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Abstract 

 

Competitive-Consecutive and Competitive-Parallel reactions are both mixing sensitive 

reactions; the yield of desired product from these reactions depends on how fast the 

reactants are brought together. Recent experimental results have suggested that the 

mixing effect may depend strongly on the stoichiometry of the reactions. To investigate 

this, a 1-D, non-dimensional, reaction-diffusion model at the micro-mixing scale has 

been developed. Assuming constant mass concentration and diffusivities, systems of 

PDE’s have been derived on a mass fraction basis for both types of reactions.  A single 

general Damköhler number and specific dimensionless reaction rate ratios were derived 

for both reaction schemes. The resulting dimensionless equations were simulated to 

investigate the effects of mixing, reaction rate ratio and stoichiometry of the reactions. 

It was found that decreasing the striation thickness and the dimensionless rate ratio 

maximizes yield for both types of reactions and that the stoichiometry has a 

considerable effect on yield.  All three variables were found to interact strongly. Phase 

plots showing the interactions between the three variables were developed. 
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1 
Introduction & Literature Review 
 

1.1 MIXING AS IT PERTAINS TO CHEMICAL REACTIONS  

 

Mixing and reactions are intrinsically related – reactions involving multiple reactants 

cannot occur without the reactants being contacted intimately at a molecular level. 

Reactants however are added at macroscopic scales and are initially segregated. For the 

reaction to occur, the pure reactants need to be brought together, which is usually at a 

macroscopic scale, and homogenized down to the molecular scale, so that the 

molecules can collide and collision probabilities governing the production of new 

chemicals take over. This process requires a reduction of scale and differences in 

concentration to occur. This process of reduction of the scale of this segregation and the 

differences in concentration is, in essence, the very definition of mixing as it pertains to 

chemical reactions.   

 

Chemical reactions are only one of many processes which require careful consideration 

of mixing. The Handbook of Industrial Mixing: Science and Practice (Paul et al., 2004), 

describes mixing as a “reduction in inhomogeneity to achieve a desired process result”. 

Usually the quantity being homogenized is a scalar such as concentration, temperature 

or phase. Some common chemical engineering processes that are dependent on mixing 

include liquid-liquid blending, solids suspension in liquids, distillation, heat transfer in 

liquid reactors and the topic of this thesis, chemical reactions.  For the particular case of 

reactions, it would be the concentrations of the reactants which would be mixed and 

the desired process result would be to maximize the yield of desired product.  
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Any reaction involving two or more reactants is completely dependent on mixing to 

even take place. If a reaction is slow the mixing can be completed before the reaction 

begins, so effectively the mixture is perfectly mixed, i.e. the concentration of reactants 

is almost uniform within the mixture. In these cases the traditional approach for 

determining yield outlined by Levenspiel (1972) works very well. However, in the case of 

faster reactions, it is often possible for the reaction to occur on the same or smaller time 

scale than that of the mixing. This means that when the reaction occurs, which takes 

place on a molecular scale, it is subject to a heterogeneous distribution of local 

concentrations and hence occurs at varying rates. In a reaction where only one product 

can occur, the rate of mixing can slow down the local reaction rates and hence slow 

down the entire reaction leading to a longer residence time within a reactor. While the 

rate of the reaction is the only thing affected in a reaction with just one possible 

product, in a situation where there are multiple competing reactions it is also possible 

for a product distribution to arise, and the mixing can greatly affect the outcome of 

products from a given reaction. An everyday example of such a reaction situation is 

combustion in internal combustion engines, e.g. cars and other automobiles, where the 

rate at which air is mixed with the fuel within the piston cylinders affects not only the 

efficiency but also the products that are exhausted to the atmosphere, most of which is 

carbon dioxide and water but some of which are harmful by products such as carbon 

monoxide and NOx compounds. When the combustion is inefficient, possibly due to 

improper mixing of fuel and oxidant, engine knock occurs and more of the harmful by 

products can be produced.  

 

A part of the chemical industry deals with the production of chemicals from reactions. 

Industrial chemical reacting flows are usually carried out on a very large scale. This 

makes them rather complex processes which depend on the properties of the reactants, 

the fluid mechanics of the flows and the micro scale diffusive behaviour of the reactants 

and the reaction process.  The mixing requirements for reactions which are particularly 

sensitive to the mixing condition in such large scale production facilities can often be  

incorrectly predicted since the process is so very complicated, so it is necessary to 

provide better methods of prediction for these mixing sensitive reactions. 
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1.2 MIXING SENSITIVE REACTIONS  

 

There is a class of reactions where the progress of the reaction depends heavily on how 

fast the reactants are brought together. These reactions usually consist of two or more 

competitive reactions either occurring in parallel, where two or more reactions involving 

the same reactants take place at the same time, or in consecutive sequence, where the 

desired product of one of the reactions participates in another undesired reaction with 

the original reactants. Both types of reaction schemes can involve considerable 

production of unwanted by-product despite the desired reaction being as much as a 

million times faster than the undesired reaction. Typical representations of the above 

mentioned reactions schemes are given in Table 1: 

 

Table 1. Classic Mixing Sensitive Reaction Schemes 

 

𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆 𝑪𝒐𝒏𝒔𝒆𝒄𝒖𝒕𝒊𝒗𝒆  

(𝑪 − 𝑪) 

𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍  

(𝑪 − 𝑷) 

 

𝐴 + 𝐵
𝑘1
′

  𝑃 

𝑃 + 𝐵
𝑘2
′

 𝑆 

 

𝐴 + 𝐵
𝑘1
′

 𝑃 

𝐶 + 𝐵
𝑘2
′

 𝑆  

 

 

 

For both cases 𝑘1
′  >> 𝑘2

′ , P is the desired product and S is the undesired by-product. 

Therefore, for a perfectly homogeneous mixture of reactants present in a stoichiometric 

ratio of one (A:B = 1:1), the yield of by-product S should be very small for both cases. 

However, several previous investigations (Baldyga and Bourne, 1999, Patterson et al., 

2004) have shown that the yield of by-product can indeed be quite significant: an effect 

which has been attributed to imperfect mixing. The mixing of reactants can be an 

integral part of the reaction process because for these reactions where multiple 

products are possible the mixing not only affects the reaction rate but also the product 

distribution within the system. The effects of mixing and reaction rate ratio have been 

studied extensively for the base stoichiometry shown above (for example Baldyga and 

Bourne, 1999, Cox et al., 1998, Clifford et al., 1998a, Cox, 2004, Patterson et al., 2004). 
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The primary aim of this thesis is to study the effect of having a different overall reaction 

stoichiometry on the yield of desired product and the possible diffusive mass transfer 

limitations that may be associated with this difference. 

 

1.3 SCALING MIXING AND REACTIONS: THE DAMKÖHLER NUMBER 

  

As described in the previous sections, there is a considerable effect of mixing on a 

reaction involving two or more components. Scaling of such effects can be done using 

dimensionless numbers, such as the Reynolds number which scales inertial forces to 

viscous forces within a fluid to determine the level of turbulence in it. The Damköhler 

number is the dimensionless number used to scale the rate of mixing to the rate of 

reaction for any given mixing sensitive reaction. It is named after Gerhard von 

Damköhler, a German combustion engineer who pioneered the use of turbulence to 

enhance the mixing of fuel with air within the engines of World War II airplanes in order   

to make the fuel and engines more efficient. There are several forms of the Damköhler 

number, but the one which we are most interested in is the Mixing Damkohler number 

(Da) which is given by (Patterson et al., 2004): 

 

𝐷𝑎 =
𝜏𝑀
𝜏𝑅

 (1.1) 

 

where 𝜏𝑀  is the characteristic mixing time and 𝜏𝑅  is the characteristic reaction time. As 

with the Reynolds number, which is flexible in the use of a characteristic velocity and 

length scale, the Mixing Damköhler number is amenable to a variety of expressions 

when it comes to the characteristic mixing time and, in the case of multiple competing 

reactions, the characteristic reaction time as well. This can be attributed to the nature of 

turbulent mixing which is a process that spans several length and time scales, all the 

way from the macro tank scale to the micro diffusion scale. This very nature has made 

𝜏𝑀  a term which is difficult to nail down, especially in the case of reacting flows for 

which almost all the scales have some significance. Also, though this variability may 

make the Damköhler number more versatile to adapt to different conditions, not unlike 

the Reynolds number which has enjoyed much success in being adapted to various 
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different flow conditions and geometries, it leaves the question of which characteristic 

mixing and reaction times are most suitable for the case of mixing sensitive reactions. 

The academic and industrial mixing communities have proposed several definitions of 

𝜏𝑀 , 𝜏𝑅  and Da with respect to the reacting flow problem, and some of those efforts 

have been summarized in the following sections. 

 

1.4 REVIEW OF THE MIXING LITERATURE 

 

Investigations of yield from homogeneous reactions have been investigated by chemical 

engineers for quite some time, Danckwerts (1953, 1958) being an early example of such 

work. Levenspiel (1972) provides analytical solutions for the yield for any reaction 

provided it is perfectly well mixed. Academics and industrialists alike have been 

interested in this, as evidenced by the plethora of publications and works in the 

literature. Chapter 13 of the Handbook of Industrial Mixing: Science and Practice (2004) 

is an excellent review of the literature from the point of view of the mixing community. 

Turbulent Mixing and Chemical Reactions by Baldyga and Bourne (1999) is also an 

excellent source of theoretical information on the area.  

 

Since perfect mixing for mixing sensitive reactions is almost impossible to realise in 

practice, there have been several forays into investigating the effect of imperfect mixing 

on the final yield of desired product given (for example Patterson et al., 2004, Baldyga 

and Bourne, 1992, 1999, Bhattacharya, 2005). 

 

In the chemical industry, reactions are normally carried out in semi-batch stirred tanks. 

This is usually a very complex process involving fluid mechanics, reaction kinetics and 

mass transfer at the micro-scale. The reactants are added at the macro-scale, which is 

usually the scale of the inlet pipe or tank, and the reaction takes place at the molecular 

scale. In between there is the so called meso-mixing scale, which is regarded as the scale 

reduction step of the mixing process. The mixing of miscible reactants is dependant 

mostly on the fluid mechanics and diffusive mass transfer of the reactants. Mixing and 

turbulence are very closely related and the rate of mixing is greatly influenced by the 

turbulence intensity within the tank, which can vary by orders of magnitude in different 
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regions of the tank. The maximum intensity is usually at the impeller, and the minimum 

is mostly in the bulk of the tank. Therefore, for most mixing sensitive reactions the 

reactants are injected at the impeller. 

 

Mixing performance within a tank can be characterised by using certain mixing sensitive 

reactions (Baldyga and Bourne, 1992, 1999, Baldyga et al., 1996, Paul et al., 2004, 

Bhattacharya, 2005). These reactions are normally two stage reactions and usually take 

the form of a competitive-consecutive or consecutive-parallel reaction. There are a 

number of industrially relevant reactions which take this form, and for which 

maximizing the yield of the desired product is critical to the success of the process. It is 

therefore of great interest to industry to be able to predict the yield for these mixing 

sensitive reactions.  

 

There have been several approaches to modelling and predicting the yield for reacting 

flows.  There is one set of literature that focuses on the fluid mechanics. This is the full 

Computational Fluid Dynamics (CFD) approach where the entire tank is modelled with 

reaction a complex geometry, which is normally very computationally expensive and 

time consuming. There have been several attempts to introduce new models such as 

PDF models by Rodney Fox and others (Fox, 1998, 2003, Van Vliet et al., 2001), to speed 

up the simulation process and achieve results that match experiments.  

 

At the other end of the spectrum, the focus is a simple geometry. Though these are a lot 

simpler to work with and write the equations for, the simplicity comes at the expense of 

a full representation of the physics and fluid mechanics. These are the Lagrangian micro-

mixing models by Baldyga, Bourne and others (Baldyga and Pohorecki, 1995, Baldyga 

and Bourne, 1999, Villermaux and Falk, 1994). They have focused on keeping the 

geometry simple while trying to replicate experimental results. The models’ greatest 

advantage is that they are very inexpensive computationally and, in some cases, have 

analytical solutions. The micro-mixing models have evolved from being simple 

alternating striations of reactants to the Engulfment model by Baldyga and Bourne 

(1999) which takes into account turbulence and is widely regarded as the best micro-

mixing model currently available. The scales of these models are usually at or below the 
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Kolmogorov scale of turbulent eddies, therefore they are assumed to be independent of 

the large scale fluid mechanics. The Generalized Mixing Model proposed by Villermaux 

and Falk (1994) is a similar model extended to take into account meso-mixing effects as 

well. 

 

There have also been attempts to integrate these two sets of models so as to capture 

the best of both worlds, the fluid mechanics from the CFD models and the diffusion 

effects and simplicity of the micro-mixing models. An example of this is given by Fox 

(1998), who combined Villermaux and Falk’s (1994) Generalized Mixing Model and CFD 

for turbulent mixing simulations. Muzzio and Liu (1996) took a similar approach of 

integrating a micro-mixing model and CFD for laminar mixing. 

 

Although there is a multitude of models of varying complexity, the one thing they all 

lack is any effect of stoichiometry. They are either one stage infinitely fast reactions or 

C-C and C-P reactions with a single stoichiometry. While the solution of the yield for a 

general stoichiometry when the mixing is perfect has been known for a long time 

(Levenspiel, 1972), the effects of imperfect mixing for reactions of varying 

stoichiometries have not been investigated. 

 

The reacting flow problem for multiple competing reactions has also caught the eye of 

physicists and mathematicians since it presents interesting non-linear behaviour. A 

summary of these efforts is given in the next section. 

 

1.5 REVIEW OF THE NON-LINEAR REACTION DYNAMICS 

 

The C-C reaction provides an interesting non-linear problem that has been extensively 

investigated by physicists and chaos mathematicians like Cox, Clifford and others 

(Clifford, 1999, Clifford and Cox, 1999, Clifford et al., 1998a, 1998b, 1999, 2000, Cox et 

al., 1998, Cox, 2004). The wealth of literature on C-C reactions has gone relatively 

unnoticed by the chemical engineering mixing community. The C-P reaction scheme has 

been of less interest to the mathematics and physics communities and there is a smaller 

body of work attached to it (Taitelbaum et al., 1996, Sinder, 2002, Sinder et al., 2003, 
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Hecht and Taitelbaum, 2006). A summary of the investigation of C-C and C-P reaction 

schemes by physicists and mathematicians is given in the following paragraphs. 

 

Mixing sensitive reactions exhibit interesting behaviours at reactant interfaces. There 

are several studies investigating these behaviours for reactions. Cornell & Droz (1997) is 

an example of such a study, where the behaviour of the reaction front for the general 

single step reaction 𝑚𝐴 + 𝑛𝐵   𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 was investigated. Cox, Clifford and Roberts 

(1998) and later Cox and Finn (2001) investigated the reaction interface for the classic C-

C reaction extensively. They provided figures and analytical expressions for the profiles 

of each reaction species at the reaction interface using a model which consisted of 1D 

alternating reactant striations of varying thickness. The striations had uniform initial 

concentrations for which they wrote mole balance Partial Differential Equations (PDE’s) 

for each of the species participating in the reaction.  

 

In the long time investigations, Cox et al (1998) first started with stationary and 

segregated stripes of alternating reactants, i.e. Zebra Stripes, with uniform initial 

concentrations of reactants across the striations. They performed a mole balance and 

derived the equations in molar concentrations. The non-dimensionalization was done 

using the rate constant and concentrations and the striation thickness was avoided. The 

equations for non-dimensionalization were as follows: 

 

𝑇 = 𝑡 ∙  𝑘1𝑐𝐵0
 ,        𝑋 = 𝑥 ∙  

𝑘1𝑐𝐵0

𝐷
 

1
2

 , 𝐼′ =
𝑐𝐼′

𝑐𝐵0

     (1.2) 

 

where (t,x, 𝑐𝐼′ ) and  (T,X,I’) are dimensional and dimensionless time, space and 

concentration for species I’ respectively. k1 is the rate constant for the desired reaction, 

cBo is the initial concentration of the limiting reagent and D is the diffusivity, which was 

assumed to be equal for all four species (A, B, R, S) involved. Their R is equivalent to our 

P. Their choice for these non-dimensionalizing equations was because they intended to 

use striations of unequal thickness within the same domain which made using the 

striation thickness as a non-dimensionalizing parameter difficult since it wouldn’t be 

constant. However, since they looked at only one type of stoichiometry, the rate 
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expressions were a constant for them and therefore were the obvious choice for non-

dimensionalization.  

 

Initially they looked at a model which had a single striation thickness of initially 

segregated reactants (Cox et al., 1998). They investigated the effects of initial scale of 

segregation, i.e. striation thicknesses, and the reaction rate ratio for the classic 

competitive consecutive reaction scheme. The found that decreasing the scale of 

segregation, i.e. striation thickness, and the reaction rate ratio (k2/k1) was favourable. 

The formulations of the Damköhler number and reaction rate ratio that they found were 

as follows: 

𝐷𝑎𝐼𝐼 =
𝑘1𝑐𝑊

2

𝐷
 𝑎𝑛𝑑 𝜀 =

𝑘2

𝑘1
  (1.3) 

 

where W represents the initial striation thickness of the reactants, k1 is the reaction rate 

of the desired reaction, c is the molar concentration, D is the diffusivity and 𝜀 is the 

reaction rate ratio. Using this model they investigated the yield from zebra stripes of 

equal thicknesses (Clifford et al., 1998a). They confirmed that decreasing the scale of 

segregation can have a significant favourable effect on the yield of desired product. 

They also included a parameter to allow for non-stoichiometric initial concentrations of 

reactants and investigated the effects of having more A than B., less A than B and a 

stoichiometric mixture quite extensively. They also found that if initial ratio of reactants 

(A:B) is less than 1, the yield will go to zero and only if the initial ratio is above 1 can 

there be a significant yield of desired product. 

  

Clifford (1999) and Clifford and Cox (1999) took the constant striation thickness model 

further by assuming a more realistic Gaussian distribution of concentration of reactants 

within the striations. They compared the full Partial Differential Equations (PDE’s) of the 

Gaussian model with the uniform concentration model and an Ordinary Differential 

Equation (ODE) model. The uniform concentration model was found to over predict the 

yield and the ODE model agreed quite well with the full PDE solution results. This was 

somewhat of a departure from the rest of the literature on the subject, but provides an 

interesting perspective on the problem. 
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The next step Clifford, Cox and Roberts took was to introduce multiple initial striation 

thicknesses into the model, the so called “Bar Code” model (Clifford et al., 1999, 2000) 

as can be seen at the bottom of Figure 1-1. The motivation for this model was that it 

was a closer representation of what striations look like in a chaotic mixing situation 

since there is a wide distribution of striation thicknesses in the real system. They used 

the same reaction equations developed for the periodic equal initial striation thickness 

models (Clifford et al., 1998a). They investigated several combinations of ‘thick’ and 

‘thin’ striations by varying the total number and the arrangement of the striations and 

found that grouping similar sized striations together maximized yield of the desired 

product. More importantly, they discovered that using an average striation thickness for 

the system always over predicted yield. Including a larger number of striations in the 

model brought the value of yield obtained when assuming an average striation thickness 

closer to that obtained from direct simulation of the distribution of striations.  

 

Clifford et al. then did a similar investigation of the effect on yield of desired product as 

done for the equal striation thickness effects (Clifford et al., 1999). They investigated the 

effect of arrangement of striations of alternating reactants (A and B) with varying 

thicknesses on the yield. The arrangements were chosen such that the widths of the 

alternating reactants were positively correlated, negatively correlated or placed 

randomly. Because of the large computational requirements, they applied the Gaussian 

Method developed by Clifford which was mentioned earlier (Clifford, 1999). They found 

that a positive correlation between the widths of the striations, i.e. striations of similar 

widths grouped together, provided the most yield of desired product for intermediate 

times but that there is a crossover at large times where in fact the random arrangement 

provides the largest final yield of desired product. The negatively correlated case, i.e. 

alternating ‘thick’ and ‘thin’ striations, provided the worst yield. They then go on to test 

their lamellar model on a real system generated by a blinking vortex flow with a blob of 

B placed in a sea of A (shown in Figure 1-1). They obtained the initial striation 

distribution using a transect across a chaotically mixed structure, to which they then 

applied their Gaussian Method to solve for the yield. The yield from the real striation 

distribution was compared to the yield from the same system rearranged to be 

positively correlated with respect to width and negatively correlated with respect to 
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width. It was found that the real and positively correlated systems provided much 

higher yields than the negatively correlated system and agree with each other to within 

7%. This can be expected since in real systems the stretching rates caused by mixing will 

be similar in certain regions, hence causing striations to be roughly the same width in 

roughly the same region, which should give a positively correlated arrangement of 

striations. 

 

 

 
Figure 1-1.  A lamellar structure generated by the blinking vortex flow. A circular blob is 
stretched and folded, generating thin striations that are modelled as a parallel array of 
lamellar, alternately of species A and B (the ‘bar-code’) – taken from Clifford et al. 
(2000). 
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The next step in Clifford, Cox and Roberts’ quest for simulation of reality was to include 

a stretching parameter to take the reaction-diffusion model to a reaction-diffusion-

advection model (Clifford et al., 1998b). This was to account for the stretching that is 

normally encountered by striations when mixing is occurring. Although this would 

normally require 2D simulations, they applied a co-ordinate transformation to the 

equations such that the 1D striations would be stretched at a constant rate, the 

Lyapunov exponent. They simulated a 2D sine flow along with their 1D lamellar 

stretching model and compared the results with the 2D results of Muzzio and Liu (1996). 

They found that their 1D lamellar stretching model had close agreement with respect to 

product quality with the 2D simulations at a significantly lower computational cost. 

However, they also admitted that this agreement was for a less than realistic flow field.  

 

There have also been attempts to get at the yield for full chaotic mixing fields (Cox, 

2004, Muzzio and Liu, 1996). Interestingly enough, the work by Muzzio and Liu came 

before all the aforementioned work, but was done at a very large computational cost. 

Most of the work by Cox et al. seems to have concentrated on trying to replicate the 

results of this full chaotic field with a 1D model which would be considerably less 

expensive computationally. Cox also summarized these efforts, the 1D modeling, 2D 

modeling and reduced models, including various chaotic mixing models, such as the 

Baker Map model for simulating stretching and folding (Cox, 2004). He found that the 

yield of desired product in a C-C reaction is underestimated by a 1D lamellar model that 

ignores the effects of fluid mixing but overestimated by the two other lamellar models 

(continuous stretching and discrete stretching and folding (Baker Map)) that include the 

fluid mixing.  

 

All this work was done for only the C-C reaction scheme and for the one classic 

stoichiometry. The C-P reaction scheme has a considerably smaller body of work 

attached to it as compared to the C-C reaction scheme, with the majority of work 

concentrating on the reaction front behaviour (Taitelbaum et al., 1996, Sinder, 2002, 

Sinder et al., 2003, Hecht and Taitelbaum, 2006). Previous investigations of the C-P 

scheme also suffer from the same issue as the C-C: only one stoichiometry has been 

considered.  
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The Damköhler number for the classic C-C reaction has been suggested by Cox et al. 

(1998), but there is no such suggestion for a C-C reaction scheme with a general 

stoichiometry. There is a similar lack of definition for the C-P reaction scheme. Though 

the reaction rate ratio remains dimensionless for the classic versions of the C-C and C-P 

reaction schemes, this is not the case for reactions which have different stoichiometries 

and hence rate expressions. This means that any ratio of reaction rates would have 

dimensions, which makes it difficult to compare reactions with different stoichiometries. 

Definition of a non-dimensional reaction rate ratio would be required.  

 

1.6 QUALITATIVE DESCRIPTORS OF MIXING AND REACTION RATE RATIO 

 

Before proceeding, it is important for the reader to have a good qualitative feel of what 

is meant by good or poor mixing and favourable or unfavourable reaction rate ratios 

with respect to chemical reactions since this terminology will consistently be referred to 

in the proceeding chapters, with the intention of eventual assignment of quantitative 

definitions to the qualitative descriptions. But until that is done, a thorough qualitative 

description is necessary. 

 

What is meant by well mixed and poorly mixed when talking about chemical reactions? 

For this we need to define the limits of perfectly well mixed and perfectly segregated 

mixtures from the point of view of reactions involving two or more miscible reagents, 

present either in pure form or individually diluted with a miscible inert before being 

mixed.  

 

The limit of perfectly well mixed from the point of view of reactions is an instant 

perfectly homogeneous concentration field such that the yield of desired product will be 

a maximum. This also corresponds to the perfectly micro-mixed mixing condition. This 

has been described in Levenspiel (1972) and is usually the basis used for design of 

reactors in chemical engineering and it is what is taught throughout the chemical 

engineering curriculum. Our definition of good mixing from the standpoint of reactions 

would be an initial state of segregation that approaches this perfectly well mixed 

condition and hence approaches the maximum yield of desired product possible. 
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At the other end of the spectrum is the perfectly segregated situation or complete 

segregation of reactants in concentration without diffusion and with a minimum surface 

area of contact between reactants. In this case, since there is no diffusion, the reaction 

can occur only at the interface and then comes to a complete halt, so the yield of 

desired product is minimized. In the absence of diffusion, the only way to increase the 

yield would be to increase the surface area of contact between reactants, in which case 

the extent of the reaction is completely dependent on the scale of segregation. The 

situation is vastly improved with the introduction of diffusion because then the 

reactants away from the interfaces are granted access to one another. Diffusion is the 

final agent of mixing at the smallest scales of segregation and it is this phenomenon 

which allows for intimate contact between reactants that are not immediately at the 

interface.  

 

With diffusion present, the perfectly segregated case would be one that would have 

segregated reactants with a minimum surface area of contact which will take infinitely 

long to obtain a sizeable yield of desired product. Our definition of poor mixing would 

be the approach to this limit such that the yield of desired product is minimized.  

 

When the scale of segregation is varied by adjusting the initial striation thickness of the 

reactants, the limit of perfectly mixed is the case where striation thickness goes to zero, 

and the limit of perfectly segregated occurs when the striation thicknesses are infinitely 

thick with just one interface. In the well mixed case the striation thickness approaches 

zero and in poorly mixed case the striation thicknesses approach infinity. Therefore, as 

the initial striation thickness decreases the mixing condition improves and as the 

striations get thicker the mixing condition worsens.  

 

Since a Damköhler number (Da) will be used to quantify mixing, where the only variable 

is the striation thickness and the diffusivity is constant, we could also say that as Da 

approaches zero the mixture is approaching perfectly well mixed, and as Da approaches 

infinity the mixture approaches perfectly segregated with diffusion. The perfectly 

segregated case with no diffusion occurs if the diffusion coefficients of the reactants 

approach zero. 
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How do we define favourable and unfavourable reaction rate ratios? 

 

According to perfectly well mixed reaction kinetics (Levenspiel, 1972, Fogler, 1999), the 

faster the desired reaction is compared to the undesired reaction, the larger the final 

yield of desired product will be. Since our objective is to maximize the yield of desired 

product, a very small k2/k1 would be favourable and a very large k2/k1 would be highly 

undesirable. The limits for the non-dimensional reaction rate ratio k2/k1would therefore 

be the most desirable when k2/k1 = 0, which means that the second undesirable reaction 

doesn’t take place at all regardless of the concentrations of reactants present, and k2/k1 

approaches infinity when the undesired by-product is formed instantaneously. 

Therefore a favourable reaction rate ratio would be one that approaches k2/k1 = 0 and 

an unfavourable reaction rate ratio would be one that approaches k2/k1 = ∞.  The actual 

ranges of the ratio will eventually be determined from the simulations described later in 

this work. 

 

1.7 OBJECTIVES AND PROPOSED CONTRIBUTIONS 

 

The objectives of this work are: 

 

1) Develop a model which has a general Damköhler number for any mixing 

sensitive reaction with a variable stoichiometry. 

2) Investigate the effects of stoichiometry, mixing and relative reaction rates on 

the final yield of desired product for mixing sensitive reactions of both types: C-

C and C-P. 

3) Investigate the transient behaviour of these different reactions at the reaction 

interface for short and long times. 

4)  And finally, to develop a set of figures or charts to facilitate design of reactors 

for two competing reactions which are mixing sensitive. 

 

The ultimate goal of this work is to give a so called “leg up” to the chemical engineering 

practitioner who is designing a reactor for a previously un-investigated mixing sensitive 

reaction. Prediction of the yield for mixing sensitive reactions has been particularly 
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difficult, as documented in Chapter 13 of the Handbook of Industrial Mixing, owing 

mostly to a lack of information about the reaction schemes, reaction rate ratios, mixing 

requirements etc. The work on mixing sensitive reactions that has been documented in 

the Handbook is for specific known reactions, so the results are not directly transferable 

to a new reaction, and any general treatment has been restricted to specific 

stoichiometries, all with coefficients of one. Designs involving more complex reactions 

often rely on experience and trial and error, or extensive pilot scale testing. 

 

 From the more theoretical point of view, there has been quite a bit of debate on the 

formulation of the Damköhler number for two stage reactions: does one use the rate of 

the first reaction, the second reaction, or the reaction for which the information is 

available?  What is the appropriate mixing time? Once a standard Damköhler number 

can be determined it will be possible to develop a framework around which charts or 

figures predicting yield for mixing sensitive reactions can be produced, thus making it 

easier for the practicing chemical engineer to deal with complex reaction systems 

involving multiple interacting parameters. Even if the model does not serve to predict 

the yield exactly, it will at least serve to provide a framework for the analysis of new 

reaction schemes. In the end, the hope is that this work will assist the practising 

chemical engineer in understanding the design requirements of reactors for mixing 

sensitive reactions by clarifying the dominant variables and the interactions between 

them. 

 

1.8 THESIS OUTLINE 

 

This thesis, written in a paper-based format, consists of four chapters in addition to the 

Introduction. Chapter 2, Paper 1, contains the derivation of the model proposed to take 

into account the three effects of mixing, reaction rate ratio and stoichiometry of the 

reaction and some preliminary results. In Chapter 3, Paper 2, a detailed investigation of 

these three effects is presented along with an evaluation and discussion of the results. 

Chapter 4 summarizes this thesis and provides recommendations for possible further 

extensions of the work presented. The cited literature is listed in Chapter 5. Appendix A 
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includes all the figures and data of the results obtained from COMSOL for this 

investigation. 

 

Since this thesis has been written in a paper-based format, there is some overlap 

between the chapters. The introductory chapter is a compilation of the introduction 

sections of the two papers in Chapters 2 and 3, and, in order to avoid repetition, the 

introduction sections of the papers have been replaced with chapter overviews. The 

conclusions of the chapters have been left since they are instrumental in emphasizing 

the important points in the individual chapters. The final conclusions chapter is a 

summation of the conclusions with future contributions added.  
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2 

Model to Study the Effects of Mixing, Reaction 
Rates and Stoichiometry on Yield for Mixing 
Sensitive Reactions  

 

2.1 CHAPTER OVERVIEW 

This chapter presents the derivation of a model capable of investigating the effects of 

initial mixing condition, reaction rate ratio and stoichiometry for mixing sensitive 

reactions of two types: the Competitive-Consecutive (C-C) reaction and Competitive-

Parallel (C-P) reaction. Section 2.2 contains the theory and derivation of the model for 

the two mixing sensitive reaction schemes. Section 2.3 includes the numerical solution 

of the equations, and Section 2.4 contains some preliminary results and discussion of 

those results. Section 2.5 summarizes and concludes the chapter. Sections 2.6 and 2.7 

are the tables and figures for this chapter respectively. 

2.2 MODEL DESCRIPTION AND GOVERNING EQUATIONS 

The model that has been developed is based on an idealized one-dimensional geometry 

of initially alternating layers of reactants at the micro-mixing scale with a cross section 

as shown in Figure 2-1(a). Figure 2-1(b) depicts an isolated segment of the overall 

structure in the vicinity of x=0, which is placed at the interface between the generic 

reactant mixtures Y and Z, thereby creating a domain of interest bounded by the 

symmetric of zero-flux boundaries at the mid-planes of these layers. In this formulation 

the mixtures Y and Z are allowed to take on different species compositions depending 
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on the reaction scheme being considered and the imposed stoichiometry. Figure 2-1(c) 

shows the geometry for the specific case of pure striations of A and B.  

A system of non-dimensional reactive-diffusive Partial Differential Equations (PDE’s) 

based on a mass balance has been developed for each of the species in the reaction 

system. It is assumed that the fluid in the system remains homogeneous in phase and is 

at a constant temperature, as well as being quiescent. Given these assumptions, the 

general unsteady 1D species mass balance reaction-diffusion equation is given by: 

 𝜕(𝜌𝑖)

𝜕𝑡
= 𝐷𝑖

𝜕2(𝜌𝑖)

𝜕𝑥2
+ 𝑅𝑖  (2.1) 

 

where is the individual species mass concentration, Di is the individual species 

diffusivity with respect to the mixture, and Ri represents the reaction source/sink terms. 

x and t  are the space and time coordinates respectively. The model assumes that the 

initial striation thicknesses of the reactant mixtures are equal, LZ , as shown in Figure 1b 

with LY = LZ. One of the objectives of this model is to allow for the investigation of initial 

mixing conditions, varied using the initial striation thicknesses. Using the initial striation 

thickness, space (x) and time (t) can be made non-dimensional by: 

 
𝑥∗ =

𝑥

𝐿𝑍
=  

𝑥

𝐿𝐵
                             𝑡∗ =

𝑡 𝐷𝑍

𝐿𝑍
2 =

𝑡 𝐷𝐵

𝐿𝐵
2   (2.2) 

 

The choice of DZ and LZ for non-dimensionalization was made because later on in this 

work the composition for the Z layer is to be restricted to a mixture containing only an 

inert I and/or the limiting reagent B, which is always assumed to be the limiting reagent 

of the reaction regardless of the scheme, effectively making DZ = DB and LZ = LB, as 

shown in Equation (2.2). It was preferred to use the properties of the limiting reagent 

for non-dimensionalization because it is the main species of interest that is initially 

present within the system. Species mass concentrations () were converted to mass 

fractions (wi) using: 

 𝜌𝑇 =  𝜌𝑖                                   𝑤𝑖 =
𝜌𝑖
𝜌𝑇

   (2.3) 
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Using Equations (2.2)-(2.3) to modify Equation (2.1), the non-dimensional general 

species equation for the unsteady 1-D, stationary, reactive-diffusive system is given by: 

   𝜕(𝑤𝑖)

𝜕𝑡∗
=
𝐷𝑖
𝐷𝐵

𝜕2(𝑤𝑖)

𝜕𝑥∗2 +
𝐿𝐵

2

𝜌𝑇𝐷𝐵
𝑅𝑖  (2.4) 

 

The assumption of all the species having the same diffusivities was also applied, hence 

making the coefficient of the elliptical term in Equation (2.4) unity and giving: 

   𝜕(𝑤𝑖)

𝜕𝑡∗
=
𝜕2(𝑤𝑖)

𝜕𝑥∗2 +
𝐿𝐵

2

𝜌𝑇𝐷𝐵
𝑅𝑖  (2.5) 

 

Equation (2.5) represents the reaction-diffusion equation for some arbitrary reaction, 

represented by the source/sink term Ri. The particulars of this term define themselves 

once a reaction scheme is specified. For the purposes of this paper, the reaction scheme 

will be specified as either a generalized Competitive-Consecutive (C-C) or Competitive-

Parallel (C-P) reaction between the two layers. For these purposes, layer Z was assumed 

to be composed of a homogeneous mixture of limiting reagent, B, and an inert, I, while 

layer Y was composed of either a single reactant, A, or two reactants, A and C, again 

with an inert species mixed into this layer. Table 2-1 shows the generalized reaction 

schemes for the two types of mixing sensitive reactions that will be investigated. In 

order to focus the investigation on the different reaction schemes, the effect of species 

diffusivity was not investigated in this work. 

A and B represent the initial reactants for the C-C scheme.  A, B and C represent the 

initial reactants for the C-P scheme. P is the desired product and S the undesired 

product for both reaction schemes. An inert, I, is also present, but it does not participate 

in the reaction. 𝑘1
′ , 𝑘2

′  represent the rate constants for the desired and undesired 

reactions respectively and 𝛼,𝛽, 𝛾, 𝜖 are the stoichiometric coefficients.  

If it is assumed that the reactions are elementary, expressions for Ri can be written a 

priori as molar rate expressions. In order to be used in Equation (2.5), these molar-

based expressions are converted to mass fraction rate expressions by multiplication of 

the corresponding molecular masses of each species. To keep the focus on the effects of 
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stoichiometry, It was further assumed that the molecular mass of A, B and C were 

identical (M). As an example, the source term for species A for both C-C and C-P is given 

by: 

    
𝑅𝐴  

𝑚𝑎𝑠𝑠

𝑚3𝑠
 = −𝑘1

′  𝐴 [𝐵]𝜖𝑀𝐴 = −𝑘1
′
𝜌𝐴
𝑀𝐴

 
𝜌𝐵
𝑀𝐵
 
𝜖

𝑀𝐴 = −𝑘1
′
𝜌𝑇

1+𝜖

𝑀𝐵
𝜖 𝑤𝐴𝑤𝐵

𝜖  (2.6) 

 

These mass fraction rate expressions are then placed in Equation (2.5). The molecular 

masses of P and S depend on the stoichiometry and are derived using the Law of Mass 

Action. For example, the molecular mass of P for the C-P scheme would be: 

     𝑀𝑃 = 𝑀𝐴 + 𝜖𝑀𝐵 =  1 + 𝜖 𝑀 (2.7) 

 

Expressions for the source and sink terms for all participating species can be written as 

shown for species A in Equation (2.6). It should be noted that this source/sink term 

contains all the information for the reaction scheme of interest. The Ri terms for the 

other species are significantly different for the C-C and C-P reaction schemes, hence the 

systems of partial differential equations (PDE’s) are developed separately in the 

following sub-sections. 

2.2.1 Competitive-Consecutive (C-C) Reaction Scheme 

The C-C reaction scheme is the reaction scheme in which the desired product (P), once 

formed, participates in an undesired reaction with one of the original reactants (in this 

case, B). The species that participate in the reaction are A, B and P. The desired product 

is P and the undesired by-product is S. The general stoichiometry for this type of 

reaction scheme was given in Table 1. The source and sink term expressions for A, B, P, S 

and inert I for the C-C reaction scheme are developed by a procedure similar to that 

shown in Equation (2.6). Once these expressions are substituted in Equation (2.5) and 

simplified, the following system of equations is obtained: 

A: 
𝜕(𝑤𝐴)

𝜕𝑡∗
=
𝜕2(𝑤𝐴)

𝜕𝑥∗2 −  𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
𝑤𝐴𝑤𝐵

𝜖   (2.8) 
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B: 

𝜕(𝑤𝐵)

𝜕𝑡∗
=
𝜕2(𝑤𝐵)

𝜕𝑥∗2 − 𝜖  𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
𝑤𝐴𝑤𝐵

𝜖    

                                 −  
𝛼𝛾

𝛽
 
𝛼𝛽−1𝛽

 1 + 𝜖 𝛽
𝑘2
′  
𝜌𝑇
𝑀
 
𝛽+𝛾−1 𝐿𝐵

2

𝐷𝐵
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  

(2.9) 

 

P: 
𝜕(𝑤𝑃)

𝜕𝑡∗
=
𝜕2(𝑤𝑃)

𝜕𝑥∗2 +  1 + 𝜖 

 
 
 
 
 𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
𝑤𝐴𝑤𝐵

𝜖

−
𝛼𝛽−1𝛽

 1 + 𝜖 𝛽
𝑘2
′  
𝜌𝑇
𝑀
 
𝛽+𝛾−1 𝐿𝐵

2

𝐷𝐵
𝑤𝑃
𝛽
𝑤𝐵
𝛾

 
 
 
 
 

  (2.10) 

 

S: 
𝜕(𝑤𝑆)

𝜕𝑡∗
=
𝜕2(𝑤𝑆)

𝜕𝑥∗2 +  1 + 𝜖 +
𝛼𝛾

𝛽
  

𝛼𝛽−1𝛽

 1 + 𝜖 𝛽
𝑘2
′  
𝜌𝑇
𝑀
 
𝛽+𝛾−1 𝐿𝐵

2

𝐷𝐵
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  (2.11) 

 

I: 
𝜕(𝑤𝐼)

𝜕𝑡∗
=
𝜕2(𝑤𝐼)

𝜕𝑥∗2  (2.12) 

 

In order to compare the effect of the relative rates of the desired and undesired 

reactions while allowing for different reaction stoichiometries, it is necessary to provide 

a non-dimensional expression for the reaction rate ratio of the desired and undesired 

reactions. Using the ratio of k’2/k’1 is insufficient since this ratio would have different 

dimensions for each reaction stoichiometry, making comparison difficult. An ideal non-

dimensional ratio should give relative rates of the desired reaction to the undesired 

reaction while retaining a physical meaning that can be intuitively understood. This can 

be accomplished by comparing the mass conversion rates associated with the first and 

second reactions. For the C-C scheme this was done by comparing the mass rate of 

consumption of desired product P in the second reaction to the mass rate of production 

of P in the first reaction as shown: 

 
𝑘2

𝑘1
=
𝑚𝑎𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃 𝑏𝑦 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑚𝑎𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃 𝑏𝑦 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
  (2.13) 
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The objective is to make this ratio as small as possible to maximize the amount of P 

produced. By using mass rate expressions to replace the statements in Equation (2.13) 

and then simplifying the resulting expression, non-dimensional reaction rate ratio for 

the general C-C reaction scheme becomes: 

 
𝑘2

𝑘1
=  

𝛽

𝛼
 
𝛼

1 + 𝜖
 
𝛽

 
𝜌𝑇
𝑀
 
𝛽+𝛾−𝜖−1

 
𝑘2
′

𝑘1
′     (2.14) 

 

This physically meaningful k2/k1 captures both an effect of stoichiometry as well as the 

effect of the reaction rate constants of the two reactions, as well as having the benefit 

of significantly simplifying Equations (2.8)-(2.12) to give: 

A: 
𝜕(𝑤𝐴)

𝜕𝑡∗
=
𝜕2(𝑤𝐴)

𝜕𝑥∗2 −   𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 𝑤𝐴𝑤𝐵

𝜖   (2.15) 

 

B: 

𝜕(𝑤𝐵)

𝜕𝑡∗
=
𝜕2(𝑤𝐵)

𝜕𝑥∗2 −   𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 𝑤𝐴𝑤𝐵

𝜖   

                     −  
𝛼𝛾

𝛽
  𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 
𝑘2

𝑘1
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  

(2.16) 

 

P: 
𝜕(𝑤𝑃)

𝜕𝑡∗
=
𝜕2(𝑤𝑃)

𝜕𝑥∗2 +  1 + 𝜖 

 
 
 
 
  𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 𝑤𝐴𝑤𝐵

𝜖

− 𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 
𝑘2

𝑘1
𝑤𝑃
𝛽
𝑤𝐵
𝛾

 
 
 
 
 

  (2.17) 

S: 
𝜕(𝑤𝑆)

𝜕𝑡∗
=
𝜕2(𝑤𝑆)

𝜕𝑥∗2 +  1 + 𝜖 +
𝛼𝛾

𝛽
   𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 
𝑘2

𝑘1
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  (2.18) 

 

I: 
𝜕(𝑤𝐼)

𝜕𝑡∗
=
𝜕2(𝑤𝐼)

𝜕𝑥∗2 +  0  (2.19) 
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Examination of equations (2.15)-(2.19) shows there is an expression common to all four 

of the equations involving reactions, which takes the form of a Damköhler number (Da) 

given by: 

    
𝐷𝑎 = 𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
=
𝑘1
′  
𝜌𝑇
𝑀 

𝜖

 
𝐷𝐵
𝐿𝐵

2  
=
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑓𝑎𝑠𝑡  𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑟𝑎𝑡𝑒 𝑜𝑓𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛/𝑚𝑖𝑐𝑟𝑜𝑚𝑖𝑥𝑖𝑛𝑔
 

=  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑓𝑎𝑠𝑡 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ∗  𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛/𝑚𝑖𝑐𝑟𝑜𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒   

(2.20) 

 

This Da depends on the rate constant of the desired reaction and the initial striation 

thickness of the reactants. It scales the rate of diffusion at the smallest scale of mixing 

with the desired reaction rate. The effect of the second reaction rate is included through 

the rate ratio, k2/k1. Looking at Equation (2.20), a small Damköhler number indicates 

that diffusion in the smallest striation is fast compared to the desired/fast reaction and 

a large Damköhler number indicates that diffusion is slow compared to the fast reaction. 

A small Da is expected to give a high yield. 

 

Cox et al.’s (1998) formulations of Damköhler number and dimensionless reaction rate 

ratio for the classic C-C reaction scheme are obtained from our general forms of the 

Damköhler number (Equation (2.20)) and dimensionless reaction rate ratio (Equation 

2.14)) when 𝛼,𝛽, 𝛾 and 𝜖 equal 1, which gives the classic C-C reaction scheme. A factor 

of 0.5 appears in the k2/k1 ratio because we used a mass balance in the derivation of the 

equations and Cox et al. used a mole balance.  

 

Substituting Equation (2.20) into Equations (2.15)-(2.19) gives the final set of equations: 

A: 
𝜕(𝑤𝐴)

𝜕𝑡∗
=
𝜕2(𝑤𝐴)

𝜕𝑥∗2 −   𝐷𝑎 𝑤𝐴𝑤𝐵
𝜖   (2.21) 

 

B: 
𝜕(𝑤𝐵)

𝜕𝑡∗
=
𝜕2(𝑤𝐵)

𝜕𝑥∗2 −   𝐷𝑎 𝑤𝐴𝑤𝐵
𝜖  −

𝛼𝛾

𝛽
  𝐷𝑎 

𝑘2

𝑘1
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  (2.22) 
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P: 
𝜕(𝑤𝑃)

𝜕𝑡∗
=
𝜕2(𝑤𝑃)

𝜕𝑥∗2 +  1 + 𝜖   𝐷𝑎 𝑤𝐴𝑤𝐵
𝜖 −  𝐷𝑎 

𝑘2

𝑘1
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  (2.23) 

 

S: 
𝜕(𝑤𝑆)

𝜕𝑡∗
=
𝜕2(𝑤𝑆)

𝜕𝑥∗2 +  1 + 𝜖 +
𝛼𝛾

𝛽
   𝐷𝑎 

𝑘2

𝑘1
𝑤𝑃
𝛽
𝑤𝐵
𝛾
  (2.24) 

 

I: 
𝜕(𝑤𝐼)

𝜕𝑡∗
=
𝜕2(𝑤𝐼)

𝜕𝑥∗2 +  0  (2.25) 

 

Using Equations (2.21)-(2.25), the effect of reaction rates and striation thickness on C-C 

reactions can be investigated using the non-dimensional reaction rate ratio (k2/k1) and 

the Damköhler number (Da).  

2.2.2 Competitive-Parallel (C-P) Reaction Scheme 

A C-P reaction scheme is a reaction scheme in which one of the original reactants (in this 

case, B) participates in two reactions simultaneously.  One reaction gives a desired 

product (P) and the second reaction gives an undesired by-product (S). The species that 

participate in the reactions are A, B and C. The products are P, the desired product, and 

S, the undesired product. The general stoichiometry for this type of reaction is shown in 

Table 2-1.  The source and sink term expressions for A, B, C, P, S and inert I for the C-P 

reaction scheme  were developed  following same procedure as shown for the C-C 

reaction scheme above and then replaced in Equation (2.5) to get a set of PDE’s for the 

C-P reaction scheme.  

As with the C-C reaction scheme, variable stoichiometry requires the introduction of a 

physically meaningful, non-dimensional reaction rate ratio for the C-P scheme. Since the  

C-P reaction scheme has only one reagent (B) which participates in both reactions, the 

non-dimensional reaction rate ratio for the C-P scheme becomes: 

 
𝑘2

𝑘1
=
𝑚𝑎𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝐵 𝑏𝑦 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑚𝑎𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝐵 𝑏𝑦 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
  (2.26) 

 



 

26 
 

which, on substitution of rate expressions, can be written as:  

 
𝑘2

𝑘1
=  

𝛾

𝜖
 
𝜌𝑇
𝑀
 
𝛾−𝜖

 
𝑘2
′

𝑘1
′     (2.27) 

 

As with the k2/k1 ratio defined for the C-C reaction scheme, minimization of this ratio 

would yield the maximum desirable product (P). This k2/k1 also includes the effects of 

stoichiometry and reaction rate constants for the two reactions. Substitution of 

Equation (2.27) into the C-P PDE’s and simplifying gives: 

A: 
𝜕(𝑤𝐴)

𝜕𝑡∗
=
𝜕2(𝑤𝐴)

𝜕𝑥∗2 −   𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 𝑤𝐴𝑤𝐵

𝜖   (2.28) 

 

B: 
𝜕(𝑤𝐵 )

𝜕𝑡∗
=

𝜕2(𝑤𝐵 )

𝜕𝑥∗2 − 𝜖   𝑘1
′  

𝜌𝑇

𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 𝑤𝐴𝑤𝐵

𝜖    −𝜖   𝑘1
′  

𝜌𝑇

𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 
𝑘2

𝑘1
𝑤𝑐𝑤𝐵

𝛾
  (2.29) 

 

C: 
𝜕(𝑤𝐶)

𝜕𝑡∗
=
𝜕2(𝑤𝐶)

𝜕𝑥∗2 −
𝜖

𝛾
  𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 
𝑘2

𝑘1
𝑤𝑐𝑤𝐵

𝛾
  (2.30) 

 

P: 
𝜕(𝑤𝑃)

𝜕𝑡∗
=
𝜕2(𝑤𝑃)

𝜕𝑥∗2 +  1 + 𝜖   𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 𝑤𝐴𝑤𝐵

𝜖    (2.31) 

 

S: 
𝜕(𝑤𝑆)

𝜕𝑡∗
=
𝜕2(𝑤𝑆)

𝜕𝑥∗2 +  𝜖 +
𝜖

𝛾
   𝑘1

′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
 
𝑘2

𝑘1
𝑤𝑐𝑤𝐵

𝛾
  (2.32) 

 

I: 
𝜕(𝑤𝐼)

𝜕𝑡∗
=
𝜕2(𝑤𝐼)

𝜕𝑥∗2 +  0  (2.33) 

 

The same Damköhler number that appeared in the C-C reaction equations shows up in 

the C-P equations. This allows us to use one general Damkohler number for both types 

of mixing sensitive reaction schemes. Both compare the fastest rate of reaction to the 
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smallest mixing time scales in the system. This allows us to use a general non-

dimensional number to describe mixing for both types of mixing sensitive reaction. 

Finally, substituting Equation (2.20) into Equations (2.28)-(2.33) gives the C-P equations 

for numerical simulations: 

A: 
𝜕(𝑤𝐴)

𝜕𝑡∗
=
𝜕2(𝑤𝐴)

𝜕𝑥∗2 −   𝐷𝑎 𝑤𝐴𝑤𝐵
𝜖   (2.34) 

 

B: 
𝜕(𝑤𝐵)

𝜕𝑡∗
=
𝜕2(𝑤𝐵)

𝜕𝑥∗2 − 𝜖   𝐷𝑎 𝑤𝐴𝑤𝐵
𝜖  − 𝜖   𝐷𝑎 

𝑘2

𝑘1
𝑤𝑐𝑤𝐵

𝛾
  (2.35) 

 

C: 
𝜕(𝑤𝐶)

𝜕𝑡∗
=
𝜕2(𝑤𝐶)

𝜕𝑥∗2 −
𝜖

𝛾
  𝐷𝑎 

𝑘2

𝑘1
𝑤𝑐𝑤𝐵

𝛾
  (2.36) 

 

P: 
𝜕(𝑤𝑃)

𝜕𝑡∗
=
𝜕2(𝑤𝑃)

𝜕𝑥∗2 +  1 + 𝜖   𝐷𝑎 𝑤𝐴𝑤𝐵
𝜖   (2.37) 

 

S: 
𝜕(𝑤𝑆)

𝜕𝑡∗
=
𝜕2(𝑤𝑆)

𝜕𝑥∗2 +  𝜖 +
𝜖

𝛾
   𝐷𝑎 

𝑘2

𝑘1
𝑤𝑐𝑤𝐵

𝛾
  (2.38) 

 

I: 
𝜕(𝑤𝐼)

𝜕𝑡∗
=
𝜕2(𝑤𝐼)

𝜕𝑥∗2  (2.39) 

 

This formulation for both C-C and C-P schemes allows the use of one Damköhler number 

to describe the mixing relative to the desired reaction rate. It also provides a physically 

meaningful non-dimensional reaction rate ratio to describe the relative rates of 

reaction. While there is no explicit expression for the effect of stoichiometry, both of 

the non-dimensional measures include stoichiometric coefficients, showing that both 

the mixing and the relative reaction rates are affected by the stoichiometry of the 

reaction scheme. 
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2.3 NUMERICAL SOLUTION OF EQUATIONS 

The two systems of equations for the C-C (Equations (2.21)-(2.25)) and the C-P 

(Equations (2.34)-(2.39)) reaction schemes were solved using COMSOL Multi-physics 3.4, 

a commercial Finite Element PDE solver. The 1-D transient convection and diffusion 

mass transport model was used with the mass fractions for each species specified as 

independent variables. Elements were specified as Lagrange-quadratic. A 1-D geometry 

line of unit length equally split into two domains ( −
1

2
≤ 𝑥∗ < 0 and  0 ≤ 𝑥∗ ≤

1

2
 ) and a 

mesh of 2048 equally spaced elements was generated. Boundary Conditions (BC’s) for 

all cases were specified as: 

 
𝜕(𝑤𝑖)

𝜕𝑥∗
= 0 𝑎𝑡 𝑥∗ = −

1

2
 𝑎𝑛𝑑 𝑥∗ =

1

2
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡∗  𝑎𝑛𝑑 𝑖 = 𝐴,𝐵,𝐶,𝑃, 𝑆 𝑎𝑛𝑑 𝐼 (2.40) 

 

The general initial conditions for the two reactions schemes are shown in Table 2-2.  The 

initial conditions were chosen to replicate the segregated striation condition of the 

model.  

A final constraint imposed on the simulations is that the reactants need to be present in 

stoichiometric quantities. Using this constraint it is possible to express the initial mass 

fractions as a function of the initial mass fraction of the limiting reagent B  𝑤𝐵0
 , as 

shown in Table 2-3.  For the C-C case, the only reactants present initially are A and B. 

Therefore, the alternating striations in mass fraction would be unity for A and unity for 

B. For the C-P cases, however, there are three initial reactants present. In this model, it 

is assumed that reactants A and C are well mixed and present in the Y striation and that 

the limiting reagent B is in the Z striation. The inert species I was allowed to be present 

in both Y and Z striations as required and assumed to be well mixed with the other 

reactants. Another condition specified for the C-P case is that the ratios of A, B and C are 

such that either A or C could consume all of the available B, so B is always the limiting 

reagent. 

Simulations for both reaction schemes were run until the equivalent of t*=500 in the 

case of Da =1. Since the simulations are solved in time, the dimensionless times to 

which the simulations were run were scaled according to the Damköhler number. 
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Therefore, t*=500 for Da=1 is equal to t*=50000 for Da=0.01 and t*=0.05 for Da=10000, 

i.e. the values of Da·t* are equal for all the cases. In fact, Da·t* is actually equivalent to a 

non-dimensional reaction time where Da·t* =t/R. Therefore, running the simulations to 

Da·t* =500 is the same as the simulations being run for 500 reaction times.  All these 

dimensionless times are in fact equal in real time. For most of the cases it was seen that 

all of the limiting reagent B is consumed by t*=500 or equivalent. 

The solutions COMSOL returned were profiles of mass fraction for the various species 

over the non-dimensional space x* for each non-dimensional time step t*. 

 

2.4 RESULTS AND DISCUSSION 

2.4.1 Competitive-Consecutive (C-C) Reaction  

In order to use the model for the C-C reaction, numerical values were assigned to the 

variables in the model, as shown in Table 2-4. The stoichiometric coefficients were all 

set to 1 in order to match the classic reaction scheme used by Cox and others (Muzzio 

and Liu, 1996, Clifford et al., 1998a ,1998b, 1999, 2000, Clifford, 1999, Clifford and Cox, 

1999, S. M. Cox 2004,). This allows comparison of results for the effect of striation 

thickness and reaction rates. The initial conditions were chosen such that only pure A 

and B are present in the system.  

Looking at the C-C cases in Table 2-4, the values of k2/k1 and Da for Case 1 are 

favourable conditions for high yield of P, i.e. k2/k1 ≪ 1 and 𝐷𝑎 = 1. For Case 4, the yield 

of P should be small, i.e. k2/k1 = 1and 𝐷𝑎 ≫ 1.  The two cases are meant to represent 

the two extremes of very favorable reaction rate ratio and perfect mixing and very 

unfavorable kinetics and mixing conditions. Cases 2 and 3 have good k2/k1 with bad 

mixing and bad k2/k1 with good mixing. The solutions COMSOL returns are the profiles of 

mass fraction for the various species over the non-dimensional space x* for each time 

step t*. Figure 2-2 shows the spatial and temporal evolution of species over a single 

non-dimensional striation. Before discussing the profiles in detail, it is important to note 

a couple of points about the profiles. A vertical line represents a sharp interface. A 

curved line represents a gradient in the concentration. Finally, a horizontal line 

represents uniform concentration across the space.  
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Looking at Figures 2-2(a) and 2-2(c), one can see that all of the species are uniformly 

distributed for all time steps greater than t*=0. This is not the case for Figures 2-2(b) 

and 2-2(d). This can be attributed to the smaller striation thicknesses i.e. the lower 

Damköhler number, for Cases 1 and 3. As the striations are thinner for those cases, the 

species can diffuse across completely in a shorter amount of time than for Cases 2 and 4 

where the striations are 100 times thicker. The thicker striations allow for spatial in-

homogeneity of the species. The thinner striation thicknesses allow for differences only 

in temporal distribution of species and not spatial distribution. The thicker striations 

cause differences in both temporal and spatial distributions. Figures 2-2(b) and 2-2(d) 

also exhibit an interface between reactants whereas 2-2(a) and 2-2(c) do not.  

Despite the fact that there is complete mixing for both Cases 1 and 3, there is a very 

large difference in the yield of P for the two cases. For Case 1, which has both good 

mixing and a favourable reaction rate ratio, the majority of the mass present is that of P, 

the desired product (Fig 2-2(a)(iii)). For Case 3, however, the mass fraction of the 

undesired product is always higher than that of the desired product (Fig 2-2(c)(iii)). 

There is a significant drop of mass fraction of P from 0.99 to 0.25, showing the dramatic 

effect of reaction rate ratio for the same mixing conditions.  

 

Looking at Figures 2-2(b)(iii) and 2-2(d)(iii), the same reversal of P and S is observed. The 

reaction rate ratio has a profound effect on the yield of desired product that is 

independent of mixing. When the reaction rate ratio is good, the undesired reaction 

doesn't participate. All of the product P forms at the interface of A and B, making the 

profile of mass fraction of P symmetric about the mid-plane, x*=0, as shown in Figures 

2-2(b)(ii) and 2-2(b)(iii). When the undesirable by-product reaction occurs at a 

comparable rate to that of the desired reaction, a significant asymmetry in the profiles 

of mass fraction for all species is visible (Figures 2-2(d)(ii) and 2-2(d)(iii) ). This can be 

attributed to the fact that the second reaction occurs only on the right hand side of x*=0 

where P is in contact with B. This causes P to be used up only when it is exposed to B 

with S forming only on one side.  

 

The key results are as follows: First, a small striation thickness allows for uniform 

concentrations of species, i.e. perfect mixing, across the striations whereas larger 
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striations can cause spatial inhomogeneities in species mass fraction. Second, the 

reaction rate ratio is an independent factor which can significantly alter the yield of 

desired product regardless of the mixing condition. This effect is predictable in the sense 

that if the ratio is good the yield is good and if the ratio is poor the yield is poor. Finally, 

for the larger striation thicknesses, a good reaction ratio causes symmetric 

concentration profiles of desired product P, while a bad ratio causes the product profiles 

to skew towards the A side of the striation. Perfect mixing simplifies the reaction 

analysis and shortens the reaction time. Having favourable kinetics improves the yield 

significantly.  

 

Changing the stoichiometry was found to not affect the profiles for the good reaction 

rate ratio cases (k2/k1=10-5) for both good and bad mixing conditions (1< Da <10000). 

The profiles of all the species were identical to those presented above. The profiles for 

the bad reaction rate ratio (k2/k1=1) and good mixing (Da=1) look the same as before, 

but the amounts of P and S produced change. The case of both bad rate ratio (k2/k1=1) 

and poor mixing (Da=10000) always resulted in a larger amount of S produced than P, 

and all the profiles were skewed towards B. The amount of S and P produced vary with 

stoichiometry and the profiles are skewed more or less depending on the stoichiometry.  

The effect of stoichiometry is captured by calculating the amount of product formed or 

the yield of P. This is done in the following sections and in Chapter 3. 

 

2.4.2 Competitive-Parallel (C-P) Reaction  

Table 2-5 shows the variable settings for the C-P simulations. The four cases are 

identical to the ones used for the C-C simulations. The stoichiometry chosen is the 

classic C-P reaction scheme. The initial conditions were chosen such that 𝑤𝐵0
= 0.5; the 

initial amounts of A, C and I present in the system were calculated using the formulae in 

Table 2-3. The solutions COMSOL returns are the profiles of mass fraction for the 

various species over the non-dimensional space x* for each time step t*. Figure 2-3 

shows the spatial and temporal evolution of species including the inert.  

The C-P case profiles show many of the same characteristics as the C-C cases. Cases 1 

and 3, with the thinner initial striations, once again show spatial homogeneity for all the 
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species across the entire striation thickness, where as Cases 2 and 4 show spatial 

variations in mass fraction for all the species across the striations. The yields of P and S 

flip when the reaction ratio is varied from favourable (k2/k1 =10-5) to unfavourable (k2/k1 

=1).  Cases 1 and 2 have a high yield of P; Cases 3 and 4 have an equal yield of P and S. 

The cases with the large striation thicknesses (Da=10000) show symmetry in product 

mass fraction profiles about x*=0 when the second reaction is insignificant (k2/k1 =10-5) 

and significant asymmetry when it is actively participating in the reaction (k2/k1 =1). The 

main difference between the C-C and C-P reactions is that once the product P is formed 

in the C-P reaction, it does not get consumed by a side reaction. Therefore, in terms of 

measuring the yield of P, the C-P reaction scheme is a lot less mixing sensitive than the 

C-C reaction scheme. For the C-C reaction, the longer that P sits in contact with B, the 

higher the chance that the yield of P will decrease. 

Changing the stoichiometry for the C-P reactions resulted in some non-linear profile 

changes. While the profiles for the well mixed cases remained uniform across the 

striation the magnitudes of desired and undesired product produced varied. The profiles 

for the poorly mixed cases look different from the profiles presented here owing partly 

to the different initial conditions required when the stoichiometry was changed and also 

because of the stoichiometries themselves. As with the C-C cases, calculating the 

product formed or yield of P captured all of these changes, as further discussed in 

Chapter 3. 

2.4.3 Yield of desired product P  

 

It is easy to assess how much product has formed for the cases with uniform distribution 

of species across the striation but it is a lot more difficult to assess yield for the non-

uniform profiles of mass fraction. In order to simplify this, the profiles of P were 

integrated to obtain the total mass of P present in the system at an instant in time 

using: 

 

 
𝑌𝑃 =

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑃 𝑎𝑡 𝑡∗

𝑚𝑎𝑥𝑚𝑎𝑠𝑠 𝑜𝑓 𝑃 𝑜𝑏𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒
=
 𝑤𝑃𝑑𝑥

∗(𝑡∗)
0.5

−0.5

0.5𝑤𝐵𝑜  1 +
1
𝜖 

 (2.41) 
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Following YP over time gives the progression of yield over time. Figure 2-4 shows the 

yield of P over time as the reaction progresses for the four C-C cases, and Figure 2-5 

shows the same results for the four C-P cases. Plotting Da·t*on the x-axis allows all four 

curves to be displayed on the same figure. These figures confirm the conclusions drawn 

above that good mixing and a good reaction rate ratio will maximize the yield of desired 

product (Case 1 in both Figures 2-4 and 2-5), and poor mixing with an unfavourable 

reaction rate ratio minimizes the yield of desired product (Case 4 for both Figures 2-4 

and 2-5). This also confirms the notion that minimization of the Damköhler number and 

reaction rate ratio is desirable. Clifford et al. (1998a) also got results for their 

stoichiometric ratio cases that qualitatively agree with our figures for the classic 

stoichiometry. We can only compare them qualitatively because our non-

dimensionalization parameters are different from theirs.  

 

2.4.4 Effect of reaction rate ratio on yield of P.  

 

Figures 2-4 and 2-5 show that the reaction rate ratio will affect how much product is 

formed regardless of the mixing condition. This is evident in the comparison of Cases 1 

and 3, which are both well mixed, and Cases 2 and 4, which are both poorly mixed, in 

both Figures 2-4 and 2-5, which shows that the favourable reaction rate ratio always 

provides a higher final yield of P. It is impossible to get a good yield of desired product if 

the reaction rate ratio is unfavourable, regardless of the mixing condition (Cases 3 and 4 

in both Figures 2-4 and 2-5). Clifford et al. (1998a) also came to the same conclusion for 

the effect of reaction rate ratio in their investigations. They too found that a smaller 

reaction rate ratio is favourable for maximizing the yield of desired product. 

 

2.4.5 Effect of mixing on yield of P.  

 

There is a significant effect of mixing on YP evident in Figures 2-4 and 2-5. When the 

reaction rate ratio is favourable, having good mixing can cause a substantial increase in 

yield of desired product, as seen by comparing Cases 1 and 2 in both the figures (YP=0.5 

to 1 for C-C and YP=0.5 to 1 for C-P) . If the reaction rate ratio is unfavourable, a similar 

favourable effect of mixing is seen by comparing Cases 3 and 4, though it is not as 
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profound as when the reaction rate ratio is good (YP=0.03 to 0.24 for C-C and YP=0.33 to 

0.5 for C-P). This seems to point toward the effect of mixing being limited by the 

reaction rate ratio, i.e. the reaction rate ratio will determine the final yield and good 

mixing helps one to realise that asymptotic value of yield. In the case of the C-C reaction 

scheme, poor mixing will severely affect the yield of desired product in a negative way. 

This conclusion is also true for the C-P scheme. It is also interesting to note that for the 

well mixed cases ( Cases 1 and 3 ) the final yield of P is attained much quicker than when 

the mixing is poor (Cases 2 and 4). This suggests that the mixing limits the pace of the 

reaction as well, and in the case of the C-C, due to the nature of the reaction, this has a 

significant effect on the final yield of P. Cox and others in their investigations came to a 

similar qualitative conclusion on the effect of mixing on the yield for a two stage 

Competitive-Consecutive reaction (Cox et al., 1998, Clifford et al., 1998a). They too 

found that minimizing the Damkohler number leads to an increase the yield of desired 

product. 

 

2.5 CONCLUSIONS 

 

A model was developed to investigate the effects of stoichiometry, mixing and reaction 

rate ratio for Competitive-Consecutive and Competitive-Parallel reactions with a general 

stoichiometry. The model is capable of dealing with both reaction schemes, something 

that was not previously available. A single Damköhler number was found for both kinds 

of mixing sensitive reactions. This is encouraging since there has previously been a lot of 

debate on the formulation of the Damköhler number for these competing reactions, i.e. 

should it be based on the first or the second reaction. Also, having just one expression 

to describe mixing accurately reflects reality where mixing is the same regardless of the 

reaction scheme. The general expression for the Damköhler number, when applied to 

the classic reaction schemes, collapses to the expressions used in previous 

investigations by others, Cox et al. (1998) in particular. However, the two reaction 

schemes are very different and these differences are reflected in the specific reaction 

rate ratios for the two types of reaction stoichiometries that are to be used in the 

model.  
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The effects of mixing and reaction rate ratios on the yield of desired product were 

investigated for the classic competitive-consecutive and competitive-parallel reaction 

schemes. It was found that they are somewhat independent of each other; though both 

are proportional to the yield of desired product, the reaction rate ratio limits the final 

yield of desired product that is possible to attain but good mixing helps to achieve that 

yield. The rate of mixing also determines the rate at which this final yield is reached. The 

reaction rate ratio and the Damköhler number both need to be minimized to achieve 

the maximum yield of product. The results from the model agree with the expected 

results and the results of previous investigations when both mixing and reaction rate 

ratio are varied, i.e. improving the mixing and chemistry by minimizing the Damköhler 

number and the reaction rate ratio respectively is desirable and leads to improvements 

in yield of desired product. 

 

 This confirmation of the model allows for future work where the effects of 

stoichiometry, mixing and k2/k1 ratios and the interactions between them will be 

investigated with the intention of producing charts that may help in prediction of the 

yield for a general mixing sensitive reaction. Though the model allows for the 

investigation of the effects of initial concentrations of reactants, this was not done in 

the current study and this is another possible avenue for further exploration. It is also 

acknowledged that the 1D model is not a very accurate depiction of real turbulent 

mixing, but this investigation was meant to be a first foray into the effect of 

stoichiometry of mixing sensitive reactions, so simplicity was desirable. Added 

complexities like introducing stretching and using a lamellar ‘barcode’ model could 

possibly be integrated into the model in the future to better approximate the real 

industrial situation.  
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2.6 TABLES FOR CHAPTER 2.  

 

Table 2-1. General Mixing Sensitive Reaction Schemes 
 

𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆 𝑪𝒐𝒏𝒔𝒆𝒄𝒖𝒕𝒊𝒗𝒆  
(𝑪 − 𝑪) 

𝑪𝒐𝒎𝒑𝒆𝒕𝒊𝒕𝒊𝒗𝒆 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍  
(𝑪 − 𝑷) 

𝐴 + 𝜖𝐵
𝑘1
′

  𝛼𝑃 

𝛽𝑃 + 𝛾𝐵
𝑘2
′

 𝑆 

 

𝐴 + 𝜖𝐵
𝑘1
′

 𝑃 

𝐶 + 𝛾𝐵
𝑘2
′

 𝑆  
 

 

 

 

Table 2-2. General initial conditions for C-C and C-P reaction schemes @ t*=0. 
 

 C-C  C-P 

 −
1

2
≤ 𝑥∗ < 0 0 ≤ 𝑥∗ ≤

1

2
  −

1

2
≤ 𝑥∗ < 0 0 ≤ 𝑥∗ ≤

1

2
 

A 𝑤𝐴0
 0 A 𝑤𝐴0

 0 

B 0 𝑤𝐵0
 B 0 𝑤𝐵0

 

C - - C 𝑤𝐶0
 - 

P 0 0 P 0 0 

S 0 0 S 0 0 

I 1 −𝑤𝐴0
 1−𝑤𝐵0

 I 1 −𝑤𝐴0
−𝑤𝐶0

 1−𝑤𝐵0
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Table 2-3. Stoichiometric initial conditions based on 𝑤𝐵0
for C-C and C-P reaction 

schemes. 
 

 C-C  C-P 

 −
1

2
≤ 𝑥∗ < 0 0 ≤ 𝑥∗ ≤

1

2
  −

1

2
≤ 𝑥∗ < 0 0 ≤ 𝑥∗ ≤

1

2
 

A 
1

𝜖
 𝑤𝐵0

  0 A 
1

𝜖
 𝑤𝐵0

  0 

B 0 𝑤𝐵0
 B 0 𝑤𝐵0

 

C - - C 
1

𝛾
 𝑤𝐵0

  0 

P 0 0 P 0 0 

S 0 0 S 0 0 

I 1 −
1

𝜖
 𝑤𝐵0

  1−𝑤𝐵0
 I 1−  

1

𝜖
+

1

𝛾
  𝑤𝐵0

  1−𝑤𝐵0
 

 

 

Table 2-4. Numerical values for simulated C-C test cases. Stoichiometric coefficients 

𝛼,𝛽, 𝛾, 𝜖 were set to 1,   representing the reaction: 𝐴 + 𝐵
𝑘1
′

  𝑃 , 𝑃 + 𝐵
𝑘2
′

 𝑆 and initial 
mass fraction of species B was always 1 (𝑤𝐵0

= 1). 

 
 

C-C case 
𝒌𝟐
𝒌𝟏

=
1

2

𝑘2
′

𝑘1
′  𝑫𝒂 = 𝑘1

′  
𝜌𝑇
𝑀
 
𝐿𝐵

2

𝐷𝐵
 

1 10−5 1 

2 10−5 10000 

3 1 1 

4 1 10000 
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Table 2-5. Numerical values for simulated C-P test cases. Stoichiometric coefficients 𝛾, 𝜖 

were set to 1,   representing the reaction: 𝐴 + 𝐵
𝑘1
′

  𝑃 , 𝐶 + 𝐵
𝑘2
′

 𝑆 and initial mass 
fraction of species B was always 0.5 (𝑤𝐵0

= 0.5). 

 
 

C-P case 
𝒌𝟐
𝒌𝟏

=
𝑘2
′

𝑘1
′  𝑫𝒂 = 𝑘1

′  
𝜌𝑇
𝑀
 
𝐿𝐵

2

𝐷𝐵
 

1 10−5 1 

2 10−5 10000 

3 1 1 

4 1 10000 
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2.7 FIGURES FOR CHAPTER 2.
 
  
 

  

 

Figure 2-1. Geometry for proposed mixing model at time t=0. 
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(i) Da·t*=0 (i) Da·t*=0 

  
(ii) Da·t*=50 (ii) Da·t*=50 

  
(iii) Da·t*=500 (iii) Da·t*=500 

(a) Case 1, k2/k1=10-5, Da=1 (b) Case 2, k2/k1=10-5, Da=10000 

 
Figure 2-2. Spatial and temporal evolution of mass fractions for C-C Cases (a) 1 (k2/k1=10-5, Da=1) and (b) 

2 (k2/k1=10-5, Da=10000). 
 

  

S 

S 

A, B, S 

S 

P 

P 

P 
P 

A, B 

A 

A A 

A 

B B 

B 

B 



 

41 
 

  
(i) Da·t*=0 (i) Da·t*=0 

  
(ii) Da·t*=50 (ii) Da·t*=50 

  
(iii) Da·t*=500 (iii) Da·t*=500 

(c) Case 3,  k2/k1=1, Da=1 (d) Case 4, k2/k1=1, Da=10000 

 
Figure 2-2. Spatial and temporal evolution mass fractions of for C-C Cases (c) 3 (k2/k1=1, Da=1) and (d) 4 

(k2/k1=1, Da=10000). 
 

  

P 

P 

P 

P 

B 

A 

A 

A 

A 

A A 

B 

B 

B 

B 

B 

S 

S 

S 

S 



 

42 
 

  
(i) Da·t*=0 (i) Da·t*=0 

  
(iii) Da·t*=50 (iii) Da·t*=50 

  
(iv) Da·t*=500 (iv) Da·t*=500 

(a) k2/k1=10-5, Da=1 (b) k2/k1=10-5, Da=10000 

 
Figure 2-3. Spatial and temporal evolution of mass fractions for C-P Cases (a) 1, (k2/k1=10-5, Da=1) (b) 2, 

(k2/k1=10-5, Da=10000) 
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(i) Da·t*=0 (i) Da·t*=0 

  
(iii) Da·t*=50 (iii) Da·t*=50 

  
(iv) Da·t*=500 (iv) Da·t*=500 

(c) k2/k1=1, Da=1 (d) k2/k1=1, Da=10000 

 
Figure 2-3. Spatial and temporal evolution of mass fractions for C-P Cases (c) 3, (k2/k1=1, Da=1) and (d) 4, 

(k2/k1=1, Da=10000)  
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Figure 2-4. Yield of P versus time for the C-C cases. 

 

 

 

Figure 2-5. Yield of P versus time for the C-P cases. 
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3 

Design Protocols for Mixing Sensitive Reactions  
 

 

3.1 CHAPTER OVERVIEW  

 

This chapter includes the detailed investigation of the effects of initial mixing condition 

(striation thickness), non-dimensional reaction rate ratio and reaction stoichiometry on 

the yield of desired product from a mixing sensitive reaction of two types: the 

Competitive-Consecutive reaction and the Competitive-Parallel reaction. This chapter 

includes the numerical solution of the equations, the cases studied and the results of 

the investigation. Section 3.2 is a summary of the pertinent parameters. Section 3.3 

includes the numerical technique and solution of the equations and the various cases 

investigated. In Section 3.4, the results are presented and discussed in detail. Section 

3.5 concludes this chapter. Sections 3.6 and 3.7 are the tables and figures for this 

chapter respectively.  

 

3.2 MEASURES FOR DESIGN 

 

In Chapter 2, a 1-D diffusion model for mixing sensitive reactions that could account for 

the effects of mixing, reaction rate ratio and reaction stoichiometry was developed. The 

model is capable of dealing with both Competitive-Consecutive and Competitive-Parallel 

type of mixing sensitive reaction, the general forms of which are given in Table 2-1.  
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Systems of Partial Differential Equations (PDEs) for the masses of the different species 

involved in the reaction and an inert were developed, out of which a general Damköhler 

number, common to both types of reaction schemes was found. The equation of the 

Damköhler number was found to be: 

 

    

𝑫𝒂 = 𝑘1
′  
𝜌𝑇
𝑀
 
𝜖 𝐿𝐵

2

𝐷𝐵
=
𝑘1
′  
𝜌𝑇
𝑀
 
𝜖

 
𝐷𝐵
𝐿𝐵

2  
=
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑟𝑎𝑡𝑒 𝑜𝑓𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 
 

 

=  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑓𝑎𝑠𝑡 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ∗  𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛  𝑡𝑖𝑚𝑒   

(3.1) 

 

 

This Damköhler number is convenient because it is independent of the reaction scheme 

being investigated.  The effect of stoichiometry on the Damköhler number is given by 𝜖, 

the stoichiometric coefficient of the limiting reagent (B) in the desired reaction.  

 

The effect of the relative reaction rates of the competing reactions is also of interest. 

The model provided non-dimensional reaction rate ratios for C-C and C-P reactions, 

which are as follows: 

 

C-C: 
𝒌𝟐
𝒌𝟏

=  
𝛽

𝛼
 
𝛼

1 + 𝜖
 
𝛽

 
𝜌𝑇
𝑀
 
𝛽+𝛾−𝜖−1

 
𝑘2
′

𝑘1
′  (3.2) 

 

 

C-P: 
𝒌𝟐
𝒌𝟏

=  
𝛾

𝜖
 
𝜌𝑇
𝑀
 
𝛾−𝜖

 
𝑘2
′

𝑘1
′     (3.3) 

 

 

These non-dimensional reaction rate ratios are specific to the type of mixing sensitive 

reaction, i.e. C-C or C-P, and incorporate the effect of the relative reaction rates of the 

competing reactions as well as the effect of stoichiometry. 
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These two non-dimensional parameters, along with the stoichiometry, were varied in 

this investigation. For both the C-C and C-P simulations, the Damköhler number was 

varied from 0.01 to 10000 in x100 increments, where 0.01 is the best and 10000 is the 

worst mixing. The non-dimensional reaction rate ratio (k2/k1) was varied from 1 to 

0.00001 in x10 increments, where 1 is the worst ratio and 0.00001 is the best ratio. For 

the C-C reactions, 𝜖was always 1 and 𝛼,𝛽, 𝛾 were given a value of either 1 or 2. For the 

C-P reactions, 𝜖 and 𝛾 were varied as 1 or 2. Table 3-1 shows the different C-C reaction 

scheme stoichiometries investigated, with the corresponding reaction rate ratios that 

take into account the stoichiometric effects. Table 3-2 shows the same terms for the C-P 

reaction schemes. 

 

3.3 NUMERICAL DETAILS 

 

Simulation of the systems of five or six PDEs for the C-C and C-P reaction schemes 

respectively were carried out using COMSOL 3.4, a Finite Element PDE Solver. It is worth 

noting that for the C-C reaction scheme only four of the equations are independent and 

for the C-P reaction scheme there are only five independent equations. The 1-D, 

transient, convection and diffusion mass transport model was used, with the mass 

fractions for each species specified as the independent variables. The default Lagrange-

quadratic element was chosen. The specified 1-D geometry line of unit length was split 

equally into two sub-domains and a mesh of 2048 equally spaced elements with 2049 

nodes was generated. The mesh was tested for grid dependence, and it was found that 

1024 elements was sufficient resolution to ensure repeatable results to within the 

required tolerance of the solver, which was set to 10-6. Since the geometry was only 1-D 

and the computational cost was minimal, a finer mesh than the minimum required 

resolution was used. The total time taken per simulation was approximately 30 seconds. 

The Boundary Conditions were specified for no net mass transfer across the boundaries 

(Equation 2.40).   

 

Figure 3-1 shows the initial conditions for the C-C and C-P schemes. For the C-C cases, 

the initial conditions were chosen such that all of the mass initially present could be 

converted to desired product P. This was done by specifying a ratio of A:B as 1:1 in all 
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the simulations, with A and B being present in pure striations, i.e. 𝑤𝐴0
= 𝑤𝐵0

= 1. For 

the C-P scheme, owing to the parallel nature of the reactions, the initial conditions were 

a bit more complicated. They were chosen such that either A or C could consume the 

entire limiting reagent B by themselves, i.e. the initial ratios depended on the 

stoichiometric coefficients in the reaction scheme. In order to satisfy the constant mass 

concentration assumption of the model, it was necessary to include the inert in the C-P 

simulations. 𝑤𝐵0
 and 𝑤𝐼𝑍0

 were always set to 0.5, and 𝑤𝐴0
𝑤𝐶0

,𝑤𝐼𝑌0
 were calculated 

accordingly.   

 

The modelled equations allow for specification of the Damköhler number, the non-

dimensional reaction rate ratio and the stoichiometry as values directly in the 

simulation. All possible combinations of the values of reaction rate ratio, Damköhler 

number and stoichiometry for the C-C reaction scheme (stoichiometries given in Table 

3-1) and the C-P reaction scheme (stoichiometries given in Table 3-2) were investigated. 

This resulted in 192 converged cases for the C-C and 96 converged cases for the C-P 

reaction scheme, giving a total of 288 converged simulations.    

 

The model is capable of handling all sorts of different initial conditions. The initial mass 

fraction ratios do not need to be stoichiometric; the analysis is just more convenient if 

they are. Any difference in mass fractions is replaced by the inert species. A requirement 

of the model is that the mass concentration of the system remains constant. If there is 

more or less A or B, the inert has to be adjusted to compensate for the 

increase/decrease of the reactant species. For example, the initial conditions for the C-C 

cases could have been 0.5 A and 0.5 I in mixture Y, and 0.5 B and 0.5 I for mixture Z. The 

ratio of A:B is still the same as before at 1:1, but the concentrations are now half of 

what they used to be. The choices for the stoichiometries of the C-C were chosen such 

that the ratio of stoichiometries is always 1:1. It is understood that there would be 

another 8 cases of stoichiometry for 𝜖 = 2 (and subsequently a 192 more total cases), 

but those cases are not addressed here.  

 

The transient simulations were run from Da·t*=0 to Da·t*=500 for all cases.  Da·t* is 

actually equivalent to a non-dimensional reaction time where Da·t* =t/R. Therefore, 
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running the simulations to Da·t* =500 is the same as the simulations being run for 500 

reaction times.  This final value was chosen because it was found that for most cases the 

limiting reagent, B, was completely consumed by this time.  

 

3.4 RESULTS AND DISCUSSION 

 

The results obtained for the simulations are profiles of mass fraction for each of the 

species over the space x* for all non-dimensional time t*. Samples of these results were 

given in Chapter 2 (Figures 2-2 and 2-3).  

 

Since the main objective of the process is to maximize the production of desired product 

P, the profiles of mass fraction of P are of most interest. Comparison of the total yield of 

desired product is difficult by direct observation of these profiles. In order to facilitate 

the comparison of different striation thickness, reaction rate ratios and stoichiometries 

on the yield, the profiles of mass fraction of P were integrated over the domain to 

obtain the total mass of desired product present within the system at any instant in 

time using the formula: 

 

 
𝑌𝑃 =

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑃 𝑎𝑡 𝑡∗

𝑚𝑎𝑥𝑚𝑎𝑠𝑠 𝑜𝑓 𝑃 𝑜𝑏𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒
=
 𝑤𝑃𝑑𝑥

∗(𝑡∗)
0.5

−0.5

0.5𝑤𝐵𝑜  1 +
1
𝜖
 

 (3.4) 

 

Following YP over time gives the progression of yield over time. The total production of P 

as time progresses can be observed in a plot of YP versus non-dimensional time Da·t*. 

Figures 2-4 and 2-5 in Chapter 2 show examples of such plots. 

 

Since the primary interest is in the final yield of P that is obtainable, the final yields of P 

for all the simulations, i.e. at Da·t*=500, were collected and plotted for the different 

variables to assess the effects of each of the variables on the final yield of desired 

product. 

 

The values of yield obtained for all the simulations were plotted for all the variables. The 

data and these figures can be found in Appendix A. Though all the figures showed the 



 

50 
 

same trends for the variables, only the figures that displayed them the most clearly are 

presented here.  

 

3.4.1 Competitive-Consecutive (C-C) Reaction 

 

Figures 3-2 (a) to (f) are semi-log plots of YP versus the Damköhler number for 

decreasing non-dimensional reaction rate ratio, k2/k1, values, each at time Da·t*=500. 

The curves on each of the plots represent the eight different C-C stoichiometry cases 

that have been investigated. The effects that are of interest for both kinds of reaction 

schemes are the effects of the Damköhler number, reaction rate ratio k2/k1 and the 

reaction stoichiometry.   

 

3.4.1.1 Effect of Damköhler number (Da). 

 

The plots in Figure 3-2 show a trend of decrease of yield of desired product with 

increasing Damköhler number. This trend is true for all stoichiometries and at all values 

of k2/k1. This suggests that a larger Damköhler number represents worse mixing and a 

smaller Damköhler number represents improved mixing. The figures also show that the 

value of yield for Da=1 and Da=0.01 is the same for all stoichiometries at all k2/k1. The 

yield at Da=100 and Da=10000 always decreases on the figures, regardless of the value 

of k2/k1. This suggests that Da≤1 is the well mixed limit.  Figures 3-3 (a) and (b) further 

emphasize this point. They are sample plots of YP vs. k2/k1 for C-C stoichiometry case 2, 

the classic C-C stoichiometry, and case 7 respectively. The curves on the figures 

represent the Damköhler numbers that were investigated.  The curves for Da=0.01 and 

Da=1 can be seen to lie exactly on top of one another, while increasing Da significantly 

drops yield at all k2/k1 for both cases.  These trends are true for all the C-C stoichiometry 

cases, which can be seen in Appendix B. Therefore, it is concluded that Da=1 is the well 

mixed limit.  

 

Going back to the plots in Figure 3-2, it is also worthwhile to notice that the yield at 

Da=10000 is always much lower than the well mixed yield irrespective of the value of 

k2/k1. This suggests that mixing is an independent effect that can significantly affect the 



 

51 
 

yield if it is poor. If the mixing is not good enough, the yield will always be lower than 

the well mixed situation given the same amount of elapsed time. 

 

3.4.1.2 Effect of non-dimensional reaction rate ratio (k2/k1). 

 

Looking at Figures 3-2 (a) to (f) together, it can be seen that as k2/k1 is decreased, the 

curves of yield of desired product obtainable for all of the stoichiometry cases at all 

values of Damköhler number move steadily upward, i.e. the yield always increases when 

k2/k1 is decreased. This result is as expected, since a smaller k2/k1 gives a slower 

undesired side reaction. 

 

Moving from Figures 3-2 (a) to (f) as k2/k1 is decreased it is clear that the curves for the 

different stoichiometry cases grow steadily closer to one another, almost collapsing 

onto one curve at k2/k1=0.001 and collapsing completely onto one curve at 

k2/k1=0.0001. Figures 3-2 (e) and (f) are nearly identical. The collapse of stoichiometries 

is also shown in Figure 3-4 (a) to (c), which are semi-log plots of YP versus k2/k1 for all 

stoichiometries at (a) Da=1, (b) Da=100 and (c) Da=10000 at time Da·t*=500. 

 

The yield increases significantly from k2/k1=1, where the yield varies from 0.23 to 0.75 

even under well mixed conditions, to k2/k1=0.001, where the yield is essentially 99% and 

above at well mixed conditions (Da<=1) for all stoichiometries. At k2/k1=0.001 the 

individual stoichiometry curves collapse, eliminating the difference due to 

stoichiometry, while at k2/k1 =1 there is a large disparity between the yields of different 

stoichiometries.     

 

YP can be seen to increase to 1 as k2/k1 decreases for all stoichiometries and the curves 

collapse at about k2/k1=0.001 for the well mixed cases, Da=1 and 0.01, and k2/k1=0.0001 

for the badly mixed case, Da=10000. The yield of the badly mixed case remains at about 

half of what would be obtainable given a well mixed mixture. This brings up an 

interesting question: “Is it possible to get perfect yield of desired product, i.e. YP ~1, for 

Da=10000, a badly mixed case?”. In order to investigate this, the simulations for 

Da=10000 cases were re-run for a hundred times longer than before, i.e. they were run 
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to Da·t*=50000 instead of Da·t*=500. Figure 3-5 shows the results of these simulations. 

It can be seen that it is indeed possible to obtain a perfect yield with insufficient mixing, 

but this imposes a much more stringent k2/k1 requirement of k2/k1=0.00001 on the 

reaction. Under poor mixing conditions the effect of stoichiometry does not go away as 

easily with improving k2/k1 and the shapes of the curves change significantly. Although 

the yield at the good k2/k1 values gets better, the increase in yield for the worse k2/k1 

ratios is very small considering that the time allowed for reaction was increased by 100 

times. While it may be possible to obtain good yield for a bad mixing condition, the 

requirements for k2/k1 are more stringent and the time required is much longer, which 

directly impacts the required residence time in the reactor. 

 

3.4.1.3 Effect of Stoichiometry. 

 

Returning once again to Figures 3-2 (a) to (f) there is a clear effect of stoichiometry on 

the final yield of desired product, which changes with both the mixing and the non-

dimensional reaction rate ratio. 

 

At k2/k1=1 (Figure 3-2 (a)) there is a clear effect of stoichiometry evidenced by the 

separation of the curves from one another. These curves seem to come closer as the 

striation thickness increases. There is a clear distinction of stoichiometries, which Cases 

7 and 8 having the highest yields, and therefore the most favourable stoichiometry, and 

Cases 1 and 2 having the lowest yields, meaning they have the least favourable 

stoichiometries. This is as expected since, as shown by the stoichiometries in Table 3-1, 

Cases 1 and 2 require only two molecules for the side reaction while Cases 7 and 8 

require four molecules each. The additional molecules required places a mass transfer 

and collision probability limitation on the side reaction for Cases 7 and 8, hence making 

them more favourable for the desired reaction.. This separation remains intact for 

k2/k1=0.1 (Figure 3-2 (b)) and k2/k1=0.01 (Figure 3-2 (c)) but to a lesser extent and 

vanishes as k2/k1 decreases to 0.001 and below where the curves collapse onto each 

other. This suggests that the effect of stoichiometry vanishes for k2/k1≤0.001 for good 

mixing (Da≤1 and Da=100) and is very small for poor mixing (Da=10000). At 

k2/k1≤0.0001 all dependence of stoichiometry is gone for all k2/k1 and all Da. This 
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suggests that the design of the reaction should be such that k2/k1≤0.00001 to guarantee 

that stoichiometry doesn’t play a role at short elapsed times, i.e. Da·t*=500. Figure 3-4 

(a) to (c) also show this collapse of stoichiometry for short times. For the bad mixing 

condition that was allowed to proceed for a very long time, Figure 3-5, the effect of 

stoichiometry creeps back into the picture, affecting yield at previously adequate values 

of k2/k1. Therefore, it is possible that if the residence time is too long in a reactor with 

inadequate mixing, the stoichiometry effects will manifest themselves and affect 

production.   

 

3.4.1.4 Summary of the effects on C-C reaction schemes. 

 

 As a summary, for Competitive-Consecutive reactions: 

 

(a) Da≤ 1 is well mixed. 

(b)  k2/k1 ≤ 0.001 with Da≤100 will provide good values of yield   at Da·t*=500. 

(c)  The effect of stoichiometry is a legitimate one, which can be large if the k2/k1 is 

unfavourable but vanishes at k2/k1≤0.001 for short times and good mixing. At 

longer times with bad mixing conditions, this effect of stoichiometry reappears 

and requires a much smaller value of k2/k1.  

 

3.4.2 Competitive-Parallel (C-P) Reaction 

 

As with the C-C reaction scheme, the values of yield for the various simulations were 

plotted for all the variables involved. The data and figures can be found in Appendix A. 

 

A similar set of figures to Figures 3-2 to 3-5 was chosen for consistency with the C-C 

analysis. Once again, the effects of interest are the Damköhler number, the non-

dimensional reaction rate ratio k2/k1 and the reaction stoichiometry. 

 

Figures 3-6 (a) to (f) are semi-log plots of yield of desired product versus the Damköhler 

number for decreasing values of k2/k1 respectively. The curves represent the four 

different stoichiometry cases investigated. 
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3.4.2.1 Effect of Damköhler number (Da). 

 

 The plots in Figure 3-6 show a trend of a decrease in YP with increasing Damköhler 

number, i.e. the mixing. This trend is true for all the stoichiometries at all values of k2/k1 

except one: Case 3 at k2/k1=1 (Figure 3-6 (a)) which shows an increase in yield with 

increasing Damköhler number. Since the majority of cases do show the same trend as 

the C-C cases, it can once again be concluded that a larger value of Damköhler number 

represents worse mixing and a smaller value represents a better condition. 

 

These figures also show that YP is the same at Da=0.01 and Da=1 for all values of k2/k1, 

once again implying that the well mixed limit is Da=1. Figure 3-7 (a) and (b) further 

support this conclusion. They are semi-log plots of YP vs k2/k1 for C-P stoichiometry cases 

1 and 3 respectively. The curves show values of Da investigated. The curves for Da=0.01 

and Da=1 lie exactly on top of each other while increasing Da drops the yield, as with 

the C-C cases (Figure 3-3). This confirms that Da=1 is the well mixed limit. 

 

The same Da limit was found for both the C-C and C-P cases. Da≤1 is well mixed and 

Da>1 is imperfectly mixed. The fact that the same trends and effect of Damköhler 

number are seen for a different type of reaction altogether suggests that mixing is a 

physical effect that can be controlled regardless of the reaction being studied. At the 

same time mixing interacts strongly with the reaction stoichiometry and reaction rate 

ratio. 

 

3.4.2.2 Effect of non-dimensional reaction rate ratio (k2/k1). 

 

Looking at Figures 3-6 (a) to (f), it can be seen that as k2/k1 is decreased, the curves for 

all the stoichiometries move upwards, indicating that the yields for all the stoichiometry 

cases at all values of Da increase with this decrease in k2/k1. This again suggests that a 

smaller k2/k1 is favourable and a larger k2/k1 is unfavourable, similar to the C-C reaction 

scheme. For Cases 1 and 2 the maximum yield is approximately 1 and for cases 3 and 4 it 

is approximately 0.88. The curves for cases 1 and 2 collapse at k2/k1=0.001 (Figure 3-6 

(d)) and at k2/k1=0.0001 for cases 3 and 4 (Figure 3-6 (e)). The yields are seen to increase 
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at all values of Da as k2/k1 is decreased from 1 to 0.00001 (from Figure 3-6 and more 

clearly in Figure 3-7). The largest improvement with improving k2/k1 is seen for Case 3, 

while Case 1 seems to improve the least. 

 

These trends are also reflected in Figure 3-8 (a), (b) and (c) which are semi-log plots of YP 

versus k2/k1 for all four C-C stoichiometries at (a) Da=1, (b) Da=100 and (c) Da=10000 at 

time Da·t*=500. These figures show the yield increasing with improving k2/k1 with the 

final yields being different for cases 1 and 2 and cases 3 and 4, as previously noticed, 

suggesting an effect of stoichiometry on the maximum attainable yield at short times. 

The poorly mixed condition (Da=10000) provides yields of approximately half of the well 

mixed cases at this short time. Though the other well mixed cases may have reached 

completion at Da·t*=500, it is very possible that this is not the case for the bad mixing 

condition at Da=10000, since the yield is only at about 50%.  

 

If the reaction is allowed to progress to long times (Da·t*=50000) for the bad mixing 

case, Da=10000, (Figure 3-9) it the yield can increase to above 90%, but only at an 

especially good k2/k1 ratio. The effect of stoichiometry on the maximum yield decreases 

at long times. The curves seem to collapse at k2/k1=0.00001, even though at the lower 

k2/k1’s there is still an effect of stoichiometry. The cases also split away from each other 

at k2/k1’s where they were equal at short times. 

 

This suggests that if k2/k1 is very good but the stoichiometry of the C-P reaction is 

unknown, the best idea is to go with imperfect mixing for a very long time, though this 

may be restricted by the residence time of the reactor. 

 

3.4.2.3 Effect of Stoichiometry. 

 

Figures 3-6 (a) to (f) illustrate a significant effect of stoichiometry for the C-P case. At 

k2/k1=1 (Figure 3-6 (a)) the difference in yield for the different stoichiometries is 

enormous and there is a clear distinction between a favourable and unfavourable 

reaction stoichiometry (Case 2 and Case 3 respectively).This disparity decreases as k2/k1 

decreases (Figures 3-6 (b) to (f)). However, the effect of stoichiometry never really goes 
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away since even at k2/k1=0.00001 there is still a difference in yield between cases 1 and 

2 and cases 3 and 4 regardless of the mixing condition. This difference in maximum yield 

could be attributed to the coefficient of the limiting reagent in the desired reaction, 𝜖, 

which takes a value of 1 for cases 1 and 2 and a value of 2 for cases 3 and 4. This means 

that though there is a collapse of the curves for similar stoichiometries, there is still a 

distinct difference between the stoichiometries of different types regardless of the 

Damköhler and k2/k1 values. 

 

This is different from the C-C stoichiometries where the stoichiometries were seen to 

collapse (Figure 3-2 (a) to (e)) at k2/k1 ≤ 0.001. This may be because for all the C-C cases 

investigated, the stoichiometric coefficient of the limiting reagent B in the desired 

reaction was always 1, so all the curves were seen to collapse, as for the C-P case with 

similar 𝜖’s. 

 

The curves show a clear distinction between favourable stoichiometries (Case 2) and 

unfavourable stoichiometries (Case 3), where the difference between the two is that the 

stoichiometric coefficients of limiting reagent B in the desired and undesired reaction 

are reversed. This is particularly evident at k2/k1=1 (Figure 3-6(a)) with good mixing 

conditions (Da ≤ 100), when the desired and undesired reactions are equally likely to 

take place. The Yield of P for Case 2 and Case 3 seems to flip, i.e. the amounts of B 

consumed in the desired and undesired reactions for Case 2 are just reversed for Case 3. 

This correspondingly changes the Yield of P, making one stoichiometry favourable and 

the other unfavourable. Cases 1 and 4 seem to be very similar, since the stoichiometric 

coefficients are all the same within each of them respectively.  

 

At the worst k2/k1 ratio (Figure 3-6 (a), k2/k1 =1), the worsening of mixing (increasing Da) 

brings the curves for the four different stoichiometries closer to each other and 

improvement of mixing to drives the curves apart, i.e. the yield for the good 

stoichiometry gets better and the yield for the bad stoichiometry gets worse at well 

mixed conditions. Bad mixing tends to dampen the effect of stoichiometry on the yield 

for C-P reactions at unfavourable k2/k1. Curiously, worsening the mixing for the very 

unfavourable stoichiometry case, Case 3, improves the final yield. This is contrary to all 
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other instances and probably occurs because the poor mixing, i.e. pockets of high 

concentration of limiting reagent, favours the desired reaction since the dependence on 

the rate constant on concentration of limiting reagent is higher than the undesired 

reaction. For short times, there is a distinct difference in the final obtainable yield by a 

certain stoichiometry. 

 

Though it may not seem like it at first, the C-P reaction scheme shows some intricacies 

that almost make it more complicated do deal with than the C-C reaction scheme. 

Careful consideration needs to be given to the stoichiometry, more so than the C-C 

reaction scheme, and the time allowed for reaction will need to be adjusted based on 

the stoichiometry, especially for stoichiometries of the form of Case 3 or 4.  

 

In order to maximize yield for Cases 1 and 2, k2/k1 needs to be minimized (ideally below 

0.001) and mixing made close to perfect. For Cases 3 and 4, if k2/k1 is greater than 0.001 

maximum yield is obtained by mixing rapidly, but if k2/k1 is smaller than 0.001 the yield 

is maximized by mixing slowly but letting the reaction run for a VERY long time, at least 

a hundred times longer than for the well mixed cases. 

 

3.4.2.4 Summary of the effects on C-P reaction schemes. 

 

 As a summary, for Competitive-Consecutive reactions: 

 

(a) Da ≤ 1 is perfectly well mixed. This is the same as for the C-C reaction scheme. 

(b)  For Cases 1 and 2, k2/k1 ≤ 0.001 will provide maximum values of yield. 

(c) From Figures 3-8 and 3-9, it can be concluded that for Cases 3 and 4, if k2/k1 ≥ 

0.001 maximum values of yield at short times are obtained with good mixing 

conditions and if k2/k1 ≤ 0.001, maximum values of yield are obtained at very 

long times with bad mixing conditions.   

(d) The effect of stoichiometry is very prevalent for C-P type reactions. 

Stoichiometry affects the maximum obtainable yield at short times for all mixing 

conditions and k2/k1, and at all k2/k1 ≥ 0.00001 for long times with a bad mixing 

condition.   
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3.4.3 Phase plots of variables for C-C and C-P reaction schemes for the purpose of 

design. 

 

The purpose of design graphs, in the context of mixing sensitive reactions, is to provide 

a direct method of predicting the yield of desired product without extensive calculations 

and investigation of the different variables. For our purposes, design graphs would 

incorporate the effects of stoichiometry, mixing and k2/k1 and the combinations of the 

three that could possibly give a certain specified yield of desired product. The purpose 

of the graphs would be to assist in the design of the following problem: 

“ If one has a certain mixing sensitive reaction and a target yield of desired product in 

mind, what range of values of non-dimensional reaction rate ratio and Damköhler would 

be required to ensure that the target yield of desired product will be obtained? If one of 

the variables is inadequate, is it still possible to obtain the said target yield? If it is 

possible, how much do the other variables need to change to accommodate for that 

inadequacy, if at all?” 

The figures should allow for a design space to be established within which decisions can 

be made based on different criterions and restrictions. 

 

Figures 3-10 and 3-11 are examples of such design curves for the C-C and C-P reaction 

schemes respectively. They show phase plots of Damköhler number ( x axis) versus the 

non-dimensional reaction rate ratio (y axis) for yields  of desired product of (a) 85% or 

more, (b) 95% or more and (c) 99% or more at a time of Da·t*=500. They are set up such 

that the axis intersection (origin) represents the most favourable conditions for both 

k2/k1 and Damköhler number. The figures have marked regions of required k2/k1 and Da 

for the different stoichiometries to obtain the specified yield. These figures are 

essentially a filtered summary of the results presented in the previous sections. The 

effect of stoichiometry quickly becomes evident as the yield desired is raised. For the C-

C cases, the regions common to all stoichiometries become smaller, i.e. the 

requirements on the k2/k1 and Da become a lot more stringent. Similarly, for C-P cases 3 

and 4, yields greater than 90% were unachievable at short times, so those 

stoichiometries do not show up in Figures 3-11 (b) and (c) 
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For these reaction schemes it is suggested that Da be kept below 100, but then k2/k1 

needs to be set accordingly to achieve the required yield and vice versa Not all 

stoichiometries may be able provide that yield for the chosen conditions, for example: 

For a C-C reaction scheme, a Da=100 and desired yield of 99% and above (Figure 3-10 

(c)), a  k2/k1<=0.0001 will provide that yield for all stoichiometries; but if k2/k1 >0.0001 

then only C-C stoichiometry Cases 3, 5, 6, 7 or 8 will provide a 99% yield. The C-P figures 

can be read in the same way.   

 

In order to link these results to physical process variables, we could assume that our 

diffusion time is equal to the Batchelor time scale which, by definition, is equivalent to 

the Kolmogorov time scale. Replacing the expression for the Kolmogorov time scale in 

our definition of Da gives: 

 
𝐷𝑎 = 𝑘1

′  
𝜌𝑇
𝑀
 
𝜖

 
𝜈

𝜀𝐷
 

1
2

 (3.5) 

 

where 𝜈 is the kinematic viscosity and 𝜀𝐷  is local rate of dissipation of Turbulent Kinetic 

Energy (TKE) per mass. Rearranging for 𝜀𝐷  gives: 

 

 

𝜀𝐷 = 𝜈  
𝑘1
′  
𝜌𝑇
𝑀 

𝜖

𝐷𝑎
 

2

 (3.6) 

 

This can be used to compare an existing equipment specification the Da and reaction 

rate ratio from the phase plot. For example, for a C-C reaction of the type Case 1 ( 𝜖 =

1 ), using typical values for water (𝜈 = 1 × 10−6 m2/s, 𝜌𝑇 = 1000 kg/m3, 𝑀 = 18 

kg/kmole), the range of 𝜀𝐷  for 1 ≤Da ≤ 10000 will be: 

 

3.09 × 10−11𝑘1
′ 2
≤ 𝜀𝐷 ≤ 3.09 × 10−3𝑘1

′ 2
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3.5 CONCLUSIONS 

 

The three effects of initial mixing condition, non-dimensional reaction rate ratio and 

reaction stoichiometry were investigated in detail using a 1D transient reaction-diffusion 

model for the Competitive-Consecutive (C-C) and Competitive-Parallel (C-P) form of 

mixing sensitive reactions. Several cases were investigated for each variable and the 

effects of each of the variables on the final yield of desired product were investigated. It 

was found that a smaller value of Damköhler number and non dimensional reaction rate 

ratio were desirable to obtain maximum yield of desired product for both the C-C and C-

P reaction schemes. It was also found that the stoichiometry of the reaction can affect 

the final yield of desired product considerably, and needs to be taken into consideration 

in the design of reactors for such reactions. There are favourable and unfavourable 

stoichiometries for both types of reaction schemes. The stoichiometric coefficient of the 

limiting reagent in the desired reaction affects the required mixing condition to ensure a 

good yield of desired product. The stoichiometry also affects the non-dimensional 

reaction rate ratio, k2/k1, and the requirements of the absolute reaction rates for each 

of the reactions changes with the reaction stoichiometry. The following ranges were 

found for the investigated variables: 

 

 Da ≤ 1 is well mixed for both the C-C and C-P type of mixing sensitive reaction. 

 For the C-C type reaction, k2/k1 ≤ 0.001 with Da≤100 will provide good values 

of yield   at short times, i.e. Da·t*=500. 

 For C-P Cases 1 and 2, k2/k1 ≤ 0.001 will provide maximum values of yield. For 

Cases 3 and 4, if k2/k1 ≥ 0.001 maximum values of yield at short times are 

obtained with good mixing conditions. If k2/k1 ≤ 0.001, maximum values of 

yield are obtained at very long times with bad mixing conditions.   

 For the C-C reaction scheme the effect of stoichiometry is a legitimate one, 

which can be large if the k2/k1 is unfavourable but vanishes at k2/k1≤0.001 for 

short times and good mixing. At longer times with bad mixing conditions, this 

effect of stoichiometry reappears and requires a much smaller value of k2/k1. 

The effect of stoichiometry is also important for C-P type reactions. It affects 
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the maximum obtainable yield at short times for all mixing conditions and 

k2/k1, and at all k2/k1 ≥ 0.00001 for long times with a bad mixing condition.   

 

Overall, all three variables need to be given consideration if one is to design a reactor 

for such mixing sensitive reactions. However, the mixing model used is primitive and 

unrealistic and doesn’t take into account the true nature of turbulent fluid flow and 

mixing that occurs in real reactor systems. Though this work strives to provide 

predictions of yield for the different conditions presented, the main aim was only to 

guide the reader on how to deal with the various variables and variable interactions that 

are present in reacting flows in order to better design a reactor for C-C and C-P mixing 

sensitive reactions. The intention of the authors is to explore the importance of the 

previously un-investigated effect the stoichiometry can have on the yield of desired 

product and to provide forms of the Damköhler number and reaction rate ratio for C-C 

and C-P mixing sensitive reactions with a general stoichiometry. This work was not 

intended to provide perfectly accurate predictions of yield of desired product. 

Experiments and fine tuning through trial and error when designing a reactor for these 

reactions are still recommended and will most definitely be required until a more 

realistic model can be implemented, such as the Engulfment model by Baldyga and 

Bourne (1999). Till then, the hope is that this work will reduce the number of 

experiments and trials that will need to be performed in order to adequately design a 

reactor for the C-C and C-P type of mixing sensitive reaction. 
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3.6 TABLES FOR CHAPTER 3 

 

Table 3-1. Stoichiometries of reaction schemes and the corresponding non-dimensional 

reaction rate ratio for the eight different C-C reactions. Da was always 𝐷𝑎 = 𝑘1
′  

𝜌𝑇

𝑀
 
𝐿𝐵

2

𝐷𝐵
. 

 

Case 
Reaction 
Scheme 

𝝐,𝜶,𝜷,𝜸 
𝒌𝟐
𝒌𝟏

 

1 
𝐴 + 𝐵 

𝑘1
′

  2P 

𝑃 + 𝐵 
𝑘2
′

  𝑆 
1, 2, 1, 1 

1

2

𝑘2
′

𝑘1
′  

2 
𝐴 + 𝐵 

𝑘1
′

  P 

𝑃 + 𝐵 
𝑘2
′

  𝑆 
1, 1, 1, 1 

1

2

𝑘2
′

𝑘1
′  

3 
𝐴 + 𝐵 

𝑘1
′

  P 

2𝑃 + 𝐵 
𝑘2
′

  𝑆 
1, 1, 2, 1 

1

2
 
𝜌𝑇
𝑀
 
𝑘2

′

𝑘1
′  

4 
𝐴 + 𝐵 

𝑘1
′

  2P 

2𝑃 + 𝐵 
𝑘2
′

  𝑆 
1, 2, 2, 1  

𝜌𝑇
𝑀
 
𝑘2

′

𝑘1
′  

5 
𝐴 + 𝐵 

𝑘1
′

  2P 

𝑃 + 2𝐵 
𝑘2
′

  𝑆 
1, 2, 1, 2 

1

2
 
𝜌𝑇
𝑀
 
𝑘2

′

𝑘1
′  

6 
𝐴 + 𝐵 

𝑘1
′

  P 

𝑃 + 2𝐵 
𝑘2
′

  𝑆 
1, 1, 1, 2 

1

2
 
𝜌𝑇
𝑀
 
𝑘2

′

𝑘1
′  

7 
𝐴 + 𝐵 

𝑘1
′

  P 

2𝑃 + 2𝐵 
𝑘2
′

  𝑆 
1, 1, 2, 2 

1

2
 
𝜌𝑇
𝑀
 

2 𝑘2
′

𝑘1
′  

8 
𝐴 + 𝐵 

𝑘1
′

  2P 

2𝑃 + 2𝐵 
𝑘2
′

  𝑆 

1, 2, 2, 2  
𝜌𝑇
𝑀
 

2 𝑘2
′

𝑘1
′  
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 Table 3-2. Stoichiometries of reaction schemes and the corresponding non-
dimensional reaction rate ratio and Damköhler number for the four different C-P 
reactions.  

 

Case 
Reaction 
Scheme 

𝝐,𝜸 
𝒌𝟐
𝒌𝟏

 𝑫𝒂 

1 
𝐴 + 𝐵 

𝑘1
′

  P 

𝐶 + 𝐵 
𝑘2
′

  𝑆 
1, 1 

𝑘2
′

𝑘1
′  𝑘1

′  
𝜌𝑇
𝑀
 
𝐿𝐵

2

𝐷𝐵
 

2 
𝐴 + 𝐵 

𝑘1
′

  P 

𝐶 + 2𝐵 
𝑘2
′

  𝑆 
1, 2 2  

𝜌𝑇
𝑀
 
𝑘2

′

𝑘1
′  𝑘1

′  
𝜌𝑇
𝑀
 
𝐿𝐵

2

𝐷𝐵
 

3 
𝐴 + 2𝐵 

𝑘1
′

  P 

𝐶 + 𝐵 
𝑘2
′

  𝑆 
2, 1 

1

2
 
𝜌𝑇
𝑀
 
−1 𝑘2

′

𝑘1
′  𝑘1

′  
𝜌𝑇
𝑀
 

2 𝐿𝐵
2

𝐷𝐵
 

4 
𝐴 + 2𝐵 

𝑘1
′

  P 

𝐶 + 2𝐵 
𝑘2
′

  𝑆 
2, 2 

𝑘2
′

𝑘1
′  𝑘1

′  
𝜌𝑇
𝑀
 

2 𝐿𝐵
2

𝐷𝐵
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3.7 FIGURES FOR CHAPTER 3 
 
 
 
 
 

 
Mixture Y              Mixture Z Mixture Y              Mixture Z 

(a) (b) 
 

Figure 3-1. Initial conditions for (a) C-C and (b) C-P reaction scheme simulations. 
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(a) k2/k1 = 1 

 
(b) k2/k1 = 0.1 

 
(c) k2/k1 = 0.01 

Figure 3-2. Plots of Yield of P vs. Da for decreasing k2/k1 ratios for the C-C cases. 
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(d) k2/k1 = 0.001 

 
(e) k2/k1 = 0.0001 

 
(f) k2/k1 = 0.00001 

Figure 3-2. Plots of Yield of P vs. Da for decreasing k2/k1 ratios for the C-C cases. 
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(a) C-C Stoichiometry Case 2:  𝐴 + 𝐵 
𝑘1
′

  P ; 𝑃 + 𝐵 
𝑘2
′

  𝑆 

 

 

(b) C-C Stoichiometry Case 7:  𝐴 + 𝐵 
𝑘1
′

  P ; 2𝑃 + 2𝐵 
𝑘2
′

  𝑆 

 
Figure 3-3. Plots of Yield of P vs. k2/k1 for two sample C-C stoichiometries. The curves 
represent the different Da. Curves for Da=0.01 lie exactly under the curves for Da=1.  
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(a) Da = 1 

 
(b) Da = 100 

 
(c) Da = 10000 

Figure 3-4. Plots of Yield of P vs. k2/k1 for various Da at Da·t*=500 for C-C cases. 
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Figure 3-5 Plot of Yield of P vs.k2/k1 for Da=10000 at Da·t*=50000 for C-C cases 
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(a) k2/k1 = 1 

 
(b) k2/k1 = 0.1 

 
(c) k2/k1 = 0.01 

Figure 3-6. Plots of Yield of P vs. Da for decreasing k2/k1 ratios for the C-P cases. 
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(d) k2/k1 = 0.001 

 
(e) k2/k1 = 0.0001 

 
(f) k2/k1 = 0.00001 

Figure 3-6. Plots of Yield of P vs. Da for decreasing k2/k1 ratios for the C-P cases. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 1 100 10000

Y
ie

ld
 o

f 
P
 (

Y
P
)

Damkohler Number  (Da) 

k2/k1=0.001
Da∙t*=500

Case 1

Case 2

Case 3

Case 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 1 100 10000

Y
ie

ld
 o

f 
P
 (

Y
P
)

Damkohler Number  (Da) 

k2/k1=0.0001
Da∙t*=500

Case 1

Case 2

Case 3

Case 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 1 100 10000

Y
ie

ld
 o

f 
P
 (

Y
P
)

Damkohler Number  (Da) 

k2/k1=0.00001
Da∙t*=500

Case 1

Case 2

Case 3

Case 4



 

72 
 

 

(a) C-P Stoichiometry Case 1:  𝐴 + 𝐵 
𝑘1
′

  P ; 𝐶 + 𝐵 
𝑘2
′

  𝑆 

 

 
 

(b) C-P Stoichiometry Case 3:  𝐴 + 2𝐵 
𝑘1
′

  P ; 𝐶 + 𝐵 
𝑘2
′

  𝑆 

 
Figure 3-7. Plots of Yield of P vs. k2/k1 for two sample C-P stoichiometries. The curves 
represent the different Da. Curves for Da=0.01 lie exactly under the curves for Da=1.  
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(a) Da = 1 

 
(b) Da = 100 

 
(c) Da = 10000 

Figure 3-8. Plots of Yield of P vs. k2/k1 for various Da at Da·t*=500 for C-P cases. 
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Figure 3-9. Plot of Yield of P vs.k2/k1 for Da=10000 at Da·t*=50000 for C-P cases 
 
  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.000010.00010.0010.010.11

Y
ie

ld
 o

f 
P
 (

Y
P
)

Non-dimensional reaction rate ratio for P  (k2/k1) 

Da=10000
t*=5

Case 1

Case 2

Case 3

Case 4



 

75 
 

 
(a) YP is at least 0.85 (85%) 

 
(b) YP is at least 0.95 (95%) 

 
(c) YP is at least 0.99 (99%)  

Figure 3-10. Design spaces for Yield of P for Da and k2/k1 at Da·t*=500 for C-C cases. 
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(a) YP is at least 0.85 (85%) 

 
(b) YP is at least 0.95 (95%) 

 
(c) YP is at least 0.99 (99%)  

Figure 3-11. Design spaces for Yield of P for Da and k2/k1 at Da·t*=500 for C-P cases. 
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4 

Conclusions and Future Work  

 

4.1 CONCLUSIONS 

 

Mixing sensitive reactions are reactions which are particularly sensitive to the rate at 

which the reactants are brought together, i.e. how fast they are mixed. Two types of 

mixing sensitive reactions have been studied: the Competitive-Consecutive reaction 

scheme, which involves two competing reactions where the second unwanted reaction 

consumes the desired product from the first reaction, and the Competitive-Parallel 

reaction scheme where two reactions compete for a limiting reagent to form a desired 

and undesired product. The effect of mixing and relative reaction rates of the competing 

reactions have been investigated previously and it is known that mixing can affect the 

product distribution significantly. However, though these reactions have been studied in 

the past, the work has been concentrated on the investigation of a single stoichiometry 

for each of the reaction schemes. This work intended to investigate whether the 

stoichiometry of the reaction plays a major role in the final yield of desired product 

obtainable.     

 

A model was developed that successfully captured the effect of mixing, via the 

Damköhler number, the relative reaction rates, via a non-dimensional reaction rate 

ratio, and the stoichiometry of the reaction. General forms of the reactions were 

assumed and mass balance equations were derived. From the equations a general form 

of the Damköhler number that was common for both reaction types and all 

stoichiometries and a non-dimensional reaction rate ratio that was specific to each 
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reaction type were obtained. Both expressions exhibit a dependence on the 

stoichiometric coefficients of the reaction scheme. There is also an effect of 

stoichiometry evident in the modelling equations. 

 

It was found that minimizing the Damköhler number and the non-dimensional reaction 

rate ratio would maximize the yield of desired product of the reaction for both 

Competitive-Consecutive and Competitive-Parallel reaction schemes. The stoichiometry 

of the reaction affected the requirements of well mixed Damkohler number and 

reaction rate ratio that would guarantee maximum yield of desired product. These 

qualitative descriptions were given quantitative ranges through an extensive 

investigation of the variables and were found to be: 

 

 Da ≤ 1 is well mixed for both the C-C and C-P type of mixing sensitive reaction. 

 For the C-C type reaction, k2/k1 ≤ 0.001 with Da≤100 will provide good values 

of yield   at short times, i.e. Da·t*=500. 

 For C-P Cases 1 and 2, k2/k1 ≤ 0.001 will provide maximum values of yield. For 

Cases 3 and 4, if k2/k1 ≥ 0.001 maximum values of yield at short times are 

obtained with good mixing conditions. If k2/k1 ≤ 0.001, maximum values of 

yield are obtained at very long times with bad mixing conditions.   

 For the C-C reaction scheme the effect of stoichiometry is a legitimate one, 

which can be large if the k2/k1 is unfavourable but vanishes at k2/k1≤0.001 for 

short times and good mixing. At longer times with bad mixing conditions, this 

effect of stoichiometry reappears and requires a much smaller value of k2/k1. 

The effect of stoichiometry is also important for C-P type reactions. It affects 

the maximum obtainable yield at short times for all mixing conditions and 

k2/k1, and at all k2/k1 ≥ 0.00001 for long times with a bad mixing condition.   

 

These results were interpreted into charts of requirements for mixing and relative rate 

ratio developed for desired values of yield for both types of reaction schemes. Overall, 

all three variables need to be given consideration if one is to design a reactor for such 

mixing sensitive reactions. However, the mixing model used is primitive and unrealistic 
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and doesn’t take into account the true nature of turbulent fluid flow and mixing that 

occurs in real reactor systems.  

 

This confirmation of the model allows for future work where the effects of 

stoichiometry, more realistic mixing models and k2/k1 ratios and the interactions 

between them will be investigated with the intention of producing charts that may help 

in prediction of the yield for a general mixing sensitive reaction. Though the model 

allows for investigation of the effects of initial concentrations of reactants, this was not 

done in the current study and this is another possible avenue for further exploration. It 

is also acknowledged that the 1D model is not a very accurate depiction of real 

turbulent mixing, but this investigation was meant to be a first foray into the effect of 

stoichiometry of mixing sensitive reactions, so simplicity was desirable. Added 

complexities like introducing stretching and using a lamellar ‘barcode’ model could 

possibly be integrated into the model in the future to better approximate the real 

industrial situation. 

 

4.2 FUTURE WORK  

 
Possible recommendations for future work are as follows: 

 

 Introduce more complex models of fluid flow into the model such as taking into 

account laminar stretching of the striations, 2D deformations and eventually 3D 

deformation, similar to the collective work of Cox et al and Baldyga and Bourne. 

The eventual goal would be to somehow integrate the reaction diffusion 

equations into the Engulfment model of Baldyga and Bourne (1999), since this is 

regarded as the best micro mixing model currently available. 

 

 Introduce more complex forms of the rate expressions used for the reactions, 

i.e. use the full Arrhenius form of the rate constants instead of assuming them 

to be constant. This would include the effects of temperature on the reaction 

rate. 
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 Compare the results of this study to some real experimental data for micro 

mixing reactions with varied stoichiometries and see if similar trends are 

observed in the yield of desired product. This would allow us to obtain ranges of 

the Damköhler number which are encountered experimentally, which could 

then be directly used in the model instead of using the suggested theoretical 

values.  

 

 Eventually relate this Lagrangian micro-mixing model to the more complex CFD 

models, similar to how viscous sub layer models are used for computational 

modelling of turbulent flows. 

 

 Expand the model to include the meso-mixing length scales, so that the 

assumption of being below the Kolmogorov length scale can be challenged and 

that the model more accurately represents the real system, where diffusion 

occurs at the same time as reduction of scale of segregation instead of being 

turned on after a convenient scale is obtained. This could possibly be done using 

a Gaussian distribution of reactants instead of uniform slabs, like Cox et al did 

previously, but would also require the inclusion of reaction effects with 

reduction of scale instead of just diffusion before reaction occurs.   

 

 Possibly figure out a better way of defining what a ‘fast’ and ‘slow’ reaction is by 

using the rate of reaction instead of just the rate constants. 

 

 Figure out how reactions can be integrated into spatial statistical measures of 

mixing for the intensity, scale and reduction of segregation. 

 

 Possibly extend the model to heterogeneous reactions instead of just reactions 

in a homogeneous phase. 

 

 Changing the initial conditions of the reactant concentrations to other than 

stoichiometric could be interesting as well. 
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A 
Appendix A 
 
A.1 Summary 
 
This Appendix includes all figures of results plotted for Chapter 3 with the tables of the 
corresponding YP data obtained from COMSOL. Section A.2 includes all the Competitive-
Consecutive reaction scheme figures and corresponding data. Section A.3 includes all 
the Competitive-Parallel reaction scheme figures and corresponding data. 
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A.2 Competitive-Consecutive Reaction Scheme 

A.2.1 Plots and data of YP versus Damkohler number with curves of the stoichiometry 

cases for different non-dimensional reaction rate ratios. 

 

 
 

Figure A-1. Plot of Yield of P vs Da for k2/k1=1 at Da·t*=500 for C-C cases 
 
 

Table A-1. Data for Yield of P vs Da for k2/k1=1 at Da·t*=500 for C-C cases 
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Figure A-2. Plot of Yield of P vs Da for k2/k1=0.1 at Da·t*=500 for C-C cases 

 
 
 

Table A-2. Data for Yield of P vs Da for k2/k1=0.1 at Da·t*=500 for C-C cases 
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Figure A-3. Plot of Yield of P vs Da for k2/k1=0.01 at Da·t*=500 for C-C cases 

 
 

 
Table A-3. Data for Yield of P vs Da for k2/k1=0.01 at Da·t*=500 for C-C cases 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 1 100 10000

Y
ie

ld
 o

f 
P
 (

Y
P
)

Damkohler Number  (Da) 

k2/k1=0.01
Da∙t*=500

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

k 2 /k 1 = 0.01 Da∙t*= 500

Yield of P

Da 0.01 1 100 10000

Case 1 0.897284 0.897207 0.851133 0.239003

Case 2 0.914385 0.91439 0.880128 0.248073

Case 3 0.933045 0.933027 0.917807 0.345446

Case 4 0.927368 0.927491 0.908424 0.340221

Case 5 0.977843 0.977854 0.935599 0.326346

Case 6 0.985152 0.985142 0.958186 0.333472

Case 7 0.991068 0.991066 0.982766 0.411861

Case 8 0.989124 0.989115 0.976673 0.407097



 

89 
 

 

 
Figure A-4. Plot of Yield of P vs Da for k2/k1=0.001 at Da·t*=500 for C-C cases 

 
 
 

Table A-4. Data for Yield of P vs Da for k2/k1=0.001 at Da·t*=500 for C-C cases 
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Figure A-5. Plot of Yield of P vs Da for k2/k1=0.0001 at Da·t*=500 for C-C cases 

 
 
 

Table A-5. Data for Yield of P vs Da for k2/k1=0.0001 at Da·t*=500 for C-C cases 
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Figure A-6. Plot of Yield of P vs Da for k2/k1=0.00001 at Da·t*=500 for C-C cases 

 
 
 

Table A-6. Data for Yield of P vs Da for k2/k1=0.00001 at Da·t*=500 for C-C cases 
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A.2.2 Plots and data of YP versus Damkohler number with curves of non-dimensional 

reaction rate ratios for individual stoichiometry cases. 

 

 

 
Figure A-7. Plot of Yield of P vs Da for C-C Case 1 for all k2/k1 at Da·t*=500  

 
 
 

Table A-7. Data for Yield of P vs Da for C-C Case 1 for all k2/k1 at Da·t*=500  
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Figure A-8. Plot of Yield of P vs Da for C-C Case 2 for all k2/k1 at Da·t*=500  

 
 
 

Table A-8. Data for Yield of P vs Da for C-C Case 2 for all k2/k1 at Da·t*=500  
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Figure A-9. Plot of Yield of P vs Da for C-C Case 3 for all k2/k1 at Da·t*=500  

 
 
 

Table A-9. Data for Yield of P vs Da for C-C Case 3 for all k2/k1 at Da·t*=500  
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Figure A-10. Plot of Yield of P vs Da for C-C Case 4 for all k2/k1 at Da·t*=500  

 
 
 

Table A-10. Data for Yield of P vs Da for C-C Case 4 for all k2/k1 at Da·t*=500  
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Figure A-11. Plot of Yield of P vs Da for C-C Case 5 for all k2/k1 at Da·t*=500  

 
 
 

Table A-11. Data for Yield of P vs Da for C-C Case 5 for all k2/k1 at Da·t*=500  
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Figure A-12. Plot of Yield of P vs Da for C-C Case 6 for all k2/k1 at Da·t*=500  

 
 
 

Table A-12. Data for Yield of P vs Da for C-C Case 6 for all k2/k1 at Da·t*=500  
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Figure A-13. Plot of Yield of P vs Da for C-C Case 7 for all k2/k1 at Da·t*=500  
 

 
 

Table A-13. Data for Yield of P vs Da for C-C Case 7 for all k2/k1 at Da·t*=500  
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Figure A-14. Plot of Yield of P vs Da for C-C Case 8 for all k2/k1 at Da·t*=500  

 
 
 

Table A-14. Data for Yield of P vs Da for C-C Case 8 for all k2/k1 at Da·t*=500  
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A.2.3 Plots and data of YP versus non-dimensional reaction rate ratio with curves of 

the stoichiometry cases for different Damkohler numbers. 

 

 

 
Figure A-15. Plot of Yield of P vs k2/k1 for Da=0.01 at Da·t*=500 for C-C cases 

 
 
 

Table A-15. Data for Yield of P vs k2/k1 for Da=0.01 at Da·t*=500 for C-C cases 
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Figure A-16. Plot of Yield of P vs k2/k1 for Da=1 at Da·t*=500 for C-C cases 

 
 
 

Table A-16. Data for Yield of P vs k2/k1 for Da=1 at Da·t*=500 for C-C cases 
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Figure A-17. Plot of Yield of P vs k2/k1 for Da=100 at Da·t*=500 for C-C cases 

 
 
 

Table A-17. Data for Yield of P vs k2/k1 for Da=100 at Da·t*=500 for C-C cases 
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Figure A-18. Plot of Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-C cases 

 
 
 

Table A-18. Data for Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-C cases 
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Figure A-19. Plot of Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-C cases with YP 

axis going only to 0.5 
 
 
 

Table A-19. Data for Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-C cases with YP 
axis going only to 0.5 
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Figure A-20. Plot of Yield of P vs k2/k1 for Da=10000 at Da·t*=50000 for C-C cases 

 
 
 

Table A-20. Data for Yield of P vs k2/k1 for Da=10000 at Da·t*=50000 for C-C cases 
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A.2.4 Plots and data of YP versus non-dimensional reaction rate ratio with curves of 

Damkohler numbers for individual stoichiometry cases. 

 

 

 
Figure A-21. Plot of Yield of P vs k2/k1 for C-C Case 1 for all Da at Da·t*=500 

 
 
 

Table A-21. Data for Yield of P vs k2/k1 for C-C Case 1 for all Da at Da·t*=500  
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Figure A-22. Plot of Yield of P vs k2/k1 for C-C Case 2 for all Da at Da·t*=500 

 
 
 

Table A-22. Data for Yield of P vs k2/k1 for C-C Case 2 for all Da at Da·t*=500   
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Figure A-23. Plot of Yield of P vs k2/k1 for C-C Case 3 for all Da at Da·t*=500 

 
 
 

Table A-23. Data for Yield of P vs k2/k1 for C-C Case 3 for all Da at Da·t*=500 
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Figure A-24. Plot of Yield of P vs k2/k1 for C-C Case 4 for all Da at Da·t*=500 

 
 
 

Table A-24. Data for Yield of P vs k2/k1 for C-C Case 4 for all Da at Da·t*=500 
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Figure A-25. Plot of Yield of P vs k2/k1 for C-C Case 5 for all Da at Da·t*=500 

 
 
 

Table A-25. Data for Yield of P vs k2/k1 for C-C Case 5 for all Da at Da·t*=500 
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Figure A-26. Plot of Yield of P vs k2/k1 for C-C Case 6 for all Da at Da·t*=500 

 
 
 

Table A-26. Data for Yield of P vs k2/k1 for C-C Case 6 for all Da at Da·t*=500 
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Figure A-27. Plot of Yield of P vs k2/k1 for C-C Case 7 for all Da at Da·t*=500 
 
 
 

Table A-27. Data for Yield of P vs k2/k1 for C-C Case 7 for all Da at Da·t*=500 
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Figure A-28. Plot of Yield of P vs k2/k1 for C-C Case 8 for all Da at Da·t*=500 
 
 
 

Table A-28. Data for Yield of P vs k2/k1 for C-C Case 8 for all Da at Da·t*=500 
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A.3 Competitive-Parallel Reaction Scheme 

A.3.1 Plots and data of YP versus Damkohler number with curves of the stoichiometry 

cases for different non-dimensional reaction rate ratios. 

 

 
 

Figure A-29. Plot of Yield of P vs Da for k2/k1=1 at Da·t*=500 for C-P cases 
 
 
 

Table A-29. Data for Yield of P vs Da for k2/k1=1 at Da·t*=500 for C-P cases 
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Figure A-30. Plot of Yield of P vs Da for k2/k1=0.1 at Da·t*=500 for C-P cases 

 
 
 

Table A-30. Data for Yield of P vs Da for k2/k1=0.1 at Da·t*=500 for C-P cases 
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Figure A-31. Plot of Yield of P vs Da for k2/k1=0.01 at Da·t*=500 for C-P cases 

 
 
 

Table A-31. Data for Yield of P vs Da for k2/k1=0.01 at Da·t*=500 for C-P cases 
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Figure A-32. Plot of Yield of P vs Da for k2/k1=0.001 at Da·t*=500 for C-P cases 

 
 
 

Table A-32. Data for Yield of P vs Da for k2/k1=0.001 at Da·t*=500 for C-P cases 
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Figure A-33. Plot of Yield of P vs Da for k2/k1=0.0001 at Da·t*=500 for C-P cases 

 
 
 

Table A-33. Data for Yield of P vs Da for k2/k1=0.0001 at Da·t*=500 for C-P cases 
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Figure A-34. Plot of Yield of P vs Da for k2/k1=0.00001 at Da·t*=500 for C-P cases 

 
 
 

Table A-34. Data for Yield of P vs Da for k2/k1=0.00001 at Da·t*=500 for C-P cases 
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A.3.2 Plots and data of YP versus Damkohler number with curves of non-dimensional 

reaction rate ratios for individual stoichiometry cases. 

 

 

 
Figure A-35. Plot of Yield of P vs Da for C-P Case 1 for all k2/k1 at Da·t*=500  

 
 
 

Table A-35. Data for Yield of P vs Da for C-P Case 1 for all k2/k1 at Da·t*=500  
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Figure A-36. Plot of Yield of P vs Da for C-P Case 2 for all k2/k1 at Da·t*=500  

 
 
 

Table A-36. Data for Yield of P vs Da for C-P Case 2 for all k2/k1 at Da·t*=500  
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Figure A-37. Plot of Yield of P vs Da for C-P Case 3 for all k2/k1 at Da·t*=500  

 
 
 

Table A-37. Data for Yield of P vs Da for C-P Case 3 for all k2/k1 at Da·t*=500  
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Figure A-38. Plot of Yield of P vs Da for C-P Case 4 for all k2/k1 at Da·t*=500  

 
 
 

Table A-38. Data for Yield of P vs Da for C-P Case 4 for all k2/k1 at Da·t*=500  
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A.3.3 Plots and data of YP versus non-dimensional reaction rate ratio with curves of 

the stoichiometry cases for different Damkohler numbers. 

 

 

 
Figure A-39. Plot of Yield of P vs k2/k1 for Da=0.01 at Da·t*=500 for C-P cases 

 
 
 

Table A-39. Data for Yield of P vs k2/k1 for Da=0.01 at Da·t*=500 for C-P cases 
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Figure A-40. Plot of Yield of P vs k2/k1 for Da=1 at Da·t*=500 for C-P cases 

 
 
 
 

Table A-40. Data for Yield of P vs k2/k1 for Da=1 at Da·t*=500 for C-P cases 
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Figure A-41. Plot of Yield of P vs k2/k1 for Da=100 at Da·t*=500 for C-P cases 

 
 
 
 

Table A-41. Data for Yield of P vs k2/k1 for Da=100 at Da·t*=500 for C-C cases 
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Figure A-42. Plot of Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-P cases 

 
 
 
 

Table A-42. Data for Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-P cases 
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Figure A-43. Plot of Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-P cases with YP 

axis going only to 0.5 
 
 
 

Table A-43. Data for Yield of P vs k2/k1 for Da=10000 at Da·t*=500 for C-P cases with YP 
axis going only to 0.5 
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Figure A-44. Plot of Yield of P vs k2/k1 for Da=10000 at Da·t*=50000 for C-P cases 

 
 
 
 

Table A-44. Data for Yield of P vs k2/k1 for Da=10000 at Da·t*=50000 for C-P cases 
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A.3.4 Plots and data of YP versus non-dimensional reaction rate ratio with curves of 

Damkohler numbers for individual stoichiometry cases. 

 

 

 
Figure A-45. Plot of Yield of P vs k2/k1 for C-C Case 1 for all Da at Da·t*=500 

 
 
 

Table A-45. Data for Yield of P vs k2/k1 for C-P Case 1 for all Da at Da·t*=500  
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Figure A-46. Plot of Yield of P vs k2/k1 for C-C Case 2 for all Da at Da·t*=500 

 
 
 
 

Table A-46. Data for Yield of P vs k2/k1 for C-P Case 2 for all Da at Da·t*=500   
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Figure A-47. Plot of Yield of P vs k2/k1 for C-C Case 3 for all Da at Da·t*=500 

 
 
 
 

Table A-47. Data for Yield of P vs k2/k1 for C-P Case 3 for all Da at Da·t*=500 
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Figure A-48. Plot of Yield of P vs k2/k1 for C-C Case 4 for all Da at Da·t*=500 

 
 
 

 
Table A-48. Data for Yield of P vs k2/k1 for C-P Case 4 for all Da at Da·t*=500 
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