the alignment interactions with local or 

nonlocal neighbors. However, it is known that some organisms also adapt their 

speed to the speed of their neighbors [59]. Such a model, which assumes that 
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individuals adapt both their speed and direction to that of their neighbors, was 

introduced in [77]. The equations for the movement of individuals are similar 

to (1.10), where A+ = A- = X(u+, u~), and the speeds for the right-moving and 

the left-moving individuals are described by 7+ and 7"", respectively. These 

speeds are assumed to depend not only on the local density of individuals, 

but also on the gradient of this density. In particular, the speeds satisfy the 

following elliptic equations 

(37+x = i+-E{u+,ut), 

P%x = -y--E(u-,-u-), (1.12) 

where E represents an expected speed. Numerical simulations were performed 

only for right-moving individuals, with the speed satisfying a parabolic equa­

tion of the form T7t
+ = 0j+x — 7 + E{u+,u^). The results show traveling 

pulses. 

Therefore, the hyperbolic models show one, maximum two group patterns 

in one model. More precisely, they show ripples [78], aggregations [78, 110], 

and traveling pulses [77]. This is even less than the number of patterns ob­

tained with parabolic models. 

In conclusion, it seems that neither the parabolic nor the hyperbolic models 

existent in the literature can account for the multitude of the observed animal 

group patterns (see for example, the splitting and joining behavior observed 

in fish schools [136], or the anti-predatory behaviors discussed in [104, 136]). 

Moreover, animal groups show transition between different group structures, 

a phenomenon that is not captured by these Eulerian models. One possible 

reason for this failure is that the assumptions considered by these models do 

not fully describe the social interactions between individuals governing group 

formation. More precisely, these models consider that the social interactions 

depend only on the distances between individuals. However, this assumption 

might not be sufficient, since different species use different signals and com­

munication mechanisms. It is very likely that these mechanisms influence the 

social interactions between individuals. We will discuss this aspect in more 

detail in the next section. 
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1.4 Animal communication 

The movement decisions made by small or large groups are based on the local 

and global communication used by these animal groups [22]. In the litera­

ture, there is a lot of information regarding the communication mechanisms 

involved at the individual level (e.g., [31, 32, 123]). For example, Endler and 

Basolo [32] discuss 9 different stages in the communication between a sender 

and a receiver : 

(1) the generation and the emission of the signal; 

(2) signal transmission which is influenced by environmental properties; 

(3) signal reception which is determined by the structure of the sense organs; 

(4) signal transduction; 

(5) signal design and content; 

(6) signal perception; 

(7) classification of the perceived signals; 

(8) extraction of critical information from the signal; 

(9) the decision in response to the signal. 

While there is much information about animal communication at individual 

level, the group-level communication is less understood [22]. As mentioned in 

[23], understanding the behavior of an individual in isolation does not neces­

sarily mean that we understand the behavior of that individual within a group, 

because of the nonlinear interactions with neighbors. It is known that indi­

viduals change their behavior upon the perception of signals from conspecifics 

[81]. In particular, the perception of a signal can cause movement either to­

wards or away from the signaler's position [81]. However, it is not very clear 

how animal communication influences the behavior of the entire group, and 

in particular, the different group structures observed in nature. It is likely 

that the perception of signals and the movement decisions made in response 

to these signals influence the social interactions that determine the group be­

havior. For this reason, throughout this thesis, we will focus only on stages 

(6) and (9) in the classification by Endler and Basolo. 

Animal communication uses different signals, such as visual, acoustic, chem-
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ical or tactile signals, and combinations of these signals [31, 81, 107]. Both 

emission and reception of signals can be unidirectional or omnidirectional, 

depending on the signal. Moreover, the reception of signals is affected by en­

vironmental conditions and the receiver's physiological limitations, and there­

fore different species make use of different signals and reception mechanisms 

[30, 31]. However, since we focus not only on the perception of signals, but also 

on the decisions made in response to these signals, which in turn, will generate 

new signals received by other neighbors, we prefer to use the term "communica­

tion mechanisms" instead of "perception mechanisms". Moreover, throughout 

this thesis we assume that through communication, individuals gain knowledge 

about the number, position, and direction of movement of their neighbors. 

In regard to these communication signals, we should also mention that dif­

ferent signals act on different ranges. For example, depending on the species, 

visual signals can be used for close-range communication, while chemical and 

sound signals can be used for medium or long-range communication [81]. More­

over, the same type of signals (such as sound signals, for example) can some­

times be used on short ranges to increase animal spacing, while at other times 

they can be used on long ranges to decrease spacing and promote aggregation 

[121]. Therefore, there is a very close relation between animal behavior and 

the signals and the communication mechanisms these animals use. 

We should stress here that different species use different communication 

mechanisms. As an example, it is known that some species of birds use direc­

tional sound signals (which require the emitter to face the receiver) to coordi­

nate the flock movements, and omnidirectional signals (with emitters moving 

in any direction) to attract mates or to repel intruders [144]. For Mormon 

crickets, the movement seems to be influenced by the signals perceived from 

conspecifics approaching from behind, and from those positioned ahead and 

moving away [125]. The movement direction of some fish is more frequently 

influenced by the movement direction of the neighbors positioned ahead of 

them than those at their side [137]. Therefore, one can expect to see different 

species displaying different behaviors and group patterns, corresponding to 

these different communication mechanisms. 
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Unfortunately, the literature (either mathematical or biological) is lacking 

a framework to characterize the relationship between animal communication 

and the resulting group patterns. A few individual-based models (e.g., [24, 51, 

61, 64]) take into account that individuals may not receive information from 

behind because of a so-called "blind spot". However, as we mentioned, there 

are many other ways individuals can perceive information from conspecifics. 

A few models describing multi-robot systems, also focus on communication, 

and assume that a message can be broadcast to all group members [92], or it 

can be sent to a randomly chosen group member [102]. 

The purpose of this thesis is therefore to develop a mathematical model 

that incorporates how individuals perceive information from conspecifics and 

the amount of information perceived. In particular, we use the directionality 

of the signals, as well as the ranges on which signals have effect, to define the 

social interactions. Then, we can use this model to investigate the resulting 

group patterns. Moreover, analytical analysis of the patterns can help us 

understand the effect of the communication mechanisms on the group-level 

patterns. We will discuss these aspects in more detail in the next section, 

when we give an outline of the thesis. 

1.5 Thesis outline 

As shown in the previous sections, different mathematical models use different 

assumptions. Consequently, they display different spatial and spatiotemporal 

patterns. In particular, the patterns obtained with Eulerian models are quite 

simple, and unable to account for the multitude of patterns observed in na­

ture. Some of the questions that arise in regard to these results are: Can we 

find a general framework to explain all these different patterns? Moreover, 

can animal communication provide such a framework? Can this framework be 

tailored to specific animal species that use different signal reception mecha­

nisms? Can an Eulerian model display patterns similar to those obtained with 

Lagrangian models (such as the splitting-merging behavior observed in some 

animal groups)? Can we obtain different group patterns? What analytical 
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tools can we use to better understand the effect of the social interactions on 

the resulting group patterns? 

To answer these questions, we will derive a mathematical model for group 

formation and movement that takes into account how individuals receive in­

formation from conspecifics, and how this information influences the social 

interactions among them. In particular, we will start with the hyperbolic 

model proposed by Pfistner [109], and modify it to incorporate some of the 

ideas found in Lagrangian models (such as directional changes as a result of 

all three social interactions), as well as different communication mechanisms. 

The outline of this thesis is as follows. In Chapter 2, we carefully describe 

the new nonlocal hyperbolic model we will use to investigate the formation and 

movement of animal groups. The model assumes density-dependent turning 

rates and constant speed. In this chapter, we also give a derivation of this 

model using a correlated random walk. This provides the link between the 

behavior of an individual as determined by its interactions with its neighbors 

and the behavior of the entire group. In Chapter 3, we investigate some 

theoretical aspects regarding this hyperbolic system. In particular, we discuss 

the existence of mild solutions, and the reduction of this hyperbolic model to 

some well-known nonlocal parabolic models for group formation. In Chapter 

4, we perform a linear analysis of the model, to investigate the stability of 

the homogeneous steady states and the possibility of having heterogeneous 

patterns. In Chapter 5, we use these linear results to investigate numerically 

the spatial and spatiotemporal patterns displayed by the hyperbolic model. 

Then, in Chapter 6, we use weakly nonlinear theory to analyze the mechanisms 

that give rise to some of these patterns. Also, we study the effect of the social 

interactions on the structure of these patterns. In Chapter 7, we extend the 

model introduced in Chapter 2 to account for attractive and repulsive speeds. 

In Chapter 8, we conclude with a discussion of the results. In particular, 

we draw a parallel between our analytical and numerical results, and some 

empirical results obtained for different animal groups. Also, we discuss some 

open problems and future work. 
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Chapter 2 

Model derivation in one 
dimension 

2.1 Introduction 

In this chapter1, we derive a new nonlocal, one-dimensional hyperbolic model 

used to describe the formation and movement of animal groups. As seen in 

Chapter 1, the one-dimensional continuum models for animal aggregations 

that exist in the literature fail to account for the multitude of complex pat­

terns one can observe in nature. These models consider that the social in­

teractions depend only on the distances between individuals. However, this 

assumption might not be sufficient. In support of this statement, we pro­

pose a nonlocal mathematical model that focuses on distance-dependent and 

direction-dependent social interactions, facilitated by animal communication. 

The basic equations for this model are derived using the classical Goldstein-

Kac theory for correlated random walks (see equations (1.10)) [66, 109]. These 

equations describe the evolution of right-moving and left-moving individuals 
XA version of Section 2.2 has appeared in 

R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, (2007) Modeling group formation and 

activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-

1566. 

A version of Section 2.3 has appeared in 

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Complex spatial group patterns result from 

different communication mechanisms, Proc. Natl. Acad. Sci., 104, 6974-6979. 
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who change direction randomly according to a Poisson process. As seen in 

Chapter 1, some previous nonlocal hyperbolic models [109] assumed biased 

turning, that is, individuals turn only to align with their neighbors. However, 

not all animal movements are in response to their conspecifics. It is very 

likely that there is a balance between random and directed motion, depending 

on the group behavior. In this thesis, we will combine these two modeling 

approaches, and assume that individuals not only turn randomly, but also turn 

in response to other individuals. Moreover, based on biological observations, 

we propose to incorporate two other social interactions that affect these turning 

rates: repulsion and attraction. We therefore assume that individuals turn to 

approach other individuals that are far away, turn to avoid collision with those 

neighbors that are nearby, or turn to align with others. To incorporate these 

social interactions, we focus on communication. We use the directionality of 

the communication signals, as well as the ranges on which signals have effect, 

to define the social interactions. In particular, we formulate simple rules by 

which the perceived signals are translated into movement behavior. Moreover, 

as mentioned in Chapter 1, throughout this thesis we assume that through 

communication, individuals gain knowledge about the number, position, and 

direction of movement of their neighbors. 

In Section 2.2, we carefully construct the model for a specific case of an­

imal communication. We focused on this particular case to show how can 

we incorporate both omnidirectional and directional signals. More precisely, 

we assume that both attraction and repulsion involve omnidirectional signals, 

while alignment involves only unidirectional signals. For this particular case, 

we describe the nonlocal attractive, repulsive and alignment interactions, and 

show how can we incorporate them into the turning rates. To complete the 

derivation of the model, we discuss different possible boundary conditions re­

quired if the model is defined on a bounded domain. 

In Section 2.3, we expand our study to focus on different animal commu­

nication signals. In this context, we discuss five hypothetical sub-models for 

signal reception. These sub-models are examples that illustrate how environ­

mental and physiological constraints can be represented with this modeling 
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paradigm. 

In Section 2.4, we show how this nonlocal model can be derived using the 

correlated random walk framework. We will propose a new way to incorpo­

rate different communication mechanisms into a Lagrangian model. As the 

space step and the time step used to discretize the domain approach zero, this 

Lagrangian model converges to the Eulerian model previously discussed. 

We summarize the results in Section 2.5. 

2.2 Model derivation 

In this section, we start with the following system of conservation laws that 

describes the evolution of densities of right-moving (u+(x,t)) and left-moving 

(u-(x,t)) individuals (see [109],[110]): 

Wf(x, t) + (ju+(x, t))x = — \+[u+,u~]u+(x,t) + \~[u+, u~]u~(x, t), 

u^(x, t) — (-yu~(x, t))x — X+[u+,u~]u+(x, t) — \~{u+,u~]u~(x, t), 

u^rc.O) = u$(x),xeR. (2.1) 

Here, 7 is their constant speed, and A+ (A-) is the turning rate for the in­

dividuals that were initially moving to the right (left) and then turn to the 

left (right). We assume that these turning rates depend on the density of 

left-moving and right-moving neighbors. 

A similar model has been proposed in [109] to describe the alignment be­

havior in Myxobacteria colonies. There, the authors assumed that the turn­

ing rates depend only on the alignment interaction. We will modify their 

assumption to include also the dependence on the attractive and repulsive in­

teractions. In the following, we will carefully describe this dependence. In 

Subsection 2.2.1, we will discuss the random and directed components of the 

turning rates. Then, in Subsection 2.2.2, we will show how to incorporate sig­

nal reception into the turning rates. To complete the definition of the model, 

we discuss possible boundary conditions in Subsection 2.2.3. 
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2.2.1 Turning rates 

To define the turning rates, we start with the hypothesis made by many La-

grangian models, namely that each individual interacts with its neighbors via 

three social interactions, attraction, repulsion, and alignment [24, 61,105,118]. 

We further assume that each of these interactions has a different spatial range 

(Figure 2.1(a)). More specifically, we assume that an individual changes direc­

tion to approach other individuals if they are within its attraction range, or to 

avoid collision if they are within its repulsion range. Moreover, an individual 

turns to match its orientation to its neighbors' direction of movement (i.e., 

to align) if they are within its alignment range. Since we derive a ID model, 

(b) 

rep. align, attr. 
i — * — i i ' — i i — ' — i 

Figure 2.1: Illustration of the repulsion (s r), alignment (sai), and attraction (sa) zones: 

(a) 2D case; (b) ID case. It is biologically realistic to have sr < sai < sa. 

the concentric circles that usually describe the interaction ranges in 2D La-

grangian models (Figure 2.1(a)) are replaced by intervals on the real number 

line (Figure 2.1(b)). 

While model (2.1) is formally identical with the model introduced in [109, 

110], the biological processes considered in the turning functions differ consid­

erably. Pfistner [110] only modeled alignment and used turning functions that 

were positive, unbounded and increasing functions of the signals perceived 

from neighbors within a certain perception distance. We, on the other hand, 

assume that all three social interactions influence the turning rates, so that X± 

models attraction, repulsion, and alignment as a response of an individual to 

the signals perceived from its neighbors. We assume that stronger interactions 
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lead to higher turning rates (to avoid collision, for example, in case of high 

repulsion), and consider the turning rates to be bounded, positive, monotone 

functions of the perceived signals y^, which are emitted by individuals moving 

to the right (u+) and to the left (u~): 

X±(y±[u+,u-]) = X1 + X2f(y
±[u+,u']) 

= (A1 + A2/(0)) + A 2 ( / ( y ± [« + , U - ] ) - / ( 0 ) ) ) (2.2) 

where Ax + A2/(0) is a base-line random turning rate, and A2 (/(y*) — /(0)) 

is a bias turning rate. We choose / to be a dimensionless, bounded and in­

creasing function of the dimensionless functionals y±[u+, u~] which incorporate 

nonlocal interaction terms: 

lf[u+,u-]=y?[u+,u-]-y±[u+,u-]+y%[u+,u-]. (2.3) 

Here, yf, y^ and y^ denote the repulsion, alignment, and attraction terms 

that influence the likelihood of turning to the left (+) or to the right (—). We 

will specify the dependence of these terms on u+ and u~ in Section 2.2.2. The 

three interactions are introduced in an additive manner, with repulsive and 

attractive terms having opposite effects. Throughout this chapter, as well as 

Chapters 4, 5, and 6, we assume a monotonically, bounded turning function, 

and use the following function as an example (Figure 2.2): 

f(y±[u+,u-]) =0.5 + 0.5tanh(j ,±[ t i+ ,u-]-y0) , (2.4) 

where the constant yo is chosen such that /(0) <C 1 and the random turning 

dominates the movement. In this case, the base-line turning can be approxi­

mated by Ai, and the change in turning rate due to interactions by A2/(y±). 

2.2.2 Modeling repulsive, attractive, and alignment in­

teractions 

In order to describe the dependence of the social interactions, yf, y^t and y^, 

on u+ and u~, we look at the way organisms perceive and integrate informa­

tion. We assume that both the direction and the spatial range of the signals 
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1. 
f ( / ) 

0.5; 

0 

' / 

'y0 y± 

0.5+0.5 tanhCy1) 

0.5+0.5tanh(y~-yj ) 

Figure 2.2: A turning function that satisfies our assumptions: increasing, positive and 

bounded. The constant yo shifts the graph to the right such that for y± = 0, there is only 

a small random turning. 

define the social interactions. We introduce four parameters that measure the 

information perceived from the right or left, pf and pf, respectively. The 

superscript (±) refers to the direction in which the sender of the information 

moves, and the subscript (r, I) refers to the direction from which the signal 

is perceived (right, left) (Figure 2.3). Later, for the sake of simplicity, the 

analysis will concentrate on special cases. 

By way of example, suppose that the individual positioned at (x, t) moves 

to the right (+) (Figure 2.3(a)), and that it receives information from other 

individuals located to its right, at x + s, and located to its left, at x — s. Also, 

suppose that this individual perceives a stronger signal from the right than 

from the left, that is, (p+u+ + p~u~){x + s) > (pj~u~ + pfu+)(x - s). If the 

signal comes from within the repulsion zone, then it will turn to avoid those 

neighbors that are to its right, regardless of their orientation. If the signal 

comes from within the attraction zone, it will continue moving in the same 

direction. 

For simplicity, we choose p+ = p~ = pr and p/" = pf = pi. If we sum the 

information from all neighbors (s G (0, oo)), we can translate the diagrams 

from Figure 2.3 into the following nonlocal terms that describe the social 
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(a) ' ^ ^ «~ (a') 
x-s 

p + u ^ 

X x+s 

p-ru-

(b) l±7 r I s (b') 

P\A <C* <J?r 

P + u ^ V>N ^PrU" 

Figure 2.3: Description of possible turning functions. Cases (a)-(b) depict a switch in 

movement direction from right to left, while cases (a')-(b') depict the switch in movement 

direction from left to right. Cases (a), (a') describe attraction and repulsion, while (b) 

and (b') describe alignment. Here u+ (u~) represents the density of individuals moving 

right (left), and A+ (A-) is the probability of turning to the left (right), when initially the 

individual at x was moving to the right (left). The other parameters, pf and pf, represent 

signals received from the left (subscript I) and the right (subscript r), from other neighbors 

that are moving to the left (superscript "-") or to the right (superscript "+"). 

interactions: 

POO 

y?a[u+, u~] = qr,a / Krta(s) (pru(x + s) - ptu(x - s)) ds, (2.5) 
Jo 

/•oo 

y-a[u+,u~] = qr,a Kr>a(s)(plu(x-s)-pru(x + s))ds, (2.6) 
Jo 
/•oo 

y%[u+,u~\ = qai Kal(s)(pru-(x + s)-plu
+(x-s))ds, (2.7) 

Jo 
/•oo 

y-t[u+, u~] = qat / Kal(s) (piu+(x -s)- pru~(x + «)) ds, (2.8) 
Jo 

where Kj(s),j G {a,r,al} are interaction kernels, with support inside the in­

terval [0, oo), that describe how signals from different distances are weighed. 

The parameters qa, qr, and qai represent the magnitudes of the attraction, 

repulsion, and alignment forces, respectively. For attraction and repulsion, 

the total density of organisms at a specific position in space is important: 

u(x±s,t) = u+(x±s,t) + u~(x±s,t), s > 0. We assume here that as long as 
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the individual located at x moves towards neighbors that are in the repulsion 

zone, it will turn to avoid collision, no matter what the movement direction of 

those neighbors is. Similarly, the individual is attracted by neighbors within 

its attraction zone, regardless of their orientation. For alignment, on the other 

hand, we assume that an individual responds only to neighbors moving to­

wards it. For example, for y^ (equation (2.7)), we assume that a right-moving 

individual at point x will turn around only if pru~(x + s) is large relative to 

Piu+(x - s). 

In summary, the right-hand sides of equations (2.5) - (2.8) describe how 

the individual at (x,t) weighs information perceived from its right and left 

neighbors. The only difference between the repulsion term (y^[u+,u~}) and 

the attraction term (y^[u+,u~\) is in the range over which the two kernels 

Kr(s) and Ka(s) have influence (Figure 2.4). Recall that since repulsion and 

attraction have opposite effects, these two terms enter the turning function 

(equation (2.3)) with different signs. 

(a) 

0 

A = 'i 

1 
s r s al s a 

repulsion 
11,11 alignment 
— attraction 

(b) 

"1 
J R " ' " ^ 

s s , s s 

r al a 

repulsion 
1 ' ' ' ' alignment 
— attraction 

Figure 2.4: Examples of kernels used for social interactions. These kernels describe how 

signals from different distances are weighed, (a) translated Gaussian kernels for attraction, 

repulsion and alignment, described by equations (2.9); (b) odd kernels for attraction and 

repulsion, and a translated Gaussian kernel for alignment (equations (2.11) and (2.9)). Both 

types of kernels are defined on (—oo, oo). The interaction ranges on which these kernels have 

an effect, satisfy sr < sai < sa. The sr, sai and sa represent half the length of the interaction 

ranges depicted in Figure 2.1. 

A possible choice for the interaction kernels is translated Gaussian kernels 
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(Figure 2.4(a)): 

Kj(s) = . exp (-(a - Sjf/{2m))) , j = r, a, al, s e [0, oo), (2.9) 

with rrij = Sj/8 (j = r, al, a) representing the width of the interaction kernels, 

and Si (j = r,al, a) representing half the length of the interaction ranges, for 

the repulsion, alignment, and attraction terms, respectively. For a biologically 

realistic case, we consider sr < sai < sa. The constants rrij are chosen such 

that the support of more than 98% of the mass of the kernels is inside the 

interval [0, oo): rrij — Sj/8, j € {r, al, a}. In this case, the integrals defined on 

[0, oo) can be approximated by integrals on (—oo, oo). 

To simplify the model equations for the purpose of analysis, we choose 

Pi = Pr (the case pi ^ pr will be discussed in Chapters 3 and 5). Moreover, 

these parameters will be incorporated into the magnitudes of repulsion qr, 

alignment qat, and attraction qa. Then, if we extend Kr and Ka to odd kernels 

on the whole real line, equations (2.5) and (2.6) can be rewritten as 

/

oo 

KrA(s)u(x±8)d8. (2.10) 

oo 

A second possible choice, similar to [86], is to define the attraction and repul­

sion kernels by (Figure 2.4(b)) 

Kj(s) = ^ 2 e xP (-SV(2^2)) , j = a,r, se (-oo,oo). (2.11) 

The two model formulations (kernels on the half-line, and odd extensions on 

the full line) are equivalent. Equation (2.10) together with Figure 2.4(b) show 

that if a right- or left-moving individual perceives many neighbors ahead of 

it, the likelihood of turning will increase in case of repulsion, or decrease in 

case of attraction. Conversely, the perception of many neighbors behind that 

individual will lead to a decrease in the turning rates in case of repulsion, or 

to an increase in these rates in case of attraction. Since an individual needs to 

distinguish movement directions and not just densities of its neighbors (i.e., 

u+,u~ vs. u ) in order to align, we do not use odd alignment kernels. 

Altogether, equations (2.3)-(2.11) describe aspects of how an organism at 

(x, t) makes the decision to turn: it turns to avoid collision if the majority of 
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the stimuli received originate within the repulsion zone, or to approach other 

individuals if the majority of the stimuli received originate within the attrac­

tion zone. If the majority of the stimuli originate within the alignment zone, 

the individual will turn to align itself according to the prevailing movement 

direction of the neighbors moving towards it. 

The full model has 14 parameters, summarized in Table 2.1. While nondi-

mensionalizing allows us to reduce the number of parameters to 10, the analysis 

is no more difficult when dealing with the dimensional form, which we will do 

in the following. Moreover, the original parameters are biologically motivated. 

It is easier to interpret the results of the model (Chapters 4, 5, and 8) by 

talking about the model using these parameters in their original biological 

context. 

2.2.3 Boundary conditions 

Throughout most of the chapters, we study system (2.1) on a finite domain 

of length L, that is x E [0,L], To complete the model, we therefore have to 

define the boundary conditions. Note that since the system is hyperbolic, we 

have to follow the characteristics of the system when imposing these boundary 

conditions. For this reason, u+ is prescribed only at x = 0, while u~ is 

prescribed only at x = L [45]. We should mention here that because of the 

nonlocal terms, we also have to specify the values of u^ beyond the right and 

left boundaries. In the following, we discuss five types of possible boundary 

conditions. 

• Periodic boundary conditions 

These boundary conditions model the movement on a circular domain. 

Individuals leave the domain at one end, and enter it again at the other 

end. The conditions are described by the following equations: 

u+(0, t) = u+(L, t), u-(L, t) = u-(0, t). (2.12) 

Note that in this case, the values of u^ beyond the right and left bound­

aries are described as follows: for x + s > L, ^(x + s) = u±{L — x — s), 
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Param. 

7 

Ai 

A2 

yo 

Qa 

q<a 

qr 

Sa 

Sal 

Oy 

ma 

mai 

mr 

A 

Description 

Speed 

Turning rate. It approximates 

the baseline turning rate: 

Ai + A2/(0) 

Turning rate. It approximates 

the bias turning rate: 

A2 (/(?/*) - / (0)) 

Shift of the turning function 

Magnitude of attraction 

Magnitude of alignment 

Magnitude of repulsion 

Attraction range 

Alignment range 

Repulsion range 

Width of attraction kernel 

Width of alignment kernel 

Width of repulsion kernel 

Total population size 

U n i t s 

S/T 

1/T 

1/T 

1 

(nondim.) 

S/N 

S/N 

S/N 

S 

S 

S 

S 

S 

S 

N 

Fixed value 

no: 7 G (0.015,0.1) 

no: Ai € (0.2,1.33) 

no: A2 € (0.9,6) 

yes: y0 = 2 

no: qa € (0,15) 

no: qai £ (0,2) 

no: qr G (0, 2) 

yes: sa = 1 

yes: sai = 0.5 

yes: sr = 0.25 

yes: ma — 1/8 

yes: mai = 0.5/8 

yes: mr — 0.25/8 

yes: A = 2 

Table 2 .1 : A summary of the model parameters. The two parameters for the strength 

of information received from left/right, namely pi/pr, are already incorporated into the 

magnitudes of attraction qa, alignment qai, and repulsion qr. The last column specifies if 

the parameter will be kept fixed during the analysis of the model (Chapters 4 and 6), and 

the numerical simulations (Chapter 5). Note: T represents unit time, S is unit space, and 

N is number of individuals. 
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while for x — s < 0, w±(a; - s) = ^(L + x — s). More generally, 

if the interaction kernels have long tails, we can define «±(x + s) = 

^((k + tyL-x-s) if x + s > (k + 1)L, and M±(O;-s) — u^ikL + x-s) 

if x — s < kL, for any k € N. 

Throughout this thesis, we use only periodic boundary conditions to al­

low for comparison with other models. For example, Igoshin et. al. [63] 

obtained rippling behavior on a periodic domain, and compared their 

results with the experimentally observed patterns. Further, Buhl et. al. 

[17] used a one-dimensional individual-based model with periodic bound­

ary conditions to study the transition from disordered to ordered move­

ment. Their results show remarkable agreement between the theoretical 

results and the biological observations. Also, as we will see in Chapter 

5, the periodic boundary conditions allow us to observe traveling pulses, 

a pattern which could not be observed with a nonlocal parabolic model 

with constant diffusion [86]. Note that a bounded domain with periodic 

boundary conditions can be treated as an infinite domain. 

• Neumannn boundary conditions 

The Neumann boundary conditions are used to model the reflection of 

the boundaries. Individuals that arrive at the boundary will turn around 

immediately and move in the opposite direction: 

u-(L,t) = u+(L,t), u+(0,t) = u-(0,t). (2.13) 

As in [48], we can assume that the flow outside the boundaries is zero. 

For this, consider 

u^fa + s) = u^^L), for x + s > L, 

u^^x — s) = ir^O), for x — s < 0. 

Using equations (2.13) we obtain u+(x ± s) —u~(x±s) = 0. 

These reflective boundary conditions can be used when the animal group 

is trapped inside a closed domain (e.g., a swarm of insects inside a closed 

room). 
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• Dirichlet boundary conditions 

This type of boundary conditions assumes that the individuals that ar­

rive at the boundaries are absorbed, and no other individuals emerge 

here: 

u+(0,t) = 0, u-(L,t) = 0. (2.14) 

In addition, we assume that outside the boundaries, w±(x) = 0 for any 

x < 0 or x > L. These conditions can be used if the habitat outside 

the domain of interest is so hostile that animals reaching the boundaries 

perish immediately [134]. 

• Open boundary conditions 

This type of boundary conditions are used in traffic equations because 

they are more realistic than the periodic boundary conditions [48]. The 

conditions assume that there is a fixed rate at which particles enter the 

system through one boundary. The particles leave the system as soon as 

they reach the other boundary. 

u+(0, t) = ci, vT(L, t) = c2. (2.15) 

Note that, to keep the total density conserved, the rate of entering the 

domain has to be equal to the rate of leaving it, that is, c\ = c^. 

These boundary conditions work for local interactions, but may pose 

a problem for the nonlocal terms. If we inject individuals at one end 

of the boundary, we implicitly assume that there are other individuals 

outside the domain. The movement directions of an individual inside 

the domain but close to the boundary will therefore be influenced by the 

moving directions of those neighbors that have left the domain, but are 

still within its repulsion/alignment/attraction range. Hence, to describe 

the behavior of those individuals inside the domain, we have to know 

the behavior of their neighbors that are outside the domain. 

On the other hand, if we assume that there are no other individuals 

outside the domain, we can follow the evolution of the groups inside 

the domain only for a short period of time, until these groups reach 
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the boundary. An alternative to open boundary conditions is to apply 

periodic boundary conditions on a domain that is much larger than the 

domain of interest [48]. 

• Moving boundary conditions 

The previous four types of boundary conditions are commonly employed 

by most of the mathematical models for traffic, and group formation 

and movement [28, 29, 48, 63, 78, 133]. There are, however, some one-

dimensional hyperbolic models that use a different type of boundary 

conditions, namely moving boundary conditions [44, 72, 110]. In this 

case, the formation and movement of animal groups is studied through 

the expansion and retraction of the boundaries. However, this requires 

extra equations for the moving boundaries. It is beyond the scope of this 

research to study this case. Nevertheless, it will be an interesting case 

for further study. 

2.3 Alternative sub-models based on different 

communication mechanisms 

In the previous section, we have discussed a particular case of signal percep­

tion. More precisely, we considered omnidirectional signals for attractive and 

repulsive interactions, and directional signals for alignment interactions. How­

ever, there is evidence suggesting that not all animals perceive and respond 

in a similar manner to the signals coming from their neighbors. For example, 

we mentioned in Chapter 1 that for some species (e.g., the Mormon crickets) 

the movement is likely influenced by signals perceived from behind, while for 

other species (e.g., fish) the movement is influenced by signals perceived from 

ahead. 

In the following, we focus on some different hypothetical sub-models for 

signal perception. In the previous three subsections, we chose the attractive 
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Ml 

M2 

M3 

M4 

M5 

attraction, repulsion 

x+ 

l+ 

x+s 

x+s 

x+s 

x+s 

x+s 

alignment 

x+s 

u < -

x+s 

x+s 

U < -

x+s 

x+s 

Figure 2.5: Five sub-models for signal reception. A reference right-moving individual is 

positioned at x. Its right-moving (u+) and left-moving (u~) neighbors are positioned at 

x + s and x - s. M l : for attraction and repulsion, the information is received from all 

neighbors, while for alignment the information is received only from those moving towards 

the reference individual. M2: information is received from all neighbors (for attraction, 

repulsion and alignment). M3: information received only from ahead (with respect to 

the moving direction of the reference individual). M4: information received from ahead 

and behind, but only from those neighbors moving towards the reference individual. M5: 

information received only from ahead, and only from those neighbors moving towards the 

reference individual. 
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and repulsive interactions to depend on information received from all neigh­

bors, no matter whether they are moving away from or towards an individual. 

Alignment, on the other hand, depends only on the information received from 

those neighbors moving towards an individual. The question that arises im­

mediately is: what happens if we consider different perception mechanisms? 

A few individual-based models (e.g., [24, 61]) assume that individuals may not 

receive information from behind because of a so-called "blind spot". We go fur­

ther and derive five hypothetical communication sub-models, to describe how 

an individual can receive information from its neighbors. These sub-models 

are examples that illustrate how environmental and physiological constraints 

can be represented with our modeling paradigm. 

The five submodels (M1-M5) are described in Figure 2.5. We focus here 

on a reference right-moving individual that is positioned at x, whereas its 

neighbors are potentially positioned at x + s (ahead) and at x — s (behind). 

The sub-models are defined as follows: 

• Ml: the attractive and repulsive interactions depend on the stimuli per­

ceived from all neighbors, whereas the alignment depends only on the 

stimuli perceived from those neighbors moving towards the reference in­

dividual (this case was studied in the previous three subsections); 

• M2: all three social interactions depend on the stimuli perceived from 

all neighbors; 

• M3: the social interactions depend only on the information perceived 

from ahead (with respect to the moving direction); 

• M4: the social interactions depend on the stimuli perceived from ahead 

and behind, only from those neighbors moving towards the reference 

individual; 

• M5: the social interactions depend on stimuli perceived only from ahead, 

and only from neighbors moving towards the reference individual. 

We emphasize here that, for attractive and repulsive interactions, these five 

communication mechanisms convey only the position of the neighbors. For 
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alignment, on the other hand, they convey also the direction of movement of 

those neighbors located within the alignment range. 

Note that model M2 is the immediate generalization of model Ml. For 

example, M2 can describe the situation where individuals receive information 

from all their neighbors via omnidirectional sound or chemical signals. Model 

M3 can describe the situation where individuals use only unidirectional visual 

signals. They can see neighbors in front of them, but they cannot see anyone 

behind them. Model M4 can describe the situation where individuals use 

unidirectional sound signals. In this case, individuals only hear the sounds 

produced by those neighbors moving towards them. They do not perceive any 

information from neighbors moving away from them. Model M5 is a particular 

case of model M3. Here, the turning rates depend only on the information 

perceived from neighbors moving in the opposite direction. This assumption 

can describe the communication mechanisms in colonies of Myxobacteria [62], 

[78]. 

Table 2.2 describes the nonlocal terms obtained by summing up the infor­

mation from all neighbors (s G (0, oo)), as depicted in the diagrams of Figure 

2.5. As in Section 2.2, the total density at (x, t) is u(x, t) = u+(x, t) + u~(x, t). 

The interaction kernels are described by equations (2.9). 

We emphasize again that these five sub-models are not the only possible 

ones. The aim here is not to describe all the possible ways of perceiving 

information from neighbors. Rather, it is to give the reader a flavor of the 

possibilities offered by such a modeling procedure. 

2.4 Model derivation from correlated random 

walk 

In Section 2.2, we derived the model by starting with a known hyperbolic 

model, and changing the nonlocal turning rates to incorporate different social 

interactions and communication mechanisms. In the following, we show how 

the nonlocal system (2.1) can be derived from a correlated random walk. 
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Figure 2.6: The movement of (a) a right-moving individual, and (b) a left-moving indi­

vidual. A right-moving individual can be positioned at x at time t + At, if at the previous 

time step t it was at x — Ax and kept moving in the same direction, or it was at x + Ax and 

moving left, and changed direction at the end of the time step. A similar explanation holds 

for a left-moving individual (b). The change in direction is either random, or in response to 

distant individuals positioned at x ± jAx, where j takes values within an interaction range 

(e.g., repulsion, alignment, or attraction ranges). 
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Let us discretize space into small intervals of length Ax, and time into 

intervals of length At. For a population of size N, the probability of a randomly 

chosen right or left-moving individual to be found on the interval [x—Ax/2, x+ 

Arc/2) at time t is defined as [42, 74], 

p±(x, t) = ±= [X X u^s,t)ds —• Axu±(x>^ When Ax - 0. (2.16) 
i V Jx-Ax/2 N 

The classical Goldstein-Kac theory for correlated random walk (equations 

(1.9)) assumes that the probability of changing direction has only a random 

component. We, on the other hand, will assume that the probability to change 

direction has two components: a random component and a directed compo­

nent. Therefore, the probability of a right-moving (left-moving) individual to 

turn left (right) is given by 

A± = probability of turning randomly + 

probability of turning left/right in response to distant neighbors 

= T + T F ± - <2-17) 

Here, F± are nondimensional, increasing, uniformly continuous functions of 

the difference between the right-moving and left-moving neighbors that are 

located far away. We choose 0 < Ai, A2, F^ < 1. Moreover, it is biologically 

realistic to assume that when this difference between the right-moving and 

left-moving individuals is zero, the random turning will dominate (that is, 

F± & 0). To make things simpler, we will assume for now that individuals turn 

only to align with neighbors located within the alignment range. We will discuss 

the attractive and repulsive interactions at the end of this section. Moreover, 

we consider the communication mechanism introduced in Section 2.2, that is, 

the mechanism used for model Ml. For this, we assume that the probability 

t h a t an individual changes direction will increase if there are more distant 

individuals in front of it moving in the opposite direction, than individuals 

behind it moving in the same direction (see Figure 2.6). The probability will 

decrease if there are more distant individuals behind it moving in the same 

direction. Hence, F * will be defined in terms of the difference between right-

moving and left-moving neighbors that are within the alignment range. 
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Before giving the expression for F±, we will make one more assumption. 

In particular, we will assume that all other individuals have the same probabil­

ities p±(x,t), independent of the location of the right-moving or left-moving 

individual chosen previously (see equations (2.16)). Hence, if the chosen indi­

vidual is at point x, then the expected number of individuals at distance jAx, 

that are moving right or left, is Np^(x + jAx, t). Under these assumptions, 

the probability of turning in response to distant neighbors is described by 

F* = F (±N f ] Kal(jAx) (p-(x + jAx, t) - p+(x - jAx, t)) j , (2.18) 
\ j=-<x> J 

where F is a uniform continuous function of the difference between the left-

moving and right-moving neighbors positioned within the alignment range. 

The kernels Kai are described by equations (2.9). Substituting (2.17) and 

(2.18) into equations (1.9) leads to 

, Ax , 
Pi + ~^Px = 

-P+(^ + ^F(N f ; Kal(jAx)(p-(x + jAx,t)-p+(x-jAx,t))\ J 

+P~ \Y + Y F \ N £ Kal(jAx)(p-(x + jAx,t)-p+(x-jAx,t)U 

\ V j=-oo / / 
+0(Ax) terms 

Ax 
At' 

Pt ~irrPx 

\ A / °° 
p+ T + T F \ N E Kal(jAx)(p-(x + jAx, t) - p+(x - jAx, t)) 

2 

_ / Ai A2 
0 0 

~P" ( T + YF [ ~N S Kai(jAx)(p-(x + jAx, t) - p+(x - jAx, t)) j j 

-O(Ax) terms. (2.19) 

Now let Ax, At —• 0, such that ^f —>• 7. Since we assumed that F is uni­

formly continuous, we can interchange the limit and the function. Multiplying 
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equations (2.19) by N, and using equation (2.16), we obtain 

ut + Tut = - W + ( Y + Y F ( / ° ° ^az(s)(M-(ar + « , t ) - M + ( r r - a , t ) ) ^ 

u^-lu- = M + (y + y F ( / Kal(s)(u-(x + s,t)-u+(x-s,t)y\) 

-u-(^ + ^F(-J^Kal(s)(u-(x + s,t)-u^x-s,t))\Y 

(2.20) 

Here, u^ are probability density functions. 

In a similar way, one can incorporate attraction and repulsion. The result­

ing turning rates will be defined as 

A A / °° 
A± = ^ + ^Fl±NY,KrUAx)(p{x+jAx,t)-p(x-jAx,t)) 

\ j=-oo 
oo 

TN J2 Ka(jAx)(p(x + jAx, t) - p(x - jAx, t)) 
j=-oo 

oo \ 

±N Y, Kal(jAx)(p-(x + jAx,t)-p+(x-jAx,t)), 1 (2.21) 
j=-oo / 

with p = p+ +p~. This definition of the turning rates corresponds to the com­

munication mechanism proposed for model Ml (and discussed in Section 2.2). 

However, one can consider different mechanisms corresponding to models M2-

M5 (see Figure 2.5), and incorporate them into this random-walk approach. 

Therefore, this modeling framework presents a straightforward way to in­

corporate animal communication into a Lagrangian model. Moreover, there 

is a clear connection between this Lagrangian model and the corresponding 

limiting Eulerian model. This allows us to tie the resulting group properties to 

different individual behaviors. However, we have not investigated the behavior 

of this random walk model. This is a subject for future research (see Chapter 

8). 
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2.5 Discussion 

In this chapter, we have discussed a one-dimensional nonlocal hyperbolic model 

that we will use to study the formation and movement of animal groups. 

The starting point was a model proposed by Pfistner and Alt to study the 

alignment behavior in Myxobacteria colonies [109]. We modified this model 

by changing the nonlocal turning rates to incorporate the assumptions made 

by many Lagrangian models, namely that individual behavior is determined 

by three social interactions: attraction, repulsion, and alignment. The way 

these social interactions were incorporated depended on some assumptions 

that we made about animal communication. In particular, we assumed that an 

organism changes its movement direction only after weighing the information 

perceived from left and right. Moreover, the received information depends 

on the type of communication signals used by those organisms. The social 

interactions were thus defined in terms of communication and distances, and 

not just distance alone. 

The resulting model presents a straightforward way to incorporate different 

animal communication mechanisms. We can easily incorporate information 

that comes from all neighbors, as well as information that comes only from 

particular neighbors. To demonstrate this, we then derived five hypothetical 

sub-models for signal perception. These submodels can account for different 

communication mechanisms used by different animal communities. It should 

be specified that these sub-models do not describe all the possible ways of 

perceiving information. The aim here was to give a glimpse of the many 

possibilities offered by such a modeling procedure. The model can be easily 

adapted to account for other types of perception mechanisms. For example, 

one may assume that individuals can see all their neighbors that are in front of 

them, and can hear only those neighbors that are behind and moving towards 

them. In Chapter 5, we will show that these submodels exhibit a wide variety 

of previously undescribed spatial and spatiotemporal patterns. 

Moreover, in this chapter we proposed a new approach to derive the non­

local hyperbolic model using the correlated random walk framework. For this, 
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we chose randomly a right-moving or left moving individual, and assumed 

that p±(x, t) is the probability that this individual is found inside the interval 

[x — Ax/2, x + Ax/2). We then assumed that all other individuals have the 

same probability to be found in the same interval, independent of the loca­

tion of the chosen individual. Hence, the individuals satisfy a Poisson-point 

assumption [40]. Previous results with Lagrangian models [40] suggest that 

the distribution of individuals can be approximated by a set of Poisson points, 

at least for some parameter values. This assumption is verified if the behavior 

of an individual does not depend on the density of its neighbors. However, 

when social interactions are incorporated, the number of individuals observed 

within non-overlapping intervals is not necessarily independent anymore. For 

example, unless the repulsion between individuals is very weak, it is less likely 

to observe individuals within adjacent, non-overlapping intervals. Therefore, 

for models incorporating social interactions, the Poisson-point assumption has 

to be imposed separately. In this case, the likelihood of observing a number 

of neighbors at a specific location is described by integrals of the expected 

density distribution [40]. 

Note that this model derivation allows us to incorporate animal commu­

nication into a stochastic individual-based model. Also, it provides the con­

nection between the Lagrangian and Eulerian frameworks. In general, the 

advantage of Lagrangian models is that they can be related to experimental 

data. For small time and space steps, the Lagrangian model we propose here 

converges to the Eulerian model introduced in Section 2.2. Therefore, using 

this modeling approach, one can try to go further, and relate the Eulerian 

model with experimental data. Finally, this approach allows us to connect the 

resulting group patterns to individual behaviors. 

In the following chapter, we begin to analytically investigate the hyper­

bolic model discussed here. In particular, we will focus on the existence of 

solutions for this hyperbolic system, and the reduction of this model to a well 

known nonlocal parabolic model used to study animal group formation (equa­

tions (1.2)). In Chapter 4, we will start investigating analytically the patterns 

displayed by this hyperbolic model. In particular, we will analyze the local 
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stability of the spatially homogeneous steady states. In Chapter 5, we will 

investigate numerically the spatial and spatiotemporal patterns displayed by 

system (2.1). We conclude the analysis of this model in Chapter 6, when we 

will perform a nonlocal analysis of these patterns. 
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Chapter 3 

Theoretical aspects regarding 
the hyperbolic model 

3.1 Introduction 

In this chapter1, we focus on some analytical results for the new hyperbolic 

system we introduced in Chapter 2. In Section 3.2, we present an existence 

result for the mild solutions of system (2.1). This result will be particularly 

useful in Chapter 6, when we analyze analytically some of the spatial and 

spatiotemporal patterns of this system. In the mathematical literature, there 

are results regarding the existence and uniqueness of solutions for hyperbolic 

systems of the form (2.1), with local turning rates defined as X+(u+,u~) — 

\~(u~,u+) (see [76]), or A± = A±(5, Sx), where S is an external stimulus that 

depends on v^ (see [57]). In contrast to these cases, the model introduced in 

the previous chapter has nonlocal turning rates. This requires a more careful 

discussion of the nonlocal terms. 

In Section 3.3, the focus will be on the reduction of the hyperbolic model 

(2.1) to a well known nonlocal parabolic equation introduced by Mogilner and 

Edelstein-Keshet [86]. The parabolic equation described in [86] has generated 

a lot of interest in the past years (see equations (1.2)-(1.4) and the correspond-
1A version of Section 3.2 has been submitted for publication. 

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Weakly nonlinear analysis for a hyperbolic 

model for animal group formation, J. Math. Biol. 
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ing discussion in Chapter 1). The reason for this is that the model displays 

biologically realistic groups, with well defined boundaries and a constant in­

terior density. We will show that when the speed becomes very large and the 

individuals turn very frequently, system (2.1) formally reduces to an equation 

similar to (1.2)-(1.4). In (1.2)-(1.4), the convective movement is the result 

of the difference between the right and the left turning rates. However, our 

limiting equation does not have a local drift term. We will argue that because 

of this, the groups do not move. We will address this issue by showing that 

an asymmetry in the signal reception (caused, for example, by some environ­

mental factors) induces a small nonlocal drift in the velocity of the limiting 

parabolic equation. This drift can lead to group movement. 

We conclude with a discussion in Section 3.4. 

3.2 Existence of mild solutions 

In this section, we discuss the existence of solutions of system (2.1). For this, 

we assume that the turning rates (equations (2.2)) are locally Lipschitz con­

tinuous as functions of the perceived signals y^. This implies that they are 

uniform continuous functions of y±. Note that this assumption was necessary 

in Chapter 2, when we derived system (2.1) using a correlated random walk 

approach. Moreover, the turning function we will consider in the following 

chapters, namely the function defined by equations (2.2)-(2.4), satisfies this 

assumption. Also, to make things easier, we assume that the nonlocal inter­

actions are described by equations (2.5), (2.7), and (2.8). The other cases can 

be dealt with in a similar manner. 

For this hyperbolic system, the characteristic equations are 

Let ^ = E±(s; x, t) be the solution of this differential system, passing through 

the point (x, t). If we set t/±(s) = u(E±(s; x, t),s), we can rewrite the hyper-
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bolic system (2.1) as 

dU+ 

— ( * ; * , * ) = -X+[U+(slU-(s)]U+(s) + X-[U+(s),U-(s)]U-(s), 

^-(s\x,t) = X+[U+(S),U-(s)}U+(s)-X-[U+(S),U-(s)]U-(s). (3.2) 

Integrating (3.2) along the characteristics gives 

U+((+) = U+((0)+ fC {-X+[U+,U-]U+ + X+[U+,U-}U-)(y)dy{3.3) 
J Co 

U-(C) = U-((0)+ f (X+[U+,U-]U+-X-[U+,U-]U-)(y)dy.(3A) 
J Co 

Note that a pair of functions (u+(x, t),u~(x, t)) G L°° (R x [0, to)) which 

satisfies equations (3.3)-(3.4) is called a mild solution of system (2.1). 

Theorem 3.2.1. Let us assume that the initial data is uf G L°°(R), the 

turning rates are locally Lipschitz continuous as functions of the signals y^, 

and the kernels Kj G ^ ( R ) , j = a,r,al. Then there exists a unique mild 

solution u^ G L°° (R x [0,io)) of system (2.1), for some t0 > 0. 

Proof: To prove this local existence result, we define the operator G(U+, U~) 

=(Gx(U+, U~),G2(U+, J/ -)), where G\ and G2 are described by the two ex­

pressions on the right hand side of equations (3.3), and (3.4), respectively. 

Then, finding a unique mild solution of (2.1), reduces to finding a fixed point 

of the map (U+, U~) ^ G(U+, U~). 

Let us consider the Banach spaces X := L°°(Rx [0, to)) with norm \\u\\x := 

sup ||w(-, ^lloo, andX := L°°(R). O n l x l w e have the norm ||(u, f)|Uxx := 

max(||u||x, \\v\\x)- We also define B = B(R,X) := {u G X : K M ) | | x < R}-

Following the same steps as in [57, 76], for all u> € X with u;±(0, •) = u0 e 

L°°(R), we consider the following Cauchy problem 

uf + 'yu* = -X+[LU+,U)~]LU+ + X~[(j+,u)~]cu~~, 

uj — ju~ = X+\u>+, LO~]LU+ — X~[u+,uj~]tjJ~~, 

u^x) = v£(x). (3.5) 
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This problem can be solved along the characteristics (3.1), with respect to the 

new variables ^± . For this, we prove that the operator G(UJ+,UJ~) defined by 

equations (3.3)-(3.4) is a contraction: 

1. G : XR x XR i—> XR x XR (where XR is a closed subset of Banach space 

X) 

2. For (CJ+,U-), (6+,d-) GXRx XR: 

||G(W
+,a;-) - G(9\e-)\\XRXXR < e | | (^,a;-) - (ff+,<r)\\xRXx«-

To prove that G maps a closed subset of a Banach space into itself, we only 

have to assume that u^ is bounded in ||. | |x by a constant M*. We then choose 

R > M* + ei, for some ex > 0. For (w+ ,ar) G B, with ur^O, •) = U^ , we 

have 

||G!(a;+,a;-)||x < \\U±\\X+ f II ( - A > + , a ; > + + X~[LO+,U'ICJ-) (y,t)\\xdy 

< M+|C+-Co|(supBA+[a;+ ,a;-] | |a;+ | |x 

+ supB\_[iv+,uj-}\\u}-\\x) 

< M* +'yt0R (supBA+[u;+,a;_] + supBX~[U+,UJ~}) . 

In Chapter 2, we assumed that the turning rates A* are bounded functionals. 

Let us then define K = supBA+(a;+,a;~) + swpB\~(u+,u}~), and choose t0 < 

•$% = Tx. This way, we obtain the bound \\GI(U+,LJ~)\\X <M* + e1<R. A 

similar result holds for G2-

To prove the contraction condition, consider (UJ+,U)~), (0+,6~) E B, with 
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u±(0,-) = 6±(0,-) = U£. Then, 

| |G 1 (w + ,w- ) -G 1 ( e + , r ) |Uxx = || / {X+[9+,9-]e+-X+[uj+,uj-]uJ
+ 

+A"[u;+ ,u/>" - A"[d+, 0 " ] r ) (y, t)dy\\x 

C+ 
= h\- f (X+[uj+,L0-} + X+[9+,e-})(u;+-e+)(y,t)dy 

+ / (X-[co+,co-}+ X-[9+,e-}) (to- - 9-)(y,t)dy 
J Co 

fC
+ 

+ / (X+[e+,9-]-X+[uj+,uj-})(uj+ + 9+)(y,t)dy 

fc
+ 

- / (X-[9+,9-]-X-[u+,u;-})(uj- + 9-)(y,t)dy\\ . (3.6) 
J Co x 

We assumed that the turning rates are locally Lipschitz continuous as functions 

of y±. Let L^ be the Lipschitz constants. Using equations (2.2), we obtain 

||A=V,a,-] - A±[0+,r]|UxX = H/GrV.w-]) - f{y±[9+,e-])\\x^x 

< L±(JE)||y±[W+>a;-]-y±[^>tf-]|UxX 
/•oo 

= 1^(11)11 (±qrKr(s)TqaKa(s))(u;(x±s,t)-9(x±s,t)-uj(xTs,t) 
Jo 

poo 
+ 9(x^fs,t))ds± qaiKai(s)(uj~(x +s,t)-9~(x + s,t)-cu+(x-s) 

Jo 

+ 9+(x-s))ds\\x 

< L1,2(R)max(\\u+-6+\\x,\\u>--0-\\x) 

= L1,2(R)\\(u+,u;-)-(9+,9-)\\XxX. (3.7) 

Here L\${R) = L±(R)C(qr,qa,qai), where C(qr,qa,qai) is a constant that de­

pends on the magnitudes of the social interactions. Hence, X^ are locally 

Lipschitz continuous as functions of 0)^,9^, with Li(R) and L2(R) the Lips­

chitz constants. We therefore have 

||G!(w+, uT) - 0,(9+,9-)\\XxX < 1 |C+ - Co| 2supBA+(u;+, u~)\\LO+ - 9+\\x 

+ 2 |C+ - Coj 2supBA~~(u;+,u/-)||ar - 0 _ | | x 

+\ \C+ - Co| l k + + d+WxLiiR) max(P + - UJ+\\X, \\9~ - <j-\\x) 

+\ \C+ ~ Co| Ik" + 0-||xL2(H) max(||0+ - w+||x> ||0" - <j-\\x). (3.8) 
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Since W^ + 6±\\x < 2R, we obtain 

||C1(a;+,a}') - Gi(0+, 6r)\\XxX < jt0 (K + L1(R)R 

+ L2(R)R)\\(u+,u;-)-(e+,d-)\\Xx&9) 

Let us define T2 = ^^ ( f f l f l+wmm, for some e2 > 0, and choose to < T2. 

We then obtain 

HGifa+cO - G i ( ^ + , r ) | | X x X < ealKw+w") - ( 0 + , r ) | | X x X . 

A similar estimate holds for G2. Then, for to < min(Ti,T2) we have 

||G(u,+,uT) - G(6+,9-)\\XxX < e\\(aj+,cv-) - ( 0 + , m | X x X , (3.10) 

which implies that G is a contraction. Therefore, G has a unique fixed point 

(u+,u~) G X x X. Replacing u^ in (3.3)-(3.4) with U±, results in: 

\\U+(C+)\\X < \\U+«o)\\x + \\ f {-\+[U+,U-}U+ + \-[U\U-]U-)(y)dy\\ , 
J Co X 

\\U-(C)\\X < \\U-(Co)\\x + \\ f (\+[U+,U-]U+-\-[U+,U-]U-)(y)dy\\ , 
"'Co X 

and therefore 

ll^+llx+ll^llx< K b + IKIIx + 2jt0(K + (L1(R) + L2(R))R){\\U+\\x+ 

+ \\U-\\X). (3.11) 

Hence 

\\u+\\x + \\u-\\x < Y^re(\m\\x + \\Uo\\xl (3-i2) 

which implies that u* 6 L°°(R x [0, t0 )).X 

Actually, the solution of (2.1) is denned globally. 

Theorem 3.2.2. Let us assume that the initial data is u^ G L°°(R), the 

turning rates are locally Lipschitz continuous as functions of the signals y^, 

and the kernels Kj G ^1(R), j = a,r,al. Then the solution u(x, t) of (2.1) 

exists on L°° (R x [0,00)). 
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Proof: To prove that the solution is defined for all time, it is enough to 

show that ||?7±||x are bounded on any bounded interval [0,T\: 

^ l l ^ ( v ) I U ( R ) < I I ^ ( V ) I I L O O ( R ) 

< \\\+(u+,u-)u+\\LOO(K) + \\x-(u+,u-)u-\\LOO(R) 

< M2(||[7
+||LOO(R) + ||t/-||LOO(R)), (3.13) 

where M2 is the upper bound for A*. Therefore 

ll^+llL~(R) + ||tniLoo(R) < (II^O+IILOC(R) + \\Uo\\Lao{n))e
M>s. (3.14) 

Since U^it, •) are bounded on any bounded interval [0, T], the solution exists 

for all time. & 

Note that since ^ J™ (u+(x, t) + u~{x, t))dx = 0, it follows that if the 

initial condition satisfies u^ G I/1(R), then u* e LX(R). 

Throughout chapters 4 to 6, we will investigate analytically and numeri­

cally some of the patterns displayed by system (2.1) when we consider a finite 

domain with periodic boundary conditions. In this context, it can be proved 

that if the initial data UQ(X) is periodic, then the mild solution it* is periodic. 

Theorem 3.2.3. Consider the bounded domain fi = [0, L\. Ifu^ £ L°°(Q), 

the turning rates are locally Lipschitz continuous as functions of the signals 

y±, and the kernels Kj e L1^), j = a,r,al, then there exists a unique mild 

solution w± 6. L°° (fix [0, oo)) of system (2.1). 

Proof: Let us extend the initial data u^ by periodicity to the entire real 

line: u^(x) — u^(x mod L), with x € R. Using the previous theorem, there 

exists a unique solution u^ E L°° (J) x [0,oo)) of system (2.1). Let us now 

define w±{x, t) — ̂ {x + L,t). Then, w^ is also a solution of system (2.1). 

For example, for w+ we have 

w?(x,t) + iw+(x,t) = ut(x + L,t) + 'yu+(x + L,t) 

= -u+(x + L, t)X+[u+(x + L, t), u~{x + L, t)] 

+ u~(x + L, t)\~[u+(x + L, t), u~(x + L, t)].(3.15) 
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Note that, since 

/•oo 

/ Kj(s) (u(x + L + s,t) — u(x + L — s, t)) ds = 
Jo 

/•oo 

/ Kj(s) (w(x + s,t) — w(x — s, t))ds, j = r,a, (3.16) 
Jo 

where w = w+ + w~, and 
/"OO 

/ Kai(s) (u~(x + L + s,t) — u+(x + L - s,t)) ds = 
Jo 

poo 

\ Kal(s)(w-(x + s,t)-w+(x-s,t))ds, (3.17) 
Jo 

we actually obtain 

A±[w+(a; + L, t), vT{x + L, t)] = A±[t«+(a;l t), w'(x, t)]. (3.18) 

Therefore, 

wf(x, t) + jw£(x, t) = — w+(x, t)\+[w+(x, t),w~(x, t)] + 

w~(x, t)\-[w+(x, t), w'(x, t)], (3.19) 

and hence w+ is a solution of system (2.1) with the initial condition w+(x, 0) = 

u+(x + L, 0) = u+(x, 0). A similar result holds for w~. Uniqueness of solu­

tions on R implies that the solution w±(x, t) is periodic. Therefore, it can be 

restricted to Q, with periodic boundary conditions.^ 

There are two remarks in regard to the semi-linear system (2.1): 

1. First, we should note that if the initial data u^ is continuous, then the 

mild solution of system (2.1) is a continuous function (see [14]). 

2. As a result of Theorem 3.2.1, since the right-hand side of system (2.1) 

satisfies a bound of the form 

U \+[u+,u-]+u-\-[u+,u-]\ <C(\u+\ + \u-\), (3.20) 

then the solution (u+(-,t),u~(-, t)) will remain bounded for all t > 0. 

Moreover, since the system (2.1) is semi-linear, as long as the solution is 

bounded, its gradient remains bounded [14]. 
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All these results will be useful later, in Chapters 5 and 6, when we will 

investigate numerically and analytically the solutions of system (2.1). In par­

ticular, these results ensure that the solutions will be continuous, and will not 

blow up. 

3.3 Formal parabolic limit 

In this section, we focus on the reduction of the hyperbolic model (2.1) to the 

parabolic equation (1.2)-(1.4) introduced in [86]. Recall that this parabolic 

model assumes only attractive and repulsive interactions. For this reason, we 

also focus only on these two interactions (i.e., qr, qa ^ 0, and qa\ = 0). At the 

end of this section, we will briefly discuss the case when alignment is nonzero. 

Throughout this section, we focus on the model introduced in Section 2.2. 

There, we assumed that these interactions depend on the information that 

comes from all neighbors (Figure 2.3), so that the interactions are defined in 

terms of u = u+ + u~. Because of this, we can rewrite the signals received 

from right- and left-moving individuals as y±[u+,u~] = y±[u] (see equations 

(2.2)-(2.3)). Moreover, to compare our results with other results existent in 

the literature (see [86]), we use kernels defined by equations (2.11). 

Let us rewrite the turning rates 

A+[u] := X+[u+,u-] = X1 + X2f(y
+[u}), 

A-[u] := \-[u+,u-} = \1 + \2f(y-[u]). (3.21) 

Adding and subtracting the first two equations of system (2.1) leads to 

(u++ u~)t + j(u+ -u~)x = 0, 

(u+ - u-)t + 7(M+ 4- u~)x = -2u+A+[u] + 2tTA"[u]. (3.22) 

Define v = u+ - u~, a[u] = A~[u] - A+[u], and p[u] = A"[it] + A+[u]. Sys­

tem (3.22) can thus be rewritten as 

ut + ivx = 0, (3.23) 

Vt + 7UX = ua[u] — v/3[u]. (3.24) 
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Differentiating equation (3.23) with respect to t and equation (3.24) with re­

spect to x, assuming zero flow at the boundaries, and taking into account that 

v = —^Jx dtu (from (3.23)), leads to the following hyperbolic equation 

l2uxx = utt + 7(«a[u])t + 0[u]ut + {(3[u])x / dt[u}. (3.25) 

To transform this equation into a parabolic equation, one can scale the speed 

and the turning rates, or equivalently, scale the space and the time [55]. We 

focus here on the first approach, and assume that the speed as well as the 

turning rates become very large. Note that, in this case, we have to scale 

not only the random turning rate, but also the directed turning rate. In the 

following, we introduce a new dimensionless parameter e > 0, and consider 

the following parameter scaling: 

[a) Ai = -5- , A2 = -5-; 

(6) 7 = | ; 

W /(!/*[«])= e / V M ) , (3.26) 

where A°, A°, 7o, and / ° are the scaled versions of Ai, A2, 7, and / . We let 

e —> 0 in such a way that 

W = D , m d | | = B. (3.27) 

Here D and B are constants. This scaling means that when e —> 0, (a) the 

individuals turn very frequently, (b) move very quickly, and (c) the previous 

two behaviors result in a reduced sensitivity to the environment. Let 

\°a°[ u 
a{u] = 1 ^ 2 , With a°[u} = f°(y-[u]) - f(y+[u}), (3.28) 

and 

m = 2A + ^ M ! M , W i t h po[u] = fo{y-[u]) + fo{y+[u]). ( 3 . 2 9 ) 

Equation (3.25) now reads 

To A27o/ or n /̂ 2A? 2Ajj/3>]\ (2X°2(3°[u})x fx , 
^uxx = utt + ^(ua°[u])x + ( -^ + 2/^ L J Jut+

 v 2H
e
 [ ux I utdx. 

(3.30) 
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After multiplying with e2 and taking the formal limit e —> 0, we obtain the 

parabolic equation 

ut = Duxx - B(ua°[u])x. (3.31) 

The diffusion coefficient D and the advection coefficient B are given by (3.27). 

Note that the diffusion is constant, while the advection is the result of the 

difference between the nonlocal right (A+) and left (A~) turning rates. This is 

caused by a°[u] which, in expanded form, can be written as 

a°[u] = —f[qr Kr(s)u{x + s,t)ds — qa Ka(s)u(x +s,t)ds\ 

+ / ( -Qr / Kr(s)u(x + s, t)ds + qa Ka(s)u(x + s, t)ds 1 . 

(3.32) 

A similar result could have been obtained rescaling the time and the space (as 

in [55]). 

Equation (3.31) is quite similar to parabolic equation (1.2)-(1.4), intro­

duced by Mogilner and Edelstein-Keshet [86] to study the formation and move­

ment of animal groups. However, compared to (1.2)-(1.4), equation (3.31) does 

not contain a local drift term. This suggests that (3.31) will not support trav­

eling pulses, since the nonlocal odd kernel (2.11) cannot make the group move 

(see the discussion in [86]). 

Note that the velocity term a°[u] is a nonlinear function of the nonlocal 

interactions. However, to simplify the analysis, the majority of the results 

existent in the literature consider a linear dependence on the social interac­

tions (see for example, [74, 85, 86, 132, 133]). This can be addressed if we 

assume that the repulsive and attractive interactions balance each other, that 

is, fiy^iu]) PS /(0). In this case, we can linearize the nonlocal term a°[u], and 

keep only the first approximation, namely 

a°[u] « -2/°'(0) (qr I Kr(s)u(x + s, t)ds - qa Ka(s)u(x + s, t)dsj . 
\ J—oo J— oo / 

(3.33) 
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We assume here that / ° (0) ̂  0. Then, equation (3.31) can be written as 

dtu = Ddlu + Bdx ( u ( qr / (Kr(s)u(x + s, t)ds)-

qaJ°°(Ka(s)u(x + s,t)dS)y\ , (3.34) 

where the diffusion coefficient D is given as before, while the advection coeffi­

cient is B = 70 |{ ( '. This equation is in the same form as (1.2)-(1.4). 

We have thus shown that we can formally derive the parabolic model (1.2)-

(1.4) from the hyperbolic system (2.1), in the absence of alignment. Hence, 

when the speed and the turning rates are very large, two different biological 

assumptions, namely (i) velocity described in terms of attractive and repulsive 

interactions (as in [86]), and (ii) turning rates described in terms of attractive 

and repulsive interactions (this hyperbolic model), lead to similar behavior. 

The relationship between the parabolic model (1.2)-(1.4) and the hyper­

bolic model (2.1) can be investigated not only through the parabolic limit, 

but also through the steady-state equations. For the rest of the chapter, we 

return to the more general parabolic equation (3.31). Note that the stationary 

pulses of this equation coincide with the stationary pulses of the hyperbolic 

system (2.1) when attraction and repulsion are the only social interactions. 

More precisely, for the parabolic equation (3.31), the zero-flux heterogeneous 

steady-state solution that satisfies u(±oo) — 0 is described by 

ux = -=rua° [it]. (3.35) 

On the other hand, the steady-state equations for the hyperbolic system (2.1) 

are 

yut = -u+{X1 + X2ny+[u]))+u'(X1 + X2f(y-[u})), (3.36) 

-yu- = u+(X1+X2f(y
+[u)))-u-(X1 + \2f(y-[u})). (3.37) 

Therefore, u+ = u~. When there is no flow at the boundaries, that is when 

•u+(±oo) — w~"(±oo) = 0, we obtain u+ = u~. In this case, equations (3.36)-

(3.37) are reduced to 

1U
+

X = -u+X2 {f(y+[u}) - f(y-[u])), (3.38) 
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which is exactly the equation (3.35). Hence, the stationary pulses of limiting 

parabolic equation (3.31) coincide with the stationary pulses of hyperbolic 

system (2.1). 

Recall that in the above treatment, alignment was absent. When alignment 

influences the turning rates, a formal parabolic limit cannot be obtained. In 

this case, the alignment term depends on the flux v = u+ — u~. However, there 

is no second equation for v. An eventual substitution for v = fx ut(s, t)ds leads 

to an equation similar to (3.31), with ut defined implicitly (a°[u] := a°[u,ut]), 

although this is not a classic parabolic equation. 

During the rescaling, process we assumed that the random and directed 

turning rates approach infinity with the same speed, that is Ai = -£, and 
A0 

A2 = -£. However, one can assume that the individuals turn more often as 

a response to external stimuli than they turn randomly, that is Ai = —, and 
A0 

A2 = -£. In this case, the term j3[u] changes slightly: 

m = *A + *3m, (3.39) 
As e —• 0, the hyperbolic equation (3.25) reduces to the following elliptic 

equation 

uxx = ^(ua°[u})x. (3.40) 
7o 

If, on the other hand, we assume that the random turning dominates the 
A0 A0 

motion, that is Ai = -£ and A2 = -*, we obtain the diffusion equation 
ut = ^uxx. (3.41) 

Therefore, different scaling for the directed and random turning rates leads to 

either parabolic or elliptic equations. A similar result has been obtained when 

considering different time scales [55]. For this case, it has been shown that 

the parabolic equation arises on a slow time scale, while the elliptic equation 

arises on a fast time scale. 

3.3.1 Formal parabolic limit with a drift term 

As previously mentioned, equation (3.31) does not contain a local drift term. 

The nonlocal odd kernels alone cannot make the group move, since individuals 
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at the front and at the rear edge move towards the center of the group [86]. 

Therefore, equation (3.31) might not support traveling pulses. However, in 

Chapter 2, we have seen that it is possible to introduce environmental drift 

by considering asymmetry in the communication mechanism (see equations 

(2.5)-(2.8), where pr ^ pi). In this case, the nonlocal attractive and repulsive 

interactions can be rewritten as 
/>oo 

Qr,a / KrA(s) (pru(x + S,t) - ptu(x - S, t)) ds = 
JO 

/

oo />oo 

Kr,a{s)u{x + s, t)ds + qr,a(Pr - Pi) / Kr,au(x - s, t)ds. 
•oo JO 

(3.42) 

Let q*a = qrApr and drop the asterisk. Then, equation (3.31) reduces to 

ut = Duxx -
B I — uf I / K(s)u(x + s, t)ds + (pr — pi) / K{s)u{x — s, t)ds J + 
ufi— K(s)u(x + s,t)ds— (pr—pi) K(s)u(x — s, t)ds ] j , 

V J-oo JO J J x 

(3.43) 

where K(s) = qrKr(s) — qaKa(s). Here we consider pr — pi <C 1. Therefore, 

the nonlocal term (pr — pi) J0°° K(s)u(x — s, t)ds can be seen as a small drift. 

To show that this drift can make the group move, we follow the approach 

proposed in [86]. The approach considers a group of rectangular shape, and 

compares the velocity of the front (V)) and back edges (V&) of the group. 

Assume that there exists a rectangular group of width Lo and density A. In 

Chapter 2, we assumed that the interaction kernels KrA{s) have the support 

inside the interval [0, oo). These kernels can actually be approximated by 

kernels with the support inside the interval [0, 6j), j = sr^a. We will discuss 

this approximation in more detail in Chapter 5. Note that the attractive and 

repulsive kernels (2.11) satisfy 

/ ^ Kr(s)ds = 1, / aKa(s)ds = l. (3.44) 
Jo Jo 

Therefore, the odd kernel K will satisfy 
/•6sa /-O 

/ K(s)ds = -(qa - qr), and / K(s)ds = {qa - qr). (3.45) 
Jo J-6sa 
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Note that if the kernel K would be even, both integrals in (3.45) would be 

positive. We will come back to this result at the end of this section. An 

individual positioned at the front edge of the group (that is, at x — L0), and 

that can sense its neighbors up to a distance 6sa (where 6sa < Lo), will have 

a velocity 

Vf = -u(x, t)f I / K(s)u(x + s, t)ds + (pr - pi) / K(s)u(x - s, t)ds 1 + 
\J-6Sa JO J 

r6sa f6s ( POSa pOSa 

— K(s)u(x + s,t)ds — (pr—Pi) K{s)u(x — s,t)ds 
J-6sa Jo 

0 px+6sa rx 

' K(y - x)u(y, t)dy + (pr - pt) / K(x - y)u(y, t)dy 
x—6sa Jx—6sa 

/ px+Qsa rx \ 

u(x, t)f I- K{y - x)u{y, t)dy - {pr - pt) I K(x - y)u(y, t)dy j . 
V Jx—6Sa Jx—6Sa J 

When x = L0, there are no individuals inside the interval (L0, L0 + 6sa). Since 

the group density is u(L0, t) = A, we obtain 

Vf = -Af (A f ° K(y- L0)dy + A(pr - pi) [ ° K(L0 - y)dy) + 

Af (-A f ° K(y- L0)dy - A(pr - pi) f ° K(LQ - y)dy) 
V JLo-6sa JLo-6sa / 

/ 1-0 />6sa \ 

= -Af A / K{z)dz + A(pr - pi) / K{z)dz + 

Af (-A f K(z)dz - A(pr - Pl) f ^ K(z)dz) 
\ J-6sa JO / 

= -Af (A(qa - qr) (1 - (pr - Pl))) + Af (-A(qa - qr) (1 - (pr - Pl))). 
(3.46) 

Similarly, one can calculate the velocity Vf, of an individual positioned at the 

back edge (x — L0). Note that in this case there are no individuals inside the 

interval (L0 — 6sa, L0), and hence, the second integral vanishes: 
/ rLo+6sa \ / pLo+§Sa \ 

Vb = -AfUj K(y-LQ)dy\+Af(-AjL K(y-L0)dyJ 

= -Af(-A(q°a-qr)) + Af(A(qa-qr)). ° (3.47) 

We observe that for pr = pi, we obtain 

Vf = -Af (A(qa - qr)) + Af (-A(qa - qr)) = -Vb. (3.48) 
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In this case, the individuals at the front and the back edge of the group move 

with opposite velocities. In Chapter 2, we assumed that / is a positive, 

bounded, and increasing function. Therefore, if qa > qr, f (—A(qa — qr)) < 

f (A(qa — qr)), and we obtain Vf < 0 and VJ, > 0. Hence, the individuals move 

towards the center of the group, and the group will be stationary. On the other 

hand, if gr > qa, then Vf > 0 and V& < 0, and the group will disperse. Since the 

stationary pulses displayed by the limiting parabolic equation (3.35) coincide 

with the stationary pulses displayed by the hyperbolic system (2.1), we con­

clude that the odd kernels have a similar effect on the hyperbolic system. We 

will come back to this result in Chapter 5. There, we will analyze numerically 

the solutions displayed by system (2.1). In particular, we will discuss the type 

of solutions that arise with only attractive and repulsive interactions. 

We assumed that f(y±[u]) is a monotone increasing function, and so is 

f(y±[u]) — /(—y^u]). This suggests that when pr ^ pi, the two velocities are 

slightly different: |V)| ^ |V&|. In particular, since p r - p j < l and A(qa — qr)> 

A(qa — qr) (1 — (pr — pi)), it implies that for qa > qr, we obtain Vf < 0, VJ, > 0, 

and \Vf\ < |Vft|. Therefore, individuals at the front of the group will move 

slightly slower than those at the back of the group. This gives rise to a group 

drift, at least for a short period of time. Note that this difference between the 

velocity of the front and the back of the group is caused by large attraction, 

which influences especially those individuals positioned at the front. When 

Qr = Qa, we obtain Vf, = V} = 0, and the group is motionless. 

Note that throughout this investigation we assumed that pr — Pi <C 1. 

However, if pr — p\ 3> 1, and in particular pr — pi = 2, we obtain 

Vf = Vh = -Af (-A(qa - qr)) + Af (A(qa - qr)). (3.49) 

In this case, the front and the back of the group move with the same velocity. 

Therefore, it requires a strong asymmetry in the perception of signals (i.e., 

Pr — Pi "C 1) to overcome the large attraction which slows down the front of 

the group. 

These results show that the particular shape of the turning function / does 

not matter. Only the monotonicity of / is important. If / is monotone, then 
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for pr ^ pi there is always a drift. If / is not monotone, then it is possible to 

find some values of qr, qa, and A, such that V& = —Vf. In this case, the group 

will be stationary even if pr ^ pi. 

Mogilner and Edelstein-Keshet [86] showed that a nonlocal velocity with 

an odd kernel leads to stationary groups, while an even kernel gives rise to a 

group drift. This is true when the interactions are linear, that is when a°[u] 

is a linear function of the nonlocal terms, as in equation (3.34). However, for 

nonlocal interactions defined by turning functions that are neither linear nor 

monotone, it is possible to have stationary groups when the kernel is even. For 

example, when K(s) is even, J_6s K(s)ds=f0
Sa K(s)ds= (qr — qa)/2. Then, 

the front and the back edge of the group are given by 

V, = -Af ( 4 * p > ) + Af ( - 4 * p > ) = VJ. (3.50) 

Hence, the group is drifting, since the front and the back edge move with the 

same velocity, for any A, qr, and qa. If / is not monotone, then it is possible 

to find some qr, qa, and A, such that Vf = Vj, = 0. Thus, an even kernel can 

lead to stationary groups. 

3.4 Discussion 

In this chapter, we started analyzing the nonlocal hyperbolic model. In par­

ticular, we focused on the existence of mild solutions, and the reduction of 

this model to a well know parabolic model existent in the literature. The im­

portance of the existence of solutions in L°° will be more clear in Chapter 6, 

when we will perform a weakly nonlinear analysis. This analysis will require 

solutions to belong to L2. It is known that on a bounded domain, a solution 

bounded in the L°°-norm is also bounded in the L 2-norm [120]. 

In the second part of this chapter, we ignored the alignment interactions 

and formally connected the hyperbolic model (2.1) with the nonlocal parabolic 

model (1.2)-(1.4).This connection was made by assuming that both the speed 

and the turning rates approach infinity. The results show that the difference 

between the right and left turning rates leads to a nonlocal advection. Since 
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the resulting parabolic equation does not have a local drift term, and the 

kernels are odd, the groups will be stationary. A similar result holds for the 

hyperbolic system (2.1). If asymmetry in the perception of communication 

signals is included, then this leads to a small, nonlocal drift term in the ve­

locity, which can induce group movement. We will come back to this aspect 

in Chapter 5, when we will investigate numerically the effect of asymmetry in 

the communication on the patterns displayed by the hyperbolic system (2.1), 

and show that a similar result holds for it. 

The condition that ensures the group movement is the monotonicity of the 

turning function. If the turning function is not monotone, one can obtain 

stationary groups even with nonlocal drift term in the velocity. Of course, 

the existence of these stationary groups will depend on the values of qr, qa 

and A. Moreover, when the kernels are even, the absence of this monotonicity 

assumption can lead to stationary groups in some parameter space. This result 

extends a result by Mogilner and Keshet [86] in regard to the effect of even 

and odd kernels on the velocities of individuals inside a group. 

In the following chapter, we start investigating the patterns displayed by 

the hyperbolic system (2.1). In particular, we will study the spatially homoge­

neous steady states and the temporal evolution of small perturbations of these 

states. 
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Chapter 4 

Linear stability analysis 

4.1 Introduction 

A standard approach in the study of animal self-organization is to assess the 

possibility of pattern formation via linear stability analysis. In this chapter1, 

we use this stability analysis to begin exploring the effect of social interactions 

on the group patterns. In particular, we will focus on the model described 

in Section 2.2, with interaction kernels defined by equations (2.11) for attrac­

tive and repulsive interactions, and equation (2.9) for alignment interactions. 

In Section 4.2, we first identify all the possible spatially homogeneous steady 

states. Then, in Section 4.3, we determine conditions under which these states 

lose their stability via growth of small spatial perturbations. The loss of stabil­

ity through real or complex eigenvalues suggests a means by which aggregation 

or respectively, dispersive waves, can occur. 

It is known that the observed group patterns depend on the scale of the 

social interactions [132]. Moreover, these scales depend on the type of com-

1Versions of Sections 4.2, 4.3, and 4.4, have appeared in 

R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, (2007) Modeling group formation and 

activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-

1566. 

A version of Section 4.5 has appeared in 

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Complex spatial group patterns result from 

different communication mechanisms, Proc. Natl. Acad. Sci., 104, 6974-6979. 
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munication signals used by animals [2, 144], the quality of the resources, and 

the predation threat [7]. For example, the repulsion range decreases in case 

of predation, or when food resources are tightly packed. Another example is 

the range of a chemical signal. This range depends on the environmental con­

ditions, but can be modified by an animal by varying the height at which the 

signal is emitted [2]. Motivated by these observations, we will use the stability 

results to investigate the effect of different interaction ranges on the formation 

of patterns, in Section 4.4. For simplicity, we will focus here on the particular 

communication mechanism introduced in Section 2.2 (model Ml), and study 

the stability of the spatially homogeneous steady states as we vary the social 

interaction ranges. 

In Section 4.5, we will go back to the five different hypothetical communi­

cation mechanisms, and investigate the conditions for full alignment within a 

population of individuals that is spread evenly over the domain. Previous re­

sults show that alignment makes animal groups more effective at finding food 

sources [41]. More precisely, because of the alignment, information regarding 

the surrounding environment propagates through the group much quicker, and 

therefore, the movement decisions are faster. It seems likely that the commu­

nication mechanisms used by different animal groups will play a role in these 

movement decisions. We will address this issue by answering the following 

question: how does the strength of the alignment force required for group po­

larization in each of the five submodels depend on the amount of information 

an individual perceives from its neighbors? 

We conclude with a discussion in Section 4.6. 

4.2 Spatially homogeneous steady states 

To start, we assume that individuals are spread evenly over the domain, and we 

look for the spatially homogeneous steady states u+(x, t) = u* and u~~(x, t) = 

u**, with constant total density A = u* + u**. This leads to the following 

steady-state equation for system (2.1), 
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h(u*;qai,X,A) = 0, (4.1) 

where h is being denned as 

h(u*; qah A, A) := -u* (1 + A tanh(A^ - 2u*qal - y0)) + 

(A - u*) (1 + A tnnh(-Aqal + 2u*qal - y0)), (4.2) 

where 

A 0-5A2 . . 
A - 0 . 5 A 2 + AX- ( 4 3 ) 

Although the model involves a large number of parameters, only five of them 

arise in this steady-state equation: A, Ai, A2, qai, and j/o- Only the first 

four parameters will be varied, y0 being fixed by our choice for the turning 

function. We look at the effect of varying A since we expect that the higher the 

population density, the stronger the inter-individual interactions. Therefore, 

we expect A to influence the aggregation process. A similar explanation holds 

for qai. Intuitively, the turning rates also influence the formation of population 

clusters. The effects of varying all these parameters are presented in Figure 

4.1. 

From (4.2), we conclude that the only social interaction that determines 

the number of possible steady states is alignment. This follows from the choice 

of kernels Kra, which we have chosen to be odd, so that 

/ : 
Krta(s)(u* + u**)ds = 0. (4.4) 

Hence, the attraction and repulsion terms vanish in equation (4.2). When 

qai = 0, the only steady state is (u+,u~) = (A/2, A/2). Figure 4.1 (a) shows 

that this steady state does not depend on qa. Actually, it does not depend 

on any of the other parameters describing the social interactions. However, 

as we will see in Section 4.3, the stability of this state will depend on these 

parameters. For qat 7̂  0, equation (4.1) can have one, three, or five solutions 

(Figure 4.1 (b)-(d)), depending on the values of A. More precisely, there is a 

threshold value 

2 tannic) v ; 
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Figure 4 .1: Bifurcation diagrams for the steady-state equation, (a) Bifurcation diagram 

when qai = 0. The only steady state is u* = u** = A/2, (b) Two-parameter bifurcation 

diagram in (qai,X) space: the threshold values A*, Q* and Q** determine the number of 

possible steady states. Here A = 2 and yo = 2 are fixed parameters, (c) Bifurcation 

diagram in the five steady-state regime (i.e., A < A*): u* and «** = A — u* are the two 

critical states that appear at Q* as we increase qai. These two states can take up to 5 values 

each: u* e {u\,U2,u%,u\,ul}, and u** — A — u*. Here A = 2, and A is given by equation 

(14), with Ai = 0.2 and A2 = 0.9. (d) Two-parameter bifurcation diagram in (qai,A) space: 

qal and A have similar effects on the number of spatially homogeneous solutions. Here 

Ai=0.2,A2 = 0.9. 
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such that for A > A* (i.e., for Ai much smaller than A2), there are up to three 

solutions, while for A < A*, there are up to five solutions (Figure 4.1 (b)). 

We will denote these five solutions by u*, i = 1..5. Therefore, the spatially-

homogeneous steady states, generically denoted by (u*, u**) = (u*, A-u*), can 

be any of the following pairs: (14, it*,), {ul,u\), (w*.,!^), (1X4,1*2), o r (uhuD-

In the remainder of this chapter, we fix the ratio Ai/A2 with Ai << A2, so 

that A < A*, which implies that there can be up to five steady states (Figure 

4.1 (b) and (c)). The other two threshold values for qai from Figure 4.1 (b), 

namely Q* and Q**, are as follows: Q** is given explicitly by 

- l + Atanh(2/0) 
W AA(-l + tanh(y0)2)' K ' 

while Q* is a decreasing function of A, defined implicitly by 

h(u;qal,X,A) = 0, ^ i M A i l = 0, where u ± A/2. (4.7) 

Note that equation (4.6) is obtained by imposing the condition that 

— du ' \V=A/2 = 0. The reason for having this condition becomes clear 

when we investigate how the graph of h(u; qai, A, A) changes its slope at u = 

A/2, as we vary qaL. Equations (4.7) represents a system of two equations in 

two unknowns: the steady state u — u*, and the critical value of alignment 

Qai = Q*- The unknowns are found simultaneously. 

The dependence of u* on qa\ is shown in Figure 4.1 (c), in the five steady 

states regime. As alignment becomes very large, and in particular qai —* 00, 

the three homogeneous steady states are •u± G {A(l — A)/2, A/2, A(l + A)/2}. 

Figure 4.1 (d) illustrates the dependence of the number of steady states on both 

A and qai, again in the five steady states regime. This last figure suggests that 

qai and A have similar effects on the number of steady states: for small qai or 

A, it is possible to have only one steady state (it*, u**) — {A/2, A/2), while for 

large qai or large A, there are three steady states. For intermediate values of 

qai or A, there are five steady states. 
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4.3 Linear stability analysis: dispersion rela­

tion 

Once we know the possible homogeneous steady states, the next step is to 

study the local stability of these solutions under small perturbations caused 

by spatially nonhomogeneous terms: u+(x, t) = u* + up(x,t) and u~(x, t) = 

u** + um(x,t), with (u*,u**) being the generic notation for the spatially ho­

mogeneous steady states. We approach the problem of pattern formation by 

choosing to define equation (2.1) on a bounded domain of length L with wrap­

around boundary conditions for the nonlocal influence terms. This yields a 

problem with a discrete spectrum, and also approximates the process of pat­

tern formation on an unbounded domain when L is large. In this case, the 

interaction kernels are, as in [119], 
+oo 

Fjis) = Y, Ki(s + nL)> 3 e {r, al, a}. (4.8) 
n=—oo 

The Fourier transform of the kernel Kj(s) is given by 

(Jfe) = / Kj^e^ds. (4.9) 

J - o o 

L/2 

L/2 

Also, we define 
pL/2 

(Jfe) := / T^e^'ds. (4.10) 
J-L/2 

,£ ± , 
For large L, and in particular for L —> oo, tj (k) can be approximated by 

Kj (k). More precisely, we have the following: 
rL/2 pL/2 / « = - ! 

/ YAs)e^sds = lim / V Ki(8 + nL) + Kj(a)+ 

oo \ 

'^2Kj(8 + nL)\e±ik8d8 
ra=l / 

fL/2 

= lim / Kj(s)e±iksds + 

,L/2 / n = ^ l 

lim / \ } Kj{s + nL) + 
L-°°J-L/2 Vnt̂ oo 
n=oo \ 

^Kjis + nL) \e±iksds, 
n = l 
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where the kernels decrease exponentially as L —• oo (see equations (2.9) and 

(2.11)). For large L, the terms containing the sums are approaching zero and 

therefore, 
fL/2 * + 

lim / Tj(s)e±ikads = Kj (k). (4.11) 
i^oo J_L/2 

Due to this correspondence, we will work on a large finite domain [0, L], 

and use Kj(k) to approximate interactions on finite domain by interactions on 

infinite domain. Throughout this chapter, we will use the interaction kernels 

defined by equation (2.9) (for alignment) and equation (2.11) (for attraction 

and repulsion). The kernels are chosen such that the support of more than 

98% of the kernels is small with respect to the length of the domain. The 

periodic boundary conditions that complete the description of the model on a 

finite domain are given by (2.12). 

We let uPim(x,t) oc eat+lkx, with the discrete wave number kn = 2nir/L, 

n € N, and the growth rate a. Because of the conservation of the total density, 

ko = 0 is not an allowable wave number and hence, n € N + . We substitute the 

expressions for wp,m(x, t) into system (2.1) to obtain the dispersion relation: 

a2 + aC(k) + D(k) = 0, (4.12) 

where 

C(k) = Ll + L2-M5qal{k:i{k) + K-l{k)), 

D{k) = 1
2k2 + ^ik(L2-L1 + M5qal(K;l(k)-k:i(k))) 

-2M5lik (qr(K+ - K~) - qa(k: - K')) , 
Li = Ai + A20.5 + A20.5 tanh(Mx - y0), 

L2 = A1 + A20.5 + A20.5tanh(-M1-t/0), 

Px = A 20.5(l- tanh 2(Mi-y 0)) , 

P2 = A a O ^ l - t a n h ^ - M i - ^ ) ) , 

Mi = qai{u**-u*), 

M5 = P1u* + P2u**. (4.13) 

Here, kj, j G {a,r,al} are the Fourier transforms of the interaction kernels 
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(2.11) (for attraction and repulsion) and (2.9) (for alignment): 

- + f°° 
Kj (k) = / Kj(s)eiksids = iksjexp(-k2s2

j/2), j = a,r, (4.14) 
J—oo 

Kai (k) = / Kal(s)e±iks«>ds = exp(±isalk-k2m2
al/2). (4.15) 

J — oo 

Equations (4.12)-(4.13) show that the steady state (u*,u**) is locally un­

stable, i.e., Re(a(k)) > 0, when C(k) < 0 or D(k) < 0. The first term, C(k), 

is negative when A2 is large. For D(k) to be negative, it requires either (a) a 

large A2, or (b) attraction to be larger than repulsion: qaKa(k) > qrKr{k). If 

we focus now on each of the five solutions of equation (4.1) u*, i = 1..5, we 

notice that equation (4.12) is important for the stability of u*5 (for qai > Q*), 

and of W3 (for qai < Q**). In this case, when A2 is large, the unstable modes 

are those with large k. When attraction is larger than repulsion, the modes 

with small k are unstable. However, the stability of u\ 4, as well as u\ when 

Qai > Q**, is given not only by (4.12), but also by the domain length L. When 

the domain length becomes very large, and in particular L —̂  oo, the first 

wave number k\ = 2n/L approaches zero. Consequently C{k\) approaches 

C(0) = LI + L2 - 2M5qal. (4.16) 

In this case, u*2 and u\, as well as u^ for qai > Q**, are always unstable. By 

studying the graph of h(u), it can be observed that for qai > Q**, the slope at 

u = u* i s flft(u$M,»,M) > 0 S i m i l a r l y 5 for qal e (Q*,Q**), the slope of h(u) at 

u - u*2 is dh^ai,\A) > 0 B u t t h i g i n e q u a l i t y i s nothing else than C(0) < 0, 

which means instability. Therefore, for large L, u\ 3 4 are locally unstable, even 

in the absence of attraction, or for small turning rates. This ensures that we 

have a standard subcritical pitchfork bifurcation, as shown in Figure 4.1(c). 

Figure 4.2 (a)-(f) shows examples of the dispersion relation for system 

(2.1). The solid curve represents Re(a), while the dashed curve represents 

Im(a). Note that, for graphical purposes, we have replaced the discrete wave 

numbers with a continuum of values k. We observe that for cases (c), (d), 

and (e), Im(a(k)) ^ 0, while for (a), (b), and (f), Im(a(k)) = 0 for some 

k > 0. We recall that for the total density to be preserved, k — 0 is not an 
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Figure 4.2: The dispersion relation <r(fc) for five possible spatially homogeneous steady 

states: u\, u\, u%, u%, u%. The continuous line represents the real part of er, while the 

dashed line represents the imaginary part. Cases (a) and (c) show the dispersion relation 

when attraction (qa) is large. In this case, the critical wave number is k = k\. Cases (b) and 

(d) show the dispersion relation for large turning rates (A2). The critical wave number that 

emerges is k = kj, for some j S> 1. Shown here is k — £15. Note that for the steady state uj 

(when qai < Q**), the imaginary part of the dispersion relation is zero at the critical wave 

number, whereas for u\ and Ug, it is always nonzero. Cases (e) and (f) show the dispersion 

relation for u\ and u\ when qai e (Q*,Q**), and for u% when qai > Q**. In these cases, the 

critical wave number that emerges is fci. 
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allowable wave number. Therefore, cases (e) and (f) do not contradict the 

conservation of the total density. The emergence of the first wave number 

kx (i.e., Re(a(ki)) > 0) (see Figure 4.2 (a) and (c)) is the result of large 

attraction, while the emergence of kt, i > 1 (Figure 4.2 (b) and (d)) is the 

result of large turning rates. Therefore, when attraction is large, we would 

expect the emergence of one group. When the turning rates Ai and A2 are 

large, we would expect the emergence of i small groups, where i » 1. The last 

two cases (Figure 4.2 (e) and (f)) show the dispersion relation corresponding 

to u^ for qai G (Q*,Q**), and to u^ for qai > Q**. As we can see here, the 

first wave number k± is always unstable, provided that the domain length L is 

large enough. In this case, k\ is very close to 0 (but greater than 0), and we 

have already seen that C(0) > 0, which implies instability. 

We can now connect the stability results shown in Figure 4.2 with the 

spatially homogeneous steady states u\...u§ described in Figure 4.1 (a) and 

(c). We can summarize the results as follows: 

• Combining Figure 4.1(a) and Figure 4.2(a) leads to Figure 4.3(a). More 

precisely, when there is no alignment, the stability of the steady state 

«3 is determined by the magnitude of attractive interactions. There is a 

critical value of attraction qa = g° such that the steady state u^ is stable 

for qa < g°, and unstable otherwise. 

• Combining Figure 4.1(c) and Figures 4.2(a)-(f) gives Figures 4.3(b), 

(c), and (d). For example, if we focus on attraction (which influences 

the wave number &i), then Figures 4.3 (b), (c), and (d) correspond to 

large, medium, and small values of attraction, respectively. Similarly, 

if we focus on the turning rates (which influence the large wave num­

bers ki,i ^> 1), these figures correspond to large, medium, and small 

turning rates, respectively. In each of these cases, the spatially homoge­

neous steady state undergoes a bifurcation as we increase the value of 

alignment. The relative position of the bifurcation point depends on the 

parameter space. For example, Figure 4.3 (b) shows that for large attrac­

tion or turning rates, there exists a critical value of alignment q^t < Q* 
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Figure 4.3: Bifurcation diagrams for the steady-state equation, (a) Zero alignment 

(qal = 0); the only steady state is u% = A/2, (b) Nonzero alignment (qai i1 0); 

(1*3,1*3) = (A/2, A/2) is always a steady state; at the critical value qai = Q*, four new 

steady states appear through a saddle-node bifurcation. These states can be any of the 

following pairs: (u\,u%), (u%,u\), (u\,u%), (u\,u%). At a second critical value of the align­

ment parameter, qai = Q**, two of these spatially homogeneous steady states (u2 and u\) 

disappear through a subcritical pitchfork bifurcation, (c) A variation of (b), obtained with 

a different set of parameters (i.e., medium attraction or medium turning rates), (d) A vari­

ation of (c) obtained with small attraction or small turning rates. In all three cases, the 

solid lines denote the stable solution, while the dashed lines denote the unstable solution 

(with respect to spatial perturbations). Shown here is the stability of the steady states to 

small spatial perturbations when: (a) qai = 0, qr = 2.2, Ai = 0.2, A2 = 0.9, 7 = 0.1, A = 2; 

here qa is the bifurcation parameter; at qa = q°a there is a real bifurcation; (b) qa = qr = 0, 

Aj = 0.2/0.1, A2 = 0.9/0.1,7 = 0.1, A = 2; (u%, u |) undergoes a real bifurcation at qai = q°al, 

while (u\,u%) undergoes an imaginary bifurcation at qai = qii', (c) qa — qr = 0, Ai = 0.2/0.7, 

A2 = 0.9/0.7; at qai = ?°; there is an imaginary bifurcation; (d) qa = qr = 0, Ai = 0.2, 
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such that for qai < q^, the solution u\ is stable, while for qai > q^ it is 

unstable. Moreover, there is a second critical value q^ > Q* such that 

for qai < q^, the solutions u\ and u^ are unstable, while for qal > q^t they 

are stable. Figure 4.3 (c) shows that for medium attraction or turning 

rates, ul changes stability at qai — Q**, while u{ and ut, change stability 

at a critical value Q* < q^ < Q**. Figure 4.3 (d) shows that for small 

attraction or turning rates, the only steady state that changes stability 

is W3. The bifurcation point is qai = Q**. 

It should be noted that equation (4.12) is complex when u* 7̂  u**, but 

real when u* = u**. This has implications for the type of the eigenvalues of 

system (2.1). For the first case, all eigenvalues are complex. For the second 

case, the eigenvalues can be real or complex, depending on the values of the 

parameters. We will come back to this aspect in Chapter 6, when we will 

perform a nonlinear analysis in the neighborhood of some bifurcation points 

at which the steady states become unstable. 

The results concerning the steady states and the effect of the attraction, 

alignment and total population size on their stability are summarized in Figure 

4.4. The solid curve represents stable steady states, while the dashed curve 

represents unstable steady states. Cases (a)-(c) show the effect of alignment 

and attraction on the stability of the steady states, whereas cases (d)-(f) show 

the effect of total population size and attraction on this stability. The values of 

the turning rates are the same for all cases. The threshold values Q*, Q**, A* 

and A** determine the number of spatially homogeneous steady states. How­

ever, the stability of these steady states is greatly influenced by attraction 

and, not shown here, by the turning rates. One can see that an increase in 

the magnitude of attraction, from qa = 0.1 for (a) and (d) to qa = 10 for (c) 

and (f), leads to an increase in the parameter range (A and qai) for the unsta­

ble steady states. If we look at the total population size, for instance, these 

results suggest that unless there is a very strong attraction, large number of 

individuals do not aggregate. Therefore, we conclude that both alignment and 

total population size have similar qualitative effects on the number of steady 
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Figure 4.4: Spatially homogeneous steady states and their stability, as inter-individual 

attraction, qa, increases: (a)-(c) show bifurcations in the (qai,u) plane, while (d)-(f) show 

bifurcations in the (A, u) plane. Solid curves represent the stable steady states, while the 

dotted curves represent the unstable steady states, as given by Re{ai{kx)) > 0. The magni­

tude of attraction is increased from qa =0.1 for (a) and (d), to qa = 2 for (b) and qa = 1 for 

(e), and to qa = 10 for both (c) and (f). As a result, the parameter range for the unstable 

steady states (i.e., the dotted curve) is also increasing. 
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states (Figure 4.1(d)) as well as their stability (Figure 4.4). 

We should also note that for small attraction (qa < qr) and large turning 

rates, it is possible to have a hysteresis phenomenon (Figure 4.4 (a) and (d)). 

More precisely, if we start for example with a very small qai, then the only 

possible steady state is (143,1x3), and it is stable. As we increase alignment, 

this state will lose stability at qai = Q** (Figure 4.4 (a)). Depending on initial 

conditions, the system will choose one of the two other solutions: (ix|, «£) or 

(«5, ix*), both of which are stable. However, if we now decrease the alignment 

beyond Q**, the system will not return immediately to (1x3,1x3). It will return 

later, when u\ and u% lose stability at Q*. A similar phenomenon is observed 

when increasing and decreasing the total population size A. 

4.4 The effect of different social interaction 

ranges on group formation 

We now use the dispersion relation (4.12) to study the effect of the three 

interaction ranges, sr, sai and sa on group formation. We investigate the 

stability of the spatially homogeneous steady state (1*3, 1x3) by increasing (or 

decreasing) the size of these ranges while keeping all other parameters constant. 

At the end, we will briefly discuss the effect of these ranges on the stability of 

ix|, i = 1,2,4, 5. It should be mentioned that if for some j we have Re(a(kj)) > 

0, while for all other i 7̂  j we find Re(a(ki)) < 0, then the linear analysis 

predicts that j groups will emerge. 

If we graph the dispersion relation, we see that an increase in the repulsion 

range, sr, while keeping everything else constant, leads to the stability of 

1*3 (Figure 4.5(a)). Increasing it even further would lead to the biologically 

unrealistic situation sr > sa. For alignment (Figure 4.5(b)), the results are 

similar to those obtained for the repulsion case. In particular, as we increase 

the alignment range sai, making sure at the same time that saj < sa, the 

mode with the wave number ki becomes stable (Re(a(ki)) < 0). Increasing 

sai even more (i.e., sai > sa) leads to the emergence of some mode with the 
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Figure 4.5: The effect of the interaction ranges sr, sai and sa, on the local stability of 

homogeneous steady states u*, i = 1..5. The plots show Re(ai(k)). The arrows show what 

happens with the graph of Re(a{) as we increase the interaction ranges. For u%, an increase 

in the repulsion range (case (a)) or the alignment range (case (b)) leads to stability of the 

steady state. For example, for case (a), let us assume that initially the mode that emerges is 

the one with the wave number k\. As we increase the repulsion range sr, making sure at the 

same time that sr < sa, we see that this mode becomes stable {Re{o\{ki)) < 0). Increasing 

sr even more (i.e., sr > sa), the mode that emerges is the one with the wave number hi, 

i > 1. A similar explanation holds for (b). An increase in the attraction range (case (c)) 

results in a shift to the left of the wave number that will emerge. For u*, i = 1,2,4,5, an 

increase in the alignment range leads to the same shift to the left (case (d)). 
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wave number kt, i > 1. 

If we increase the attraction range, the dispersion relation shows a transla­

tion to the left of the wave number that becomes unstable (Figure 4.5(c)). For 

example, suppose k^ is the unstable wave number initially (correspondingly, 

there are two groups). After increasing the attraction range, k\ is the unstable 

wave number (correspondingly, there is one group). Biologically, this makes 

sense since when sa is increased, individuals perceive information over larger 

distances. Two separate groups now can sense each other and merge. 

The stability of the other four steady states u*, i = 1,2,4,5, does not seem 

to be influenced significantly by alterations in the size of the attraction or 

repulsion ranges. More precisely, neither the location nor the amplitude of the 

leading eigenmode varies much as the corresponding interaction ranges sa and 

sr vary. However, an increase in the alignment range results in a translation 

to the left of the wave number that emerges (Figures 4.5 (d)). This means 

that when there are more individuals moving in one direction than the other 

(i.e., the steady states (u*,u**) with u* ^ «**), the attempt to match one's 

movement direction to the movement direction of those neighbors that are 

farther away causes small groups of individuals to come together and form 

larger aggregations. 

4.5 Relation between animal communication 

and alignment 

It has been previously shown that while attraction and repulsion lead to the 

formation of animal aggregations [86, 133], alignment facilitates group move­

ment by ensuring that the information propagates faster through the group 

[41]. However, how information propagates through the group depends on 

the communication signals (directional or omnidirectional) that animals use. 

Therefore, the question that arises is: what is the relation between alignment 

and the different communication mechanisms? 

In the following, we investigate conditions under which a population of 
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Figure 4.6: Bifurcation diagram comparing the spatially homogeneous steady states 

(u*,A — u*) displayed by the five models Ml - M5, as alignment increases (total density 

A = 2, qa = 1.5, qr = 1.1, ̂ i = 0.2, A2 = 0.9). We see that for M2, a small qai value already 

leads to polarization (i.e., the steady state is (u*, A — u*), with u* ^ A/2). M3, on the other 

hand, requires a larger value for qa[. For M5, only intermediate values of qai lead to some 

polarization. 
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individuals that is evenly spread over the domain has most of its members 

aligned in the same direction. That is, we look for spatially homogeneous 

steady states of the form (u*, A — u*), with u* ^ A/2. For this, we focus on 

the relation between the strength of the alignment force required in each of 

the five sub-models M1-M5 introduced in Chapter 2 (see table 2.2), and the 

amount of information an individual perceives about its neighbors. Figure 4.6 

shows the relationship between the strength of this force (qai) and the spatially 

homogeneous steady states that arise in each of the sub-models. Depending 

on how much information it perceives about its neighbors, an individual re­

quires different levels of alignment. For example, we see that for M2, small qai 

already leads to polarization. In this case, the individuals perceive all possible 

information about neighbors positioned ahead and behind them (see Figure 

2.5). For M3, on the other hand, only a large qai value leads to polarization. 

In this case, the individuals perceive information only from ahead. By com­

paring M3 and M4, we see that group polarization occurs for smaller values of 

alignment (qai) when perceiving partial information from both ahead and be­

hind (M4), as compared to perceiving full information only from ahead (M3). 

However, perceiving information only from ahead, and only from neighbors 

moving in one direction (M5), leads to a lower level of polarization. Moreover, 

this polarization happens only for some intermediate values of qa\. 

We conclude that there is an inverse relation between the amount of infor­

mation perceived and the strength of alignment force required to fully align 

with neighbors. A similar result holds also for the turning rates. 

4.6 Discussion 

In this chapter, we performed a linear analysis of the model (2.1). First, we 

investigated the spatially homogeneous steady states, and showed that there 

is only one steady state whose existence is independent of the parameters 

describing the social interactions. The existence of all other steady states 

depends on the magnitude of alignment. Moreover, these steady states undergo 
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saddle-node and pitchfork bifurcations as the alignment parameter is varied. 

The stability of all steady states depends on the magnitude of the interac­

tion parameters, as well as the magnitude of the turning rates. In particular, 

attraction influences mainly the emergence of the first wave number hi, while 

the turning rates influence the emergence of large wave numbers ki, i 3> 1. In 

Chapter 6 we will come back to this result, when we will investigate some of 

the spatial and spatiotemporal patterns displayed by system (2.1). 

The length scales of the interaction ranges (sr, sa, and sa/) also play an 

important role in self-organization, as shown by analyzing the stability of the 

spatially homogeneous steady states when we vary these interaction ranges. 

However, the implications of these results are more complex. It is known 

that some communication signals (such as omnidirectional sound signals) act 

on long ranges, while other signals (such as directional sound signals) act on 

short ranges [144]. It is possible that understanding the effect of changing 

the interaction ranges on the resulting group patterns would offer important 

information on which communication signals are involved in the formation of 

these patterns. However, this aspect has not been investigated here. 

Furthermore, the results suggest that there is an inverse relation between 

the amount of information perceived by an organism (due to environmental or 

physiological limitations), and the strength of the alignment that leads to a 

polarized population. More precisely, the more information one perceives, the 

less alignment is necessary to form a polarized group. On the other hand, it is 

well known that animal signals and behaviors are not evolutionary independent 

traits [30]. On the contrary, since their functions are related, they will influence 

each other's evolution (i.e., both the signals and the behaviors will evolve to 

minimize the signal degradation [30]). Therefore, our analytical results suggest 

that there might be a possible evolutionary connection between the different 

communication mechanisms employed by various animals and the magnitudes 

of the social interactions required by group behaviors. 

In the next chapter, we will use the stability results discussed here to 

investigate numerically the spatial and spatiotemporal patterns displayed by 

system (2.1). 
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Chapter 5 

Numerical results 

5.1 Introduction 

Due to the complexity of the hyperbolic system (2.1), it is very difficult, if 

not impossible, to find an analytical solution. We therefore have to focus our 

attention on numerical solutions. In this chapter1, we perform numerical sim­

ulations for the two types of kernels we discussed in Chapter 2: (i) odd kernels 

for attractive and repulsive interactions, and translated Gaussian kernels for 

alignment (equations (2.11)), and (ii) translated Gaussian kernels for all three 

social interactions (equations (2.9)). Note that the first type of kernels have 

been used by Mogilner and Edenstein-Keshet [86] to model the long-range at­

tractive and repulsive interactions in a parabolic model. We will use these 

kernels to compare the effect on the patterns displayed by our hyperbolic sys­

tem with their results (see also the discussion in Chapter 3). However, these 

kernels have overlapping ranges, as in Figure 2.4(b). It might be more realis­

tic to consider more distinct interaction ranges. For this reason, we will also 

1A version of Section 5.3 has appeared in 

R. Eftimie, G. de Vries, M. A. Lewis, F. Lutscher, (2007) Modeling group formation and 

activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69, 1537-

1566. 

A version of Section 5.4 has appeared in 

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Complex spatial group patterns result from 

different communication mechanisms, Proc. Natl. Acad. Sci., 104, 6974-6979. 
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perform simulations with the second type of kernels. 

In the introductory chapter, we discussed the parabolic and hyperbolic 

models existent in the literature, none of which can account for the multitude 

of complex patterns that one can observe in nature. We recall that none of 

the one-dimensional models presented there incorporate all three social in­

teractions, namely attraction, repulsion, and alignment. For example, the 

stationary pulses reported in [86, 133] were obtained with only attractive and 

repulsive interactions, whereas those reported in [78] were obtained with only 

alignment interactions. Also, the ripples reported in [62, 78] were the result of 

alignment interactions alone. In this chapter, we investigate the social interac­

tions that are necessary for the formation of these spatial and spatiotemporal 

patterns. In particular, to allow for comparison with the previous models, we 

investigate the types of patterns that arise in the following three cases: (a) only 

attraction and repulsion; (b) only alignment; (c) full model with attraction, 

repulsion and alignment. 

In Section 5.2, we discuss the numerical methods we use to simulate the so­

lutions. Then, in Section 5.3, we begin investigating the patterns displayed by 

system (2.1). First, we focus on the communication mechanism introduced in 

Section 2.2 (and which corresponds to model Ml), and thoroughly analyze this 

case. For comparison with other models existent in the literature, we use the 

kernels defined by (i). In Section 5.4, we broaden our investigation and discuss 

some of the patterns obtained with all five sub-models introduced in Chapter 

2. To study the effect of non-overlapping interaction ranges on the resulting 

spatial and spatiotemporal patterns, we will consider the kernels defined by 

(ii) (that is, translated Gaussian kernels for all interactions). Therefore, for 

the communication mechanisms described in model Ml, we can compare the 

patterns obtained with both types of kernels. Since the parameter spaces for 

which the solutions of the five sub-models are unstable do not coincide, we 

will focus only on some parameter subspaces. Note that we could also have 

studied models M2-M5 with kernels defined by (i). However, kernels (ii) seem 

more biologically realistic. For this reason we will use them throughout the 

rest of this thesis. 
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In Section 5.5, we investigate numerically the effect of introducing asym­

metry in the reception of signals. This aspect was discussed analytically in 

Chapter 3, when we derived the limiting parabolic equation. Here, we present 

some numerical results for the hyperbolic system. 

We conclude with a discussion in Section 5.6. 

5.2 Numerical method 

To understand the behavior of system (2.1), we investigate numerically the evo­

lution of small perturbations of the spatially homogeneous solutions (u*,u**) 

discussed in Chapter 4. To discretize equations (2.1), we first write them as 

u t + (F(u))!B = s(u)J (5.1) 

where u = (u+,u~)T, the flux term F(u) = (ju+, — ju~)T, and the source 

term s(u) = (—u+\+[u+,u~] + u~\~[u+,u~],u+\+[u+,u~] - u~X~[u+,u~])T. 

We discretize the space-time plane choosing a space step Ax = h, and a time 

step At = k. Also, we define the discrete mesh points (xj,tn) = (jh,nk), 

j , n € N. The solutions id" and w2™ are seen as approximations of the cell 

averages of u^(x, tn): 

I fXj+l/2 I fXj+1/2 

ul] = - u+(x,tn)dx, U2] = - u-(x,tn)dx. (5.2) 

Moreover, we define the discrete flux F™ — F(wl", u2j), and the discrete source 

terms s" = s(til", w2"). 

Since the eigenvalues of the Jacobian matrix of F(u) have fixed signs (±7), 

we will use the following first-order upwind schemes to propagate the solution 

at the next time step (e.g., [48, 73]): 

ul]+1 = uq-^Ff-F^J + ks], (5.3) 

u2]+1 = u2]-^{F^+1-FJl) + ks]. (5.4) 

This numerical scheme is known to produce numerical diffusion, which smooths 

the shock fronts [73]. However, for the semi-linear system (2.1), the solutions 
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have bounded gradients (see [14]), and eventual discontinuities can arise only 

from the initial data. Moreover, higher-order schemes are not necessarily more 

accurate than the first-order schemes [48]. Based on these two facts, we prefer 

to use the upwind method throughout this chapter. 

It should be specified that there are two types of instabilities associated 

with this numerical scheme [48]. First, there is a convective instability, when 

the Courant-Friedrichs-Lewy (CFL) condition is not satisfied, that is, when the 

time step k is such that \^\k/h > 1. Second, because of the nonlocal turning 

rates, there is a relaxation instability determined by the eigenvalues of the 

matrix for the source term (that is, the right-hand-side of equations (2.1)). 

This second instability causes further restrictions on the time step k. The 

restrictions will depend on the maximum density of individuals. Throughout 

the simulations, we use the space step h = 0.01, and the time step k = 0.038 

chosen such that it satisfies the CFL condition | ±^\k/h = 0.38 < 1 (here 

7 = 0.1). Note that this time step is enough to ensure that there is no 

relaxation instability. 

To calculate the source terms s™, we approximate the infinite integrals (2.5) 

- (2.8) by integrals on finite domains: 0 < x < 6j, j = sr, sa, for attractive 

and repulsive kernels, and 0 < x < 2sai for alignment. The approximation is 

accurate to order 10~8: 

/ 
Jo 

/ 
Jo 

Kj(s) (u(x + s,t) — u(x — s, t)) ds— 

/ Kj(s)(u(x +s,t)— u(x — s,i))ds 
Jo 

Kai(s) (uT(x + s,t) — u±(x — s, t)) ds — 

r . 
/ Kai(s) (uT(x + s,t) - v^ix - s,tj) ds 

Jo 

< 10-8, i = r,a 

o 
2s 

< 10-8. (5.5) 
>o 

These finite integrals are further discretized using Simpson's method [128]. 

Moreover, we choose the domain length L such that 6j <C L, j = sr,sa. We 

will perform simulations with both types of kernels Kj, j = r, al, a (i.e., kernels 

described by equations (2.11), and kernels described by equations (2.9)). 

As mentioned in Chapter 2, we use periodic boundary conditions through-
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out this thesis to allow for comparison with other models (see [17, 63]). This 

requires the nonlocal interaction terms to wrap around the boundaries. More 

precisely, we define 

^{x + s) = M±(0 + s) if x + s > L, and 

w±(x - s) = M ± (L - s) if x - s < 0. (5.6) 

A discussion of other types of boundary conditions for nonlocal transport 

problems can be found in [48]. 

To check the validity of the results obtained via linear stability analysis 

(Chapter 4), we choose the initial conditions to be small random perturbations 

of the spatially homogeneous steady states. The parameters for the domain 

length and interaction ranges are chosen to be L = 10, sr = 0.25, sai = 0.5, 

and sa = 1. These four parameters, as well as yo, mai, ma, mr and A, are 

kept fixed during the simulations (see Table 2.1). All other parameters will be 

varied at some point. The parameters that are varied are precisely those that 

can be used to characterize animal groups during different behaviors. 

We verified the numerical results by comparing with analytical predictions 

obtained via linear stability analysis, which predicted the wave numbers of 

perturbations which are unstable (see the discussion in Chapter 4). In par­

ticular, for predicted unstable wave numbers, the numerical simulations show 

pattern formation, while for stable wave numbers, there is no pattern. More­

over, the number of groups that arise in the simulations agree with the wave 

number that becomes unstable: kj — 2jir/L, j € N+. 

To exclude the effect of the boundaries, we doubled the domain size. More­

over, to exclude possible artifacts of the numerical scheme, we refined the grid 

mesh. The results showed no significant differences. 

The upwind scheme is sufficient for the results in this chapter. However, 

in Chapter 6, we will identify some bifurcation points for the spatially homo­

geneous steady states, and perform a weakly nonlinear analysis in the neigh­

borhood of these points. Because of the diffusivity of the upwind scheme, 

it cannot be used to exactly identify the points where the steady states lose 

their stability. The points are identified with an accuracy of O(10-1) only. 
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To increase the accuracy with which these points are identified, we will use a 

second-order McCormack scheme [48] in Chapter 6: 

tiij = u l ^ - ^ - F ^ + ks], 

ul]+1 = 0.5(ul].+ ul?-^(F?+1-F?) + ksj\, (5.7) 

**? = vq-lW-FJLJ + ka], 

u2]+1 = 0.5(u2] + u2]-^{FJl
+1-F^) + ks]Y (5.8) 

This scheme can identify the bifurcation points with an accuracy of O(10-2). 

Note that the final patterns obtained with this McCormack scheme are similar 

to those obtained with the upwind scheme. 

5.3 Spatial and spatiotemporal pat terns ob­

tained for model M l with odd attractive 

and repulsive kernels 

We start the analysis of the spatial and spatiotemporal patterns displayed by 

system (2.1) by thoroughly investigating model Ml introduced in Section 2.2, 

with kernels defined by (2.11). We should mention that all the patterns we 

will present in this section describe the long-time behavior of the solutions. In 

Section 5.4, we will also investigate some transient patterns. 

The numerical simulations show four types of possible behavior: station­

ary pulses, traveling pulses, traveling trains and zigzag pulses (Figures 5.1 

and 5.2). By stationary pulses (Figure 5.1 (a) and (d)), we mean spatially 

nonhomogeneous steady states. Traveling pulses (Figure 5.1 (b)) are defined 

as spatially nonhomogeneous solutions that have a fixed shape and move at 

a constant speed c: u^ix^t) — ^(z), z = x — ct, and t/±(±oo) = 0. The 

periodic boundary conditions allow us to treat the domain as infinite, and 

therefore it makes sense to consider traveling pulses. Traveling trains (Figure 

5.1 (c)) are periodic solutions of the form M±(X, t) — ^(z), z = x — ct, with 
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U^ periodic functions of z. The zigzag pulses (Figure 5.2) are traveling solu­

tions that periodically change direction. Moreover, compared to the case of 

traveling pulses, where the shape of the solutions does not change, for zigzag 

pulses the shape changes slightly when the entire group turns around. 

A first observation is that both stationary and moving groups have clearly 

defined boundaries, where the population density drops to zero very quickly. 

Moreover, in the case of moving groups (Figure 5.1(b)), the profile is steeper 

at the leading edge of the group, and shallower at the back. This phenomenon 

is caused by attraction towards other individuals. Under the influence of the 

attractive interactions, organisms at the front of the group have the tendency 

to turn around more often, to stay in contact with the others. Therefore, they 

move slower than those at the rear of the group, and this leads to crowding at 

the leading edge of the group. 

In what follows, we present the results in three separate cases: (a) a case 

that contains only attraction and repulsion, (b) a case with only alignment, 

and (c) a case that takes into consideration all three social interactions. The 

types of solutions that can be obtained in each of these cases are summarized 

in Table 5.1, and discussed below. These results were simulated with fixed 

parameters sampled from the ranges described in Table 5.2. 

(i) Only attraction and repulsion. For qai = 0, the only possible spa­

tially homogeneous solution is (u+,u~) = (14,1*3) (as described by Figure 4.3 

(a)). In the parameter range where it is unstable, if we start with small random 

perturbations of this steady state as initial conditions, we obtain stationary 

pulses (Figure 5.1 (a)). We sampled a large number of parameter combina­

tions (from the parameter space where 1x3 is unstable), and the results always 

showed stationary pulses. These results suggest that attraction and repulsion 

are sufficient to cause group formation, but not sufficient to make the group 

travel. 

(ii) Only alignment. When alignment is the only social force considered, 

it is possible to have up to five spatially homogeneous solutions (u*, i = 

1..5) (Figure 4.3). Locally unstable steady states (Figure 4.2 (d) and (b)) 
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Case 

(i) 

(ii) 

(iii) 

Social 

interactions 

Only attraction 

and repulsion 

Only alignment 

Attraction, 

repulsion, and 

alignment 

Traveling 

trains 

No 

Yes 

Yes 

Traveling 

pulses 

No 

No 

Yes 

Stationary 

pulses 

Yes 

Yes 

Yes 

Zigzag 

pulses 

No 

No 

Yes 

Table 5.1: A summary of the different types of possible solutions exhibited by model Ml 

under the influence of three different sets of social interactions: traveling trains, traveling 

pulses, stationary pulses, and zigzag pulses. The patterns represent the long-time behavior 

of the solutions. 

Activity 

Traveling 

Foraging 

Rest 

7 

laxge 

medium, large 

small 

Ai, A2 

small 

large 

medium 

Qal 

large 

medium 

small 

qr 

small 

large 

medium 

Qa 

large 

small 

medium 

Table 5.2: Examples of magnitudes of model parameters that characterize animal behavior 

corresponding to different activities. The magnitudes correspond to parameters varying 

within the following ranges: 7 e (0.01,0.1), Aa € (0.2,2), A2 € (0.9,9), qai € (0,3), qr £ 

(0.1,3), qa€ (0.1,3). 

are possible when the turn ing rates are large, and these solutions evolve into 

either traveling trains (Figure 5.1 (c)) or stationary pulses (Figure 5.1 (d)). 

More precisely, traveling trains are possible when the initial conditions are 

perturbations of (u+,u~) — (ul,ul), whereas stationary pulses are obtained 

when we start either with perturbations of (ul,ul), or with perturbations of 
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(ul,ul) and very large turning rates. 

(iii) Attraction, repulsion and alignment. The most complex behav­

ior is obtained when all three social interactions take place. In addition to the 

behaviors described above, we observe zigzag pulses in this case (Figure 5.2 

(a), (b)). This behavior is caused by high inter-individual attraction (qa 3> qr). 

Note that for the zigzag movement, the lengths of the paths are correlated 

with the turning rates, Ax and A2. In Figure 5.2 (a), the turning rates are small 

(i.e., Ai = 0.2, A2 = 0.9), and we observe short path lengths. In contrast, when 

we increase the turning rates (e.g., Ai = 0.33, A2 — 1.5), we observe longer 

path lengths, as shown in Figure 5.2 (b). The explanation for this is that when 

these rates are small, the individuals in the middle part of the group as well 

as those at the back do not turn very often. However, due to large attraction, 

those at the front of the group turn around to make sure they are still with the 

rest of the group. This leads to a steep increase in the number of individuals at 

the leading edge of the group, who move in the opposite direction. As a result, 

the entire group turns around. On the other hand, when the turning rates are 

large, the straight paths between group turning maneuvers are much longer. 

The individual turns help organisms to move away from their neighbors, and 

keep them well spaced for a longer time. 

Another important aspect of the zigzag movement that should be men­

tioned is the structure of the turn. More precisely, small turning rates (Figure 

5.2 (a)) lead to a very compact group during the turns, while large turning 

rates (Figure 5.2 (b)) make the group more compact before the turning ma­

neuver, but less compact during and after the turn. 

Zigzag movement can be understood to be a transitory type of behavior 

between traveling pulses, obtained when attraction is small, and stationary 

pulses, obtained when attraction is extremely large compared to repulsion, 

as shown in Figure 5.3. If we increase attraction, the model shows a tran­

sition from one type of solution to another. For attraction taking small to 

medium values compared to repulsion, the system displays traveling pulses (as 

in Figure 5.1(b)). As the magnitude of attraction increases, these groups start 
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traveling zigzag stationary 
pulse movement pulse 

Figure 5.3: An illustration of the possible types of solutions and the transitions between 

them as one varies the attraction parameter qa. Initially, there is a traveling pulse, and 

as attraction increases, it starts moving in a zigzag manner. A very large attraction force 

keeps all individuals together, hindering the group movement. 

moving back and forth, in a zigzag manner (as in Figure 5.2). When this so­

cial interaction becomes extremely strong (for example qa = 20, and qr = 0.1, 

and all other parameters as specified in Figure 5.2), the aggregations become 

stationary. 

A similar transitory type of behavior can be obtained when varying multiple 

parameters. For example, the model could be used to describe the succession of 

daily activity patterns exhibited by different groups of animals. Usually, these 

transitions from one activity to another can be influenced by internal factors 

(e.g., hunger, necessity to rest, etc.) or external ones (e.g., temperature [135] 

or light [50]). These factors have an impact on group parameters, such as 

motility, and this translates into different turning rates and speed [135]. 

To exemplify this transitional process, we look at the following succession 

of activities: forage —> rest —>• travel —»• forage. The initial conditions for forage 

are random perturbations of spatially homogeneous steady state («J, ttg). For 

the next three activities, the initial conditions for the simulations are the 

densities generated by the previous activity. Table 5.2 summarizes possible 

relative magnitudes for model parameters. 

Figure 5.4 shows the outcome of the numerical simulation which describes 

this succession of activities. Initially, there are many small clusters that travel 

for a while, and then stop. During the resting period, the groups are sta­

tionary, with the peak of total local densities decreasing. However, as both 

attraction and alignment increase to simulate travel, all animals gather into 
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one large aggregation, which moves towards a new site. Once arrived there, 

parameters are changed to simulate foraging and the group spreads again. It 

should be noted that even though we use the same parameters to simulate 

the two foraging behaviors, the initial conditions play a very important role. 

Initially, the small groups that form during foraging are moving through the 

domain. When we change the parameters from travel back to foraging, the 

groups that arise are now stationary. A similar hysteresis phenomenon was 

obtained in [24], with a Lagrangian model. 

It was previously shown [38, 41] that group polarization helps populations 

to improve their searching behavior, by climbing noisy gradients faster. Our 

model shows that without alignment and in the absence of external environ­

mental cues, group movement does not occur. Group movement is possible 

with alignment, but it depends on the magnitude of the turning rates: high 

individual turning rates make it impossible for the group to move as an entity. 

Therefore, we can say that alignment appears to be a necessary ingredient, 

but not a sufficient one for group movement. 

In conclusion, the model shows that interactions between different social 

factors give rise to a wide range of patterns. We have seen, for example, that 

medium attraction combined with repulsion and alignment leads to traveling 

pulses, while large attraction plus repulsion and alignment leads to zigzag 

pulses. None of these two types of solutions can be obtained with alignment 

alone, nor with attraction and repulsion alone. They are the result of all three 

social interactions. 

5.4 Spatial and spatiotemporal pat terns for 

different communication mechanisms 

We now focus on the patterns displayed by the hyperbolic model (2.1) when 

we consider five different communication mechanisms. Here, we will consider 

the interaction kernels defined by equations (2.9). 

As in the previous section, we investigate the types of spatial patterns that 
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Figure 5.4: The figure shows a "bird's eye view" for the total population density during 

the succession of three activities: forage —> rest —+ travel —• forage. The lighter the color, 

the higher the population density. Parameter values are chosen in accordance with Table 

2. During foraging ( qr = 2.0, qa — 0.1, qai = 1.9, 7 = 0.089, Ai = 1.3, A2 = 6), individuals 

turn frequently and attraction is smaller than repulsion, which leads to many small groups 

moving around the domain. During rest (qr = 0.10, qa = 2.1, qai = 0.5, 7 = 0.015, 

Ai = 0.286, A2 = 1.286), the individuals slow down and turn less frequently. The groups 

have now a tendency to disperse. To travel (qr = 0.5, qa = 4.1, qai = 2.0, 7 = 0.1, Ai = 0.2, 

A2 = 0.9), the attraction increases and all the individuals come together to form one large 

group that moves around the domain. To forage again, the group splits into multiple small 

groups that spread over the domain. 
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arise in three cases: (a) only attraction and repulsion; (b) only alignment; (c) 

full model with attraction, alignment and repulsion. Moreover, compared to 

Section 5.3, where we investigated only the patterns that represent the long­

time behavior of the solutions, in this section we also discuss some transient 

patterns that occur at intermediate times. 

For the numerical simulations, we focused on the parameter space where 

the wave numbers of the perturbations are unstable, as predicted by the linear 

stability analysis. However, since there are so many parameters (even after 

nondimensionalization), and the parameter spaces corresponding to the five 

submodels do not overlap perfectly, we have sampled only some parameter 

subspaces. 

• Case (a): we fix qal = 0,7 = 0.1, Ai = 0.2, A2 = 0.9, and A = 2. The 

sampled parameter subspace is (qa,qr), with qa,qT G [0.5,9]. For the 

initial conditions we consider u* = u**. 

• Case (b): we fix qa = qr = 0,7 = 0.1, A = 2, and investigate the 

influence of the turning rates on the group structure. For this, we define 

Ai = 0.2/r, A2 = 0 .9/T, and vary r. The sampled parameter subspace is 

(<lai,T), with qat G [0.5,10], and r G [0.006,1]. As initial conditions, we 

consider u* ̂  u**. 

• Case (c): we fix 7 = 0.1, Ai = 0.2, A2 = 0.9, A = 2. The sampled param­

eter subspace is (qa,qr), with qa, qr G [0.5,10]. As initial conditions, we 

consider u* = «**. 

It should be specified that the obtained patterns are robust to parameter 

changes, in the sense that each pattern is observed for a range of parameters. 

The numerical simulations reveal ten types of spatial and spatiotemporal 

patterns, shown in Figures 5.5 and 5.6: (1) stationary pulses formed of small, 

high-density subgroups; (2) stationary pulses that have a relatively constant 

internal density; (3) ripples; (4) feathers; (5) traveling pulse; (6) traveling 

train ; (7) zigzag pulses; (8) breathers; (9) traveling breathers; (10) semi-

zigzag pulses. Patterns (l)-(3), and (5)-(6) are classic patterns (see [91] and 
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[63]). The other five patterns are new for this area of animal group formation. 

In the following we give a short characterization of all of these patterns. 

• Stationary pulses. As mentioned in Section 5.3, the stationary pulses 

(Figure 5.1(a),(d), and Figure 5.5(1),(2)) are spatially nonhomogeneous 

steady states that are motionless in time. Note that, compared to the 

pulses obtained in Section 5.3, here we can also obtain pulses formed of 

high-density subgroups. These pulses are the result of considering very 

localized attractive and repulsive interactions (i.e., kernels defined by 

(2.9)). 

• Traveling pulses. Traveling pulses (Figure 5.1(b) and Figure 5.5(5)) 

are defined as spatially nonhomogeneous solutions that have a fixed 

shape and move at a constant speed c: it±(a;, t) = U±(z), z = x — ct, and 

f/±(±oo) = 0. With this definition, we can understand the stationary 

pulses as as being traveling pulses that move with zero speed (c = 0). 

• Traveling trains. Traveling trains (Figure 5.1(c) and Figure 5.5(6)) 

are periodic solutions of the form u^ix, t) = U±(z), z = x — ct, with l ^ 

periodic functions of z. We should specify here that the traveling train 

is a pattern that doubles the number of its peaks when we double the 

domain size. A traveling pulse, on the other hand, has the same number 

of peaks when we double the domain size. 

• Ripples. Ripples (Figure 5.5 (3)) are left-moving and right-moving 

traveling waves that pass through each other [63]. Note that the pattern 

shown in Figure 5.5 (3) is a transient pattern. For very large time, the 

individuals aggregate into a stationary group. 

• Feathers. We call feathers (Figure 5.5 (4)) those stationary pulses that 

lose and gain subgroups of individuals at the edge. 

• Breathers. Breathers (Figure 5.5 (8)) are stationary pulses that pe­

riodically expand and contract. This leads to a periodic change in the 

amplitude of the solutions. 
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• Traveling breathers. Traveling breathers (Figure 5.5 (9)) are breather­

like groups that travel through the domain. 

• Zigzag pulses. As mentioned in Section 5.3, the zigzag pulses (Figure 

5.2, and Figure 5.5 (7)) are traveling solutions that periodically change 

direction. Moreover, compared to the case of traveling pulses, where the 

shape of solutions does not change, for zigzag pulses the shape changes 

slightly when the entire group turns around ([29]). 

• Semi-zigzag pulses. The semi-zigzag pulses (Figure 5.6 (a),(b)) are 

pulses characterized by movement in one direction, alternated by rest. 

These pulses are a temporal transition between traveling trains (at the 

start of the simulations) and stationary pulses (after the simulations run 

for a long time). It should be mentioned that it is possible to obtain these 

pulses also for the case discussed in Section 5.3 (i.e., model Ml with type 

(i) kernels). In that section, we focused only on the long-time behavior 

of solutions, and therefore this pattern was not discussed there. As we 

will shortly see, the patterns are obtained when alignment is the only 

social interaction. Therefore, it does not matter what type of kernels we 

consider for attractive and repulsive interactions. 

Table 5.3 shows a summary of the patterns observed in the three cases: 

(a) only attraction and repulsion, (b) only alignment, (c) attraction, repulsion 

and alignment. The dashes indicate that the pattern was not observed. Since 

we do not sample the entire parameter space, we note that Table 5.3 might not 

be complete. Moreover, it is likely to find other new and interesting patterns, 

in different parameter subspaces. Such an example will be discussed in Section 

5.5. Our aim here is not to find all patterns, but to open the door towards the 

numerous possibilities offered by our modeling procedure. 

By fixing all the parameters, we can investigate the role of different model 

assumptions (Ml versus M2, etc.) in determining the resulting spatial pattern. 

We do this in the context of all three social interactions: attraction, repulsion, 

and alignment (i.e., case (c)). We set qr = qa — 4^,qai = 2 (that is, attraction 
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and repulsion greater than alignment), and Ax — 0.2, A2 = 0.9. The rest of 

the parameters are given in the caption of Figure 5.5. Models Ml and M2 

yield stationary pulses, as shown in Figure 5.5, pattern (1). This suggests 

that for this particular case (i.e., qr, qa > qai), it does not matter whether the 

signals received from within the alignment range come only from neighbors 

moving towards the reference individual (Ml), or from neighbors moving in 

both directions (M2). Model M3 shows feathers, as in Figure 5.5, pattern (4). 

In this case, the group as a whole is stationary. However, those individuals 

positioned at the edge, facing away from the group, leave and do not turn 

around. This happens because the individuals do not receive information from 

behind. Model M4 shows traveling breathers, as in Figure 5.5, pattern (9). 

This behavior is the result of two factors. First, since repulsion has the same 

magnitude as attraction, individuals can escape the group. These individuals 

move faster than the rest of the group. The rest of the group executes a sort of 

zigzag (those very high density patches displayed by pattern (9)). Second, the 

boundary conditions are periodic. That is, individuals that have left the group 

now are joining it again. This leads to expanding and contracting moving 

groups (i.e., traveling breathers). Model M5 shows ripples, as in Figure 5.5, 

pattern (3). In this case, the individuals react only to signals coming from 

ahead. This way, when two left-moving and right-moving waves approach 

each other, the majority of individuals within each group turn around, to 

avoid collision. However, there are some individuals that continue moving in 

the same direction. This behavior leads to the appearance that the waves pass 

through one another. 

5.5 Spatiotemporal pat terns caused by drift 

in communication 

The patterns shown in Table 5.3 likely are not the only possible patterns. 

There are two main reasons for this. First, we have focussed only on the five 

submodels M1-M5. However, it is possible to consider different communica-
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tion mechanisms and to derive corresponding submodels. Second, we have not 

sampled the entire parameter space. It may be possible to obtain new patterns 

in different parameter subspaces. For example, as discussed in Chapter 2, one 

can consider an asymmetry in the communication mechanisms by assuming 

that the information perceived from the right is more intense than the infor­

mation perceived from the left (pr > pi). The assumption makes sense if we 

consider environmental effects (e.g., the wind blowing from the right). Figure 

5.7 shows some examples of spatiotemporal patterns obtained for models Ml, 

M3, M4, and M5, when we assume a drift in communication: (a) traveling 

feathers, obtained for model M3; (b) traveling zigzags obtained for model Ml; 

(c) a different type of traveling breathers, obtained for model M4; (d) trav­

eling pulses, obtained for model Ml, in the absence of alignment. Note that 

patterns (a), (b), and (c) are new. 

In Sections 5.3 and 5.4, we have seen that in the absence of external stimuli, 

attractive and repulsive interactions alone cannot lead to a traveling pulse (see 

Tables 5.1 and 5.3). These results are consistent with the analysis presented in 

Chapter 3, when we investigated the effect of an odd kernel. There, we have 

seen that neither the hyperbolic system nor the limiting parabolic equation 

can display moving groups in the absence of alignment. However, for the 

parabolic equation (3.34), destroying the symmetry of the kernel by assuming 

a drift in the communication mechanism can make the groups move. Figure 

5.7(d) suggests that a similar effect is obtained for the hyperbolic system (2.1). 

When pr = pi = 1, the group does not move (the resulting pattern being similar 

to the one shown in Figure 5.5 (2)). However, when pr = 1.1 and p\ = 0.9, the 

group does move (as shown in Figure 5.7(d)). Comparing these two patterns, 

we conclude that in the absence of alignment, asymmetry in the perception of 

signals can lead to moving groups. 
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5.6 Discussion 

In this chapter, we investigated numerically the spatial and spatiotemporal 

patterns displayed by the hyperbolic system (2.1). Since the one-dimensional 

models existent in the literature usually consider either only attractive and 

repulsive social interactions, or only alignment interactions, we studied the 

patterns that occur in three different cases: (a) only attractive and repulsive 

interactions; (b) only alignment interactions; (c) attractive, repulsive, and 

alignment interactions. We showed that alignment is a necessary ingredient 

for the movement in the absence of external environmental cues. More pre­

cisely, attraction and repulsion alone lead to stationary groups. However, when 

alignment is included, moving groups are possible. An alternative to including 

alignment is to consider an environmental drift, which induces asymmetry in 

the reception of signals. This assumption, too, can lead to moving groups. 

We also investigated the patterns obtained considering different communi­

cation submodels. The results show at least 13 different emergent patterns. 

We should note that the described new patterns hold scientific interest. To our 

knowledge, some of these patterns (e.g., feathers) have never been previously 

observed. The results also show that the way organisms receive information 

may play a central role in the emergence of complex patterns observed in 

biological aggregations. 

In this chapter, we performed simulations with two types of kernels: odd 

kernels and translated Gaussian kernels. Comparing the patterns obtained in 

Section 5.3 with the patterns displayed by model Ml in Section 5.4, we observe 

that the long-time behavior is similar, no matter what type of kernels we use. 

In both cases, we obtain stationary pulses, traveling pulses, traveling trains, 

and zigzag pulses. 

Also, we have studied the transitions between different daily activities, as 

the model parameters are varied. This is the first time that transitions are 

studied in the context of a continuum model. Similar transition results were 

previously obtained with an individual-based model [24]. 

To verify that the patterns are not artifacts of the periodic boundary condi-
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tions, we also performed simulations with homogeneous Neumann, Dirichlet, 

and open boundary conditions (not shown here). For Neumann boundary 

conditions, it was not possible to obtain traveling trains, or traveling pulses, 

both of which require an infinite domain. However, the other patterns were 

qualitatively similar to those obtained with periodic conditions. For Dirichlet 

and open boundary conditions, the results were similar only for a quite short 

period of time, until the moving groups leave the domain. 

In the following chapter, we will investigate analytically some of these pat­

terns. The linear analysis performed in Chapter 4 gives conditions on the 

parameters that determine when the steady states become linearly unstable 

and form spatial and spatiotemporal patterns. The spatially homogeneous 

solutions that become unstable when a(k) > 0 are eventually bounded by 

nonlinear terms. It is precisely these terms that determine the final patterns 

we have investigated numerically in this chapter. In Chapter 6, we will take 

into consideration these nonlinear terms and use them to derive amplitude 

equations that govern the behavior of the solutions for large time. In par­

ticular, we will use weakly nonlinear theory to understand the mechanisms 

involved in the formation of these patterns. 
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Chapter 6 

Weakly nonlinear analysis of the 
model 

6.1 Introduction 

The results of the previous chapter show that the hyperbolic model (2.1) dis­

plays a wide variety of complex spatial and spatiotemporal patterns. In the 

following1, we will investigate the mechanisms involved in the formation of 

some of these patterns. 

The linear stability analysis we discussed in Chapter 4 is only valid for 

small time and infinitesimal perturbations. For large time, the nonlinear terms 

dominate the growth of the unstable modes. To study the influence of these 

nonlinear terms on the final heterogeneous pattern, we will employ the classi­

cal method of weakly nonlinear analysis (see [82, 129]). It is weakly nonlinear 

since, although it incorporates the nonlinear terms, it only involves pertur­

bation about the critical points obtained through linear stability [127]. This 

analysis has been originally developed in a fluid dynamics context (e.g., the 

Benard problem [82]). However, the method is now widely applied in different 

areas, such as physics [9], mathemat ica l biology [75, 95, 127], etc. The method 

uses separate time scales to study how the amplitude of the heterogeneous so-

1A version of this chapter has been submitted for publication. 

R. Eftimie, G. de Vries, M. A. Lewis, (2007) Weakly nonlinear analysis for a hyperbolic 

model for animal group formation, J. Math. Biol. 
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lution varies with time. More precisely, there is a fast time scale and a slow 

time scale. The fast time scale is represented by the initial time region (t), 

where the solution starts to develop. This is the time scale where the linear 

stability analysis is valid. The slow time scale is represented by a second time 

region (T = eH), where the effects of the nonlinear terms become important. 

Here, the amplitude of these heterogeneous patterns varies slowly. The two 

time variables t and T are considered to be independent as e approaches zero. 

In the following, we will focus on one of the communication submodels 

proposed in Chapter 2, namely model Ml, with interaction kernels defined by 

(2.9). We will investigate the mechanisms that lead to the formation of some 

of the patterns displayed by this model. In Section 5.4, we showed that this 

particular model can display at least four different spatial and spatiotemporal 

patterns (see Table 5.3, and Figure 5.5): stationary pulses, traveling trains, 

semi-zigzag pulses, and traveling pulses. Here, we will investigate the emer­

gence of two of these patterns: stationary pulses and traveling trains. Both 

patterns occur near bifurcation points of the spatially homogeneous steady 

states. The semi-zigzag pulses are a temporal transition from traveling trains 

to stationary pulses. The fourth pattern, traveling pulses, seems to occur far 

from the bifurcation point. 

Figure 6.1 shows two patterns that emerge through a real bifurcation ((a) 

and (b)), and two patterns that emerge through an imaginary bifurcation ((c) 

and (d)). Figure 6.1(a) corresponds to a single stationary pulse obtained for 

large attractive interactions (qa). Figure 6.1(b) corresponds to multiple sta­

tionary pulses which are obtained for large turning rates (A2). Figure 6.1(c) 

corresponds to a traveling train formed of one peak, obtained for large at­

traction. Figure 6.1(d) corresponds to a traveling train formed of 17 peaks, 

and obtained for large turning rates. As mentioned in Chapter 5, we define a 

traveling train to be a pattern that doubles the number of its peaks when we 

double the domain size. A traveling pulse, on the other hand, has the same 

number of peaks when we double the domain size. By this definition, the 

pattern shown in Figure 6.1(c) is a traveling train, since doubling the domain 

size leads to the formation of two moving groups. 
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In Sections 6.2 and 6.3, we focus on the situation when the bifurcation 

occurs at a real eigenvalue, as seen in Figure 4.3(a) at qa = q®, and in Figure 

4.3(b) at qai — q®t. Here, the focus will be on the spatially homogeneous 

steady state (u*,u**) = (ul,ul). We first analyze system (2.1) when only 

attractive and repulsive interactions are present (that is, qr, qa ^ 0, qai = 0). 

In this case, we know from the results in Chapter 5 that it is possible to obtain 

stationary heterogeneous patterns, such as the single stationary pulse shown 

in Figure 6.1(a). At the end of Section 6.3, we will briefly discuss the case 

when qa — qr = 0 and qai ^ 0. In this case, it is possible to obtain multiple 

stationary pulses, such as those shown in Figure 6.1(b). 

In Sections 6.4 and 6.5, we will study a bifurcation that occurs at a purely 

imaginary eigenvalue, as seen in Figure 4.3 (b) at q\t, and in Figure 4.3 (c) 

at q®t. Now, the focus will be on the steady state (u*,u**) = (M*,«g). To 

keep the results tractable, we will consider the situation when alignment is 

the only social interaction (that is, qai ^ 0, qa — qr — 0). In this case, 

we obtain spatiotemporal patterns described by traveling trains, as shown in 

Figure 6.1(d). At the end of Section 6.5, we will briefly discuss the situation 

when we include repulsive and attractive interactions. The traveling train 

pattern that results in this case is shown in Figure 6.1(c). 

We should specify that throughout this chapter, we will ignore the steady 

states (u^ul) and (M^I^) - First, as seen in Chapter 4, these states are al­

ways unstable. Moreover, the numerical simulations suggest that the solutions 

perturbed from u\ and u\ go to the same attractor as the solutions perturbed 

from the other three steady states {u\, u*z, and ul). 

We conclude with a discussion in Section 6.6. 

6.2 Weakly nonlinear analysis in the neigh­

borhood of a real bifurcation 

In this section, we will consider only attractive and repulsive social interactions 

(that is, qai — 0). The only spatially homogeneous steady state is (u*,u**) — 
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{A/2, A/2). We are interested in the stability of this steady state as we increase 

the magnitude of attraction (qa). Let us denote by q® the critical value of qa 

for which the dispersion relation satisfies a(q^, kc) — 0 (the case is depicted in 

Figure 4.2(a) and Figure 4.3(a)). Let k — kc be the critical wave number. A 

solution of (2.1) near the bifurcation point is given by 

u±{x,t)(xe'™k°x + c.c., (6.1) 

where "c.c." stands for "complex conjugate". We perform a perturbation 

analysis in a neighborhood of the critical value (#°): 

qa = q°a + ve2, 0 < e < 1, u = ±1. (6.2) 

Writing the dispersion relation in a power series about q%, namely 

*(&, kc) = o{ql kc) + 9a^kch*v + 0(e4), (6.3) 

and substituting it into (6.1), gives us 

ea(qa,kc)t+ikcx _ eikcX+da{^fc)ue2t ^ g ^ ^ W ^ N /g ^\ 

The amplitude a depends on the slow time e2t. This suggests we introduce a 

new time variable T = eH and consider fast and slow time scales, t* and T, 

respectively: 

t-+t* + T. 

In the limit e —> 0 we treat these two time scales as being independent [90]. 

We denote w±(x, i*,e, T) = v^ix, t). For notational simplicity, we drop the 

asterisk and the tilde, and assume the following formal expansion 

u+(x,t,e,T) = u* + eul + e2ut + e3uf + 0(e*), 

u~(x,t,e,T) = u** + eui + e2Uz + esu,3 +0(e 4) . (6.5) 

Throughout this chapter, we consider the turning rates to be defined by equa­

tion (2.4). We then expand the nonlinear function tanh(y±[«+,M_] — y0) = 

tanh(2/±[w*,u**] -I- ~^2je
iy±[Uj',uj] — yo) in a Taylor series about ?/±[M*,W**]. 
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The turning functions (2.2) can therefore be written as 

A± = L1,2 + P1,i^y±[u+,uj] + Sw(£eiy±[u},uj])2 + 
i i 

Th2(e^y±H^J])3 + °(^ 3 = 1,2,3..., (6.6) 
3 

with Llj2 and P1)2 denned by (4.13), and 

Si = ^ t a n h t M i - t / o K l - t a n h ^ M i - y o ) ) , 

52 = ^ t a n h C - M x - y o J C l - t a n h ^ - M x - y o ) ) , 

T l = ^ ( - ( 1 - t a n h ( ^ " i - 2 / o ) 2 ) 2 + 4 tanh(M 1 - Z /o ) 2 ( l - t anh(M 1 -y 0 ) 2 ) ) ) 

T2 = ^ ( - ( l - t a n h ( - M 1 - y 0 ) 2 ) 2 + 4 t a n h ( - M 1 - y o ) 2 ( l - t a n h ( - M 1 - y o ) 2 ) ) 

Since we consider qai = 0, this implies that Mi = 0, L\ = L2, Pi = P2, 

Si = 52> and Tx = T2. 

The nonlinear system (2.1) can be written as 

N(u) = 0, (6.7) 

with u = (u+,u~)T. Substituting expressions (6.5)-(6.6) into this equation 

leads to N(£ ) . = 1 e%j )=^ . Nj(u.j)£J'. At each 0(ej), we can write N/(u,) = 

L(UJ) — Nj — Ej. Here L(Uj) represents the linear part of the system (2.1), 

Nj contains the nonlinear terms formed of uf_v uf_2, etc., and Ej contains 

the slow time derivatives dxuf_2, (j > 3) and the terms multiplied by v. The 

linear operator L is the same at each 0(ej) step, whereas Nj and Ej have to 

be calculated every time. Therefore, NJ(UJ) = 0 reduces to 

L(Uj) = Nj + Ej, j = 1,2,3,.... (6.8) 

Since the eigenvalues are real, the spatially homogeneous steady state becomes 

linearly unstable to spatial patterns, and therefore, the linear operator L is 

defined as 

r /„A_ f 7dx + Lt + M5K*- -Lt + M5K*- \f u+ \ ( . 
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where the convolution K * • is defined by 

K*u± = qr [Rr *u±-Kr* u*) - q°a (ka * u* - Ka * u*] , (6.10) 

with Kr>a(s) = Kr>a(-s), and (K^u^x) = J^ KrA(s)u±(x-s)ds. Through­

out the analysis, we will use the operator Lkc, which is obtained by applying 

L to solutions of the form elkcX: 

( jikc + L1 + M5K+(kc) -Lx + M5K+(kc) \ 
kc V -Lx-Mhk+{kc) -^ikc + Lt-Msk+ikc) J- {- ' 

Here we define 

K+{kc) = qr (k+(kc) - K;{kc)) - q°a (K+(kc) - k'{kc)) , (6.12) 

where K". , j = r,a are the Fourier transforms (4.14). Later, we will also 

use K-(kc) = -K+(kc), K+(2kc), and K~{2kc) = -K+(2kc). At 0(e1), the 

nonlinear terms are iVi = E\ — 0, and therefore, equation (6.7) reduces to 

solving 

L(Ul) = 0, (6.13) 

where Ui = (wf ,u^)T=a(T)veikcX + c.c, with v = (t>i,t>2)T, and "c.c." de­

noting the complex conjugate terms. The components v\ and v<i are given 

by: 
Li - M5K+ 

Vl = ~,—;—77^7' V2 = L (6-14) 

'jik + Lx + M5K+ 

The linear equation (6.13) has a nontrivial solution. Therefore, for 0(ej), j > 

2, the nonlinear equation (6.8) has a solution if and only if Nj + Ej satisfies 

the Fredholm alternative [68]. However, to be able to apply the Fredholm 

alternative, one has to investigate whether the linear operator L is compact. 

Throughout this section, as well as Section 6.4, we consider the Hilbert 

space 

Y = {V(X,T)\(X,T) e [0,L] x [0, oo), s.t. lim — / / \v\2dxdr < oo}, 

(6.15) 

with the inner product 

(v ,w)= lira - / / ° (v1™1 + v2w2)dxdr, (6.16) 
T^oo 1 JQ J0 
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where v = (v1,v2)T, w = (w1,w2)T. Moreover, we will assume that M± satisfy 

the periodic boundary conditions (2.12). Note that since u^ are bounded on 

L°°([0, L] x [0, T\) (see Chapter 3), they are also bounded on L2([0, L] x [0, T\) 

[120]. Therefore, the limit l i m ^ ^ ^ || v |||2(r0 nxrori) is finite. 

Let us now rewrite the linear operator L = jLd + L0, where La is the 

differential operator 

^ - ( \ X ) ( : - ) • («7» 
and Z/0 is described by 

r (n)-( L1 + M5K*- -Ll + MsK*-\(u+\ L°W-{-Ll-M5K*. L,-M5K*- ){u- J' (6-18) 

Note that the operator L0 is compact (since the integral operator K is com­

pact (see for example [120], Section 3.4)). However, the differential operator 

Ld is not bounded [120], and therefore not compact. This issue can be ad­

dressed following the approach shown in [80], where the differential operator 

is interpreted as a distribution in a Sobolev subspace of Y, which requires the 

derivatives to be also in Y. This way, the distributional interpretation defines 

the operator on a closed domain in Y. In a similar manner, we can restrict the 

definition of the linear operator L to act on the Sobolev subspace. The adjoint 

of this linear operator, L*, acts on elements of Y in the following manner: 

- 7 4 + In + M5K* * • - L i - M5K* *• \ ( u+ 

L ^ V -Li + M5K* *• ^dx + Lx- M5K* * • J \ u 

where K* describes the adjoint integral operator. 

Following similar steps as in [80], it can be shown that the kernel of the 

above restricted operator is finite-dimensional, and its range is closed. There­

fore, the Fredholm alternative can be applied, which means that Nj + Ej has 

to be orthogonal to the bounded solution of the adjoint homogeneous problem 

L*(u) = 0. (6.19) 

Let us consider this solution u = (u+,u~~)T to be defined by 

u = (31(T)WeikcX + [32(T)We-ik°x. (6.20) 
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Then, equation (6.19) results in 

££( f i )=0 , (6.21) 

with the adjoint operator defined as 

a -jikc + Lt + M5k~(kc) -Lx - M5K~(kc) 
Jk* l -Lt + MsK-fc) 7zfcc + L1-M5^-(fc c) 

The orthogonality condition reads 

(u, (N, + E,)> = 0. (6.22) 

We are interested only in those terms of Nj + E* that contain e±%kcX since these 

terms give rise to secular solutions. However, these terms do not appear at 

0(e2). Here, the nonlinear terms are E2 = 0, and 

AT _ ( W£PiK * Ut + U± PiK * Ui \ , s 
N2 ~ \ -ufPtK * Ul - v^P1K * «i J ' (b ,2d) 

where K+ is defined by (6.10). Actually, iV2 can be rewritten as 

JV"2 = a2(T)e2ikcXQ^ + |a|2Q (2) + c.c, (6.24) 

with Q(D = (QP, g2
x))T and QW = {Q?\ Q2

2))T described by 

Q? = Pi(v1 + v2)
2k+, Q? = -Q?, (6.25) 

Q? = \v1 + v2\
2(k+ + K-), Q{? = -Q?\ (6.26) 

Hence, iV2 does not contain terms of the form e±%kcX. Equation L(u2) + iV2 = 0 

is then solved for u2 = (u^u^)7, where 

u2 = ai(r)v0eifcoa! + a2(T)v(1)e2ifccX + |afv ( 2 ) + c.c, (6.27) 

with v ^ = (vi'\v^)T, and v(2) = (v^,vf))T satisfying the following two 

equations 

W v ( 1 ) ) + Q(1) = 0, (6.28) 

£o(v(2)) + Q(2) = 0. (6.29) 
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Solving system (6.28) gives us 

v? = - Q ? . , v W = t ; ? ) . (6.30) 
2^ik + 2M5K£ 

Here we define K+ = qr(K+ (2kc)-K~(2kc)) -q°a(K+ (2kc) -K~ (2kc)). System 

(6.29) reduces to one equation in two unknowns. To solve it for v[ ' and 
(2) 

v2 , we have to impose the conservation of the total density on the interval 

[0, L] = [0, Y\. This condition requires that v2 ' = —v[ '. We therefore have 

^ i S v^ = -v[2)- (6-31) 

At 0(e3), we obtain terms that can lead to secular solutions. In this case, 

the nonlinear interactions JV3 + £3 are described by 

N3 + E3 = ^eikcXK{3) + ^e-ik°xR{3) + aeikcXvR{2) + ae'^vH^ + 

a\a\2eikcXKw + a|a|V i f ccXR (1 ) + other terms, (6.32) 

where "other terms" describe those terms of the form e±2tkcX, e±3lkcX, etc. The 

coefficients ~R^\j = 1,2, 3, are described by the following expressions: 

ijW = Pxvv{l)K- + PlVv{2)K+ + PMl)K+ + 5i(f)i - v2)v
2(K+)2 + 

25iw(«i - v2)k
+K- + ZTlAvv2K-{K+)2, 

D(1) K2 

R? 
R? 

4 3 ) 

4 3 ) 

= 

= 

= 

= 

= 

p(i) 

-M5v{ 

-Rf\ 
Vl, 

V2- (6.33) 

We define here v — vx + v2, and v^ = v± + v2. The solution W of the 

adjoint equation (6.21) is given by 

W2 = 1ik-Ll-M,k-{kc) 

-^-MsK-iK) 
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Then, the orthogonality condition (6.22) can be written as 

rp 27T 

Jim - / / (/3!(T)We*x + f32(T)VJ e~ikcX) (R^a\a\2eikeX + R^a\afe-ik^x 

f ^ o o T Jo Jo 

+R^a eik°xu + R^ae~ikeXu + R( 3 )^ e*=* + R(3)^e-ifcc*\ dxdT = Q 
Ci-i Li A I 

Since J0
kc e^2ikcXdx = 0, we obtain 

W • R^a\a\2 + W • R ( 2 W + W • R ( 3 ) ^ = 0, (6.35) 

and its complex-conjugate 

W • R ( 1 )a|a|2 + W • R { 2 W + W • R ( 3 ) ^ = 0. (6.36) 

CI/J. 

Equation (6.35) can be rewritten as 

da 

where 

We can verify that 

^ = -uaY-a\a\2X, (6.37) 

W • R(2) W • R(x) 

Y=VTB&> X = W1W- (6'38) 

y =
 d° = ̂ ikM^Ka ~ Ka) ( 6 3 9 ) 

dqa Li 

Therefore the linear approximation of this amplitude equation agrees with the 

linear prediction given by the dispersion relation (equation (6.3)). 

The amplitude equation (6.37) is complex. To obtain a real equation, let 

us define a(T) = R(T)eie(-T\ with real terms R(T) = \a\ and 0(T). Thus, 

equation (6.37) can be rewritten as 

^ = -uRU(Y) - R3U(X), (6.40) 

±- = -u^(Y)-R^(X), (6.41) 

with 9ft and 3 denoting the real and imaginary parts of the two coefficients 

X and Y. The two steady-state solutions of (6.40) are R = 0 and R = 

A/—v$l(Y)/$l(X). To study the stability of these solutions, we write R = 
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Ro+Rs, where RQ is the steady state and R$ is a small perturbation. Equation 

(6.40) then becomes 

^ = R5 (-vft(Y) - 2RlU(X)). (6.42) 

We can observe that the trivial state R0 — 0 is stable if v$t.(Y) > 0, and 

unstable otherwise. The nontrivial state R0 = \J—vU(Y)/$i,(X) is unstable if 

uU(Y) > 0, and stable otherwise. 

To compare the results of the nonlinear analysis with the numerical results, 

we substitute a into the expressions for uf, and derive a formula for the actual 

amplitude of the spatial patterns: 

max(u)—min('u) = e(max(uf+Ui) —min^+wj")) = e4M((vi+V2)a). (6.43) 

The dashed curve in Figure 6.2 shows the variation of the amplitude for 

the stationary pulses described in Figure 6.1(a). For u^ = A/2 — 1, qr = 2.2, 

Qai = 0, 7 = 0.1, Ai = 0.2, A2 = 0.9, the bifurcation to spatial patterns occurs 

at q® = 1.008. The coefficients that appear in the amplitude equation (6.37) 

are both negative: R(X) < 0, 5R(F) < 0. Therefore, when u — — 1, the curve 

\a\2 = —vR(Y)/U(X) > 0 is unstable, while \a\ = 0 is stable. Hence, the 

nonzero amplitude (the dashed curve) bifurcates subcritically to the left. In 

the next section, we perform numerical simulations to verify these analytical 

results. 

6.3 Numerical results for a real bifurcation 

To verify the results of this weakly nonlinear analysis, we perform numerical 

simulations. The numerical scheme we use is the second-order McCormack 

scheme described in Section 5.1. The initial conditions are perturbations 

of the spatially homogeneous steady states (u*,u**) with terms of the form 

0.02cos(A;c7ra;), x G [0,L], For the parameter values specified in the previous 

section, the final heterogeneous pattern is similar to the one described in Figure 

6.1(a). Figure 6.2 shows the amplitude of the total density, as determined by 
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Figure 6.2: The amplitude of the spatially heterogeneous solution u(x,t) = u+(x,t) + 

u~(x,t) as we perturb the magnitude of attraction qa. The dashed curves represent the 

unstable branch obtained using the weakly nonlinear analysis. The solid circles represent 

the stable branch obtained numerically, whereas the open circles represent the unstable 

branch obtained numerically. The critical value of qa is g° = 1.008. The other parameters 

are: Aa = 0.2, A2 = 0.9, 7 = 0.1, qr = 2.2, qai = 0, yo = 2. For qa < q°, the zero amplitude 

branch (corresponding to |o;2| = 0) is stable (continuous line). For qa > Q° it becomes 

unstable (dashed line). When qa < q°, the curve formed by the open circles marks the 

boundary of the stability region, as determined numerically. Perturbations with amplitude 

on or above this curve grow to the upper branch (solid circles), while perturbations with 

amplitude below this curve decay to zero. i 
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max(u+ + u~)-min(u+ + u~). The solid circles represent the stable numerical 

solution, while the open circles represent the unstable numerical solution. 

For qa > q®, the spatially homogeneous steady state (|a| = 0) bifurcates 

numerically to a large amplitude solution (solid circles). However, as we de­

crease qa, we observe hysteresis behavior: the solution does not return to the 

spatially homogeneous steady state when qa = qQ
a. It will eventually return to 

this steady state for some qa < q^. This is consistent with the previous ana­

lytical results regarding the existence of an unstable amplitude that bifurcates 

subcritically. We checked numerically the existence of this branch by choosing 

the initial conditions to be perturbations of the spatially homogeneous steady 

states with terms of the form Acos(kcTrx), where A is the variable amplitude. 

For qa < q®, the curve formed of open circles represents the unstable branch. 

This curve represents a threshold: perturbations with amplitude A on or above 

this curve grow until the solution reaches the upper stable branch, whereas 

perturbations with amplitude below this curve decay to zero. Since the spa­

tially homogeneous steady state is (ul,ul) = (1,1), imposing the condition 

that the initial solution is positive forces us to use A < 2. This happens for 

qaE [0.915,1.008]. 

There are two remarks regarding Figure 6.2. First, it is known that for 

subcritical bifurcations, the cubic amplitude equation (6.37) can give only a 

qualitative behavior of the solutions [25]. However, this qualitative behavior 

is enough for the biological questions we want to address in this thesis. We 

note here that for qa < q®, the two unstable curves (the analytical and the 

numerical one) agree acceptably well, especially near the bifurcation point. 

Second, the high-amplitude solution drops to zero far from the bifurcation 

point (i.e., at qa = 0.83). However, the weakly-nonlinear analysis does not 

hold near the point where the solution drops to zero. Therefore, we do not 

expect here the stable high-amplitude curve and the unstable analytical curve 

to match. To study the behavior of the solution far from the bifurcation point, 

one can derive "phase equations" [94]. 

Figure 6.2 can be used to investigate the effect of attraction on the structure 

of stationary groups. Since the bifurcation is subcritical, the stable high-
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amplitude solution gives us the effect of the attractive interactions. More 

precisely, we notice that increasing the strength of the attraction (qa) leads to 

larger amplitudes for the total density u. This means more compact groups. 

Moreover, for attraction less than q®, solutions with amplitude less than 

y/—vR(Y)/R(X) will decay. This suggests that groups that have a density 

less than a certain threshold will eventually disperse. Of course, this threshold 

depends not only on qa, but also on all other parameters. 

If we now consider qr = qa = 0 and large turning rates (Ai, A2), we obtain 

similar results. However, in this case, the bifurcation parameter is the magni­

tude of alignment qai. The final heterogeneous pattern is described in Figure 

6.1(b). Figure 6.3 shows the amplitude of the stationary pattern that bifur­

cates subcritically to the left at q^ = 0.845. Therefore, when the individual 

turning rates are very large, but at the same time organisms align with their 

neighbors, increasing the strength of alignment leads to higher amplitude so­

lutions. Again, this means that the groups become more compact. Moreover, 

there is a similar threshold for the total density below which the groups will 

disperse. 

6.4 Weakly nonlinear analysis in the neigh­

borhood of an imaginary bifurcation 

In the following, we consider the case when the bifurcation to spatial het­

erogeneous patterns occurs at an imaginary eigenvalue. To keep the results 

tractable, we will assume that alignment is the only social interaction (that 

is, qa = qr = 0). This corresponds to the pattern shown in Figure 6.1(d). 

Consequently, we will fix all other parameters and assume that the bifurcation 

to spatially nonhomogeneous patterns occurs as qai passes through a critical 

value q%. At the critical point (q®t, kc), the two eigenvalues of the dispersion 

relation (4.12) are o\(q%, kc) = iu, and oii^i, ^c) = UJQ + iu>, with uiQ < 0. As 

mentioned before, this happens when the spatially homogeneous steady state 

is any of the pairs (u\, iig), or (ttg, u\). Throughout this section, we will assume 
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Figure 6.3: The amplitude of the spatially heterogeneous solution u(x,t) = u+(x,t) + 

u~(x,t) as we perturb the magnitude of alignment qai- The solid circles represent the 

stable branch obtained numerically, while the open circles represent the unstable branch 

obtained numerically. The dashed curve represents the unstable branch obtained using 

weakly nonlinear analysis. For qai < q^, the zero amplitude branch (corresponding to 

\a2\ = 0) is stable (the continuous curve). For qa > q° it becomes unstable (the dashed 

curve). The parameters are: q°t = 0.845, kc = k14 = 8.867, Ai = 2.0, A2 = 9.0, 7 = 0.1, 

qr = 0,qa = 0, 2/0 = 0. 
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that (u*, u**) = (ul, ul) and study what happens in this case. Since the second 

eigenvalue has always a negative real part, we ignore it and focus only on the 

first eigenvalue. A solution of system (2.1) near the bifurcation point (q^t, kc) 

has the form 

«±(a: , t )«e* ,*H* c X + c.c. (6.44) 

As before, we perturb qa\ away from the critical value q\x, 

qai=q°ai + e2v, 0 < € < 1 , i/ = ± l . 

Note that the spatially homogeneous steady state (u%, W3), which we discussed 

in the previous section, does not depend on the bifurcation parameter. How­

ever, as shown in Figure 4.3 (b) and (c), the spatially homogeneous steady 

state (u\, ul) does depend on the magnitude of alignment (qai)'- as we increase 

qai, u* increases while u** decreases. Therefore, in this perturbation of 

qai will induce a perturbation of these steady states: 

•* * 2 \du*(q°al). _ ,„ 2 .du*(q°al). tn Ar. 
u* = ul-e2v\——^l u** = uX * + e V — r : M l \ , (6.45) 

dqai dqal 

where 
du*(q°al) = Ms(u**-u*) 

dqal L1 + L2-2q°alM5'
 { ' ; 

and the constants L\, L2 and M5 are given by (4.13). For notational simplicity, 

we will drop the index "0" from the spatially homogeneous steady states UQ 

and UQ*. Therefore, the left- and right-moving densities can be written as 

u+(x,t,e,T) = u*-e2u\^^-\ + eut + e2ut + ^ t + 0(ei), 
dqai 

u~(x,t,€,T) = u** + e2u\ } % l ) \ + eu± + e2u2 + e3% + 0(e4).(6.47) 
dqal 

Expanding the dispersion relation in power series leads to 

o(qai, kc) = a(q% kc) + ^ M l M e ^ + Q{e% ( 6 4 g ) 
OQal 

To calculate the 0(e2) term that appears in equation (6.48), we use equation 

o , 0 u \ it dC(q°,,kc,u*) _ 0J?(q°„fcc,u») 

dqai 2iu + C(q2i,kc,u*) 
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Because u* and u** — A — u* depend on qai, the terms ^- and ^- are given in 

terms of the derivative of u* with respect to qai. Hence, when o(q%, kc) — iu, 

we obtain 

da ~(ti" - u*)P - M7A - ffi^jg (P + A(P1 - P2 ~ ^ai(u*Sl - u**S2))) 

dqal ~ 2iu> + LI + L2 - M 5 ^ ( £ + + K^) 

where 

(6.50) 

P = Pi_(ico - 7ikc) - P2(iu) + jikc), 

M7 = M5 + 2q°al(u**-u*)(u*S1-u**S2), (6.51) 

while the rest of the constants are given by (4.13). 

Since the eigenvalues are imaginary, the spatially homogeneous steady 

states become unstable to spatiotemporal patterns, and therefore, the linear 

operator associated to system (2.1) is given by 

f dt + 70* + Lt + M5q°alKal * • -L2 + M5q°alKal * • \ f , 
Lw=[ U-

\ -Lx - M^Kal * • dt-jdx + L2- M5q°alKal * • / ^ 

(6.52) 

However, throughout the analysis, we will use Lw>fcc which is obtained by ap­

plying the operator L to solutions of the form (^e'
lu't+1'kcX): 

/ iu> + jikc + LX- M5q
Q

alK^ -L2 + M5q
0
alK+ 

Lu,kc = I 
\ -Lx + MM0^ ito - jikc + L2- M5q

0
alK+ 

(6.53) 

The corresponding adjoint operator L^kc is described by 

/ -iuJ - Jikc + Lt + M5q°alk+ -Lt - M5q
0
alK+ 

V -L2 + M5<&Krt -iu + 'yikc + Lz-Ms&Krt 

(6.54) 

As in Section 6.2, we start collecting the terms with equal powers of e. At 

0(e) we have 

Ui = avel"t+ikcX + c.c, (6.55) 
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where a — a(T), Ui = (uJ[,ul)
T, and v = (vx,v2)

T=((-iu + "/ikc)/(ico + 

jikc), 1)T. At 0(e2), E2 = 0 and 

/ (utPl+v^PMKal*(uT-ut) + (u*S1-u»S2)(^)2(Kal*(u^- \ 

N2 = < ) ) 2 

2 -(utPi + u-[P2)q%Kal * (uj - u+) - (u*S1 - u**S2)(q°al)
2 {Kal * fa-

V ut)f ) 
After some calculations, we can rewrite the nonlinear terms N 2 + E2 as 

N 2 + E 2 = a2e2^+2ifccXQ(l) + s2e-2^-2ifccXQ(2) + | a |2Q(3)_ (g gg) 

Therefore, the solution of the nonlinear problem L(u2) = N2 4- E2 can be 

written as 

u2 = aiv0e
iu}t+ikcX + a2eMwtf2i*cXG?) + a2e~2iu>t-2ikcXGf + |a|2GJ,3). 

The constants GQ ,j = 1,2,3, are calculated by requiring them to verify the 

following equations: 

W A ^ = - Q ( 1 ) , L^2kcGW = -QW, L0,0Gi,3) =-Q(3(6.57) 

The equation for N2 + E2 does not contain terms of the form e±lwfcbfccX, 

and therefore the Fredholm Alternative is satisfied. However, at 0(e3) we 

have to impose the condition that the solution verifies the Fredholm Alter­

native. Let us define the solution of the adjoint homogeneous problem to be 

u= f3i(T)V'e
iut+ikcX + c.c. This leads to the amplitude equation, 

^ = -vaY - a|a|2X, (6.58) 

where 
V • R(2) V • RW 
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The coefficients T$\j — 1, 2, 3, that appear in this equation are given by 

-Kl — Vi, 

4 ^ = V2, 

R? = (M5 + 2q0
al(u**-U*)(u*S1-u**S2))b1 + (u**-u*)el + 2q^e1 + q0

alJnb1-

q0
al{Px -P2- 4?" («*5i - u**S2)h), 

i?r = -R?, 

R? = 2(u*Sx - u^SMtfihG^ + hG^) + 3(u*Tt + ti*'T2)(«ii)3(&1)
a51 + 

«2.(dGf + Sl(#
)) + (ga°,)2(/i(6i)2 + 2/16161) + g°(Ji&i + J9&1), 

i? f = _i?(3). (6.60) 

We define here 

foi = Kafa ~ Kiv^ e i = pivi + ̂ 2 , /1 = S1V1 - S2v2, 

Jj = G?P1 + G?P2, j = 1..10, 

<#} = <%)K&2ke)-<$K4{2ke), Gf = G$k^{2kc)-G
{£k+{2kc\ 

Gf = €$-($. (6.61) 

After some lengthy computations, we can verify that 

Y = ̂ , (6.62) 

with -^- given by equation (6.50). Therefore the linear approximation of this 

amplitude equation agrees with the linear prediction given by the dispersion 

relation (equation (6.48)). 

Similar to the results presented in Section 6.2, the steady-state solutions 

for the magnitude of the amplitude equation are given by 

M = 0, \a\ = y/-vM(Y)/M{X). (6.63) 

The zero state |a| = 0 is stable if v$t.(Y) > 0, and unstable otherwise. The 

state |a| = \J~u^t(Y)/U(X) is unstable if uR(Y) > 0, and stable otherwise. 

For qr = qa = 0, Ai = 0.2/0.7, A2 = 0.9/0.7, 7 = 0.1, and kc = kxl = 10.55, 

the two coefficients that appear in equation (6.63) are $l(Y) > 0 and U(X) < 0. 
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Figure 6.4: Amplitude of the spatially heterogeneous solution as we perturb the magnitude 

of alignment qai- The solid circles represent the stable numerical solution, while the open 

circles represent the unstable numerical solution. The continuous curve represents the stable 

analytical solution, while the dashed curve represents the unstable analytical solution. The 

critical value of qai is q°al = 2.088. The other parameters are: Ai = 0.2/0.7, A2 = 0.9/0.7, 

7 = 0.1, qr = qa = 0, L = 10.12, kc = 10.55, y0 = 2. 

Hence \a\2 = — ̂ ^ ^ - > 0 if v > 0, which means that solution bifurcates to the 

right. Moreover, since i/U(Y) > 0, the zero-amplitude steady state is stable, 

whereas the nonzero-amplitude solution is unstable. Figure 6.4 shows this 

bifurcation. The continuous curve represents the stable solution, whereas the 

dashed curve represents the unstable solution obtained using weakly nonlinear 

analysis. 
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6.5 Numerical results for the imaginary bifur­

cation 

To confirm the validity of these results, we perform numerical simulations. 

Again, the initial conditions are perturbations of the spatially homogeneous 

steady states with terms of the form Acos(kcirx). Figure 6.4 shows the am­

plitude of the spatiotemporal solutions as we perturb the magnitude of align­

ment qai. As before, the spatial homogeneous solution bifurcates subcritically 

to spatial heterogeneous solutions represented by the traveling trains (seen in 

Figure 6.1(d)). The solid circles represent the stable numerical solution, while 

the open circles represent the unstable numerical solution. For qai > q^, the 

branch described by the open circles represents a threshold: perturbations with 

amplitude below this curve decay to zero, while perturbations with amplitude 

on or above this curve grow to the upper branch. Therefore, the numerical 

results are consistent with the analytical results. 

We notice that increasing the magnitude of alignment leads to a slight 

decrease in the amplitude of the solutions. This suggests that moving groups 

become more elongated, as alignment is increased. This is opposite to the 

effect observed in the case of stationary groups. There, the alignment makes 

the group more compact. As before, there is a certain threshold for the total 

density, corresponding to |a|2=—^§T^(- Groups with total density greater 

than this threshold will become more dense and persist for a long time, while 

groups with the density below this threshold will disperse. 

As mentioned in Chapter 4, introducing attractive and repulsive interac­

tions leads to the emergence of the first wave number, k\, as shown in Figure 

4.2 (a). In this case, the result is a traveling train formed only of one group 

(see Figure 6.1(c)). Figure 6.5 shows the subcritical bifurcation obtained in 

this case. The stable high-amplitude branch (the solid circles) corresponds to 

the solution shown in Figure 6.1(c). The effect of alignment on the moving 

group is similar to the previous case. 
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Figure 6.5: The amplitude of the spatially heterogeneous solution as we perturb the 

magnitude of alignment qai, while taking into consideration the attractive and repulsive 

interactions. The solid circles represent the stable numerical solution, while the open circles 

represent the unstable numerical solution. The dashed curves represent the unstable ana­

lytical solution. The critical value of qai is q°t = 2.472. The other parameters are: Ai = 0.2, 

A2 = 0.9, 7 = 0.1, qr = 0.1, qa = 1.0, L = 10, kc = 0.628, y0 = 2. 

127 



6.6 Discussion 

In this chapter, we have analyzed two spatial and spatiotemporal patterns 

displayed by model Ml, introduced in Chapter 2. The investigated patterns are 

stationary pulses and traveling trains. We have performed a weakly nonlinear 

analysis to study the amplitudes of these two patterns. The stationary pulses 

arise through a real bifurcation from the spatially homogeneous steady state 

(M3, M3). The traveling trains arise through an imaginary bifurcation from a 

different steady state, namely (u{,ul). In both cases, the bifurcations are 

subcritical. It should be mentioned that while the steady state (w^tig) is 

constant, the steady state (u*, u^) depends on the bifurcation parameter. 

It is known that for subcritical bifurcations, the unstable branch obtained 

using a cubic amplitude equation gives only qualitative information about 

the solution [25]. A more accurate result can be obtained by adding higher-

order terms to obtain a quintic amplitude equation. Moreover, far from the 

bifurcation point, one can only derive "phase equations" to study the behavior 

of the solution. However, due to the complexity of our system, as well as the 

type of questions we are addressing (that is, the effect of the social interactions 

on the amplitude of spatial and spatiotemporal patterns), it is sufficient to 

derive a cubic amplitude equation. 

We then used the bifurcation diagrams for the amplitude of the solutions to 

study the effect of social interactions on the structure of the aggregations. As 

expected, increasing inter-individual attraction leads to more compact station­

ary groups. This kind of behavior can be observed in schools of fish [18, 126], 

when a nearby predator leads to increased attraction towards neighbors which 

causes the group to form very tight stationary aggregations. On the other 

hand, alignment has dual effects, depending on whether the group is station­

ary or moving. We have seen that in the case of stationary groups with high 

individual turning rates, alignment has an aggregative effect, with the groups 

becoming more dense. However, in case of moving groups, the effect of align­

ment is opposite: the density decreases as the groups become more elongated. 

When alignment becomes very large, the groups disintegrate. However, em-
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pirical observations of fish schools show that highly polarized groups are tight 

[108, 141]. Nevertheless, it is clear that moving groups have to be less dense 

than the stationary compact groups because of the need for manoeuvering. 

The subcritical bifurcation suggests that there is a threshold group density, 

such that groups with densities below this threshold will disperse, while groups 

with densities above this threshold will become even more dense and persist 

for a longer time. This transition between the disordered behavior represented 

here by the homogeneous solution, and the ordered behavior represented by 

the high-density stationary or moving groups, is particularly important for the 

area of animal group formation and movement. It is known that some insect 

species (such as ants [8], or locusts [17]), and fish (such as young Tilapia fish 

[6]), exhibit transitions between disordered and ordered activity behaviors, and 

these transitions depend on animal density. For example, Buhl et. al. [17] 

have shown experimentally and numerically (using an individual-based model) 

that as the density of locusts in a group increases, there is a transition from 

disordered movement to collective motion of aligned groups. Understanding 

such transitions has potential applications to understanding and controlling 

the outbreaks of different insect pests, such as locusts. 

Here, we have analyzed the patterns displayed by only one of the five 

sub-models described in Chapter 2. It is possible that other patterns, corre­

sponding to the other four sub-models, arise through supercritical bifurcations 

(i.e., bifurcation to a small, stable, amplitude solution). However, this aspect 

has not yet been investigated. Still, we can conclude that the subcritical bifur­

cations seem to play an important role in the understanding of the effects of 

biological parameters to the formation and persistence of certain animal groups 

(such as insects). A supercritical bifurcation would suggest that increasing a 

certain parameter would lead to the formation of denser, well coordinated 

groups. This may be the case for some animal groups, but not necessarily for 

insects like locusts or ants. A subcritical bifurcation, on the other hand, sug­

gests the existence of a density threshold below which well coordinated groups 

cannot persist. Moreover, this type of bifurcation helps us connect the thresh­

old for the total animal density to different behaviors. More precisely, this 
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threshold depends on different parameter values which characterize different 

group behaviors. 

In the previous five Chapters (2 to 6), we have investigated the case when 

the individuals move at a constant speed and turn in response to the signals 

perceived from their neighbors. In the following chapter, we will focus on a new 

model which assumes that individuals speed up or slow down in response to 

their neighbors' behavior. In particular, we will compare the resulting spatial 

and spatiotemporal patterns obtained with this new model to the patterns 

obtained with the model introduced in Chapter 2. 
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Chapter 7 

A nonlocal hyperbolic model 
with density-dependent speed 

7.1 Introduction 

Throughout the previous five chapters, we assumed that individuals move 

with a constant speed and turn to approach, to avoid, or to align with their 

neighbors. This approach is consistent with other Eulerian [62, 78, 109, 110] 

and Lagrangian models [52, 136] for animal group formation and movement. 

However, organisms do not always move with a constant speed [61]. They 

speed up or slow down to catch up with their neighbors, or to avoid collisions. 

That is, they change speed in addition to changing direction. 

In the mathematical literature, there are many examples of local and non­

local parabolic models for animal movement that consider density-dependent 

velocities (see for example [74, 85, 86, 132, 133], and the references therein). 

There are also some local hyperbolic models which assume that individuals 

speed up or slow down in response to local population density and its gradient 

[56, 77]. However, there are no one-dimensional nonlocal continuum mod­

els which assume that both the speed and the turning rates have a nonlocal 

character. 

In the previous chapters we focused only on the turning behavior. In this 

chapter, we generalize the model and consider also the speeding up and slowing 

down behaviors. This generalization makes perfect sense since, if individuals 
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can turn as a result of the interactions with other individuals that are far away, 

they can also speed up or slow down as a result of these interactions (as in 

[86], for example). In the following, we will address this issue by starting with 

the model we introduced in Chapter 2, and then incorporating attractive and 

repulsive interactions into the individuals' speed. 

In Section 7.2, we carefully describe this new hyperbolic model with density-

dependent speed and turning rates. In particular, we will focus on two cases: 

(a) the turning rates depend only on alignment interactions, and (b) the turn­

ing rates depend on all three social interactions, namely attraction, repulsion, 

and alignment. In the first case, the speeding behavior is separated from the 

turning behavior. In the second case, the two behaviors are coupled through 

the attractive and repulsive interactions. In Section 7.3, we take a formal 

parabolic limit to investigate the connection between this model and other 

parabolic models with density-dependent speed that exist in the literature. In 

this context, we compare the limiting parabolic equations corresponding to 

cases (a) and (b). Also, we compare these results with the results obtained 

in Chapter 3, for constant speed. In Section 7.4, we perform a linear stability 

analysis of the model, and further investigate the differences between these two 

cases in terms of the emerging wave numbers. Then, in Section 7.5, we inves­

tigate numerically some of the spatial and spatiotemporal patterns obtained 

with this new hyperbolic model. We conclude with a discussion in Section 7.6. 

7.2 Model derivation 

In this section, we derive an alternative model for the situation when the 

speed depends on attractive and repulsive interactions. For simplicity, we 

focus here on the particular communication mechanism discussed in Chapter 2, 

namely model Ml. More precisely, we assume that for attractive and repulsive 

interactions, individuals use information perceived from all neighbors. For 

alignment, on the other hand, individuals use only the information perceived 

from those neighbors moving towards them. 
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The general model describing the movement of right-moving («+) and left-

moving (u~) individuals is given by the following equations: 

dtu
+(x, t) + dx(T

+[u+, u~]u+(x, t)) = -X+[u+, u~]u+(x, t) + X~[u+, u-]u~(x, t), 

dtu~(x,t) - dx(T~[u+,u~]u~(x,t)) = \+[u+,u~]u+(x,t) - \~[u+,u~]u~(x,t), 

^(ar.O) = u$(x),xeR. (7.1) 

where r±[u+,w~] are the density-dependent speeds, and \±[u+,u~] are the 

density-dependent turning rates. The turning rates have already been de­

scribed in Chapter 2, equations (2.2)-(2.3). Here, we will focus on the speed 

and consider it to be a positive, bounded, and increasing function of the per­

ceived signals (see Figure 7.1). Such an example is the function 1 + tanh(y±), 

where y± denote the perceived signals (see also the discussion in Section 2.2). 

In particular, we assume that the speed depends on the communication sig­

nals perceived from neighbors positioned within the attractive and repulsive 

interaction ranges (that is, y^ — yt ~ vt)- F° r example, in case of attraction, 

individuals speed up to join a larger group in front of them, or slow down to 

allow those behind them to catch up. In case of repulsion, individuals slow 

down to avoid collision with those in front of them, or speed up to avoid col­

lision with those behind them. Throughout this chapter, we will assume that 

the nonlocal speeds are described by the following terms: 

T+[u+,u~] = 7 I 1 + tanh I qa / Ka(s) (u(x + s, t) — u(x — s, t)) ds 

—qr / Kr(s) (u(x + s, t) — u(x — s, t)) ds) ) , 

T~[u+,u~] — 7 ( 1 + tanh I -qa / Ka(s)(u(x +s,t)— u(x - s,t))ds 

+qr / Kr(s) (u(x + s,t)- u(x - s, t)) ds)) . (7.2) 

As in the previous chapters, u(x±s, t) — u+(x±s, t)+u~(x±s, t) describes the 

total density at (x±s, t), while qa and qr represent the magnitudes of attractive 

and repulsive interactions. For simplicity, we use the same magnitudes qa 

and qr as for the turning rates. A more general case would be to rescale 

them (e.g., Qa = cqa, Qr = cqr, where c is a rescaling constant). We will 
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come back to this aspect in the Discussion section. Also, we choose 7 to 

be a constant "base-line" speed. If there is no net attraction or repulsion, 

tanh(O) = 0 and therefore, the individuals move at a constant speed 7 (as 

assumed in Chapter 2). When the attractive or repulsive interactions play 

a role, the speed varies between 0 and 27. To understand equations (7.2), 

let us focus for example on the attractive interactions, and assume that the 

signals perceived by a right-moving individual (u+) from neighbors positioned 

ahead, at x + s, are more intense than the signals perceived from neighbors 

positioned behind, at x — s. This means that the attractive term is positive: 

qa J0°° Ka(s)(u(x + s,t) — u(x — s, t))ds > 0. Therefore, T+ is increasing, which 

implies that this right-moving individual will speed up to join the neighbors 

that are ahead. If, on the other hand, the signals perceived from behind 

are more intense than those perceived from ahead, the integral is negative. 

Therefore, this individual will slow down to allow those neighbors behind it 

to catch up. A similar explanation holds for the repulsion term. Similarly, 

one can describe the speeding behavior of a left-moving individual (the second 

equation of (7.2)). To complete the description of equations (7.2), it should be 

mentioned that the interaction kernels Kr^ai are described by the translated 

Gaussian kernels (2.9) (see Section 2.2). 

In Chapter 2, we assumed that the turning rates \±[u+,u~] depend an all 

three social interactions: attraction, repulsion, and alignment. Here, we con­

sider attractive and repulsive speeds, and for the turning rates we investigate 

the following two cases: 

(a) individuals turn only to align with neighbors within the alignment range; 

(b) individuals turn to avoid collision with neighbors within the repulsion 

range, to approach neighbors within the attraction range, or to align 

with those neighbors within the alignment range. 

Since both cases are defined in terms of the same communication mechanism, 

namely model Ml, we will refer to case (a) as model Ml0, and to case (b) as 

model Ml*,. Table 7.1 summarizes the models. 
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Figure 7.1: The speed function r±[w+,u—] = 7(l4-tanh(y±[M+,u -])) (shown here is 7 = 

0.1). As in Chapter 2,2/± denote the signals received as a result of social interactions: y± — 

vt ~ vf (where y^ and yf describe the attractive and repulsive interactions, respectively). 

When there are no attractive and repulsive interactions, y* — 0 and the speed is constant 

(7). When the social interactions play an important role (i.e., y± ^ 0), the speed varies 

between 0 and 27. 

Note that for model Ml0, the speed and the turning rates are independent 

from each other: the speed depends on the attractive and repulsive interac­

tions, while the turning rates depend the alignment interactions. However, 

for model M1&, the speed and the turning rates are not independent any­

more. They are connected through the attractive and repulsive interactions. 

To understand this connection, let us focus on the behavior of a right-moving 

individual u+(x, t). In particular, focus on the attraction range. If the signals 

perceived from neighbors positioned at x + s are more intense than the signals 

perceived from neighbors positioned at x—s (that is, u(x+s, t)—u(x—s, t) > 0), 

then the individual located at x is more likely to keep moving in the same di­

rection (since A+ is decreasing), and will speed up to approach the neighbors 

at x + s (since T+ is increasing). If, on the other hand, the signals coming 

from neighbors positioned at x+s are less intense than the signals coming from 

those positioned at x — s (that is, u(x + s,t) — u(x — s,t) < 0), the individual 
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Model Speed Turning rates 

Ml 

Mla 

Ml6 

T = 7 =const. 

r = r ± [u+,u-\ 

r = r±[u+,u-} 

X± = \± {yf - y± + y±) 

A± = A± (y±) 

A± = A± (yt - yt + Vai) 

Table 7.1: A summary of the behaviors that can be influenced by the nonlocal social inter­

actions. The speed T also depends on the nonlocal interactions: T=T±[u+ ,u~]=T(±y^ =F 

yf). The terms yfa al are described by equations (2.5)-(2.8) when pr = pi (see Chapter 2). 

located at x is more likely to turn around (since A+ is increasing), and will slow 

down (since T+ is decreasing). Now, the individual will be moving to the left 

(u~). Because u(x + s,t) — u(x — s,t) < 0, the speed T~ is increasing, and the 

individual will be speeding up to join the neighbors at x — s. Therefore, two 

different processes, namely turning and speeding up/slowing down, determine 

the behavior of an individual through interactions with its neighbors that are 

within the attraction range. A similar explanation holds if we focus on the 

repulsion range. 

7.3 Formal parabolic limit 

In the following, we take a formal parabolic limit to investigate the connection 

between the hyperbolic model (7.1) and other parabolic models with density-

dependent speed that exist in the literature. To investigate the parabolic limit 

of this hyperbolic system, we assume, as in Chapter 3, that there is no align­

ment (that is, qai — 0). Note that the attractive and repulsive interactions are 

defined in terms of the total density u(x,t) = u+(x,t) 4- w(x, t). Therefore 

the speed and the turning rates will depend only on this total density. More­

over, since the nonlocal speeds (7.2) are defined in terms of an odd function 

(tanh(?/±['u]) = tanh(±y+[«]) = ±tanh(y+[ii])), we can write them as 

T+[u+,u-}=1(l + g[u}), r-[u+,u-]=1(l-g[u}), (7.3) 
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where g[u] = ta,nh(y+[u]). Recall that the turning rates can be rewritten as 

X±[u+,u~] = Ai + A2/(t/
±[w]) (see equation 2.2). 

Adding and subtracting the first two equations in (7.1) leads to the follow­

ing system: 

Ut + (r/v + 79[u]u)x = 0, (7.4) 

vt + (ju + jg[u]v)x = a[u]u - (3[u]v. (7.5) 

Here we define v = u+ — u~, a[u] = A_[w+,«_] — A+[«+,u_], and /3[u] = 

\~[u+,u~] + X+[u+,u~]. Note that for model Mla, the turning rates are A+ = 

A- = const, (since qa\ = 0), and therefore a[u] = 0. In the following, we will 

focus on model M1& (that is, a[u] ̂  0), since this is the more general case. If 

we differentiate the first equation of (7.5) with respect to t, and the second 

equation with respect to x, we obtain 

«te + 7«xx + 7(5N«)xx = (ua[u])x - vx/3[u] - v((3[u])x. (7.6) 

Eliminating vtx from these two equations, assuming that the flow v is zero 

at the boundaries, and using equation (7.4) to replace v with v = fx(—^ut — 

(g[u]u)x)dx, and vx with vx = —^ut — (g[u]u)x, we obtain the following second-

order equation: 

/

x px 

(ut)dx + j2(g[u])xx ((g[u}u)x)dx + 

ig[u)utx + -y2g[u](g[u]u)xx + 2~f(g[u})xut + 2j2(g[u])x(g[u]u)x + 

-f(ua[u])x + (3[u]ut + j/3[u](g[u]u)x + (0[u])x / {ut)dx + 
j((3[u])xj\g{u}u)x)dx = 0 (7.7) 

We observe t h a t when g[u] = 0, so t ha t I ^ = 7, equation (7.7) reduces to 

equation (3.25). We now introduce a small dimensionless parameter e, and set 

(a) Ai = -^, A2 = p- , 

(6) 7 = —, 

(c) f{y±[u]) = ef{y±[u)l and g[u} = eg°[u}. (7.8) 
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This means that as e —>• 0, (a) the individuals turn very frequently, and (b) 

move very fast. These two behaviors lead to (c): a reduced sensitivity to the 

environment. Note that (c) leads to the following scaling of the functionals 

a[u] and f3[u\. 

a[u] = A|f^M = A|^M) w i t h a o M = / o ( 2 / - N ) _ / 0 ( 2 / + N ) ) a 9 ) 

m = 2Ag + 2Age/3>]i with po[u] = f{y-[u]) + f{y+[u]). ( 7 1 0 ) 

Moreover, the speed is rescaled to 

r=V>«1 = 7 + 7o0°[4 ( 7 . n ) 

Substituting these terms into (7.7), multiplying by e2, and taking the limit 

e —> 0, leads to the parabolic equation 

ut = Duxx - B(a°[u]u)x - io(9°[u]u)x, (7.12) 

where D = ^ T , and B = ^f . If we write the nonlocal terms <7°[w] and a°[u] 

explicitly, we obtain 

ut = Du. 

-B 

XX 

(-uf(- j " K(s)(u(x + s)- u(x - s))ds - y0) + 

uf{ ( K(s)(u(x + s)- u(x - s))ds - y0) J 
J-oo / x 

-lo(ug°(f K(s)(u(x + s)-u(x-s))dsU . (7.13) 
V J — OO / x 

Here we define K(s) = qaKa(s) — qrKr(s). 

Note that for qa > qr, both g°[u] and a°[u] are positive (see Figure 7.2). 

Similarly, for qa < qr, g°[u] and a°[u] are both negative. Therefore, the 

nonlocal component of the individuals ' speed, namely g[u], gives rise to a drift 

which is added to the drift that results from the difference between the different 

turning rates: A+ and A-. This is true only for model M1&. For model Mla, 

a°[u] = 0 and therefore, the drift is caused only by the nonlocal component of 

the speed: 

ut = Duxx - jo(g°[u]u)x- (7.14) 
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Also, recall that for model Ml, the drift was caused only by the difference 

between the turning rates (see equation (3.31)). 

Note that if we use the hyperbolic tangent function to describe both the 

turning rates and the speed (see equations (2.4) and (7.2)), then the parabolic 

equations (3.31), (7.12), and (7.14) are qualitatively similar. It should be 

emphasized that the functions a and g have similar shapes: they are both 

bounded and increasing as functions of the perceived signals (see Figure 7.2). 

Therefore, for large speeds and large turning rates, it does not really matter 

if the social interactions influence only the turning rates, only the speed, or 

both the turning rates and the speed. In all these cases, the behavior of the 

limiting parabolic equation is qualitatively similar. 

2-

1-

-10 -8 ^6 -A -2 A 

/ + 

/ + 

_2-

r a(y±[u]) 

fj gCy^u]) 
+ / 

Y/ 

2 4 6 8, K 

y M 

Figure 7.2: The nonlocal components for the speed and the turning rates functions. The 

continuous curve describes g[u] = ta,nh(y±\u+ ,u~}) = tanh(±y+[u+ ,u~]) (as a function of 

the perceived signals y^). The curve formed of crosses describes the difference between the 

right and left turning a[u] = f(y^[u} - yQ) - f(y±[u] -yo)- Note that both functions are 

increasing and bounded. 

Recall that, in Chapter 3, we discussed conditions for the limiting parabolic 

equation that lead to moving groups. In particular, we started with a rectan­

gular pulse and investigated the speed of the front and back edges. The results 

showed that in order to have moving groups, the function describing the non-
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local interactions has to be monotone. Following the same approach as there, 

it can be shown that equations (7.12) and (7.14) can support moving groups 

if the speed is a monotone function of the perceived signals. Moreover, if we 

compare the shape of g°[u] and a°[u] (Figure 7.2), we observe that the mag­

nitudes of attractive and repulsive interactions (which appear in K(s)) lead 

to qualitatively similar effects on the movement direction of the pulse (i.e., 

the sign of the speed is the same). However, the quantitative effect (i.e., the 

magnitude of the speed) is slightly different because of the different magnitues 

for g°[u] and a°[u}. 

Returning to the parameter scaling, recall that in Chapter 3, we observed 

that if we choose a different scaling for the directed and the random turning 

rates, we obtain an elliptic equation. A similar result is obtained when we 

consider density-dependent speed. More precisely, for e —> 0, the scaling Ai = 
A0 A0 

-f and A2 = -£ leads to exactly the same elliptic equation 

A0 

uxx = -Z(ua°[u])x. (7.15) 
7o 

In terms of integrals, this equation reads 

= — (-uf°(- f°° K(s){u(x + s) - u{x - s))ds - y0) + 
70 V J-oo 

uf0{[°° K{s)(u{x + s) - u(x - s))ds - y0)) . (7.16) 
J -CO / x 

U, 

We assumed here that individuals turn more often in response to external 

stimuli (A2) than they turn randomly (Ai). Similarly, we can distinguish be­

tween a "base-line" speed 7 and a speed due to social interactions jg[u] (as in 

[43]): 

r* = 7 ± 70 [u], with 7 < 7. (7.17) 

Assuming that the speed resulting from the social interactions (7 = 3j) in­

creases faster than the "base-line" speed (7 = ^ ) , we obtain the following 

elliptic equation: 

uxx = ^(g°[u]u)x. (7.18) 
7o 
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Equivalently, this equation can be written 

2A?7o 
Ur 

7o2 
(ug°(f K(s){u(x + s)-u{x-s))dsyj . (7.19) 
V J —oo / X 

Previous results [55] show that using different time scales, 0 = te and 

9 = te2, leads to elliptic and parabolic equations, respectively. We showed 

here that using different scales for the directed and the random turning rates, 

or the directed and the "base-line" speed, leads to a similar result. 

7.4 Linear stability analysis 

In this section, we begin exploring the effects of the social interactions on 

the emergence of the group patterns. For models Mla and Ml6, the spatially 

homogeneous steady states (u+,u~) = (u*,u**) satisfy the same steady-state 

equation as model Ml (see equations (4.1)-(4.2)). As shown in Figure 4.1, 

there are two critical values for alignment, namely Q* and Q**, which deter­

mine the number of possible steady states. More precisely, depending on the 

magnitude of the alignment (qai), the spatially homogeneous steady states can 

be one of the following pairs: (u$,ul), (u2,ul), (ul, ul), (ul,u2), and (ul,u{). 

Perturbations of these steady states with terms of the form eat+lkx lead to the 

following dispersion relations corresponding to models Mla and Ml*,, respec­

tively: 

°MU + °MU (Li + L2 + 7ikKA - M5qal(K^ + £+ ) ) + ̂ k2 -

7
2k2K(u** - «•) + ^ik(L2 - Lx) + 7 ^ M 5 ^ ( ^ - AJ) + 

7ikKA(Li + L2) - iikM5AqalK(K+ + K«) = 0, (7.20) 

°MI„ + <TMU (LX + L2 + 7ikKA - Msqal(krt + K+)) + i2k2 -

12k2bK(u** - u*) + jik(L2 - L{) + jikMsqal{k^ - K+) + 

jikkA(Lt + L2) - jikM5Aqalk(k+ + k«) + 

2jikM5K = 0. (7.21) 

Note that the only difference between equations (7.20) and (7.21) is the extra 

term 2^ikM5K (i.e., the last term in equation (7.21)). We will investigate 
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shortly the effect of this term on the emergence of unstable modes. Here K — 

qaKa — qrKr, where Kj,j — r,a are the Fourier transforms of the interaction 

kernels (2.9). The rest of the constants are given by equations (4.12)-(4.13)). 

Recall that the constant yo has been introduced in Chapter 2 to ensure that 

for qa = qr = qai — 0, the turning rates are mainly random. 

Figure 7.3 shows examples of the dispersion relation for models Mla and 

Mlfe, when we perturb the spatially homogeneous steady state (u*,u**) = 

(ul,ul). When we perturb any of the other four steady states «*, u^, u%, or 

wj;, the graphs of the dispersion relations look similar to the ones described 

in Chapter 4, Figure 4.2. For this reason, we will not discuss them here. 

In Figure 7.3, the continuous curve represents the real part of the dispersion 

relations (7.20) and (7.21), while the dashed curve represents the imaginary 

part. Cases (a)-(d) correspond to model Mla, while cases (a')-(d') correspond 

to model M1&. Cases (a) and (d) show the dispersion relation when attraction 

(qa) is large. In this case, the critical wave number is k = k\. Note that (a) 

corresponds to the situation when qai < Q**, while (d) corresponds to situation 

when qai > Q**. Cases (b) and (c) show the dispersion relation when repulsion 

(qr) is large. The critical wave number that emerges is k = kj, for some j > 1 

(shown is k = ku and k = kSi). Note that case (b) corresponds to the situation 

when qr < qa, and the turning rates are large. Case (c), on the other hand, 

corresponds to the situation when qr > qa, while the turning rates are relatively 

small. Recall that in Chapter 4, we have seen that when the speed is constant, 

spatial perturbations of the steady state u^ lead only to real bifurcations (as in 

Figure 7.3 (a), (b), (a') and (b')). However, for the density-dependent speed, 

perturbations of u^ can lead also to imaginary bifurcations, as shown in Figure 

7.3 (c), (d), (c') and (d'). Therefore, depending on the parameter values, it is 

possible to have Hopf bifurcations (that is, Re(a(kc)) = 0,lm(a(kc)) ^ 0). 

Comparing the graphs of these two dispersion relations for different param­

eter values (that is, cases (a)-(d) versus cases (a')-(d')), we conclude that the 

extra term which appears in equation (7.21) (and does not appear in equation 

(7.20)) does not have a considerable influence on the emerging wave number k, 

nor on the amplitude of the leading eigenmode. Therefore, the linear behavior 
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Figure 7.3: Examples of dispersion relations a(k) for system (7.1), when we perturb the 

steady state (u*,u**) = (i tg,^). Cases (a)-(d) correspond to model Ml a , while cases (a')-

(d') correspond to model M1&. The solid curve represents Re{a{k)), while the dashed curve 

represents Im(a(k)). For cases (a), (b), (a') and (b'), the imaginary part of the dispersion 

relation is zero at the critical wave number, whereas for cases (c), (c'), (d), and (d'), it 

is always nonzero. The parameters are as follows (for both Ml a and Ml;,): (a) qr = 0.1, 

qa = 0.2, qat = 0, Ai = 0.4, A2 = 1.8; (b) qr = 0.05, qa = 0.05, qai = 2.0, Ai = 2.0, A2 = 9.0 

; (c) qr = 0.1, qa = 0.05, qai = 0.0, Ai = 0.25, A2 = 1.125; (d) qr = 0.05, qa = 0.2, qai = 3.5, 

Ai = 0.4, A2 = 1.8.; 
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of the system (7.1) is not influenced significantly by the presence of attractive 

and repulsive interactions in the turning rates. In Section 7.5, we will analyze 

numerically the effect of these social interactions on the nonlinear behavior of 

the system. 

If we focus on the effect of the social interactions on the bifurcation of 

solutions from the spatially homogeneous steady state (1x3,1x3), we observe 

that when Im(a(k)) — 0, increasing repulsion suppresses the emergence of 

heterogeneous patterns (see Figure 7.3 (a) and (b)). This effect is similar 

to the one observed for constant speed (see Chapter 4, for the discussion 

about model Ml). However, when Im(a) ^ 0, increasing repulsion leads to 

the emergence of modes with very large wave numbers (see Figure 7.3 (c)). 

Therefore, large repulsion causes individuals to speed up and/or slow down, 

which in turn leads to a large number of small groups. Large attraction leads 

to either a small number of large groups (as in Figure 7.3 (a)), or to a very 

large number of small groups (as in Figure 7.3 (b)). 

7.5 Numerical results 

In the following, we will investigate numerically some of the spatial and spa-

tiotemporal patterns displayed by the hyperbolic model (7.1). We recall that 

the semi-linear system (2.1) could not exhibit shocks when the initial data was 

continuous. For this reason, the numerical methods used in Chapters 5 and 

6 were appropriate. On the other hand, system (7.1) can exhibit shocks for 

continuous initial conditions. Moreover, the nonlinear flux terms can cause 

numerical instabilities. This requires the use of high-resolution numerical 

schemes. In particular, to obtain a stable, second-order accurate method, 

we will use a time-splitting approach which deals with the advection term and 

the source term separately (see for example, [67],[73]). More precisely, we will 

use a fourth-order Runge-Kutta method for the source term, and a second 

order, non-oscillatory, central difference scheme introduced by Nessyahu and 

Tadmor [93], for the advection term. The advantage of this numerical scheme 
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is that, unlike the Godunov-type methods, it is not necessary to solve Riemann 

problems, which can be a very expensive task [93]. 

In Section 7.5.1, we describe in detail the numerical method we use to 

discretize system (7.1). In Section 7.5.2, we investigate some of the patterns 

displayed by this hyperbolic model. In particular, we use these numerical 

results to understand the effect of attractive and repulsive speeds on the re­

sulting group structures. Also, we will investigate the effect of attractive and 

repulsive turning rates on the nonlinear behavior of system (7.1). For this, re­

call that we showed in Section 7.4 that the linear behavior of models Mla and 

Mlb is qualitatively similar. In Section 7.5.2, we will investigate if a similar 

result holds when we consider the effect of nonlinear terms. 

7.5.1 Numerical method 

To discretize model (7.1), we use a time-splitting approach. More precisely, 

let us rewrite system (7.1) as 

ut = (F(u))x + s(u), (7.22) 

where we define u = (u+, u~)T, the flux term F(u)=(Fi(u), F2(u))=(—T+[u+, u 

T~[u+,u~]u~), and the source term s(u)=(—u+X+[u+,u~] +u~\~[u+,u~], 

u+X+[u+,u~]— u~\~[u+,u~])T. To compute the solution of system (7.1), we 

deal with the source term and the advection term separately. First, we focus 

on the source term, and solve the following ordinary differential equation: 

u t = s(u). (7.23) 

Let Sxj be the solution operator of this equation. Hence, the solution of this 

problem can be written as u(x,t) — SXytu(x,0). We then use this solution as 

the initial condition for the advection term 

u t = (F(u))x. (7.24) 

Similarly, let AXtt be the solution operator of this advection equation. There­

fore, the final solution of the hyperbolic system (7.22) can be written as 

u(rM) = ^, tSx>tu(a;,0). (7.25) 
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To use this approach in a numerical method, we replace the solution operators 

Sx,t and Axj with the numerical schemes SXyk and AXik which solve equations 

(7.23) and (7.24) over time steps of length At = k [73]. Therefore, the numer­

ical solution of (7.1) at the next time step (Un+1) is given by 

U n + 1 = Ax,kSx,kU
n. (7.26) 

To implement this method, we discretize the space-time plane choosing a space 

step Ax = h, and a time step At = k. Also, we define the discrete mesh points 

(XJ, tn) = (jh, nk), with j = 0...N — 1 (where N — 1 = L/h is the number of 

mesh points), and n 6 N. To solve equation (7.23), we use a classical fourth-

order Runge-Kutta method. As mentioned in Chapter 5, the nonlocal terms 

are first approximated with finite integrals on [0, L], and then these integrals 

are calculated using Simpson's method. Moreover, as in Chapter 5, the nu­

merical solutions of equation (7.23), uV- and «2™, are seen as approximations 

of u+(x, t) and u~(x, t) over the cells [O;J_I/2, £7+1/2] (see equations (5.2)). 

To solve the advection equation, we use a high-resolution method intro­

duced by Nessyahu and Tadmor (the NT scheme) [93]. This scheme is based 

on a staggered form of a Lax-Priedrichs scheme. Therefore, in this case the 

solutions are seen as approximations over the cells [XJ,XJ+I\: 

I fxi+i 1 rxi+i 
ulHi/2 = j ; u+(x,tn)dx, u2]+l/2 = - u-(x,tn)dx. (7.27) 

*J Xj *J Xj 

Let us define the vector vj = (ul™,w2"). The numerical scheme is described 

by the following equation: 

»r1/2 = «?-5(w 2 

Uj+l/2 \ w + «;+1) + £ ( w - K+ 1)0 - 1 (>; + T) - *K+1/2)) • 
(7.28) 

Here (F?)' = ((Fl])', (F2])') approximates the derivative of the flux (F(u))x= 

((Fx(u))x, (F!(u))x), while (v^)'=((ul])',(u2])')T approximates the slopes 

ux=(ux~,u~)T. To calculate these derivatives, we use the so-called min-mod 
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limiter: 

-v?-vj-i v?+i-vj 

where 

(vj)' = minmod( 3 J~l, 3+\ J), 
ft n 

p>n pn pn _ pn 

(F?)' = minmod( j j~\ j+1 j ), (7.29) 
ft ft 

minmod(a, b) = - (sgn(a) + sgn(6)) min(|a|, |6|). (7.30) 

Component-wise, equations (7.29) can be written as 

7 / 1 " _ 7/1™ 7 / 1 " _ 7 / 1 " 
(til?)' = minmod(^ uii-\uii+i uli), J h h 

7/9™ _ 7/0™ 7 , 9 n _ 7 / 9 " 

(u2?)' = minmod( J J - ^ ^ + I 3.^ ( 7 3 1 ) ft A 

and 

pin p i " P\n W\n 

(Fl?)' = minmod( j , 3 - i ? ^3±i i.^ 
h h 

pon /TO" F2n F1n 

iF2n
j)' = m i n m o d ( ^ — 3—,-^ J-). (7.32) 

h h 

Alternatively, we can use the more accurate UNO (Uniformly Non-Oscillatory) 

limiter [93]: 

——T~- + —rninmod^- - 2uJ_1 + Vj-2, vj+\ - 2VJ + Vj-i) , 

-J±^T—L - ^minmod('Uj+i - 2VJ + ^_1} vj+2 - 2vj+l + Vj) J , 

/ p n pn -i 

{Ff)' = minmod I j j~x + — minmod(FJ- - 2Fj_1 + Fj-_2, F i + i - 2Fj + F^) , 

pn pn -i \ 
J+\ j - ^minmod(F j + 1 - 2Fj + F^, Fj+2 - 2Fj+1 + Fj)J . (7.33) 

Note that throughout this chapter, we perform simulations with the min-mod 

limiter. However, qualitatively similar results are obtained with the UNO 

limiter. 

Recall that the Runge-Kutta scheme used to discretize equation (7.23) 

computes the solution at (xj,tn), j = 0...N — 1. Since the numerical scheme 

(7.28) computes the solution at an intermediate point (xj+i/2,tn), we have to 

apply it twice to obtain the value of the solution at (xj,tn). 
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To complete the description of the numerical scheme, we have to spec­

ify the boundary conditions. In particular, we will use periodic boundary 

conditions to be able to compare the patterns obtained when the speed is 

density-dependent with the patterns obtained in Chapter 5, when the speed 

was constant. Note that because of the staggered NT scheme (7.28), we have 

to pay attention to the implementation of the boundary conditions. In particu­

lar, after applying the scheme twice, we obtain the solution at points (xj+i,tn), 

j = 0...iV — 1. To make sure that the boundary conditions are applied at the 

end points of the interval [0, L] (that is, at (XQ, tn) and (xN-i,tn)), we have to 

translate the solution one space-step back. This way, the solution will be cal­

culated at (xj,tn), j = 0...N — 1, and we can implement the periodic boundary 

conditions. 

Throughout the simulations, we will use the space step h = 0.01, and the 

time step k = 0.018. Note that this time step is enough to ensure that there 

is no numerical instability. Moreover, in this section, we will focus only on the 

spatially homogeneous steady state (1*3,1X3), and choose the initial conditions 

to be random perturbations of this state. The following parameters will be 

fixed during the simulations: the domain length (L = 10), the length of the 

interaction ranges for the repulsion (sr = 0.25), alignment (sai = 0.5), and 

attraction terms (sa = 1.0), the width of the interaction kernels rrij = Sj/8 

(j = r, al, a), and the constant component of the speed (7 = 0.1). 

At the beginning of this section, we mentioned that we first solve the source 

equation (7.23), and then use the solution to solve the advection equation 

(7.24). However, it should be specified that it does not matter which of the two 

equations is solved first. We have performed simulations where we first solved 

the advection equation, and then solved the source equation. The results were 

qualitatively similar. Also, as mentioned, qualitatively similar results were 

obtained when using either the min-mod limiter (7.29), or the UNO limiter 

(7.33). 
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7.5.2 Spatial and spatiotemporal patterns 

Before starting the investigation of the spatial and spatiotemporal patterns 

displayed by system (7.1), we should stress that the parameter space for this 

system is very large, and a thorough analysis of all possible patterns is not 

a trivial task. However, our purpose here is not to identify all patterns, but 

to investigate the effect of density-dependent speed on the resulting group 

patterns. Also, we are interested in comparing the behavior of the groups with 

turning rates that depend only on the alignment interactions versus turning 

rates that depend on all three social interactions. For this reason, we will 

investigate only the following arbitrary parameter subspaces: (1) qai = 0, 

qr = 0.1, and qa G [0.1,0.9]; (2) qal = 2, qr = 0.1, and qa G [0.1,0.9]; (3) qal = 0, 

qr G [0.1,0.7], and qa = 0.1; (4) qal = 3.5, qr = 0.05, and qa G [0.1,0.7]. Note 

that for cases (l)-(3), the alignment parameter is such that qai < Q**. This 

corresponds to the dispersion relations shown in Figure 7.3 (a)-(c) and (a')-

(c'). In case (4), the alignment parameter satisfies qai > Q**. This corresponds 

to the dispersion relation shown in Figure 7.3 (d)-(d'). 

Figures 7.4 and 7.5 describe some of the patterns displayed by system (7.1). 

It should be specified that all these patterns can be obtained with either model 

Mla or model M1&. Moreover, the parameter ranges for which these patterns 

are obtained are quite similar. 

Figure 7.4 (a) shows the pattern displayed by system (7.1) for large values 

of the attraction, and in the absence of alignment. In this case, the groups are 

stationary, with individuals more or less evenly spread over the entire group. 

In particular, the density in the middle of the group is slightly shallower than 

the density at the edge. As we further increase the attraction, the speeding-

up/slowing-down behavior leads to the formation of a large number of small, 

high-density groups. The pattern is shown in Figure 7.4 (b). This pattern is 

also specific to the case when repulsion is much larger than attraction. Note 

that both patterns are similar to patterns obtained for constant speed (see 

Figures 5.5(1), and (2)). 

For small to intermediate values of attraction, the speeding-up/slowing-
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down behavior leads to the formation of high-density subgroups. These sub­

groups can form larger stationary groups (as shown in Figure 7.4 (c)), or can 

form traveling groups that split and merge again (as shown in Figure 7.4 (d)). 

Note that this splitting and merging behavior is consistent with the results of 

some Lagrangian models that consider density-dependent speed and direction 

changes [43]. 

In Section 7.4, we observed that for large repulsion, it is possible to obtain 

moving groups, at least for small time and infinitesimal perturbations (see 

Figure 7.3 (c)). Figures 7.4 (e) and (f) show two patterns that are obtained 

when the dispersion relation is similar to the one shown in Figure 7.3 (c). 

Figure 7.4 (e) shows an irregular pattern obtained when repulsion is larger 

than attraction. Note that if the repulsion is much larger than attraction, then 

the final pattern is described by Figure 7.4(b). Figure 7.4 (f) shows a periodic 

pattern obtained when attraction and repulsion have similar magnitudes. This 

pattern arises when high density left-moving and right-moving subgroups pass 

through each other. 

Note that the patterns described in Figure 7.4 do not change their structure 

at least up to time t = 200. It is possible that for very large time they will 

evolve into different patterns. However, this aspect was not investigated here. 

Moreover, studying the evolution of solutions up to time t = 200, we ob­

served that system (7.1) also displays transient patterns. Four of these are 

shown in Figure 7.5. For example, the initial pattern obtained when attrac­

tion is larger than repulsion is similar to the one shown in Figure 7.5(a). For 

larger time, this pattern evolves into the pattern shown in Figure 7.4(c). Figure 

7.5(b) shows left-moving and right-moving high-density subgroups of individu­

als that pass through each other. Note that compared to the pattern displayed 

in Figure 7.5(f), which shows more individuals moving in one direction t h a n in 

the other, here there is approximately the same number of individuals moving 

left or right. Because of this, even if the groups move, the pattern as a whole 

is stationary. Recall that similar behavior was obtained for communication 

mechanism M5, when we assumed constant speed. However, in that case the 

groups were larger, with individuals uniformly spread over the entire group. 
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As time increases (in particular for t > 100), the pattern shown in Figure 7.5 

(b) evolves into the pattern shown in Figure 7.4(c). Figure 7.5(c) shows a 

transient pattern obtained when alignment is very large. As time progresses, 

this pattern evolves into the traveling train shown in Figure 7.5(d). Note that 

compared to the traveling train discussed in Chapter 5 (Figure 5.5(6)), which 

was periodic only in space, here the pattern is periodic in both time and space. 

For very large time, this pattern then evolves into the splitting and merging 

behavior shown in Figure 7.4(d). 

Returning to the question posed in Section 7.4, we conclude that the non­

linear behavior of models Mla and M1& is qualitatively similar. As mentioned, 

there are no significant differences between the patterns displayed by the two 

model. 

7.6 Discussion 

In this chapter, we introduced a new model which assumes that both the 

speed and the turning rates depend on the social interactions. To simplify 

the analysis, we focused only on the perception mechanisms introduced in 

Chapter 2, Section 2.2 (model Ml). Since individuals can respond to signals 

received from neighbors within the attraction and repulsion ranges by changing 

direction and by speeding up or slowing down, we focused on two cases. More 

specifically, model Mla assumes that the speed depends on the attractive and 

repulsive interactions, while the turning rates depend only on the alignment 

interactions. Model Mlb assumes that both the speed and the turning rates 

depend on the attractive and repulsive interactions. In addition, the turning 

also depends on the alignment interactions. 

Throughout this chapter, we compared these two models using analytical 

and numerical results. In particular, the formal parabolic limit suggests that 

for large speed and large turning rates, there are no significant differences be­

tween the models with density-dependent speeds or density-dependent turning 

rates. The limiting parabolic equations are qualitatively similar. Moreover, 
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when the speed is density-dependent, turning in response to attractive and 

repulsive interactions, or turning randomly, has similar effects. However, as 

expected, for relatively small speed and turning rates there are differences be­

tween the hyperbolic model with constant speed, and the models with density-

dependent speed. We will come back to this aspect shortly. 

Linear stability analysis of model (7.1) shows that for small time and in­

finitesimal perturbations, the effect of turning in response only to alignment 

interactions versus turning in response to all three social interactions is in­

significant. This suggests that the speed is more sensitive to these interactions 

than the turning rates. Therefore, the behavior is determined mainly by the 

speed. However, if the magnitudes of the attractive and alignment interactions 

are both very large, then it is possible for the behavior to be determined also 

by the turning rates. This result is also supported by the numerical simula­

tions. The patterns discussed in Section 7.5 were obtained for both models 

Mla and Ml6. 

Comparing the patterns obtained for density-dependent speed with the 

patterns obtained for constant speed (see Chapter 5), we note that the attrac­

tive and repulsive speed leads to groups formed of high-density subgroups. In 

particular, if alignment is strong (i.e., qai > Q**), then variations in the speed 

can cause these groups to split and merge again. It should be mentioned that 

this behavior can also be obtained for qai < Q**, when we perturb the spa­

tially homogeneous steady state (u\, u%). Note that this steady state implicitly 

assumes a certain degree of group polarization. A similar splitting/merging 

behavior was previously obtained with a Lagrangian model that incorporates 

density-dependent speed and density-dependent turning rates [43]. However, 

the Eulerian models existent in the literature focus only on pattern coarsening 

(see for example [35, 133]). This can explain the merging of animal groups, 

but not the splitting. We show here that nonlocal attractive and repulsive 

speeds, combined with nonlocal turning rates, can explain both behaviors. 

Numerical results also show that in the case of density-dependent speed, 

it is possible to obtain moving groups even in the absence of alignment. This 

behavior could not be observed for constant speed. Moreover, these moving 
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groups become stationary if attraction is very large. 

In Chapter 5, we observed that the rippling behavior was possible only 

when considering a particular communication mechanism (M5). We should 

stress that the assumptions made for this communication mechanism were 

consistent with the assumptions of other models existent in the literature (see 

[62, 78] and the discussion in Chapter 8). The numerical results presented in 

this chapter show that it is possible to obtain a similar rippling behavior if we 

assume that individuals respond to their neighbors by speeding up or slowing 

down, as well as changing their movement direction. 

As mentioned, the nonlinear behavior obtained with model Ml is different 

from the behavior obtained with either Ml0 or M1&. This was expected since 

the hyperbolic systems corresponding to models Mla and M1& can exhibit 

shocks even for smooth initial data. On the other hand, for the hyperbolic 

system with constant speed (i.e., equations (2.1)) the discontinuities can arise 

only from initial data [116]. However, somewhat unexpected was the result 

that the nonlinear behaviors displayed by both Mla and M1& are qualitatively 

similar. This might be caused by the fact that the speed is more sensitive to 

the attractive and repulsive interactions than the turning rates. This result 

suggests that it might be possible to obtain different patterns if we assume that 

the magnitudes of the attractive and repulsive interactions that appear in the 

speed are scaled differently compared to the magnitude of the interactions that 

appear in the turning rates. For example, we could consider the more general 

case where the magnitudes of the social interactions that define the speed are 

Qa = cqa, Qr = cqr, with c a rescaling constant. However, this is a subject for 

further research. 

Overall, these results suggest that considering different communication 

mechanisms, as well as density-dependent speed and turning rates, can give 

an explanation for the multitude of spatial and spatiotemporal patterns ob­

served in nature. However, we still do not have a clear answer regarding 

which patterns are generated by density-dependent speed alone, by density-

dependent turning rates alone, and which are generated by a combination of 

speed and turning rates. This requires a thorough analysis of the parameter 
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space, which is beyond the scope of this research. Nevertheless, this is the 

first continuum model with density-dependent speed that displays such a wide 

variety of patterns. Also, it is the first continuum model which discusses the 

splitting/merging behavior of animal groups, and not just the coarsening of 

the patterns. 
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Chapter 8 

Discussion 

In this thesis, we developed a general framework for modeling animal group 

formation and movement based on how animals receive information from their 

conspecifics and the amount of information received. This framework presents 

a straightforward way to incorporate different social interactions and commu­

nication mechanisms. 

Starting with the same modeling procedure as Pfistner [109] (that is, a 

hyperbolic model with nonlocal turning rates), we assumed that the turning 

behavior of an individual is determined by the interactions with neighbors. 

Recall that Pfistner considered only alignment interactions. We, on the other 

hand, consider three social interactions: attraction towards individuals that 

are far away, repulsion from those that are nearby, and alignment with those 

individuals that are at intermediate distances. Moreover, to account for the 

different ways animals perceive information about their neighbors' position and 

direction of movement, we incorporated different communication mechanisms 

(submodels M1-M5). Note that the mechanisms presented in this thesis are 

not the only possible ones. Starting with different assumptions about the 

communication signals, one can derive a multitude of new models. Therefore, 

this modeling framework can be tailored to specific animal species that use 

particular signal reception mechanisms. 

Using this framework, we demonstrated the importance of adapting speed 

and direction of movement for the emergence of different types of group be­

haviors. Moreover, we showed that this framework can explain the different 
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patterns obtained by all other parabolic and hyperbolic models for group for­

mation that exist in the mathematical literature. Therefore, the model intro­

duced in this thesis presents a unitary approach for animal group formation 

and movement: the different patterns can be understood in terms of a single 

model operating in different parameter regimes, representing different com­

munication mechanisms. In support of this idea, we mention the parabolic 

[62, 63] and hyperbolic models [78] that investigate the rippling behavior in 

Myxobacteria colonies. Note that these models consider interactions of individ­

uals with neighbors moving in opposite direction. This is consistent with the 

reception mechanism we considered in submodel M5. Moreover, these models 

show rippling patterns similar to the one presented in Figure 5.5. Also, we 

should mention that for the hyperbolic models, the shape of the turning rate 

functions does not matter (compare [78] and [29]). The only important thing 

seems to be the movement direction of the neighbors (as given by the com­

munication mechanism). This result allows us to postulate that other group 

patterns (if not all) might be the result of different mechanisms involved in 

signal reception. 

In addition to this, we should stress that our modeling framework can be 

used to obtain a variety of new and interesting spatial and spatiotemporal 

group patterns. Note that the majority of the patterns described here are 

novel. More precisely, some of these patterns (such as the splitting-merging 

behavior) were previously obtained only with Lagrangian models. Other pat­

terns, such as breathers, can be obtained with nonlocal ordinary differential 

equations [36]. However, they were never obtained with parabolic or hyper­

bolic models describing the formation and movement of animal groups. There 

are also completely new patterns (e.g., feathers). 

The modeling procedure introduced in this thesis suggests that the use of 

different communication signals can play an important role in the fluid be­

havior observed in some animal groups. In particular, the switch between 

different communication mechanisms, sometimes as a result of environmen­

tal factors, can lead to the transitions between different patterns observed in 

animal groups. 
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In the following two sections, we will summarize the results presented in 

this thesis. In Sections 8.1, we will focus on the mathematical results, while 

in Section 8.2, we will summarize the biological results. In particular, we will 

draw a parallel between our results and empirical observations. In Section 8.3, 

we will present some open problems and discuss future work. 

8.1 Discussion of mathematical results 

In this thesis, we derived a new semi-linear hyperbolic model with nonlocal 

turning rates. First, we focused on the case when the speed of the individ­

uals are constant. In an attempt to bridge the gap between the Lagrangian 

and Eulerian approaches, we showed how can we derive this model using a 

correlated random walk approach. 

In regard to this hyperbolic model, we first showed the existence of solu­

tions on infinite as well as finite domains with periodic boundary conditions. 

Note that in the mathematical literature, there are existence results for local 

hyperbolic models. However, our nonlocal model requires a more careful dis­

cussion of the turning rates. Then, we have taken a formal parabolic limit 

to reduce this hyperbolic model to a well-known parabolic model for animal 

group formation. The results showed that for large speeds and large turning 

rates, two biological approaches, namely (1) attractive and repulsive turning 

rates, and (2) attractive and repulsive speeds, lead to similar results. 

The mathematical complexity of this new model can be easily observed 

in the multitude of the spatial and spatiotemporal patterns displayed by it. 

Previous parabolic and hyperbolic models for animal group formation and 

movement usually displayed 1-2 patterns. Only two of the two-dimensional 

parabolic models displayed 4 different patterns (see [15, 85]). However, our 

nonlocal hyperbolic model (with its five submodels) can display at least 13 dif­

ferent patterns. Moreover, these results are obtained with a one-dimensional 

model. To understand some of these patterns, we used bifurcation and pertur­

bation theory. In particular, the nonlinear behavior of the system was inves­

tigated near bifurcation points using weakly nonlinear analysis. The analysis 
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shows the existence of subcritical bifurcations to large-amplitude heteroge­

neous patterns. 

To understand the effect of the variations in the animals' speed due to 

attractive and repulsive interactions, we then introduced a new nonlinear hy­

perbolic model. A formal parabolic limit shows that for large speeds and 

turning rates, the results are coincide with those obtained for constant speed. 

In particular, when the speeds and the turning rates are very large, it does not 

really matter if the attractive and repulsive interactions influence the speed, 

the turning rates, or both; in all cases the results are qualitatively similar. 

In terms of spatial and spatiotemporal patterns, this nonlinear model is even 

more complex than the previous model with constant speed. More precisely, 

numerical investigations of only one of the communication mechanisms de­

scribed in Chapter 2 (i.e., the mechanism corresponding to submodel Ml) 

showed at least 10 different patterns. 

8.2 Parallel between analytical and empirical 
results 

In this section, we discuss how the complex patterns that emerge in the hy­

perbolic model introduced in this thesis relate to empirical observations. In 

particular, the emphasis will be on the biological mechanisms that can explain 

the different group structures observed in animal aggregations. 

We begin the discussion on the mechanisms that cause different group 

structures by analyzing the shape of the aggregations. In Chapter 5, we saw 

that groups are well defined, that is, the density outside the group is essentially 

zero. Moreover, our results show an increased density at the leading edge of 

the moving groups, due to leading individuals turning around to return to the 

group under the influence of attraction forces. These results seem to agree with 

empirical studies [19, 135]. Uvarov [135] observes that "a noticeable feature 

of a band marching in frontal formation is the greater density of hoppers 

at its leading edge", a possible explanation for this being that "the leading 

hoppers may hesitate because there are no other hoppers in their anterior field 
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of vision and they may even return to the front after jumping beyond it; the 

hoppers behind are, therefore likely to catch up with the moving front causing 

a concentration" (vol. II, pp. 164). 

Focusing now on the types of spatial patterns displayed by our model, we 

observe that traveling pulses and stationary pulses correspond to moving (e.g., 

traveling schools of fish, flocks of birds) and stationary (e.g., resting) groups 

of animals. Breathers might be associated with the anti-predatory behavior 

observed in some schools of fish [37] or flocks of birds [79], when the groups 

expand and then contract. Uvarov [135] offers an illustrating example of oscil­

lations (i.e., traveling trains) exhibited by animal groups. Commenting on the 

inter-individual interactions of locust hoppers, Uvarov describes how "a jump 

by a disturbed hopper leads to an outburst by others; this spreads through 

the group or band, and eventually subsides in a way reminiscent of ripples on 

the surface of water caused by a pebble" (vol. II, pp. 165). Other examples 

of oscillations can be observed in some bird flocks [16] or fish schools [115]. 

Moreover, at the beginning of this chapter we mentioned the rippling behavior 

observed in Myxobacteria colonies. Note that this behavior is a transient be­

havior during the aggregation process that leads to the formation of fruiting 

bodies. Our numerical results show similar transient rippling behavior that 

leads to stationary groups. 

Zigzag movement is seen in flocks of birds [16, 26, 58] that rapidly change 

direction, making sharp turns of 180° [26]. Potts [114] observed that birds 

do not turn simultaneously, but the maneuver is initiated by birds banking 

towards the flock, and not by those that turn away from the flock. The move­

ment then propagates like a wave throughout the flock. On the other hand, 

Davis [26] suggested that some birds may signal their intention to change di­

rection, and when a certain number of birds make the same decision, the entire 

flock turns. 

The empirical results also differentiate between two types of group struc­

ture during the turning behavior. Studying the turning behavior in Rock Dove 

flocks, Pomeroy and Heppner [113] noticed that the flock became more com­

pact just before turning, and then it expanded. They also pointed out that 
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this type of turning is different from what is observed in fish, where groups 

are usually compact, and they expand as they make a turn. Moreover, the au­

thors suggested that this difference may be explained by the inter-individual 

distances that are smaller in fish schools, compared to those in bird flocks. 

Partridge et. al. [108] discussed the relationship between the inter-individual 

distance in fish schools, and the fish body structure which causes the maneuver­

ability of individuals. They noticed that the fish that are more maneuverable 

(such as cod and saithe) have smaller inter-individual distances, whereas a 

"stiff-bodied" fish (such as herring) has larger inter-individual distances. 

As we have seen in Chapter 5, our mathematical model shows the same two 

types of group structure during the turning behavior. The mechanisms that 

determine these types of group structure are the different individual turning 

rates exhibited by animals. Consequently, the model suggests that it might 

be possible to explain the two types of group structure in terms of individual 

turning behavior. However, these results show that there is need for a more 

in-depth analysis that correlates the compactness of the observed aggregations 

with the individual turning rates. 

Another pattern that can be connected to the observed group behaviors is 

the splitting and merging of the groups. In particular, numerical simulations 

show that the splitting and emerging pattern can be obtained just by assuming 

that individuals turn around, speed up or slow down in response to the behav­

ior of close or distant neighbors. These splitting and merging behaviors are 

usually discussed in the presence of predators (see [58, 79, 97, 136]). However, 

there are examples of animal groups that split and merge again even in the 

absence of predators [37]. We show here that this behavior can be explained 

through a combination of density-dependent speeds and turning rates. The 

speed can of course be related indirectly to the anti-predatory behavior. 

The results summarized above were all obtained using numerical methods. 

However, analytical results too can provide valuable biological information. 

For example, the subcritical bifurcation obtained through weakly nonlinear 

analysis suggests that there is a threshold group density. Groups with densi­

ties below this threshold will disperse, while groups with densities above this 
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threshold will become even more dense and persist for a longer time. This 

transition between the disordered behavior and the ordered behavior repre­

sented by the high-density stationary or moving groups is important for the 

understanding of the formation and movement of animal groups. For example, 

Buhl et. al. [17] have shown experimentally and numerically that as the density 

of locusts in a group increases, there is a transition from disordered movement 

to collective motion of aligned individuals. Understanding such transitions 

has potential applications to understanding and controlling the outbreaks of 

different insect pests, such as locusts. 

While the biological patterns we described here are complex two- and three-

dimensional phenomena, the simulation results show that our one-dimensional 

model nonetheless captures essential features of these patterns. This one-

dimensional model can approximate the behavior of animal groups in higher 

dimensions if they move in a domain which is much longer than wide. 

Because of the complexity of the animal aggregations, it has been difficult 

to quantify the different types of groups and animal movements. One step 

forward was made in [17], where the results of an individual based model 

were compared with laboratory experiments. The results we presented in this 

thesis invite further observations and experimental investigations involving the 

manipulation of communication in animal groups. 

8.3 Future work 

The hyperbolic model we introduced in this thesis is extremely rich. We inves­

tigated a number of questions using numerical techniques, as well as analytical 

techniques such as bifurcation theory and perturbation theory. Many ques­

tions regarding this new model remain worth investigating. In the following, 

we present some of the questions and corresponding open problems. 

• In Chapter 2, we derived the nonlocal hyperbolic model from a corre­

lated random walk. It would be interesting to investigate if the results 

obtained with the random walk model match the patterns displayed by 
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the continuum model (2.1). This might also elucidate the role of the 

Poisson-point assumption that we considered when we derived the hy­

perbolic model. 

• In Chapter 4, we have seen that if the domain L is sufficiently large, u^ 

and u\ are always unstable. Moreover, the numerics show that pertur­

bations of the steady states u\ and u\ go to the same attractor as the 

perturbations of u*, u^, and u^. Therefore, to better understand this 

hyperbolic system, it would be helpful to find this attractor, at least for 

some particular parameter spaces. It is very clear that the spatially ho­

mogeneous steady states do belong to this attractor. However, it would 

be more interesting to find the attractor for particular types of spatially 

heterogeneous solutions. Such existence results were obtained for local 

hyperbolic systems [54]. For example, following similar steps as in [12], 

Hillen [54] constructed a Liapunov function via a variational approach, 

and used it to find the global attractor of a reaction random walk sys­

tem. However, the application of this method to our system is greatly 

complicated by the nonlocal terms. Moreover, Hillen's model has only a 

few parameters. Our model has a large number of parameters, and the 

different types of solutions (e.g., stationary pulses, traveling pulses) are 

determined by the values of these parameters. Therefore, the attractor 

will depend on all of the parameters. 

• The spatial and spatiotemporal patterns displayed by this hyperbolic 

model are very rich and, most of them, novel. Therefore, it will be 

interesting to derive analytical techniques to investigate these patterns 

(for example, the feathers, the breathers, or the zigzag patterns). Again, 

the nonlocal terms complicate the analysis. It should be mentioned 

that even the classical patterns, such as traveling pulses, are difficult 

to investigate because of these nonlocal terms. For example, a traveling 

pulse ansatz (i.e., ^(z) = U±(x - ct), U±(±oo) = 0) transforms the 

hyperbolic system (2.1) into a integro-differential equation with respect 
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to the variable z: 

u(z)z = a{c)u(z) + C2(c)u(z)(C3(c)f(y+[u(z)}) - f(y-[u(z)])), (8.1) 

where C\, C2, and C3 are constants that depend on the speed c, and 

y^[u{z)\ are the nonlocal terms described in Chapter 2. The difficulty 

of solving this equation resides in the fact that the derivative, as well as 

the nonlocal terms, are taken with respect to the same variable z. 

• In terms of pattern formation, it would be interesting to compare the 

patterns displayed by the limiting parabolic equation (3.31) with the pat­

terns displayed by the hyperbolic system (2.1). In particular, it would 

be interesting to investigate the effect of different communication mech­

anisms on the parabolic equation (3.31). 

• Prom a biological point of view, it would be helpful to extend the model 

to two spatial dimensions. This way, we can compare the theoretical 

results with empirical results. The local interactions will be described 

by a double integral over both space and a turning angle. However, this 

makes it more difficult to discriminate between different communication 

mechanisms. 
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