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Abstract

Fully developed flow of an incompressible Newtonian fluid driven by a pressure
gradient through a straight duct that rotates about an axis perpendicular to the
duct axis is analyzed under both the isothermal and nonisothermal conditions.
For a circular cross-section and under isothermal conditions, a hitherto unknown
solution with a four-cell flow structure appears, which coexists with the two-cell flow
structure over a range of Rossby numbers. The four-cell flow structure is unstable

to asymmetric perturbations, where it breaks down to a two-cell flow structure.

For a rectangular cross-section, the governing equations are discretized using
spectral approximation and arclength continuation scheme is used to track the
solution path. Seven solutions are reported at a Rosshy number of five.
When non-isothermal effects are introduced the governing equations give only
asymmetric solutions. A smoocth unfolding of bifurcation branches take place with
heating/cooling. The unfolding of symmetry breaking bifurcation points occur

through a tilted cusp.
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Chapter 1

Introduction

1.1 Transitions in fluid flow

There are many references in fluid mechanics where flow transitions take place
whenever there is an imbalance among the forces governing the physics of flow.
For example, when the flow rate in a pipe is increased beyond a certain critical
value, the well defined motion of the fluid in parallel layers breaks up into irregular
motion and spreads throughout the cross-section of the pipe, indicating the presence
of macroscopic mixing motions perpendicular to the direction of the flow. Such a
transition from laminar to turbulent flow is an example of a qu: litative change in the
flow structure. This kind of transition occurs over a range of Reynold numbers due
to the relative balance between the convective inertial and viscous forces. Similar
qualitative changes in the flow structure are observed in other problems in fluid
flow. In the Rayleigh-Bénard problem, convection cells are observed due to an onset
of instability in a layer of fluid heated from below. Such a qualitative change is
due to a thermal instability that occurs when the adverse temperature gradient is

large enough to make the Rayleigh number(the ratio of the destabilizing effect of

1



CHAPTER 1. INTRODUCTION 2

buoyancy force to the stabilizing effect of viscous force), increase above a critical
value. The instability in flow bet .. two rotating cylinders, called the Taylor-
Couette problem, has many similar, w0 Rayleigh-Bénard problem. In the Bénard
problem, there is a potentially unstable arrangement of an ”adverse” temperature
gradient. In the Couette flow problem the source of instability is the adverse gradient
of angular momentum. Whereas convection in a heated layer is induced by buoyant
forces becoming large enough to overcome the viscous resistance, the convection in
Couette flow is generated by the centrifugal forces which overcome the viscous forces.
These qualitative changes are characterised by the Taylor number. The instability
appears in the form of counter-rotating toroidal vortices, called Taylor vortices.
These vortices themselves become unstable at even higher values of Taylor number.
Phenomena analogous to the Taylor vortices are called secondary flows, because
they are superposed on a primary flow, such as the Couette flow. The possibility
of secondary flows signifies that the solutions of the Navier-Stokes equations are
nonunique, in the sense that more than one steady solution is allowed under the
same boundary conditions. There are other situations where the combination of
centrifugal and viscous forces result in instability and steady secondary flows in
the form of vortices. Flow in a curved duct, the Dean problem, and boundary
layer flow along a concave wall, the Gortler problem, also belong to the ciass of
problems where centrifugal instability brings about qualitative changes in the flow

and solution structures.

1.2 Bifurcation phenomena

It is interesting to observe from the discussion in the preceding section that

whenever there is an imbalance among the forces driving the fluid flow, a qualitative
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change occurs in the system. Such changes may often be described by a parameter
or group of parameters that signify the relative magnitude of the forces involved. A
bifurcation occurs where the solutions of a nonlinear system change their qualitative
character as a parameter changes. In particular, bifurcation theory is about how
the number of steady solutions of  system depends on parameters. A diagram
illustrating the change in num* er of solutions with a change of a parameter is called
hifurcation diagram and a point with respect to parameter in the bifurcation diagram
where the number of solution changes is called a branch point. Figure 1.1 illustrates
few types of bifurcations. Figure 1.1(a) shows a limit point, also known as a turning
point, which is a one-sided bifurcation in the sense that solution comes from one
gicie and turns around. At the limit point either two solutions are born or annihilate
each other. Figure 1.1(b) shows a pitchfork bifurcation where two branches intersect
and one of them is one-sided. This is a generic bifurcation in the sense that it breaks
down in the presence of an imperfection to either one of the bifurcations shown in
its left and right in Figure 1.1(b). Whenever the two solution branches intersect and
none of them is one sided, transcritical bifurcation occurs, as shown in Figure 1.1 (c)-
An exchange of stability occurs at a transcritical bifurcation point. A bifurcation
which connects equilibria to periodic solution is called a Hopf bifurcation. Because
the periodic solution is approached by other solutions in the limit of infinite time,
such a solution is also called a limit cycle as shown in Figure 1.1(d). The essence of a
transcritical bifurcation and a pitchfork bifurcation is that the real eigenvalue of the
unique least stable mode increases through zero and one or two new steady solutions
arise. In contrast, for a Hopf bifurcation, the real part of a pair of eigenvalues of the
least stable complex conjugate modes increases through zero and a time-periodic
solution arises. At a hysteresis or cusp bifurcation two limit points coalesce. This
type of bifurcation usually occurs in a multiparameter study where the change of

another parameter may bring two limit points near to each other and a further



CHAPTER 1. INTRODUCTION 4

change may bring about hysteresis or cusp bifurcation as shown in Figure 1.(e).
Within the cusp region there are three solutions and outside this region only cne
solution exists. As said above, these bifurcations spell qualitative changes brought
about by the body forces. An important body force which occurs due to system

rotation is the Coriolis force. The origin of this force is described in the next section.

1.3 Motion in a rotating frame

There are many engineering applications involving fluid flow and heat transfer
in rotating ducts. They are used in turbomnachinery, cooling systems of gas turbine
blades and conductors of electric generators, motors, and various cooling systems

for rotating conmponents, notably prime movers.

In order to study hydrodynamics, we need governing equations describing the
fluid flow. Newton’s second law of motion relates the resnltant force acting on a
body to the change in momentum experienced by the body. However, for this law
to be valid it is necessary to ensure that the motion concerned is referred to an
inertial frame of reference, a reference frame which is either stationary in space or
moving with uniform velocity. For example, if the motion of a fluid particle moving
inside a stationary duct is required, a convenient reference frame is fixed in relation
to the duct itself. Because the duct is stationary such a reference frame will he
inertial and Newton’s second law of motion may be used to describe the motion of
the particle. However, if the duct is rotating and/or translating, a reference frame
fixed to the duct is no longer inertial. Under these circumstances correction terms
must be applied to the Newton's second law in order to maintain its applicability in
a non-inertial frame of reference. If the rotating frame is translating with velocity

v, and rotating with a angular velocity £ then the velocity, v and acceleration, a,
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of particle in the inertial frame can be represented as (Morris, 1981),

or
v_5£+ﬂxr+vo (1.1)
d%r or N
a—bt—g+2[Qx—ét—]+[ﬂx(ﬂxr)]+[-§t—xr]+ao (12)

where, r represents the position vector in rntating frame.

In the equation (1.2), g—:{- represents acceleration with respect to the non-inertial
frame of reference. The expressions, 2 [ﬂ X %—‘t'], and [ x (€2 x r)] are known as the
Coriolis acceleration and the centripetal acceleration respectively. The expression,
[%—? X r] , accounts for the angular acceleration of the frame. This occurs whenever
the reference is rotating with non-uniform angular velocity(start up or spin up).
Finally, the last term, a,, in equation(1.2) occurs if the origin has acceleration with

respect to the inertial frame.

These additional correction terms of acceleration affect the path of a particle
in a rotating system significantly. In the next section, we study the effect of these

forces in generating vorticity in fluid.

1.4 Creation of Vorticity by Coriolis and

Buoyancy Forces

Vorticity is a measure of the angular velocity which a particle of fluid has at a

point in the flow. It can be defined as:
E=Vxv (1.3)

By taking curl of momentum equations, we get vorticity transport equation that

governs the manner in which vorticity is generated, convected and diffused through a
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moving fluid. For the motion in an inertial frame of reference, the vorticity equation

takes the foliowing form:

D¢ _ o2
B = EV)v + vV (1.4)

For a non-inertial frame, additional terms appear because of correction terms to
the momentum equations. By assuming that the centripetal and translational
acceleration of the origin combine to form a conservative field which can be de.scribed

by a scalar function ¢ such that
Vo =X (2 Xr) + a (1.5)

we get the following monientum equation:

Dv +2(§txv) = -V (B+¢> + vV (1.6)
Dt p
By taking curl of the equation(1.6), we get the following vorticity equation for non-
inertial frame:

D¢

2
o7 = EV)v + Vi +2(QV)v (1.7)

In equations(1.4) and (1.7), vorticity is generated by the term ({.V)v and
subsequently convected and diffused through the flow by means of the terms %f and
vV2¢ respectively. In rotating frame of reference the non-zero value of 2(R.V)v
is responsible for generating vorticity. Thus, Coriolis acceleration can generate
secondary flows in planes perpendicular to the main directions of the flow for rotating
ducts. This could significantly affect resistance to flow and convective heat transfer

inside the duct.

For constant property flow, the conservative combination of the centripetal
acceleration and translational acceleration of the origin is hydrostatic in nature.
In other words they do not contribute to the generation of vorticity. For a non-

isothermal flow, density varies with temperature via an equation of state having the
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form
= pr[]' - ﬁ(a - 0,-)] (18)

where p, densivy of the fluid at a specified reference temperature 8,, and 3 is the
coefficient of cubical expansion. Thus, the momentum equations take the following
form,

Dv _ 1

B¢ +2ARxV) =2 vy + B0 -6,V + vViv (1.9)

By taking curl of equation(1.9) we get following vorticity vquation:

%fj = (EV)v + vV + 2(QV)V + V x [3(0 — 6:) V4] (1.10)

Equation(1.10) permits the following observations for a nonisothermal flow through
a rotating duct. The Coriolis acceleration generates vorticity as was shown earlier
and temperature-induced density variations do not directly affect this erm to 2
first approximation. The conservative effective body force field described by the
scalar function ¢ can create vorticity via a temperature density interaction. Thus,
in a non-isothermal rotating duct the flow field will be simultaneously influenced
by Coriolis acceleration and a buoyancy force. When these forces interact with the
inertial and viscous forces interesting flow structures appear. For some values of
parameters describing the interaction of the forces involved multiple solutions exist.
These solutions are represented by using convenient state functions in a bifurcation
diagram. In the following chapters we study bifurcation structures of isothermal

and non-isothermal flow through a straight rotating duct.

1.5 Organization of Thesis

The present study has been divided into five chapters of which the present one

is the Introductioi..
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In Chapter 1, some discussion of the problems in fluid flow where bifurcation
occurs is presented. The basic types of bifurcations are introduced which are
common in the presence of body forces. The concept of Coriolis force due to system
rotation and the effect of Coriolis and buoyancy forces in the generation of vortices

is presented. Finally an outline of the thesis is presented.

In Chapter 2, we investigate multiple solutions of flo.. in a straight pipe that is
rotating about the axis perpendicular to the pipe axiz The governing equations are
solved using control volume approach. In this problem we analyse the existence of
multiple solutions and their stability to symmetric and asymmetric perturbations.

The main focus of this study is to get a hitherto unknown four-cell solution.

In Chapter 3, a bifurcation study of isothermal flow in a straight rotating duct
of rectangular cross-section is examined. In this study spectral approximation
techniques are used to discretize equations and arclength continuation schemes are
used to track the solution path. Two new solutions through a pitchfork bifurcation

are discovered.

The nonlinear coupling between the momentum and energy equation in the
presence of system rotation results in a complex bifurcation structure. In particular
the presence of a buoyancy force breaks the symmetry in the problem of isothermal
flow in a straight rotating duct. This results in a smooth unfolding of symmetry
breaking bifurcation points. The focus of Chapter 4 is to study such unfolding for

the bifurcation diagram obtained in Chapter 3.

Finally, in Chapter 5, the main conclusions are presented along with some

recommendations for future work.
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(a) _
i > Limit point or turning point
i
Parameter
(b)
Pitchfork bifurcation
(c)
Transcritical bifurcation
(d) 1)
\A} limit cycle
Hopf bifurcation
(e)
'l/
3 solutions in the shaded region
1 solution outside shaded region

Hysteresis or cusp bifurcation

Figure 1.1: Types of bifurcations
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Chapter 2

Flow through a rotating pipe

2.1 Introduction

Laminar flow in rotating ducts (rectangular cross section) and pipes (circular
cross section) has been studied extensively from both theoretical and experimental
points of view. The flow in a rotating duct/pipe has many practical applications in
rotating machinery ((Debruge & L.S.Han, 1972); (Walker, 1975)) and in instruments
that measure flow rates based on the Coriolis effect (Raszillier & Durst, 1991).
Hydrodynamic stability aspects of flows in a rotating frame are equally important
and have been a subject of investigation by many authors. The presence of a Coriolis
force due to the system rotation makes governing differential equations nonlinear
and intractable by analytical means; but it is also responsible for very interesting
and complex changes in the flow and solution structure. The presence of a Coriolis
force introduces transverse differential pressure gradients which modifies the primary
Hagen-Poiseuille flow under axial pressure gradient. A region of higher pressure is
formed in a direction opposite to the Coriolis acceleration. Slow moving fluid near

the upper and lower surfaces of the duct gains momentum as it flows from the

11
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high pressure to the low pressure region. Because the flow is confined, the fast
moving fluid moves back to the high pressure region through the central core. This
establishes a mechanism for secondary flow, which is typically a two-dimensional
flow consisting of two counter-rotating vortices in the plane perpendicular to the flow
direction. The interaction of the secondary flow with the pressure driven primary
flow causes a shift in the location of the maximum axial velocity from the center of

the duct toward the high pressure wall of the duct.

The relative importance of the forces that govern the flow structure in flow
through rotating duct/pipe can be characterized by two dynamical parameters -
viz., the Ekman number, Ek, represents the ratio of viscous to Coriolis force and
the Rossby number, Ro, represent the ratio of inertial to Coriolis force. Other forms
of dynamical parameters in terms of Reynolds suimber and rotational number have

also been used in literature. See Figure 2.1 for definitions and scales.

The flow in a rotating straight duct/pipe is qualitatively similar to the flow
in stationary curved duct/pipe. The role of centrifugal force in a curved pipe is
the same that of the Coriolis force in a straight rotating pipe in generating and
sustaining the secondary flow. While this similarity between these two flows has been
recognized by numerous authors, it is interesting that the multiplicity features of
flow in a rotating straight pipe have not been invest. ated to date. Instead the focus
has been on the enhancement of heat and mass transfer effects due to the presence
of secondary flow. The centrifugal and Coriolis forces are also responsible for the
interesting and rich solution structure of two-dimensional flows in these classes of
problems. Historically, there has been a strong parallel between the studies on flow
through stationary curved pipes and rotating straight pipes, with the later lagging

behind by several years.

The earliest work on flow in a rotating straight pipe was inspired by Dean’s(1927;
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1928) work on stationary curved pipes. It was cariied out for the asymptotic limits
of weak and strong rotations by Barua(1954) and Benton(1956) using a perturbation
expansion on the Hagen-Poiseuille flow. They found a two-cell secondary flow
structure similar to the Dean(1927; 1928) study for stationary curved pipe flow.
The studies of Mori & Nakayama(1968), and Ito & Nanbu(1971) for small rotational
speeds and high axial pressure gradient resulted a good agreement with experiments,
showing an increase in friction factor with rotational speed. At the other extreme of
tue asymptotic limit, Benton(1966) considered the flow through a rapidly rotating
channel. He showed that viscous effects are important only in a thin boundary
layer along the channel walls and in the interior, where the nonlinear acceleration
and viscous terms in the Navier-Stokes equations can be neglected with respect to
the Coriolis term, the flow is geostrophic. In this region the cross flow is constant
_ throughout. This flow is similar to the flow in stationary curved duct for high Dean

numbers as observed by Barua(1963).

Inspired by Van Dyke’s(1978) work on the Dean problem, Mansour(1985)
used the computer extended Stokes series approach for extending the results of
Barua(1963) for flow in a rotating straight pipe in the double limit of Ek — o0,
(Ro/Ek) = oo, and (Ro/Ek?*) = constant. When the forces are of comparable
magnitude a complex flow structure results that can be unraveled only by numerical
means as recognized by Duck(1983). None of these studies reveal any multiple
solutions for flow in a straight rotating pipe. The first numerical studies to reveal
multiple solutions in the Dean problem were by Dennis & Ng(1982) and Nandakumar
& Masliyah(1982). The only available numerical study on rotating straight pipe by
Duck(1983) does not reveal such multiplicity features, although Duck recognized a

strong parallel between flows in curved pipes and rotating pipes.

The flow in rotating straight ducts and stationary curved ducts of rectangular
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geometry is fairly well understood. Winters(1987) has presented a definitive
bifurcation study of laminar flow in a stationary curved duct of rectangular cross-
section. He showed that four-cell flows are stable to symmetric perturbations, but
unstable to asymmetric perturbations. Experimental and numerical investigation
by Bara et al. (1992) showed that when perturbed asymmetrically, the four-cell
flow might evolve to flows with sustained spatial oscillations farther downstream.
In a numerical study of the flow in rotating, rectangular duct Speziale(1982)
demonstrated that a transition from a two-cell to a four-cell flow structure occurs as
Ro is changed. Nandakumar et al. (1991) examined the flow through the rotating
rectangular duct. Their study confirmed the hysteresis behavior between the two-
and four-cell flow structure by Kheshgi & Scriven(1985). Further they found an
additional branch that has a two-cell flow structure at one end, and a four-cell flow

structure at the other with three limit points on the path.

For fully developed flow in a curved pipe of circular cross-scction, the numerical
studies of Nandakumar & Masliyah(1982), Dennis & Ng(1982), Yang & Keller(1986)
and Daskopoulos & Lenhoff(1989) showed the existence of multiple solutions. The
flow features in a rotating straight pipe of circular cross-section are not yet fully
documented. Duck(1983) examined the flow through rotating straight pipes of a
circular cross section using Fourier decomposition in the angular direction. However,
due to the convergence difficulties of the iterative solution method used, no solutions
at high Rossby numbers could be obtained. In particular a dual four-cell solution
was not computed. Solution multiplicity is, however, expected since the equations
governing the two-dimensional flows through rotating channels are analogous to
those of laminar flow in coiled ducts(the Dean problem) in the double limit of
Ek — oo, (Ro/Ek) = oo, and (Ro/Ek?) = constant as shown, for example, hy
Mansour(1985).
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In the present work ! our objective has been a modest one of establishing dual
solutions for the rotating flows just as was done by Nandakumar & Masliyah(1982)
and Dennis & Ng(1982) for the Dean problem. We examine the multiplicity features
and the secondary flow structure in the fully developed regime in a straight pipe
of circular cross-section rotating about an axis perpendicular to the pipe axis.
The present work can be considered a direct extension of the works Barua(1963),
Mansour(1985) and Duck(1983). The numerical simulations reported in the present
study establish the following features: (1) a primary two-cell solution branch is
found at all values of Rossby numbers, which is in agreement with earlier works;
(ii) above a certain critical Rossby number, additional solutions exhibiting four-
cell flow structure that coexist with the two-cell flow structure are found; (iii)
the four-cell flow solutions are unstable to asymmetric perturbation and stable
to symmetric perturbation; (iv) unlike the two-dimensional, four-cell flow in a
rectangular geometry which breaks down into a three-dimensional, streamwise
periodic mode, the two-dimensional, four-cell flow in a circular geometry breaks
down to a stable two-dimensional, two-cell flow over the range of Rossby numbers

investigated here.

2.2 Governing Equations

The Navier-Stokes equations governing the two-dimensional flow in a rotating
frame of reference are solved to study the flow through a rotating pipe. Two-
dimensionality is imposed by assuming that the pipe is sufficiently long and that

the flow is driven by a constant axial pressure gradient. The equations are

1A version of this chapter has been accepted for publication in Physics of Fluids; presented in
47th Annual meeting of the Division of Fluid Dynamics, Atlanta, 1994
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rendered dimensionless using D, diameter of pipe to scale the radial direction,
U = —(1/pQ2D)3¥ /8 to scale velocities, where ¥ is a potential that combines
pressure, gravitational, and centrifugal forces, pU D2 to scale pressure, and 1/82 to
scale time. The dimensionless form of the equations of motion are given below.

continuily equation:

Ju OJv
Bz + —BZ =0 (2.1)
z-tra~sversal momnentum equation:
o ou  Ou 0w *u O,
gt"*-RO(u-%-i- 3J) ——a':--!-Ek(a = +5?172')—2w (2.2)
y-longitudinal momentum equation:
ov dv v ov v v
5 Ro(u-a— +v 31 _-371/- + Ek(w + 5?-/3) (2.3)
z-azial momentum equation:
ow ﬁw ow 0w 0211;
Ty Ro(u ay) =1+ Ek(=— I (’)yz — )+ 2u (2.4)

2.3 Results and Discussion

The steady and transient forms of the governing equations of motion were
discretized using the control volume method. The two-dimensional flow domain
of a circular pipe in the physic.l space is mapped to body-fitted coordinates in
computational space using curvilinear coordinate transformation. The discretized
equations were solved using the SIMPLE algorithm. The transient simulations are
carried out using the backward difference scheme in time domain. The simulations
were carried out by keeping Ek = 0.01 fixed and varying Ro in the range of 0.01
to 20. It should be noted that higher values of Ek = 0.1 correspond to rectilinear

flow where the viscous force overwhelms the Coriolis force. On the other hand,
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lower values of Ek = 0.001 correspond to an Ekman boundary layer flow having its
geostrephic core in the center of the duct. In this study we are mainly interested
in the region where the viscous and the Coriolis forces compete with each other,
leading to interesting multiplicity features. The flow geometry and coordinate axes
are shown in Figure 2.1(a). The nonuniform grid shown in Figure 2.1(b) with total
of 1350 elements was found to give adequate flow resolution. The adequacy of grid
resolution was checked against the limiting one-dimensional flow in a circular pipe,
using the mean velocity for Hagen-Poiseuille flow and fRe was calculated to be 16.03,
which is within 0.2% of the analytical result. Grid sensitivity was also checked at
non-zero Rossby numbers by taking 2700 elements and comparing detailed velocity
profiles in regions where there are multiple solutions. These results will be presented

later.

Two views of the state diagram are shown in Figures 2.2(a)- 2.2(b). The variation
of transversal velocity, u, with Ro is represented in Figure 2.2(a). The monitor point
for the transversal velocity, u, is on the line of symmetry (x = -0.75,y = 0) since any
flow reversal is expected to occur in this region. The negative velocity component
indicates that the secondary flow is pointing towards the axis of rotation. A unique
two-cell flow solution is found for low values of Ro. This result is in agreement
with the two-cell flow solution predicted by Duck(1983). In Figure 2.2(b), the axial
velocity is used to represent the state of the solution as a function of Rossby number.
As the strength of the secondary flow increzses with increasing Ro, the axial velocity
component decreases which is to be expected since the simulations were carried out
at a fixed streamwise pressure gradient. The dimensionless mean velocities for the
two-cell and the four-cell solution branches at various values of Ro are given in Table

2.1.

For centrifugally driven secondary flow in a curved pipe of circular cross-section
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(the Dean problem) multiple solutions have been reported by Yang & Keller(1986)
among others. While several limit points were found by Yang & Keller(1986) all
of the limit points cannot be deemed real for the following reason. Except for the
lowzst limit point, below which a unique two-cell solution exists, all other limit
points were found to be sensitive to grid refinement. Thus the question of whether
they are spurious is left unresolved. Also, the reflective symmetry was imposed in
the calculations, and hence symmetry breaking points and non-symmetric solutions
were not computed. Similar questions remain to be answered for the flow in rotating

pipes.

In order to observe dual solutions experimentally Bara et al. (1992) inserted a
pin symmetrically, across part of the duct. The motivation behind this approach
was to reduce the development length for the four-cell flow. If the pin did not cause
a symmetric perturbation, then the fully developed symmetric four-cell flow could
1ot be observed in their experiments. Inspired by this, in our current numerical
experiments we simulate the insertion of pin by making the velocity zero at the
grid points that lie on the axis of symmetry. This perturbation has been found
tc be adeqnat~ to make the solution to be attracted to a four-cell flow as long as
the RossLy aumber is sufficiently large. Figures 2.3(a) and 2.3(c) show the transient
eveluiion of the axial and transversal velocities at the monitor point when the flow is
pert-ubed < mmeirieally at Ro = 10. As shown in Figure 2.3(a) and 2.3(c), the flow
is perturbes at t = +..75 by making velocity zero at that instant of time only. Prior to
the perturbatica, the iansversal velocity component « in Figure 2.3(a) is negative,
showing the: scconds-y Hiow has a two-cell flow structure. But when the flow is
perturbed at * = * 75, the solution is attracted to the four-cell flow solution and
steady state 1 cache: . “hia t = 7. The secondary flow reversal near the monitor

point is clear in Figute 2.2(s), showing positive transversal velocity component for
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four-cell flow o:ice a steady state has been attained. This flow reversal is also evident
in vector plots of two-cell and four-cell shown in Figure 2.3(b). Once the four-cell
flow is obt-ined at Ro = 10, it was used as an initial guess for generating the
solutior- at other values of Ro below and above Ro = 10, in order to trace the
four-~=i! solution branch in Figure 2.2. When Ro was decreased to 2.61 the four-cell
.-+ structure breaks down spontaneously to the two-cell flow structure. This point
'+ entified as the limit point L1 in Figure 2.2. This limit point will be a function

..+ the Ekman number.

From the earlier works of Kheshgi & Scriven(1985), Nandaknmar et al. (1991),
Winters(1987) and Yang & Keller(1986) it is clear that an intermediate branch
connecting the two-cell and four-cell solution branches in Figure 2.2 must exist. It is
also clear that the intermediate solution branch must be unstable. In our experience
the SIMPLE algorithm is capable of converging only to those solutions that are also
physically stable. This procedure is adc juate to demonstrate the existence of four-
cell flow solution for the rotating straight pipes. Thus, in our study, we do not find
an unstable solution branch connecting the two-cell and four-cell branch, as reported

by Yang & Keller(1986) for curved pipes.

Figure 2.4 shows the variation of the axial-velocity along the line of symmetry
for both the two-cell and the four-cell flow solution at the same Rossby number of
10.0. Also shown in this figure are the results of grid refinement on the flow profiles.
It is clear that both the two-cell and four-cell flows are captured adequately by 1350
and 2700 cells. Duck(1983) noted the departure from non-rotating case in terms
of shift in the maximum axial velocity away from the pipe =:is and towards the
direction of the secondary flow. We also note the same phenomena, as shown in
Figure 2.4. In addition to it, Figure 2.4 shows that for four-cell flow the magnitude

of maximum axial velocity is less than the magnitude of maximum axial velocity
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for two-cell flow. This is expected since additrcual vortices in four-cell generates
more cross-flow. Also, note that for four-cell flow the maximum axial velocity shifts
toward the axis. This happens because the additional vortices that develop in four-
cell flow carry more fluid to the central core by their positive velocity component

on the horizontal line of symmetry of pipe.

Two-cell flows are known to be stable in many geometries such as square and
circular ducts. To determine the stability of the various steady-state solutions, a set
of transient simulations were conducted under the conditions of imposed symmetry
about the line(x,y=0), and with out imposing symmetry. Also, the stability of the

solutions were tested for both symmetric and asymmetric perturbations.

At Ro = 2 only a two-cell flow structure exists (Figure 2.2(a)) wh -h is expected
to be stable. To test the stability of the two-cell flow soluticn at Ro = 2,
transient simulations were carried out. Figures 2.5(a) and 2.5(c) show the transient
evolution of the velocities when a symmetric perturbation is applied to a well
established, steady two-cell flow solution. These figures illustrate that within t=3,
the perturbation dies out and stable two-cell flow solution is re-established. The
vector diagrams before and after the application of the symmetric perturbation are
shown in Figure 2.5(b). Similarly, Figur-« 2.6(a)-2.6(c) show that the unique two-
cell flow solution at Ro = 2 is stable to asy.: ::-etric perturbation also. The four-cell
flow solution is also found to be stable to symmetric perturbations as illustrated in
Figures 2.7(a)-2.7(c). As shown in Figure 2.7(a) and 2.7(c) the perturbation dies

out with in t = 4 and the steady state four-cell flow solution results.

The four-cell flows in curved ducts/pipes are know to be unstable to asymmetric
perturbations. In order to investigate the expected instability of the four-cell
flow solutions in a rotating pipe to such asymmetric perturhations, a transient

simulation is performed subject to an asymmetric perturbation with out imposing
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symmetry boundary conditions. The time series is shown in Figures 2.8(a)- 2.8(c)
and the secondary flow structure is shown in Figure 2.8(b) both before and after
the perturbation. It is clear that the four-cell secondary flow structure is destroyed

and a steady, two-cell structure emerges.

The asymmetric perturbation of the four-cell flow solution causes a major

disturbance in t* 9cw rattern. When steady-state is achieved again, the flow

pattern has sta . svmmetric, steady, two-cell flow pattern. It is interesting
to ohserve transic of the breakdown of four-cell to two-cell flow. Figure
2.9 shows the var. __mediate transient states of the contour and vector

diagrams when the asyiunetric perturbation is applied to the four-cell fow. At
¢t = 0.05, we have a steady, four-cell flow structure. When this four-cell flow solution
is perturbed asymmetrically at t=0.75, it breaks down to a two-cell flow solution
at t = 3.5 via an intermediate three-cell flow structure, which folds itself into a
stable two-celi flow structure. In order to gain more insight into the effect of an

asymmetric perturbation, varying degrees of asymmetry were imposed by using
V(r0) = Vo(r) + ¢ (1—- r?) sin

where V is the velocity and ¢, the amplitude of perturbation was varied. Figure
2.10 shows the effect of varying the degree of asymmetry on the breakdown of four-
cell flow structure to two-cell flow structure. For both smaller (¢ = 0.1Vp,.) and
larger (€ = 0.5Viqr) amplitudes of perturbation four-cell flow breaks down to two-
cell flow. Figure 2.11 shows the snapshots of contours of axial velocity when the
four-cell flow is subjected to a general perturbation of a amplitude of 50% of the
maximum velocity. The four-cell solution is perturbed at t = 0.75 which quickly
breaks down to a two-cell asymmetric solution structure which transforms into two-

cell steady symmetric flow structure at ¢t = 3.5.

It should be noted that this transient breakdown of four-cell to two-cell
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flow structure is not experimentally realizable, since in any cxperiment there
is a dominant, streamwise motion. Any asymmetric perturbations due to the
imperfections in experimental apparatus would grow and eventually destabilize
the four-cell flow. These are arbitrary perturbations as shown in Figure 2.10
and 2.11. On the other hand, though not realistic, the effect of asymmetric
perturbation can easily be implemented by inserting a pin asymmetrically. Our
present study is limited to the stability analysis of two-dimensional flows to two-
dimensional perturbations. While the inference on the conditional stability of the
two-dimensional, four-cell flow remains valid, in actual experiments the breakdown
of the four-cell flow solution would occur spatially in the streamwise direction. A

three-dimensional stability analysis is a natural extension to our present study.

Another interesting consequence of the conditional stability result for the four-
cell flow is that there must exist a symmetry breaking point some where along the
primary solution branch. A similar result of conditional stability of the four-cell
flow in curved pipes also exists in the work of Yanase et al. (1988). Yet for both
the curved pipe and rotating pipe problems, the complete bifurcation structure for
the circular geometry remains to be mapped out using continuation methods and
extended systems for locating the various singular points. Questions regarding grid

independ. at results for the location of the singular points also remain.

2.4 Conclusion

Two-dimensional flows in rotating circular pipes are shown to exhibit multiple
solutions above a certain critical value of the Rosshy number. The primary solution
branch that starts at very low values of the Rossby number exhibits a secondary flow

structure with two-cells. Such flows have been previously computed by Duck(1983).
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In addition a second solution branch has been found that corresponds to a secorndary
flow structure with four-cells. Such four-cell solutions ¢ rmstable to asvmmetric
perturbations, while two-cell solutions are stable to both symmetric and asymmetric

perturbation.
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Flow Structure | Ro | Viean
Two-Cell 0.01 | 4.4711
0.10 | 4.4512
1.00 | 3.9819
2.00 | 3.6618
5.00 | 3.2491
8.00 | 3.0227
12.00 | 2.8342
16.00 | 2.7069
20.00 | 2.6076
Four-Cell 2.68 | 3.5676
2.87 |3.5320
3.25 | 3.4701
5.00 | 3.2646
8.00 | 3.0418
10.00 | 2.9363
12.00 | 2.8521
15.00 | 2.7479
20.00 | 2.6178

Table 2.1: Values of dimensionless mean velocity at various Ro numbers for
Ek = 0.01.
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(h)

Figure 2.1: (a) Geometry and coordinate system (b) grid layout

25



CHAPTER 2.

Figure 2.2:

FLOW THROUGH A ROTATING PIPE 26

0.2
e, Ek=001 (@)

0.1 L1

2-cell

u(x=-0.75,y=0)

Ro

-0.75,y=0)

w(x=

State diagram for the flow through straight, rotating pipe at Ek =
0.01. Variation of (a) transversal and (b) axial velocity with Rossby
number at the monitor point (z = —0.75,y = 0)
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Figure 2.3:
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a symmetric perturbation (c) axial velocity component

27



CHAPTER 2. FLOW THROUGH A ROTATING PIPE

3 1) T ;] ) 1 L | L | L] L
2-cell Ro=10, Ek=0.01
2. o ’/‘~ -
3 4-cell — 2700 elements
"~~~ @ 1350 elements
2 F \\\ -
w 15} .
1 F .
0.5 -
0 ] Il 1 ' & 1 - | ' 1

.1 -08 06 04 02 0 02 04 06 038 1

Figure 2.4: Axial velocity profile across the line of symmetry at Ro = 10 for
two-cell and four-cell secondary flows. '
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Figure 2.5:
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Response to a symmetric perturbation of a two-cell secondary flow
at Ro = 2. (a) Time series plot for transversal velocity, (b)
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axial velocity
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Figure 2.6: Response to an asymmetric perturbation of a two-cell secondary
flow at Ro = 2. (a) Time series plot for transversal velocity, (b)
secondary flow before and after an asymmetric perturbation and
(c) axial velocity
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Figure 2.7: Response to a symmetric perturbation of four-cell secondary flow at
Ro = 10. (a) Time series plot for transversal velocity, (b) secondary

flow before and after perturbation and (c) axial velocity
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Figure 2.8: Response to an asymmetric perturbation of a four-cell secondary
flow at Ro = 10. (a) Time series plot for transversal velocity, (b)
secondary flow before and after perturbation and (c) axial velocity
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Figure 2.9: Snap shots of contours of axial velocity and vectors of secondary
velocity when a four-cell flow is subject to an asymmetric
perturbation at Ro = 10.
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Figure 2.10:
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Response to a general asymmetric perturbation of a four-cell
secondary flow at Ro = 10. Figure shows the effect of amplitude of

perturbation. (a) Time series plot for transversal velocity and (b)
axial velocity
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35

Figure 2.11: Snap shots of contours of axial velocity when a four-cell flow is

subject to a general asymmetric perturbation at Ro
amplitude of perturbation € = 0.5Vinq:

10. The
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Chapter 3

Isothermal flow in a rotating duct

3.1 Introduction

Fully developed laminar flow of an incompressible viscous fluid driven by an axial
pressure gradient along a long rectangular duct is not rectilinear if the entire system
rotates about an axis perpendicular to the duct, The clockwise rotation of the duct
creates a Coriolis foree which throws the fast moving fluid in the central core of the
duet towards the right when looking downstream of the daet. Because there cannot.
he any acenmulation of the fluid, the fuid is pushed to the top and hottom portion
of the duet where it moves back to left wall and thus a secondary How of two counter
rotating vortices is established. The interaction of secondary flow with the pressure
driven primary flow causes a shift in the locaiion of maximum streamwise velocity
away from the center. When convective inertia becomes stronger relative to Coriolis
forces nonlinear effects start dominating and thus a possibility of multiple solutions

exists.

The solution structure has several features in connmon with flow throngh a curved
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duct(the Dean problem), non-isothermal mixed conveetion heat transfer in a square
duct (the Morton problem) and rotating rectangular duets. In all these problems,
the primary flow in the streamwise direction is pressure driven in a finite duet or
tube with inlet and outlet. The flow is inherently three dimensional near the inlet
region.  In certain regions of parameter space, the flow develops from the inlet
condition and reaches a streamwise invariant state for low valnes of the dynamical
parameter. In the Dean problem the effeet of curvature introduces centrifugal forces,
The interaction of centrifugal forees with convective and viscous forees generates a
secondary flow. Thus the flow is at least two-diniensional in nature. If a sufficient.
inlet length is provided to reach streamwise invariant state, the two-dimensional
Navier-Stokes equations can be used to study the flow structnre. Similarly in the
mixed conveetion problems. the interaction of buoyaney foree with convective and
viscous forces results in a secondary flow in the cross-section of the duct. In the
How through a rotating straight duct the secondary flow is generated by Corioli-
force due to system rotation. In all of these problems, the primary two-dimensional
flow breaks down above a certain eritical value of the forcing parameter, leading
to a complex bifurcation structure. Ty the Dean problem, this forcing parameter 1s
called Dean number. D, which represents the ratio of inertial and centrifugal force..
to viscons forces. In a similar way, the Grashoff number, Gr represents the effect of
buoyaney on secondary flow generation. The relative importance of the forces that
govern the flow structure in flow through a rotating duet can he characterized by
two dynamical parameters - viz,, the Ekman namber, EE, represents the ratio of
viscons to Coriolis forces and the Rossby number. [to, represents the ratio of inertial
to Coriolis forces. Other forms of dynamical parameters in terms of the Reynolds

mimber and the rotational number have also heen used in literature,

The carliest work on flow in a rotating straight pipe was inspired bosean < (1927
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1928) work on st.tionary curved pipes. It was carried out for the asymptotic limits
of weak aud strong rotations by Barua(1954) and Benton(1956) using a perturbation
expansion on the Hagen-Poiseuille flow. The studies of Mori & Nakayama(1968), and
of Ito & Nanbu(1971) for small rotational speeds and high axial pressure gradients
resulted in good agreement with experiments, showing an increase in friction factor
with rotational speed. At the other extreme of the asymptotic limit, Benton(1966)
considered the flow through a rapidly rotating channel. He showed that viscous
effects are important only in a thin boundary layer along the channel walls and in
the interior, where the nonlinear acceleration and viscous terms in the Navier-Stokes
equations can be neglected with respect to the Coriolis term, the flow is geostrcphic.
In a numerical study of the flow in a rotating, rectangular duct Speziale (1982)
demonstrated that a transition from a two-cell to a four-cell flow structure occurs as
Ro is changed. Duck(1983) examined the flow through rotating straight pipes of a
circular cross section using Fourier decomposition in the angular direction. However,
due to the convergence difficulties of the iterative solution method used, no solutions
at high Rossby numbers could be obtained. In particular, a dual four-cell solution
was not computed. Solution multiplicity is, however, expected since the equations
governing the two-dimensional flows through rotating channels ar> analogous to
those of laminar flow in coiled ducts(the Dean problem) in the double limit of
Ek - oo, (Ro/Ek) — oo, and (Ro/Ek?®) = constant as shown, for example, by
Mansour(1985). A comprehensive bifurcatic.1 study for the flow through a rotating
duct is done by Nandakumar et al. (1991). Their study confirmed the hysteresis
behavior between the two- and four-cell flow structure by Kheshgi & Scriven(1985).
Further they found an additioral branch that has a two-cell flow structure at one
end, and a four-cell flow structure at the other with three limit points on the path.
Two asymmetric solution branches emanating from symmetry breaking bifurcation

points are also found. They found five solutions at Ro = 5. It was also confirmed
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for a rotating duct that four cell sclution is unstable to asymmetric perturbation.
Unfolding of bifurcation diagram with angle of tilt and the effect of aspect ratio is

also investigated.

The objective of this chapter is to test our computational code and reconstruct
a bifurcation diagram similar to Nandakumar et al. (1991), on which the effect of

heating will be discussed in the next chapter.

3.2 Governing equations

We consider the flow of an incompressible fluid of density p and viscosity gt
through a rectangular duct of width @ and height b, and rotating about an axis
perpendicular to the axis of symmetry of duct at the rate Q. The aspect ratio
of the duct is ¥ = b/a. The cross-section of the duct can be tilted by ¢° with
respect to rotational axis as shown in Figure 3.1. The flow is driven by a constant
imposed pressure gradient, d/8%. The Navier-Stokes equations governing the two-

dimensional flow through the rotating duct, are given by

ou 0b
—4+—==0 3.1
5 9 31
ou N A 0(,9 9. L
5 + (z % + v-a—y;) = 31 V it — 20 cos @ (3.2)
v ) 0y 9.
— —— — = ’ 3.3
5 +(u j“’ag) 31}+ V © + 2 sin ¢ (3.3)
J

04

where V2 = &5 +-2Z;. Here [i(%,§),7(,§),10(%,§)] represents the velocity vector and
FEN Tl 9), I

(—?iv.- + (ﬂ-—l—? + f)a—tg) = 0(,9 i V W + 2t cos p — Vsin @) (3.4)

o is a potential that combines the centrifugal, gravitational and thermodynamics

pressure. The rotation vector (§2sin ¢, (2cos ¢,0) allows the duct to be tilted with
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respect to the rotation axis by an angle ¢°. Here © is the magnitude of the rotational
speed. Equations(3.1-3.4) have to be solved subject to no slip and impenetrability
conditions at the walls of the duct:

and § = :i:g (3.5)

i=b=w=0atzx ==

NS

Taking the axis of the duct to be the z direction, and invoking the fully developed
condition that the velocity components are independent of z, it follows that 5—“3 is

constant. Two dimensionality allows the introduction of a stream function as

_ L 90
=3 and b=—a2 (3.6)

'll_-i.i ’U'—P-— 'w—iz-’- 'l—i -—g_
- U! - U’ e U’ - a’ y - q’
i o= u=Y
where U = —¢./pQ. The non-dimensional equations take the following form
du Ov
— 4 — = 3.
132 T % (3.8)
ou d ou
o + Ro (71";)—“' + v??TJ) = —') By Y 4 EEViu — 2weos ¢ (3.9)
dv ov v Oy 2
3 + Ro ('yua 8y) ~3 + ELV v + 2wsin¢ (3.10)
ow ow Ow 2 .
5, + Ro (71;-5; + v-a—y) =1+ EkV?w + 2(ucos ¢ — vsin @) (3.11)

where V2 = 7 ;’: + 7;’57; ~ = bfa is the aspect ratio; Ro = U/bQ is the Rossby

number; Ek = v/b*Q is the Ekman nur:: er.

The choice of scales is by no means unique. Hence there is a proliferation of

definitions of dimensionless groups dealing with flow in a rotating duct. Our choice
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is inspired by the work of Khesghi & Scriven (1985) and Nandakumar et al. (1991).
An alternative choice that leads to a Reynolds number and a rotation number is also
used frequently. Such alternative definitions are clearly related. For example the
Reynolds number defined as Re = bU/v is related to Rossby number and Ekman
numbers by Re = Ro/Ek, while the rotation number defined as Rq = 1/Ro.
More important than defining a particular choice of scales an understanding of
the physical interpretation of the resulting dimensionless numbers. In our case the
Ekman number represents the ratio of viscous to Coriolis force and is held constant
at Ek = 0.01. The Rossby number represents the ratio of inertial to Coriolis forces.
As the rotational speed € is increased, the rotational effects are increased. This
corresponds to the low Rossby number limit. At higher Rosshy numbers, the inertial

effects dominate the solution and flow structures.

The equation of continuity is satisfied by introducing the stream function v such
that taking curl of momentum equations eliminates the potential, ¢ and yields the

vorticity transport equation having the streamwise component:

06 _ proote s pon (2006 _ 0006\ L (Du ow
3 = EkV*E + Rovy (8.1: 3y By 0:1.') +2 ('y o sin ¢ + 3y cos ¢ (3.12)

where £ is the streamwise component of the vorticity. The third term in the
right hand side of equation(3.12), 2 ('y%';’— sin¢ + ﬁ;f,'—;l’cos ¢), is the source term for
generating streamwise vorticity by Coriolis force. It should be noted, for an angle of
tilt ¢ = 0, this term depends on the gradient of streamwise velocity with respect to
the spanwise direction, which is always non-zero owing to the presence of the wall
boundaries in tie spanwise direction. Thus secondary flow is always present for any
non-zero forcing. In the idealized case of infinite extent in the spanwise direction,
the basic flow will be one-dimensional and two-dimensional solutions emerge at
supercritical bifurcations. In the present case, however, the hasic flow ig itself two-

dimensional with counter rotating streamwise vortices. The streamwise vorticity is
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related to the stream function ¢ by

v Ou
§ = Ll v —V P (3.13)

By substituting these equations in equation(3.12), we obtain the streamwise vorticity

equation in the stream-function form:

a(-Vv?
__(_a_T_ﬂ —EkV*y
+ Ro [ 83¢ W il 63111 20¢ 03¢ + 3y ik
7 a7 By e 6y T 9z 0%y y Ozy? 0y
ow . ow
+ 2 (7_8—:; sing + -BECOS ¢) (3.14)
where
4 0! i lig
V= om v g Y o
and the streamwise momentum equation(3.11) can be written as
ow _ o2 oy 0w 61/)8_111
3 = 1 +FEkVw + RO'y(am 5y 9y ax)
oy . oy
+ 2 (‘y 52 sing + 3y cosd)) (3.15)

We have to find the stationary solutions of the equations(3.14) and (3.15). The
computational domains for finding stationary symmetric and asymmetric solutions
are given by R*(Half domain) and R(Full domain) respectively. They are defined
as:

= {(z.y)| -05< 2 <05,0<y <05} (3.16)
R:={(zy)| -05<r <05 -05<y< 0.5} (3.17)

For finding stationary solutions in the full domain the boundary conditions are no-

slip and impenetrability conditions at the walls of the duct:

_ . Oy oY _ 1
w=0, ¢¥=0, aw—O, and ay-—O at x-:i:z,y—:t2 (3.18)
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For ¢ = 0, the following symmetry properties exist:

w(z,-y) = w(xy)
§(x, — y) = —ﬁ(mvy)
¢’($» - y) = _"/:'(-Tay) (319)

Thus, at the line of symmetry(z,y = 0), the boundary conditions are

Jw .
i 0, =0, and £=0 (3.20)

which can be used as boundary conditions while computing symmetric solutions in

the half domain R™.

3.3 Numerical methods

We are primarily interested in finding out the multiple stationary solutions
to (3.14) and (3.15). The transient two-dimensional solutions are not physically
realizable in an experiment as they are inconsistent with the streamwise invariance
or fully developed flow assumption. In other words we expect any disturhbance at a
streamwise position to grow(or decay) with time as well as be carried downstream
by the forced axial flow. In regions of the parameter space where there are multiple
solutions, the pseudo-transient simulation may converge to any one of the stationary
solutions, depending on the initial starting condition, the stability and the region
of attraction of the stationary solution. Whenever we refer to (3.14) and (3.15),
we mean the stationary form of (3.14) and (3.15). Together with the boundary

conditions(3.18). they can be written symbolically as a single equation,

f(up) =0 (3.21)

- there u: = [¥(z,y),w(z,y)] and p: = [Ro,Ek,¢,7] is the parameter set.
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3.3.1 Spectral approximation

The equations (3.21) are discretized using spectral approximation. The
expansion functions for the approximation are chosen as linear combinations of
Chebyshev polynomials such that they satisfy the boundary conditions at the wall.
The approximate solution 1, for stream function and w, for streamwise velocity on
the physical domain of the duct can be expressed as:

Ne—1Ny~1
v=5 3 CLXLHHYIE) (3.22)
m=0 n=0

Ny=1Ny-1

=Y Y Cu.Xn(@)Y(®) (3.23)

m=0 n=0

where

T=2r, and §=2y

are algebraic mapping that transform the cross-section of the duct into the
computational domain of Chebyshev polynomials [—1,1] and the expansion

functions X¥ ,Y¥ , XY and Y} are defined as follows:
X (F) = V" (8) = Tiya(®) — Ti(@), (3.24)

XP(E) = Y (3) = (1 + DT (@) — 20+ DT (@) + ( +3)T,(F),  (3.25)

For half domain(R*) calculations they take the form of,

X{*(2) = Tiy2(@) — Ti(E), (3.26)

V(%) = Tarya(E) — Taa(%), (3.27)

XP(@) = (14 DT q(3) = 2(1 + 2T (%) + (1 +3)T(3), (3.28)

Y¥(E) = (20 4 2)T g4 5(2) — 22 + 3)Ty45(%) + (21 + 4)T 1, (%), (3.29)

where | =0,1,2,..., and & in [-1,1].
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When the approximating functions v and w are substituted into equation(3.21),
we get a system of nonlinear algebraic equations for the expansion coefficients, cy.,
and C¥%,. The resulting equations are satisfied at the Chebyshev-Gauss-Lobatto
points

(%, %) = (cos %—i—,cos %%) (3.30)

for j = 1,2,....N.,k = 1,2,...,N,. We write this system symbolically as a vector f

of size N = 2N, N, that contains the discrete form of the momentum and vorticity
equations,

f(C;p) = 0, (3.31)

where, C := [C,‘ﬁn,C,',‘:n]. Our task is to solve the system of nonlinear equations as

a function of the components of p. Once the expansion coefficients are found, the

flow variables are obtained from the expansion functions.

3.3.2 Arclength continuation

Based on previous studies(Winters (1987). Nandakumar et al. (1991)) we
expect the flow structure to begin with two counter-rotating strcamwise-oriented
vortices that bifurcate into more complicated flow structures through several limit
or symmetry breaking points as the Rossby number increases. For low values of
Ro the governing equations (3.14) and (3.15) tend to hecome linear and therefore
we can get a good initial guess for Newton’s method. Thus, equations (3.14) and
(3.15) are solved using Newton’s method and a zero initial guess. A correction to

the estimated solution is found through a Newton-Raphson iteration
sC=J'f (3.32)

where J is the Jacobian of the system of equations. Or.e a converged solution is

obtained Euler-Newton continuation is used to continue on any chosen parameter,
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say a, a component of the vector p. This entails developing a good initial guess for

the solution at

C(a + Aa) = C(a) + %%Aa, (3.33)
where %—E is found from differentiating f with respect to a:
ocC of
J %0 = "2 (3.34)

This requires only one back substitution since J is already factored during the
previous Newton iteration. When this method fails to converge, a nearby singularity
is indicated and we switc.. to the arclength continuation scheme. This entails

rerarametrizing the problem in terms of arclength, s,
f(C(s),a(s)) =0 (3.35)

A parameterization is a kind of measure along the branch, a mathematical way of
identifying each solution on the branch. Various parametrizing schemes have been
proposed with efficient step size control. In this study we use one suggested by

Keller(1977),

N .
NCas) = wy (5] l-cd)

j=1

+ wo (‘;—%) [a(s) — a(so)] — (5 — s0) = 0 (3.36)

where w; and wy are the tuning parameters that allows us to place different emphasis

on C or on a. The tangents dc;/ds and da/ds are computed using

da) 1
2 = (3.37)
(ds % \/wn il (E"-)2 + wo

da

ERICIO N
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We formulate the following extenaed system,

[ f(C,a) ]
—0 (3.39)
N(C,a,s)

which consists of N + 1 scalar equations for N + 1 unknowns (C, «). The resulting
extended system(3.39) is solved by Newton’s method for a specified s and this
procedure has no difficulty in turning around limit points. A simple step-length
adjustment procedure, which adjusts As such that the Newton iteration converges
to specified tolerance within four iterations, was found to be adequate to turn around
even sharp corners. Differentiating f with respect to s provides

. of do __0f;da

& 0cds —  dads’ (3.40)

Equations(3.40) and (3.36) are solved for % and ‘(',—‘3’ and represent a regular system.
Once % and %‘;” are found at a particular s, Euler’s method is used to predict the

solution at s 4+ As:

cj(s + As) = cj(s) + %As. (3.41)
da
a(s + As) = a(s) + —d—sAs. (3.42)

3.3.3 Limit points

If (@,p) is a regular solution of (3.21). then f,(@,p)h = v has a unique solution
h for any v. In particular, for v = 0, the only solution is h = 0. On the
other hand, if (u,,p,) is a singular point of (3.21) then f,(u,po)h = 0 has a
nontrivial solution h # 0. If the Jacobian, f,(u,,p,) has a simple zero eigenvalue
and fp(uo,Po) € range{fu(u,,po)}, then (u,,p,) is a limit point. A simple limit

point can be located by solving the following extended system, proposed by Moore
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& Spence (1980) and Spence and Werner (1982)

f(u,a) 0
fulw@)h | =10 (3.43)
m(h) 1

In equation(3.43), h is the right null vector, and the constraint m(h) = 1 enforces the
null vector to be non-trivial. This system is known to be regular and can be solved
by Newton scheme for the unknown vector (u,h,a). In order to solve extended
system(3.43), a sufficient good initial guess ho(t,t,) is needed for the the right
eigenvector h. The limit point monitoring scheme proposed by Weinitschke (1985)

was found to be useful.

Consider a linear boundary value problem f,(u,a)h™ = ¢ with ¢* = (1,0). It
allows a non-trivial unique solution, h* (¢*,w*) at a regular point. If we let h; = ¢h*
and determine € from m (h%) = m(eh") = 1, it follows that h, satisfies f,(u,a)h, =c

with ¢ = (€,0).

As a — a,, where @, is the limit point, ¢ — 0. Thus, if e(a) — 0 when
computing a sequence of solutions on the branch, we are approximating a limit
point of f(u,a) = 0. The extended system(3.43) is solved with initial guess h,.
Thus, the extended system amounts to solving for unknowns (¢,w,d3,tb,a) with

(z/)o,wo,zﬂo,tbo,ao) as the initial guess to Newton’s method.

In Chebshev space, these unknowns are expressed as

Ng-1 Ny—-1

=Y ¥ CLXL@YVIE) (3.44)

m=0 n=0

Ne-1N;-1

w= 3 Y CLXEEY(

m=0 n=0
Nx—l Ny_l

z E Cr'fmxw :b(g) (346)

m=0 n=0

) (3.45)

&2
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N,r—'l N"'l
=3 Y Ch.Xu@Y, () (3.47)
m=0 n=0

where the expansion functions in half domain (R*) are defined as:
XP(3) = XP(@) = Tia(@) — T(@) (3.48)
Y () = V(&) = Tasa! ) — Tald) (3.49)
XP(#) = XP (&) = (1 + V)T 4 (8) = 200+ 2)T (&) + (1 + 3)T(F) (3.50)

YY(F) = V(&) = (2L + 2)T g, 5(8) — 2(20 + 3)T 4 5(3) + (21 + )Ty, (&) (3.51)

3.3.4 Symmetry breaking bifurcation points

The symmetry breaking bifurcation points may be described as the bifurcation
in which the solutions oi one of the two intersecting branches are symmetric while

the solutions of the other branch are asymmetric. The synunetry S is defined by

S#1, 8 =1 f(Sua)=Sf(ua) (3.52)
Consider the symmetric subspace, X,: = [u|Su=u], and the antisymmetric
subspace X,: = [u|Su= —u]. If zo(uo,a,) is the simple bifurcation point and

u, € X, and ho € X, then 2zg(uo,a,) is the pitchfork type symmetry breaking
bifurcation point and can be located by solving the same extended system with the

restriction u, € X, and h, € X,.

The symmetry properties of the present problem are

w(x,—y) = w(zy)
Y(x, — y) —p(x,y) (3.53)

The subspaces X, and X, are

s = [(¥,w)|w(z,~y)

'lU(.'L',y), ¢’($, - y) = —'1)(.5,7/)]
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Xa = [(d)aw) I 'lU(ll', "I‘/) —"lU('l,J 1/)(33 —y) = ’l,b(l',y)]

Therefore, to calculate the symmetry breaking bifurcation point, the extended

system must be solved with the following symmetry and antisymmetry conditions

aty=0
ow
— =0, 0
dy v=
Y _
-5-!; =0, w=0
Thus, the exter ‘i system amounts to solving for the unknowns (1,[: w,w w a)

with (1/),,,1u,,,¢o,wo,ao) as the initial guess to Newton’s method. For the symmetric

subspace, X, ¢ and w are are expressed as:

N,_l Mool
m=0 n=0
No=1Ny=
=2 S cn X2@YE0) (3.55)
m=0 n=0
where the expansions coefficients are:
X' (&) = Tiy2(®) — Ti(T) (3.56)
7(&) = Tusald) — Taa(E) (3.57)
XP(E) = (L + DT q(3) = 200+ 2T ol ) + (14 3)T () (3.58)
(%) = (21 + 2)Tgpps(E) — 2(21 + 3) Ty 5(E) + (2 + 4) Ty, (T) (3.59)
For the antisymmetric subspace, Xg, 1 and 1 are 2xpressed as:
Ny—1Ny—1
=Y ¥ CLXL@Y@) (3.60)
m=0 n=0
Ny~1 Ny-1
=Y Y G Xn@Yy®) (3.61)

m=0 n=0
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where the expansions functions are defined as:

XP(3) = Tia(@) - TH(R) (3.62)

V(&) = Taea(#) — Tas(¥) (3.63)

XP(%) = (L + DT (&) — 20+ 2T () + (L + 3)T () (3.64)

Y (2) = (20 + 1)Ty, (F) — 202 + 2)Ty,5(F) + (20 + 3) Ty (&) (3.65)

The extended system is solved by Newton's method for, ( Cpy,,. C.. Cu., CY a).

3.4 Results and Discussion

A comprehensive study of flow through a rotating straight duct is reported by
Nandakumar et al. (1991). They reported three symmetric and two asymmetric
solutions at Re = 5. They used a finite difference approach for solving governing
equations describing flow through a straight duct. In order to investigate unfolding
of the bifurcation structure of a rotating siraight duct with heating the complete
bifurcation diagram witiout heating is required. The focus of the present study
is to get such a complete bifurcation diagram with our code. This code is written
using numerical schemes based on spectral approximation. The recomputations
are performed for the same parameters as used by Nandakumar et al. (1991) with
the present code for the purpose of code verification. Our computations reveals
a bifurcation diagram similar to that obtained by Nandakumar et al. (1991). In
sddition to the five solutions they reported, we obtained two asymmetric solutions
through a pitchfork bifurcation on the primary branch of four-cell flow structure.
Thus our study obtains a total of three symmetric and four asymmetric solutions

at Ro= 5.
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Although, the choice of numerical schemes depends largely upon the required
accuracy and available computational time, it is worthwhile to try different schemes
to solve a problem. Because of the global nature of trial functions in spectral
methods, the error propagation in the computational domain is uniform. This is in
contrast to the finite-difference based method where the error is local in nature and
if it is not suppressed by some dissipative mechanism, can destroy the solution. In
most practical applications the benefit of spectral methods is its superior accuracy,
smaller grids and thus less computational time (Canuto et al., 1988). The spectral
approximation gives a dense system of matrices which were solved using LAPACK
subroutines (Anderson et al., 1992). Using this method we could find solutions for
17 Chebyshev nodes similar to 39 x 39 grid used by Nandakumar et al. (1991). In
contrast to dense matrices, the finite difference discretization based code requires
solution of only sparse matrices for which efficient SPARSPACK routines (Chu et al.,
1984) are available. Table 3.1 shows the singular points computed for different grid

size. These are not very sensitive to grid refinement.

In the asymptotic limits of slow(Ek — ocand Ro << Ek ) and rapid(Ek —
0and Ro << VEk) rotation, the flow structure is shown in Figure 3.2 and Figure
3.3 respectively. When the duct rotates slowly, the flow is nearly rectilinear and the
flow satisfies Poisson’s equation. Figure 3.2 shows the effect of a slight amount of
rotation, included as a perturbation to rectilinear flow. A small amount of rotation
forces a typical two-dimensional flow structure consisting of two counter rotating
vortices in the plane perpendicular to the flow direction. Note that the secondary
flow is very weak and hence the departure from one-dimensional rectlinear flow is
minimal. In the limit of rapid rotation(Figure 3.3), flow in the core of the duct is
geostrophic( i.e., dominated by a Coriolis force which balances pressure gradient)

and surrounded by thin viscous boundary layers. For an intermediate value of
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Ek = 0.01, Coriolis and viscous effects compete with each other and thus solution
multiplicity can be expected. A unique solution exists for low values of the Rossby
pumber. For low values of Ro, the governing equations tend to become linear
and thus can be solved easily by employing zcro initial profiles for the streamwise
velocity and stream functions. At higher values of Ro, convective inertia terms
make the equations nonlinear and the subsequent interaction of viscous and Coriolis
forces develops further vortices through bifurcations. The bifurcation diagrams are
illustrated in Figure 3.4 with the dimensionless flow rate (Q) as the state variable,

which is calculated from

+0.5 r+0.5
/ / wdzdy =

In order to reveal both branches of asymmetric solutions either the stream function,

N,—l Ny-1

+1
> [ [ en X aa)idi (3.60)
—0 n—()

¥ or the streamwise velocity, w on a point away from the line of symmetry is chosen
as the state variable. The spatial location of this point is chosen as (x=-0.45,
y=0.05), since the flow profile changes most significantly in this region and thus
both branches of any asymmetric solution will be made visible. The bifurcation

diagrams for these state variables are shown in Figure 3 5, and Figure 3.6.

Various parts of the solution branches were constructed using the following
general approach. Starting from Ro = 0 and using Euler continuation the solution
branch was computed until the Rossby number was close to the limit point, L2, as
labelled in Figure 3.6. Near the limit point, the Newton’s method fails to converge
quadratically because of the absence of an isolated solution. Thus, it is necessary
to switch to the arclength method to turn around the limit point. The complete
branch PM was obtained using arclength continuation. We obtained two limit
points L1 and L2 on the primary branch. Our computations obtained L1 and L2
at (Ro = 1.18220) and (Ro = 1.63560) respectively. Nandakumar et al. (1991)
obtained L1 and L2 at (Ro = 1.17851) and (Ro = 1.57164) respectively. Thus, our



CHAPTER 3. ISOTHERMAL FLOW IN A ROTATING DUCT 57

results are in close agreement with the study of Nandakumar et al. (1991). The

comparison of all the singular points is illustrated in Table 3.2.

Near the limit point L2, a symmetry breaking point, SB1, exists and an
asymmetric branch originates from there. A regular solution on the asymmetric
branch was readily generated by starting with a solution just below L2, tilting the
duct by 1°, increasing Ro past L2, and finally bringing the tilt back to 0°. The
branch AS1 is then completed using arclength continuation scheme. The branch
AS1 turns around and and forms a closed loop. The presence of additional singular
points was checked in the region of the turning point at the far end of the asymmetric
branch AS1. In this way almost coinciding singular points L3 and SB2 were found.
This suggests that an isolated symmetric branch separate fromn PAM must exist. A
regular solution on this branch, IS1, was easily generated by starting with a solution
just below SB2 as an initial guess and solving at value of Ro just above SB2. Then
continuing with arclength scheme in either direction, the entire IS that lies with in
Ro < 5 was computed. During this computation the arclength continuation scheme
turned around three additional limit points, L3, L4 and L35, the precise location of

which were computed using the extended system.

Note that the two pairs of singular points (12, SB1) and (L3, SB2) are close.
Whether or not each pair represents a single point of higher nullity in the continuous
problem and their separation is an artifact of the numerical discretization can not
be ascertained at present. The reflective symmetry that is present at zero degrees
is, however, destroyed with even a slight degree of tilt. The solution branches near
symmetry breaking points unfold into smooth processes with such a perturbation.
To accommodate this possibility, we expected to find another symmetry breaking
point, SB3, near L4 and an asymmetric branch to originate from there. Using steps

outlined earlier the singular points SB3 and the branch AS2 were located. The
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limit points L1 and L5 are the only isolated ones i.e. without a nearby symmetry
breaking point. We were able to obtain all five solutions reported by Nandakumar et
al. (1991). The continuation method does not guarante” trizze a9} possible solutions
are located for a specific problem. In particular, the chanco of detecting isolated
branches is small. For some problems it sright be worthwhile to solve the governing
equations for a random choice of parameters and to check whether the solution is
part of the already constructed branching diagram. " hen a new solution is found,
its branch diagram can be constructed using the cor.sumation method. If we perturb
slightly the solutions obtained by the continuation procedure and then remove the
perturbation, the solution is sometimes attracted to other isolated solutions that are
not on the branches already traced by the continuation method. Using this approach
we found two additional asymmetric solutions on the branch AS3, bifurcating at
S B4 from the four-cell primary branch PM. This is a typical supercritical pitchfork
bifurcation. A buoyancy force perturbation to flow in a rotating duct was used to

obtain additional solutions. This is discussed in the next chapter.

At Ro = 1.3 three solutions are present and all of them lie on the branch PM.
Figure 3.7 shows the flow profiles for the three solutions present at Ro = 1.3.
Figures 3.7(a), 3.7(b) and 3.7(c) show the streamline contours, strecamwise velocity
perspective plots and streamwise contour plots of a two-cell flow pattern on PM just
before the limit point L2. Figures 3.7(d-f) show similar profiles on that part of the
branch PM which lies between L1 and L2. An additional pair of weak cells begins
to form on the (z = —0.5,y) wall. Upon turning around limit point L1, a strong
four-cell pattern is seen to emerge. The stream function and streamwise velocity
profile in this region change quite significantly and hence the choice of ¥(—0.45,0.05)
and w(-0.45,0.05) as the state function in Figures 3.5 and 3.6 respectively are seen

to be the sensitive indicator of changes in flow pattern on different parts of the
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solution branches. Similar profiles at Ro = 5 are discussed, referring to Figure
3.6. Point 1 is on the branch PM and corresponds to a strong four-cell pattern.
The flow structure of this solution is shown in Figure 3.8. The streamline contour
plot as shown in Figure 3.8(a) is a strong four-cell flow. Figure 3.8(b and c) show
streamwise velocity perspective plot and streamwise velocity counter plots. Point
2 is on one end of the branch IS1 and corresponds to a two-cell pattern. Figures
3.8(d-f) shew the solution structure correspond to this solution. Point 3 is on the
other end of the branch IS1 and corresponds to a new four-cell pattern. This flow
structure is shown in Figures 3.8(g-i). Point 5 is on the asymmetric branch AS2
and the flow profiles at point 4 are the mirror images of those at point 5. The flow
structure for the pair of two-cell asymmetric solution is shown in Figure 3.9. The
asymmetric solutions obtained as a pitchfork bifurcation on a four-cell branch, PM
are shown in Figure 3.10. These correspond to point 6 and point 7 in Figures 3.4,
3.5 and 3.6. This pair of solutions was not reported in the study of Nandakumar et

al. (1991).

Due to the limited scope of the present study we did not perform the stability
analysis again. It has been reported by Nandakumar et al. (1991). Their study
shows that PM remains stable until the limit point L2. Passing through L3 they
found two po-itive eigenvalues, one corresponding to symmetric solution and the
other corresponding to asymmetric solution. Thus, the middle branch of PM
is unstable. On turning around the limit point L1 the eigenvalue corresponding
to symmetric mode becomes negative. Therefore, PM having a four-cell flow
structure is left with only one positive eigenvalue correspcnding to the asymmetric
mode. Hence, the four-cell flow is unstable to asymmetric perturbation and stable
to symmetric perturbation. A similar result was obtained in Chapter 2 for the

stability study of four-cell solutions for a flow in circular straight duct rotating
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about a perpendicular axis. The solution branch AS1 is unstable. All two-
dimensional solutions at Ro = 3 were found to be unstable against two-dimensional

perturbations.

3.5 Conclusion

Flow in a duct of rectangular cross section is shown to exhibit multiple solutions
when the duct is rotated perpendicular tc the axis of duct. The interaction of
Coriolis, 1nertial and viscous forces gives rise to a secondary flow. At higher
values of the Rossby number, governing equations become nonlinear and show
multiple solutions. The resulis obtained are in good agreement with the study of
Nandakumar et al. (1991). These are verified by a different numerical discretization
schemes based on spectral approximation. Two new solutions which bifurcate from
the primary four-cell symmetric branch are also shown to exist. With these two

additional solutions, a total of seven solutions at Ro = 5 are reported.
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1.17801

212717

1.63590

2.08978

17 x 17

1.18220
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1.63560

2.09900

21 x 21

1.18291

2.12599

1.63481

2.09010

25 x 25

1.18211

2.12839

1.63502

2.08997
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Table 3.1: Numerical sensitivity t= * (v = 1.0, Ek = 0.01,and ¢ = " ).

Singular points Branch Ro(Nandakumar et.. ! 91} | Ko(present study)
L1 PM 1.17851 1.18220
L2 PM 1.57164 1.63560
L3 IS1 2.79654 2.33029
L4 IS1 2.87313 2.77541
L5 IS1 2.61983 2.67194
SB1 PM and AS1 1.55812 1.62391
SB2 IS1 and AS1 2.80513 2.33106
SB2 IS1 and AS2 2.85347 2.75556
SB4 PM and AS3 —_ 3.02177

Table 3.2: Computed singular points (y = 1.0, Ek = 0.01,and ¢ = 0°) for 17 x 17.
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Figure 3.1: Geometry and coordinate system
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This figure shows the asymptotic limit of slow rotation for Fk =
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(H:r:l,ko=0.0001.l:‘k=0.wD

Contours of streamline Streamwise velocity contour Streamwise velocity perspective
3 - 3 .
a8 1.
H . Y
* y
Streamwise velocity along Streamwise velocity along
horizontal center plane vertical center plane

Figure 3.3: This figure shows the asymptotic limit of rapid rotation for Ek =
0.001,y = 1.0,¢ = 0°, Ro= 107"
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Ro

Figure 3.4: State diagram shows dimensionless flow rate vs. Rossby number at
Fk =0.01,7 =1.0.0=0°
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Figure 3.5: State diagram shows dimensionless stream function at r = --0 45
and y = 0.05 vs. Rosshy number at Ek = 0.01,7 = 1.0,¢ = 0°.
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Ro

Figure 3.6: State diagram shows dimensionless streamwise velocity at z
—0.45 and y = 0.05 vs. Rossby number at Ek = 0.01,7 = 1.0,¢

0°.
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Chapter 4

Non-isothermal flow in a rotating

duct

4.1 Introduction

In 3hss chapter we investigate the bifurcation of steady laminar mixed conveetion
flow through a duct rotating about an axis perpendicular to its own. The
simultaneous presence of buoyancy and Coriolis forces modify the secondary flow in
an interesting fashion. These forces, when individually present, drive the secondary
flow in directions orthogonal to each other. As a comscquence of this, their
simultaneous presence modifies the two-dimensional primary flow of two counter

rotating vortices in the cross-section of the duct.

Our present problem can be understood as a natural extension of two widely
studied problems: mixed convection heat transfer in horizontal ducts, and isothermal
flow through a rotating ducts. The problem under investigation reduces to these

problems in the asymptotic limits of zero rotation and zero buoyancy respectively.
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The problem of mixed convection heat transfer in horizontal duct is also known
as the Morton problem after the work by Morton(1959). Following this, numerous
papers discussed this issue. Among these, Igbal & Stachiewicz(1966) and Faris &
Viskanta(1969) used a perturbation approach along the lines of Morton (1959). A
two-cell flow structure was observed by Cheng & and Hwang(1969) and Hwang &
Cheng(1970). They used finite difference based numerical methods to study the
problem of mixed convection. Patankar, Ramadhyani & Sparrow(1978) examined
the effect of non-uniform peripheral heating in a duct of circular cross-section.
They showed a transition to a four-cell flow structure. A similar transition is also
reported by Chou & Hwang(1984) for rectangular geometry with uniform heating.
Dual solutions were observed by Nandakumar et al. (1985) in their study of mixed-
convectiou flow in horizontal ducts of rectangular, circular and semicircular cross-
sections. A much richer solution structure with up to five solutions over certain

ranges of Grashoff number was reported by Nandakumar & Weinitchke(1991).

In the other asymptotic limit of flow through a rotating duct under isothermal
conditions, a detailed bifurcation study is reported in Chapter 3. In this chapter,
the effect of buoyancy force on the hifurcation diagram obtained in Chapter 3 is
investigated. In particular, we are interesting in finding out how the unfolding of

various bifurcation points occur .n the presence of a huoyancy force.

The combined effect of rotation and heating have been addressed in many
papers. A combined free and forced convective heat transfer in a rotating curved
circular tube has been investigated by Wang & Cheng(1995). An extensive review
of heat transfer in rotating channels has been presented in a review monograph by
Morris(1981). An experimental study of convective heat transfer in radially rotating

rectangular ducts was presented by Soong et al. (1991).
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4.2 Governing Equations

The governing equations for flow through a rotating duct under non-isothermal
conditions can be obtained as a natural extension to the equations under isothermal
conditions. In order to study the effect of buoyancy, we modify the governing
equations considered in Chapter 3(hereinafter referred to as I), by treating the
body force terms as temperature dependent and including an energy equation. This
allows us to use the solutions obtained in I for studying the effect of buoyancy.
Therefore, to have a consistency in notation and numerical procedure, we consider
the same geometry and coordinate system as used in I, a rectangular duct of width
a and height b, with an aspect ratio defined as ¥ = bfa. The axis of the duct
is aligned perpendicular to the gravity vector. The duct is rotating along an axis
perpendicular to its own at a rate Q. The cross-section of the duct is tiited by
#° with respect to the gravity vector as shown in figure 4.1. We recall, in 1, the
tilt was us~-d as a means for obtaining asymmetric solutions. In this problem, the
buoyancy it:elf breaks symmetry, thus, the purpose of keeping tilt is only to have a
consistency in equations. Also, the potential ¢ in I now combines centrifugal and
thermodynamic pressure only. The flow is driven by a constant imnposed pressure
gradient %“3, and heated by an streamwise uniform flux f—;ﬂ Thus the streamwise
invariant state is azsumed to exist. With these premises. the governing equations

describing flow and er-ergy are:

continuity equation

du  Jv
—+—==0 4.1
% T 93 (4.1)
z-momentum
di 0u 0u 0p e, o p .
— b—+ =) =—=+ L V2%i — 25 Qb cos ¢ — g— sin 4.2
ot ( o 33/) ot p, Pr ¢ o ¢ “.2)
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y-momentim

90 (.00 98\ __2b  BHen, p
P ila= +9=] = £ £ 4.
Py + (uaj +v0y) ~3 TV 0+ 2/) Qi sing — gp cos ¢ (4.3)

z-momentum

o oW 0w\ 09 | P
—a—t.-+(u-(%+v5§>———a—;+ L2 +2prﬂ(ucos¢ ¥sin ¢) (4.4)

energy equation

9 86 _9h 06 ko oz

— — + b= V3 4.5
ot ("az + UBJ 8..) PrCp (45)
Note that a fully developed state implies 2 3- = -‘fli'i Furthermore, a stronger

Boussinesq approximation is invoked to account for the density variation in the

gravity term as well as in the Coriolis term.

p=p.t - 8(6-6.)] (4.6)

-3(3),

is the coefficient of thermal expansion. Here the subscript 7 denotes a reference

where

state. The equations of motion and energy subject to these conditions are:

continuity equation

ot 0v

—t—==19 4.7
5 ' 95 (4.7)
r-momentum
ou L0t .00 a¢ TSN
= — 2l - Zx 22
ot (“a:z + ”ag) az T ot

- 21 - ﬂ( ))chos¢
~ 91 - B(6~4))sing (48)
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y-momentum

ov ov  0b\ _ oy "o
o7 +<ual+v5§)— 39 + pV(
+ 2(1 - 3(8-6,))Quising
- ¢g(1 - /3( ) Cos ¢ (4.9)
z-momentum
ow ow ow\ 3(,9 ey .
ot + <u ot + 0_87) -9z t+ /—);V v

+ 2001 — (0~ 6,))(icos o — dsing) (4.10)

energy equation

06 o6 96 .00 ko ena
— i + e + 02 | = — V% 4.11
ot t (u ot + vag + w(’)f) PrCp ( )
To get the dimensioniess equations of motion and energy, following variables are

used to normalize the variables:

u—ﬂ r—ﬁ —2'1-—;}: y=2
Tttt 'Tr T el
N N )
TR Y=g VT W
~ (lob 0,. -0 -
=0b—m 0 = ———, n=p3A0 4.12
where U = —¢,/pQ. The non-dimensional equations.take the following form:
continuity equation
Ou o (4.13)
Tor Toy '
z-momentum
@- + Ro ’yua-—u + v-a—u = - 7099 + EkV?u - 2w(l + 1) cos ¢
or or dy oz
GvEk?

7l sin ¢ (4.14)



CHAPTER 4. NON-ISOTHERMAL FLOW IN A ROTATING DUCT 79

y-momentum

0 :
—8-2 + Ro ('yu% + -v%) = - g + EkV20 4+ 2w(1 + nf) sin ¢
2
- Cl;fl\ 1) cos @ (4.15)
z-momentum
Ou Jw Jw 9
5 Ro(yua +1—51;> = 1 4+ EkVw
+ 2(1 4+ n8){ucosp — vsing) (4.16)
energy equation
0 k
g; + Ro (’yu—gg + vg%) ﬁ’ V%6 + wRo (4.17)
2 3 a?

where V2 =« 3 T oy In the above equations the dimensionless gronp Gv =
gb®/1? is the gravity number. This represents the ratio of gravitational to viscous
forces. Pr is Prandtl number defined as Cpp/k.

Since the flow is two-dimensional, continuity implies

u= %%, and V= — f)a—:/’ {4.18)

In the above equation, ¥ is a solution of the Poisson equation

szp +£=0 (4.19)
where
ov Ou
_ Lov _du 2
3 "9 " Dy (4.20)

is the streamwise comnponent of the vorticity, which is determined from the z
component of the vorticity transport equation given by

L — DyoE 0w\, ,( ow . du
3 = ELV£+R07(axay ayal_)+2(70msm¢+aycm-xd))(l-i-rﬂ)
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a6 a0 . GvEk®n
- 2 ('y,) cos ¢ — %qmd)) ~TRe

+ 2nw (73—3— sin @ + gg cos q')) (4.21)

As a consequence of equation(4.19), it is clear that the secondary flows result from a
non-zero streamwise vorticity £. Furthermore, from equation(4.21) we see that the
body force terms(i.e the Coriolis term and buoyancy term) serve as sources for the
streamwise vorticity, and are the driving mechanism for tl  -cation of secondary

flows.

If equation(4.19) is substituted into equation(4.21), we obtain an equation in
streamfunction form as:

a(-v)

S 5 R vaA
g = N AVAR':

+ Ro a"w oy aw By + Py oy
TI\Y 330y ~ 0z 0 T 9z 022y | Oxi? Oy

" (?“’ u.m+?—cos¢)(1+ne>
X dy
oA a0
+ Y \\ 0 “ind 9. ‘08 )
0] a0 GvER?y
— )‘/ S _— ——— —rae .
\7 - cos¢ 7 @) o (4.22)

where
, 0% o
V4= 2y =
Vo T dx2y? + oy’

Similarly, streamwise velocity and energy equations can be written by using u and

v in terms of streamfunction as,

_6_’_1_0____ 1 +EkViw + RO’)’(

oY dw aw ow
or

9r dy Oy Oz

+ 2(1+496) ( (—?% sing + %% cos ¢) (4.23)
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and

9 (0900 ¢8| Ek_, ‘
or Roxy (Oar dy 9y 0.1.') * I’rV 6+ who (4.24)

respectively. We have to find stationary solutions of the equations (4.22), (4.23),
and (4.24) subject to noslip and impenetrability boundary conditions on the walls

of the duct:

oy oy 1 1
w =0 0——(), b =I|’ ——_—0, } — = at 1 =-: Y= 1.95
s W O and ay 0 at x=+*-,y= i'_2 (4.25)

In order to solve above equations with boundary conditions, we use the spectral
approximation for discretization and continuation method for tracking solution
paths, as discussed in Chapter 3. For the sake of avoiding repetition, details are not

presented here. The solution is always sought over the full 2D domain.

4.3 Results and Discussion

Fluid flow through a uniformly heated, horizoutal stationary duct is also known
as the Morton problem. The physical mechanism responsible for the existence of
multiple solutions in the Morton problem is well understood. An unstable stratified
density field exists only near the bottom of the wall when the fluid is heated
uniformly with a constant temperature around the periphery. Viscosity acts as
a damping mechanism and therefore the primary solution is unique and stable.
This solution consists of a secondary flow with two-dimensional counter rotating
vortices, driven by the buoyancy force. Because of the presence of a nonlinear
coupling between viscous and huoyancy forces, multiple solutions are expected,
When the strength of the buoyancy force is increased relative to that of viscous
forces, additional solutions bifurcate at certain critical points. The bifurcation study

of mixed convection heat transfer in horizontal ducts was examined by Nandakumar



CHAPTER 4. NON-ISOTHERMAL FLOW IN A ROTATING DUCT 82

and Weintschke (1991). If we invoke the Boussinesq approximation to account for
the density variation only in the buoyancy force term, we get a secondary flow source
term g—g(Nandakumar & Weinitschke, 1991) in the streamwise vorticity equation for
the mixed convection problem. It should be noted that for mixed convection flow,
the equations admit symmetric solutions about y-axis. More specifically, for ¢ = 0,

the houndary conditions on the line of symmetry(y-axis) are:

dw _ 90

e 0,&: =0,y =0€6=0 (4.26)

The additional feature, rotation, can be incorporated by use of a rotating coordinate
system, which affects the governing equations. By treating the Coriolis force as a
perturbation over mixed convection flow, the effect of rotation on the bifurcation
diagram obtained for mixed convection problem by Nandakumar & Weinitschke

(1991) can be determined.

The other approach to studying the simultaneous effect of buoyancy and Coriolis
forces on flow through a duct could be by treating buoyancy as a perturbation of flow
through a rotating duct. The solution and flow structure for the flow in a rotating
straight rectangular duct was discussed in the previous chapter. The secondary flow
is generated and sustained by the presence of a Coriolis fcmce, which pushes the fluid
horizontally across the duct. Two counter-rotating vortices are estabilished as the
secondary flow. The interaction of the Coriolis force with the viscous force gives
rise to a complicated bifurcation diagram at higher values of Ro. The source term
for secondary flow in a rotating duct appears in the < reamwise vorticity equation
as %‘f(Nandakumar et al., 1991). The solution struct.. e is symmetric about the x-

axis. For the angle of tilt, ¢ = 0, the governing equations for the flow in a rotating

duct about an axis perpendicular to the duct axis admit the following boundary
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conditions about the x-axis(y=0):

Jw

i 0,y =06=0 (4.27)

It should be noted from the above discussion that whenever both buoyancy and

Coriolis driven s«urces of secondary flow ( gg and ‘(’,—';— respectively ) are present, they
break symmetry on y = 0 and = = 0 respectively. Thus, the governing equations
\ g eq

for the present problem only admit asymmetric solutions.

In the present work we have chosen the second approach for studying non-
isothermal flow through a rotating duct ¢ ~. we impose the buoyancy force on
flow through a rotating duct. This study provides a link between the problem of
flow through a rotating duct and a mixed convection flow problem. The relative
magnitude of the forces driving secondary flow can give the asymmetric solutions
present in both the problems. A strong Coriolis effect and a weak buoyancy effect
produce solutions similar to the asymmetric solutions obtained for flow in a rotating
duct. On the other hand a strong buoyancy effect and a weak Coriolis effect produce
solutions similar tc those in the Morton problem. When these forces are of a
comparable magnitude, a solution structure having a strong degree of asymmetry
is obtained. The interplay of these forces is illustrated in Figures 4.2, 4.3 and 4.4.
These figures were obvained by keeping Coriolis effect constant ( fixing o = 0.1
and Ek = 0.01 ) and increasing the buoyancy effect through the Grashoff number,
Gr. The Grashoff number is obtained indirectly by first computing the average
streamwise velocity and mean bulk temperature at a given Ro. Thus, the value
of Gr represents buoyancy effect at a specified rotation. The streamwise velocity
and temperature scales are chosen such that the mean streamwise velocity does not

explicitly appear in the equations of motion. Hence the Grashoff number ( defined
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as Gr = b38gQ,/kv?, where Q is heat transfer per unit length ) becomes

Gr = 2Pr < w > nGvRo
- (1+v)Ek

(4.28)

where < w > is the mean streamwise velocity computed as:

2os o5 wdedy

<w>=
Area

Gr can be computed after a solution is obtained for a specified value of 7, Gv,Pr,7,

Ek and Ro. For Ro = - .1 Ek = 0.01 the sclution has a two cell low s*racture.
Figure 4.2 shows the ¢ ~ . .e contour plots at five different Grashoff numbers.
The tw - cell flow -~ res at Gr = 172 and Gr = 1736 correspond to a strong
rotation effcct a. a - .k buoyancy effect. These flow structures show a weak

degree of asymmetry. At higher values of Grashoff number wviz., Gr = 174908
and Gr = 1682992 we obtained two-cell flow structures corresponding to a strong
bucyancy cffect. At the intermediate value of Gr = 17380 a two-cell flow structure
having a strong asymmetric effect was obtained. This flow structure corresponds to
competing Coriolis and buoyancy effects. Figure 4.3 shows contours of isotherms for
five Grashoff numbers, showing the effect of heating. At a sufficiently high value of
Gr = 1682992, the isotherm resembles that in mixed convection problem. A similar
result is shown in Figure 4.4, which shows the contours of streainwise velocity at
five different Grashoff numbers. At higher values of Gr, we note a strong degree of

asymmetry.

Since buoyancy destroys symmetry in the problem, the symmetry breaking points
do not remain robust to this perturbation. This results in a smooth unfolding of the
solution branches. The amount of unfolding depends on the degree of asymmetry
introduced by buoyancy. First we examined the effect of slight imperfections
introduced by heating. The solution structure for Gv = 13,7 =103y =1,¢=

0%, Pr = 0.707 as shown in Figure 4.6 represents state diagrams of streamwise
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velocity computed at the 0.45,0.05). The state diagram shown in Figure
4.6(a) is for low through a 1 , duct in the absence of a buoyancy effect. It
was obtained in Chapter 3. It shows two symneiric and three asymmetric branches.
The two symmetric solution branches, PA and IS1 are connected by an asymmetric
branch AS1 emanating from a symmetry breaking point, SB1 near the limit point
L2. Other symmetry breaking poinis, SB2 and S B3 are present near the iimit point
L3 and L4 respectively . An asymmetric branch, .4S2 originates from the symmetry
breaking point, S13. A third asymmetric branch, AS3 corresponds to a pitchfork
bifurcation, SB4, which originates from the PAL having four-cell flow structure.
Thus, at Ro = 5 there exist three symmetric and four asymmetric solutions. When
the buoyancy effects are introduced, the symmetry breaking points unfold and ali the
solutions become asymmetric. The effect of heating is shown in Figure 4.6(b). We
observe that the solution branches get disconnected into four branches B1, B2, B3
and B4. The branch Bl that originates at Ro = 0 continues smoothly until Ro = 5.
All the solutions on this branch have an asymmetric two-cell flow structure. The
other three disconnected branches, B2, B3 and B4 have a single limit point. Only
the limit points L1, and L5 remain robust under heating. The unfolded branches
B2, and B3 have limit points L1* and L5* respectively. These correspond to L1
and L5 in the isothermal casc. The symmetry breaking point SB4 due to pitchfork
bifurcation is unfolded into a limit point, L6*, on branch B4 in Figure 4.6(b).
There are seven different solutions present at Ro = 5 and these are numbered as
(1-7) in Figure 4.6(b). As evident from Figure 4.6 the presence of buoyancy effect
unfolds symmetry breaking bifurcation point by connecting symmetric branch with
the asymmetric branch emanating from the symmetry breaking points so that new
unfolded branch has only asymmetric solutions. In Figure 4.6(b) a new asymmetric
branch, B1, is formed by connecting the solution branch PM with the lower solution

branch of AS1, present in Figure 4.6(a). Thus, on the unfolded branch, Bl, a two-



CHAPTER 4. NON-ISOTHERMAL FLOW IN A ROTATING DUC™ 86

cell solution exist up to B = 5. This flow struciure is s own in the «. - of
streamnline in Figure 4.8,.1). The correspuuc ng streamwise velocity perspec ..ve plot
is shown in Fign'~ 1.9(d). Tho isntherm is shown in Figure ! {d). A second
asymmetric branch, B2. in Figure .6(b) connects the upper .51 branch, the upper
AS1 branch and the up er AS3 branch through the limit point L1 present in Figure
4.6(a). This limit point is labelled as L1* in Fiy;, .ce 4.6(b). Unlike, L1, the limit point
L1* has an asymmetric solution. B2 has a two-cell flow struct .re at one end and a
four-cell flow structure at the other end of the branch at Ro = 5. Figures 4.8(b) and
4.8(f) show contours of streamline at Ro =5 on the branch B2 and Figures 4.9(b)
and 4.9(f) show the streamwise velocity perspective plots at Ro = 5 on this branch.
The isotherms for this branch at Ro = 5 are shown in Figures 4.10(b) and 4.10(f).
The third disconnected branch, B3, in Figure 4.6(b) connects two-cell solutions on
the upper AS2 branch and four-cell solutions on [ S1 branch through a limit point
L5 present in Figure 4.6(a). This is labelled as L5* in Figure 4.6(b). The flow
structures at Ro = 5 for this branch are shown for streamline contours in Figures
4.8(e) and 4.8(c), streamwise velocity perspectives in Figures 4.9(e) and 4.9(c), and
corresponing isotherms in Figures 4.10(e) and 4.10(c). Finally, fourth branch, B4,
corresponds to an unfolded pitchfork bifurcation. This branch connects a four-cell
solution at both ends at Ro = 5. It connects the lower branch AS3 and a four-cell
solution branch PM. The unfolded symmetry breaking point, SB4 in Figure 4.6(a)
is labelled as L6* in Figure 4.6(b). At Ro = 5, contours of streamline are shown in
Figures 4.8(a) and 4.8(g). For the same solutions, streamwise velocity perspective
plots are shown in Figures 4.9(a) and 4.9(g). The corresponding isotherms are
shown in Figures 4.10(a) and 4.10(g). The unfolding of the bifurcation diagram
for the case of uniform cooling of the duct is shown in Figure 4.6(c). It should be
noted that for the case of a uniform cooling of duct, the branches Bl , B2, B3

and B4 are smoothly connected through asymmetric branches present in isothermal
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case. The asymmetric branches present in isothermal case, are connected throngh
these branches in a different way than for the case of heating. During the unfolding
due to cooling, Bl is connected through the upper AS1, B2 through lower AS1
, B3 through lower AS3 and B4 through the upper AS3. Thus, exactly opposite
asymmetric branches are chosen for the new disconnected branches in the case of
cooling than that for the case of heating. Apart from this fact, other features of
the unfolding process are essentially the same as for the heating case. A similar

unfolding under heating/cooling is also shown in terms of other state fun. o -

and 1. The corresponding bifurcation diagrams are shown in Figures 1~ 1.7
The second set of results was computed for a higher degree of bne ey erlet.
Consequently, in these solutions we expect a greater degree of asymu, ry. The

parameters chosen for this study are Gv = 106 and 7 = 1073, and keeping all
other parameters fixed. As the degree of asymmetry increases we observed a gro «ter
amount of unfolding. This fact is shown in the state diagrams representing the
solution structures for this parameter space. Two new state parameters fFie,
frictional coefficient and Nu, Nusselt number are obtained. The friction factor

is defined as

fRe = 2 3 (4.29)
<w> Ek(1+7)
The Nusselt number is defined by
Nu RoPr < w > (4.30)

T Ek<6,> (1+7)
where the average bulk temperature < 6, > can be computed from

ffg‘ss I} +(?.‘\,;5 wldzxdy

Area < w >

<l>=

In the forced convection limit i.e., zero rotation and zero buoyancy, we obtained

fRe = 14.4155 and Nu = 3.6328. The parameters, vy = 1, Ek = 0.1, Ro = 10~ and
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Guv = 0 were chosen for simulating a forced convection limit. The values of fRe
and Nz obtained in the forced convection limit are very close to the values in the
literature (Shah & London, 1978). This also serves as a validation of our code. The
state diagrams are plotted with respect to Grashoff number, Gr. The bifurcation
diagrams in Figures 4.11, 4.12 and 4.13 are given for Q, fRe and Nu respectively
with respect Ro and Gr. Because the state functions, Q, fRe and Nu are integrated
quantities, the difference in their values corresponding to different solution branches
at the same value of Ro or Gr is not so significant that they can be seen graphically.
Since the state functions are one-dimensional projections of the solution paths, some
paths may appear to intersect in certain projections and other branches that are
distinct may appear to be coincident. At the bifurcation point, however, they must
intersect at the same value of Ro or Gr in every possible projection- i.e., , the entire
solution vector of the discretized problem should be the same at such critical points.
Thus, for stronger heating effects we also represent the solution structure in terms of
local state functions, streamwise velocity, w and streamfunction, ¥ measured at the
location (-0.45,0.05). This spatial location was chosen since the flow profile changes
most significantly in this region and both bran~hes of any asymmetric solution will
be made visible. A greater amount of unfolding is clearly illustrated in Figure 4.14
and Figure 4.15. These figures show the bifurcation diagram for unfolded branches
with w and ¢ as state functions, respectively. For a stronger buoy .y effect, the
limit point on branch Bl disappears. The remaining three branches have a limit
point. Figure 4.16, Figure 4.17 and Figure 4.18 show streamline contour plots,
streamwise velocity perspective plots and isotherms contours respectively. In these
figures, (b) and (f) are the solution on branch B2, (d) is a solution on branch B1,

(e) and (c) are solution on branch B3 and (a) and (g) are solutions on branch B4.

Next we describe the unfolding process at SB1 with a greater degree of heating.
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The behaviour is quite similar at the other symmetry breaking bifurcation points.
As Gv increases, SB1 is unfolded into a limit point, L2* close to LZ. With increasing
Gu, these two limit points coalesce into a hysteresis or cusp noint at a critical value
of Gv as shown in Figure 4.19. Above this critical value, these limit points disappear.
We have calculated L2 and L2* as functions of Guv. The result is shown in Figure
4.20. This figure shows how these limit points approach each other in the bifurcation

diagram of the state functions w and ¢ versus Ro.

4.4 Conclusions

The unfolding of the bifurcation structure for the case of flow through a
rotating duct with heating/cooling is studied. The presence of buoyancy breaks the
symmetry in the problem. This results in unfolding of the symmetry breaking points.
They disappear through a cusp bifurcation, which result in a smooth unfolding of
various branches. The four asymmetric branches appear in the unfolded bifurcation
diagram. These asymmetric branches smoothly connect through the asymmetric
branches and the limit points of isothermal case. Ouly two limit points present in
the isothermal case remain robust to the unfolding by buoyancy. There are scven
solutions present at Ro = 5, all of them asymmetric. The unfolding for a greater
amount of heating shows a greater amount of asymmetry. At a fixed rotation,
the degree of asymmetry increases with an increase of buoyancy effect. When the
buoyancy effect overwhelms the Coriolis effect, the flow structure is very similar to

that in mixed convection flow.
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( DIMENSIONLESS PARAMETERS \
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Y=bla  Ek= o Ro 0 r P n =pAO
3
Gv = gf fRe = 2 -~ Q = Area<w>
v <w>Ek(1+Y)
Ro Pr <w> 2<w>Pr Gv Ro

Nu = Gr=
k Ek<0>(1+y) (1 +PEk j

Figure 4.1: Geometry and coordinate system
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(¢=o.-,=|.n=o.00| Pr =0, 707.Ek-D.OI.Ro=0.D

(a) - (b) 7

(=)

0

Gr=172 Gr=1736
Gv = 1E4, Nu = 4.40416 Gv = IES, Nu = 4.40424
(c) h (d) (
Gr=17380 Gr=174908
Gv = IEG, Nu = 441388 Gv = 1E7, Nu = 4.81204

7

Gr = 1682992
Gv = IE8, Nu = 5.92136

Figure 4.2: This figure shows the contours of streamline with increasing Gr for
¢=0,7v=1,7=0.001, Pr =0.707, Ek = 0.01, Ro = 0.1.
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[¢=0.7= 1,n=0.001 . Pr =0.707,Ek=0.01 .Ro=0.D

(b)

Gr=1736
Gv = IES, Nu = 4.40424

Gr = 17380 Gr=174908
Gv = 1EG, Nu = 4.41388 Gv = IE7. Nu = 4.81204

Gr = 1682992
Gv = 1ES8, Nu = 592136

Figure 4.3: This figure shows the isotherms with increasing Gr for ¢ = 0,7 =
1,n = 0.001, Pr = 0.707, Ek = 0.01, Ro = 0.1.
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G=0.‘Y=I.T!=0.00I Pr =0.707. Ek:0.0I.Ro:OD

Gr=172 Gr= 1736
Gv = IE4, Nu = 440416 Gv = 1ES, Nu = 4.40424

Gv = 1E8, Nu = 5.92136

Figure 4.4: This figure shows the contours of streamwise velocity with
increasing Gr for ¢ = 0,7 = 1,7 = 0.001,Pr = 0.707,Ek =
0.01,Ro=0.1.



CHAPTER 4. NON-ISOTHERMAL FLOW IN A ROTATING DUCT 94

e

(b)

‘ Q=0.‘Fl,'|=0.001.6v-llln.ﬂ-0.ol'

1

0 2
18 N;g{é:-
16}
) 1 2 R 3 4 5
24} ) ) ' @
22}
e Ll
18}
16t
0 1 2 3 4 5

Figure 4.5: State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0,7 = 1, Gv = 1000, Pr =
0.707, Ek = 0.01. Q vs. Ro for (a)isothermal case, (b)heating with
7 = 0.001 and (c) cooling with n = —0.001.
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Figure 4.6: State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0,7 = 1, Gv = 1000, Pr =
0.707,Ek = 0.01. w(~—0.45,0.05) vs. Ro for (a)isothermal case,
(b)heating with n = 0.001 and (c) cooling with 7 = —0.001.
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Figure 4.7: State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0,7 =1, Gv = 1000, Pr =
0.707, Ek = 0.01. (—0.45,0.05) vs. Ro for (a)isothermal case,
(b)heating with 5 = 0.001 and (c) cooling with n = —0.001.
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$=0,y=1,n=0.001,Gv=1000, Pr=0. 707,Ek=0@

(a) onB4 @1 (b)

Nool
s

(d) onBl @4 (e)

il

Figure 4.8: Streamline contours for seven solutions present at Ro = 5 for
¢ =0,v=1,7=0.001,Gv = 1000, Pr = 0.707, Ek = 0.01. Points
refer to the labels on Figure 4.6(b).
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Figure 4.9: Streamwise velocity perspectives for seven solutions present at Ro =
5 for ¢ = 0,7 = 1,7 = 0.001,Gv = 1000, Pr = 0.707, Ek = 0.01.
Points refer to the labels on Figure 4.6(b).
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@O,Y-‘-lmﬂ.OOI,Gv=I 70 Pr=0. 707,Ek=0§

(a) onB4 @1 (b) on B2 @2 (c) onB3@3

(d) (e)

Figure 4.10: Isotherms for seven solutions present at Ro = 5 for ¢ = 0,7 =
1,7 = 0.001, Gv = 1000, Pr = 0.707, Ek = 0.01. Points refer to the
labels on Figure 4.6(b).
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108, Pr = 0.707, Ek = 0.01. (a)Q vs. Ro and (b)Q vs.Gr
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Figure 4.12: State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0,7 = 1,7 = 0.001, Gv =
108, Pr = 0.707, Ek = 0.01. (a)fRevs. Ro and (b)fRevs.Gr
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Figure 4.13: State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0,7 = 1,7 = 0.001,Gv =
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State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0, v = 1, n = 0.001,
Gv = 10%, Pr = 0.707, Ek = 0.01. (a) w(—0.45,0.05) vs. Ro and

(b) w(—0.45,0.05) vs.Gr
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Figure 4.15: State diagram shows how the solution structure unfolds in the
presence of non-isothermal effects for ¢ = 0, v = 1, n = 0.001,
Gv = 10%, Pr = 0.707, Ek = 0.01. (a) ¢(—0.45,0.05) vs. Ro and
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Figure 4.16: Streamline contours for seven solutions present at Ro = 5 for
¢ =0,y =1,17=0.001,Gv = 10%, Pr = 0.707, Ek = 0.01. Points
refer to the labels on Figure 4.14(a).
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Figure 4.17:  Streamwise velocity perspectives for seven solutions present at Ro =
5 for ¢ = 0,7 = 1,7 = 0.001,Gv = 108, Pr = 0.707, Ek = 0.01.

Points refer to the labels on Figure 4.14(a).
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Figure 4.18: Isotherms for seven solutions present at Ro =5 for ¢ = 0,y =
1,7 = 0.001, Gv = 108, Pr = 0.707, Ek = 0.01. Points refer to the

labels on Figure 4.14(a).
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Figure 4.19: Unfolding of SB1 for ¢ = 0,7 = 1,7 = 0.001, Pr = 0.707,Ek =
0.01 with heating.
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Chapter 5

Conclusions and

Recommendations

In this work we first examined the the multiplicity features and the secondary
flow structure of the fully developed, laminar flow of a Newtonian fluid in a straight
pipe that is rotating about an axis perpendicular to the pipe axis (Chapter 2). The
governing equations of motion were solved numerically using the control volume
method and the SIMPLE algorithm. Results were presented for a fixed Ekman
number of Ek = 0.01 and 5 range of Rossby numbers between 0 and 20. The
primary solution branch begins as a unique solution at low Rossby numbers. Its
secondary flow structure consists of two-cells. At higher values of Ro a hitherto
unknown solution with a four-ceil flow structure appears, which coexists with the
two-cell flow structure over a range of Ro up to 20. Transient, two-dimensional
simulations were carried out to determine the stability of the solutions to two-
dimensional perturbations. The two-cell flow structure is stable to both symmetric
and asymmetric perturbations. The four-cell flow structure is stable to symmetric

perturbations and unstable to asymmetric perturbations, where it breaks down to a
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two-cell flow structure. It should be noted that this transient breakdown of four-cell
to two-cell flow structure is not experimentally realizable, since in any experiment
there is a dominant, streamwise motion. Such a streamwise motion has been shown
in the Dean problem by Bara et al. (1992). Any asymmetric perturbations due to
the imperfections in experimental apparatus would grow and eventually destabilize
the four-cell flow. Our present study is only limited to the stability analysis of two-
dimensional flows to wo-dimensional perturbations. A three-dimensional stability
analysis is a natural extension to our present study. Another interesting consequence
of the conditional stabili:v of the two-dimensional, four-cell flow is that there must
exist a symmetry breaking point some where along the primary solution branch. For
both the curved pipe and rotating pipe problems, the complete bifurcation structure
for the circular geometry is yet to be mapped out using continuation methods and
extended systems for locating the various singular points. Questions regarding grid
independent results for the location of the singular points also remain. It is very
clear that the intermediate solution branch must be unstable. In our experience,
the SIMPLE algorithm is capable of converging only to those solutions that are
also physically stable. This procedure is adequate to demonstrate the existence of
the four-cell low solution for the rotating straight pipes. In our study, we did not
find an unstable solution branch connecting the two-cell and four-cell branch as
reported by Yang & Keller(1986) for curved pipe. To find all the solution branches,
more powerful algorithms based on the continuation method should be devised. In
Chapter 3, we used such an approach to track the solutions for flow through rotating

rectangular ducts.

The equations for flow through a rotating rectangular duct were discretized
using spectral approximations. The expansion functions were chosen as linear

combinations of Chebyshev polynomials. This kind of discretization scheme is also
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recommended for studying flow through a rotating pipe. In this problem we can use
a combination of Chebyshev polynomials for discretizing in the radial direction and
polynomials based on Fourier series for discretization in angular direction. Using
the arclength continuation method we were able to find seven solutions at Ro = 5.
In the bifurcation study of Nandakumar et al. (1991) of flow through rotating duct,
all of these solutions show instability. The all have a pair of imaginary eigenvalues
with positive real parts. Thus, the presence of Hopf bifurcation is expected. While
time-periodic branches may emerge through Hopf bifurcation, they are believed
to be physically unrealizable. It is likely that, as in the Dean problem (Sankar
et al., 1993), flows with periodic structure along the duct will develop, which imply
a breaking of the continuous translation symmetry assumed in the present work
down to a discrete one. A study of such three-dimensional flow for a rectangular
geometry is also required. We have shown the effect of Ek on the solution structure
for asymptotic limits. In the asymptotic limit of rapid rotation, boundary layer flow
exists. To resolve these thin boundary layers, a study of their stability at a higher

values of Ro is required.

In Chapter 4, we studied the effects of heating/cooling on the flow through a
rotating duct. The buoyancy effect drives a secondary flow in a direction orthogonal
to the Coriolis driven secondary flow. Thus, in the bifurcation diagrams obtained,
we see a smooth unfolding of the branches. The symmetry breaking points unfold
through a tilted cusp bifurcation. For stronger heating effects, we observed a greater
degree of asymmetry. Further, it was shown that bifurcations in mixed convection
flow (Nandakumar & Weinitschke, 1991) and isothermal flow through a rotating
duct (Nandakumar et al., 1991), are the asymptotic cases of nonisothermal flow
through a rotating duct. The asymmetric solutions in both the problems can be

obtained by adjusting the relative magnitudes of buoyancy and Coriolis effects.
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