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ABSTRACT .
‘ Ay :
In this thesis we consider the app11cation of certain analytica]

techniques wh1ch have been developed in recent years to &

:mine various
formal aspects of these techn1ques are not w1thgv;} x bl ‘ mphasis
here is with regard to the ca]cu]ation and eva]ua"‘ 1 4
accessible quantitiés. In the case of magnetism it is shown "how the 'y
real time quantum field theoret1ca1 formu]at1on of quantum stat1st1ca1
mechan1cs known as thermofield dynam1cs may be ﬁpp11ed together with
 the Ward-Takahashi identities, to evaluate the finite temperature effects
of the sp1n fluctuations on various observablé quant1t1es within the
itinerant electron model of ferromagnet:c metals. Results are obtained
in beth the ferromagnetic and the paramagnetic domains,.
The latter part of the thesis concerns itself with a rather de-
ta?]ed egamihation‘ofkthe rather comp1ex_and'subt1e interplay between
ferromaqnetism anq suberéonouttivity that occurs invferromagnetic super-
conductors, such as. the Chevrel ahd the RERh4 4 compounds. A unified -

treatment of the d-f interaction together w1th the electromagnetic

' 1nteractlon is presented and applied to the’ analys1s of the m1xed state

i din ErRh4B4, together w1th a deta11ed comparlson with some recent exper1-

»menta] ‘results. The method successfu11y accounts for the first order
phase trans1t1on to the normal state at H c2? observed exper1menta11y in

t

a very natura1 way.

o o ‘ ’ °
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CHAPTER 1
~ INTRODUCTION

‘In thts work we examfne'certain‘theoretfca1 aspects.of magnetism
and superconduct1v1ty in meta]s The two main areas of.investigation'
concern f1rst1y, ‘the role of the spin fluctuations in determining the
t1ntte temperature propert1es of meta111c ferromagnet1c systems, based
on the‘1t1nerant e1ectron mode1 in both ‘the ferromagnet1c and paramag-
net1c doma1ns Second1y, the formu]at1on and app11cat1on of a un1f1ed
theory for ferromagnet1c superconductors, wh1ch cons1ders both the |
e1ectromagnet1c and exchange’ coup11ng between the superconduct1ng cur-
rent and the magnet1c ions. -In both areas much of the theoret1ca1 con-
_'tent is based on ana]yt1ca1 methodSwwh1ch have been deve1oped w1th1n
. the 1ast decade or 0. In the case of{the meta111c ferromagnets v1r-
tually the ent1re ana]ys1s relies on the techn1que in real time. quantumi
stat1st1ca1 mechan1cs referred to as Thermo “Field Dynamics (TFD) The

L1,

TFD forma]1sm developed in the early sevent1es ] has the advantage
that near]y a11 the dev1ces of convent1ona1 Zero temperature f1e1d

‘theory can be genera11zed to the case .of f1n1te temperature Th1s fact ;
of the TFD formalism allows us to 1nvest1gate ‘among other th1ngs, the

1mportant role played by the ward Takahash1[ 41 1dent1t1es (w T 1den-.

't1t1es) in determ1n1ng the temperature dependence of var1ous quant1t1es

~im itinerant e1ectron ferromagnets In the case of the magnet1c super-.

conductors the work presented here 1s based 1arge1y on the approach to

.the e1ectromagnet1c propert1es of superconductors p1oneered by Umezawa

d[] 5,6 7]

and’his col]aborators, known as -the. boson metho This method

based.on certa1n structural aspects concerning the operator rea11zat1on



of Quantum E]ectro Dynam1cs (QED) im which the phase symmetry of the
e]ectron fields is spontaneous]y broken, has: seen W1despread app11ca-

tion w1th regard to the magnet1c propert1es of both magnet1c and non-

/ 71

magnet1c superconductors
}f . While the formal aspects of TFD and the boson method are of con-'
4 s

lf/s1derab1e 1nterest, and w111 be touched on in subsequent chapters, the
',f{\\ content of th1s thes1s concerns 1tse1f ma1n1y ‘with the app11cat1ve
aspects of these techn1ques and how they may be used to. obta1n exper1-
menta]]y relevant resu]ts and procedures In the case of the 1t1nerant‘
e1ectron ferromagnet1c system the TFD forma11sm s used to construct a-”
1ow temperature expans1on in wh1ch the var1ous terms appear1ng in the

expans1on may be expressed in terms of; certa1h vert1ces ca]cu]ated at

JZero temperature The pract1ca1 nature of th1s expans1on ‘scheme is

'demonstrated by the ca]cu1at1on of thelﬁﬁmperature dependence of var1ousi;-
measurable quant1t1es, ar1s1ng from the. thermal exc1tat1on of the
‘magnons, us1ng on1y the symmetry requ1rements of the W-T 1dent1t1es
The ro]e of the W-T 1dent1t1es 1n ferromagnet1c 1t1nerant e]ectron sys-‘
tems are further exp]ored w1th1n the context of the TFD forma11sm in:
the paramagnet1c reg1on Here it is shown how they may be used to |
~ obtain an exact expression for the stat1c transverse suscept1b111ty,
1nc1ud1ng vertex corrections, in terms of the e1ectron se1f energy The'k
resu1tant express1on is used to exam1ne correct1ons to the Random Phase
Approx1mat10n (RPA) ar1s1ng from sp1n f1uctuat1ons 1n the 1oca1 cdntact
»;51nteract1on mode], and a rather e1egant and . systemat1c der1vat1on of
°ear11er work: (the Paramagnon Approx1mat1on[ 1 and the: Self Consis-
ftent Renorma11zat1on[ ] (SCR) scheme).is preSented. Such correct1ons

areeknown-to be of crucial importance in the analysis of the magnetic



‘properties ot 3HeL83' and a c]assjof materia1s known as-weak‘itinerantf
ferromagnets[ J | ' L ‘ . :
| ¥1m11ar1y the work perta1n1ng to- the ferromagnet1c superconduc-'
' tors, concerns 1tse1f 1arge1y with the app11cat1on of the boson method‘_‘
’~rather than the more forma] though by no means tr1v1a1 aspects, sur-
A_roundlng the rather subt]e 1nterp1ay between the d1amagnet1c nature ofi
. the pers1stent current and the ferromagnet1c nature of the magnet1c
~1ons.' Indeed the forma11sm presented here was developed in order to'»h.‘
nprov1 prec1se and rea11st1c ana]ys1s of the recent]y reported[ 0 ]1]
E measurements concern1ng the magnet1c propert1es of s1ngle Crysta1 :
vErRh4B4 The app11cation of the forma11sm to the ana1ys1s of the m1xed:
z~state in ErRh4B4 successful]y accounts for many of the pecu11ar proper— B
ties of these resu]ts _ ’ ‘

The p]an of the thes1s is as fo]]ows ' In‘Chapter‘Z .we deal‘v
-'w1th some theoret1ca1 pre11m1nar1es. Sect1on 2. 1 conta1ns a br1ef
_out11ne of the h1story of rea1 t1me methods in Quantum Stat1st1ca1
Mechan1cs, some of the prob]ems that have been encountered and to what'
'; extent they have been overcome This is fo11owed by a fa1r1y deta1]ed o
kd1scuss1on of the TFD forma11sm whlch it 1s hoped will prov1de the A//]
reader w1th some 1ns1ght 1nto the under1y1ng pr1nc1p1es together w1tn/
the var1ous techn1ca1 and computat1ona1 dev1ces ava11ab1e The. re/son
for such a deta11ed treatment is twofo1d F1rst of all, s1nce/the
- TFD forma11sm is centra1 to much of the work presented in th1s thes1s,
it is worthwh11e to cons1der the forma11sm in some depth. Second]y,
\wh11e the TFD forma11sm is f1nd1ng an 1ncreas1ng number of important

»app11cat1ons An both re1at1v1/ttc f1e1d theory and non- relat1v1st1c -

| many body theory, the method does not as yet en30y w1despread



R -

’app11cat10n Indeed some of the ca1cu1at1ons presented here were -
’amongst some of the ear11er app11cat1ons of the techn1oue

In Sect1on 2.2 a discuss1on of what have come to*be known as
.‘Ward Takahash1 (w T) 1dent1t1es is prov1ded CIn part1cu1ar, it dis
shown how the canon1ca1;Dature of the TFD forma11sm prov1des for an E
extreme]y stra1ghtforward extens1on of the 1dent1t1es to f1n1te tem- .
h perature Partxcu1ar emphas1s is g1ven to ‘the case of spontaneously‘

"broken symmetry and how the arguments should be. modified to take 1nto

- ,account the features pecu11ar fo th1s s1tuat1on Th1s d1scuss1on

prov1des us with not on]y a number of exact re1at1ons, wh1ch will
_'prove to be extreme1y useful but also prov1des the conceptua1 under-
vp1nn1ngs for much of our subsequent\dl\cuss1on of the ferromagnet1c '

" and superconduct1ng states, both of wh1ch co\respond to states w1th

. spontaneously broken symmetry o o _5\§\\ 4 |

| Chapter 3 beg1ns w1th a br1ef rev1ew of the waFTo:s'theoretica],!

‘ ~ .
- approaches- to ferromagnet1sm in meta]s and the d1st1nct1ond§ﬁwuggljifi
; 1oca11zed mode] and the . 1t1nerant mode] 1n Sect1on 3. 1 It 1s%shown %;\; :
_tythat wh11e the 1t1nerant mode1 has had - remarkab1e success 1n the deter-
m1nat1on'of the ground state propert1es of many ferromagnet1c meta]s
c1ud1ng the fam111ar 3d trans1t1on meta1s 1t has 50 far fa11ed to account
for a wide range of the f1n1te temperature propert1es It is argued that_v
‘;th1s fa11ure must be’Fega;ded as a result of the approx1mat1on schemes
used rather than the basic mode1 itself. We c1ose Sect1on 3.1 with a
derivation of the W-T re1at16ns\ar1s1ng out of the assumed spin rota-
tional. 1nvar1ance of the system It is shown how the ferromagnet1c

state is to be regarded as one in wh1ch the spin rotat1ona1 1nvar1ance

'1s spontaneous1y broken and how Go]dstone S theorem 1s sat1sf1ed through



© [

the”appearance‘of‘the magnon excitations in,the.tranSVerse susceptibi-j
.‘1ity;"',- o :_,," | _ (ﬁ h -
B In Sections 3.2 and 3 3 we consider the 1mportance to var1ous |
» observab]e quant1t1es of the ef%ects ar1s1ng from the spin f]uctuat1ons
) and how they can be ca1cu1ated in ferromagnet1c 1t1nerant electron
fsystems Particu1ar emphas1s 1s g1ven to the 1mportant role played by

';the N T re]at1ons Sect1on 3 2, for 1nstance, cons1ders the effect on

'the 1ow temperature propert1es of such systems ar151ng from the therma] -

»exc1tat1on of the magnon modes It 1s shown how an express1on for the
»contr1but1on from the therma] magnon dens1ty may be obta1ned in terms
fof certa1n zero temperature vert1ces fo11ow1ng a 1ow temperature expan;
_s1on An 1mportant aspect of th1s work is the resu1t ‘that . the Teading
_therma1 contr1but1on ar1s1ng from the magnon modes ‘may be computed |
entwre]y on the bas1s of symmetry by means of the w T re]at1ons From
;th1s 1t is shown how the ce]ebrated Bloch T 3/2 for the magnet1zat1on,-
”together w1th the resu]t that the magnon correct1ons to the magnon
exc1tat1on spectra is of order T5/2 may be obtained ‘in an ent1re1y

7 model- 1ndependent fash1on and as such shou]d be regarded as a str1ct
requ1rement of the sp1n rotat1ona1 1nvar1ance "

In Sect1on 3 3 the W-T relations are used to -obtain an express1on
:for the stat1c transverse susceptibility in terms: of the electron self
B energy.together w1th the response of the system to some sma]l symmetry '
break1ng terms The resu]t is used: to obta1n an ‘expression for the
rcorrect1ons to the RPA ar1s1ng from the sp1n f]uctuat1ons and it s
shown what approx1mat1ons are- requ1red in order to obta1n the results

Cof ear11er work[8~ ]. The ana]ys1s is 1nterest1ng from two po1nts of

“view. First of all it prov1des a rather elegant and systematwc



derlvation of prev1ous approx1mat1on schemes and'secondly it‘pr0vides
a basis from wh1ch one may consider h1gher order corrections as we11
o asa un1f1ed treatment of both the ferromagnet1c nd paramagnetic
'doma1ns o
In Chapter 4 we turn our attent1on to the ana]ys1s of the mag-.
netic superconductors In Sect1on 4.1 a br1ef rev1e& of the recent - »h
exper1menta] and theoretical deve]opments, fo110w1ng the discovery of
the rare edarth ternary supt;'rconductors[12 ]3] 1n the late sevent1es 1s
'g1ven Due to the relative weakness of the d f 1nteract1on much of
_ the qua11tat1ve nature of these mater1a1s may be understood purely 1n
';terms of the electromagnetic 1nteract1on between the perslstent currentv
and the rare earth ions. Perhaps the most 1mportant phenonmnon ar1s1ng
v frpm the‘eTectromagnetic 1nteract1on "is the’ screen1ng of the magnet1c

nal,

‘moments by the pers1stent current This can be shown theoret1ca11y

and g1ves rise to the. ex1stence of a’ narrow co-existent region just above

[14 15,16, 17 18]

the re-entrant temperature Tec Furthermore the

appearance of the co -existence phase be1ow Tp, the co-ex1stence tem—
perature, is accompan1ed by the ex1stence of an order1ng of the rare
earth spins, w1th a relatively 1ong wave]ength modulat1on[14 15,16 1718]
Both the screening of the rare earth sp1ns[T?tZO] and the ex1stence of
‘a moduiated sp1n phase[21 122, 23 24,25] above the re- entrant temperature
have been conf1rmed exper1menta11y wh11e these resu1ts 111ustrate the
important ro1e played by the e1ectromagnet1c 1hteract1on certa1n fea-
tures‘of these compounds do require a unified treatment of both the d-f
-and the electromagnetic interaction. This is partiCu1ar1y true of the
recent measurements on the magnetic properties of single crystal

Er Rh4B bo, ]]]. Such a formulat1on of ferromagnetic superconductors

* B
@
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is presented in Section- 4. 2. In thié the pair breaking effects induced

through the d-f interaction are cons1dered together w1th the electro-.

magnetic 1nteract1on The pair breaking effects cons1dered 1nc1ude the

Zeeman sp11tt1ng of the e1ectron sp1ns due to the effective f1e|q of
the rare -earth jons together with the scatter1ng of the electrons by

the 1oca11zed\spin fluctuations. It will be shown how the e?fect of

"~ the scatter1ng by the localized spin f1uctuat1ons can be rea11zed

. the calculation of the various superconduct1ng quant1t1es, by means of

a simple sogling law, following the definition of an effective coupling
constant.‘ An.analysis of the Meissner state properties including the

effectoof the sp1n f1uctuations is g1ven Vhe treatment bf the elec-

tromagnetic- fie]d and the persistent current 'is based on the boson

method ment1oned ear11er, however s1nce the method 1s widely reported :

[1,5,6 26] [27,28] .

in the Jiterature. on bpth non- magnet1c and magnet1c

superconductors a br1ef out11ne w111 suffice in the’ present contekt.

In Sect1on 4.3 the forma11sm presented in Sect1on 4.2 is app11ed

&

to the analys1s of the mixed state in ErRh4B4 " This 1nc1udes a detailed

comparison w1th the single crysta1 measurements a11uded to prev1ous-

1y[10’]]]. Good agreement w1th the’ observed upper. and Tower cr1t1ca1

- field curves is obtained. Furthermore’the magnet1zat1on curves show

the appearance of a first order trans1t1on to the norma1 state at H.,

at.1ow temperature. This is consistent with both the measured magnet1—
zations curves[ 1] _which show a first order trans1tton to the normal
state at Heo and with previous theoret1ca1 work wh1ch indicates that
the slope of the magnet1zat1on curve becomes 1nf1n1te at Hep for some

[29,30] 29,301 -

temperature T >T 2 Unlike the ear11er ana]ys1s

work reported here is able to'treat thenentire temperature domain, above



the.co-existence temperature Tp , in an entirely qgn51stent fash1on
Chapter 5 compr1ses some conc1ud;ng remarks together with a
d1scuss1on regarding poss1b1e extens1ons of th1s work. ' ‘ \N‘¢‘
we c1ose this 1ntroductory chapter w1th a brlef summary of the

main results conta1ned in this work.

1) In the case of ferromagnet1c 1t1nerant e1ectron systems the
1ead1ng order contribution arising from the thermal exc1tat1on of the

) magnon modes may be computed at low temperatures, solely on the basis
of. symmetry, in an exact and model 1ndependent fashion. In particular,
the Bloch T3/2 law is recovered and 1t 1s shown that the' 1ead1ng cor-

rect1on to the magnon spectra is of order Ts/2

’ 2) By means of certa1n response 1dent1t1es, generated from the W- T
relations, an eXact expression for correct1ons to the RPA paramagnet1c
suscept1b111ty, due to the spin fluctuations, is obtained and a number
*of ear11er procedures (the Paramagnon Approx1mat1on and the SCR method)
are recovered in a particu]ar1y straightforward fashion.

' 3) The formu]at1on of the boson method in superconduct1v1ty is
extended to 1nc1ude the pair break1ng effects arising ~from the d-f
1nteract1on
4) The magnet1c properties of ErRh4B4 are ana]yzed over the entire
temperature range, above Tp the co-ex1stence temperature, 1nc1ud1ng the
region where the trans1t1on to the normal state at H 2 is f1rst order.
Good agreement with the recently reported measurements on s1ng1e crystal
ErRh4B4 is obta1ned This ;s the f1rst't1me, to our know]edge that
the magnetization curve with'a first order trans1t1on to the norma]
state at H_ 2 has been calcu]ated theoret1ca11y Prevnous theoret1ca1

“work on th1s problem has been limited to the temperature domain in wh1ch

the transition is second order.



CHAPTER 2

WARD-TAKAHASHI IDENTITIES'AND-FINITEVTEMPERATURE FIELD THEORY

2.1 Field Theory at Finite Hemperature
. Y ;ﬂ‘ \

In this section I wish to outline recent developments in\the

N application of the techniques of Quantum F1e1d Theory to prob1ems in
. statistical mechanics. The use of Green's function techniques in
statistical mechanics has largely been through the Matsubara method[ 1].

This method involves the use of imaginary times in the interval O to
-ig and provides a very powerful ﬁeans'whereby the Feynman graph
techn1que in perturbat1on theory may be applied, suitably modified, to
compute var1ous thermodynam1c quantities. The method however suffers
from a number of inherent 1imitations. The use of 1mag1nary t1me
restricts the use of the technique to the compgtat1on of static quan-
tities although certa1n dynam1ca1 information may be obtained if one
is willing to perform a ted1ous ana1yt1ca1 cont1nuat1on from imaginary
te reai time. A]so the computat1on of the various d1agrammat1c contri-
butions invo]yes a complicated summation over discrete frequencies,
making the computation of diagrams with overlapping diagraﬂs extreme-
1y difficult to ca]cu]ateaeven approximately. Furthermore this summa-
t1on over discrete frequenc1es mixe5r50th the time and temperature
effects making 1t difficult to 1dent1f& “effects arising from the ther-
mal excitation of quanta. It is a1so important to note that the tech-
n1que is limited to the treatment of equ111br1um situations.

While many 1ngen1ous tricks have been developed to overcome some

“of the above-mentionedvshortcom1ngs, the analytical continuation, men-

tioned earlier, al]ows one to calculate certain dynamical quantities
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while simple deviations from equilibrium may be treated by means of

"Jinear response theory, the method is nevertheless cumbersome when

applied to dynamical problems and when one wishes to examiqg,the‘1ow
temperature behaviour of physical systems.

~ Many of cge 1imitations of the,imaginary method An the calcula-
tion o% real time Green's functions may be seen in the later work of
Kadanoff and Baym[32] who, fo]]ooing some earlier work of Martin and
Schwinger[33] used the imaginary timé method fo compute'real time |
Green's functions at finitg temperature using the procedures outlined

(341

by Baym and Mermin While this work serves to demonstrate the

. importance of the rea] time finite temperature Green's functions, par-

ticularly in the ana1ys1s of transport properties, the use of the
iﬁaginary time proczoure limits the authors4to rathor simple approximo-
tion procedures (e.g. Generalized Hartree Fock, Random Phase Approxima-
tion, First Born Approx1mat1on) | | )

The development of a systemat1c computat10na1 scheme for the )
evayuation of real time finite temperacure was Tater prov1ded for in

the work of M111s[35 36]

, in the case of equi]ibrium systems and inde-
pendently bvae1dysh[37J and Cra1'g[38:| For'HOn;equi1ibrium1systems,rThe
procedure, often'reférred‘to as the_péth ordering method, a11ows for

the systematic eva]uation’of real time, finiteltempérature Green's‘func-
tions in perturbation theory using the Feynmon diaoram teChniqhe.
Significantly the path ordering method while formu]ated 1n-terms of

path 1g\jpe complex time domain may be realized as a comp]etely real
time theory through the correct choice of contour |

In order to appreciate the s1gn1f1cance of subsequent develop-

ments it is important to realize the distinction between a theory of

4
<
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Green's functions, which involves purgly the spatial and temporal
development of expectation values of the quantum field operators, and
the full quantum field theory,involving the constructton of the appro-
priate Hilbert space and the realization of the operators in that space.
While in principle the construction of the quéntﬁm field theory from
the Green's functions is in fact possible, prov1ded that the Green's
functions satisfy certain axioms[ ], such a task is by no ‘means trivial.
One may pose the question{given th&t one can compute the various Finite
" Temperature many. point Green's functiOns,is it possible to reconstruct
from them an operator realization of the original f1e1d.theory? Turn-
ing the problem around a number of authors[1 2] did in fact construct a
representation of the Heisenberg operatons.in the canonical formalism
in which the resultant Green's funct1ons are the thermodynamic averages
of the time ordered operator products "~ The forma11sm known as Thermo
Field Dynamics (TFD) involves a doub11ng of the operator degrees of
freedom through the introduction of the so-called tildé fields. The
' importance of this dgve]opmént is that it allows mény of the devices of
cohventibnal zerb temperature fie1d theory to be extended, in a parti-
cularly étraightforward manner, ;to problems at finite temperature. A
part1cu1ar1y elegant presentat1on of the TFD format1on together with an
analysis of the analytical propert1es of the s1ngle part1c1e propagator
was presented by Matsumoto[ 0] through the introduction of the so-called
thermo-doublet (? ). An interesting aside on the TFD formalism was

(411

presented by Schmutz™ 0, using the so-called superpperator formalism,
has shown that the TFD formalism is in fact a particular case of a much '
wider c1ass of real time f1n1te temperature theories. However it was

not nea11zed in this work that the TFD forma11sm is unique, in that it
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is the only member of this class of theories in which the Hamiltonian
is self adjoint. |

A number of recent papers serve to illustrate the close relation
between the‘var1ous approaches. Matsumoto et a1[42'43] have examined

[35.36] and the

the relation between the path ordering method of Mills
structure of the Feynman rules in thermo-field dynamics. Niemi and
Semenoff[44] have constructed the generating functionals for the therm-
dynamic average of t1me ordered products in M1nkqwsk1 space using the

path ordering method of i11sL35+36]

The resuldant generating func-

tional is equivalent to that obtained previcuS]y‘by Semenoff and

Umezawa[45] from TFD. The effective potent1a1 calculated by Niemi and
o

Semenoff agrees'with the earlier result of Dolan and Jack1w[ 6] in the

one loop approximation. Ojima[ 7] on the other hand has shown the equi-

valence of the TFD formalism with the so-called C* algebra approaches
developed by Haag, Hugenholtz and winnick[48].

It is therelfore the case that there now exists a well established
‘procedure fon the evaluation, in real time, df various field theoretic
quantities at finite temberature,in a wide enough vaniety of approaches
and styles to satisfy the tastes and prejudices of all but the most
demanding of physicists. 1In fact, these recent developments mean that
v1rtuaJ1y all the devices of conventional zero texperature field theory,
the Feynman Diagram technique, the spectra1 representat1on, the LSZ
formalism, the Ward-Takahashi identities, and so on, may be generalized
to f:nite temperature. Furthermore the practica] utility of the real
time method has been demonstrated for a number .of problems in both

're1at1v1st1c[ 9,50] and non- re1at1v1st1c[ ] quantum field theory at

finite temperature. Indeed much of the content of this thesis concerns

12



{tself with an applicaiion of‘these techniques to consider a variety of
problems in magnetism and sup;rconductivity.

In what follows we will restrict our attention to problems in
equilibrium statistical mechanics and the TFD formalism. Since thi;
formalism is not as widely utilized in the literature is say the
Matsubara method, [ will briefly describe. the method and ddscusé the
derivation of the Feynman rules. The approach I will follow is based
on ‘the operator rea)ization of TFD presented in ref. {7]. In order to
provide a degree of completeness I have also briefly outlined the path
ordering method of M1115[36],as presented by Matsumoto et a1[42'43],in
Appendix A and give a brief discussion of the ré]ation between the two
approaches.

To make our considerations specific we consider an interacting
system of bose or fermi particles whose dynamics we assume may be des-
cribed. in te;ms of certain Heisenberg field operators {wi(x)} and their

conjugate momenta {1 (x)} obtained from the Lagrangian in the usual way
i . s

n(x) = 30 (x) (2.1)

The equation of motion for the fields and their conjugate momenta 1is

obtained from

3y, (x) ‘
i—p— = [u(x), H] . : (2.2)
and (%) “
31 (x i
i ——iat—— = [n,(x),H] (2.3)

where H is the Hamiltonian given by

4= LD 0on 00 - £0014% (2.4)
1 .

13
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and the fields obey the usual canonical COmmutation.(anti commutation)

relations. . o | S . " E &
[wi(x),wt(x)lé(t-t‘)=‘[H.(x),n.(x')]S(tJt').= 0o . - (2.6)
. J Tt AL J + . : :

\

) we then pose. the quest1on is it poss1b1e to construct an operator ;

| representat1on of - the He1senberg f1e1ds 1n terms of certain free f1e1ds
ina; H11bert space wh1ch conta1ns some state IB> such that the therma1

’average of an operator product may be rea11zed as an expectat1on value

8H

| me' ,A1(x]);.;Ah(x_n‘§} - <5|A1(x]')._t;Ah(xn)~lg>./.'» | (12.7'),

To th1s end we regard IB> as a therma1 vacuum whwch ref]ects the pre—
;hsence of the therma]ly exc1ted quanta ‘ In d15t1nct1on to the zero
temperature vacuum (or ground state), energy may be absorbed in two
sfways it can be absorbed by the exc1tat1on of an. add1t10na1 quanta in
_.momentum state E or by the annﬂn1at1on of a therma11y exc1ted ho1e
| (unoccup1ed states 1y1ng be1ow the fermi energy) in momentum state F_

-

'bTheseaprocesses are denoted by the phys1ca1 ‘creation and ann1h11at1on

L

vdoperators a\( 18) and a (k ;e) respect1ve1y These operators obey the

usua] canon1ca1 commutat1on (anti- commutat1on) re]at1ons

ey (el 320,

G Ge)alianl, =oyo®E) 9

W

5ij5(ﬁkﬁ')‘ - | ‘."1 . (2.8)".

14

'-w1th a11 other operators commut1ng (anti-commuting)?and Suchvthat both

(k B) and @, (k;8) annihilate the thermal’ Vacuum |g>
. , )

| rai(E;B),[S> -a(Ke)le> =07 L (2.10)
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‘They also satisfy the following tilde conjugation.1aws[7]
co, (K3g) = ¢ gy (ks) o 0 N (D
ca; (k;g) = c7d, (ks8) Pes o (2a2)
& ‘ I 'i. . | B
. (k3Bla.(k;B) = a;(ksglas(ksg) -~ o (2.13)
1 J [ RSN AP : . e
and S ‘
é(i*;‘mepFa(k;s) o o o as)]

\”where cis’ any 1mag1nary C- number and PE= 1(-1) for the case of~bose

o (ferm1) quanta From the spectrum of the var1ous elementary exc1tat1ons,

wh1ch we have d1st1ngu1shed by the index i, we can construct a set’ of
"1oca1 ree f1e1ds Lo, (x)} wh1ch compr1se 1inear comb1nat1ons of both the
t11de and non- t11de f1e1ds wh11e the deta11ed nature of the- re]at1on-'
sh1p between the free. f1e1ds {¢ } and the phys1ca1 creatlon and ann1h1-
1at1on operators depends on the spectrum o f the exc1tat1ons, together

- with the. requ1rements of 1oca11ty and causa11ty, conta1ned 1n the canon-
h1ca1 commutat1on (anti- commutat1on) re]at1ons, the degree of m1x1ng
between the tildé and non- t11de f1e1ds will. ‘be determ1ned by the re-
quirement that the dens1ty of the eTementary exc1tat1ons is that obta1ned
by the condjtton of therma]-equ111br1um, i.e.

. 3 S . : » .
=J Lk - 1, : (2.15)
(2r)” exp w (k)2 v S

<el¢:(X)¢(x)

The plus (minus) sign‘in Eq. (2. 15) refers. to fermi (bose) quanta and
mn(k} corresponds to the energy spectrum of the ¢ f1e1d

‘Insorder to 111ustrate the re1at1on between the physical quanta
and the free f1e1ds o (x), we cons1der the examp]e 1n ‘which the physical.

quanta cons1st of fermionic exc1tat1ons w1th energy spectrum e (K).
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Denot1ng the phys1ca1 creat1on operator of the pos1t1ve energy quanta-
(part1c1e states) by o ( K:g) and those of - the negat1ve energy states ’
H'(ho1e states) by e (s 3) together with the correspond1ng t11de f1e1ds, .
which we'denote.as a (k;B) and_gf(?,s) we show how the free ferm1on r

I

o(x) mey‘be_constrytted. writing

\ .

$/x) J (_‘2‘ ,‘;3' {a(k)e[e(k)] + bT(R)o[-e(K)Jexpl-ic(K)t +ik-X) - (2.16)

where e[x]-1 for x>0 and e[x] 0 for X < O we see that o(x) and its

complex CQ"JUQate ¢ (X) are fields wh1ch sat1sfy a free field equat1on o

4= - e(=i)) o x) =,ol L e (2a7)
and L ‘ v
| » Fov o R R S
(-1 Zp - e(#iv)le (x) = 0 - | (2.18).
and”which'satjsfy'the usual equalvtime anti-commutation relation
AR, g e . '
[oT(x),0(x" )], s(t-t') = 67 (x-x") = o (2.19)
.. - “ . K (\ . : o 7 . -

provided the operator-a(k);svb(k)‘and'their compTex'COnjugate‘a+(k);h - .

bT (k) satisfy the,algebra‘.

@, -y @
and | ' _ | , &
BRI, = s®EY (2.21)

with all other operators “anti- oommUting We how express the operator
'a(k) (b(k))as a11near comb1nat1on of the phys1ca1 creation and annihila-
tion operators «(k;8) and & (k,B) (B(k g) and 8 (k 8) ). 7‘ Not1ng that
both the operators‘a(k)'and a(k,s) together w1th a(k e), sat1sfy the-

equal time antifcommutation,re1ation;,they must be related through a
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canonfcal transformation.‘ Thus we have that

a(?)_: cos éza(ﬁts)+ sin“eﬁ &*(E;s)‘ K . ; ;' . (2.22)
= cos WEB(K;B)+ sin_nﬁé*(g;s) : ‘5 o '.-’ (2.23)

It~thus'remeins to determ1ne the transformat1on funct1ons cos ek and

cos nk»fromfthe requ1rement of Eq. (2 15) we f1nd that _ -
cos 8, =/1 - fle(K)] o L (2.28)
and - o . ‘ ’ S ‘ '

. COS nk =|/].; f[;e(z)]"e 2 , ;'-" ‘ .{%G:;:f 1,1  ':.(2125)J 

where f(x),denotes theffermi»distributiOn,function

. f(x)'= : | -.‘,‘ vv v__\, ﬂ‘ s ) ;. | ' (2.26)

Other examples of how the phys1ca1 creat1on and an 1h11at1on

' may be used to construct free f1e1ds in therma] equ111br1u

with a heat
bath are provided in ref [7] In all of these examp]es\the canon1ca1
transformat1on g1ven by Eqs (2. 22) and’ (2 23) nd the co res ond1ng
i:transformat1on for bose f1e1ds p1ays a centra1 role. |
',v The -finite temperature rea]1zat1on of the He1senberg;f1 1d oper— '
 ators is therefore ach1eved by construct1ng a mapp1ng (often 'ferred
to as the dynam1ca1 map) between the He1senberg f1e1d ope;ators and

some set of free f1e1ds constructed out of appropr1ate comb1nat1ons of
“the t11de and non- t11de f1e1ds such that equat1ons of mot1on, Egs. (2. 2)
‘and (2 3), for the He1senberg fields are sat1sf1ed * The thermal average

of products of the Heisenberg f1e1ds may then be expressed in terms of |

expectat1on values with respect to the thermal vacuum exact1y as -

2



required by Eq.. (2.7).

Before going on to‘demonstrate~how the above'ﬁdeasﬂmaywbe trans-
lated into a computat1ona1 scheme, a number of: comments are in order,
F1rst of a11 in the above discussion: it is nowhere apparent how ele-

mentary exc1tat1ons and the correspond1ng free f1e1ds are determ1ned

a pr1or1 This s1tuat1on is by no means pecu11ar to the f1n1te temper-

“ature. case, even at Zero temperature, there is no systemat1c prescrip-

tion'whereby the'nature of the phys1ca1 f1e1ds (the‘1nterpo1at1ng

fields for examp]e) may be. determ1ned a pr1or1 The presence of'a com-
N \
posite part1c1e (bound state) or the appearance of a spontaneous]y

broken symmetry can g1ve r1se to,a very r1ch structure 1n the spectrum

e

' uof the e]ementary exc1tat1ons, wh1ch is by no means apparent from the

dynam1cs of the or1g1na1 He1senberg f1e1ds A second and not unre1ated
quest1on 1s, glven that one.. constructs a part1cu1ar representat1on in

wh1ch the He1senberg f1e1ds .are expressed in the correct fash1on 1n

terms of certain 1oca1 free f1e1ds, is there any assurance that th1s o

‘representat1on 1s un1que7 Such a s1tuat1on could arlse for examp1e 1f

<&

o the free energy of thé system conta1ned certa1n 1oca1 m1n1ma in add1t1on

~ to the g]oba] m1n1ma Obv1ous1y the presence of such metastab]e' state5‘¢

cannot be ruled- out in the case’ of part1cu1ar]y comp]ex theories. These
comnents h1gh11ght an 1mportant d1st1nct1on between quantum mechan1cs,

in wh1ch a]] representat1ons of the theory are un1tar11y equ1va1ent

and quantum many body theory, 1n wh1ch d1fferent representatlons of the"‘
He1senberg operators .can be constructed which are not un1tar11y equi-
va]ent., Th1s manlfests itself in the wide var1ety of, often quite '

unexpected, phases that can arise in many body theory.
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Return1ng to more pract1ca1 concerns we note that the ru1es for
| t11de conJugate pnesented in Egs. (2 11»2 14) allow us to define, for
each of the free f1e1ds ¢n (x) .the tildé conjugate fields ¢ (x) and
hence correspond1ng to any He1senberg operator 0, [x,¢], we can cons-

L truct the correspond1ng therma] t11de f1e1d 0 [x ¢] as’
“ﬁH[x:¢]‘=,0*[x:$]_ o S (2.27)

The def1n1t1on of the therma] t11de fields means that, correspond%ng‘to

‘"aany He1senberg f1e1d operator O [x,¢], we can def1ne the therma] doub-

:let[40]
1y oo
‘OH OH -
' =< (2.28) -
2 | | &t -
0 L0y

The 1ntroduct1on of the therma1 doub1et 1ntroduces a cons1derab1e
'e1egance into. the TFD forma11sm and as we sha11 see it prov1des a usefu]
‘computat1ona1 dev1ce Part1cu1ar1y 1t serves to emphas1ze the fact that
a f1n1te temperature rea11zat1on of the He1senberg fields requ1res a
doub11ng of the field degrees of freedom s1nce at f1n1te temperature-

‘:every f1e1d w(x) is rep]aced by the correspond1ng therma] doub]et v* (x)

(a = 1,2) L B . N

D)) [ | | |
RS R - (2.29)
RN o | 5

the dynamics of which may be obtained from the canonical'quations of
» P ‘ : : SR VA
motion, Eqs. (2.2) and (2.3) . o J/%



S 0 R L (2.30)

9 a _
ot wi(x_)

SRR R et | , _‘) .- N
and 1% ni(x) —,[ni’ H] , | - L (2.31)
where H is given by \,

o ) o -. .; L .» ,. ‘

, H=le - (2.32)

a .
1 2 1 2

vith W =H. Wof and ¢l =1, e2=-1. The doublet fields now satisfy .

the commutation (anti-commutation) relation

! [wi(VX)a;H?(x')]id(t-t'.) = isassl“(

xxNoggleg®s o (2.3
where o, = +1 for fermions and. oA ="-1 for bosons. |

~ Thus the 1ntroduct1on of the thermal vacuum. |e> ‘together with
the phys1ca1 creat1on and ann1h11at1on operators and the construction
of the t11de fields means that v1rtua11y a]] the 1ngred1ents present 1n
the conventional zero temperature f1e1d theory have the1r counterpart
in the TFD forma11sm The pract1ca1 consequence of this is that vir-
tually all the ca]cu]at1ona1 techn1ques and dev1ces of convent1ona1
field theory may be extended to finite, temperature Of part1cu1ar in-
terest is the genera11zat1on to finite temperature of the many part1c1e

Green's funct1ons

G1'2 “’51 B( .| ) | | '
: XX YiyeoYo) o _ .
1]12 J].t.Jm »1 Zﬂ Xn 1Yy m , f
. . a o ], : ;. N |
= <B‘T[w (X ) n(x )H 1( ])-g-nj (ym)lB> . (2'34)
, m , ) ,
At zero temperature, express1ons such as Eq (2.34)\are evalua-

tedﬁin the interaction representation. The der1vat1on is presented in
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several books in field theory and many body theory[5] 152 53] and may be

“\extended to finite temperature with only m1nor mod1fications. Separat-

ing'the Hamiltonian 1nto a free and an jnteracting part

H=HH+ . HI ~ A ‘

we define the operators in the interac%ion representation as -
. . iﬁot L it | |
wl(x) =e > (x,t=0) e . ‘ (2.35)

These operafors,satisfy a free field equation, which may_be,obtained

from the Hamiltonian ﬁo and the usual commutation (anti—tommutation)

relations:

o

and

254500 = 000 H)] o IR ()
{:ﬁ £x) = [EeRT e
s(t-t ) lugix )Jﬁ(x )1 = s st o)t (238

The - f1e1ds in the 1nteract1on representat1on are then. re]ated to the’

He1senberg f1e1ds through the evo]ut1on operator U(t t )
'3..

R = 00,8000 (239

where G(t;to) is given by

A ARt -iR(E-ty) -ifit | :
U(t;to) = e e e 0 (2.40)

\

The evo]utidn operator may be computed perturbatively in the usual way

to give



o0 & t P
uteig) < 1 (1) J dt, . J gt TR (6) (e )]
. i t
0 0
t .
= T[exp-i J Hi(t)] (2.41)
t

where ﬁ;(’).is simply H [w?(t)'n?(t)]. since the fields in the inter-
act1on representat1on are free fields we may construct the phys1ca1 |
creation and annihitation al(F,e) and uI( :8) together with the1r
‘Hermitean conjugates_al(k;s) and &I(?;s) in the interaction reprqéehta-
tion by means of the canonical tfansformation described previously.
From these we define the state 8>

=4 .
B B '

o (Fig) >y = ay(sg) [ =0 )

~ from which the thermal vacuum |g8> may be constructed by means of the
| finite temperature generalization of Gell-Mann Low result
U (O;-oo) I B>I

Tim|g> = , . C(2.43)
0. <8|U_(03-=)]B> a o

where e denotes the ad1abat1c switching parameter Equations (2. 39),
(2 4¥) and (2. 43) may then be comb1ned to give the: resu]t quoted in
ref. [40] "
’ a C 8y B8 ‘ ‘

n 1 m
<elTLw i 1)...w1 (xh)nj.(y1) ER (yg 118>

n 1. m

: 'a]nju 'an 8]‘ ) ’Bm ‘ .

I<B|T[w1{1(x1)-f-wIin(xn)HIj1(Y])~'-an (ym)5]|8>1

= - : - m (2.44)

<8ITLs 1{8>;

_ where
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S = exp - i J ﬁi(w?(t);n?(t))dt . o (2.45)

R

-0

Equation (2.44) together with the Wick ordering theorem may be combined
in the usual way to permit the many part1c1e Green's funct1ons to be
evaluated in. the usual way, by means of the Feynman diagram

[51'52’53] While the contribution to each order in

method
the perturbat1on series. w111 have the same topological and diagramatic
structure as the corresponding zero temperature contribution, there w111
‘be two important differences. First of all the interaction term is

given by

SiCoapL O + ! : N

AL lrd()T] = KDy (£sn ()] -4 Ly (emg (0] (2.96)
which means that in addition to the vertices for the wI(x) fie]ds there
will appear a}corresponding vertex for the tildé field &I(x) which will
appear with a relative minus sign. It shoﬁld b/;getéd tffat the stfuc-
turg of HI js such that no mixing of the t11de and non-tildé fields
occurs at the vertex. The second d1fference ar1ses from the fact that

the normal brdefing‘procedure, used in the evaluation of the various

perturbative contr1but1ons to Eq. (2.44), should be with'réspect to the

.phys1ca1 creat1on and annihilation operators, o; (X; B), aI(F g) and

~;(k B) aI( B)» the normal ordering does produce a mixing of the |
fields wI(x) and the tilde fields wI(x) since the resulting propagator
has a matrix structure with non-zero off d1agong1 components. For exam-
‘p1e in the case where the fields wi in the interaction representation

obey a simple Schrddinger equation

T

o

(2 - e(-iv) v 0 = 0 | s (2.47)

-
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Then the internal line appearing in Feynman diagram corresponding to

the fields ¥3(x) will be given by

s%8(x-y) Isslrtw?<x)w§(y>*113>1 /, L (2

(2m)*

-i—;'J o i Le(R)t-k. X} RIREGEISN Wt (2.99)
in the case ef fermions and '

4
>

= z;isﬁ-Jd ke -1[e(K)t-k. X]uB(ko)r[ko-e(?)+15T]']UB(k0)~(2.50)

“in the. case of bosons where
. , ‘

bl

Y1 - kaoi /F(k )

0
Uplky) = | ; (2.51)
\-]f(koi - f ko
and , )
J1 - fBik05 ' /fB(kO)
Uglkod = | . o (2.52)
with -
| ‘ = _——*1_“-—-— . ’
falke) = o : (259
PN e ) - ] .

~ Similar fe;u1ts ho]d for other types of fields (e.g. phonons etc.).
Thus fhe Green s function of Eq. (2.34) may be computed pertuk-
batively in tﬁe interaction representation in real time by means of the
Feynman d1agram method., The Feynmen rules which one obtains for a par-

t1cu1ar theory will be s1m11ar to those of the zero temperature theory.
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However, due to the two component nature of the fields at'f1n1te tem-
perature, the propag;tors corresponding to the internal lines have the
matrix structure given by Eq. (2.51) in the case of fermi particles and
Eq. (2.52) in the case of bose ﬁartic]es.' A similar result may be ob-
- tained by means of the path ordering method of M1115[46]' a brief des-
cription of which is presented in Appendix-A.

The close formal resemblance between the diagrammatic contribu-
tions that one obpains in TFD and the énalogous contribution at zero
" temperature prove§ Qery useful, since it allows one to generate from
the various terms in the p%rturbation expansion a lTow temperature expan-
sion of the vqrious dyngmica{ and static physical quanfities. This
procedure will be elaborated on-in Section 3 together with its appli-
" cation to itfnerant electron férromagnetism;

In addition to the exfension of tbe Feynmaﬁ diagram technique tq
finite'temperature a number of othér devi;és,‘fami1iar f;om conventional
zero tempgfature fie]d/theory, may be genera]igéd to finite temperature

in a particu]ar]y“straightforWard manner. For examp1é; it is straight-

forward to show that the two particle propagator may be wri%tenkin the

25

N spectral représentation as[40] i ‘ - ‘\\\\_
h e . ) ) »LV\V \\\‘\
68 (x-y) = <8|T[s2(x)s¥1y) 16>
= — Jdd'k eTKX By (2.54)
(2m)" < '
with .
af - "*_ - . f] :
B (K) = [du o (RiwUglky)Tkgm w #1827 Uglic) o (2.5)
in the casé of fermions and '
[ R . X f . om
o - .. . - '
Gaé(k)‘ = [ dw p(—lz;w)UBf_(ko)T[ko-wﬁ'P15T] 1.UB('k0) (2.56)
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*in the case of bosons, where o(?;wY‘Ws 4 positive definite quantity

usually referred to as the spectral function. The formal similarity
betwéen the two particle Green's function, expressed in Eqs. (2.55) and
(2.56) and the free‘pafticle propagator of Eqs. (2.48) and (2.49),
allows us to extend to finite temperature the observation at zero tem-
perature that the two particle Gréen's function may be written a linear
superposition of free particle propagators of energy w.

Another useful device of zero temperature field theory which may
“be extended to finite temperature by means of TFD in the so-called
Lehman-Symanzik-Zimermah (LSZ) formula for the S matrix in terms of‘the\\
interpqlating fields. This allows for vartous scattering processes to
be evaluated ﬁt finite temperature in terms of the time ordered Green's
functions of Eq. (2.34). Denoting the asymptotic fields by ¢Z(x) and
the corresponding interpolating field s%(x) such that

Tim o 6% (x) v T H-19)e%(x) C(2.57)

t+moo _
where Eq. (2.57) 15 to be interpreted in the sense of a weak relation.

Then we obtain

4 4 4 tL
Jd Xp - -.d X d yy---dy, )
: 5 a; e

or.a g « n -n
_-g?.[¢o(x1)x(ax)3...[¢o (xn)x(ax)]

n

a1 a b

(x7).-.¢ "x)e ! (yp)

b <+
e My ) e
C o, by % (5™ bm ) - ) 58
[A(-ay)¢° (yg7e 2 l=3pdo g My M s (2.58)

where the asymptotic fields are assumed to satisfy the equation of

motion



A3, )05(x) = 0 (2.59)

and the canonical equal time commutation (anti-commutation) relations

4 X a ' :

o3 (%) 100 )", 8 (¢t ) om s x')8 ,(pg)" (2.60)

Yet another computationaT" vice of the conventional zero tem-
perature forma11sm which may be dxtended to finite temperature in a

(3,4]

very straightforward mannepﬂare the so-called Ward-Takahashi rela-
tions whose importance to situations involving spontaneously broken
symmetry has long been recognized. These are discussed in some detail

in the next section.

2.2 Ward-Takahashi Identities at Finite Temperature

0f considerable importance in the study of quantum fields are
the identities generated by means of certain cont1nuous transformat1ons
of the Heisenberg fields. These identities were first obtained pertur-
batively for the zero momentum 1imit of the electron photon vertex in:
quantum electrodynamics by Nardt3]; The corresponding finite momentum
identity, obtained by means of the Heisenberg equation of motion, was
presented by Takahash1[ ] and is generally referred to as the Ward-
Takahashi, (W-T) relation in quantum electrodyanmics. Subsequently,
however, the term NfT relation has come to be used in a much wider
sense, and now is used to refer to any relation generated through a
transformation of the Heisenberg fields.

The'w-T relations have found a number of important applications

in particle physics low energy pion-pion scattering and the PCAS

hypothes1s[ ], the K-lepton decays and the so- -called Callen Treiman
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‘ne1ations[55], the 1nfrared problem in quantum e1ectrodynam1cs[56] and

~the dynam1ca1 rearrangement theor‘y[5 ] be1ng some of the more notab1e
/

:,examp1es The W-T relations have also found 1mportant app11cat1on in
many areas of non- re1at1v1st1c many body theory; recent examp]es may be

- found 1n studies related to the dens1ty of states c1ose to the mob111tyf

‘ edge 1n d1sordered meta1s[58], the ‘analysis of amp11tude modes in the

[59]

fsuperconductwng charge dens1ty wave compound NbSe , the quantum

'theory of crysta]s[ ], superf1u1d1ty[6] 62] as we]] as to prob]ems

[63,64,65,66] [67]

_'re1ated to the ferromagnetwc and paramagnet1c ‘ proper-

r

ties of meta111c ferromagnets

Many of ,the top1cs out11ned above man1fest what is oftenyrefenred

- to as spontaneous]y broken symmetry and it is here that the W- T rela-

't1ons p]ay an essent1a1 ro]e in severa] respects. F1rst of al] they may )

be used to obta1n certa1n exact resu]ts, Go1dstones theorem and the Tow.

~energy theorems regard1ng the scatter1ng of pions, magnons, nhonons etc,

are examples of th1s | Secondﬁy they prov1de us with var1ous re]at1ons

between the many po1nt Green s funct1ons and the1r correspond1ng ver-

- t1ces wh1ch must be sat1sf1ed in any approx1mate ca1cu1at1on if one ‘

- wishes to assure the self cons1stency of the calculation. |

v The w T re]at1ons may be understood w1th1n the context of con-

[ vent1ona1 f1e1d theory as an express1on of Noether's theorem[68 69]

Denot1ng the He1senberg f1e1ds by w (x) Noether s theorem states that

the charge~1n the Lagrang1an 1nduced by a cont1nuous transformat1on of

the Heisenberg fie1ds |
W) ) = el Fesu(x) L C(2.8)

Cx s x' = ox #6X | L | '.j (2.62)
u VR -

Py
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.
in Whiéh‘éq is a iinear transformation i.e.
sp3(x) = Aijwj(x) ; R R . (2.83) ¢
“Whére thé'changé indhcéa‘ih*thé‘Lagrgngian éa(x) is defined by'_
a4x'.¢[¢'(x.'),arﬁ;p.-(x-‘)j-‘d4x-,f;[w(x"),'a#¢(_x)1=ed‘?.x sa(x) , - (2.68)
m$y~?e writteﬁ»in the fofmléf a diyergehcé.as |

s2(x) = 7-3(x) -ﬁ%(t) AT o (2.65)

In Eq. (2.65a) we have'défihed the current Ju4= (Jo;j)‘as

—.+‘ B'J v | > a . ‘ S ‘.
J(x) =LSI§5T §Lw(x) + 6% SR < (2.66a)
and . _ - : v
3 () = 2 s vlx ) +ox £ o  (2.67a)
-0 w L . 0 " ’j . L ) .
_ Where~6L denotes the Lie derivative defined By : R
’5Lw(X)”='6w(x) - [67-7u(x) -_6x0¢(x)j R ‘~(2;68)¥”

An entirely analogous result may be obtained in;TFd and is given by

00 - [ R0 - R, (2.650)
a a , ' :
where _ A
: : a S o ‘ '
J(x) =} ALa s w2 (x) ~sxL o | (2.66b)
| ATy S , - |
and : _ o
P (x) = zw‘éég sod(x) - sx 2% . : - (2.67b)

Not1ng that 1; (x)— BJVBw (x) is the canonical momentUm of the fie]d_J

y(x) we may construct the generator of the transformat1on Q(f) as



6(;) =_Jd3x g,eaag(x)-_ ' : S o _.(2;695 |
since' : , . e
[w?(x),g(t)]a(tAtx) - ié(t-tx)dw?($) - @70

_If'we now consider the-fol]owing~re]aticn.between the time ordered :

products,
2 T[é(t) i (X ) j QLn()( )] = g iﬁ(‘t-’t-' )T[_a] (’X ) [6(t) ,ur(; )]
- t. ¢ ‘Pi] 1 ,-rf‘l’in n f:] “n Lp,iT EARE ,,-q)ir‘ e
: lPin (Xn)v] L T[a(t)wi:ll(x_‘)_ "w-in(vxn)]. . | . ‘\ ‘. . (2.71)
" | IR TEE n.o- - s

kd

Then by virtue of Eqs. (2.70), (2.69) and (2.68) we obtain the follow-

1ng re]at1on fFrom Eq (2. 71).

%TfQ(f)%-("1-) “<x )1 == sle-t, )Ty, 1<>'<:1>-4-[<§ wjij---d?::(Xn?l

™~ oy ‘ a
1

¢ [0% Tre2lneg
‘The re1ation g1ven in- Eq (2’72) is_an operator'relation and may be
used to obta1n exact re1at1ons between the var1ous f1n1te temperature

fmany po1nt Green s funCt10ns, s1mp1y by taking the expectat1on va1ue o

with reSpect to the thermal vacuum’ |s>.‘ Thus we obta1n :
S

| ~—— <BIT[Q t)w ]( ).{.w?”(xﬁ)]l8>.
: n

-

-] 5(;-t-r,)i<elr[¢: (x) - [s w?:]...wj”(w]’l_s;@"

+
N )

For our purposes it suff1ces to consxder on]y the zero frequency Timit

] of 'Eq. (2.73), hence 1ntegrat1ng w1th respect to t from +o to e we

ce

obtain

'1(><1)..'._w."(xv)3'." - e

&
Ry
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Z<Bthw:1(x1).ﬁ-[6°w:r(xr)]...wjn(xn)]ls>
= r : n ’
' ei»{d4x<éth642(x)xpi:(xi)...wfn(xg)\s> L o = (2.74)

It can arise however that one ean have a non-vanishing expecta-
tion value
]€§l600H|$? f 0o | | | (2.75)
"even although.the’transformation leaves the“Lagrangian invariant i.e.
sL(x) =0 . L o © (2.76)

This- situation is referred to as ‘spontaneously broken symmetry (SBS) r“
Obviously Eqs (2.75) and (2 76) appear to contrad1ct the resu]t of
*E . (2.74) 1mp1y1ng that in the case of spoﬁ%aneously broken symmetry
-’the preced1ng argument is at fau]t Indeed what one f1nds is that the
generator of the transformat1on Q of Eq (2 69) does not in fact exist
in the case of spontaneous]y broken symmetry and must 1nstead be re'; |

(71 hss prob]em may ‘ %5‘

. ?n) ‘;_

‘ however be c1rcumvented by 1ntroduc1ng an exp11c1t symmetry break1ng

1zed as the 11m1t of a local transformat1on

term in the Lagrangian "

(é.77)

L y L+ hL
. such that - AR AR
a{Lh;ha;f,SBfo' o — (2.78)

Now provided h remains finite the arguments in‘the»breoeding section

are correct and Eq. (2.74) now becomes
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<8 0%y 8>, = 1Jd4x<BIT[6J5h(x)OH(Y)]lB?\ S (2.79)

=1hJd{”’xzslT[,aa%,SB(x)oH(y)ls,>v'n . (2.80)
The fact that |

lim <B|<50(.Y o #0, o (2.81)
h0 | o

_,tmp]ies that

ygjﬁemmﬁ%umynﬂe&% N (2.82)

The result of Eq (2 82) implies. that Fourier Transtorm:of the propaga-

- tor <8|T[6&i 6%)08 (y)]|8> defined by
&

'*BWTtéaigs(x>0ﬁ(y)ie>‘='£21)47Jd4q 1) pq)  (2.82)

is singular in the:1tm g+0 and Vim h>0. "In relativistic field theory

at zero temperature the singu1ar structure. df F(a) tn the zero momentum;

zero h Timit implies the existence.of certain mass1ess bose 1ike part1-

c]es often referred to as Goldstone part1c1es or. bosons In the case

of non- re]at1v1st1c field theories (and even relat1v1st1c f1e1d theor1es

at finite temperature) while the presence of a s1ngu1ar1ty in F(q), may
»be realized in forms other than part1c1e 1ike modes, 1t is often the
case that the appearance of a spontaneously broken symmetry state is
‘accompan1ed by the appearance of gap]ess boson particle 11ke states.

‘ Magnons in ferromagnets and phonons in crysta]s prov1de two 1mportant

examp]es The presence of these Go]dstone modes 1n systems with spon-

taneously broken symmetry gives rise to a number of important exper1men- ,

tally observab]e.consequences. S1nce-the Goldstone modes are gapless

'they may be ‘easily excited; thiskmeans that they“p1ay an important role
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1n determ1n1ng the 1ow temperature pr0pert1es of such systemsA
Another consequence ar1s1ng from the gap]ess nature of these modes s
- that under certain situations it may be poss1b1e to 1oca11y condense
macroscop1c dens1t1es of such boson part1c1es -Many such 1oca1
structures can be shown to be stab1e for certain topo]og1ca1 and
thermodynam1c reasons and g1ve rise to various singular structures in
condensed states. Examples of th1s gre d1s1ocat10ns in crysta]s[ ]
vortex structure in superconductors[ ] ~and superf1u1ds and domain wa]]s
Ain ferromagnets |

In the’ next two chapters both these aspects of Go]dstone modes
Wwill be exam1ned in particular s1tuat1ons. In Chapter 3 we examtne the
role of magnons in'determining the low temperature behav1our of var1ous‘
static and dynam1ca1 quant1t1es in 1t1nerant e1ectron ferromagnets.

In Chapter 4 we consider the thermodynam1ca1 aspects of vortex struc-

‘tures in magnetic¢ superconductors.



- CHAPTER 3

”;FERROMAGNETIC ITINERANT ELECTRON SYSTEMS

L)

3.1 Spin Rotat1ona1 Invar1ance and Magnet1sm in Meta]s
Magnetism in metals is usually considered from one of two ex-

tremes The f1rst v1ewpo1nt cons1ders the electrons as localized with

" respect to the atomic cores of the magnet1c ions compr1s1ng the 1attice

and that the separat1on between the ions is suff1c1ent1y large that the

overlap between the electronic wavefunct1ons on the separate 1att1ce

. sites 1s sma11 The physical descr1pt1on of th1s 1océ1ized model is

, common]y g1ven in terms of a.spin operator § assocwated w1th each of

the magnetic jons at the nth lattice stte. The $pin operators obey
the familiar spin algebra
k

s (£),53(6)7 = 160 5650 (0) - BRERD

nmEijk’n
hWith 3 denoting the vector
2 - (s), 2,80 . . . o (3.2)

n’>mn : : o

A.part1cu1ar1y s1mp1e example of a Hamiltonian used to describe'the

‘dynamics of localized spins systems: is the He1senberg Ham11ton1an given

by

o Lo .
H=-19.5 S (3.3)
where'J 'dénbtes the exchange coupling and arises from the'exChenge

interaction between the overlapping electronic wavefunctions on the n.

and‘mf“h

lattice sites. wh11e even such a simple mode1 as that des-
cribed by the Heisenberg Ham11ton1an cannot be solved exactly, the

solutions gne obtains in the mean field approximation indicate that

34
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even such a simple model can give rise to quite a wide variety of mag-
netically ordered states[ 0] ferromagnet1sm ant1ferromagnet1sm, he11-'
magnetism and in the case of b1nary al]oys ferr1magnet1sm depend1ng on,
the detailed nature of the lattice and the form of the exchange inter-
action.. Furthermore an ana1ys1s of the.paramagnetic susceptibility
“showsthat the He1senberg mode1 accounts for, in a perfect]y straight-
forward manner, the Curie- We1ss 1aw observed 1n many materials. Subs-
tances such as Cr03, Eu0, CrTe and MnSb all prov1de examp]es of meta111c |
ferromagnets whose observed phys1ca1 properties are in accord w1th the

mean field predictions of the localized model.

Extensions to the Heisenberg mode1 can be constructed, to account

L for the effect of the crysta] fields on the atom1c states and the effect -

of crysta111ne anisotropy for exampWe However since such effects are
not a major concern of this thes1s a detailed d1scuss1on of those |
effects is not g1ven .

The other v1ewpo1nt common]y encountered in the ana1ys1s of the
}magnet1c propert1es of metals is based on the assumptlon that the elec-
- trons giving r1se to the magnetic properties are not localized but are
best described in terms of extended states rather than the 1oca11zed
states of the Heisenberg model. The band model or.1t1nerant model as
it is sometimes referred to was first introduced for ‘the caSe of non-
interacting band e]ectrons by Pau11[ 1] who considered the net ‘electron
hspin arising from the Zeeman sp11tt1ng induced, between the spin up and “‘
. spin down electron energies, by a uniform applied magnetic fie]d Theb
resu]tant susceptibility is referred to as the Pauli suscept1b111ty and
is character1zed by a re]at1ve1y weak dependence on the temperature at

low temperatures.. Later S]ater[72] and Stoner[ 3] considered the
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~itinerant electron model from the point of view of mean field theofy
and provided an explanation for ferromagnetism within the itinerant
electron model. The model, commonly referred to in the literature as

iy

the Stoner model, provides the well-known Stoner criteria for ferro-

> magnetism in itinerant systems

o) =0, e " (3.4)

where U denofes the electron-electron interaction arising from the '
Coulomb interactioe, for example, while N(eF) denotes the density of
states at the fermi surface.

A treatment of theﬁground state simi]af in sp{rit to that
offered by the Stoner model but somewhat more sophistieated is based en
the‘Loca1 Spin Density Functional (LSDF) method of Hoﬁenberg, Kohn and
Sham[74 78] .This forma11sm is based. on the proof provided by Hohenberg
and Kohn[ 4] that the ground state energy of an itinerant electron
system is a functional of the e1ectron density U[p] where

o(r) = ‘
i

IWr~1=

e 2 - ' ' !

o (F)] Y | (3.5)
1 | b , - |
where the e]ectron‘wavefunctiOns/wi(?) are obtained from a Hartree-
Tike self-consistent field equation, in which the effective potential is
expressed as a functional of the density p(?). This formalism allows
one to consider to some extent effects of exchange and correlation
omitted in the Stoner model. This formalism has been relatively
successfu] in obta1n1ng many of the ground state propert1es of a wide
range of itinerant magnets on the basis of a s1mp1e band theory of the

electrons. For example 1t correctly predicts that of the f1rst 32

elements only iron, cobalt and -nickel prov1de poss1b1e candidates for

36
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‘erromagnetisn[76] as well as providing a very accurate value for the:
net magnetic moment[76v77 78] ' |

A further development of the band theory model was- the mpdel
proposed by HubbardF 9] based on the Wannier representation of the

electron states[so].v The Hubbard Hamiltonian is expressed,as

\

1% b aicaJ0+ Uo 12562168 1-c -0 . (3.6)

where a:c and aig denote the creat1on and annihilation operators of the
Wannier states on the 1th site, t i3 denotes the hopp1ng of the e1ectron
from site i to j whi]e‘Uo'representsethe jntraatomic Coulomb repu1$1on

‘between electrons on the same lattice site and is given as
U0=Hd'3r’d3?' m RV SR -R)e (AR (3.7)

where ¢ (r ﬁ ) denotes the Wannier wavefunction on i th yattice site.
The Hubbard Ham11ton1an, while containing much of the same physics as
the Stoner model, g1ves more emphas1s to the atomic-like character of
the e]ectrons and hencesis more app11cabTe to the case of narrow band
meta]s. It is a1so'qu1te straightforward to extend the basic Hubbard
model to include orbital degeneracy. The Hubbard Ham11tdn1an has- been
used by a number of authors to examine the effect of strong correla-
tionstg]]. . -

While it may be argued that the band mode1 brdvides a fairly
accurate descr1pt1on of the ground state properties of magnetic itiner-
ant electron systems the same cannot be said for the finite temperature

behaviour. Indeed considerable controversy surrounds many basic aspects

of band model ferromagnetism.



_ The reason for this state of affa1rs may be*apprec1ated if we
consider the temperature dependence of the magnetization in the context
of the Stoner model. In the Stoner model ‘the reduction in the magnet1-
_ zation with increastng temperature, arises solely from the thermal
excitation of the quasi-e1ectrons and holes and no account is taken of -
the effect on the magnet1zat1on due to the transverse and 1ong1tud1na1
spin f1uctuations. In the case of the localized model the 1mportance
of these excitation modes has been appreciated for some time, 1ndeed
B]och[sz] pointed out that the transverse spin f]uctuations give'rise
to a T3/2 temperature dependence in the Jow temperature magnetization.
This resuft is commonly referred to as the Bloch T3/2 law and is ob-
served in a wide range of magnet1c materials notably iron and nickel.
Th1s temperature dependence is not obta1ned in the s1mp1e Stoner model.
The fact that the Stoner model does not include the effect of the spin
‘rf1uctuations also accounts‘for the fact that the va]ue of the transi-
~ tion temperature TC is about 5 times. larger than the observed value for
Fe, Co'and Ni. A sin11ar situation exists even in the case of the more
r1gorous LSDF theory, the va1ue of- T pred1cted for the trans1t1on ,
metal ferromagnets is cons1derab1y h1gher than that observed[ }

- Such d1ff1cu1t1es pers1st into the paramagnet1c doma1n where tn
the case of the transition metal ferromagnets the temperature dependence
of the susceptibi1itylis well described in terms of a Curie-Weiss law,
suggesting a 1ocai moment mode]? rather than a band model, provides a
‘more accurate description of these materials, '

Perhaps even more puzzl1ng are the so-called weak itinerant ‘

ferromagnet1cs such as Zan2 and Sc3In discovered-in the early 635

These matérials exhibit a relatively Tow transition temperature 26°K in

. .
t . ="
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tpe case of Zan (86 ] and 6.1°K in the case of Sc3In[87] ;furthermore
both Zan and ScIn3 show a small non-integer magnet1c moment per tran-
sition metal atom 0. 16pB in the case of Zan [86] and 0. 25uB in the
case pf ScIn (e7] both of which are strongly field dependent. These
~ features can only be accounted for in terms of an 1t1nerant model and
indeed a theoretical analysis of the magnetic properties of Zan2 below
Tc in terms of the Stoner mode1[ 8] does appear to account for certain
of the observed features. ~However observat1ons/show that above T the
inrerse susceptibility is virtua]ly'1inear with respect to temperature;
a result which is inconsistent with the preqictions of the Stoner model-
A similar Curie-Weiss type temperature dependence is obsgrved in the
paramagnetic Suscept1b111ty of ScIn3 © In both cases the effective
moment calculated from the Curie constaﬁt bears no obvious re]at1on to
that obtained from‘the zero temperature magnet1zat10n measurement.

It wou]dvbe wrong to conclude on the basis of the preceding dis-
cussion that the itinerant model cannot provide a reliable model of
ferromagnetiém in metals at finite temperature. Indeed the remarkable
' success of the band model in analyzing the ground-state properties of
metallic ferromagnets tells us that the.apparent failure of the itin-
erant mode} lies net wtth the model itself but with the absence, in the
mean fie1d treatment of the Stoner model (or the LSDF formalism for
lthat’matter), of the therma] excitation of mode§A§uch as the transverse
and 1ong1tud1na1 sp1n f]uctuat1ons, The effect of such modes plays an
important role .in determining the f1n1te temperature behaviour of these
systems. This sa1d however, to extend the Stoner or Hubbard mode] to

1nc1ude h1gher order correct1ons, in a manner which is cons1stent with

the requ1rements of the broken spin symmetry, manifested by the magnet1c

¥
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‘state is by no means straightforward. Such difficulties extend to the
paramagnet1c domain, 1f we wish to obtain a consistent treatment of
these syetems both above end below Tc' It is in this context that the
‘W-T relations and their application’ to finite temperature problems, by
means of the TFD formalism,are of crucial importance. As we will show
' they can provide us with not/bnly certain exact results which arise
purely from considerations of symmetry but also prov1de a great many
-exact re1ations,hetween the various vertices. The W-T re]at1ohs pro-
vide us with both a powerful tool and a useful guide in constructing
more realistic approximation schemes, than that afforded us by the
mean field treatment of Stoner. vwe,thrn our attention therefore to
examine the role of the spin symmetry in itinerent glectron systems ahd
‘obtain the resultant W-T relations. o
In what follows we assume that the sjstem of electrons we wish
to study may be described in terms of the Heieenberg operators w¢(x)
and-w+(x), for the spin up‘and spin down e1ectrons respectively, toge-
~————ther with their complex canjugatesqz(x) ehd wi(x). The extension to
ffnjte temperature is accomplished through the introduction of the
corresponding ti]&é fie]ds in the manner described in Section 2.1.
These fields may, for examp]e be constructed from the Bloch states in
the case of the Stoner model or the Wannier states -in the case of the
thubbard mode] We further assume that the dynamics of the Heisenberg

f1e1ds may be obtained from some Lagrangian g1ven by

N
f'\——/

i[w(x)‘;w*(x)] = L0056 (0T -2 llx) 0T (0T 38

where £ is given by a free part zﬁo and interacting part which we

denote as a(I thus



M
Sl 0] = gLt 0T+ il (3.0
with
2y0x) = T 3T (1u(x) (3.90)

\
In order to keep the discussion fairly general we do not specify the
interaction term ‘fl; the only restriction on it we require is thg%'it
does not contain time derivatives of the electron fields and that it is

invariant under the following set of trans formations:

Lo et —uix) = WHx) - el | (3.10a)
wj(x$ e CUER G IR LN C | (3.10b)
2. yy(x) —-*wi(X)' = y3(x) + eui(x) | | : (3.11a)
i (x) —w‘i(x)' - wt(kx')} 00, (x) Q (3.115)
and " .
3 S0 =) ;%ggg(x)-‘iemx) R (3.12a)
v (x) —;>Wt(x)i =‘wi(x)~+iew3(x) .. (3;12b)

togéthér with tﬁe corresponding t;ansformations'for the conjﬁgate

] fie]ds; ‘ 8

| The aésumption that gfl‘does not contain the derivatives of th; ,
fields allows us to construct the';anonica] momenta for the fields wa(x)

as .

s (x) W2 ()

1}
-t

(3.13)
% (x) 17 (x)

Hence we may write the Heisenberg equations of motion in terms of the



Hami?toﬁﬁah H given by

) HEp(x) 3y (x)1 = HOwse™d - HLwsw.d : (38
. with ) . R
O HLeitD - ]d3§£n<x)w(x> ; xi[w;w*j]'

-jd3;aﬁ(x)e( -17)e(x) - £ [w W01y (308)

t

together w1th the equa1 time canon1ca1 ant1 commutat1on re1at1ons of

Eq. (2. 33) wh1ch gives togeQ?er w1th Eq. (3.13)

200 w20 1 s(e-t1) = ot (31603 ';
00 S0 et ) = el T (e
[Wi(*5’wi<x)+1+6(f?f') #0 L (36c)

. ‘ ] &
,Correspond1ng to each of the three transformat1ons g1ven by Eqs
. (3.10+3,12) We may def1ne a charge Q; (t) (i =1,2,3) fo11ow1ng Eqs.

‘(2}67a) and (2.69) and we obta1n the result that

i og(t)f - .

w1th

1

(1) dew(xh‘ux)," - . ©(3.a8)

91 N ) N ) \
wheré"oi denotfe the Pauli matrices

oy=| . ; G, = | g . © (3.19)

The charges ﬁi(t) may then'be used to generate the transformations ' ‘gﬁﬁ

accordihg to Eg. (2.70). -

s, ()8t = delee et (6.20)



cand . ~ o

[ (y) 0, e ) = a8 05000 . (3.21)
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- It shou]d be noted in pass1ng that the operators 6 Q1,Q2,Q3) defined

by Eq. (3 18) may be shown by virtue of the cﬁnon1ca1 anti- commutat1on

|

relations to obey the algebra _ "
/ ‘ . ¢ ) SRR
Lg5(¢), Q (t)]s(t t! )—us(t t' )a Beukok({ (3.22)

\

\

The transformat1ons presented in Eqs (3. 10+3 12) are genera11y,referred
~to as rotat1ons in sp1n space, the operators Q as the generators of

sp1n rotat1on and the invariance of. ‘the Lagrang1an under the transfor—

mat1on as. spin rotat1ona1 1n¥ar1ance '

In the cgse of ferromagnetic systems we have that.

(3.2'3')

uhere we have used the notation 3(x) = (ci(X)Zdz(X),03(X)) with
. » - o . v“,,%.;/::‘i v . .. .’ .
R oo R : . oL R
ST ek = T Kege ) o (3.24)
1 R | ' : : :
Condition (3;23),imp1§ésrthat'for sqme i and j’we'have,that
' S . . ’ "":ﬁj‘f . ) N .
<ela o3 x)|8> = <Sl[o (X) Q;118> ) )
ER ‘E{J -
1Jk<8‘° x)18>
L 0 . ' : .7 (3.25)

s )
¥ ~

From the discussion of Sect1on 2.2 we see that the ferromagnetic

state therefore,corresponds to the s1tuat1on in which the spin rota-
|
) t1ona1 invariance of the system is spontaneously - ‘broken. As was po1nted

' out in the d1scuss1@n in Sect1on 2. 2 in order to ensure that the

b

o
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generators of sp1n rotat1ona1 1nvar1ance are well def1ned and that our

£
ana]ys1s of the ferromagnet1c state is meaningful then we must add ‘

a small symmetry breaking term. to the Lagrang1an We therefore con-

s1der

L— afh [osp] = Zlw ;}J.J*.] +‘h05‘(‘x)‘ , o E (3.26)

‘where h is some small but finite constant. The condition for the spon-

taneous breakdown of the. spin rotational invariance-and the existence

“of the ferromagnetic state may then be expressed as

@

lin <g|oy(x)|8> £0 , \ ' | ' (3.27a)
ho : - R
1im <B|o (x) |s> = 11m <Bloy(x)|e> =0 . T (327b)
o | o

This above proéedure may be interpreted intuitively as applying

a smaT1 mhgnetic field aTong~the fhdirection, for T< chthe magnetiza- -

"t1on rema1ns finite in the Timit as h-0.

The assumpt1on of spin rotat1ona1 1nvar1ance means that

v ~ . ] -T- _ . . . | - hd ‘.
sfih[w,w 1= h5193(x) . o . (3.28)
Thus the W-T relations given. in Eq. (2.73) assume the form
. : . R Cos . .

y

e <ol t)A?‘(x])...An(xn)]wes

“"'Z S(t t )1<B|T[A
r 2 \.

',{?E@irr(xgij...én"(xn)1i8>

: (E»A?](fr)..uA:n(xn)]|;> R (3?29)

S A
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'2<s|T[A LA (x )1 A ()]
= thd‘x<B|T[683(x) A:](Xl)---A:n(Xn)]|B5 .; ‘ (3.30)

If we now make the. following definitions

S k) = LR = 1630 IO X0
~ _ 3 . |
(1) = [a%Ee ) - 3,001 L e (3.32)
and s

then Eq. (3.29) yields the fo]1ow1ng relation between the transverse
spin correlation function <8‘T[o+; ) ]|s> and’ the magnet1zat1on
<8loy(x)]8> N | |
| | o N 5
> < . .
B(x) | 8> = fd xJ el f§€u+21h}<sﬂ[ci(x)of(y)]|s> . 7(3.34)
- : Ll | K N

e used the resuTt,that L

y=ra2i%a) ¢ T (3.3m)

and «’ | P | _ _

5,0%(x)._ = iio%(x)' . | - (;.35b)

_ Denoting \ o

Bl =M o (3.36)
and wrifing

<6]TLa%(x)sB(y)]] 8> =’zzi;¢ Id4q,é’19(x'¥)A“B(q) : (3.37)

. b - . ,

1

Eq. (3.34) yields

= (ap- 20 [ (a), d’ L N (3.38)
a 9= |

-

(3.33)
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‘ been‘obserVed in a number of metallic ferromagnets

. Furthermore the fact that the exc1tat1on spectrum of the magnons is.

' {jne result of Eq. (3.38) implies that whenAfhe‘spfngﬁnfa}iona1
symmetry is'spontaneous1y broken (i.e. 1imM # 9) then the trensverse
spin suscept1b111ty conta1ns a zero frezzgncy (again in the'11mit h'~0)
pole. This is a part1cu1ar examp1e of the ce]ebrated Go]dstone :

thecrem

Expressing a(q) iﬁ\the spectral representation[75 40 ] discussed

in Section 2.1 (Eq (2. 56))

48(q) 2 [du o (35 (ag)<Lam0 el uglag) o (3.39)

. ) N . '
where the matrices UB(qO) are those given in Eq. (2.52), the result

(3.38) implies that

i o(ay58) = He(a,-2n) .- S (3.48)
30 o -

Goldstone's theorem has 1mportant exper1menta1 consequences, in .
‘ \

“that it implies the ex1stence of Tow energy long wave]ength part1c e-

1ike exc1tat10ns assoc1ated with the transversg sp1n susceptibilityl, )

below Tc' Such modes are genera]]y referred to as magnons and hav@
(89,90 91]

gep1ess (for h=0) means that such modes are easily exc1ted This

together with the manner 1n wh1ch they coup1e to the e]ectronic‘degrees

of freedom can, as we ‘Will show in the next section, g1ve rise to the

<

i
Bloch T3/2 1aw[82] mentioned ear11er
An ana]ogous argument may be emp]oyed in the case of the local-

ized model and the ex1stence of the magnon exc1tat1on may also be shown

to be an exact requirement of the spontaneous1y broken sp1n rotational

<

1nvar1ance[ J A,number of authors have considered the-effect of such



modes on the low temperatureibehaviour'of the localized model using the

He1senberg mode1[92 93]

Lt

The W-T relations g1wen by Eqs (3.29) and (3 30)Amay also be

used to derive a number of other 1dent1t1es wh1ch, as we shall see,

'J

' prove extreme]y useful in exam1n1ng the effect of the spin fluctuations
in both the 1ow temperature ferromagnet1c doma1n (T< T ) as well as the

high temperature paramagnet1c domann (T>JTC). Using (the relation that

o .
e

R R ER AT

and ' ‘ .

5% (x)" = 1*(x)'e s S (3.41b)

we obtain, from Eq. (3.30), that

3

A TLE () e - <6l TLEGEN 8>

- 2in o[z 6| TEY(2NA0NEWN (3.42)
. Y / . i ’ .
< TES W T - el L0 e f “y
g Z<6|T[w+(X)wB(y)+ @ L (38
. Y ; :

o Gy oy , o a, . ¥
ol Tho g )9, 201 ) o§ ) 16> = <81TLy, g Du,"(xp) o2 T[>

- zinfata] eal TN, ) F0) e (340
‘ Y .
and ' 5
<elT[w x1)w <><2)’r Sles + <81T[wiz(Xi)wjz(xé)foiiy)]Ié>
+o
-_21th zst<s|T[c z)q,+ (xq)v 2(x2) o (y)]le> . (3.45)

' _We also obtain the following re]ation between the spin operator

47



Green's functions
<8 Tlo30x)5 (1) 118> - 2<B|T[c“(x) B(y)1l8>

=--2th ZZe <B|T[o Z)o (x)c ]|B>
Y .
= 24 4 Y '
. 1thsz<B|T[o (2)o (x)o5(y)] 6>
_ Y :
©, and finally

o oy g o a, @
] Tlo (xy o2 x)o Sxg) 1 je> + <8[Tlo,! (xy)s_*(xp)oy

a a a
- 2infate ] eea Tl (=)o, Mg Jo 2(x,)0_ (x

Y

| (3.46a)

3(X3)]|8>

(3.46b)

(3.‘47)‘

We close this section by restating the basic assumption under-

lying our treatment of the itinerant electron ferromagnets namely that
. P -] ‘

48

the ferromagnetic state in metals ‘may be regar&ed as the spontaneous pol-

ariiation'of a épin ?otattona]1y iMvariant system O

fermjons; induced through the self-interaction.

“results may be shown to follow from this statem

f itinerant spin 1/2
A number of exact

eht‘by virtue of the W-T

relations out11ned in Section 2.2, most 1mportant of those is the

existence of the Tow frequency Tong wavelength particle- 11ke exc1tat1ons

in the transverse spin"éusceptibi]ity, the magnons ~(

Go]dstone.s

theorem). In the next section we demonstrate how the W-T relations

contained in Eqs. (3.42+3.46b) to compute the effect of the magnons on

-

- - . . . @ .
the temperature dependence of various static and dynamic quantities,

thus giving flesh to the somewhat formal bones of this section.

3.2 The Thermal Excitations of Magnons at Low Temperatuﬁﬁs

In the previous,section'we outlined the need to consider a more

sophisticated treatment of the itinerant electron model of ferromagnetism



fhanbthat provided by the sfmp]é Stoner iheory, if we wish to employ
Suchla mbde1 to analyze the finite temperature behaviour of meta111;
‘ferromégnets. In this séction we presenf a low temperature_expansidn,“
using»the TFD formalism, whiﬁh'é1lows us to express the finite tempera-
‘ture corrections to various static and dynamica] quantities, arising
from the thermal excitation of the magnons, in terms of vertices cal-
culated at zero temperaturé. It will then be demonstrated how by vir-
tue of the w-T‘relatidns an exact expression for the leading finité
»temperature magnon correct1on may be obtained, in an entirely mode]
1ndependent fashion, for several exper1menta11y important quant1t1es

The reason one may obta1n certain exact results in this way may
be understood as fo11ows the requirements of spin rotat1ona1 invar-
iance not only require,_fdr T< Tc’ the existence of the magnon excita-
tion, as demonstrated in the previous section, but also serves to
determine mény of its properties‘through the_w—T re]ationsﬂgiven by
Eqs. (3.42+3.47). N |

We begin by formulating in the real time forma11sm a low temper-
ature expans1on for the ferromagnet1c doma1n of an 1t1nerant electron
ferromagnet A similar expansion has found several applications in

[49,50,94]

’f1n1te temperature re1at1v1st1c field theory and also by means

of the real t1me formulation of statistical mechanics. As outlined in

49

Section 2.1, the TFD formalism may be used to calculate the stat1st1ca1~

aVerage of any time ordered product of the Heisenberg fields in pertur-
bation theory, by means of a Feynman diagram technique, in a manner
entirely ahalogousito that obtained at zero temperature. Thus we may
write that S | ! &

a

a ’ .
BITEA, (x))- A, M) 118> = Flxqag- X [5,05_50) (3.48)



where S_ denote the bare electron propagators defined as

S

5,(p) = Uglpy) Py - (B anl+isn  ultp ) (3.49)

50

where e(p) is the energy spectra of the bare electrons given in Eq.(3.9),

k‘denotes the bare electron-electron vertex and UF(po) is the thermal
transformation matrix defined in Eq. (2 51).

The expans1on of the various many po1nt Green S funct1ons in
terms of the bare vertex and electron propagators is inappropriate,
however, in the ana1ys1s of the ordered state, since the spontaneous

‘po1ar1zat1on of the fermion spins may only be realized if an infinite
summation of terms in the perturbat1on series is performed Instead we

therefbﬁe consider the following quantities:

<elT[qf‘(x ' 18> = Gi‘?(x-yls+,5_;x) , - (3.50)
<B|Tm;(x ]|g>= Gig(xfy|8+,5_;x) . (3.51)
and ) ' \ |
<8|T[o (x)a2(y)]]8> - 9B (x-y|S,,S_iA) - .. (3.52)
If we now accumulate all the self-energy diagrams*be1onging to
/
G., G, and &, thatﬁappear in the diagramatic expansion of Eq. (3.48),

+? Ty

then we may re-express it as
<BlT[A1 (x1)...An (xn)]|8> = F(x]q],..,xnaanf,G*,A;x), (3.53)

where F is now constructed in terms of the reduced graphs comprising

G, G and'A as the internal lines. Thé.appéarance of the magnon,]ﬁne

£ Ty
in the expansion represented by Eq. (3.53) is of essential importance
since it is this function which will contain the effect of the magnon

pole.
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Defining the functions G+(p), G+(p) and a(q) through the Fourier

transforms
a8 i 4 -ip(x-y) a8 ’ "
G, (x-y) = (2ﬂ)4 Jd p e G, (p) , | (3.54)
B (x-y) = — Jd4p LS OF (3.55)
¥ (21r) ¥ )

and Eq. (3.37)

AaB(X‘Y) - (21 )4 qu'»q e-id(x-y) AaB(q) ’ _ (3.56)

and as was pointed out in Section 2.1 G(p) and a(q) may be written in

" the spectral representatfon as

6, (9) = [dx 9, (B WElp)lpg <+ 16517 1UE(RG) 5 (3.57)

G+(p) = J’dK g¢(k;3)UF(po)[po- o + 1’51]'] U:(po) (3.58)
and ‘ |

a(q) = fdw p(w;a)UB(qo)r[q-m-+1'c3r':|-1 UB(qO) . ‘(3.59)

The functions G+, G and A depend on temperature in two ways:

¥

first of all through the explicit temperature dependence of the thermal:

transformation matrices UF and UB aﬁd"second]y through the spectral
functions g, 9, and o. In order to formulate a low temperature expan-
sion we find it convenient to introduce the propagators E}, G; and &
which are obtained from G+, G+ and'A by replacing the finite tempera-

ture spectral function with the zero temperature spectral function,

thus; ‘
T8 (p) = [oe RlesBIVE(p) g« + 1617 Uglpy) - 6.60)
ORI PO TRERICRPRAES RN (3.61)

and

51
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t
!

18 (q) = [dw:P(m;E)uB(qé)T[qé- w~+i§T]‘1 Ug(a, ) (3.62) °

where g?, gg and oo denote the spectral functions 9,5 9, and p respec-
tively evaluated at zero temperature. The propagators E}, §+ and A

are.related through the Dyson equation which is of the fo]]owing‘form_

/

6**(p) - Eie(p)-+§EiY(p)FIB(plG+;G+;A;x) : (3.63)

62 (p) = 63?(p>-+§ EjY(p)FIB(pIGf;G+;A;A> (3.64)
and | - .

2% (q) =.ZQB(Q)-*EZ?Y(Q)FZB(QIGf;G$;A;x) . S (368

-

Since §+, €¢ and 2 are defined in such a way that the tempera-
ture dependence only appears throdgh the thermal transformation matrices

they may be expressed as . ‘ -

2 (p) = e2(p)*® + 6e2(p) | | (3.66)
&P(p) = 63(p)*® + 6a5°(p) e (3.67),
and
8(p) = a%(q)%F + 5a%(p) (3.68)
where Gﬁ, Gi aﬂd 2 are the zero temperature propagators and are given
by | - |
r - .l (18
Gi(p)as = |dx gi(K;E) [p -t ‘ie(K)cS'r] i (3.69)
- o 0 4
0, \aB [ 0, = 1 . o /
G+(p) = d« g+()<;p) [p < ¥ iE(K)aT (3.70)
: ‘L 0
and
0 o8 _ [, o/ .= T a8
A (Q) = deé (w,Q) [qo_w+ 'iE(u)_)ﬁTJ . | (3.71)

While the terms 6G+’ dG+ and §A represent the finite temperature correc-

tions and are given by | ' ‘
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5628(p) = 2ni c(p,)gy(pyiB) : (3.72)
o tro(p ) ap(p)1F =Fellpgl)

and

| ks
i . o fg(la,l) [fB(qo)gB(qo)]l:
2*%(q) =-2ni elay)e (qo;q) : . (3.73)
| RACRENCRACRAIEND

The low temperature expansién of the many point Green's function of
Eq. (3.53) may now be obtained by performing a functional expansion of

the function F in powers of 64 and §G. Thus, we have

‘o “ .
<3|T[A11(x1)..ﬂAnn(xn)]|B> = F(x1g]...xnaan+;G+;A;x)

F(x]a]...xnaanf;G+;4;})

o . 0.‘ O. o. .
Fv (x]ou| .. .XndnlG1\’G+’A,.,;.’,§...).,.

ab(

- 0..0.,0,
) 32(x1a1...xnanlq,qb|G+,G+,A 1) 8A | q)

Lo o
i 4 0 A0 ab

+— Jd Pl g;+(x]a1...%nanlp;ab|G+;G+;A x)&G (p)
(x] 1o X |p abIG G° Ao A)éGab(p)

......... . . | (3.74)

The form;factors.appearing in the aboveAexpansion,'}¢,j}#and 32,
have an obvious d1agramat1c interpretation. The first term, for exam-
ple, simply corresponds to the sum of all the reduced dfégrams calcula-

ted using the zero temperature propagators and hence may be identified as
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0, 6936938750 (3.75)

<0[T[A1(x])...An(xn)]|0> for {a;}= (1} or {2}

0 - otherwise
_ ‘ B

where |0> denotes the zero temperature vacuum. . In particular we have )
that ‘

6%(x-y)*® = 5 <0|Tlv, ()] (¥)1]0> 5 (3.76)

4 af TAMEAS A AR ’ o :

o] aB ' ; + '

G, (x-y) 846501 Tlv, (x)y, (¥)1]0> h (3.77)
and , . !

22(x-y)*® < 5 <0l Tlo, (x)o_(NIJO> . - (3.78)

LS

The second term (3- f6r example, correspones to fhe'sumkbf all
diagrams w1th(n+2)externa1 11nes, n of which correspond to the fields
LAi( )}, the rema1n1ng two correspond1ng to extawm]magnon lines thh
the magnon propagators‘removedt \The,th1rd (fourth) term \f*(¢) cor-
responds to the sum of a11 fhe diagrams with (n+2) external lines n of
which correspond to the fields {Ai(x)}, while the remaining two corres-
pond to external spin-up (-down) electron lines' with the electron pro;

pagators removed

It is important to rea11ze that while. the reduced d1agrams ca

tructed 1n terms of the propagators Gf, §+
different t0po1og1ca1 structure than those ‘obtained at zero temperature };
the above considerations show that the coefficients appear1ng 1n the é%
low temperature expansion may be calculated in terms of the zero temperfiiﬁ@

ature d1agrams Therefore there is no need to calcu]ate any new dia-

T
".\

grams since any change in the topological structure will be rea11zed
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thr&Lgh the summatfon of the low. temperature expansion given by Eq.
(3.74). )

while the nature of the above‘diséussiqn may appear to be of a
rather formal nature the final result contained iy, Eq. (3.74) and the
diagfamat1c interpretation of ghe form factors has an Obv1ods intui -
tive appeal. o y |

‘In order to demonstrate the practical merit of the low tempera-
ture expansion we consider the correction to the magnetization arising
from the thermal eXcifation of the magnons. From Eq. (3.36) together
with Eqs. (3.50) and (3.51) wé have that ’

M7 =g fabors} () - ) @1 O (3.79)

* w

The propagators G*(p) and‘G+(p) may be computed in the low temperature

expansion and we write’ »

ab

8 (p) = &2(p)*F + — Jd4q I #(psalgp 6o (a)

sy [t 1 UF eplgh o0, )" “(pip () ]

203 “ *

. - a ) X “'p ' )
o, : | Ly (3.80)

¢

&' ' ) .
. 4

TEE(p) = 62(p)E (—-‘—)—4 fa*a 1 3Z(p;q)‘;g¢A<q>?b..
: 2m a

+__.I(2:r) Jd4p' 703 (pp" 2556, ()™ Pegpip' )% 5620(p1)]

fe | | o (3.81)

Since the form factors F abpearing in Egs. (3;80) and (3.81) are cons-

~ trugted using the Green's function Go(p)mB which is diagonal in the



/
~indices ag and since the vertices'dounot mix the tildé and non-tildé.

fields then we have that.
aB _

JO.'B'_

e (3.82)

There?ore-if we consider,Eﬁs. (3.8Q) and (3.81) in’the casé o #‘e =1

> - v’ - . ! - ) - * ‘.~‘ S ' B
and, since it is the magnon correction we wish to calculate, we con--

‘sidgr only the bontribution arising from phe’da(q) term. Then Egs:

(3.80) and (3.81) reduce to

¢ Gl‘.<p)=e_2(p)+(21)3 [¢*a 3} (sa) (10, o0y Delay) + .o - (3.83)
and,’. , - ' ‘_ .
6 () - G‘i(@"f(;l—)% J,d“q srg@aq)fBuqou>p°<q0‘;a>e<qo>_+- . (3.88)

where we have -used Eq.‘(3f7§). Now the spectral functioano(qo;§3>con_

‘tains both the magnon pole and the continuum contribution

Plagid) = P sla,-upEN) +o200i D) (3.89)

- which, since we are concerned with the magnon contribution, we appro-

ximate'pp'as
0%a58) = °(@)slqy -wp@) * ... . (3.86)

“'Now from the result of ‘Eq. (3.405'we3have that

e .
im 2°(3) = M(T=0) =M o (3.87)

| g0 2 .
. and _ : S ‘ o
 limwg(@) =2n : ; (3.88)

- from which we can deduce that

d&asda"B'éa'a\'\' o ' ‘ -

56
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1‘ C . . a
wg(a) S h 4Dt e . | o (3.89)
hoN
where D is referred to as the sp1n wave st1ffness ’
,Equgtxons (3.83), (3 e4) and (3.86) then Tead to thedBMEing
o , ) @ i i
resu1t = o . \\ . -
AN s Iy
BERE o B35 4, TR SR
(p) = 62(p) j GG Fpa) B Tleg@) 4. (3.90),
and . o ~ N
o e (4 vy R iyt iaan
6, (p)=6,(p)+ [ s Folpsa)  Zg(@fglugla))+ ... (3.91)
Sl T8 a0 T .
ST e :

Thetfact that the magnon excitation energy tends to zero (for -
l1:0) in. the 1ong wave]eng7h limit allows us to expand the above ex-
,bress10n in terms of q. 5@ta1n1ng on1y the first term in the express1on
we have - y/ ~

. . ,3+. | o
6l (p) = 62(p) + ﬁow o:0)[ L5y @ e e (292
(2r)° L o0
and . / _ e 'f
d1(p)= G°(p)+—Z%K0);?Z(p;0)}'zgf?g fB(wg(q)).+ L (3.93) .
- T (2w ,

Thus we f1nd that the ﬂead1ng correct1on to the e]ectron propagators
G and G is proport1 nal to the magnon dens1ty Jd3q folw Q@))
which may be calculated to give
: A' [ o SN ;
gy 32 . -3/2 .52 o | .
{d33f8<mg>=(%)ﬁc.(%>,e co 'l L)

where g denotes the R\eman zeta function. The higher order terms in

the 1ow momentum expans1on ‘will be proport1ona1 to

I(—z—%l*l”‘ 5 u B<q)> (3*2N)/2 L3
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It remains, therefore, to.compute the: form factors \;zfénd

a7

\

From the d1scuss1on of the previous sect1on the form factors ka and
oF gl

}+ are g1ven by the sum of all graphs conta1n1ng two external electron

A
11nes and two magnon 11nes with the external magnon lines removed

B

Thus if we define F+M as , | Q,

<0LT[¢+(X1)5+(yi)0;(y2)¢1(¥2)llofc

. e - o
(i [ b gt g (p1 17P2X "1 qzyz)
¥ P Pp% 19 9 ©
™)
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* where the subscript c means that we consider only the connected diagrams,

then we have-

) L
Hneq) = 10 ca:a-5)e%(p) -
&JA(p,q)-x,(Zﬁ)4'G+(p)FTM<ping,p)G¢(p) :

Similarly if we defirie the vertex F+M‘aé

0|10y, (%) )o, ¥y Jo_ (v )u (x)10> ¥
o oV4ra : -iiﬁdihip X,+qqY1=05Y5)
= i 4 4 4 4 w17 P72 Y 202
—w[(zn)l} Jd prd ppd ayd ay € ° | g
Lowl

a(p+a,- 9 p,)G (p1)A ®(ay )7 (P 30y 3053P,)87(a5)8, (pp)

‘then we obtain o
! |
{i 39) = ——3 G ( ) ( )G (p) .
| F,(p 7 (zﬂ) pIr y(p:asasp ‘p
A~ThusEqs. (3.92) and (3.93) may be written as

e”(i 6 (p) + 220036, (p) —— (poome()j—"fi (u2(8)) +
+ ’ B . +p (2n)4 +M (2 )3 BwB

f
J . .
| - : i o

&

(3.97)

‘(3.98)

- (3.99)

(3.1p0)
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and

OREHOR 22(0)6, (p) g T y(p30305)6G, (p)

| | (2n) e
35 o '
J?:_S)l? Folug (@) + oo | C(3aon)

The behav1bur of the vertices T M and T M are severéiy gbntro]led B

by the requ1rements of sp1n rotational 1nvar1énce as expressed in Egs.

(3.42+3.45). From Eqs. (3.42) and (3.44) we obtain, for T = 0, that.
) . e - .

;‘4h2Jd4y]d4y2<0|T[w (%4 Jo (y1)c (y2) é)]j0>

B 2thd _y2<0|T[w (g w (x )03 y5)110> |
_zith y2<o|T[¢+(x])w+(-x2)c__(y2 110> »*_‘
21¥jd y2<0|T[w+ )w 2 (xp)o3(y) |0> o S
+<0|T[w 0 ¥} ()]0 - <0|T[w x])w y) Jies . (3.102)

From ‘the def1n1t1on of r, g1J(; by Eq. (3. 96),Eq (3 102) y1e1ds

Tim 4h? 63(p)a (0)‘—17;'rm(p;0-;~0';p>,a9(0>e+,(p)=G+(p>-G°(p) (3.103)

h+0_‘ o+ T - *

and noting from Eq. (3.38) that in the 1imit q >0 and Te 0

lim ah% 6%(0) = M(T=0) . : ©(3.104).
Thus Eq. (3.103) yields | / _;
G°(p)'—l— r, u(P30; 0,p)G (p) ——— {6, ( (3.105)

An analogous argument based on Egs. (3.45) and (3. 43) y1e1ds
& (p) ——p T, (p30303p)6° (p) = 15 (6 (0)-6. ()} . 5 (3 106)
APHILER TR AR v @ AT
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CQ‘ y
v

! L]
substituting Eqs. (3.105) and (3.106). togethe¥ with (3.87) into Egs.’

(3.100) and'(a 101)'wevobtain

60

. DU I .
”(p)— (p) - Mi;[-ei<p)-e3<p)1j(%—‘)‘—gfB(mg<a>)+~... (3.107)

k)

§ N ' : ’ :
OO o (p)-Gi('p)]J»(—;—?g F Q@ 4 .e (3108)

‘Subtracting Eq. (3. 107) from Eq. (3.108) and integrating with respect

to d*p we obtain - , .
. ‘ ; \ i p
Cwfqo2[ d%F o ooz '5/2 v o
wm) =m0 - MJ o fB(wB(q))} s o(r?) > (3.109)

" and on adding Eqs. (3.107) and;T§11os /e obtain

R e ) oy L (3.110)

where N(T) is defined as

0

N(T)

i

\

. O
3]
&

The correction to the magnet1zat1on in Eq (3.109) is of course

the B1och‘T3/ tegm pred1cted by the_spin wave theory and is con51stent_

?

with approx1mate calculgtions on the ferromagnet1sm of itinerant e1ec- ;

(951

tron systems

»tron density remains’constant then the renormalization of the chemical

. potent1a1 is order TS'/2 T

-~

-The result conta1ned in Eq. (3. 109) and"the mannef,in which it

was der1ved is of 1nterest for a number of reasons. First of all it

3/2

demonstrates that the B1och T 1aw‘may be obtained, in the case of
itinerant e]ectrbn ferkomagnets, in an exact and unambiguous fashion

. purely from,cons%derations of symmetry. This imp]ieé that the Bloch

J

Equat1on (3. 110) 1mp11es tpat if we assume ‘the elec--

<alv! (X)w ‘B> - R Co(any)



T372’1aw may be regarded as an exact requirement of the spin rotational
invariance of the system. Secondiy the derivation illustrates the

: practitai‘importance of the W-T relations in determining the effect of .
the magnons on the 1ow temperature behaviour of such systems. It is

: 1mportant therefore that any approx1mation scheme used in the analysis
of 1tinerant.e1ectron ferromagnets be consistent with the W-T relations
if it islto_proper]y'represent the 1ew temperature behaviour of such
systems. In Appendix B we apply .these considerations to the particular
case of a system of electrons, interacting via a contact interactien.

The approx1mations employed, satisfy the W- T re]ations of Eqs. (3.105)

and (3.106). In addition to the T3/2 contributieh arising. from the mag-

noﬁs?iihe TS/2 contribution is calculated explicitly in terms of certain
bana»parameters.

A similar analysis may be applied.to other experimentai]y acces-
‘sible quantities. For example it was mentioned earlier that'the magnon
exc1tation may be observed in neutron scattering experiments and the
'exc1tat10n spectra measured. Observations indicate that the magnon

y (911, !

spectra 1s reiativeiy 1nsen51t1ve to temperature around T=0" we

-therefore app]y the preceding analysis to consider the, effect of the

therma]ly excited magnons on: two exc1tation spectra of the magnons.

N )

The arguments proceed much as before, in ana]ogy with Eqs.(3.80)

and (3.81) we have that

o

') - 2°(q) + (21 X Jea' ?A(q )28 @) (@)

where we, have neglected to 1nc1ude the corrections 4G which are of no

1nterest to us in this discu5510n Proceeding exactiy as in the

\i
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3 ' R
s =2+ [ Lhagda) <o P@RGE) H e (01)
. (2n q'=wB(q )
- B3 0 0 by | d3+‘ ¢ 0>
«\‘-',;" .v"!t,*‘ =A (Q) +Z.‘ (O)EA(Q;O)J ; \’:fB(UJB(q)) + ..., (3.]14)
.{ % ::‘:fv .‘ ‘ B /’(.2 i , ] .

FoT1ow1ng the arguments of the prev1ous Sect1on 3.1 we may’ 1dent1fy j

1

as the: suﬁ’of all connected d1agrams with four externa1 magnon lines,

two of which are removed. Then if we def1ne FMM

<0100, (x) o, (x,)0_(¥))o_(¥,)110> e -

T AL CIL A PR R EP i
[__‘I] Jd q]d qu Q3d, Q © .

(2r)
. 2%(aq )2 (qz) MM(q1,q2:q3,q4) (q3)A°(q;) N (3t115)‘
we obtain .
é?i(q;q') = 0°(q) (21)4>FMM(9;Q 19’ 3q)8 °(q) ‘ ) (3.j16)
" and hence that N |
M(q) = %) +2°(a) — réM(q;o;O;q>A°<§)2°(o)J-Ji3?;f8<w8<a)) ]
(27) _ (2r)

In order to evaluate thevf6W momentum behaviour of_the»magnbﬁ-
. magnon vertex FMM,WZ refer to ?hé W-T'r¢1ations given‘by,Eqs: (3.46) -
and (3.47) fromiwhfch we obtain, for T=0,
o[ty <01 To, 00y Do, (1 )g oy o _t)T10
- 21h[d4y1<0|T[o+(x1)03KYT)0;(y2)JjQ??§§5"- L




/

4y] <0| T[0’+(z;;|\)03(y1 )0_ (_y2 y110>
;) '

= 21th

+ 20 Tlo, (x,)o_(y,)110> < <0|Tlo5(xy Jo3¥p)110>. (3.118)

Substituting the expression of Eq. (3.115) into (3.118) we obtain that B

1im 2%(q)

1 ‘ ;
h~0 (2n )4 MM(q;O;O;q)Ao(Q)=—§ [Atgq)iZAO(q)] . (3_]]9)

M

where we have def1nedng

<0|TL(M, - o3(x)) (Mg - 731107 = 1)4 [d‘!q’}e_iq(x-y) 20a) (3.120)

YSuﬁgfitnting Eq. (3.119) into Eq. (3.117) and no%ing that At(q) consists

entirely of continuum contribution we obtain to order T3/2 that

Mgy = a° 2( d7q_ g 0
A (q) = A (g)4T - folwg(q)) + ...
-, q)‘ q { MJ (zﬂ)? glwgla }

»

4+ continuum | (3.121)

. where we have used Eq. (3.87). It immediately follows from Eq. (3.121)

that, to order T3/2, the magnon energy is independent of tEmperature,\

while the wavefunction renormalization ZB(E) is given by

. - 21 d )
Z(q) = 2 (q){ M J.——l(zﬂ)3 fplwgla)) + } : (3.122)

. Q
This means that any contribution to the magnon energy spectra arising

5/2

,from the thermal excitation of the magnons will be of order T°° ". A

1m11ar result has been obta1ned by Dyson[ J in the case of the
C:|e1senberg mode}, although it can be shown[ ] that Dyson's result may
be obtained from symmetry considerations similar to those presented
‘;here. | | “
- 1In the case of the 1t1nerant electron ferromagnet1sm however,A

" ca]cu]at1ons regarding the temperature dependence of the magnon energy

63
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differ£95’961,‘gepend1ng on the approximation scheme used. It does
appear to be generally accepted, however, that contributions of order
'T3/2 in the magnon energy are spurious and the result of arf inadequate

) &
approx1mat1on scheme[95 % 97], similar difficu1ti%s arise in the

Heisenberg ‘mode1[ 8] .

The above procedures may be applied go.tonsidek the temperatdré
dependence of the electron spectra, however.difficulties arise .since ’
calculations show[65].that the dispersive part of the electron sé1f—
energy correction is non-vaniShing'even at zero tempefature and‘hence

the electron propagator does not have a simple pole structure associated

with a particle-1ike exc1tat1on However one can obfain'an operational
SR

~

definition of the electron energy’ spectra e ép) and-€ (3), in terms of

the inverse electron propagator as

i

-1
[Re Gf(p)]poge+(p).

and : ' =

[Re G (P)]

0 _ (3.123)

2 (3.124)

|
o

=€ .(P)

while the wavefunction renorma1ization of the spin up and spin down

electrons may be defined as

"'__3_ 1 N .
z,(p) = [apo Re G (p)]p0=€+(p) (3.125)
and
2y o8 -1 o | .
z(p) = [apo,Re G, (p)]po=€¢(3) : (3.126)

Such def1n1t1ons will be meaningful when the dispersive part of

the electron self-energy is small and hence the spectral function of

the electrons will manifest a strong particle-like resonant peak in the

neighbourhood of p, = e+(p) in the_case of the spin up electrons and 5

5]



Py ™ s+(p) in the cage of the spin down electrons. From the expressions
for G*(p) and G+(p) given by Egs. (3.107) and (3.108) and the result

that for A we expand in terms of o as

A=‘§\o.+a+.... o, , - (3.127)

we may expand Al as

1P DS ) .
AT = Ao + Ao <on~ + ... (3.128)
’ ‘ y . 3/2
for @ small, then we obtain to order T
-1 0,41 1 a0, y-1 0 3160 0/ -1
67 (p) = 63(m) ! - [65(p) 7 - 63(p)T 6L (RIE(P) 7]
’ d3+' Lo ‘
J——q—g folug(@) + ... (3.129) -
(27)
and ' ‘
- -1 1 -1 -1 )y~ 1
6, (p) = 65(p)7 - [63(m) - 65() 62(p)6(p) 71
. . ' _
d3-> , ‘
J———Q— fo(w2(q)) + .... ’ (3.130)
Jrn 3 BB
(2n)

_ This result may be obtained in a somewhat more precise manner following
the definition of the electron se1f—energy[661. Froh Egs. (3.129) and

(3.130)‘we immédiate1y see thét

_ e | |
(R 6, (0] c0(p) =0 | | (3.131)

I
o

-1 ' _
[Re GI+ (p)]po___sg(p) (3.]32)
)
(
perature and that

where ¢9(p) and eg(p) denote the electron energy spectra at zero tem-

) -1 _ 50 1 d q - > ;
55; Re G, (p) p =€+(P)_ z (E)[]"ﬁ['a;jig fB(@g(Q))+ e (3.133)
: 0

and
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0 . ' ,
where Z+ and Zg denote the zero temperature electron wave function
renormalization constants. : .

Equations (3.131) and (3.132) yield the -result therefore that to
order T3/2 thé quasi-electron spectra are independent of temperatufe.
Again this result appears to be borne out by various approximafe calcu-
lations although opinions differ as to‘the exact nature-of the cancella-
tion[95,96,99]. However, while the energy spectra of thewﬁuasi—e1ectron
states 4s, to order T3/2, independent of temperature the wavefunction
renorma1iza§ion constants do exhibit a T3/? dependence.

| va'summarize we have utilized the real-time formulation of
Statistica]zMechanics, TFD, to construEt a low temperature expansion
for the time ordered Green's functions. The coefficients, or form
factors, appearing in the expansion may be expressed in terms of the
vert{ces calculated at zero temperature. In this ;anner we were ab]g
to obtain”an expression for the leading finite }emperature magnon

corrections to the magnetization, the transverse spin susceptibility

" _and the one electron Green's function. It was shown how the leading

66

T3/2 magnon contribution could be obtained from a low momenium expansion

“and an exp]icit'evaluation of this term could be.accomplished by means
6f the W-T relations outlined in the previous section.

Né were therefore able to obtain the following experimentally
relevant results in a completely modé] indepenent fashion:

i) The Bloch T3/2 law _
3>

| 2 d 0/> ' e
M(T) = M, [1 - ﬁ;J(z_nc)% fB(wB(q)) + .. : (3.135)



51) The temperature depeﬁdent quasi-pakticle spectrum

mB(E) = mgga) . : (1.136a)
) . ‘
e, (B) = €} (B) + (1.136b)
and
e, (p) = Q(B) * ... : “ | (1.136¢)

i

ii1) The temperature dependent wavefunction renormalization‘;onstants

_ - | , |
> > 2 d 0, :
Z,(q) Zg(q){j - ﬁ;J'(E;?i falug(@)) + ....}  (3.137a)

2,(3) = ) {1- -,Hif)% T IR S CA LY
and |

. N
z,(5) = 1(5) {1 - ﬁ‘—J-E‘-S)% £ (u3(3)) + } S G

where the dots denote terms with higher order temperature dependence

5/2 etc.).

that 772 (i.e. T2, T

The manner in which fhe above results were derived is such that
they may be regarded as exact réquirements of the spin rotational in-
variaﬁce 6f the theory.

: . . | ‘
3.3 Ward-Takahashi Relations and the Paramagnetic Susceptibility

In this section we turn our attention to the paramagnetic sus-
ceptibi]ity of jtinerant electron ferromagnets. The approach emp]oyedﬂ o
is somewhat qpye] and is based on an examination of the response of
the system to a symmetry breaking term, analogous to’that employed in
the previous Section 3.2 and given by Eq. (3:26).v Since the response
of the system is severally controlled by the requirements of;spin

Q@ -

o
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rotational invariance, we are able to obtain, by means of the W-T re]aA L
’ Y

tions outlined in Section 3.1; an exact expression for the static sus-‘v
ceptibility in terms of the‘electron self-energy. We usé thé result of =
this analysis to consider the effect of spin f]uctuationg on the static
“suscept1b111ty and to show what approximations are required in order to

make contact with previous wor'ks[8 9,100,101,102]

The considerations
of this section are based largely on Eome'ear1ier wérk by the present
author and collaborators reported in the 1it¢rature[67] but containsh
some minor modifications. -

The importance of the effect of the spin fluctuations inthe static sus-
.céptibi]ity in itirerant sph{systems has been studied by a number of authors.
Beal-Monod ‘et a1[8] have considered thé case of normal 3He while other

[9,700,101,102] have examined their role in the so-called weak

authors
itinerant ferromagnets discusged previously. A notab]e achievement of
this latter wofk is that it appears to account for the Curie-Weiss tjpe
temberature dependence observed in thesé materiais[86’87].

The problem posed is therefore, gfven the assumptions oht]ined
in Section-3:1"(i.e. that system.may_be described in terms of the
* Heisenberg fie]@s w%(x) and w+(x) together with théir canonical conju-
gates wi(x) and wi(x) the original dynamics of whjch'may be‘assumed’to '

be invariant under arbitrary rotations in spin  space etc.), can we

obtain an expression for the static transverse susceptibility, for T-> TC,

defined as
*8a(h) = 1im a%P(q) ‘ B (3.138)
a0 ' v . ?
OLB(q)}was given by Eq. (3.56) as

where A
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d4q e"lQ(X-.V)AaB(q)'. (3*9)

 We bggin by gefining the electron paramaﬁnon vertex[ 03] as

R ol ..
# By, ) By P12 (a4 4 SHeenns pzyz)
BITLA00N, gDy, (y2)1|s> - [T)T] Ja nd'nydae
L2
aby, ab b5, gqb
s* (qtp,-p,) (8 Vs 2% A“a(q) 2(py39:p,)16, R ](p-|)G 2 2(p2)

(3.140)
where G and G"ﬁ denote the Fourier transform of the one electron Green's

function given by Egs. (3.54) and (3. 55) and. summat1on over repeated

Latin indices is assumed. Noting that

' B
| T (x)e3 () [g> == 1im - <a|TLo3(x)e (y1)¢ yz ]le> (304
.YZ”}H"S R

oD

\ g .
we obta1nﬂthe fo11ow1ng expresS1on for the dynamical susceptibility in

- terms of the one electron Green s functions G, and. G and the electron

.‘}s“: PR

paramagnon vertex r as -

,J.m

« "beb,: gb, %
4" « 8by g
{d 51, 2(p 9435~ 9’6, | (36 2 <p+g->} 8 (q)
2 4 |

::,m# 4 s .. ,;‘ . ) ‘ L (3 .‘42)

1

(wa)

30

2*?(q { ?r~al

where‘D“B(d)'isngVEn by

4 .
w.oog -

B(Q) =;
- 9°~(21T)

From the spectra] representat1on it is stra1ghtforward to show that in

the stat1c 11m1tvD (q) 1s d1agona1 with respect to the therma] 1nd1ce§

aB and may bé wr1tten as_ ..

1im D% (q) = *®o(n) . | v : | (3.1;4)
0. ‘ , :

o -

—.—ﬂd“p'de (p—Z)GBa(p’fﬂ) N C R

69



. Thus from‘qu (3. 142)fwe obtafn ‘the fo]fowih@lexpressfon for a(h)
,A(h'~)1=,/D(h){1- Jz-Jd 0.7 rb‘ 2(p .0; p)ebebb‘(p) bzb:(p)}_] . (3.145)
. . ) o,a R , -
| In.order to eva]uate the “low momentum 11m1t of the e1eetron para-~
‘4 magnon vertex T we, make use of the W-T re1at1ons of Sect1on 3.1. If we
'juse .the express1on for: the e]ectron paramagnon vertex given by Eq

.(3.140) together w1th the result of Eq (3. 42) we obta1n the fo110w1ng

result
&5 (p) - “B(p)--zn{ 1o~ 80 T 1630 6301605 0) (3.146)

_](

, 5&ﬁthvin‘terms'ofvthe inverse progagatOrs 611(p) ahd G¢ p) mayvbe
'fwrfttehiés | . V
‘ G+ (p) -G, Ap)p —2h ;—A(h)Z r pO;p) . (3,,147)
'aB -

'

Thus we see how the w T relat1ons prov1de us w1th an exact express1on

for the e]ectron paramagnon verte% in terms of the inverse- e1ectron

A

<

o
J

propagators

A somewhat more usefu] express1on for F than that givenuby Eq;

(3 147), may be obtained from the def1n1t1on oF the 1nverse propagator

in terms of the e]ectron se1f-energ1es Nr1t1ng the equat1on of mot1on

'for the He1senberg f1e1ds as

L “ {1 3t ;,%( 1v) + h} a\(x) Telvsxd | . (e

. and

~

a !

f-m;xa e

v

J

P

o i, .'.3__ ooy o ,-‘.a' .;':
o {1ﬁat‘. e(-TV) - h}»w(x),
kwhere J[w x] 1s due to the effect of the self-1nteract1on of the ?hec- ' J
: ¥ ]

'trons As discussed 1n Sectton 2 the ana1yt1ca1 structure of the one



RS i ‘ .
'e1ectr0n Green's funct1ons in TFD is such that 1t is poss1b1e to define

" a self-energy term Z+(+)(p) that has slm11ar ana1yt1ca1 propert1es to .

the propagatorxG+(+)£Q9]; as )
| B B
8|70} [w,x]w s> = ?2-1-)—'4-]“ L RO ORI ALY
, T o . . B .
and '

71"

<’e|}‘T[Ji‘[w;)’<‘]}{»f(y)T]. &> =»_i__1r Jd4p_ ve-l'p‘\(x-y)zig(pmg?(p) . (3.149b)

(2n) "
The equation of motTon for the Heisenberg fields (3.148a,b) then yields
the Dyson equation for the one elect?on'Green's'function

;;a;‘

B 2 o _ o ‘ s
4and‘ : e» . : . e : . ‘ -
é’f(p)'é S\f?‘(pv)‘»tasg‘fa(p)i (p)G (p) , AR © (3.150b)
k where‘thevpropagatohs S (p) are simply g1ven by | LW |
“B(p) - U (p ), -ee‘p%hﬂad@-upm: S ‘,z,:('3-.151)

o where UF( ) is the fermion therma] transformat1on matrax def1ned hy

. Eq. (2.51). " The inverse propagators G T(p) and G, (p) may be- written

—

‘in terms_ofatheirwrespective self—energy parts as

| G;](ﬁg‘e= pr;e(p )+h- Z p)] R (-3.-.152a)
»ahd‘ : B “ |
. . X : . . -t
619 = T, -e<p) h- z p)] - ‘(3.}]52b)\, |

As w1th the zeko temperature case the self— nergy part DY (+) has an
obvqous d1agramat1c 1nterpretat1on, it corresponds to the summat1on of

o

a11 the one electron 1rreduc1b1e contr1but1ons to ‘the one e]ectron

!



~ propagator G, ) with'the external electron 1ineS~removed' -

|
It is important to apprec1ate that the’ def3h1t1on of the inverse

propagator and 1ts express1on in terms of the se]f energy together with

'1{the d1ad¥amat1c Lnterpretatlon of the se]f—energy are a11 made poss1b]e,

&

energy } as . !
1) - 138 = zna(h)zr;‘(p,;O;'p) L Basy)
 The result of Eq. (3.38) allows us to rewrite Eq. (3.153) as =~ =
. [z:s(p.)-z‘i%)] --7 r;B(p;o;p) . O (3a54)
~ SRR R AR .

‘forma11sm.

J1n,a pract1ca1 sense, through %he matr1x structure of TFD It is there—
fore the. case that near]y all” the 1mportant results of this. sectlon are -

"'a consequence of the computat1ona1 power afforded us by the TFD

-

Equation (3.147) may then be re-expressed in terms of the sel f-

. S
Wi . -

In the fgﬁéfmagnet1c regime, P< T » -both the‘numerator and the
yo-

. denom1nator of the Teft hand s1de of Eq (3 15 ) remain fin1te in the

'ksimal symmetry break1ng parameter h.

/

Timit h-+0- The role of Eq (3 154) in analyz1ng the magnet1c proper- o

t1es of itinerant electron systems has been exam1ned in refs. [7] and

[65]. In the paramagnetic regime, T> T.» *however both the numeratar and

l'denom1nator on the 1eft,hand.s1de of-Eq. (3.154) tend to zero in the .

e

limit'h—>0 Thus Eq. (3’154) shows us thaf?~1n the.zerO‘fie1d case (i.e.

) h 0) the 1ong wave]ength 11m1t of the electro paramagnon vertex T

may be ca]cu]ated from the - response of the magnet1

ing of the Sp1n up. and spin down se]f—energ1es induded by some 1nf1n1te-._

If we now - subst1tute Eq. (3. 154) into our e pression for the

t1on and.the sp11tt4

ra



" ;-the 1nteract1on term, to eons1st of th

N

static suscept1b111ty given in Eq. (3.145) we obtain

_.|
am =0 {1, =t Jd pz—Tr[rG () ﬁ{z )- 1,61}
| , ™) _ o - (3.155)

The above expreSsion is exact“and model independent and provides us with
a useful start1ng po1nt for our d1scussions ;

In order to see how we may ut111ie this resu1t in a pract1ca1‘
©way, we consider thekinteractlon to be given by a local contact 1nter-

act1on, thus
- ——;-zw (x)y! .(X)w (x)u, () e T (3.156)

3]

We then cons1der ‘the se1f—energy correct1ons Z ~and Z , arising’fﬁom

_s, the fam1L1ar Hartree-

'contr1but1on_ar1s1ng from.

e

" Fock or Mean Field (MF) contr1but1on plue 3

the spin-fluctuations. Thu& we wr1te

4

e - 5a8g<n+(§Q;‘+ ii?(bi i (3.157a)
_and s ' : ‘ } |
Z“@ﬁp) = ®Bren, (x)> + ijS(p) ' (3.157b)

"~ where <n¢> and <n > denote the: dens1ty of the spin up and the spiﬁ down -

'eelectrons respect1ve1y and are g1ven by

m o

S <n (x)> = - —-i—z K) /,' o ‘ (3-1583)
T 0k . Loy
and ' r -
L < (x)> = - ———-4- d’k G (k , : ' (3.158b)
i (2r) §+ B Y R

!v

where § denotes the 1ntegrat1on path for dp lies in the‘uppek half of.

Y :
the complex p1ane The ‘second terms appear1ng 1n Eqs (3 ]57a b) there~

¢

fore represent correct1ons to the MF contr1butaﬁns ar1s1ng from the. Sp1n

4 : . TN s
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E L

fluctuations. By analogy we define the corresponding MF propagatofs‘as

62" (p) = Ue(py)lp, -e(p)t(%¥+-h +16Tj-]UF(po) - 1‘ (3.155)

The Dyson Equat1on, Eq (3. 150a ,b), for the one electron Green's func-

t1on may now be wr1tten in terms. of the MF propagators G and the self-

\ £
energy correction Z as
: ' aB _ paB | ad Zab bg ' ‘ v - :
—— G, (p) =6, (p) +_G+ (p)Z:+ (p) va(p) (3.160a)
- and ‘ ' " ‘Eg ‘
c*f(p) = (3.160b)

' &P (p) + 2P (o) GEB(p)

.
’ : +

. . s . . |
In order fﬁate the resu]t g1ven 1;1 Eq: (3. 155) with the'V

v

§ ,resu1ts of the RPA, we first note the tjgvxa1 1dent1ty, that for any

\1}

¢

constant~A we can rewrite Eq. (3.155). as AR w o 1.
'. . ‘g’ﬁ R

i 4 ve ir oy D) =A

sth) = {1*‘7—)'(2 jdpzrrm (PY 3T, (013, (2116 0] 07T

. @3;
- c (3ae) Y
If we now let A be given by
=D (h)
where . o , y
D (h)<*® = 1im D2%(q)
Do ,
g0 , g
" with R _ 7
o) =g [ahoetefp-Pe e . ()
' 2 ‘ ' ' : '
. o | &
“Then a(h) reduces to -
“a(h) =D (h) {1 + 2D (h) * B L (3a63)

i'where x represents the corrections to the RPA approx1mat1on_a£§ahay,be
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expressed as ot - ‘
D, (h) : - D(h) #D_(h)
= 3w (2;)1,{d4p;—wr£ret(p )1 (Ty(p) - L, (16, ()] = ——pag— -
R S (3.168)

- S’)‘ ~ ' - . ’
The self-energy contributions Z¢ and Z+‘may be calculated using

- a stra1ghtforward perturbatlon expansnon ]he lowest order ébntrﬁbu-

tions shown diagramatically in Fig. 1 are ggven by

]
>

o8(p) = 7 L [t GaB(P+k)Aa8(k)+x e, jd e 628 (pk)a2® (ke

(2n) (2 ) f:ﬁ;%i
g l Ny % 'h‘ - "
Gl ot s R

—

oy o
and > , o

~aByoy 2 d4k GaB k aB K)
Lf(p) : (—2;)'1[ | (p )& | *( +k’

. 4 G,B W "“ -
11!!E(ZW) J | | > ( ) )

, : 1 ;R
. where a (k) and A (k) are def1ned by

: o R *2 |

<elT[n+(‘X)n+(X)]lB> - <Bln¢(X)|B% <e|n+(x)]e>-, .

s%{‘
- 4 ik(x-y) e 166
- (2“)4 Jd k o (k) e » £ (3.1ssa)
and
- E e ’*%&3 ‘
: -<BIT(n (x ]ls>-<sln x)ls> <gln( x)|8> ‘
———7; a (k) e SER ¢3.166b)
(Zﬂ) . o ‘ R v R -

0 .
The third term appear{,g in Eqs (3. 165a'b) is included td avoid
'. doub]e count1ng, and wh11e this term presents no computat1ona1 d1ff1cu1-

t1es we w111 neg]ect it in what fo]lows, in order to s1mj11fy the d1s-_

CLISS'I.OH .
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k4 ‘ e

Even with the 5e1f—energ& parﬁs given by.Eqs. {3.165a,b) our
expression for ' st11] of a somewhat formal nature since it involves
the as yet undetermined paramagnon o;opagators[]o ] k), (k) and
A (k) and there are a var1ety of ways in wh1ch the ca]cu]at1on may pro;

‘ceed depend1ﬁg on how we choose to approx1mate the paramagnon propaga-

tors. we will examine th1s po1nt in more detail later.

76

Regard1ess of how we choose 'to s1mp11fy the internal paramagnon A

Tine, the ca]cu]at1on of « from Eq. (3.164) represents-a rather formi-

Qﬂﬂgab1e undertak1ng One poss1b1e approach is to expand « in terms of

'the se1f—energy correct1on arising from “the sp1n f1uctuat1ons Z and

‘retain on]y ‘terms- up to some finite order. In the case of g%?wueak
“¥1t1nerant ferromﬁuﬁbts it may be adequate to cons1der on1y the lowest
order te?ms Expand1ng the one electron Green s function in terms@bf
the self energy corrections Y and reta1n1ng only the 1dwest order terms
we obtain on t§k1ng.the Timit g;,;k#‘o ;hg following expression for «

. ™~ &
after some manipuTatiqp, o - o ey

R 4 1 23047y .
"’(';_T Jd » § Tr{xc2e) 11m -ﬂ (2 RO O XONOI

(3.167)
‘where we'have made use of the following definitions
628(p), = 1im 63°(p) ~ A (3.168)
o : he0 -7 , ' =
and - = »
7*8(p) = Tim Z“B(p = Tim Z“B . U (3.169)

h-0 h-0 Lo e

»)

“domain ofuihterest,*that is in the'regiOn aboVe/TC, where

\\; é;

P
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the electrons H = AM(h)/2+h will be considerably larger than thea

symmetry breaking parameter h. Hence we'obtein the result that

1im 7—)— [I,(p)-1,(p)] ='x33g‘i(p;H) - (3.170)
. ‘“k.;;;;"= ,
g vhere L
.- 1,(p) = (3.171)
and & ; ‘
e Z(p ) = Tlps-H) . ,, : | (3.172)' ,

The fact thatﬁve afg'f6§u§$1ng our attent1on on the region above T

» ):&
means that ok
| 14D =0 : u R
' X - L - . Ly
;4."1 : : . 5 i
= and to lowest order in the spin fluctuatiohsi"- @
| N | : S : | (3.173)
Dlhi D, (hy - ~ i . 4 Tl
~ While the approx1mat1ons conta1ned 1n Eqs. (3.170) and (3 173) are netv
I
- essential to the analysis they do a1low us to express « in the follow-
ing_rather compact form o -
b EI";=—‘— 5 N LA 2 {de (P)1 ] (p3H) | (3.174)
. D Pz dn 4+t Ps o .
R o (am)’ / H=0
§§‘If'- In obtaining Eq. (3.174) we have used the result that
& |t | L. e
47 63°(p) = :[ .(p) ] o B | (3.975) "¢
af ‘ . . .
<« L 4
“ 2 . . \ . L)
: d , 'S ) ‘ ‘.\‘ . ¢ ' .
T 6 (p) = [;ZG+(p')3] oL (3.a78)
dH . ps . ' - : aB : : Lo ‘ v, . “ .
. N . w

\ L R



'If we' now introduce the expression for Z given for Egs.

then « given above becomes

2 2
o i 4 4 d a
A (D [ '1] Jd pdk dH'{ Le [aw O

(2r)

L6 (pr)a2 (k) + 62%(prk)a’ (k)]}

*2(p)]

=0

Now by use of the relations , &

- ;
. N .
G, (p) = G_(p)H*_H o
i,
A(k) ";;“= A(-k) ¥ %”Wﬁﬁ\”‘ ) »o
\ . .‘mn; B H~Ha N Q’%\;@"'
andfﬂ—% «:l‘)&‘ . $:
. ‘ g \
ak) = 8k,
. - . ‘ 4
we arrive at the result ;m;
-

2 ¢ 12
¢ = %— L—147d Jd pd'k % Z
S (2r) "

(k) + [dH 3 (prk)G

(2n)

-

{ 4 6% (pe)s2(p)]

aq,( ac k '
p>%a )} »

2
{D——"A‘I [a* 4 { i % k)]rA(k)
-0

+ 4D, (K)Jee (k)}

~ where Do(k) is g’iver'\ by Eq.

¢ , ,

oB(k) = —7 [a*p €
) (2n)

Yoo

Using the spectra] representation given in Eq.

H=0

(q.l&é)’and D, (k) is given by

(P+k)G “p)

the fo]1ow1ng spectra\ funct1ons

S

~

) ]

(3.165a,b)

(3.177)

(3.178a)

(3.178b)

(3.178¢)

(3.179)

(3.180)

(2.56) we define

(3.181a)

78
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0K - faa ot LBk el - + T80 U kg | (3-181b3
228 (k) = Jd@ o i) lg )<l = + ieelugli) (3.181¢)
and

2B (k) - Jdm 5B )G Lk el - w + m] uglk,) -  (3.1814)
We thus have tﬁt ‘ )

1

-—‘—I [d ¢ & |G ogﬁ(k)) ; B“(k)]

(2n)
B Sae ?| (233“‘”_“‘:: {fB(w-)- fB(m‘)} .
. utes) ﬁ’z OH(“";?);Z%H' QH-(N;K)‘%‘OH(J;K)]- C (3.1822)
(j;t[ {( | 03° (k )k%i“kk)f |
[bﬁ@;k)ﬁﬁﬁ(d;?ﬁ%p:{(w:m,-ﬁ—H'o;—(d-j)] . "(3.182“;{,;_;_

Substituting these résultS'into our'expression for « given by
' Eq. (3.179) we obtain

+o ' .« ’ -

K = 7,_‘—1; J dw; coth—— [G1( )+G (w)+e3(@)_+e4(w)]-7, ‘(3.183) _
. i \* .
where v - _
2 3> ' -2 . '
. d7k - dw' 4oy d +
6 () = 3= Tim Pj j . {o (0:8) L5 o (u'58)
! 0 o (2m)3)emet UH a? T
ﬁ , + 42
‘ o) S5 oK) o - (3.184a) |
H e H . .
* . - .
A% \\\
: ~
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+ o;(w' :K) —dT o%w;k’)}’* - / (3.184c)

and

2 3 | |
= AT d’k dw' 4 .7 a4t
G4(UJ) = m PJ BJ 0 {dH OH(wsk) dH C‘H(w ,E)

“If we define ‘the complex functions
. " ” oo |
(Z"E'H) = dy o (w—k>) .
? ? z_ w H it ] b}

- e

J

x;(Z;E;H) = [ dw Oa(y;i)‘ ,

(3.185¢)

x(z;?;H),, |

1]
b—‘
~N
i Q.
€
€
©
X
-
£
“ “we
=4
o

and

. '+‘i .
X‘(Z’E’H) 7 - o PH

pRa—

S k) ‘ ‘ (3:185d)
then(the functions G, may be written in the somewhat more compact form

as

| ¥ e
Y SRR 3 | 2 - : _
Gy (w)=>‘—04 1im Im J d k3 x(wﬁG;Tz;H) —-d—2— X (w+is;K3H) - (3.186a)
‘ o H»0 : dwé % .

(2n)
50 v



G, (w) = _ﬁ_ Tim Im daﬁ d x(wti§:K3H) (w+is3K3H) (3.186b)
2.“’ = ZDO HaO —(_27)-3-d w dH X w LX) ’ .
§+0 ’ - ‘
by 3-|z + o> d2 + | |
ylo) = - i I [Er et S glertsn) - (3.1860)
D9 He0 (2n) 2
§-+0 . 4
and
G, (w) = 52— lim Im a4 wrisskH) S xD(wrissksH) "‘
4+ 2D, ng ZE—;§ die X WK g X 2Rl
520 m (3.186d)

In order to evaluate the functions G.(m) we must specify how the

spectra1 funct1ons oy and pH sh0u1d be calculated. The simplest appro-

81

ximation is to neglect the effect of the spin f1uctuat1ons entirely and ,

to evaluate ) and-pH using the random phase approximation. This gives

x,(Z3k) .
Tim x(z3K3H) = —>——r (3.187a)
H-0 L 1 + )\XO(Z;k)
. |
| 3 1 ] \
Cim ¢t (z5K5H) =§-{ + = s \ (3.187b)
H-+0 1+ xxo(z;lt) 1eaxg(2:K) :
. : \
. d ] d Tl : | .
1im ‘—“X(Z;K;H)='———-_‘T—”— — x_(z;ksH) | . (3.187¢)
Ho0 M 14y (2:8) M7 ' S

,vand‘,

N . d + . 1 . ] .| d :
1im —x(Z;k;H)‘_“"{ g } X (Z: B ) ' ’
H+0 dH ¢ (1 +Ax0(z;?) 1 -2, (z;K) dH %o Lﬂ ’

=0
| (3.187d)
where N . o
X (z3 k)"11m Xo (z;K;R) = 1im x+(z;ffH)
0 o 0.
‘ '='j“3i \ - . {f»(e(?i)) fele (;r- n}
- o (21;)3 23 €(++§) + €(+"2<') F 2 2

(3.188) "

w
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Using these results in our expression for « we obtain the results
of Beal-Monod et a1[8], used.in the calculation of magnetic suscepti-

¥ . .
bility of 3He, which may be regarded as a nearly-ferromagnetic itinerant

spin.system. g
If instead, however, we regard the resu]tﬂof Eq. (3.163)together
with the expression for « given in terms of i by Eq. (3.167) as provid-
ing us with a self-consistent scheme for the determination of the |
suscepéibi1ity, then the approkimations provided by Eqs. (3.187a~d) are -
inadequate since, at zero momentum, they do not satiifz/thg/requirements
of spin rotational 1nvar1ance prov1ded by Egs. (3.138),(3.163) and (3.164). The
1mportance of the requ1rements of self- cons1sténcy,‘1n the case of weak
itinerant ferromagnets and nearly ferromagnet1c 1t1nerant spin systems,

(97

“has beenqpo1nted out by Mor1ya and Kawabata
b

on the observat1on that Lf'the RPA suscept1b111ty is used in the compu-

Their argument is based

tation,of x then the paramagnons w111 go soft at the Stoner temperature

=Ts given by . ‘ o ‘ ‘ R
LI e, o, e

1+ lpo(h) =0 { h=0; T=T " R (3.189)

~ N

whereas from-Eq. (3;163) the thermal instability is ‘'seen to occur
, . N ‘

at a tem?eratune T, given. by )

~ 14k +AD(h) =0, h=0; T=T . (3.190)

4

This inconsistency is resglved if we calqulate « using some renormalized

»

paramagnon Where the renormalization is performed-in a.manner consis-.

tent wﬂth the 1ow momentum requ1rements of the sp1n Fotaf?onal invar-v

- 6 Gne par§hcu1ar]y s1mp1e scheme has been proposed by Mor1ya and

»y.w t. # p Vs

[9] xhﬁ cons1sts of mak1ng the rep]acement
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:1n Eqs. (3. 187a-d). The resu1t1ng se1f'con§1stent equation for K forms

w

‘the basis of the so- called se1f-consistent renormatsizt1on (SCR) scheme
of Moriya and Kawahata[ 9] Despite the simplicity ofbthe SCR scheme
BN ¥ has Ted to many prediCtions which ﬁre in good adFeement with the

[]O ] Most notablé of its 2

experimental data for weak ferromagnets
achievements is perhaps the fact that it appéars to accoqnt:fer the

Curie weiss behaviour of the inverse suScept1b111ty observed. in the

. A

sy

Weak It1nerant Ferromagnets and the fact that the tran51t1on temperature-

Te is cons1derab1y lower than the correSpond1ng Stoner temperature. o
The or191n31 derivat1on ok the SCR scheme, presented by Morwya

and Kawabatatg], was obta1ned from an. exam1nat1on of an expresS1on for Y

the free energy and was ~semi- phenomeno1og1ca1 As a consequence,desp1te

the obvious importance of the parameted ks the phy51ca1 1nterprefat10n

and or1g1n was by no means obvious. Wh11e later work by Kawabata[ 0z 3

succeeded in prov1d1ng a d1agrmﬁmn1c 1hterpretat1on by means oOf the,'

Matsubara technique, the Just1f1cat1on for the cho1cd of d1a9rams and

the natnre of the approx1mat1ons empﬂoyed was not o\fered ,40n nhe other 4'3

hand, the der1vat1on of the SCR scheme obta1ned from the genera] result

7

- of Eq. (3.155) together w1th the’ approx1mat1ons p esenteé hert proMWde{
1f1cat10n

us with a rather clear understand1ng of the nat e of and jus’

t

for the approx1mat1ons Uhder1y1ng the SCR ehé wh1ch—may be summar- '

‘ized as foT]ows From the exact express1ons for A(q) given ty,£q Sy
/ ‘ .

(3. 142) perform1ng an expans1on ef G ’ G and T in terms of the contr1-;

-
but1ons arising from the spin fTuctuat1ons, then follow1ng a sim11ar ‘“

-V.ﬂ ‘

Procedure to that usﬁH in the stat1c 11m1t to: obta1n1Eq (3. 163)



. obtain the rather generai-expression _
..,A(q)‘=‘1[t + ADy ( ) + K(Q)] D(Q)

"where K(Q) is now the correct1on to- the dynamnc
'from the sp1n f1uctuat1ons and hence Eq (3 192
‘“se1f-c0ns1stent equat1on for the dynam1ca1 susc

appro&1mate K(Q) by its stat1c ]1m1;, notlng th
. ".im K-b(q)__gk g - : = . . ‘

,\ : o
v S

: o
then prov1ded the paramagnon correct1on to the'

a1 shscept1b11ity arisino
) may be regarded as a
ept1b111ty v‘If we now .
at -

P

vertex F 1s ca]cu]ated

~’1n a manner that 1s con$1stent w1th the requ1rements of sp1n rotat1ona1

>1nvar1ance expressed by Eq (3 154) then the re

' _may be obta1ned if we cons1der on1y the 1ead1ng

to the electron se]f-energy g1ven by Eq (3 165

»

scheme may be 1nterpreted as some k1nd of tempe

su1ts of ‘the SCR method
paramagnon correct1ons
a, b) Thus the SCR

rature dependent mass

-renorma11zat1on of the paramagnon in wh1ch the mass is. computed to j"

1ead1ng order in the sp1n f1uctuat1o\s 1n a man

' ]'requ1rements of sp1n rotat1ona1 1nvar1ance

In addwtlon to;prov1d1ng us with a rathe

such approx1mat1on procedures as the SCR scheme

ner cons1stent with' the i

r e1egant der1vat1on of

y the techn1que out11ned

in this sect1on prov1des us w1th the framework whereby h1gher order

paramagnon correct1ons to the stat1c suscept1b1
a systemat1c way To see how to extend the. SCR

'h1gher order correct1ons 1n a. systemat1c fash1o

“,Q3.192)"

:\\l' ..

11ty may be computed 1n¥‘

scheme to 1nc1ude such

n based on the free

venergy approach of Mor1ya and Kawabata 15 extreme]y d1ff1cu1t

Furthermore the c]ose re1at1on between t

;"in this work and those employed in the zero tem

he approx1mat1ons used

Le5]

perature case’
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suggest that w1th appropr1ate mod1f1cat1ons, the cons1derat1ons presen-

ed here could be extended to con{1der the ferromagnet1c doma1n It s i-

) by no means\abv1ous that the resultant generaljzat1on of- the SCR schemeﬂ
' to the ferromagnet1c doma1n presented by Mor1ya and Kawabata[] 5] wou]d

result or whether 1n fact the mass renorma11zat1on scheme of Mornya and"

\Kawabata is- the s1mp1est way to proceed | -/

To summar1ze 1n th1sy3ect1on the response of an 1t1nerant e1ec-

"_tron system to some smaT$\s metry break1ng term 1s exam1ned and it is

"shown, by v1rtue of the constr\ants of th1s response 1mposed by the sp1n.

Y

",rotat1ona1 1nvar1ance of the systﬁm fow an exact express1on for the

‘ ’:
i stat1c suscept1b111ty may be obtained _ The resu1ts of th1s ana]ys1s

-

~are then used to der1ve an express1on for the correct1ons to the RPA .
VapprOX1mat1on ar1s1ng from the paramagnon contr1but1ons to the electrontes;

v‘self cenergy together w1th the correspond1ng vertex,cerrechons/reou;red

. by sp1n rotat1ona1 invariance. When the corhéct1on term is eva]uated

. in terms of the 1ead1ng paramagnon contr1but1ons to the electron se1f-

fenergy the resu]t of prev1ous works by other authors s recovered not—‘

«rab1y the SCR scheme of Mor1ya and Kawabata[ 1 The approach presented

here therefore prov1des for a rather prec1se d1amagnet1c 1nterpretat1on‘

of the SCR method It a1so a]]ows for a systematic ‘extension of the
procedure to cons1der h1gher order paramagnon corrections and to the

¢

ferromagnetTc doma1n.



CHAPTER ‘4 s L s v/
THE’ d-f INTERACTION IN F;ERRoM'Aonc.sngR.CON-DUCTORS

»

- 4.1 .The InterpTax of Magnet1sm and Superconduct1v1ty, ;‘

~In this chapter we focus - our attent1on on the magnet1c proper-

: t1es of a somewhat d1fferent cTass of mater1a1s than those considered

- in Chapter 3. In the case of the 1t1nenanjisystems, stud1ed earT1er,

the magnet1c propertles were TargeTy determ1ned from the poTar1zat1on-x'
of the eTectron sogn e1ther through an app11ed f1er, as 1n the para-

magnet1e doma1n, or 1nduced through the seTf-1nteract1ons, as in the

ferromagnet1c doma1h Ingth1s sect1on we w1sh to examine certa1n

x

aspects of Ma netxc Superconductors._ These mater1aTs may be v1suaT1zed
>

as. cons1st1ng of a band of conduct1on eTectrons 1nteract1ng via a pho-

o non 1nducéd BCS coup11ng, together with an array of magnet1c 1ons

wh1ch res1de on/part1cuTar Tatt1ce s1tes The interest in such sys-" - -
tem stems from khe fact that in certa1n s1tuatwons, it can’ ar1se ‘that |
as the temperature is Towered ‘the eTectrons condehse into the super- |
conduct1ng state The magnetlc propert1es of these mater1als are then o
determ1ned by the compet1tion between the d1amagnet1c nature of the ;;
pers1stent current and the ferromagnet1o nature of the TocaT1zed sp1ns
An 1mportant feature of these systems therefore 1s'the 1nterp1ay between :

suberconduct1v1ty of the conduct1on electrons and. the magnetwsm of the

magnet1c moments, ar1s1ng from the var1ous 1nteract1ons between the

: TocaT1zed sp1ns and the conduct1on eTectrons f Th1s 1nterp1ay g1ves 5

“_ r1se toa great many features pecuT1ar to these systems

Of the var1ous 1nteract1ons in’ these systems there are two, over

| and above the BCS 1nteract1on menétphed aTready and the exchange

: B ot . S ; - . \
.



o ‘superconduct1v1ty
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"1nteract1on between the 10ca11zed magnet1c moments, wh1ch are of 1n-

L]
— . -

terest to us here the eTectromagnet1c 1nteractToﬁ between the W
4magnet1c ions and pers1stent current of the superconducttng eTectrons
‘,'as weTT as the 1nd1rect exchange 1nteract1on between the conduct1on

. ;
eTectron,‘the_d (or,s) e]ectrons and the eTectrons 1n the unf111ed f
she11 of, the,magnettc:1ons;' This Tatter interaction 1s\referred to as:
‘the d (or s) f 1nteract1on o h o

Much of the ear11er work[]06 107, 108]

on: these magnit1c superea
:;conductors was concerned ma1n1y w1th the effect of magnet1c 1mpur1t1esﬁ
“ on the superconduct1ng propert1es ar1s1ng from the d (or s) . f 1nter- D
act1on These stud1es pnov1ded a number of 1mportant resu]ts, they

.1-5" W - PO

' 'pred1cted the ex1stence of gap]ess superconductors and showed that
'un11ke the s1tuat1on that pertalns for non- magnet1c 1mpur1t1es, thery
rfpresence of a small amount of magnet1c 1mpur1ty ~could destroy the
superconduct1ng state Exper1ments on magnet1c sUperconductTng a]]oys'
conf1rmed ‘that. the presence of magnet1c 1mpur1t1es eas11y quenches the
[ 9] These theoret1ca1 and exper1menta1 resuTts
l;gave rlse to the w1despread be11ef that the prospect of a system exh1-

biting both superconducting and magnet]c order was ruTed out s1nce

the two phases tended to destroy one another v
| The s1tuat1on changed dramat1ca11y in the Tate sevent1es foTTow~
: ing the discovery of the rare _earth ternary and pseudo ternary super—»j“

[]2,13] A systemat1c study has been made on two groups of :

1con,duct-ors
»these compounds , - the ReRh4B4 compounds (RE . Rare Earth) and the Chevre]
compounds, REMo6 g (x=5 or Se)" Many of these substances become super-

conduct1ng for T < T desp1te the presence of the rare earth magnet1c

>

moments in the crystaT 1att1ce . Th1s suggests that the 1nteract1on
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mipetween the d e]ectrons of the Rh or Mo ions g1v1ng rise to the: super-
A conductivity and ‘the e]ectrons of .the unfilled f shell in the‘rare earth
" fons'is relat1ve1y weak Of these mater1als ErRh4B4 and HoM0658 are .

part1cu1ar1y 1nterest1ng since, not on1y do both of these mater1als |
exh1b1t a- superconductxng phase as the temperature is’ 1owered be]ow the

.superconduct1ng trans1t1dh temperature T 1,‘but as the temperature is

1owered further a ferromagnet1c norma1 phase appears at a temperature
:T‘Z wh1ch persxsts down to zero temperature[ ] ] , Th1s 1s ca11ed the
-‘re entrant phenomenon and T é 1s genera11y referred to as the re entrant
temperature~ - | | |
The resu]ts of these exper1menta1 stud1es 1ed to -a renewed‘intere:"

=

west in the1nterp1ay between magnet:sm and superconduct1v1ty and the oy
’k'_under1y1ng mechanlsms at work 1n these ternary compounds Perhapsﬂtheaﬁ’f;“
most. 1mportant facet to emerge from the theoret1ca1 stud1e$ of. these‘
compounds was the rea11zat1on that the re1at1ve weakness of the. d- f o
'h1nteract1on, meant that the e1ectromagnet1c 1nteract1on between the rare
o earth sp1ns and the pers1stent current assumeda maJor 1mportance in
”determ1n1ng the1r propert1es A centra\ feature of the e]ectromagnet1c
v,_interp1ay between the d1amagnet1c nature of the superconduct1ng current
'and the ferromagnet1c nature of the RE Sp1ns is the sh1e1d1ng of the RE
(141

’f:sp1ns by the persxstent«current This effect has been observed in
.the u]trasonwc attenuatﬂon exper1ments[19’20] and‘pred1cted the exis-
tence of a modu1ated sp1n phase[]4 15, 16, 17 18] . in a narrow co -existence
lreg1on above the re entrant temperature T 2 | The ex1stence of th1s
f';phase has been conf1rmed by neutron scatteﬁ1ng measurements[21 22 23]
In add1t1on to the attenuat1on exper1ments and the existence of the sp1n*x

hmodulated phase the e1ectromagnet1c 1nterp1ay makes a number of other

- i o ) ; [ . ’ -
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- 1ng of the forward neutron scatter1ng

'type 11 superconductors by the replacement K—*reff

, samples

)

pred1ct1ons, the spontaneous surtace magnet1zat1on[HO ]]1]

1atory penetrat1on of. the magnetic 1’1e1d[”O ]11], the superconducting

. the oscil-

89 .

i

doma1n wa11[112 ]‘3], self- induced vort1ces[]14] and the strong sh1e1d-%‘ S

[115 1

Ca1cu1at::n;\have also been done to 1nc1ude the effect of the

\electromagnet1c interaction on the magnet1c propertles of the mixed *

[27, 28] -

state 1n these compounds In‘add1t1on to a deta11ed formu]atwon

of.the mlxed state inc]uding the effect of the e]ectromagnet1c 1nter—‘

. iation curves ‘were presented for a range of parameters ‘These calcula-

tions 1nd1cated that the upper cr1t1c;¥\ gfietic .induction curve B é

(?:ch 4n M. ) behaved in a manner. s1m11ar o that obtained in the

1 non-magnet1c case. ' The resu]ts for the critical field curves can be

| described qua11tat1ve1y in terms of the resu1ts for the non- magnet1c '

(1 + e, [116]

The qua11tat1ve behav1our:pf the upper and lower cr1t1ca1 f1e1d curves

t,1s 51m11ar to that observed in measurements made on polycrysta111ne

[117 118]

L

act1on upper and 1ower critical f1e1d curves together with the magnet1-'

Nh11e the effect of the d-f interaction is weak and. 1t is poss1-

'ble to obta1n a reasonab]e qua11tat1ve explanat1on for many of the

phenomena observed in these ter%pry compounds so]e]y in terms of the

-

e]ectromagnet1c 1nteract1on, 1t does neverthe]ess g1ve rise to a number

of observab1e features For example 1t g1ves rise to an increase in

the superconduct1ng trans1t1on temperature with the subst1tut1on of

magnet1c rare earth 1ons by non- magnet1c ones[1]9] and: may account for

I

‘ the deviat1on of the superconduct1ng gapcirem“’h”“3t5~resu1t observed

in tunne11ng measurements[120 ]2]] and the temperature dependence of

RN
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“the condeqsation energy measured from the magnetiz&tion curves

[122]

However perhaps the most/conpe11ing arqgument as to why, that in order

to obtain a precise theoretical model wof these compounds, one must

[10 11]

single crysta1 ErRhéB4
tromagnet1c 1nteraction cannot of itself, account for both the hard
nd easy axis cr1t1ca1 field curves py\means of a cons1stent seﬁ of *
parameters. Furthermore the appearance of a first order phase trans1-
tion around.H 2 cannot be accounted for so1e1y on the basis of the
e]ectromagnet1c 1nteract1on
R In the 11ght of these cons1derat1ons there ex1sts a need 'to
:prov1de ar un1f1ed theory, which embodies ‘the effect of both the d- f
: and the e1ectromagnet1c 1nteract1ons in a cons1stent manner, 1f we w1sh
to obta1n a quant1tat1ve understand1ng of these mater1a1s In the re-
| ma1nder-of‘th1s sectton we present a theory which aims at such a un1f1ed
approach andkits-app1ication'to-the analysis of the mixed state in
ErRh,8 | | ;/” | R
. 474 . ;
\In Sect1on 4.2 we present a deta11ed der1vat1on of a forma11sm for
: the'analys1s ofmagnet1c superconductors wh1ch includes in a se]f consistent |
‘fmanner, the pa1r breaking effects, 1nduced through the d f 1nteract1on
"together with the sh1e1d1ng of the localized magnet1c moments by the
penSTstent current. The pa1r breaking effects describe the modifica-
~tion to the superconduct1ng electron states by the localized moments
through their mutual 1nteract1on the d-f- 1nteract1on) There are two

basic mechanlsms which are. of 1nterest ta us here: the scattertng of )

the electrons by the 1oca11zedvsp1n f1uctuat1ons and secondly the

S



Zeeman splitting of the electron sp1ns due to the effect1ve field of

the magnetic ions. Both of these mechanlsms tend to destroy the super-
cgnductivity. Both of the'pair breakin; mechanisms are represented in

the forma11sm developed in the next section. It w111‘b€ shown how the ,
effects of the 1oca11zed 'spin f1uctuat1ons may be rea11zed by meanf of

- a straightforward scaling 1aw, follaﬁjng the definition of an effective N
coup1ing constant. While the simplifications affordeq:us by’the soa1ing

law are most evident in the mixed state, their application to the

Meissner state is not without interest. 1In Section 4.2 it is shown

1n the Meissner state, the effect of the sp1n fluctuations on various
superconduct1ng quantities, such as the superconduct1ng gap, the con-
densation’ energy and the London penetrat1on depth, may be computed from
the familiar BCS results by means of the scaling law. Since all of the
above quantities are experimenta11y accessible this provides a useful
comparison with experiment; A ‘ |
The treatment of the e1ectromagnet1c fields in Section 4.2 is
- based on the Boson method p1oneered by Umezawa and his, col]abora-‘

[1,5,6,7,27,28].

to The technique has found widespread application

X ]

in"the analysis of the mixed state in non- magnet1c superconductors

It has also been extended to include the case of magnetic superconduc— ';;-

[27, 28]

tors The method is based on the field theoretic formu]at1on of -

quantum e]ectrodynam1cs in the superconducting state, based on the
Lagrange multiplier field method of Nakan1sh1[1 4] and Lautrap[]zsl.

Due to the spontaneously broken phase symmetry it can be shown that
Go]dstone s theorem is realized in this case through the. appearance
of a gapless exc1tat1on, the" phason, in the pos1t1ve norm part of the

PR

,Lagrangian'mu1tiplier field. The.argument is s1m11ar to that presented
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in Section 3.1 with regard eo the appearance of the magnon in the case of
éhe spontaneously broken spih symmetry. The obseryab]e properties of‘the
phae0n are determ1ned by the manner. in which it coug1es_to the verioes
gauge invariant operators such as the e]ectron current operator, for
example. The nature “of ‘this coup11ng however is strong]y governed by

the requirements of gauge 1ﬁvariance, since it can be shown, qu1te
general]y, that the gauge transformat1ons ‘are realized through a trans-
lation of the positive and negat1ve norm parts of the mu1t1g11er fields.
~ This would lead one to suppose that, since the effect of the phason may
be absorbed by a gauge transformat1on, its effect on observab]e quan-
f1t1es would be irrelevant. Such however is not the case if we permit
translations of'the‘phaspn field containihg topological singu]arities.
Such transformations cahnot be removed simply by a gauge transformafion
and hence can give rfse to observab1ehphenomena. Vortex structures ;n
superconductors provide an example of such singular transformations.
Such singular fransforhations in the phason field bejong to a class of
trensformations,knoWn as boson transformations and provide the basis
for the so—ea]1ed boson method in superconductivity.

Sinté the principles underlying the boson method in superconduc-
tiyfty are not dependent upon the detai1ed nature of the interactiow;
present and that the effect of the d-f interaction, mw;he calculation )
of such quantities as the pers1sent current, 1nv01ves oniy a straight-
forward extension of previous work[7], we do not include a detailed
treatment of the boson mefhod; PInstead in Section 4.2 we content
ourselves with a rather general outline and statement of the basic

results together with the modifications arising from the d-f interac-

tion. °
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In Secfion 4.3 the formulationdeveloped in Section 4.2 is used to

analyze the mixed state in ErRh4B4 and a detailed comparison with the

recent measurements of the magnetié properties 6f single crystal ErRh
Y

is presented. It will be shown how ,good hgreement with,both the hafd

\ 3
and easy axis magnetization méhsurements may be obtained from a single

value of g Furthermore the fdrmaliSm developed in Section 4.2 is

-\
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app11cab1e to the region in which. the transition to the normal state at -

ch is first order. Thus the Jump in the magnet1zat1on may be computed

as a funct1on of temperature and compared with equﬂ1ment This repre-

sents, as far as we know, the first ca]cu]at1on of 3 magnetization curve

\
that has a first order transition to the normal state at HcZ'

3

v
P

4.2 A Formulation of the d-f'Interactioh in Ferromagnetic Super- -

| 7
~ conductors ’ ‘ /;

In this section we present a formulation for ferromagnetic superQ

conductors which includes in a unified fashion both the d-f and electro-
magnet1c interactions. The dynamics of the system under consi&eration
is assumed to be obtained from the fo11ow1ng microscopic Hamiltonian

density given byl : : \

A0 = vt ())e (1T - 22 BN ()= Vo] (e (<D, (KD, (x) + seqy’ (x)u(x)
i

- LR (A7) - 08T (0890 - () B(x)

—_—

(4.1)

¢ ugs 00300 + g5 (BGO1E + B

”In the usual way w(x) denotes the electron® field, R(x) is the vector

potential, with the magnetic induction field B(x) given by §={$A Kﬂx)

and ﬁ(x) is the density of the localized spin magnetic moment.



. . ‘)
The f!rst‘term corresponhs to the gauge invariant expression for
. %he kinetic energy of the electron. The electron energy is denoted by
€ and is assumed to be parabolic. The second term corresponds to the
ph&non fnduced BCS coupling. The third term is to account for shift of
‘the chemical potential. The fourth term is the 1nteraction'.;tween the
localized spins other than that mediated by the dipole and the d-f
interaction. The fifth term represents the'd-f interaction while the
sixth and seventh terms denote the‘interaction between the magnetic
induction field B and the localized ;nd e1ectroh spins‘respegtive1y.;
The last termxjs the electromagnetic energy.
- The presence . of the d-f interaction term gives rise to two dis-
tinct mechanisms both qf which serve to suppress the superconductivity.
The first;concerné the scattering of the electrons by the fluctuations

of the localized spins. The secohd effect is the removal of the elec-

' tron spin degeneracy caused by the splitting of the elegtron
into two aistinct bands due to the po1ari§atﬁon inducegd by the localized
spins. It is the purpoée of this paper to bresent a theory in which
the above effects may both be incorporated, together with the shielding
of the locadized spins E} the superconducting'curkents.

It will be shown that, while the sp11tt1ng of the electron
spectra by the internal fields leads to @ more comp11cated funct1ona1
form for the supercoqducting quantities such as the gap, condensation
energy and the Lohdon penetrafion depth, the scattering of the electréns
by the localized spin f1uctuat1ons may be realized, in the inelastic

11m1t, by a simple scaling law following the. def1n1t1on of an effect1ve\k

coupling constant.

-

-
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; In addition to considering the effects of the finite fidld this
wo:k includes a somewhat more generaltreatmentof'the interactions present
in the Hamiltonian than presented hitherto; in par lar, the para-
magnetjc interaction between the electrons and theTZ:j%etic field € is

1nc1uded together with the se\f interaction of the e1ectrons “with the
e]ectron spin density which arises through the phonon mediated BCS
‘1nteraction. Such effects are included to provide a degree of complete-
ness to the work and while they do not contribute substantially in the
case of ErRh4Ba, for example, they may give rise to important phenomena
in other ma;eria1s. Since such effects may be included simply through
a redefinition of the parameters their inclusion does not affect the
essence of many of the arguments presented here. !

From the Hamiltonian of Eq. (4 1) we obtain- the fo\lpw1ng equa- ‘

tion of mogion for the electron fields vy and b5

3. > le 3 . M-y B8).(3:
‘ 15€-w+-60(-1(v- < My, - Vw¢y*wf aer*+(IM LABB)-(uvL , (4.2)
/ + ) .
i e (A R, - Volu, - sep, + (THougB) - (G), - (63)

IS “Hg

The BCS interaction may be treated by the usual Hartree approximation

to give

[

+ t ,
VoTu u, = Veuu v+ Veyu ony e

.\{

and

" - + +
Vv, e, = Ve ey Vanbey, (4.5)

If we.introduce the four component field ¢(k) defined by

6 = . ] (4.6)
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~with ' » E

| Lt : :
- ' -« .7
ﬁ‘*"'uh P . (4.7)
: 4
the equation of motion may be written as

(t=% -e(-19)r LERES -ua3}¢'{IM- uBB} e -<IM- uB§> g¢ » (4.8)

where we have neglected the vector potential K and have assumed the
applied field to point in the 2z direction, We have designated
9+o3¢ as the electron spin den;ity in the z direction. }he parameters

u and B4 in Eq. (4.8) are given by

T S A
u = <{IM - uB -50 al>- ‘€5 _(4.9) ,
and

Cay = Ve, (0w (0 S - (4.10)

respectively. The quantffy b, may be thought of as the bére unrenor-
malized gap and u the effective magnetic field experienced by-the 1:2} '
duction electrons. It consists of three terms, the term arising from
the d-f ‘interaction due to the po1arization of the localized spins, the
term arising from the dipole interaction with the magnetic field g as
well as the self-interaction with the electron spin density arising from
the BC§ interaction, essentially the last term in Egs. (4.4) and (4.5).
The spin splitting parameter u may be calculated in the mean
field approximation. We begin with the equation of motion for the oper-

ator Si(t)’ defined as
sp(t) = [¢% 6Tope (a.11)

which ¥s given by



e

[} . ! ! N

» aési(t)=- 'Ukj (IM (x)- uB B ,(x Doy (x) o (4.12)

Thus Qe have.-v': e '  | "f"/
| ia;;ggcj(x5;j<t>]>,= é(tet;)J<[e5(¥?;oi(X)Ji.y‘=t & ,
__-_‘e‘ngk<‘Rto1.(‘x)jd?."y*'(wl( y)- B R

Here R denotes the retarded operator product Integrating'with re%pect

to t on both s1des we obta1n after some stra1ghtforward a]gebra ‘that

o~
<o.(x)‘=-l— {s S S

i 2 - Je ik Jk 12

Calculating thi;‘in:thehmeenbfield approijation‘we’Obtain_

4

4't.'eherewx 1s a 3x BGnetr1x '
v’x;4<x-y>==§é 2<R[ck(x>ok(y>1>- Lo, (x)o (y)1>}1.- (6.16)

f Thus the expreSSion for u may be written as

=
i

“'vID<‘M.3>ﬁué<B,>‘,-‘%"<'03">. S T e

33(18)} {I<M > = up<B >} . ' U (4.18)
g "B o S
o N ! £ . g ‘ B _‘ '
- The eXpressTon_for,the magnetic field'g is obtained from the

{I-~—

| °“Maxwe11 equation

Va<B> = -4€_Tr v<:‘j>”'>:+ 4TTV/.\(<—DZ>V- pé<\p+g¢>) . o o (4]9)

The ca]cu]at1on of the macroscop1c current <3> in Qhe uberconductihg'

"state is by no -means’ stra1ghtforward OW1ng to the fac that the

Jd YRl (0 ()M, (9) - 1B, (130> (4.14)‘

'<x)> - jd4y Do) (M) - gy . (@8)
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appearance‘of the order_parameter‘means that the phase tnyariance is..
spontaneousTy broken | , . .
The method we emp]oy in th1s analysis is based on the work of

Umezawa and hus coTTaborators and has been used extens1ve1y in the

[1.5.6.7] and magnet1c[27?28] supercon— §
(.

ductors. The techn1que is based on an operator rea11zat1on of quantum

analys1s of both non-magnet1c

,eTectrodynam1cs in the superconduct1ng state using the muTt1pT1er f1e1d
'cmethod of Nakan1sh1[]24q and Lautrap[]2 1 The bas1c feature of*the .
method pecu11ar to the superconduct1ng state 1s‘the appearance ot ava
_gapTess exc1tat1on 1n the. mu1t1p11er f1e1d The pos1t1ve norm part of
the mu1t1p11er field is referred to as the phason or phase boson wh11e /
, the negat1ve norm part is referred to as the ghost f1e1d ~ The presence
of the phase boson in the operator structure of quantum eTectrodynam1cs
'1s essential s1nce 1t can be shown that 1t is through transTat1ons of

the phase boson that the gauge transformat1ons are 1nduced Perhaps

~ the most 1mportant consequence of th1s is that the: manner in wh1ch the

'phase boson coupTes to the observabTe quant1t1es, such as the eTectron

pcurrent operator, 1s largely determ1ned by the requ1rements of gauge 7/7
invariance.. Th1s ‘means for example that it aTways appears in the gauge _g”

invariant comb1nat1on {A -11— 3 f(x)} or- as {e]f(x) (x)}

Thus we /-
/
find for examp]e that, in the T1near approx1mat1on we have the foTTow-

ing expression for the current operator
j(x) =- AL 1v){K x) JTC Fey o+l B (4.20)

'WherebC( iv) is a non- TocaT kerneT' computed from the photon seTf energy

1,71

“including the effect of the coTTect1ve mode , and A( ) denotes - the o
~vector potentxaT. Thus the macroscop1c superconduct1ng current may be

written as-



£

//v; .

7Gx = e 1R - M Fertasie .2n)

‘Now due to the gauge invariant nature of the electron field operator,
,; » . . . o ) .

R o S o
) (x)e1f(x)/2,,we may Tdentify‘<f(x)> as the phase of the order para-

i meter Thus Eq. (4 21) éxpresses-the’supercOndUCting current <j> in'

terms of the vector potential and ‘the phase of the order parameter
- Due to. the fact that the phase boson a]ways coup]es to the’
observab]e quant1t1es in a gauge 1nvar1ant manner, one would suppose

that it would not g1ve rise to any observab1e phenomena | Indeed if we

c0mb1ne the Maxwe11.equat1on Eq (4.19)'t09ether w1th the constitutive

-Fromqu;?(4.22)IWe immediately note that the phase-bOSOn does ‘npt con-

equat1on for the superconduct1ng current, Eq. (4. 21)',then we obtadn

the fo11ow1ng express1on for the magnet1c 1nduct1on f1e1d <B(x.)>

{VZ.+A[?c(.1v)}<ﬁs==%?xlgc( 1v)vAv<f>-+4nvA{<M>- uB<u ou>}
3 : ; (4 22)

tribute to the.macroscoptc'Current unless \
v . B . 4 : ’

'V/\V<f>vf0 . o . o - (4.23)

Thevcondition expreSSed,by.Eq,v(4.23) cannot be satisfied if

the vacuUm expectatton value <f> (which-we‘wiTI denote simpTy as f from
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now on) is Fourier transformab]e Thistimp1ies that the Function f must

conta1n certa1n topo]og1ca] s1ngu1ar1t1es in order that the phase boson

~ contribute to the macroscop1c current <j>. Wh11e a var1ety of s1ngu1ar

!

, so1ut1ons to f may be realized, a11 of them may: be constructed by means -

of a linear superpos1t1on of the vortex so1ut1ons The s1ng]e vortex

so1ut1on corresponds to the pr sence of a topo]og1ca1 11ne s1ngu1ar1ty

in the function . of the formfl



g/ﬂx) =

where e[x-gJ corresponds to the cy11ndr1ca1 angle measured with respect

to the 11ne s1ngu1ar1ty at pos1t1on g The extension of a s1ng1e vor-

tex to a vortex array is ach1eved through a superpos1t1on of the s1ng1e7

vortex‘syJut1ons, thus“i

‘ f(x =] % e[x 31] o - f R L - (4.28)
, i , L : T o

1s the phase of the order parameter 1ﬁ a vortex array where g now
th '

i
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éti-zj‘ o o (a28)

denSiggs the position of the ‘i vortex. . = T. /
If we then def1ne the vortex dens1ty as ‘ ‘ .
CUR(x) = avf(x) =85 ] s(x-gi) e (4.26)

then Eq. (4.22) may be written as

7 el 3B (- T n(x)p + 4nT LM - ugeo)

-A‘ZC(;iv)n(x)¢%+4ﬁv2{1 - pBIX23}<M>-+ugxi34hv2<8(x)$ (4.27)

nwhere we have assumed a]] the f1e1ds are para]]e] to the z ax1s and

>

. We obta1n the fo]1ow1ng expression for the 1nduct1on f1e1d <B( )>.in/

4

terms of the vortex dens1ty n(x) and the magnet1c moment M> as

/

n(x)~='33n( x) . Equat1on (4 15) was used to obta1n Eq (4. 27) Thus - //

<B(x)> = {(1- 4nu§x33)v2 'fg-c(-iv)}J{-xiz c(-iv)n(x)¢-+4ﬁv2(1‘;ufng?)<ms}
_(4.28)

and hence that.

.



~ was first pomnted out by Jaccar1no and Peter

vV 33
5 X )

g

33)V -2

{ (] = 4TTqu L

L‘ffh5(1f A20(-1v)) AL C(=1v)n(x)

- +(1-! 33) (- amig(1 - T x33)(-v?‘)<-(1-4w2x33> 2 e (cion s
B CBe O B%a L
' ' : ‘_\ o (4.29)
This .expression for u may be wr1tten in terms of a renorma11zed d-f
v‘couphng constant 1 and' the bare 1nduct1on f1e1d § created by vthe.

vortices as

.'Au‘= iéﬁ ‘3 “BE (x ) R V J” (4§30)f
g : . : A
where " N - _
o -0 o S 9 -(1-4nqu')V + A 5C(-1V) L
. e N o o] R Lj,z* | =
“and N o
R R o, S
,Eo_(‘x)A = — s (x)¢ . o (4.32)
: . <(T~,4nquc)v £y o ' SRS

~.

In most s1tuat10ns the contr1but1on to tne\e;?ectjve field u from

N

\

)hthe se1f—1nteract1on of the e]ectrons may be safe]y neg1ectea\\\As for )

the paramagnet1c 1nteract1on it may ar1se, part1cu1ar1y 1f the o\;>\\\\\i S
T~

1nteract1on coup11ng constant I 1s suff1c1ent1y small, that the contr1-f;

3

'fbut1on from the loca11zed sp1n and the d1po1e 1nteract1on may be. of com-
ﬁfparable magn1tude Th1s may result in a part1a1 cance11at1on of ‘the
magnet1c f1e1d by the 1nterna1 field if I s pos1t1ve Such a mechan1sm

[126] This however is not
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1 -2 ' L _—

'.be11eved to be-an 1mportant effect in ErRh4B4 for examp]e, and the,para« '

| magnet1c 1nteractlonvmay be safelx\neg]ected:‘ Thus - Eq. (4.30)‘reduces
weraE, o o (4.33)

ot equivalently that



i=1. B T (4.34)

v - . . X . B

The term’gﬁ'the[right‘hand side ofAEq.,(4.8X correspands to the

\

interaction bétween‘the'e1ectrons and the spin-fluctuations. The fluc-

ftuations give rise to se1f-energy contr1but1ons which in’ genera] will
'serve to. suppress the superconduct1v1ty Denot1ng the retarded Green s

2

function S(p) by o
)p(t t)}

| N AL S L
Rta(e )= fap e Y5 sy
' : (Zﬂ) e o e '
and the seTf-energy‘Z(p
s ' (p) =p, - e(p)1'+.Aorf * uog -y - (4.36)

Loe

we obtain to lowest order the following expressioh‘for?Z(p)

2 (TR sl
I 3Jd3k de dv Zp (w; k)o 3(v,3 K)o, — € . S

() = 1) (o |
'Z p i q » Q(ésw-1)(éyf1)'(PO‘V‘V’+?€)

(2n),

(4.37)
where g(p) is thé‘spectra) function of the electron prbpagétbr S(p), -
that is —

e ] o
va(P)'-,Jﬁv 4(V;p).-5;;77377g +(4.38)
so that

0

.and,whére.o%j(k)*is the spectral function of the spin spin torfe]ation

function . ~ _
T - | o (.4 ir(;'§)'iko(tx—ty). L :

S0 that

3

é(p3P) = - ]; Im S(p) ‘ - ' (4.39)



»‘The dérivation of Eq.‘(4.37) fs tedious but relat vely straightforward

and is presented 1n Appendix C.

To Eva]uate Eq. (4. 37) we assume that the spectral dbns1ty P (k
f ij
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-~ may be written in the.hydrodynamlcal form as ' (.V
' - Y . ‘ b o
,. \A. -y = _,. 'WF i e . ' » ‘

Wo+T
- and expand the thermal weight in a low frequency expansion; ‘

eB(W+V) + 1 _ (e BV-+1) + Bwesvﬂ-....
(™ _1)(e*+1)  aw( -%ew+..J(¥v+1)
. ’ : . . - .
‘ ']_. er-h o } ' A v
= {—"+ —————— + 0(w) . (4.43)
{Bw Z(EBV + 1 ). . - '

" The se]f-energy.Z(p) may then be evaluated to give

22 : A ‘ év | .

: 1 3 T 1 - e” -1 ir :
1p) =L [a% jcw(v, £) ] x <k){ s )
k (2“)3 » i ) p -v+ir v 2(e-Bv+1) po-v+11‘

T (4.44)
There are two 11m1t1ng cases where the se1f energy 2(p) assumes

a rather familiar form In the extreme elastic limit r-+O the gap

-

equat1on reduces to the result for the 1mpur1ty case, while in the

extﬁgme 1ne1ast1c 1im1t r—»m the express1on for the self-energy reduceS'.

to -

= . ~2 - . av |
- I 3 o T ‘ e’ -1
DORE P Je]av o (v Fay®) ey o e

which was first considered in ref. [127] and further analyzed in ref.

[128] and provides the starting point for our discussion.



104

. / v
Defining the renormalized gap /a(p) as
r/ .

o

[eyos™ ()7 = 2175 209) A (4.462)

, - , gy _ _
then using the approXimations out1ined,‘we obtain the fo11owaqg_equation'

- for the gap in the extreme inelastic limit '
' 3 o -2 ;> -
a(p) = [_d__k.gu{v_ I zxﬁ(p_k)}ﬂ_‘ﬁl_ | {tanh—jﬂﬁu— +tanh ﬂﬁ_?__“_}
(2m) i 2E(K)
(4. ﬂ6b)

In order to. S1mp11fy the above equat1on we approx1mate A(p) by its

average value ‘on the Fermi surface and use. the effect1ve coupling cons-

tant approximation. Thus Eq. (4.46b) reduce’s to | @
- 4D ‘ ’ : ‘ .
1= gTHIN() | de (1= FplE+n) - Fp(E-0)) (a.47)
with
E=Vem+ A, , : , (4.48)

where‘the.effect$Ve coup1ing_cbn§taht g(T;H) is given‘by

g(f;H)=.T._L7'\"[ " dn, da V- TP Ty (B L (689)
LGNNI E ‘

with the H dependence of g(T;H) arising from the H dependence of Xt

The equation
‘ (DD‘ ‘ .
= gN(0) J de——{]-f(E+u) F(E- u)} L (4.50)
o ' , :

[129]

has: been stud1ed in deta11 by Sarma The resultant gap can be

written in terms of a two parameter function which we will denote by

Z(t;i)
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——%4%3ﬁ7— X}(t,u o (4.51)

and which is given as the solutiqn of
‘ , . ‘ ’ °

: 4 -y . -y o
tog B(tsi) =- oy { 5 8 (833 s 55 5] (452)
with : ' /
- +oo .
o {xyr =7 X Re [ dz In{z+ 422- 11} cosh'2 % {xz+y} . (4.53)

-0

The integrand is ca]cuiated along the confour shown .in figure 2 with

the branch line running between z =-1 and with

v-0

Y

" where z =u-+iv..‘A0(gN(0);wD) is given by

i . ’ . . - c ] . ‘ o ‘
f . AO(gN(O),wD)v— 2wD EXD-W ’ . (455) 4

1 is given by

L _u (4.56)
AO(QN(Q);QBT
and t is the reduced temperature
. ’
=TT - S (457)

) . L :
We then find therefore that the solution to Eq. (4.47).may be

obtained §imb1y by scaling the solution of Eg. (4.50), i.e.

8(T3u3g(Ts HlN(Ql_ H). (t/s(t3H)su/s(tsH)) o (4.58)

A (g(T ;0))

where

lim  In {z4/2241 1= Inu+/uf-1) foru s (4.54)
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- I ‘
s(e5H) = ex0 | STy STy oo s

= e (g(TIN(0)5up) (4.60)

and we have normalized the gap by Ao(g(TC),O). The calculation of the
" scale factor together with an illustration of the résultanf temberafure
dependent gap will bé presented later in this section. |
Similar approximations may also be used in the calculation of‘the
free energy, however in the case of the free energy particular care must
be taken to ensure.that‘éertaih contributions are not double counted.
For example, the localized spins renormglize the ;upercondUCting elec-
trons while in turn the superconducting electrons modify the behaviour
of the 1ocafized spins. Now while both effects must be included in the
ca]pu]ation‘of the free energf, théy both originate from the same-tefm
in the Hamiltonian and thus care must be taken AOt to include such terms

twice. The approach used in this work is to separate the Hamiltonian

* into an electronic magnetic and electromagnetic contribution,

0

HA(x) =u¥é](x) +“ﬁM(*)-+°~EM(X) , (4.61)
where - .o . -
T ; ot 1% >
g‘e] z go(-1v)w - Vw+w+w+¢+ "2 {IM- gJuBB} v ooy (4.62)
R I S UET- T L O |
Fy = -3 Py (-0 - 5 (Ty g¢)+ B}-M (4.63)

~and

w2 220t 1.2 E '
Sgy = 3= LIEIT+ B }+J~{A--é‘i‘€f}-2{M-gJqu*Sw}-E, (4.64)

where we have divided the mutual interaction terms equally between the

three contributions (e.g. %-ﬁ-w*gw is included in J*e1 and %iﬁ-w+3¢ is
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included in \#M). The expression for f+EM,given in Eq. (4.64),contains
the contribution from the phaée boson. This arises from the gauge in-
variant substitution Au-+Au-2§-auf(x) in the expression given in Eq.

(4.1). Correspondingly we define Ue] ’UM and UEM as

1

3 i o
v Jd vedg> 2 Uy (3.65)
T a3 <y > = v (4.66)

Vv M M ? , )

“and

I3 et > = U (4.67)

v EM”  TEM . )
Each of the above terms, Ue] ,UM and UEM , may then be evaluated using

ythe' renormalized quantities making the appropriate subtractions.
g : ,
In the case of the electronic degrees of freedom this is best
achieved if we rewrite the equation of motion Eq. (4.8) in terms o¥ the

renormalized or subtracted quantities «

3

\

It 331- - e(-iv)Ty * ary +uogle = Fo (4.68)

L4

where A is the renormalized gap obtained from the solution of Eq. (4.47)

and F¢'is given by

' Vwiww+ ¥ (IMy- g ugBa- )y, + 2(IM_ - gugB )y, - au!

Voly, 0, - (IM By~ wlu, +2(IM, - gugB, )u, + 8v]

LN 37 93%8
Fo=-4 \ L (4.69)
P wtete s (v B -2a)y - 2(IM - gu B )yl - ay,
) 3 + - B™-""4 4

ML 37 95+

Vw+w1w+ + (IM3_ gJUBB3 = U)l,b’+ + 2(IM+- gUBB_*_)UJy" AL[)+ )
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This allows us to writ 'Hel , given by Eq. (4.62)'1n terms of the renor-

malized quantiti@s a

R

3 .
3 d - 3
Jd X Hgy = VJ—-—-——-;(ZH‘; (¢ +n)+ Id3x ¢*{a(-1v)r3- Aty - uc3}¢+“§{d I¢+o3¢
4k d3>€'¢+r ¢+] d3§{¢*F +¢ F+ - F* -¢,F ). (4.70)
2 AR Y Vg P26, "33 "4 ¢4 B

¢ . '

Taking the thermal expectation value we obtain

.3
T <J¢el>~=J 4K (e+u) - § ' Tr{ S(k){s(K) - - uo3}}
(2m) (ZW)
+ 3 Jd3k Tr{(uo3+m])5(k)}+§~v-_fd3'§ Re<o F> . (4.71)

The last term in this expression represents the contributions to

the internal energy arising from the renormalized electron self-energy

correction. If we now ca]cu1ate the electron self-energy and the
corresponding propagator in the manner out11ned in Appendix C, then this
term will not contribute since the sel f-energy and the counter terms 4
and y will exact}y cancel this contfibution. Thé/resultant exﬁression

for the electronic contribufion»to{the internal energy is

. 3 ¢ 2 ' '
Lo <y - J(g“‘;:; {(e-0) 44 01 fplEms) - f(EmD) + (B F(E).

- (E+u)fF(E+u) + % {fF(E-u)- fF(E+u)}} . ' $4.72} 

‘The'entropy of the electronic states may be computed to give -

s = ‘]J'd3k [f(E+)1' £ (E+u) + (1 E+u)} Tog(]
8 el " B (2n)3 W) log F( u)+{1- fF( +u)} 99( "fF(E+U))]

a3
+ s']J [f(E u)logf (E-u)+{1- f (E-u)Mog(l - f (E w)l .
(2m)®
' (4.73)



Thus we obtain an expression for the electronic free energy Fe].defined
as
. -1 '
Far " Va1 =8 a1 | (4.74)

to be given by -

3 2 |
P, - J_(_;_lz)_g [e - €+ 52 (1= f(E-u) - F(Ew)) +

'+‘B-]{109(1- fF(E-u)) +1og(1 - f(E+u))}+“%{f(E-y)— f(E+u)}], (4.75)
. i .

where the superscript s denotes the superconductin& state (i.e. a # 0).

A similar calculation in the normal state (i.e. A=0) yields

3, . - '
le = J(:n‘;3 (5™ (log (- fFele+u))t + {1og(l - fele - u))}
R e u) - Flerud] | RO

We now obtain an expression for the field dependent condensation energy
2 !

H .
g (T:H), defined by

2
HE (T3 H)
c'’ - N (. s .
g Fe1(T,H) - Fe](T,H)
“D 2 R,.2
= : A Lk +e -
_2N(0)J de[e-E-ZE 5T {fF(E u)+fF(E¢u)}”

o )

+ 2ef(e) + %{fF(E—u) - fF(E+u)}]

;
i

2 © 2
= 2N('0)\[% AZ-% e‘2+J de _E%:Ee_ {fF(E-u)+fF(E+u)}
L ! |
- g:J de (Fp(E-u) - fp(Em))] . | (4.77)
0 |
J

The above condensation energy reduces to theyBCg result in the limit

_H—>0 and u~+0.
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As i the discussion of the renormalized gap &, the effect of

the temperature and field dependent effective coupling constant may be

realized through the scaling of a two parameter function

H (T3H) .
" s(ti;H) B(t/s(tsH)iu/s(tiH))
co o
where
2 2 2 - - . -
2/, .- 2/,.=y . 2 t 38°(t, e =y, ome " -
vq’ A(t)u) "B (tou)"T {"e-Y - . ¢3{'—E~‘S(t'u). “r u}

3p&(tiun) eV oy, me | -
“2 2 ®4{ t B(t,U)) t ul

L]

(4.78)

(4.79)

Here the functions B(t;n) and s(t;H) are those defined previously in

Eqs. (4.52) and (4.59). The functions ¢3(x;y) and ®4(x;y) are given by

r M ‘ ’..
¢3(x;y) = % Re J dz zvVz" -1 cosh™2 %-{xz-+y}
and oo
¢4(x;y) = % Re J dz /zz -1 cOsh'Z %~{xz-+y Yo,

- 00

L

while the normalization factor HCQ is given by

= /4nN(0)a] (9(T 50))

grand in 5 and 2 is defined in a manner analogous to ¢,..

(4.86)

(4.81)

(4.82).

where A, js given by Eq. (4.55) with g replaced by Q(TC;O). The inte-
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The contribution to the internal energy from the localized spins,

u may be easily calculated in the mean field approximation as

M ]

UM =-%<ﬁ>yo(-iv)<ﬁ> - %{I<¢+gw> - <§>}-<ﬁ> o

"

while the entropy may be calculated to give

(4. 83)'
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where J is the spin of the 1bcq1ized Epin, g, the Lande's g-factor;

‘ . B R s

P I
' “sinh = X
. Z;(x) = 21‘]
s | vs1nh 2J+]
‘and HMF denotes the mean f1e1d exper1enced by the 1oca11zed spin and is
~ given by - e e
W = Yo(-iv)<ﬁ> + <B> +.I<¢+3¢> R R (4.85)

MF
I The cdntributionnto the frée energy‘fkomfthe 1ocalizéd'spihs'is‘there—

fOré;given by ”""“

Detai15‘regardﬁng the calcu]ation'of <M>, <o> and HuE Will be presented

.‘1ater in the. d1scuss1on »

The contr1but1on to the ground state energy from the e]ectro-
"::gnet1c'T1e1d may be - ca]cu]ated by rep]ac1ng the fields by the1r |
the:ma],average. Thus we obtain

5>

v =§,r;vj I<E>l +|<§>l --<J> (<A>-—-— vf)-.— (<M>— gu8<w Sp>)<B>
(4 87)

wh1ch after some man1pu1at1on 1nv01v1ng the Maxwe]] equat1ons, may be

!
written as[ ]
UEM = J d vx<H>- s IAVF | . , (488)
v ; ‘ _ _
- ‘V[ dre © 0 (4.89)
TR P

=1 | ‘{;"}J R T - '4'84
-8 N 1ogv Z, gJJuBIHMFU - Hyp<M> = - (4.  )_

i

> > o : ‘ > . | ‘ L
<’M>-H -8B 1NlOQ ZJ(.QJJUBBlHMFl') i o (4'86)~ o
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" in the case of the superconduct1ng state, where % denotes the-vortex
'density, ¢ = ﬁc/Ze and H s the 1nterna1 magnetic field def1ned by f= |
: f§ 4n(M pBw cw) Th1s above express1on 111ustrates the well known
‘statement that the vortex 1nteract1on is s1mp1y g1ven by the vortex B
‘magnetic field.
| In the nonma :state we'obtain

' ,:UEM = %I. J d x< FT> <§> ‘ ' o - (4.90) ‘

Comb1n1ng the preced1ng express10ns;,we obtain the complete ex-

‘pression for the free energy in the m1xed state to be

O

CF = @%; + §;<ﬁ>.3’¢ *12‘_<ﬁf4F>"<ﬁ’ - a']VN‘1op;i{gJJpBB|_ﬁMF|'}’ + Eore- (4:97)
- The last term in Eq (4.91), ore’ corresponds tovthé effect of the,
’vort1ces on the energy spectra of the superconduct1ng e1ectrons ft is
calculated in the manner out11ned in ref [7]. It should be noted that
the above express1on has ‘an 1dent1caT“form to. that presented in ref [287..
'a1though the ca]cu]at1on of the 1nd1v1dua1 terms is somewhat more com—’
, p]lcated due to the effects of the f1n1te f1e1ds and magnet1zat1on
“arising from the d £ 1nteract1on | |
Before go1ng on to eva]uate the magnet1zat10n and the magnet1c :_}

suscept1b111t1es, we d1scuss the ca]culat1on of the London penetrat1on

'depth A, and the non- 1oca1 kerne1 C( 1V) 1ntroduced in Eq. (4.20). fn

L
the case of the London penetrat1on the ca1cu1at1on is reasonably
stra1ghtforward s1nce us1ng the approx1mat1ons introduced in the

ana]ys1s of the renorma]ized gap and the condensat1on energy, we may

obta1n by a procedure similar to that presented in ref. [1] the fo11ow-.

1ngv expresswn
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-where the normalizatien factor Mo is defined as

AN T | N
.____—_2 ={1 +‘i_de.{3 f(E+u)‘+ f(E-u)} o (4.92)
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2 8ne2v$N(ef) ) o
e st e
3he S o A . X -

o t-

f

“where v denotes the Fermi velocity and N(e.) the density 6f‘stetes at
“the Fermi eurface | | |

As' with the preced1ng ca]cu]at1ons the effect of the temperature

dependent coup11ng may be rea11zed through the sca11ng of a two para—.

" meter funct1on.‘ Spec1f1ca11y we, have e . Q
xR L,
o = LT s () s s () o 0 (4.94)
‘ : Mo P L F v R
~where ‘ |
. -2> - X . Co -—'Y - . . .
L2 = - ?2{ T R (a0s)
with |
o (x3y) =X Re | dz z 'cosh"‘2 l-(-xz+y) L (4.96)
AN 4 /fg—ff o2 . .

R4 | | ‘ .
Here the integrand in 2, is defined in a manner ané]ogous\tQ“ejl

"~ The evaiuétion'of the non-local kerne1 C(~iv) is somewhat compTi-

Cated $ince;_a$‘pointed‘out earTier;-it involves the calculation of. the

photon se]f—ehergy inc]udihg the effett of the co11ectiVe mode or.

[1.7,26]  yhite the ca]cu]at1on up to one loop, in. the manner

[ ,26] -

,presented in y is poss1b1e us1ng s1m11ar approx1mat1ons to those'

phason

1ntroduced in the ca1cu1at1on of the renorma11zed gap and condensat1on |
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_energy the resu]tant express1on is of such a comp11cated form as to be’

1tt1e pract1ca1 va]ue However the resu]ts of the ca1cu1at1on shows
that, wh11e the effect of the sp1n fluctuatxons included "in the: coup11ng -
constant renorma]izat1on ‘may be rea11zed by means of a simple sca11ng
”of the non—magnet1c result, in a manner ent1re1y analogous to the pro—.
cedure g1ven for the ca1cu1at1on of the renorma11zed gap A and the
condensat1on energy Hz, comp11cattons ar1se due to the presence of the,
effectlve sp11tt1ng parameter pin the therma] d1str1but1on funct1ons '
However s1nce the therma1 d1str1but10n funct1ons do not contr1bute at
‘zero temperature, the resu]t for the non- 1oca1 kernel C( iv) at zero
vtemperature may be obta1ned s1mp1y by sca11ng “the results for the non-
v:magnet1c case presented in ref [26] ina manner ent1re1y ana]ogous to
the sca11ng presented 1n the ca]culat1on of the gap and the condensation’
energy SERE S T N | -
However, s1nce we expect the effect of the d f 1nteract1on to be
most pronounced at Tower temperatures, 1t 1s reasonable to suppose that
such’ comp11cat1ons may be avo1ded s1mp1y by extend1ng the sca11ng argu-
' ment at zero temperature to f1n1te temperature In essence we are h' |
"assum1ng that the corre]ateon 1ength £ is re]ated to the 1nverse of the

;_superconduct1ng gap Ay wh1ch s at 1east qua11tat1ve1y COrrect There- -

'fore based on the resu]ts of ref.. [26], we can write

‘/?C(g).* exp.tiv{lfla(T;H)}” , ; e
_ where Co Lo | L ‘ |
o = -0.4527 g(TsHIN(O) + 0.559 e

n = ~0.7857 g(T;HIN(O) +2.207 e a9y

and
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L ] - F ‘ '
E(T,H) ._TTA(T;H) o . | . ’ . - . . ‘ (4.]00)
We now turn our attent1on to the eva]uat1on of the magnet1zat1on

M the sp11tt1ng parameter u and the transverse and 1ong1tud1na1 suscep-'

tibilities in “the case of -a f1n1te f1e1d The magnet1zat1on Mis.

v»easi]y_Calculated 1n the mean f1e1d‘approx1mat1oh as
,-<M> gJ JNBJ{BgJuB|HMFl} ~.‘ ) . (4L101)

where J 1s the sp1n of the 1oca11zed spin, gJ the Lande g factor, N the

_‘ dens1ty of magnet1c ions, BJ the Br111ou1n function and HMF is g1ven by

¥

H,, =“<B'> + Yo(l".'i'VA)'<M> + IfUJ gll» TR R (4-'102) ‘

MF , -
N

‘The therma1 average of the e]ectron sp1n dens1ty may be obta1ned, even
‘:.:1n the case of finite polarization, from Eq. (4 14)
W03 = [y x () Qi) - ugBlp>) o (803)

swhere‘xd(x-y) is a 3x 3_matrix~giventbthq. (4.15)

ic(X-Y) =%'{<RE§:0k X)c (y )jldi - <R[c ( ( NES &4?104) ‘

awhere R[ ] denotes the retarded product. Since the quantities <M> and

; <B> are 1ndependent of t1me then Eq (4.103) reduces o

TN ="><U{1<ﬁ> - uB<§>}- ;o (4.105)

e

where X, denotes the static sp1n suscept1b111ty of the e1ectron ca]cu—
1ated 1n the presence of the f1n1te f1e1d The express1on for the mean f
' field, Eq. (4 102) may then be wr1tteh as

.~M = {1~ Ix uB}<B> + {Y ( iv) +“I x'q}<M> . | (4.106) |

§
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Since <§>’;<ﬁ>’ €ﬁ> and <w+§w>'are.reiated‘through.
<§> = <-_ﬁ>vl+/'4"{<ﬁ> - UB<‘P+§U)>} e » L (4\-]07)

1 .

the express1on for the mean f1?jd may be wr1tten in terms_of'ﬁ and»ﬁ as

\}\ / ] i IX .‘ B /,r.' . . 4“_(-‘ . IX ) - o ;v
“Fr Bl Ty + Tt —— B a}<M> . (4.108)
= 7 |
S ] - 41\‘qu : o 1- 4Tme : :

COIf we neg]ect the paramagnet1c interaction, ‘then the above express1on

s1mp11f1es to glve

+" 2 5 . o
HM‘F=<H>_+{YO+I’ Xc-+0§“}<M_> . o e ‘(4“.]09)

In ‘the case of ErRh4B4 we assume that Eq (4 101) tdgether with Eq.
\"'(4 109) determine the magnet1zat1on as a- funct1on of the f1e1d <H> ‘once
xb is spec1f1ed | “ 4 |

| To evaluate X, we w111 assume that the d1fference between k
‘calculated 1n the superconduct1ng state and the normal state is. insig-
n1f1cant and may therefore be neg]ected Th1s assumpt1on is based on 7
the- resu]ts of the Kn1ght?sh1ft measurements and is genera]]y attr1buted '

F.Ato the effects of the ,spin orb1t scatter1ng Furthmore when p-is sma]]

tcompared to wp the var1at1on in the dens1ty of states may be i

“and hence~‘
s _ N _ Nl ST - - S
S - 7 s

“ The calculation for the sdsceptfbi]ity of therlocalized snins is
somewhat more comp1icated and is best achieved by means of a linear res--
ponse type argunent. To this end we nodify the originai»Hami1t0nian by‘

|
1nc1ud1ng a small’ perturbing f1e1d Gh (x) act1ng on the Tocalized



and y{?) givén by

17
. . . » . ) > > . >
spins. - This will produce a change in the fields <B>, <M> and <y oy>,
which we denote by sb(x), sm(x) and so(x) respectively. The qdantities
63, Sﬁiand‘ég are not however indepeﬁdent‘but‘are instead related
: ' v : ' : ‘ : o .
_through the following equations;
U e alRe(-1)368 = - a8 Co@an).
4 _ . L | , o .
> ,C_ P ' S . R .
§m3‘— T aJ(shMF-e3) s . R : (4.112)
emA ﬁMF = §ﬁ> A SKMF. | ,(4.113,).
and » ‘
s = x AI6R - ugsB} . | | (4.114)
o' ‘ ' | . : re ‘
. where C denotes the Curie constant, GFM# dehotes the Change'in'the mean
field induced by the external field dﬁe*t(x)'given by .
' -».A _ > : . > | > > "“;‘ o C '
GhMF = gb + yo(-17)6m~+ Iaq +'6hext - , ‘ (4.115)
and where a, is given‘by .
’ ¢
g u ¥ : |
3' o' 20 B T '
oy = 3+7 B0l ThgT Ay 2 - (4.18)
~ From Egs.'(4;11])'and‘Eq..(4.114),‘53 and §o may be e]iminétéd from
Eq. (4.115) to give P
e _o~f s > > ' o _ .
Shyp = J(-iv)em + sh o0 s | - . (4.117)
with ¥ gfven by f
| (1= pplx ) T : <
- ~ B : K _
By g0 - tr R (e18)
(1 - uB4UW- - 4”on)>‘le| +C(k)
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. ,
(1 - PBIXG)

5 (4.119)
1‘-4nqu0

C - 2

v(k) - Yo (K)+1 Xg t AT
The 'second term in Eq. (4.118) corresponds to the effect on the effec-
tive coup11ng ar1sing from the pers1stent current. Thus we see that the
sh1e1d1ng of the 1oca11zed spins by the pers1stent current is contained
in our calculation. Equat1on (4.117) together with Eq. (4.112) and

fqu (4.113) yield

o = x(-iv)eR o  (4.120)
with . : ' | .
. Hur !
v <M> 03
1 H ) . } , . l\';«
" (K) S o L.y (&), S (aa21)
- _TT_ & :
\ ")

~ which may be inverted to give

} N A Ca . . .' .

aa(B) = - J o | . (4.122)

33 T - o Cyaq(R) | o |
. J Y33 '
'and ‘ » _

v (B) = 1 for . i=1,2. o (4.123)

1i H .
| M Yid '

Paraméterizihg Yii(k) as
® = Ao Dyg? T (a.124)

we obtain
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+_' | ) c

yaa(R) = ‘ (4.125)
BT (3), 22 T - ugTx, ¢(%) |
J N 1-4mugx (1 -'4L7ru‘BxO.)|'k*i xL‘+ c(k)
and ' -
X°~(E)’)= . ‘ . . - . ,
T Teug I CeHy> (a5 gy o Towglxg c(¥)
7 - +{Tm }+D|k| +47C 5 )
]-4TrquG <M3'> | ‘ | 1-41ruBX 1 4TruBX lkl )\ +C(K
for i =1,2 . L (4.126) R

“When we neg]éét the paramagnetic contribution the analysis simp]tfies

somewhat and we obtain

x3a®) = — = ' ZC . C(%) - S @)
—- T - DIK| - 4nC ———, ‘
J ; . - K] A c(k)
“and ‘ ;
s C L

AXii(k)‘ C<H,> 3 (1) S for i=1,2 o

: + (T3 217 7+ DK+ 4nC ————le———- - :
respecttve]y

Equations (4. 125) and (4;126) togethef'with the 1imittng_cases
Eq; (4;127) and (4.128) illustrates Hew the effect of .the finite field
modi fies the calculation.of the spin susceptibility.
ll'The expressions gfvenkbvaqs (4.127) and (4.128) represent the
”genera11zat1on of the result of ref. [14] to the: f1n1te field case. The
. Tast term in the denom1nator represents the effect of the shielding of
the—tocalized magnetic moments by the.pers1stent current. As was shown
in ref. [14], in the zero field 1imit; the,susceptibi]ity\given by Egs.

N
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(4.127) and (4.128) will diverge at some finite momentum K'=Q at some

temperature:T <Tm , glving rise to the appearance of the spin spiral or

p
sinusoidal bhase, The divergence at T=Tp results in an infrared diver-
gence in the calcu]ation of the coup11ng constant and the quenching of
the superconduct1v1ty at some temperature T> Tp In order to avoid such
a catastrophe, we modify our express1on for the function.y(k) given in

Eq. (4 124) to 1nc1ud$ the effect ‘of the anisotropy in the momentum de-

pendence. We thereforé rep]ace Eq (4.124) with

(1) y
T 4 .
v ) = 22— 21+ 2 a0 -cos?e)} k1%, (4.129)

where 6 denotes the angle between the vector 0 and the momeﬁtum K.

Equations (4.127) and (4.128) then become |

C

 Xq5(K) = — (4.130)
| —T—-Trsf) +D{1 +%a(] -cosze)} Hzl2+4nC ) g(k)-+
% - %[ AL+ C(R)
, ) .
Xii(g)= C<H.,> . ' S
/ prY) 3> +{T'$13)- Tél])}*-D{‘] +-23—a(1 - cosze)}l?|2+'4nc - ZCék) —
3 ~ | K] %af + (k)
‘ (4.131)
for i=1,2, respect1ve1y o o/

With the finite field suscept1b111t1es given by Eqs (4 130) énd
(4.131), we can calculate the coupling constantyg(T;h) using Eq. (4.49)

in the London limit (i.e. C(k)=1) as -

a1 ,, o |
g(T-hI)=—1—- J.Fdzz J d cose|V - 12 { ¢
| 4K’ T 100001 +a3(1 - cosPe)) s 2e21C
F O 0 ay m 2 2.7
' h . » : o R AL+1
- 2 12{ : C ——
P C<H,> .
i=t o\ L(3)_;(3) 3 2 2. 4nC
> +{ﬂ“ -Tn }+D(1-+§a(1—cos 5))"+ 2 2 - ) (4.132)
At .
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The presence .of the anisotropy term ensures that for T 2 Tp, the
coupling constant g(T;h) >0 for a certain range of parameters and hence
that A4 remains f1nite at T= Tp Furthermore ca]cu]ationscbhow that for

T> Tp Tittle error results in the cafcu1atidn of fhe';oupling constant

if the anisotropy term-%a(l - cosze) is"repldced'by its angular average,
i.e. |

2 a0- cos?e) = u, - o (8.133)

i

and thus Eq. (4.132) reduces to give

B 17:
N 2 2{ c -

2 (3) _AnC
4k 5 | ad'7Tm ‘+D(1+a)2 + 272,
S G SR C s — } C (4134
i 3 i : m
s *TT-T D(1+a)e —§—§f:]—
' At

This may be integrated to give an analytical expression for the effec-

tive'coupling constant at finite field as

g(T3H) = V-IZ{G3{eﬁ”(tﬂ”}+:Z]ZG#eT)¢;HH} N TRED
‘ . i=1, ) :
whgfe
2 . . L .
) o a8 0w + a8 (era ) (1)) + a ) (eae (i)
6oy () = ———157—————-{109( f f . )
(1) ‘8ﬂdf1 (1+a) ‘ dII)(si'C(]))
o+ (q(—i)(l +a)v- e)I(i)(,g)} ‘ © (4.136)

!

with o .
2d i}(]+u)+( (1 )(1+a Y+e)- V0 (1) () d (1+a)+s+¢5( )(ei

1

| (

(i) . 1 f
el r—(—y1°g{ (Traed ) i@ o]
‘ Q(,‘) € de (140)+(d (1+a)+¢€) d 1+a )+ e-. 9(1) )]

for'n(i)(e) >0 | - | (4.13’7)
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and
(1) (1)
2d 1 d 1+a)+e (1)

I(i)(e)= ! {1:an"1 F (1ra) (1ta)? —tan”! etd (1+“1}
iy Aaylel A4 (e
.th_Q(1)(e) <0 o ‘ (4.138)

o]

"with

-

Q(i)(g)=‘(E+d“)(]+a)+2m)(1+a)c(i))(e-d(i)(1+a)+»/d“_)(1+a)C(i)) o
' ' (4.139)

The parameters d(i), déi) and C‘i) are defined as
X " ‘ 4 » 2
Pe) At () Dl Dkp
R Tz 4 T
m st m L m
. . L
and e&f)(t;H) and a%ﬁ)(t;H) are“given by
e | o
. = t - ' \\\ :
sH .(t,H) ;-('3—)— 1 N - (4-1405
[0} .
. m J SN . '
] . )
and _/
(+) 4. o _C H (3) (i) «
EJ. (t,H) = 17—1_5 <M3> -"l + Tm - Tm . -.\\ (4]4])
m N

N

We rewrite g(t;H) in térms of the renormalized coupling constght\\\
g(];O) which is defined at T='Tc and H = 0. Equation (4.135) then

becomes :
(T3H) = (1-0){1- 12 (6 {5(3)(t°H)}-Y'G. {6(3)(1-H=0)}}}
e

- 1 (1) (4. (1)1 0 |
1-;,2 W‘T{{'G(i){% (t3H)} - Grgyle "(T5H 0)}}}. (4.142)
We note that
e(ll‘>)(t;0)=g(l’)(t;0) - (g Sy - (4.143)
i m .



The renormalized coupling constant g(130) is given by

g(150) = v - 12 ) G(i){J‘)(1)} , o (4.144)
where ;
(i) (1)
Geyyter T =gpg Tog { ORI } (4.145)

Here we used the facf that A »e and at T = Tc'

With the effective coupling constant given by Eg. (4.142), the
scale factof s(t;H) may be computed from Eq. (4.59) and the supercon-
ducting quant1t1es calculated from the sca11ng laws presented earlier.
In the discussion so far we have shown in some detail how the effect
of the d-f 1ntgract1on on the superconducting properties such as 4, AL
and Hc may be éa]cu1ated. Iﬁ particular it has been shown how the
effect of the spin fluctuations may be realized through a simple re-
scaling of certain two parameter'funétions. It is perhaps worthwhile
summarizing the basic results before going on to present some ﬁhmerica]
results which serve to illustrate the effects of the d-f interaction.

From Eq. (4.58) the renormalized gap was found tolEe gﬂven by

A(Z;H = s(t;H)d9(t/s(t;H);ﬁ/s(f;H)) L | (4.146)
Frdm'Eq. (4.78) tﬁe fie]d dependent condensation energy was found to be
| given.by , ' g

H (T3H) o ,

S = st H) M (t/s(tsH) su/s(EsH)) (4.147)
o | g

From Eq. (4.94) the London penetration depth AL Was found to be given

\ °Co

by
XL(T;H)‘

X =df(t/s(t;H);i/s(t;H9) . (4.148)
. LO ) : -

% , 123
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The nqrmalization parameters 4, ,HCo ané XLo are given by

. ,
by = 2up engTT;TUTNT57 , o (4.149)
2 2 :
K2, = 4ma N(O) . (4.150)
and .
22 _8n 22400 .
)\Lo :—3? e VFN(O)’ . (4.]5])

We wish to emphasize that the above normalization constants do
not correspond to the observable gap and critical field at T é'OOK.
They are instead related simply to the quantities for non-magnetic
superconductofs with similar spfucture.

The spin splitting parameter u is also a‘function of t and H and
is given by

_ i<M3(t;H)>
u(t;H) =

-_— b
. AO

(4.152)

where M3(t;H) is determined from Eqs. (4.101)and (4.109).
The two parameter functions L(t;n), At;u) and ai(t;u) are given

by

ne ¥

T ) (4.153)

- Ty -
log S{t;u} =- 9, {E%;— S(tiu);

- 2 2 2 - - -
] 2 oY = 2 = Y 2w t 3a9 (t;ﬂ e Y Qf+a V. e ¥
W) - 82 G [ - R e 5 2w B
ne ks
L 3O (tsn) e ¥ -y me ¥ - .
- Trz ®4{ t Dg(t’U)s t U} (4-]54)
and ,
2,07y - 1. ne”Y - me Y - ) :
L7 (tyu) =1 - ¢, (=% Hltsn)s —< T SN (4.155)

o

where the functions {e;} may be written as o



_with

05 (x) ='%'Re‘[ dz T,(z) cosh™ 3 ixz sy} . (4.156)

] ' R B | . S0

The ?unct1ons {T (z )} are complex- funct1ons and a|1 are def1ned on the

v*_R1eman sheet with the branch 11ne runn1ng between z-+1 shown in f1gure2

lim Ti(z) = T;(Re. 2)  for Rezs1, o (4157)
~Im 250 » ' _ S g ‘

where

.

-T(z) n {2 +/ 1} ‘l o | hv S (aase)

) s —2— _‘_ o ‘wi B (A L)
2 : : - . _ .
T4(2) = 2 221 (4.160)
T,(2) = /2% -1 L (4.061)
The scale factdris(t H) 1; g}ven by )
' ‘v_“ T,y 'l e 4, o : 4 ’ ) : v ‘.
) - exp {9(1 oSN(o) " 9t H)N(O)} . " ; (4-152?

'.where g(t H) is the effect1ve coup11ng constant g1ven by Eq (4 142).

. We now wish to present the . resu]ts of certain numer1ca1 ca1cu1a-

‘t1ons ilTustrating. the temperature and f1e1d dependence of these funda-

menta] phys1ca1 quant1t1e§ we first cons1der the 11m1t where H=0. In

-;th1s 11m1t the funct1ons I, H and\f,reduce ‘to. those obta1ned in the

> nfam111ar BCS theory Thus we find that the propert1es of the Meissner

+" _state (in which the f1e1d B is exc1uded) may be obta1néd from the BCS

Tresu1ts by means.of a simple scaling 1aw In order to 111ustrate the.

effect efvthe spin f1uctuatibns on the effect1ve coupling constant

e : B R ’ . . ¥
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‘f1gure 3 shows tﬁe temperature dependence (t t/t )’ofethj

effective S
Vfcoup11ng constant for var1ous va1ues of the f1e1d h (h /¢AL§). The .=

parameters used in the ca1cu1at1on are g1ven in tab]e 4 and are, chosen
>1n order to empha51ze the effect of the sp1n f1uctuat1o s. |
In figures 4, 5 and 6 we present the temperatur dependence of i‘*‘* —————
the gap, the condensat1on energy and the London penetrataon depth Here -
the parameters used are those shown in table 2 ;nd are fe1t to be appro-
uspr1ate to the case of ErRh4B4 (A deta11ed d1scuss1on of the part1cu1arv‘
: cho1ce of the parameters will be glven together w1th a detailed analys1s : .
of the m1xed state in ErRh4B4 in the next sect1on ) These resu]ts
c1ear1y show the suppress1on of the superconduct1v1ty at 1ow tempera-
tures, due to the 1ncrease in the strength of the 1oca11zed sp1n fluc-
tuat1ons | |
/ Est1mates of the. condensat1on energy have been made in- the case
' -;jof po]ycrysta111ne ErRh4B4 samp]es from both bu]k and th1n film, measure-
ments. wh1]e these resu]ts do 1nd1cate a substant1a1 dev1at1on from‘
-the BCS result at low. temperature, certa1n d1ff1cu1t1es 1nherent in-,
"~ the var1ous measurements prevent them from: prov1d1ng us w1th any prec1se:
?”conclus1ons regard1ng the temperature dependence of the condensat1on i o
energy, More recent measurements based on. the magnet1zat1on curves of
stng1e crysta1 ErRh4B4[]22] have been made and g1ve more re11ab1e
resu]ts a]though the uncerta1nt1es ar151ng from p1nn1ng effects are'
’st1]1 cons1derab1e The s1ng1e crystal resu]ts are in reasonable agree-

. ment w1th the curve shown in figure 5 if we choose a va]ue of H ~1.4KG

a va1ue cons1stent w1th s1m11ar measurements on LuRh4B4 obta1ned from o

(130]

spec1f1c heat. measurements wh1ch give H "*1 85KG “An accurate

determ1nat1on of the condensat1on energy for var1ous temperatunes would



123
i

be extreme1y usefu1 in that it wou]d prov1de information regarding the
strength and the role of the spin f]uctuat1ons in mod1fy1ng the super-
,conduct1ng state as we app;oach the co- ex1stence regime at- T = Tp.

The temperature dependence of the superconduct1ng gap: also shows

2 reduct1on from the BCS va]ue at 1ow temperature, in part1cu1ar we

© find that 2A /k T has a- va1ue of 3.03 1n contrast to the BCS. va]ue :

~of 3.52. Slnce the effect1ve coup11ng constant g(T) 1s a1ways smal]er

than g(T ), because of the suppress1on due to the sp1n f1uctuat1on A(t)
is a]ways less than a BCS(t) ‘ |
Tunne11ng measurements have been performed for both po]ycrysta]-
';11ne[]20] and s1ng1e crystal ErRh4B4 [121] ‘The reSults show that the
‘ va]ue of the superconduct1ng gap - 1nferred from the dI/dV vs V curve
‘does in fact d1ffer marked]y from the pred1ct1ons of the BCS theory,
part1cu1ar it is found to be flat w1th respect to temperature at 1ow

temperature. _However,-the observed ratio 24 /kBT appears to be. in

max
the'reg%on 3.8 to- 4'2 in'contrast to the'results presented here.

| The London penetrat1on depth shown in f1gure 6 does not show a-
dramat1c change ’Wh11e it is the ‘case’ that the London penetrat1on depth
may be obta1ned from surface : 1mpedance measurements, the exact nature
of the retationship is comp11cated by the possible appearance of*burface

.‘magnetization'states[n0 1]]]

A more detailed d1scuss1on of~the‘pene-
: trat1on depth is: presented in Appendlx D. , | “ -

We can also discuss the effect of an interna] f%g?d on the‘super-
conduct1ng quant1t1es, b, H and'A'XL - From the preceding ana]ysis we see

that- the presence of an 1nterna1 field H will 1ead to two qu1te d1st1nct;

-effects,.namely



(1), it will suppress the spin fluctuation, leading to an increase in

- the effectiVe.coup1ing constantbg(I;H).and7therefprelenhancing the super-

V"conduct1v1ty,

(2)“» 1t w111 po]ar1ze the 1oca11zed sp1ns wh1ch w1T1 resu]t in a
.f1n1te va]ue for the spin sp11tt1ng parameter I wh1ch tends to suppress
dthe superconduct1v1ty i |

Thus we see that the app11cat1on of an 1nterna1 magnet1c field
may resu1t 1n~an 1ncrease or decrease in the superconduct1ng quantltl\s
depend]ng on wh1ch.mechan1sm dom1nates \n ‘

In’ f1gures 7 8 and 9 we present graphs show1ng the temperature
dependence of the gap, the field dependent condensat1on energy and the
_‘London penetration depth in~ the presence of an 1nterna1 f1e1d It
Vwould appear from the graphs that A, H2 ang A are in fact 1nsens1t1ve~

to the 1nterna1 field unt11 a part1cu1ar tanperéture is. reached where

there 'is a rap1d decrease as’ the temperature 1s Towered further. Th1s

: arises from the‘ 1nc-rea'se 1nv the 'sp1n sp11tt1 ng parameter u due to .c ‘

"1ncreased order1ng of the magnet1c ions. , ;;af;’
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F1gures 10 11 and 12 present graphs show1ng tﬁe’ﬁ1e1d dependence )

of the gap; the f1e1d dependent condensat1on energy and the London pene?
‘ trat1on depth for various va]ues of the reduced temperature t. Again
’:1t wou1d appear that A, H2 and are 1nsens1t1ve to the 1nterna1 f1e1d
h until some critical value is reached after wh1ch there is a rapid
"’decrease.as the field is increased. Again this may be attributed to.
the 1ncrease in uas the field fis 1ncreased

A closer examination of the numer1ca1 resu1ts however revea1s
that as h is increased_for a-g1ven“temperature§;the field dependent

condensatidn energy is seen first to rise, due to the increase in the



"effect1ve coup11ng constant g(T H) before decreasing rap1d1y at h1gher
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va]ues of ‘the: f1e1d due to the 1nduced effective field u. While the , \'

'uactua1 1ncrease is very sma]] for the. present choice of parameters (see

tab1e 5) and is ‘not in fact d1scernab1e from the graph presented 1n
-f1gure 11, such an 1ncrease at 1ow f1e1d values may be 1mportant when
. one comes to con51der the nature of the trans1t1on around the 1ower cri-

tical f1e1d H 1 tﬁ*a type 11 superconductor

" To summarﬂze, there are severa] resu]ts wh1ch are of 1nterest

3

here F1rst we f1nd that, in the effect1ve coup11ng constant approx1ma- -

' tion, the effect of the 1oca112ed sp1n f]uctuat1ons and the spin sp11tt-

ing of ‘the cd%duct1on e]ectrons, ar1s1ng from the d-f 1nteract1on, on

%he superconduct1ng gap factor1ze As a resu]t the gap equatlon can be’

\expressed in terms of a certa1n two parameter funct1on by means of a

ing constant g(T H). A s1m11ar resu1t was a]so obta1ned for the field

- dependent cr1t1ca1 field and the. London penetrat1on depth These

resu]ts prov1de a somewhat stra1ghtforward method whereby the effect
"of the 1oca11zed magnet1c moments and the 1nduct1on f1e1d on the super-
conduct1ng propert1es of the conduct1on e1ectrons may be cons1dered In
‘part1cu1ar, the method may be- app11ed to cons1der the proper1tes of the
'Meissner state ~In the Meissner state (i.e. u=0) the temperature de-
'pendence of the superconduct1ng gap, the condensation energy and the
-London penetrat1on_depth may be obta1ned from the BCS result by means
of a simple scaling rule. Such quant1t1es are in fact exper1menta11y

' accessibTecandrshou1d proyide us_with informat1on'regard1ng the nature

© of the localized spin fluctuations.

- s1mp1e sca11ng 1aw 1nvolv1ng the temperature and f1e1d dependent coup]—‘7
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econd1y 1t is both 1nterest1ng and somewhat surprising that ‘the
;-resu]tant express1on for the free ‘energy g1ven in Eq. (4. 91) has the
'same form as that“present in ref. [28], although the express1on for the

= var1ous terms 1nv01ved 1s somewhat more comp11cated due to the d- f and
;tthe paramagnet1c 1nteract1ons The close ana]ogy that ex1sts between

the two express1ons means that the results presented in th1s sect1on

can be used to extend work presented in ref [28] to include the effects'
lof the d f 1nteract1on on the magnet1c propert1es of the m1xed state in

. ferromagnet1c superconductors 1n a perfect1y stra1ghtforward manner.

- The third rather 1nterest1ng feature is the effect of the f1n1te
1nterna1 f1e1d H on the superconduct1ng quant1t1es Spec1f1ca11y we see’
that the reduct1on 1n the 1oca11zed sp1n f1uctuat1on and the 1ncrease
in.the sp1n sp11tt1ng parameter u w1th the app11cat1on of an 1nterna1
f1e1d H tends to enhance and suppress, respectlvely, the superconduct1ng»

A ’nature of the conduct1on e]ectrons The resu]tant compet1t1on between

these two mechan1sms manlfests 1tse1f in the slight increase in the ;>

: (H:T) .
vf1e1d dependent condensation energy C08 with 1ncreas1ng H, for 1ow

va]ues of the field proceeded by the rap1d decrease for h1gh values of .

H,' shown in f1gure 11. Th1s suggests that the response of the localized
spin f]uctuat1ons to an app11ed f1e1d w111 be of importance in determ1n-
’1ng the behaviour of the 'system as 1t makes the trans1t1on from fhe
vMe1ssner state to the m1xed state, at H cl ,wh11e the po]ar1zat1on effectv’
} w111 be of 1mportance at h1gher f1e1d values in particular as the system
"makes the tran51t1on from the m1xed state to the normal state at H 2"

In conc1us1on therefore we have presented a method whereby the

effects of the d-f and the paramagnetu:1nteract1ons together with the electro-

magnetic interaction may be 1nc1uded1n theana]ys1s ofnwgnet1csuperconductors.
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The resu1ts‘obtained show several interesting and important features
ﬂ\and a11ow for the extens1on of prev1ous work on the mixed state to
include both the d-f as well as the e]ectromagnet1c 1nteract1ons The‘
‘app11cat1on of the formalism presented here, ‘to the analysis of the

mixed state in ErRh4B4»ls presented in the next sect1on.

-

4, 3 An Ana]ys1s of the M1xed State in ErRh,B,
- In this section we app]y the forma11sm developed in the prev1ous
sect1on 4.2 to an analysis of .the m1xed state in ErRh4B4 In particular

we wish to compare the results of our analysis with the results of the

[1051]] Due to'the quite

recent meaSUrements on. single crysta1xErRh484
pronounced an1sotr0py in the sp1n sp1n 1nteract1on, arising from the
effects of the crysta111ne f1e1d the magnet1c propert1es d1ffer s1gn1-
ficantly if measured re]at1ve to the'easy axis (a- axxs) or the hard ax1s
(c ax1s) For examp]e when the app11ed field lies a]ong the hard axis,

the po]ar1zat1on of the magnetic ions 1n the mixed state is very small,

. this is ref1ected in the fact that the observed magnet1zat1on curves and
the upper critical f1e1d curve are very s1m11ar to those observed in.
non- magnet1c superconductors, w1th a peak value in the upper critical
field curve of around 1OKG [10] The upper cr1t1ca1 f1e1d measured

)re]at1ve to the easy axis on the other hand is markedly different from
the hard axis measurements, with a peak. va1ue of around 2KG at around
} 5.5°K. []0] Furthermore the magnet1zat1on curves measured with re51
vpect to the easy axis show that the trans1t1on from the mixed state to
the normal state becomes first order at around T= 3 5°K. Both effects
may be attr1buted to the po1ar1zat1on of the rare earth sp1n

induced by the applied field, .since the easy axis susceptibility is
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much larger than the hard-axis susceptibi]ity. 1The detailed nature of
these measurements together with the effect of the an1sotropy of the
spin system provide an exce]lent test1ng ground for various mode]s and
treatments ‘of the mixed state in ferromagnet1c superconductors e
The aim of the work presented in this section is to provide a
detailed ana]ys1s of ErRh4B4 and to demonstrate to what extent the sin-
g]e crysta] measUrements may be<accounted for within the formalism
presented in the prev1ous sect1on In this we" assume that the super-
fconduct1ng propert1es of the system ‘are to a good approx1mat1on isotro-
pic and hence that the d1fference between magnetic propert1es of the
hard and easy axes, may be attributed entirely to the observed aniso-
tropy of the spin system.
: A number of 1mportanthresu1ts emerge from this‘analysis.‘ First,

the critical fie]d curves obtained are in good agreement with both the

B hard and easy axis curves presented in ref. [10] and second1y the

resultant- magnet1zat1on curves exhibit a f1rst order transition on going
_from the m1xed state to the normal state at H oo 28 observed[ ] These
results are obta1ned using a cho1ce of parameters cons1stent with a
1arge number of other measurements‘on ErRh,B,. In add1t1oE to this, a
cbmparison between the results obtained with and without tﬁe effect of
‘the scatter1ng of the e]ectrons by the 1oca11zed spin fluctuations, is
presented The resu]t of this comparison shows qu1te c1ear1y that the -
pecu11ar magnetic propert1es of ErRh4B4 are due a]most ent1re1y to the
effect of ‘the Zeeman sp]itt1ng of t}e e]ectrons arising from the effec—
tive field induced by the d-f interaction through the po]arlzat1on of |

‘the localized sp1nsf-. '
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Two other points are perhaps worth noting before presenting the
details of the ana1ys1s  The first is that it is only since the single
grysta] measurements have become ava11ab1e that such a deta11ed treat-
ment of ferromagnetic superconductors has been possible, since many of
the propert1es alluded to above cannot be observed in po]ycrysta111ne
samples due to the averag1ng over the hard and easy ax1s propert1es
Second1¥ an 1mportant dspect/of the work presented here is that it~
allows one to treet, in a unified manner, the entire-temperature domain

~ above Tp the co-existence temperature, inc]uding the region wherein the
' trans1t1on from the mixed state to the normal state, at H o2’ is first
‘order. 4 |

In the mixed state the magnetic field penetrates the‘super:g:duct-
'1ng system in the_form of vortices. As explained in the previous section
an individual vortex corresponds to the presence‘of a.topo1ogica] line
singularity in the phase.of fhe orderhparameter £(x). In the case of a

vortex é?ray'the phase f(x) is given by Eq. (4.25)

flx) = ) %-e[?-zi] | % ,' (4.163)
- ‘ 1 ) / . :

where e[x g ] corresponds to the cy11ndr1ca1 ang1e measured with respect

to the line singularity at &5 The phase f(x) spec1f1ed in Eq. (4 163)

gives the vortex density given by Eq. (4.26)

n(x) =,33 ] 8(x-E,) - | C(4.168)
, i .

The prob]em posed 1n the analys1s of the magnetic properties of
the mixed state may be presented as fo]lows for a given app11ed externa]
field H what is the equilibrium density of vortices that penetrate the

system. In order to answer thfs_qUestion we compute the free energy
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given by Eq. (4.86), and which may be written as

ryn) = % [ Al dil0> + 3 Ryl 0>
' 2

N > Hc .
—Eﬂm ZJ{QJ“BJBIHM(X)I}"§; + Ecore(x) s (4.165)‘

in the ﬁase of the vortex array specified by Eq.-(ﬂ.164).. For purposes
of the bresént analysis we assume that the vectors {Ei} form a triangu-
“Tar lattice in the x-y plane. |
In order-to tfeaf the fields geﬁerated by the vortéx lattice we
- fo]]ow the procedure out11ned in ref. [28] and we separate the f1e1ds B,

’

M and H into their spatia]]y averaged values and their spat1a] dev1a-

-tions,

<B> = n¢-§3+6§ s (4.166)

> -> > . :

<M> = Meqy + oM E | (4.167).
and 7

B> = H 8, + oH ) (4.168

<H> = 0-e3 sn | ‘ | '. . )
where n denotes the vortex density and is given by'

= lin ¢ J n(x) %% . - (4.169)
Voo v" _

Now from the expressiahm¥6r the magnetization given by Eq. (4.101)

y | ,

we obtain to lowest order in the spatial deviation

M= x(-iv)sh | . (4.170)
x(=iv) = | |
1 + 4Trx(—1vf L : (4.171)

_where x(k) is given by
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- _ J . E S . 1o
x(k) = TGy : . (4.172)
In Eq. (4.172) the constant C denotes the Curie constant and oy is given

by Eq. (4.111) as
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J . '
_ 39 v [S9¥8
% = T+7 8 { kT |HMF|} “ (4.173a)
where BJ is the Brillouin function and HMF is given by . ooe
‘HMF! = Ho + y(O)Mo . ) ‘ (4f173b)

The function v(kK) is given by Eq.'(4.114)-

v(B) = v (k) + szd + 4n L (4.174)

" where we have neglected the contribution from the paramagnetic interac-
tion. Parameterizing y(k) as in Eq. (4.124) as v(K) = Tm/C- D/C|§}2 we

obtain

k) = ¢ I | : (4.175)

= —y
T-T + D|k|

Now inverting the Maxwell équation given by Eq. (4.27) and neglecting
the o contribution, we obtain,tolowest order in the spatial deviatjons,
the following expression for <B(x)> in terms of the vortex density n(x)

[1 + 4ny(-iv)]C(-iV)

-xﬁvz + [1°+ 8ax(-19)1C(-iv)

B(X)> = n(x) s " ' : (4.176)

If we now introduce the effective single vortex fields

b (X) = —2 deE JEF [+ amy(RIEE) (4.177a)
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~ . ' ¥

(4.177b)

A2k% 4 1+ dny (R)]C(K)

~then the induction field fB(x)> generated by the vortex lattice, given

L]

in Eq. (4.176). may be written as
<B(X)> = ] by (¥- E' , | (4.178)
i

and using the relation

= np - 4nM | | C (4.179)
e obtain + f:n
<H(;)> = <B(x)> - 4w<M(x)>
__4ny(0 | o . > > ,
= TH a0y Yo - A * g hg(x-£5) (4.189)
From Eq. (4.180) we obtain the result that
1 12 | M+ n(0)
A V-Jd3§ §;-h(x)-<ﬂ(x)> = g%-{n¢-4nMo + h(0)} , _ (4.181)
whefe h(0) is given by
A2 (tsn)c(R)
h(0) = no L - (4.182)

%0 K12 + 01+ 4m(®) I 2 (3n)c(R)
where the set {E} denotes the reciprocal lattice vectors of the vortex
lattice. | |

The other contribution to the free energy that arises as a resdit
of the vortex 1attice, is the core energy denoted as Ecore(x)' Thﬁs
term may be rough]y thought of as ar1s1ng from the potential due to the

spatial variations in the magnitude of the order parameter la(x)]
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induced by the vortex lattice. Since |a(x)| must vanish at the vortex
centre, the effect of the spatial variat{on in |a(x)|is to increase the
electron energy 1n the vortex core. Hence this term is referred to as
the core energy. When: the vortices form a 1att1ce we can define the |

- core energy per vortex as,

2. | ,
£(n) = [ ¢ Eggpelx) - w (4.183)
—— Q .
Expressing the core energy Ecore(x) in terms of the magnetic induction
field .<B(x)> and writing the field in the/ith lattice cell Q; as
>/ > it '
<B(x)> = b_(x) +b ""(x) , (4.184)

S

where we have chosen our coordinates such that Zi= 0 and we have defined

b’"t(x) as °

1"t(+) = § b (xE) . | | . (4.185)
jfi J , -

Now since bs(x) is well localized in the neighbourhood of the

vortex and damps exponentia]ly at large distances, one may expand

Ecore(x) as
- S, 3 'int . ‘
Eeorel¥icB] = Egpoliiby1 + (d y Ecore[y b X6 M) 4., (4.186)
with Xe ) _
SE X ;<B> . .
_ _core
core[+ b 3X] = — ¢ A6) D ‘ (4.187)
Now from the definition of the Ecore term together with the highly

localized nature of the vortex induction field bs’ we may abhnbximate

©

Jd3de3y Ecore(x;bs,y)b1nt( ) = £y ‘"t(oj«» R (4.188)
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Thus from Eqs. (4.187) and (4.188), E(n) may be parametrized.in terms

of two parameters%E1 and E2
E(n) = By - E0"(n) . (4.189) °

where we have defined

o {43z .
E Jd core(x b ) .(4.190)
and
b " (n) = T b(E))
J# , , .
fie 1 01+ am (D)1 2 (25m)e () A
= ne + N e }
ko [R1° + c1+4nx<K)1xL24t;n)c(K) S
2 .
d"k
-¢J————§ ‘- (4.191)
(2n)° K e
' ) %3
The contr1but1on to the free energy yom the core energy is thus
iﬁw )
given as =

1 3 > int ,
V—l d”x Ecore(x) =n{E -E,b (n)} -. (4.192)

The ca1cu1at1on of the coeff1c1ents E1 and E2 in any precise fashion
1s extreme]y d1ff1cu1t however the coefficient E1 has been est1mated

using the virial theorem[ ] .and is given by -
o

E, = e 5 . | *’ ' (4.193)
v 32e AL(t;n) '

Thus Eq. (4.192) may be written as

1 4% Q a 1nt
v Jd core(x) 8nx (tsn) {4 N E2 (")} . (4.194)
v L ‘
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- The ‘parameter € therefore characterizes the mu]tipTe vortex
. ©
effects and is determ1ned by the requ1rement that there exists a second

-

d‘ order trans1t1on po1nt to thé norma] state.

The rema1n1ng terms, the condensat1on energy of the superconduct-

a

. 1ng electrons and the free energy of the magnet1c jons may be obta1ned
from the express1ons g1ven in the preced1ng sect1on Thus we arrlve at
_ the fo]]ow1ng express1on for the free energy F (n) for a g1ven vortex .\/

PRIy

dens1ty n-as -

L : , - oo HZ(tsm) :
F.(n) =22 Ing+h(0 )+-_JL_{__- ST ()3 +F [Y3n] - S, (4.195)
S 8'“" 2 _ 5 m - . 87\' -

® LM‘, L . N ‘
‘where
. ’ R . . ‘ . . R
FGan) =1 3(%=0) M2 - Manz g delne+ 7O 1 (4.196)
m N 7T o - 8Nyttt T YT g
and ¥(0) fS'obtained:from Eq. (§.L13X\
&(0) ¥";y(0). -,4n o R e ’(4-.19'7) ,

b

where ;as before,we have neg]ected the paramagnet1c 1nteract1on term o.B.
- Before go1ng on to discuss the determ1nat1on of the magnet1c \
”~propert1es, it is w0rthwh11e to coﬁ§1der how the var1ous quant1t1es
‘appear1ng 1n the express1on for the free energy given by Eg. (4. 195)
are affected by d-f interaction. F1rst of all, the London penetratwon\ _
depth and the condensat1on energy, appear1ng in the th1rd and f1fth ,T
: terms of Eq. (4 195) respect1ve1y, now depend on thq po1ar1zat1on of the
RE magnet1c 1ons 1nduced by the magnet1c f1e1ds generated Ey the vortex
lattice. Second]y, the superconduct1ng currents genereted by. vort1ces
will be. mod1f1ed by the change in the coherence length g1ven by Eq '§§ﬁ‘

"r1(4.100) Such effects were not included in the ana1ys1s of the mi xed

. N

. vme
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state presented in ref [28], where 1t was argued that the effect of k
the d-f 1nteract1on was sma]] and cou]d be 1ncorporated as a emperature
ndependent renorma11zat1on of the various parameters
With the free energy ca]cu]ated as a funct1on of the vortex den-
s1ty, the app11ed f1e1d H may be obta1ned as ‘a funct1on of the vortex

dens1ty from the glpbs free energy G (n )y,
HOREACHES =1L I T (4.198)

\

|
by the thermodynam1c requ1rement that G {n) be m1n1m1zed w1th respect

: to the vortex dens1ty n.. Thus we have that

haGgQ") | " S - | |
. = 0 s i SR ‘ ' : (4.199)
an oy o : S ST
g ‘; - y/‘“ s
which leads to
o oF (n)' '
H(n) _4;_“ Zn' ) v (4.200)
o . ) . t ‘ E \\

- 'The second order transition to normal state occurs whén n =n2 such that

Yy el i 1 +amme N . ‘ Y
Fm‘(Y,H)/.,. 5 {Yo +‘_Ix0+ 4n}M0 7 ZJ{gJuBJB[H + (yo + IX0 + 4n)M0]}, (4.205)

i
PR |
-, . . . !
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Gs.(n» (4.201)
nge = Hep3d MH TR S (4.202)
”Wh?re”HCZ is def1ned by S ‘ : ® ”
I 1%: o .
B S -.
&Js (n ¢ : o | - (4.203)
: = S ,
while @N(H) is the free energy of the normal state given by
Gy = - g7 * FplvsH) - Lo _ »;”€4«?04)
with B - . ! '
B . ) : ‘ AN

o



‘and Md.is obtained from '

_ for

'In this s1tuat1on the observed cr1t1ca1 f1ux densuty e is determined .
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M =‘gJuBJNBJ{gJuBJ8[H+-(Yof-be‘*4ﬂ)Mo]} . - (4.206)

Equations (4’201) and (4 202) serve to determinehboth the critical flux.

density'n together with the parameter 62
If it is the case, as one norma]ly f1nds 1n non magnet1c type Il

Superconductprs, that

6 (n) < GylH()) R O (a07)
n < ng o e - o (4.208)

then the trans1t1on from the m1xed state to the norma] state will be.
second order and‘H 2. g1ven by Eq. (4. 203) w111 correspond to the phys1-

ca11y observed upper cr1t1ca1 field wh1ch we denate by H 2

)

It can happen, as we w111 see 1ater in Spec1f1c 1nstances,
‘ e
that : ‘ .
G (n) = GN(H(n)) | e A | © (4.209)¢
| o | ) _‘ ‘\ ,
for certain n satisfying b 3
. o | - Q . _
.n<ng . : ‘ o , | (4.210)

Nl

|

from Eq, (4.209) rather than Eqs. (4. 201) and (4 202) Then we have

that . o
n 0 V - g\“’f 0&7 . ’ (4 2_‘] )
<N s » v R .
c Cc. N i % -
@ P .
whﬁ]e Qhe observed upper c§1t1ca1 f1e1d H . o2 is ‘given by
G , b . ,
ch H(n ) S v

> ch , - - (4@)\‘7 ‘



*and the trans1t1on is f1rst order being accompan1ed by a Jump in the:
magnet1zat1on s1m11ar to that shown in figure 13. These rather
peculiar effects we w111 discuss in greater deta11 1ater when we

report on the results of var1ous numerical ca]cu1at1ons It should be
emphas1zed that the above change in the order of trans1t1on does not
require any mod1f1cat1on of the present forma]ism what Ws assumed is
that there is a po1nt at wh1ch the second order trans1t1on occurs Th1s

determines the parameter € thenfthe-ﬁheok”f a&gral]y pred1cts the

first order transition if it occurs.
The va1ue of the app11ed f1e1d from wh1ch trans1t1on from the
pure Meissner state to the mixed state occurs may also be determ1ned

from E (4 200) as

-

‘Hgi = H(rn=0) . | 1»\ : | - ' (4.213)

cr1t1ca1 f1e1d Hcf w1L1 be such that

cl <“’Hc'l " ' o (4.214)

FCa1cu1at1ons in the case.of both non- magnet1c and magnet1c superconduc-
tors. indicate that the difference between Hc] and KO el is sma]] and may
.be neg\ected for all pract1ca1 ‘purposes.

In order to app1y the forma11sm summar1zed in the prev1ous sec-’
tions to the ana]ys1s of ErRh4B4 we need to. know the various parameters

characterizing the magnetic system the superconducting system and the

degree of coupling between the’ two,systems, The Curie constant C and
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_est1mated exper1menta11y to be around 4. []32] The value of the f1e1d

'ivalue of 9 N(O) 15 chosen to be around 0.3. The/rat1o I /g may bg“

1mpur1t1es are added to ErRh4B4 In the’measurement on YxEr(] )Rh4B4[HV

it 1s observed ‘that for low concentrat1ons of Y (i.e. x<<1) the 1mpur1—'

v 143

s
1Y

the saturation magnet1zat1on may be obta1ned from the obsérvéd 1att1ce
\l' y f .

. constant together w1th the values of J and whlch ‘may be assumed to
gJ

have the same va1ue asl;he_free Er ion. The values g1ven ih table 1 are

in reasonable agreement with those estimated from the inverse suscepti-.

[131].

b11ity measurements The Curie temperatures for the hard'axis,

'Téc), and the easy a\ns, '(a), may be obtained from an extrapolation of

the inverse suscept1b111ty measurements measured with respect to the

[131J'

hard and easy axes respective1y The condensation energy HCO/8n

'may'be,estimaQEd from the vaiue obtained foriLuRh B4 {H (LuRh4B4)l=

[130]

1.85 KOe} from specific heat meaSurements s1ng the relation that

Telka) Heg (LU)
TAE)  H(Er)

(4.215)

et |

.. This: jie]ds a va1ue‘f0r Er of around 1.4 KG. | The parameter “g | has been ‘

o

{‘” Ta .
norma11zat1on ¢/A may then be. obta1ned from nhe're1at1on HZ* = |

—%— -%—) With the above va1ues, we have e§t1mated xL'-'825 A T

est1mated from the increase in the trans1t1on temperature as non-magneti

ty concentration dependence of the magnet1c trans1t1on temperature is

.bg1ven by

X_’i"’; ' o . : . . -
=T - (s.218)

This can be used together with“Eq. (4.49)‘and'Eqs; (4.121) and (4,129)

to obtain the x dependence of thevsuperconducting transition temperature

X .
TC,
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§J4w£$}u-%ﬂu+i;w?an—U) ]fT(” Ca.217)
c®’ . Zt, t.o drggles T () =0
where Z is given by" ', ‘ | | , .
;2 = 2'+'] ¢(a) (a) ﬂga)(]+a) + E(a)(t_])f | (4‘é18). -
S 'téc) ‘(C) ;gc)(1+a) + E(C)(t 1) o

where the various dimensionless parameters appearing in"Eq. (4.218) are

L

given by
M) 4?F , C 4 =(aorc)
e .
m
2 . ’ -2
S g Dk ¢ S 22
£ Gy GT
m - m
. (1) (10112 - ag. (" ? .
Di(s) = (g+d' (1+a))" - 4di(1+a)c1 : , .<(4.219)
‘and ‘ | | o I ; _
ot L ' : . ‘ ’ ‘ '

where'téa) (téc)) denotes the reduced Curie temperaturé corresponding

to the easy (hard) axis.

The value bf d/dx 10g T (x) may,begestimated‘from‘experiméhf[]]9]~
as '

o leg T (x| =074 BT (4.221)

Thus Eqs (4.217) and (4. 218) may be used to est1mate the va1ue of

I /g once dga) and o are spec1f1ed | ' R o <:\

Thé remaining parameter d(a) may be est1mated from -the co-exis- .

(15]

tence temperature Tp,v since Tp is given by
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AT : | , [t c(a) 172 (. /C(a5 . |
p m ) { DALZ } - Tm 1- 2\*dla5 , (4'2.22)

I o
The va]ue of Tp shown in table 1 %s estimated from the neutron scatter-

'..1ng data on s1ng1e crysta] ErRh4B4 [23,133] The parameters o and df
cannot as yet be obta1ned from any exper1menta1 values and are there- -
fore adjusted ta provide a reasonable-overall fit to the data. If we
rtEhoose o% 5 and dfﬁ 20 then condensation energy Hi(T;h=0) hay be‘com-”
puted, as a function temperature. The results snown in_figure 5 are in
reasonab]e aoreement with recent estimates from the sfnglevcrystal mag-

[122].

netization curves The resultant value of I (= IgJJuBN/AO) is

3.555. This gives (9( =1 aﬂa~—) 1.5x1073 eV somewhat Tower than
J B ' ’

other est1mates[]341. -The experimental parameters ase-summarized in

. \
Ed

table 1.

.Using the above parameters we can now compute the upper and lower
critical fields, by the methods summarized in this seotion ano comoare '
-them with®the stng1e crystal data for ErRh4B4. Qe present the results %
of two separate analyses. In the first analysis, we simp]y apply the
« parameters presented in table 2, and proceed in the manner out11ned .
to compute the cr1t1oa1 f1e1ds. In the second analys1s, we neg]ect
the ‘effect of ‘the scaling and modify ‘the parameters kB~and Ito
-obtai'n good fit to the experir‘nentaﬂytobserved up‘per'an%1ower criti-
~cal fields.

The reason for tne twofseparate-ana1yses is twofold. First of
all, there is good reason to supoose that’introducing the spinrfluctua-

't1ons bygmeans of the effective coup11ng constant descr1bed in sect1on

4 2 probab]y overest1mates their effect, part1cu1ar1y at lTower tempera-

“ture. It is interesting therefore to compare this analysis with one in

-
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- which the effect of the fluctuations is underestiﬁated. Such-a situa-

tion is obviously realized if they are neglected completely. The second

reason is that a comparison of the two numerical analyses helps to

" j1lustrate the role played by the spin fluctuations. -

The numerical results for the upper and lower critical fields
HC2 . 22 and H T (:Hov) 1nc1ud1ng the effects of the spin f]uctuations

are shown in f1gure 15 for the easy axis direction, together with the

‘s1ngle crysta1 measurements on ErRh4B4 [10] The parameters used are

those shown in table 2.. The upper so11d 11ne shows Hc2( HC2 when' the

itransition to the normal state is second order). The dotted 11ne shows

. . . . ' £
the computed sz curve when the transition from the mixed state to the

'normal state is first order. "It shbu]d be noted that the agreement with
the experiment is rather good. Not on1y are the calculated values in

' goqd-égreement with the experimental values but also the temperature at

wh1ch the -transition at H_, changes from second to first order is in o

good agreement w1th the experimenta1 valué of t=0.4. Using the same
parameter the hard axis upper critical fidld{ﬂaz cd}ve is shown in
figure 16 together.with the single crif%yi measurements. The Tower

critical field curve is similar to that obtained for the easy axis.

“The decrease in H_, for low temperatures arises from the decrease in
N i . 3
the condensation energy arising from the localized-spin fluctuations.

Ihe agﬁeement with experiment is reasonably good.

L

The results of the numerical.analyses of the uppek and lower

x
critical fields H_,, H 2 ‘and H ]( H ]) neglecting the effect of the

sp1n fluctuat1ons are shown in figure 17 for the easy axis direction,

lgqgether w1th the corresponding single crystal measurements[ 0] w he

parameters used are those shown in table 3 Again the upper so]1d line
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‘denotes H_, and dotted line ng. The upper critical field in thé case,
of the hard axis is -shown in figuré 18 together with the corresponding
single qrysta] measurements. Again the agfgeﬁent is quite.acceptable.

,A number of importaht coﬁc1usions may be drawn'from these,re§u1ts.
Rirst of all, it would appeér that both the.measured uppef-and lower
critical field curves along both the hard'ahd easy axes may quanfita-
tiveiy be described.USing existihg anélytica1 methods suitably modified
to include the d=f interaction us;ng ajéetvof parameters consistent-with
many othef measuréments. Secondly, it has”Becomé apparent in tHe course
of our_computations that it is difficult solely on the Sasis of the easy
axis upper and lower critical field curves to dfstinguish betﬂeén the
effects of the electron po1arization'and the scattering by the spin
f]ﬁctuatiohs. Indeéd qualitatively similar Curyes can be obtained with
slightly mddffiéd.parameters with or withqutlthé effect of the f1u§tua-
tionslor the polarization. .If however'one ansiders the_hard axis cri-
tical field tufves,with the same sets of parameters, marked differences
appear depending’bn which effects‘ére iné]uded. This is seen 'to some
exteﬁt by cémparing the curves shown‘in figures 15 and-16-with thdse
given in figures 17 and 18. This indicates the crucia1.ra1e of the
single crystal meas&re&ents in the understanding and interpretation of
magnetic propertiés of these.materia1s. | |

In addition to the upper and Tower critical fieldé thefexpression
for the applied field H(n), given in Eq. (4.200), tbgether_wfth our
expressioﬁ‘for'the Gibbs free energy in Eq. (4.198f, allows us to com-
pute the bulk magnetization as a.function 6f'thé apblied external field
H since |

v 4nM-=n¢ - H(n) . | o | (4.223)

[ &7
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The results of several magnet12at1on curves computed for various
values of the reduced temperature t are presented us1ng the parameters
given in tab1e 2, 1nc1udtng thereffect of the spin fluctuations in
figure 19. - Two features are worth'npting with regard to these curves.
?irst of all, the magnetization fof t= 0;4 clearly demonstrates a convex
nature around H_, , simi1ar to that observed in the enperimental magneti-
zation curves[1]] .. Furthermore; as the temperature is lowered the
‘convex_nature of the magnetization»becomes so pronounced that the curve
exhibits a supercooling p8rtion around ng and hence a first order tran-
sition at ch. Thislis'c1ear1yAseen’in the curves.ca1cu1ated for t=0.3
and 0.2. Second]y, the'magnetization curves also show the appearance
at\1ow temperature of a first order transition at'Hc] as the temperature
‘is Towered This becomes quite pronounced below t =.0.15. The appear-
ance of the first order transition at H c1 Mmay be attriputed to two
vreasons, the ‘modification of the vortex-vortex 1nteract1on 1nduced by the -
dipole interaction[?-/"28 116 135]and the temperature and field dependent
change in the superconducting current and the condensation energy aris-
1ng from the scattering by the 1oca11zed sp1n fluctuations.

These results 1nd1cate that the sequence of phase. trans1t1ons

as the temperature is lowered is given by
v v _
type:II2 , —> type 111-2 — type 11, ; — type I,
"where we have defined the type IIi j (i,j=1,2) in the following way
i=1 {j=1) means a first order transition at Hc] (HCZ) and i =E (3=2)
implies a second order transition at H (th).
Regarding the jump_in the magnetization at Hc] , which will be

referred to as aM; ,and illustrated in figure 21, it should -be noted
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that for t 0.15 the calculated jump is relatively gma]]. Given the
difficulties inherent in the measurement of the magnetization curve

around Hc1 arising. from the flux pinning and the fact that the slope of

the magnetization curve around Hc] would be infinite anyway were it not

for tHe pinﬁing, it is quite likely that such a small juhp would be
extremely difficult to'obserVe. | o //

The results of several magnetization”eyrves computed for various
values of the reducedvtemperature using the,parametgrs given in table 3
and neglecting the éffect of the spin fluctuationsMare presented in
figure 20. The behaviour in the v?cinity of ch is seen to be qualita-
tively similar to that obtained‘in'the pfevious analysis. However, the
transition at H., was found to be second order indicating the sequence
;f the~tranéitions as the temperature is Iowe;ed in this .instance is
given by |

type Ilz,é —affype 112,1 — type 1.

'The°jump in‘the'magnetization at H_, whicthi11 be denoted by

AMII may be obtained from the‘mégnetization,curves. The resultant
curves tdgether with some experimental points are. shown in figure 22.

- The 1ower curve (1abe11ed A) is that obta1ned using the parameters of
table 2 including the spin fluctuations, the upper curve is that ob-
tained us1ng the parameters of table 3 neglecting the spin f]uctuat1ons
The points are somewhat lower than those observgd experimentally. é

Several. features are worth not1ng First of all, the appearéhce
~of the first orden,trans1t1on at Hc2 appears to be a direct consequence

of the po]arizatibn of the superconducting electrons induced by the d-f

interaction. This result is consistent with other ca]cu]at1ons[29 30]

which show that the magnetization curve develops a convex curvature

4



afound ch, although no calculations, apart from Fhose presented here,
have consfdered thé temperature domain, where the transition bcomes
type IIi’]. The s;cond point worth noting is thé fact that, while the
scaling effeét induced by the localized spin fluctuations does. not play
a crucia] role in determiding the nature of the transition around ch,
it does together with the d1p01e interaction have important consequences
regarding the nature of the trans1t1on around Het This is ‘clearly
shown by the fact th&t'the jump in the magnetization appearing in
figure 19 dféappears when the scaling éffecf is neglected. In order,
therefore, to draw any precise conclusion regarding the nature'of the
transitibn at'H¢1 R it is necessary to examipe in moré detai] the pair
§reaking effect of the localized spin fluctuations and the long range
structure of the vortex current.

To summarize in this section we have(épp1ied the fdrmafism out
lined in the.preceding section to a detailed analysis of the mfxed s{ate
1n_ErRh4B4. The.analysis takesvinto,aCCOUnf the Zeeman splitting of the
electrons due to the polarization of the magnetic ions and the scatter-
ing of the e1ectrons by the localized spin f]uctuat1ons Both these
effects are a result of the d-f interaction and both serve‘to suppress
the superconductivity. In addition to the d-f intera;tion-the interac-
tion between the m;gnetic ions and the persistent current is contained
within théﬁMaxwel] equation’as well as the calculation of the magnetic
s&sceptibi]ities. The éffect of the anisotropic nature of the spin
dynamics is also taken. into accqunt. |

The nature of the formalism presented in Section 4.2 is such

that these effects are included in an entirely se]f—consisténtﬂfashion.
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The results of our analysis and the compar1son w1th the experi-
mental data allow us to draw a number of rather 1nterest1ng conclusions.
Most ‘importantly, perhaps, we can state that many of the recently ob~-
serred magnetic properties of ErRh4B4 may be adequately described witht e
an existing theoretical framework developed by Matsumoto et a1[28] pro
vided the effect of d-f interaction is included. This includes the
region where the transition. to the normal state is fggst order and the
observed magnetizat1on curve is d1scont1nuous Since the ana1yses of
both the hard and easy axis propert1es were performed using the same
value of kg » the agreement between the results reported here‘and the
experimental data, allows us to conclude that the observed differences
between the hard and easy axes may be attributed to the»observed‘aniso—
tropy of the magnetic interaction between the rare earth ions; This
seems to be supported by expepimental measurements[132].

The results of our analysis also shew that,‘whi1e the scaling
induced threugh the scattering of the e1ectrons by the spin fluctuations

can substant1a11y affect the condensation energy and the detailed nature

of trans1t1on around H el its effect on the qua11tat1ve behav1our of oo

the upper critical field curves and on the magnet1zat1on curve in théaat
neighbourhood of H 2 is neg11glb1e Indeed as is shown when the;
effect is meglected, one may obtaln good quantitative agreement regaid1ng
the 1atter two quantities by a rather minor modification of the param&

. F
ters used. Th1s is somewhat unfortunate s1nce the measurement of the ﬁﬁk

- . .
P A
+ R ¢ ."'-. .

_:conc1u51on5'regard1ng the effect of the spin fluctuat1ons
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conducting properties from the magnetization measurements. A corollary
of this last observation is that the dominant effect arising from the
d-f interaction observed in the existing magn%}1zat10n measurements on
ErRh4B4 arises from the polerizattpn‘of the superconducting electrons
by the Er mements. .

It should be noted thatvthe value of all hut two of the pa{e-
meters used in this anaTysis, o and-df , may be determined experimen-
tally.

To close this d1ecussion we note that, while the resu1tsvof the
analysis reported here suggest that the pair breaking effect of the spin
fTuctuationqns,th easily obtainable from}the magnetization measurements
of Crabtree et a1[10’11],'sueh effects wi%] however have_a strong effect
on the temperature dependence oﬂ the condensat1on energy. This is |
clearly seen from the graph shown in f1gure 5 which dev1ates strong]y
from the BCS resu]t,to the effect of the sp1n f1uctuat1ons Estlmates
of the cdndensat1on energy have been made from the hard and ea;y axis -

) ~ magnetization curves[12 ] and seem to be consistent with the resu]ts p :
- presented‘aere ' o - ﬁx : n
Another measurement wherein the spin f1uctuat10ns play an impor-

: i?i&t -role is in the determ1nat1on of the surface 1mpedance Recent \

g;measurements have been made of the surface 1mpedance of po1ycrysta111ne :

B Rh4B4,[T36] and an ana1ys1s using the parameters and assumption pre-
. sented in this chapter is given in Append1x D together w1th a comparison’

‘with the data. The agreement is seen to be surpr1s1ng1y good.

=



CHAPTER 5
— _.CONCLUSIONS

The conceptdof spontanepus1y hroken’symmetry underlies many of
\ the recent theoret1ca1 developments in- modern condensed matter physics.
aIt prov1des a un1f1ed conceptua1 framework ﬁpr ‘a number of wide and ‘
| d1verse‘areas of many-body theory. Magnet1sm and superconductqv1ty,both
Mof wh1ch have been cons1dered at length in this thesis, prov1de two »
f'examples what one very qu1ck1y comes to rea11ze in the study of ) P
phys1ca1 systems which man1fest the phenomena of. spontaneous]y broken_
‘symmetry is that ‘if one wishes to descr1be such systems by means of, a
© well- -defined and systemat1c scheme of approx1mat1on, then such a scheme
,umust be. cons1stent with the various symmetry requ1rement§/wh1ch under]y
the broken Symmetry state. '“ft A o R ) <§>
In th1s regard ‘the f1e1d theoret1ca1 formalism. is we11 suited to
the often subtle and. comp]ex facets of condensed states// Ihe dua1
1anguage of the He1senberg f1e1ds and the phys1ca1 f1e1ds,,the Green 3
funct1on techn1que together w1th the Feynman d1agram rea11zat1on of per-
turbat1on theory and devrces~such as the spectra1 representat1on, all
prov1de powerful if not essent1a1 too1s in ana]ys1s of spontaneous1y
.broken symmetry Thus while much of the work presented in this thes1s
may be cons1dered to be of a rather forma] nature, the mot1vat1on is to:
try and account for certain emp1r1caﬂ aspects of condensed states in
many body systems |
Perhaps the most novel app11cat1on of the f1e1d theoret1ca1 tech-

niques in the work presented in this thesis was the use of the TFD forma-

1ism to construct a Tow temperature expansion for various experimentally

]53 | o . V | ‘_ "o EE



- ‘ ' - 184

N

access1b1e quant1t1%s in itinerant e1ectron ferromagnets presented in

Section‘2 2. Here we were able, not on]y to obtain exp11c1t express1ons

o

for the correct1ons arising from the therma] exc1tat1on ‘of the g

‘tary quanta, but also demonstrate how the requ1rements of t'ggf:fiﬁ
rotat1ona1 1nvar1ance, as rea11zed in the W-T 1deﬁt1t1es, a]fbw us to
determ1ne 1n an explicit and mode1 1ndependent fash1on deta1]ed 1nfor~
mation regard1ng the 1ow temperature propert1es of these systems In
this way we were ab]e to show how the emp1r1ca11y well estab11shed B1och

5/2

3/2 Taw for the magnet1zat1on together w1th the T dependence of the

, quas1 part1c1e spectrum ar1s1ng from the magnon exc1tat1ons were to
" \k‘jl .
be regarded as. str1ct requ1rements of ‘the sp1n rotational invariance.

These rather genera1 cons1derat1ons were comp1emented by the
approx1mate ca]cu]at1on of thé magnet1zat1on, presented in Appendwx B,
'where the approx1mat1on was - J;term1ned in such a way as to be cons1stent

w1th the r1gorous requirements of the w T identities. Th1snwans therefore

ethat desp1te the approx1mat7 nature of the ca]cu]at1on 1t does neverthe]ess

3/2)

_man1fest the correct leading therma1 correct1on (1 e. T ) arising from .

'the therma11y exc1ted magnons This suggests that the, approx1mat1onscheme
‘ out11ned in Append1x B proy1des a usefu] start1ng po1nt flor a_more rea]1s-
tic treatment of the iti erant e]ectron model of ferromagnet1sm.

‘ Wh11e the cons1derat1ons of Sect1on 2.2 concerned themselves w1th
,Jthe part1cu1ar case of. spontaneous1y‘broken spin Symmetry 1n 1t1nerant

electron systems, the method is of.a suff1c1ent1y general character SO

2

as to be able to compute not on]y the 1ead1ng magnon corrections to a
large number of observab1e quant1t1es, but a]so may be app11ed to consi- '

der ana]ggous situations in. other types of condensed states The reason for..

Vv

th1s 11es in the fact that ‘all the essent1a1 features of the ana]ys1s

‘: N . " . .?'.
g ". ) .

[

&,;‘ Lo

d
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presented inySection 2. 2' sych as the appearance qf the Go]dS@ﬂhe\mode-
and the manner in wh1ch it couples to various operator quant1t1esﬁ/have
their analogue in other ordered states s1nce such features are a g@nera1
property of spontaneous1y broken symmetry One would expect therefore\
the low temperature expans1on, together with the w T 1dent1t1es, to be
app11cab1e in areas such as triplet superf1u1d1ty, triplet 2uperconduc-

"o

’ tivity and phonon dynam1cs in crysta]s, since all are ordered states

S -
<

kcharacter1zed by ‘the appearance of an order parameter and all of which
man1fest an observab]e gap]ess co11ect1ve excitation (the Goldstone mode).
Th1s prov1des us, W1th an obv1ous extens1on of this work

Wh11e the 1mportant role p]ayed by the W-T relat1ons in the 9\
’ana1ys1s of the ferromagnet1c state is perhaps not surpr1s1ng, their
‘papp11cat1on to the: analysis of the paramagnet1c domain of ferromagnet1c
(and near]y ferromagnet1c) itinerant spin systems presented in Section
2. 3 is rather surpr1s1ng In the pa?amagnet1c domain one wou]d suppose
that the requ1rements of spﬁn rotat1ona1 1nvar1ance and the correspond-'
ing N T 1dent1t1es wou]d be sat1sf1ed 1n a very tr1v1atﬁgense and hence
be of Tittle computat1ona1 value. Th1s however is not in fact the case.
~In Sect1on 2.3, you w1H recaH, we we;‘e ab1e to exp]o1t the sﬁ rota-— *
tional 1nvar1ance 1n a non ~trivial. fash1on by cons1der1ng the respOnse h
of the system to a small symmetry break1ng term , Th1s, we found was
due to the fact t#at the response of the system 1s severely contro11ed
by .the requ1remeqés of the, sp1n rotational 1nvar1ance and the correspond-
f1ng W-T identities. .Indeed it was shown how an exact express1on for. the |
Tow momentum 11m7t of the e]ectron paramagnon vertex cou1d be obta1ned |
in terms of the i nduced magnet1zat1on together w1th the sp11tt1ng of

the eTectron se]f-energy. This a110wed us -to obtain an exact express1on

¢
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. ) . B .
for the static susceptibility. This result is of more than formal in-
| ‘ ' . : .

terest and may be regarded in one of two ways. In the first instance it .

- may be taken asfa consistency requirement for the Tow momentum limit in

any approx1mate calculation of the e]ectron paramagnon vertex F in

~ order to ensure that the static 1ong wave]ength Timit of the transverse

suscept1b111ty is consistent with the response of the: 1nduced magnet1-

zation M to the "applied field" h. Thus 2
1im x(q) = lim S _ (5.1)
q>0 0 |

. ‘as required by the spin rotational invariance. .In the second instance

itgmay be regarded as a simp1e means whereby the vertex T and hence the

stat1c susceptibility, may be calcu]ated in terms of the electron self-

o

energy It was this 1atter aspect conta1ned w1th1n the W-T re]at1ons

~'with which we concerned ourse]ves in the rema1nder of Section 2 3 What -

8

we found was that we were ab1e to obtain, in the case of the local
‘- .

5contact 1nteract1on mode], an exact express1on for the correct1ons to

RPA suscept1b111ty .arising. from the sp1n fluctuat1ons ent1re1y in terms

. of the paramagnon contr1but1ons to the electron self-energy. W1th1n the

context of th1s result an exp11c1t express1on for the leading order
correct1on to the stat1c suscept1b111ty ar1s1ng from the sp1n f]uctua- :
tions was obtained and it was shown how the resuTts of prev1ous work , by

other. authors, cou]d be recovered and hence to what extent the requ1re-

o i

ment of the spin rotat1ona1 invariance were sat1sf1ed In part1cu1ar

N

Wwe were able to g1ve a rather systemat1c explanat;on of the so- ca]]ed

o
SCR- method of Mor1ya and Kawabata, 1n terms of yQE'1owest order para-

I
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- As we emphas1zed in the d1scuss1on in;Section 2.1, if the itin- |
erant e]ectron modfﬁ s to account for the f1n1te temperature propert1es
of ferromagnet1c me'als, then it is essent1a1 that correct1ons ar151ng
from ‘the Sp1rfl::;y%t1ons be included. At the present ‘time the SCR
,techn{que proy one of the few methods whereby such effects may be
1nc1uded and” 1t has had con51derab1e success in acCount1ng for a wide
range of the'ob;erved propertles in weak 1t1nerant e]ectron systems{]37]
. The discussion of the SCR method within the context of the formalism
presented in Sect1on 2.3 is 1mpprtant in that 1t 1nd1cates~to what ex-
tent the SCR procedure is cons1stent w1th the requ1rements of sp1n
rotational 1nvar1ance vw1th1n 5q{

however, the result ofASect1on‘f’3 shows qu1te clearly the basic assump-

c?i .
_ t1ons and approx1mat1ons under1y1ng the SCR procedure. It should be

hﬁ_paramagnet1c region. More than this

poss1b1e therefore to- construct other renorma11zat1on schemes for the self-
cons1stent ‘treatment of the spin f]uctuat1ons whxch a11ow us to go

B beyond the SCR procedure One 1mportant extens1on of the work presented»
3 .

in Sect%on 2.3, together with the cons1derat1ons of Section 2.2, would
be the deve1opment of a renorma11zat1on prescr1pt1on wh1ch a]lowed us a“ *

to 1nc1ude the effects of the sp1n Fluctuat1ons in both the ferromag-

e iw

. netic and paramagnet1c domains in an ent1re1y cons1stent fash1on, both

in the case of an applied f1eld (1nduced symmetry break1ng) and in the

A

~case of zero field (Spontaneous symmetry breaklng when T < T ). Such a
un1f1ed treatment would have app11cat1on in many aspects of .itinerant
e1ectron ferromagne;;sm |

The phenomena)of superconduct1v1ty in meta]s also f1nds.1ts ex- -
p]anat1on w1th1n the framework of spontaneousiy . broken symmetry In

: the case of superconduct1v1ty 1t is the ‘phase symmetry of the electrons

cod
o
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which is spontanéous]y broken. Wh11e there ex1st many close: ana1og1es
:between the superconduct1ng statp and the ferromagnet1c state, in 1t1n- |
erant electron systems, there exist many 1mportant d1fferences between
the two In the first p1ace the phase symmetry is an abelian symmetry,
whereas the spin symmetry represents a non-abelian symmetry Th1s

means , ° *for example, that the ferromagnetic state offers a far rlcher
var1ety of singular topo1og1ca1 structures than does the superconduct1ng
state where all topologica] singu]arit1es may be regarded as superposi-
tions of the basic line or vortex s1ngu1ar1ty[ ] ,di'scussed in Chapter 4.
" The second ma1n d1fference, from a theoret1ga1 po1nt of view, between
the superconduct1ng state and the ferromagnet1c state in-itinerant e1ec-
tron systems is the pecu11ar role p1ayed by the gauge’ degree of freedom
1n thegsuperconduct1ng state. The most . 1mportant manifestation of th1s
is the fact that the Go]dstone fields are not observab]e as gapless par-
“ticle 11ke exc1tat1ons, this may be understood in terms of the Anderson-

Kibble- _Higgs mechamsm[‘38 139,140,141]

It is this rather subtle rela-
_ t1onsh1p between the broken phase symmetry and the requ1rements of gauge
1nvar1ance wh1ch g1ve rise to many of the propert1es pecu11ar to the

(73 -

superconduct1ng state Indeed it may be argued that desp1te the

somewhat s1mp1e abe11an nature of the phase symmetry, the superconduct-

ing state representsnthe most puzz]1ng of a11 the ordered states in

condensed matter physics, the poss1b1e,exceptnon being perhaps the super- .

‘f1u1d state. ' N |
The recent d1scovery, therefore, of the magnet1c superconductors,

‘ such as. the Chevrel and the ReRh4B4 compounds wh1ch exh1b1t both a

;ferromagnet1c as we11 as a superconduct1ng nature,- prov1de us with what

must be among one ‘of the most. exotic of phys1ca1 systems It is there-

o
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vfore'hardly surprising that such'materia1s exhibit a wide range of
pecu11ar properties; the co-existence phase together ‘with the modulated
“¥%pin order1ng, the re-entrant phenomena and the f1rst order transition -

E‘;ewtovthe norma] state at H 2 ,-ara%ﬁﬁsmp1es of properties pecu11ar to

“g%th;se mater1als~j A ' '

;“;'ﬁ“ | G1vgﬁ-the rath€? comp1ex nature of these compounds it is perhaps
rather surprising that many of their propert1es may be understood in a
qua1itative sense at least, solely through the electromagnet1c inter-
act1on between the persistent current and the magnet1c moment of the

[142] Th1s approach’is based on the assumptuon that the

_rare earth ions
effect of the d-f 1nteract1on may‘be incorporated through'a temperature
| 1ndependent renorma11zat1on of the phys1ca1 parameters ‘This rather
simple approximation is 1nadequate however when one wishes*to make a -
more detailed quant1tat1ve compar1son between theory and experiment.
This is part1cu1ar1y true in the 11ght of the recent magnet1zat1on mea-

surements on sing]e\prysta1 ErRh‘,’Bl,f.UO 111 There exists therefore, a

‘c1ear need for a uni fied treatment of ferromagnetic supérconductors
which hncludes, in a un1f1ed and consistent fash1on, the det interaction
as we11 as the electromagnet1c 1nteract1on - Thus wh11e the presentat1on
of such a forma11sm 1n Sect1on 4.2 may be cons1dered to be of a rathgr
formal nature, the mot1vat1on for such a- deta11ed treatment of the mutua1
1nteract1ons betueen the rare earth moments and the superconduct1ng
electrons is nevertheless, 1arge1y emp1r1ca1 1n or1gtn

Desp1te the apparent coﬁplexxty of the der1vat1on presented in '{1'w},u

Sect1on 4.2 the resultant forma11sm is re]attu&ry Stra1ghtforward The

_ express1on for the free- energy g1ven 1n Eq. (’pg?), for examp1e, is

forma11y equ1va1ent to that obta1ned in the ear11er work[ ;], a1though

iama . .
P+ ¢
. v{‘&.\ . :5‘ . g
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the more detailed treatme?t of the effects of the d-f interaction means
that the 1nd1v1dua1 terms appear1ng in the free ergy are of a somewhat
‘comp1e; nature. The calculation of the various quantities appear1ng in
the expression:for the free energy is not quite so complicated.
~as one might expect and is contained entire]y in the calculation of the
spin sp11tt1ng parameter u, which may be thought of as the spat1a1 aver-
age of the mean f1e1d exber1enced by the electrons due to the polariza-
‘t1on of the rare earth ions, together w1th the scale factor s(t;h))
wh1ch arises from the temperature and field dependent renorma11zat1on
of the BCS' coupling constant ar1s1ng from the scatter1ng of the super-
conduct1ng electrons by the f]uctuat1ons in the 1oca11zed spins. ’The
‘definition and evaluation of these quantdties is contained in Section 4.2.

The definition of the spin spiitting term u together with the
scale factor s allows us to express the effect of the d-f interaction
on the various superconducting quantities such as the superconducting
gap, the coherence length, the field dependent condensation energy and |
the London penetration depth, through the scaling of a set of two para-
meter functions. A‘summary ef the results was presented in Eqs. (4.146),
(4.147) and (4.148) together with the definitions contained in Eas.
(4L149) to (4.162). °

The fonnallsm deve]oped in Section 4.2 was app11ed to the analy-
s1s of the Meissner state of ErRh4B4 in Sect1on 4.2 and to the mixed
state in ErRh4B4 In the ana1ys1s of the Me1ssner state it was shown‘
how the(:}ndensat1on energy and the superconduct1ng gap are strong]y
‘affected by the scattering of the electrons by the localized sp1n

f1uctuat1ons In the case of the London penetrat1on depth the effect E ,

was not so pronounced until the temperature was very close to Tp(= TCZ).

K
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The results are shown in figures 4, 5 and 6.
The results of the condensation energy are in good agreement with -

the unpublished estimates obtained from the magnetization curves of sin-

: Ny .
[122] While the London penetration depth is not-a

gle crystal ErRh4B4
quant1ty which is d1rect1y observed from experiment an analysis of the
effective penetrat1on depth A may be defined 1n terms of certa1n exper- -~
imentally accessible quantities such as the” change in the resonant fre-
quency of a cavity. An analysis of the effectfve penetratieh depth X
for the case of ErRh4B4 together withlseme recent experimental measure-
ments on polycrysta11{ne samples is presented in Appendix D. At high
temperatures (T< T ) the: effect1ve penetrat1on depth and the London

penetration depth may be shown to be-related by means of a s1mp1e sca]e
1/2

v

factor [1-+4x(T] The values obtained in this region are in reason-
able agreement with the results obtained in Chapter 4. At lower tem-
peratures however.there ie no straightforward re]ationshipfbetween the
effective penetration'depthland the London penetration dﬁpth due to the
critical spin fluctuations assdciated with the appearance of ﬁhe surface
~magnetization sate at T_. | | |
The application of the formalism presented:injsection 4.2 to the

analysis of the magnetic properties of the m{xedbstate is relatively
: straightforwardt Frem'the eipression of'the,free energy given by Eq.
(4.91) one computes the Gibbs free energy for a given vortex density-
n and a given externa1 ‘field H. The ninimizaefon of the Gibbs free

energy with respect to the vortex dens1ty, for a g1ven external field H

vy1e1ds the equilibrium flux density n for a given app11ed field, wh1ch,

we denote by H(n ). The details of this procedure were presented in 3.

Section 4.3.
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Now from a knowledge of the applied field H(n) and the equili-
brium value of the Gibbs free energy we can obtain.a number of important

- results. ﬁ%r example the lower critical fie]d»HC1 is given by H(nc1),

where'nC1 is determinedlfrom the condition

G (neq gy )) = 6(03HInG))
where Gs(n;H) denotes the Gibbs free energy ca1cu1atedlin the super-
conducting state for flux density n and app1ied field H.. Two situations
can arise; 'nc]-'O in wh1ch case the trans1t1on from the Meissner state
to the mixed state is second order and n 1 #0 in wh;ch case the. trans1-
tion is first order. Usually the difference between- H(n c1) and H(n—Q)
is negligible. | |
The\aha]ysis of the lower critical field was pe%formed_fof both
the ﬁard and'easy axes 1n,ErRh4B4, both with and without the efﬁect c')f’:w
the spin fluctuations. The results obtained were found to be in reasonable
agreemeﬁt with the dbser&édvva1ues. Little qualitative difference was
found betweee the hard- and easy axes. or between the resu]ts with and
‘the results without the effect of the sp1n f1uctuat1ons Thevonly
" result worthy of note was the fact that the ana]ys1s 1nc1uding tﬁe spin
f]uctuat1ons exh1b1ted a small. f1rst order trans1t1on at H cl at low tem-
peratures whereas the ana]ys1s wezhout the rpair break1ng effect of the
f]uctuat1ons djd not. Th1s may be attributed to the suppress1on of the
’ spin f]uctuations aS'fhe vorfex_density increases and the consequent ,
decrease in the>pair breaking effect due to the f1uctuae;ons. -Thus we
see that the effect of the spin fluctuations enhances the effect of the
e1ectromagnet1c interaction to 1nduce a. first order trans1t1on at H cl

at lower temperatures[27 ,28,116,135]
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As the flux density 1ﬁcfeases the corresponding increase in the
“induced polarization of the rare earth magnetic moments, means that the
differences hetween the hard and easy axes become\hore épparent. This
is clearly seen when one compares the results of the upper critical
fie]d shown fn figurés 15 and.17 for the easy axis with’thoserf the
Hard axis shown in'figures 16 and 18. In‘the case of thé easy axis, the
upper critical curve has a peak value of around 2.2 at t (= T/Tc)= 0.7K
while the hard axis‘cufves afe qualitatively similar to Lhose/observed
" in the non-magnetic case, with a peak value just above Ip of/grqupd
‘8-10‘KG§ although it should be noted that the pair breaking effect of
thé spin fluctuations does 1hdic§te a s]ightﬂreductfgﬁ in H02 before
Tp. "while thé rather marked différence between the ﬁpper critical field
is%accounted for some extent by the indu?edkmagnetization (Hc2= ncz—,4wM)
and the effec£ of the électromagnetic interaction, the sharp reduction
in the upper critical field be]ow fz 0.7, is due*Taiﬁ]y to the reduct{on
in theiﬁritical flux density‘ncz‘resu1ting from the pair breaking effect
of the Zeeman splitting of the electron spin§\arisfng from the d-f inter-
éction. | ‘

While tﬁe fesu]ts for the upper and lower critical fie]d,présen-‘
ted in Section 4.3, are in reasonably good agreement with the expefimen-
"tal-résults for single crystal ErRh4B4, it could be argued that the
effects of the d-f interaction are essentially quantitative; One couid
still claim, therefore,.éhat the observed propertiesvof ErRh4B4 may be
understood qualitatively,at least, so]é]y on the basis of the electro-
magnetic interaction. -

Such a viewpoint becomes difficult to sustain when we turn our

attention to the effect of the d-f interaction on the easy axis



164

magnet1zat1on curves and the nature of the trans1t1on to the normal
-state at H_,. In fi ures 19 and 20 the calculated easy axis magnetiza-
tion curves exh1b1t z distinctly convex nature around ch Indeed we
find that as the temperature is lowered the convex nature of the magne-
t1zat1on curve becomes SO pronounced that the magnet1zat1on curve
exhibits a supercooling port1on at 1ow temperatures. This 1mp11es that
the magnet1zat1on curve exhibits a jump at H 2 and hence the transition
to the .normal state at Heo 1s~f1rst order. . This is in accordance with
the experimental results on single crysta] ErRh484;[]]]

A number of comments are perhaps appropriate in‘regard to the
ahove results. The first s that it is 1mportant to appreciate that
the app11cat1on of the forma11sm presented in Section 4. 2 to the ana]y—
.‘s1s of the m1xed state a11ows one to. treat the ent1re temperature domain
above Tp, 1nc1ud1ng the reg1on in wh1ch the transut1on at H 2 is first
‘order, in an entirely consistent manner. The first order“trans1t1on at
H 2 and the consequent jump in the magnet1zat1on were seen to emerge
from the ca]cu]at1ons outlined in Section 4.3 in a very natural way and
were not in any sense "put in by hand". The second comment is that the
-results of this ana]ys1s allow.us to conclude that desp1te the rela-
t1ve1y weak natwre of the d- f interact1on its effect on the magnet1za-
tion measured with respect to the easy axis in ErRh4B4 is. qu1te dramatic
-and gives rise to the observed first order transition to the norma]
state at H 2" '

The success of the. formulation presented in Sect1on 4.2 in des-
cribing many of the observed quantities in the recent measurements on
ErRh4B4, suggests that_it,doesucontain the essentia]zaspects of magnetic

superconductors such’as the RERh4B4 compounds. It is woﬁihwhi]e to
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'consider therefore extensions of this formulation to other materials,
such as the antiferromagnetic superconductons and other geometries onh~ ,’9
as thin films. While most of the data presently available in these |
situations is on polycrystalline samples there is a good chance that
_single crystal samples will become'avai1ab1e in the near future. It v
would be interesting, therefore, to see to what extent'the analysis pre-
sented in_Chepter 4 would be applicable. n

In the magnetic superconducting compounds, such as ErRh484 and «
the other ternary compounds, the physwca] description is that of a
'1att1ce of rare earth ions 1mmersed in a sea of conduction e1ectrons
The atomic-like character of the core electrons associated with the rare
eanth jons thus allows us to treat the system as an array of
localized magnetic moments interacting weakly, in the case of the ter-
nary superconductors at least, W1th the conduct1on e]ectrons through the
various exchange 1nteract1ons and the electromagnetic 1nteract1on
Recent 1nvest1gat1ons have uncovered a number of other metal]wc a11oys
whose physical propert1es appear to involve an 1nterp]ey between the -
.magnetism and superconductors, but for Whicn such a tidy sepakation,

|
into conduction electron and 1oca11zed moment, is no 1onger appropriate.

One example’of such a mater1a1 is the b1nary alloy Y4Co3[]43 ,144]

(or Y,C ; this shows a trans1t1on to a magnetically ordered state at

9 7)
around»6—85K and'a'transitton to the superconducting state at around
2-3°K. Thus we see that the order of the transition is reversed from
that observed in the rare earth‘ternary compounds ErRh4B4 and HoM0658.
Another d1fference arises .from the fact that the magnetic properties of
> the. Y4Co3 seem to suggest that it is a weak itinerant ferromagnet[145]

If this is in fact the case then it is the conduction electrons which
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produce both the superconducting order as well as the magnetic order.
In add1tion to this it would appear:ghat the effect,a: the spin fluctua- °
-

e Qﬁg tions is 1mportant and the measured magnetization is qualitatively v

[145]

similar to that predicted by the SCR theory It would seem there-

. fore that the work on 1t1nerant electron systems presented in Chapter 3
£

could be profitably combined with the work on magnetic superconductors
to investigate such materials. oy ' )

Yet sanother puzzling class of compounds are the so-called heavy

’ - 146
fermions systems such as the ternary compound CeCu,Ci [146] and the

272

binary compound UBe13[]47], both of which exhibit a number of interest-
ing and unusual features at low temperature Both for example are v
character1zed by an ghoma]ous]y 1arge specific heat, 1nd1cat1ng the

presence of, 1tinerant eTectnOns with an effect1ve mass about three
"« orders of magn1tude greater than that of a free e]ectron : Furthermore
both mater1als becoMe superconduct1ng as the’ temperature is lowered at

. 0.65° K in the case of the CeCu2812 and 0.85°K in the case of the UBe]3

The: experhmenta1 ev1dence accumulated soﬂfar ;nd1cates that the large
,spec1f1c heat ahd the appearance of the superconduct1v1ty is due to the ?V
presence of an’unf111ed F‘she]] wh1ch Ties JUSt below the fermi energy
Th1s may a1sowaccount for. the andmalous nature of the res1st1v1ty and

the 1nver§e magnet1c suscept1b111ty observed at h1gher temperatures As
yet noasu1tab1e theory ‘exists wh1ch can account, for these peculiar and _
.exot1c mater1als' 11 13 ' |

And w1th these en1gmat1c compounds in our minds.and the prom1se {};y

that the subt1e 1nterp1ay of magnet1sm and superconduct1v1ty is by no .

_means a closed_book, we draw this discussion to a close.



Table 1.

Ay
\

cl

T = 0.7°K

c2
(a) -1 no
Tm .—"I.O K

oorleds 20,00k
me

T = 0.8
I
H_ =

T, =8.7°K

e
u

| f~_1_
T

- 1.4 K6

- state in s1ng1e crysta1 ErRh4B4

97

¢

( \

Var1ous exper1menta1 data used in the analys1s of the m1xed

See Sect1on 4.3,

-t

= 15/2

JS/S'

'
s

0.184°K

_ '4ngJuBJN,

dT (x)

Cle

~dx

= 10.11 Koe

: = 10. n o

167



: Tdble 2. D1mens1on1ess parameters used in the ana]ys1s of the m1xed

state presented 1n Sect1on 4 3, 1nc1ud1ng the effect of the

spin f]qctuat1ons.,

©). ) s
tn = Tg /T =2.300
b, =TT = 0092

P

’ Y 3

Cta) @) e e ire

a2, () ,o -

.

g,N(0) = 0.3

)=

v

0. 452x10

-2
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s

D1mension1ess parameters used 1n the ana]ys1s of the m1xed

Table 3.
state presented in Sect1on 4.3, not 1nc1ﬂdﬁng the effect of
© the sp1n fluctuations s‘—lJ '
w - "ﬁ;{. : |
(a) T(a)/T -0 J5 g N(0) = 0.3
(c) T(c)/T - 230 d=( D)= 0.452% 1072
S T T . ‘
o u' E . . ‘mk[._o
et = ~=0.092 = 7.5 .
SRS tp .Tp/ch 0 0 & V.J 7.5 R

(@) @) L as .
Cceanemtlo2 2 <=3

) o s ‘ N
. Ig . N = ] R R i
I‘ = .-__J_A_B— = 4.285 ¢ . ) ! .
- o o ‘ v.fJ'.b . |
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Table‘4Q Dimensionless parameters used in the ca1cu1at1dn of the

effective coupling constant shown in figure 3 together w1t§
/
) corresponding sgale factor " The quant1t1es df d are

ab

'chosen so as to emphas1ze ‘the effect of the f]uctuat1ons

(a) (a) a1 v e rlal)
tn = Tm ‘/TC 0.115 df"dpkf/Tm =1.0
(c) _(e)r - ) L
tm_:-Tm‘;/Tc--zsoo o w=20
. _ e - : ' 2 =’ .
A L 1,

2. 41rC/T {2 312




Table 5.

Calculated values of the-ébndensatiOn énengy Hc(t;h)/H

“N n

AN

2 .
co for

various values of h(=H/¢Ai) and t(=T/TC);“~The‘ﬁarameters‘used

_ -are those giVen in tabTe"Z.‘

h t=0.2 t=0.4 =06
0.00 0.523616 | - 0.466289 | 0.269145 |
16.01 0.523638 | 0.466290 0.269145 |
0.02 | . 0.523702 0.466295 < | = 0.269147
0.03 0.523805 | - 0.466303 0.269149
0.04 | 0.523940 ' ,0.4663]3' 0.26015. @8 -
0.05 "‘.524Q§7 | wo.ae3r 0;265155
0.06 6520261, ” ‘pi§§%§4gwl‘ ' 0.269160
0.07 | o.}2441o | '.\ofdégiséﬁ%‘ 0.269165 | -
0.08 0.524512 0466377 A 0:263170 # ¢
0.09 0.524519 . |  0.466395 . g'o.éébig%ffff;h"‘ 4
0.0 | 0.524365 |  0.466414 " o.aesfee | *e




Fig. 1.

ey

' 0 s
Lowest order electron self-energy. corrections arising,

traverse and 1ohgitu§jna1.spinffluctuatidns; < See Eqs4

and,(3.170b).  (Spurce Ref. 67)
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Contour or ththompléx integral contained in the expression

153)

b e P :34‘;; 45°
?ﬂr ¢ (x,y).- See Eq.

- (4.156).

(Séurce Ref.
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W

Fig; 3. The temperature dépendent‘coup]ing constant g(f;h)/g(1;0) and
the ;orrespondfng scale factor s(t;h), ca]cu]ated using the

parameters shown ‘in table 4.
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Fig. 4.

Lo

Temperature dependence of the superhonducting gap including
the effect of the spin fluctuations (solid curve) and the BCS
result for comparison (dotted curve).. The parameters used are

those given in table 2. (Source.Ref. 153)
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st

Temperature dependence of the condensat1on energy 1nc1ud1ng the bl

)

Fig. 5.
effect of the spin fluctuations (so11d curve) and the BCSoresu}t
' The parameters used are those-\r

-7

' (dotted curve) for ;omparison.'

given in table 2.° (Source Ref. 153)
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Temperature d'ébeq‘c»ience”of the -‘Lon'd.on penetration depth including

. vthé effecpof.the Spi‘h fluctuations (solid curve) ahd thQ’BCS” ‘

~

result (dotted curve) for comparisor. The parameters used are

<&

“those given in table 2. (S‘.o;u.rée'Re'.f. 153)
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Fig. 7. Temperature dependence of the gap for various values of the
re@g&éd'ihfernai field h (= H/¢XL§). Thefparametersﬂuséd are
- . _ T SN ; S
those given in table 2. (Source Ref. 153) .. .
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Fié. 8. -Temperature dependenCe Of th'e"ﬁ'e1d dependent condehsation
energy for vargus values of the’ reduced internal field h z
. s\
(H'/¢>‘Lo)v' The parameters used are ‘those given in tab]e 2
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Fig. 9.

-l

%

Temperature dependence of the London penetration

various values 3f the reduced internal fielg\h

The parameters used are those given in table 2.

Ref. 153)

.—2,.
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Fig. 10. Field depehdeﬁge of the superconducting gap for various values
of the reduced‘iemperature. The parameters used are those

given in table 2. (Source Ref. 153)
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Fig. 11. Field dependence'of the London penetration depth for various
values of the reduced temperature. The parameters used are

those given in table 2. (Source Ref. 153)
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Fig. 12. F1e1d dependence of the London penetrat1on depth for various |
‘values of the reduced temperature - The parameters used are

those»grven in tab1e 2. (Source: Ref. 153) o
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Fig. 13. Schematic illustration of the magkne;tiz-ati'on curye in the
neighbourhood of H_, For a type 11,y superconductor.’
(Source Ref. 154) R
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Fig. 14. Schematic illustration of the magnétizationfCurVe in the

;neighbourhood;of‘HC1 for.a type’Ilj'1'superconductor.
(Source Ref. 154) B R
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: Fig. 15. The easy axis upper and lower cr1t1ca1 fields H 2 aea“H cl
ca]cu]ated u51ng the parameters g1ven in tab]e 2 nc]ud1ng
the effect of the spin f1uctuat1ons The dotted port1on )
represents cht A]so shown are the exper1menta1 measurements

RIUN

after Crabtree et al. (Source Ref. 154)
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Fig.

16.

The hard axis upper critical fie]d‘ch calcutated using the
parameters given in table 2'inc1uding the effect of %he spin

fluctuations. Also shown are the experimental measurements

after Crabtree et al.[10]. (Source Ref. 154)

-~
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Fig.

17.

+

The easy axis uﬁper and lower critical fields H.p and H
calculated using'the‘parameters given in table 3 neglecting
the effect of the spin fluctuations (iﬂe. s'=1). The dotted
pdrtion represents ng. Also shown aré\the'experimenFa1

. [0l

measurements after Crabtree et a Source Ref. 154)
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Fig.

18.

’
\

o
The hard axis upper critical field ch caleulated using the

parameters given in table 3 neglecting the effect of the spin

fluctuation (i.e. s =1). Also shown are the experimental

“results after Crabtree et a].[10] (Source Ref. 154)
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Fig.

19.

- Easy axis magnetization curves for various'valueS'Qf the
reduced temperature calculated using the parameters given in

'tablevziincluding thé_effect-of tﬁe spin f]uctuafiohs.

(Source Ref. 154)
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Lo

Fig. ZQ ' Easy axis magnet1zat1on curves for various values of the reduced
) :
temperature ca1CU1ated us1ng the oarameters g1ven 1n tabTe 3

' neg]ect1ng the effecteof the spin f]uctuat1ons.,_ ource Ref T54)
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HE Y

. Fig. 21. The_.j,urhb in the »magn"etizat'ionv at Hys AMI, calculated from h
the. curves _:similar" to those shown in figure 19. (Source
Ref. 154) |
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Fig.»22. The ijp'in:the magnetization at HCZ’ AMIi' The 1pwer curve
'(1abe]1ed‘A),is calculated from the parémeters given in table 2
‘:minc1udihg,the effect of the spin f1uttuéfions. _The:upbér‘curVe
| (1abe11ed Bj is.cé]cu1a£ed,from ihe paramete}s given in'ta51e 3

neglecting the effect of'the spin fluctuations. - (Source Ref.
. Ry /
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Fig. 23. The contour C employed. in the‘péth ordering method, describeg_,
in Appendix, to generate the real time finite temperature

Green's functions.
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-

Fig. 24. Diagrammatic cohtributions to the vertices F¢M and F¢M used

to obtain the expressions given in Egs. (B.3a) and (B.3b).
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Fig. 25. Geometry near the surface for calculation of surface impedance

in Appendix D.
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Fig.. 26.

"are;fhe samefas‘for‘thev§o11d Tine.)

Penetratioh depthlk(w) for;ErRhaB4. The circ]ee are experimen-

tal values (w=9.3 GHz): T_=8.7°K). The solid line is the

E theoret1ca1 curve (T =1.0° K 4WC/T =2.3, A‘(O) =908 A,

L

~d, = 0. 2529 x 1072, S/ =86.4, = Y 0) _The dashed line is.

1

for the BCS theory {x L(O) =1184 A)- The dot- dashed 11ne is

“for the. stat1c non- 1oca1 theory in refs [150]5and [149]

(xp =4, d, =0.4254" x 1072 ) L(O) =749 A. Other parameters

44
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" Fig. 27.

is the.theoketicai,curves’({T:;;;?°K, 4wC/Tm*=2-3, ao =120, e
4 =0 and for (a), y=0.5, §/NTUT=52.2, X (0) =868 A and for

(b)), ¥ =0, 6/3(0) =59.1, X (0) =767 A)." The dashed line is

4 The circ]és'are

éxperimenta]»&a]ues (w=9.3 GHz, TC =Z.35?K)Q, The solid line

Penetration depth A(w).fOf ErO.SH?O.SRhAB

for the BCS theory (X (0) =1186 A).
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\ o APPENDIX A
ThewPath Order1ng Method

\

[

~In th1s section we w1sh to briefly d1scuss the f1n1te temperature
, e
'vGreens function method us1ng the path order1ng techanue presented by

M11]s[35 361 and its re1atlon to the TFD formalism fo110w1ng Matsumoto

(82,431

et a The reason for 1nc1ud1ng this short d1gress1on 1s that

while the path ordering. method rea]]y on]y prov1des us with-: a formu]a—
t1oﬁ for the perturbat1on theory 1n terms of Feynman d1agnmw for the
rea] t1me f1n1te temperature Greens funct1ons as’. opposed to the.compiete

finite temperature field theoret1c formu]at1on prov1ded us by thermo-

d

' f1e1d‘dynam1cs,1t does serve to highlight the re1at1on between the

. more famiTiariMatsdbara method and~TFD It also prov1des aS‘I sha]l
'demonstrate a somewhat d1fferent ra1son d etre for the t11de degrees of
freedom ‘than that prov1ded in the d1scuss1on of sect1on 2.1.

We beg1n by cons1der1ng the two po1nt GAB def1ned by

’ ;EAB(xty) = Tr{e’BHA(x)B(y)}/Tr{e' }o o "(A,l)'

o
Y

" .1nsertingia complete setfof energy eigenstates we note that
RS |3 € SN +ig)’ a
Gpg(x-y) = Z e ™ "<n|A X3 x,=0) hn>“
nmo ;
-E (X _.y ) . BH v 1Y
e ™00 (7 Yo -0) |n>/Tr{ .

e

(A.z)“ :
. . . gy;h
From this we see that the Greens funct1on*GAB may be ana]yt1ca11y con-

tinued to.1mag1nary times" prov1ded

\

B <0 K X

in which case the summation will converge exponentially. since the
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)

e1genva1ues {E ) are pos1t1ve def1n1te This allows us to define a

somewhat more genera1 quant1ty than that g1ven by Eo (A 1) 'If we

r' ‘l . N
5

- def1ne a contour C runnlng fron t, to t - 1B, then we can def1ne with
respect to this contour C, the funct1on o T
I o ‘ ' . _
AB( X 3252 ) = Tr{e BH T [A X3 z)B(x 3z )]}/Tr{e } »  (A.4)

where T denotes that the operators appear1ng in the product are - ordered
'accord1ng to the1r pos1t1on along the contour C From dond1t1on Eq. (A.3)
- we .see.that GAB is we11 defined prov1ded the contour C has a monot1ca11y
‘decreasing"imag1nary part. Obv1ous1y the def1n1t1on of the path order-

~ing product def1ned for the two po1nt funct1on can be genera}1sed to
jcons1der other mu1t1 po1nt funct1ons, we w111 however restr1ct the ' v /u
‘ d1scuss1on to the two. po1nt function of Eq (A 4) .

As with. the eva]uat1on of the t1me ordered operators‘products 1n
thermof1e1d dynamlcs the\computat1on of Eq. (A.4) may: be best ach1eved by

means of the 1nteract1on representat1on ‘Separating the Hamiltonian

;Jihtﬁta free part H, and an interact1ng part the H; e
CHEH M, . (A.5)

we'may define the operators in the interaction representation with

Lo R K /
. complex.times as "

S - iHOz | -1H z : ‘ ,
L vsz) me o w(x;0)e . ey - (A.6)

as -

bxs2) = U(Oszh, (Rs2)U(z30)
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where U(z3z') is given by :
) ' <
. iH z : 1 : v : .
U(z;z') = e 9 efjﬂ(z_z )e'1HZ - - (A.8)
‘This may be computed perturbative]yv¥or points z and z' on ‘the contour
e e - e ‘ - - 0
.C as
T
z. e o
U(z32') = l£dz Sfdz T, [H(zy)- . Hi(Z,)]
n X :
- z o . :
Srleesi Ml (A9)

_ , _ . %o " S -
where_Hi(z) simpiy‘denotes°HI[¢I(z);wI( )] and ? means the integral is )
along the path C in. the complex plane. Def1n1ng ‘the..single: part1c1e
‘Greens function in the path ordering formalism as ;- |

| 6 (% *;- - BH +l T o .-BH i
x-x'32,2') = Tr{ T [w(x z)v ’(x,z;)]}/Tr{e_ b (A.10)
: -86 (B+1t (8+1t ) . ot s '
: = Trfe %% w(x;z)w'(?';z')e1THe 1TH0}
/Tr{e BH} Lo (A1)
| , . :
for Im(z-2') < 0. Eq. (A.7) together with Eq. (A.8) allowd us to write
- Eq. (A.11) as. X
. / e »A -
C/> >, ‘ -BHO . ‘ - . ‘\
G (x-x"32,2") =Tr{e &-U(tb-ie;z wI(x;z)U(z;z')" :
w(x 5z )U(z 5t : (A.12)
t i ‘, é?‘ o w_‘.'-f ' -BH_O _BH _‘l I .
=g’ST@@éﬁki(x;2)¢I 'z )]> [TP{ jrefe™ 1 (R13)

e LB . : :
AT o
Where 3 o ’

| ‘ ‘te . C :
S. = T lexp-i # Hi(z)dz] S s (A4



. and
| - -eH -BH o
<0> = Tr{e °ol/trie  °} o (A.15)

1

The perturbative expression of Eq.‘(A;13) may be expressed in terms of

wy'

the Feynman diagrams by means of the finite temperature Wick's theorem.
| 2p | et " ‘A K -

. - >

LI A2 (o)™ T A (2 A (200 T

(A16)

where the operators {Ai(zi)} dénotekthe~f1e1ds wi(z) and thefr canonical
conjugates w+(i)., By Virtue of Eq. (A.16) and the eXpression for SC
given in Eq. (A 14) the path ordered Greens functions of Eq. (A. 10)
. *h fmay be compute\ perturbat1ve1y in. terms of a sum of products of E
% " the propagator <T . [wI( ) )]> The assoc1at1on of the various ; \%
& contr1but10ns to the 1nd1v1dua1 terms 1n the perturbat1on series is
~then stra1ghtforward and Feynman ru]es s1m1]ar to those obta1ned at
~ zero temperature may be def1ned | "
Now wh11e 1t is the case that the Feynman ru]es for the path.
ordered Green's function Eq. (A. 10) are 1dent1ca1 to those generated by
the zero temperature theory the resu1tant 1ntegrals involve the path
h ordered propagator <T [wI( )y ( )]> , the particular form of which
depends on the cho1ce of contour If‘for example we'choose z to be
pure 1mag1nary and def1ne C as a contour running from 0 to —18 then |
we generate the Matsubara Greens function and 1t is fairly straight- ‘ »
forward to show that the perturbat1on scheme reduces to the fam111ar

1mag1nary t1me method ‘A more useful contour for our purposes 15 that

~ shown in F1g. (23), where the port1ons C] and C3 have an infinitesi-



™y

’ma]]y decreas1no 1mag1nary part, since 1f we. 1et z and z be]ong to the

_ portion of- the contour C] then the path ordered products, wh1ch we have

‘ denoted by T [ .], reduce to tine ordered products, T[...]. Further-

more one f1nds if the quant1t1es tA and tB are taken to - and | +

respectively, then the contr1but1on arising from these pos1t1ons, to the

pathﬁbrdered Greens funct1on of 'Eq. (A. ]0) will factor out and can’ be
absorbed by the norma11sat1on We see then that the f1e1ds appear1ng

in Eq. (A 13) are of two types,those 1y1ng on the portion of the contour
C] wI( ) and wI( ) and those lying on the port1on of the contour C3

wI(t-18/23 and w;(t-ie/Z). The resulting Feynman.rules may then be

' neatly summarised-in‘terms ofAthe'four component ‘propagator.

R R R N
tsib(x x) = <TC[{ b ,~} i e —ie/z)}]> . (A7)
. R wI(x"t-jjB/& | | SR

I

' Ca]cu]at1on shows that th1s pr@pagator is exact]y that obtained in '

‘thermof1e1d dynamlcs and that the Feynman rules obta1ned f om the path -

~ordering method of M11ls emp]oy1ng the contour shown in F1g (23) are

n.«

equ1va1ent to those obta1ned in the TFD formalism. Indeed he equqvaﬁa'
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"1ence of the two theor1es may be made exp11c1t through the 1d nt1f1cat1on

>

_ - . X
T ost) — wix't); o ](x‘t)+‘—+ o xst) (A.18)
and ‘ ' ,
2ty e blxst - 1872)s v t) T — T +ig/2) “(A.19)

It is a somewhat surprising fact that the-fiers ¢] andw2
chosen s0 as to commute (antf—commute). This is by‘no means obvious
from the path ordering method where w(1) and w(Z) denote the same fields
on separate parts of the contonr. ‘

,Ln‘addition to clarifying the relationship between the Matsubara

may be-



»

forma11sm and thermof1e1d dynamics ‘the work. of Matsumoto et al, on which

- -

ﬁn the path order1ng method may be used to construct other finite
temperature quantum field theor1es of which TFD is a spec1a1 case, the
J'resu]tant Ham11ton1an density except in the case of TFD is not Herm1t1an
in the usual sense and.reqUires the introduet1on of a metr1c operator.
This somewhat unfquevpkoberty of the TFD forma]ism explains the rather
stra1ghtf0rward structura1 equivalence. of TFD w1th conventional~zero

_ temperature fle]d theory and hence why so many dev1ces of conventional
field theory may be extended to f1n1te temperature/1n a rather obvious

‘way by means of TfD.
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this d1scuss1on is based, a]so shows that while other cho1ces of contour
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APPENDIX B
Thermal Excitation of Magnons. at Low Temperature: An\Examp1e

I ) 3
b .

& IN Section 3.2 welpresented a rather‘formal argument regarding N

-T 1dent1t1es generated by the spin rotational invariance and their

ole in determ1n1ng the effect of the thermally exc1ted magnOns From

tefperature ‘expansion in thermo—f1e1d dynamics. In this appendix we

the thermal excitation of the magnons. The purpose of this is two fold,

first of all it serves to demonstrate“the computational value of the low

\

temperature expansion, andfsecond1y it provides the basis for what could

be an extremely useful approximationfscheme for the analysis of spin

fluctuation effects in metals. The T5/2

contribution is’cajcu]ated
explicitly, | |
~Following the outline in Sectioh (3.2) the zero temperature
quantities we requ1re are the zero temperature electron propagator,
which we calculate in the mean fiéld (MF) approx1mat1on, and the
electron-magnon vertex. From the results presented in Section (3.2)
we know that if we wish our express1on Eg have the correct T3/2
behav1our, then we require that the electron magnon vertex must be

calculated in such a way that it satisfies Eq. (3.105) in the case of

the spin up e]ectrons and Eq. (3.106) in the case of the spin down.

Th1s in effect determ1nes our approximation in the ca]cu]at1on of the
electron magnon vertex.

In order to keep the discussion relatively simple we consider

L
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the case of the 1oca1 c0ntact 1nteract1on model, expressed by the
Lagrangian g1ven in Eqs. (3.9a, 3.9b and 3. 15b) : A]thouqh we point

out that the- approach is by no means 11m1ted to such a s1mp1e'Lagrangian.
The zero temperature e1ectron Green's funct1ons, calculated in the IiF.

‘approximation are given by

U ele(p) -2l el-e(p) +Ay/2]
6y(P) Ny T T2 T8 T By - e(p) FAMVZ TS (8.12)
ole(p) +a /2] - 8l-e(p) -AM /2]

and  G2(p) = C(Bb)

Py -e(p) -ka/Z +16» pOA-e(p) - M /2 -8
Where MO denotes the zero temperature magnetisation calculated self

consistently from the expression

' _ i 4 169(p) - ¢° %
R [e'otedte - &S} - (8.2)

The spin_yp electron magnon vertex, defined in Eq. (3.96), is given by

—41'—[1-'?+[.1(p,q;q ,ptq-q') = 2Gi’(p+q) .
(2m) 4 ;
- %0 -2, da - ta -0 TR (asa)
T 2 . A o
+ X'D,(a-q*)[1 -A“D,(q -4 )D, (@-9")] Ry(asa’) - (B.3a)

~and the spin down electron magnon vertex, defined in Eq. (3.98), is

" given by
i
(2m)

2
— P (passpa-at) = A63(p - a)

- %0 -x20+<qf‘q'>o¢<q -1 'R, (a"5q")

¥ A4D fla-9)0 —XZD +(d ~q\')D+(q'-q')]R+(q;5@v : | (B.3b)

where
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i (.

D,(q) =‘(2ﬂ)4 d*p 62(p - a/2)63(p ra/2) | | - | (B.4a)

,(a) = (2;)4 [a*o 62p - ar2)8, (p +a/2) ; (B.eb)

R, (ay39,) = (2-1)4 (4% 6%(p - )62 (p)63(P-q,) ,' “\.4c)
and

R,(ay39,) = 72_:;)7. (%, 60 (p +q])§2(p)63(p +q,) . o "(B.4d‘)

The exbressions for the e]ecfron magnon vertices given by‘Eqé. (B.3a
“and.B 3b) are shown diagramatically in Fig. (24);

The e1ectron magnon vertices,: g1ven above are determ1ned in ‘such ~
| a'Wéy that they satisfy the W-T re]at1ons given in Eqs. (3.105 and 3. 106)

This is relatively straightforward to show, in the case of T, we have

>

that . i Q.
z;i;z7f4M(P’°?°;p) = 2262(p)
=301 220, (000, ()T R, (p30) - 30, (IR, (050)}. - (8.5)

The terms Rf(OEQ) and R, (0;0) are easily calculated.

Ry(050) (21)4 [¢* 63163 (p1601P) |
L | . |
1 o |
,_Xﬂ; 62“)4 [d E}Gi(p)LGi(P) TG¢(P)] 4

= 0,0 4// L, i [a*pred(p) - 65(p)]

! 4
XHO o

N
=- o (0

(B.6)

& (p)62(p) = - i 189(p) - C2p)} )
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: S
which' follows from the definition of Gi(+) given in Eq. (B.la)

(Eq. (B.1b)). A similar result for R+(O;O) gives

) = L b (o) -
0 A HO

Substituting Eq. (B.8) and Eq. (3.6) into the result of Eq. (B.5) we

obtain

i (p0305p) = A2S3(R) + L (8.9)
(2% L ]

By an entirely analogous argumEntﬂwe obtain
2

62(p) - - - (8.90)

i (0:0:0:0) =
—T FH4(pa0s0,P) - >\ ”0

2m '
.Usihg the result given by Eq. (5.7) together with Eq. (B.9a) we

obtain, after some perfect1y’straightforward algebra

J&Gi(p) (21)4 r,y(P3030,p)6L(p) = - ig'{eﬁtp) - 63(p)}- (8.10a)
Tr .

while Eq. (B.7) together with Eq. (B.9b) yields the corresponding result

for the spin down electron magnon vertex.
0 i n.a. 30 \ A _ 0 , : |
~G*(p)WT r(p30305p)GS(p) = 7 {Gx(p) - G(p)} - - (8.10b)

Thus confirming that‘the choice of vertice§ given by Egs. (B.3a and
B.%b) do in fact satisfy the W-T identities given in Egs. (3.105 and
3.106), thus assuming that the thermal corrections to the magnetisation
will have the correct T3/2 contribution. Thus we find that the require-
- ments of spin rotational 1nvariance as expresséd through the w-Tv '
identifies severly restricts the possib]e'approximations which mayﬂbe

utilised in the calculation of the e]ettron magnqnfvertex.
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Now from Eqs. (3.90 and 3.91) together with Egs. (3.97 and 3.99)
<-
we obtain the following expressions for the (a=1; B =1) component of

the finite temperature electron propagators, Gie and G%B as

. 3> .
~d7a i . - >
+(P) f (2m)3 (Z;SE'Ffm(p,q;q;p)Zggqij?(wg(q))

6o(p) + ... | | | “(B.11a)

: (p) = G2(p) +G

-5

qO=QB(q)

+

and
3 CL ’ N
6,1 (p) = G(p) +62(p) J—d—% T 3050525 () Flug Q)
| (2m)? (2m* e

62(p) + ... s | " N (B.11b)

"where we have'neglected the thermal excitation of the quasi electrons
in order to simplify our analysT?s.

- Now ‘from Eq. (B.11a) and Eq. (B.3a) we.have that

nT(T) = - 1 i ? d'p G

s
n,(T=0) -2 [958 23 @) g

oy 8 )

oV

R, (q:q) - AD(0)R, (g3q) ' )
[ R4lasa) - 20400 : oY o) =t (120)
0

0 1-2%, (00D,

o | : . (B.12a)

and from Eq._(B.]]b) and Eq. (B.3b) we have that

R 4 11
n(T) = - — §+ d*p G
¥ (2w)4 ¥

(p)

n
>
P
P
—f
I
o .
o
' 1
-
o
\—'_\
~~

Roels
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| { R,(q;q) - D, (0)R,(asq) } an,
. o w0

2
1-2 D¢(O)D+(0) .

r oL | B . (B.12b)

»

The fast terms appearing in Eq. (B.12a) and Eq. (B.12b) represents ghe
shift in the éhemica1 potential and 1s determined by the requiremen&.‘
thgf the total number density n(= ny(T) + n,(T)) remain inﬁependentvgf_
témperature. |

To obtafn the low temperature behaviour we expand thé term jn the:

curly brackets in powers of momenta, we therefore define

| WA e

qO—wB Q) p

Pw(q;q), S, R‘i” + R£2)|3|2 + ... )B.]Bb)
qosz(q) h : “

- Zg(a)= ?'10 + Z|(32) lalz + ‘ . ‘e;

and ' .

' , wg = D|E|2 oo | ‘ (B.13¢)

Where D is generally referred to as the spin wave stiffness. We thus

obtain,

20 2 g 0r()) (o |
M, Ry -ADL(0)Ry ) {(3}3/2 [3} 5-3/2

(T) = n,(T=0) - >
" M ~em® 1%, 00, (0) [P "2
(@) _,p (o1l 72(2) |
R{Z) _xp, (0)R z 5/2 an .
p - T ADLLOIR, B | 3 5) ,-5/2 4o .
1R 0 (0)RT1)‘+ Mo‘} i C{E}B FeepriulT) g (190)
* LA ; - (B.14a)
bt A ‘ | / I -
B and\\\\‘ 2

X‘MO R§1) fXD¢(O)Ri‘)' '[EJ3/2(§} 6—3/2\

n (T) = 0, (T=0) - |
v - (21)3 1 -x20+(0)0¢(0) D. -2
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(2) (2) ,(2) »

(R -AD, (O)R 7 5/2 .

) ¥ 4 B 3 : 5/2 . )

+ NN (1).+ M I ar [D] ’5[2]8 + } + 5u(T) - (T=0)
R, " -AD,(0)R} o —

| . (B.14b)

It remains thereftre to calculate the coefficientsggbpearing in
the expansion 1in Eqs (B.13a, B.13b and B.13c). While this is perfectly
stra1ghtf0rward 1t is nevertheless somewhat tedious. However a number

- of simplifications may be realised if wg define

t ’ .
EZF:LI i'—z—, ' ’ . (815)

where Ho is the zero temperature chemical potential. Then by means of

the relations ‘ : : I
0 . ‘ o ' :
62(p) = - G2(p)G(P) (8.16a)
aeF
= 69(p) = -63(p) Gy(p) - : . (B.16b)
BEF : , ' . .
and

3 a0y o
3€+ G‘L(p) - ] _ G+(p) =0 3
F °F

we obtain the following result for R+(q;q)

+

R, (a;q) = - - 0(q)
9€ '
» Fy
and similarly for R¢(q;q),

R, (a5q) = -~ D(q) -
aeF

where D(q) is given by

SRR S PSR- PR
D(q) ol fd p G, (p-a/2)6, (p+a/2) .




Equations (B.16a and B.16b) also allow us to write

9 +

D.(0) = == n(eg)
A ae; F o
and A
D,(0) = == nfey)
’ aeF
where
n(e;) = —(2; 7 §+ d4p‘G$(p2
and
n(eg) = - (2;)4 §+.d4p Gg(p)
low
+? 4 ‘d'?'-> + -+
A A - [ SRy oref )]
(2m) (2m)
and ]
g 6t &) = [ el e,
(2m) (2m) _
where we have defined & = e‘+uﬂ? T%ﬁs A
- L4
>,
D,(0) = f»?‘;—ﬁ‘)%a[e; &)
_ +
= N(EF)
—and
; 3 )
0,(0) * | -(‘;—““))‘g s(eq -E(D))
= Nlep),

| where N(e) denotes the density of states at energy «.

The expression for D(q) may be computed, in a Tow momentum
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(B.19a)

(B.19b)

(B.?Oa)

(B.

20b)

.21a)

.21b)

ekpansioni by means of the finite momentum\generaljsation of Eq. {B.?).

Fat
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/
O -qr2) - prasa) = ef - _q -2(B-3r2) +E(F+3/2)
2(p-a/2) " - Gylpra ep gt TE(P-a/2) Y c
='ef-€r-a.t G Fe@® . ~ (B.23)
S . ‘ r S ‘ ‘
(P Q/Z)G (p\Q/Z) —;—-—]——" {Gg(p»-q/?) - G?(p+q/2)}. .
) D F EF qO o - o
q- _V* e(p) :
- (p q/z)e (p-a/2)
. E:-F-EF q : .
+..‘ - . .
. =,"" + L - L'G(,:;kp-.q/Z) - Gi(’p +:q/2)] |
R o \ T
CUgevED)
St {G+( -a/2) - G (ptq/Z)} .
N (EF"EF'QO) : /
(G - %2 ()] i~
A @h-aah i) .ﬁ
(e - g - 95) b ,

Thus we 'navé_ to order I—cﬂ_z that.
: i

g e o
— |d G - /2)—G(+/2)
(Z’rr)4j pG.(p ‘q G,(p+q/2) ‘

1 (4o |
= - ‘ d"p{6} (p q/2) 60 (p+a/2)}
e;f_el_:-q (ZTr)4 J { ) ,
+ — o Jd pld-v »E(p)]{ (p-vq/é) - G?(p‘*q/Z)}
(e €p €F q )2 27r : P . ' L
ST T O SO B e \
TET fatoli -7 311 20p - 216 (o +/2)
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4
. + -
Sp— {n(ef) - n(ep)]
EF_ E:F 'f‘qo I J : .
cadals J 9B 22 (3)1feles - I
E:F - EF - qo ' (ZTT) p ‘0,0 '
2 3-> h’,’_’v" ol o .
» Al [ £os e - 7:l0))
(EF “Ef _qO) (2")1' - p
. E + .; L : \; 'N. . . : . ‘ o ) .
oleh -2 - elep-e®I w0{lalty . (8.25)
.- o .
thug;if we define the following band parameters
a(c) - [ LB (v leleE -2  (eea)
o en? T -4 y
and S . , R
- + (. d3+ R RO ~. O > . ‘ ‘
b(ep) = .—T-Eg-[V*E(P) - V,E(p) Jolep - e(p)] ~ (B.26b)
B TR I S S
@ . ’-,\; ' o . N
together with thejir derivatives.
R T SR R v
Alep) = a/(eF)' S . ‘ P
, e _ |
8B remyreret 2 ‘ ,
= | =B [Vpé(p)ldteg—‘é(p)] a0 v (B.27a)
(em)” 3 S T
~and /
{‘ A
B(ep) = b (ep)
[ EEB ) et 2B, (B
b (ZTT) p . p ' ’ ' / e
S ; 7 J | )
then we obtain the following expression for D,R+ and R¢
: . n(fEF.) - n(eF) a(eF) - (EF) oo 2 ) o s
Re 0(q) = —F————- 5 -7 519 o
(ep-ep=ap)” (ep=eg - 8"
.’ ‘% £ ‘r'
J * 3 *
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bler) -blep) 5 ® SLAl o
T3 lg|™ + oo o N - (B.28)
(EF EF-qO) , : ﬁ ‘ o
) w?
- Re Ry (a30) =-—% D(q)
_ SeF
n(EF) - ‘n(EE) N(s;) ¢
= ~ 2 -7 - L3
(EF*EF'qo) FfF % ‘
2(aleq) -alep)) Alef) & a2 T
- ~ - : — q .
(6; EF —q0)3 (eg‘_EF 'qo)z"
R . \
3(b(€F) _b(eF ) B(EF) N 2) ~ 7
e = 8 |
AT -q,) (ef —éF -q,)
£ o - - : o (8.29a)
ahd i R T |
Re R, (a:q) =- —— D(q)
ae >
F :
° n(ep) -nlep) . N(eﬁ‘ ,
== + . ~
: | (,QF'E,;“’*“S‘)Z (ep ¢ -9,) @R
" 2(a(eh) ~alep))  Alep) s
+ ¥ - A Z 5 191 o
| = (EF-EF-qO) ’ (EF'f' E_F'qo) | .
'/ . '3(b(€;) -b(ep))  Blep) Vo
| T - 4 + - 3 la| - L -
" - Xep - ep-ay) ,(EF - e =) N~ .
|

o !
& e (B.29D)

If we/now consider the quantities R, and R on shell, that is for
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L:A

4, =wg(a) and expanding QB(E) in low momentum as given by Eq. (B.13c),

we éan;éxpand;Eqs. (B.29a and B.29b) and thus obtain an expressjon‘for

I

the coefficients défined by thekexpansion in Egs.

We thus obtain the following results,.
+ -\ + :
Con(eg) -n(ep) - N(eg) o
QAR S AS A 2 » .  '(B.30a)
* ’(€+ - € )2 ef -¢ '
“F " °F FEF
A .nlep) -n{eg) N(eg) :
RO R P (B.30b)
Y (e+ -€ )2 er-¢
: F™SF F ' '
P
© RS = N(EF) 2 —
(ep-eg) °F "F
e e
2  laleg) -aleg)) .
+ A{e.) -3 — —,
(er —e-)3 . F er - ¢l
FoeF) , CFTSF
o , ]
, _ A Cble.) -bleg)
3 + F
o > - B(ep) - 4 E — (B.30c)
€F - €F - € " EF
'3\\and , _ TR
(2) 0. e n(eF) -n(sF) e
NTE? Mep) - 2=~
°F T EF/ SFTEF a
. . . + . -. 5 E
| - caleg) -aleg) ,
- "’+2—'t—‘3‘ Aleg) -3 F+ - - .
F L _
' . b (eg) -blep) o
+ ——7 B(ep) - & & - 3 (B.30d)
(€+_€)4 ¢ R M -
FreF - FEF .
 Now, sfnce'e;‘and €p are determined in such a way that ‘ﬁjhhﬁg 7f;;->7
' i 3 . | o .

(8.13a and B.13b).
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“ “f‘ A4 LY
| »
/ + - . [
; € ~€p = AMO
’ﬂ/ ] ) + _ . » . | . . B
= A{n(eF) —n(eF)}, , © . (B.31)

then the coefficients Ril) and R£1) simpl1fy somewhat to give

* . (-]) : 1 . N(EF)

. R N ' - (8.32a)

“ 0 ,

N .

and ] |

i ’ . N(E ) . : o |
‘ (1. ._ 3 F
Ry 2y A . _ (B. 32b)
0o >

| which of courée is simb]y the result given by Egs. (B.6 and B.8)

together with E@§}§ (B.22a and B.22b).
: we thyg f1nd as expected that the terms in the low temperature

expans1on s1mp11fy somewhat From Eq. (B.32a) and Eq. (B.32b) we

e

obtaln that

R(]) DT(O)RE])V

. ) " 2 ; = 2 ‘ L » L v (8.338.)
, ?,1 - XD (0)D,(0)  AM |
and D B e
| Ri])'XD¢(O)R§]) ~ 1 n
5 — - (B.33b)

. Hencevthe expansjon’given by Egs."(B.14a and B.145)tsimp1ify somewhat

- to give A | | ,
()2 nlep) - — -{[ﬂ]a/z [3] -3/2 '{AZMc(R«(kZ)'“’“6?”&2)) )
) - L -
ny 5 nlep (2$)3 t D 2 _ 1 - AZN(EF)N(eF) UO
\5/2 oy | ‘ L
E e e e ECEO

and
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o o ' (2) _yyem1r(2)y 0 7(2)
| o . J " 3/2 3 -3/2 A M (R, _—)\N(EF)R* ) Iy
(1) = nleg) ) l[D] ‘5[2] ° { 1 - 2NLer (R (e " |
; . . - o
_(Z_;y {I‘D_] g(%} 8—‘5/2 + .}r + su(Min(eg) - (B.34b)

. J L EE N

“From' the results contained in Egs. (B.34a and B.34b) we obtain,

from the condition that

a, (T) + n,(T) Z nlef) + nep) . C o (8.39)
the 5esu1t‘that | :
' ‘ xzﬂ" 1 R qomenn) +rP (- *))}
su(T) = , RY2) (1= R4 (e
H N(ep) +M(ep) 1-2° N(e IN(ep) (zw)3,ﬁ * o v F
5/2 , o " |
L

©

We note that this expression does not contain any 8—3/2vcontr1but10n,

as expected in the 1ight of the discussion in Section (3.2). The

¢

o e .
resultant expression for the magnetisation 1s therefore given by

7

| 3/2 B 5/2 -5/2
_ 2 -3/2 1 3 8
N 1212 » N(e ) -N(ex) o
{ 8 1->\2N(€;)N(e;-) { ! { - N(EF) +N(eg) { EF }}
H(ep) - H(ep) oo -
. Riz){1 b F }{1 -AN(e;)} }} L " (8.37)

N(e )+|H€F)

g From the result conta1ned in Eq. (B 37) we obtain the B1OCN§§§g2

term in tne magnet1sat10n, exp11c1t1v This of course is due to the fact

that our approx1mat1on for the e%ectron magnon vertex was chosen in

g

D s
4 .
) N

A .3‘;

s &



256

cuch.a fashion that the W-T identities Egs. (3.105 and 3.106) were
satisfied. The ana]ysis presénted in this section serves thefefore to
demonstrate in an‘explicit manner'ﬁithin the context of a pafticu]af
'modé] the afgumééiggegarding the ro]e of symmetry in determing the
_tembeﬁfture debéndénée‘of varipus physical quantities such as the
magnetiéation.' It-also serves, perhaps » as a useful basis for the

analysis of magnon effects in metals.



o/

/

/ Co
{u\} ' A APPEND‘C :
_ The Electron Self Energy

In this appendix we discuss the derivation of thg electron self
\ : 4

energy given by Eq. .(4.37). The derivétjon is in terms of the TFD
formalism outlined in Chapter (2.1). From Eq. (4.8) we obtain the
equat{ﬁqifor the thermal doublet field o%, Eq. (2.29),

{i%t-_ - e(iV)ty +8,Ty + wogldt = T{H* - o} 3o - ug (B - <B>ege™.  (C.1)

From Eq. (C.])'we obtain the following expression'fof the electron pro-

pagator'<BAT{¢a(X)¢B(y)+}|B>

{1%E - e(-1)14 + BTy +‘uc3}<6|T{¢é(X)¢B(y)+}|3>

= 1685 (x-y) + Tos<| T{(MS(x) - <Mi(x)>)¢“(x)¢8(y)+}le> . (C.2)

where we have neg]ecfed the_contribution from the B field. In the

lowest ordér of pefturbation we have that \

STl - M (x>0 e -

24

n'xjd4z<elT{zﬁa(z>wa(z)*3w<z>a‘(m}((x) - (0206 (06P ) THE
- . . :

o

tfatz 5 <alTUR G - 2t () () - <tz e
a

b4

<lT{(xe (M poy<el Tl ()P e, (c.3)

where we have used the relation L ='¢Zowc. €§

If we now define the momeéntum Green's functions as

&

@It 118 = — [d' & POV o (c.a)
: ) 2 (2m) ' : »

and

257
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N - i 4, -ik(x-y) o8
<B| T{(MI(x) = <M. (x)> y(MB(y) - <M. (¥)>)}]8> = i [d k e Xi3()
. 1 1 J J » (2“)

. ~(C.5)
With pex = peX - pot,» then Eq. (C.2) together with Eg. (C.3) yields
o < 2 | . ‘

-1, yaB _ > _ i1 4 oB OB (h_K)g. .

5 () = (9~ (B * 84S0 = 75 0 feez x5 t00,5* p-k)es

o (CJC)‘

Now using the definitions of the spectral functions provided in

v

Egs. (4.38 and 4.41) we have that

SGB(D),= J 5(v§3)UF(pO){pO -u +16T}']U;(p0)' , ' (C.7)i
and ' . '
B0 = Joy fukTug Ky el - 167} MU k) | (c.8)

Then we obtain from Eq. (0}6) together with the definition of the self

energy given by

51 ()% = (py - €(B) o1, +103)8 (), NS

g

the following result for %P (p).

.2 : '
28 (p) = -1 Jd“k X35 (k)05 (p-k)o,
(2n) ] o -
- [d*% 6B U (0 Dp, -k +ieeT T U} (c.10den
with _ ‘ N
2 ' "Bk
- I 3 - o> e + 1
p(ksp) = [d k de~dv 0.+ (w3Ko:s (v p-K)o 8 (k-w-v)
: (2m)? 1 ! ! (B - 1)eP" +1)
(C.11)
If we now define £he matrices S(p) and i(p) as
S%Bp) = LUp(p)SPIE(R) g . o (ca2)

4
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and

1%8(p) = [Up(p,)E(RIVE(Pg) ] g0 \ - (€.13)

then we can easily show that S(p) and Z(p) are diagonal with respect to
‘ the thermal indices with the upper component given by the retarded’
function and the lower component given by the advanced function. We

thus obtain the desired result contained in Eq. (4.37)

-
.5-1(P) =P, - E(E)T3 + AoT] + uog - £(p) (¢,14)
with | |
‘ z(p) = 123AJd3Ede[dv pi.(w;E)O.A(V;B—E)O_ eB(V+w) + 1 -1 .
- (27) ‘ - J 1 J (eBw -1)(eBV +1) Py W=~V +ie

(C.15)



- APPENDIX D

Spin Fluctuations and the Surface Impedgnce
in Magnetic Superconductors
In the analysis of the magnetic properties of ErRh4B4 presented

in Chapter:4,we feund that nearly all of the observed phenomena arose
largely from the Zeeman splitting of the electron spins by the mean
field created by the magnetic ions through the d-f jnteraction.'3The
resu]ts.therefore seemed to indicate that it would be difficult to draw
any quantitative conclusions regarding'the natLre/ef the spin fluctua-
tions so1e1y from the magnetisation measurements.‘ Instead it was shoWn
how the effect of the spin fluctuations cou]d be more readily observed
by means of the various Me1ssner state quantities such as the supercon—
ducting gap, the condensation energy and the London penetration depth.
This is clearly seen from the graphs presented in Figs. (4,5.and 6) and
is confirmed by recent estimates of thg condensation energy obtained
freh the single crysta] magnetisation curvesr]22]

i In this appendix we consider how the spin fluctuations affect
the electromagnetic fie]ds genereted at the surtace-of a,magnetic super-
conductor tn the Meissner state., We begin with a brief discussion of
the surface impedance and show to what extent it may be used to charac-
terise surface phenomena in metals. We ‘then go on to show how the
resonant frequency in a microwave caVity 1s,effected by changes in the
surface impedance, thus broviding us with an eXce]]Ent means whereby tt
can be measured. Finally we present the results of some ca]cu1ations
of the effective penetration depth, defined in terms of the surtace
impedance, for the case efvErRh4B4 together with the results of some |

[136]

recent measurements

260 -
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I3

" The results of the ca1cu]at1on together with the experimental
results are 1nterest1ng in that not only do they clear]y show the effect
of the spinifluctuations but they also suggest‘that the surface 1mpedance
measurements could -be useful in céﬁfirming fhe'exiStence of the predicted_'
surface magnetisation s‘cates[HO ]]]]

We begin by defining the surface impedance on a surface S as the -

two-dimensionaT dyadic .
: /

ARG ORI | + (D) .

where n denotes the unit vector normal to the surface and t and H the
corresponding values of the macroscop{c electrfc and mqgnetic fields
respectivéiy. The physical jmﬁortange of the surface impedance ZS,
defined by Eq; (D.1), depends on the fact that it is continuous across
any surface 5[148]. Hence,the'electromagnetic fie]dé'on either side of
a surface S are related solely through the boﬁndary éondition gxpressed
by Eq. (D.1). #his is of conéiderab1e\importance when one wishes to
consider, for example, varidus surface. phenomena in either normal or
_superconduct1ng metals, since it a]]ows one to characterise the e]éctro—'
magnet1c behav1our 1n the region close to surface entirely in terms of
the surface 1Ppedance L. _

In ordér to make our considerations soméwhat more specific, we
consider how the surface currents generated in the wa11s of a m1crowave
cavity affect the e]ectromagnet1c characteristics of that-cavity.

Assuming the time dependence of the f1e1ds to be sinusoidal we.

can write . : £

- E(Re e, I (0.2a)

B(x)e o ' (D.2b)

o
x4 X+
a3 o
n "
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. , ﬁ\’" e
and _ o o
AGGt) = AGt), - N
then Maxwells equations inside the cavity are given by " 3”,:
- iw . . - PR | e v J‘ E
v(‘] AE = . B, | : , i (D.3Q-)"
. . ] L N
VA§=--:E9'E, ) . . (D3b)
v.B=v-E=0 | o (D.3c)
énd ’ o | “
B=H | (D.3d)
Equations (D.3a and-D.3b) may be combined to give
2 |E
(ol , W . S A
{vo+ 5 =0 . | (D.4)
¢ |3 _ .

Equat1on (D.4) together with Egs. (D.3b and'D.3c) and the boundary con~-
dition, expressed in terms of the surface 1mpedance Zsiand,givén by Eq.
(D.1) provide us with an eigenvalue eqdat1on for the frequency w.’The
solutions to the eigenvalue problem deterﬁﬁne the_ressnaht modes of the
cavity. What we wisﬁ'to do is to‘dgtermine'how the various eigénWa]ues
are affected by the finite va]ué}of Zs.i This is bést achieved by com-
~paring the eigenvaiue solution obtained from the bouhdary conditioﬁ
expressed in Eq: (D.1), with those of an ideal cavity whoée»eigenva1ués
ére determined from the boundary conditions, |

naE =0 | < . (D.5a)

.. and

heB =0, o | ' (D.5b)

. on S. Where Eo ﬁo and Wy correspond to the_So}utions of the eigenvalue

problem in the case of an ideal conductiohr

~

o In order to determine the shift in frequency induced by the finite
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-

value of ZS we make'dse of the vector generalis!!kon of Green's first

{&entify[neJ - e
:}v}’}.“ w
‘.Jd?'i{?]-vz ;2- - Fz'V2F1} = § dA{? VeF, - ? v-F }
- § dﬂ?]-(ﬁ,;vArz) SuaReGaR)) (0.6)

Thus we obtain

[(KEP E, - E, - ) = 4 d.A{(ﬁA?)fv TG e,

1w

= -1 { dA(n AE § o ’ - (D.7)

_where Eqs (D.3a, D 3c.and D.5a) were used together with Eq. (D.6).

From the: def1n1t1on of the surface impedance given in Eq (D.1) -together

w1th Eq D-& we obtain the following equation for thé resonant fre- -

*
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quency w.
o 2 :
Y. SN . iw A
P%§-~-%}‘[d3x BE = - 1—9-§ dA B-Z.-8 (D.8)
¢t ' ¢ " °
P ' T
;-‘v;” ( 5 2) - 1m o 44ﬂ %dA B- f+ B .( ) B
(W) = D.9)
s,;° [dxn o
f. L S

In cases where Z is both d1agona1 and constant over the surface S th1s

] 3 RS

T s1mp11f1es to g1ve

© gy

PRI X §dA §-§o

" where we have neg]ected higher order corrections in Z, which we assume

D e - z a (D.10)
T ° 4" s'Jd3x E°f -
oy o jo 7 T o
; iwoc2 #dAIB | | - .
a 2 - T (oL
Jd x|E, | ) ‘ : .

to be small. ‘ ' ' - . o

The reagbn for 1nc1ud1ng such a deta11ed ana]ys1s is twofold

y .



2

fields foruz$§O~(t.e;.1ns]de the metal) as

- and

~ Now Ma§We1Ts;equationsinothe'metai are‘given‘by

gq = .
I

b

s
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F1rst1y measurements regard1ng the shift in the resonant frequency of a

m1crowave cav1ty as a function of temperature have been made in a
%
cav1ty w1th superconduct1ng "walls", th1s analysis shows that the

\ measured quant1ty is 1n fact the surface 1mpedance def1ned by Eq (D.])

\

: at the cav1ty/wa11 1nterface Second]y 1t serves to emphas1se the
: fact that the fundamenta] quant1ty that can be measured by means of

‘ e]ectromagnettc radwat1on is the surface 1mpedance  This /s amportant

since 1t prOV1des us w1th a prec1se def1n1t1on of the penetrat1on depth

in conduct1ng surfaces, based>on a mathemat1ca11y well def1ned,exper1—‘

: mentaT]y access1b1e quant1ty, the surface 1mpedance

‘ :

In order to see how the surface 1mpedance ‘may be used to def1ne

wthe effect1ve penetrat1on depth we cons1der the geometry shown in F1g

'(23),,and if we assume that’the system is 1sotrop1c then we' wr1te the ['

.Ir 5

™y
—
x
s
~
n

®
—~
£
N
o
(5]

p
~
x
(—’-
SN
1
o0
—~
=
N
-
o
o 3
£
e g
<
o

(D.12a)

(D.12b) -

CBGht) = blwz)e Ry (02

=
——~
>+
(—’-
S
~on
::A
Lot
N
Ss?
¢}
<

R

Wty e ~(b.12d)

RPN U e © (D.13a)

g =ﬁ+ 4nﬁ,u- j:_:jr ‘."} e y o (.D'.13c.)t'
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- where we have neg]ected the effect of the d1sp1acement current.

- From Eq. (D.13b)~together with Eqs.‘(D.12a and D.12c) we obta1n

R ' _
f gz e(v;2) = ®b(wz) C (D.14)
and hence
(w,O ) = ES"-J b(wyz)dz . | s (D.15)

>[The notatfon z = 0 means that z 1s taken to be pos1t1ve yet 1n§gn1tes—

Jmally close to the surface z 0 ] From’our def1n1t1on bﬁfz g?*ena

i

Eq.” (D. 1) we obtain the fo110w1ng resu]t for the value of the surface

]1mpedance Z _on the surfaceuz = 0+.

. 4n e(w;0 P 4nw ‘ ' S B .
Ztu) = 2 ﬁzro)f <-4 [a b(w z)/h(m 0. e
ST o ‘*0+ | FER Lo - |

tThe express1on for the Surface 1mpedance given by Eq (Dd16) suggeSts

. the fo11ow1ng def1n1t1on for the effect1ve penetratwon depth

N v

2 ,
3 : C t
e Y £ : A ‘ ?

,m). R?Udz tm,z?/hgmoT L "'7\ o ?B.m

S1nce Z is contwnuous across the 1nterface the resonant frequency of

- the cav1ty,may be obta1ned from Eq (U 16) together w1th Eq (D,]]) “4

0bv1ou51y L depends only on the geometry of the cav1ty and 1n part1cu¥ar

a R i

mode that is’ befng exc1ted ’-',' Daak R 5‘~ :‘\fv,”*%l*yfi ]

o
ol
e e . o \ : ' %’.
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We br1ef1y note that the def1n1t1on of A given by Eq. (D. 17)

d1ffers somewhat from that cdhta1nep in the ear11er work of Kotah1

t al.[]]] 110, ]49] “However as we demonstrated the def1n1t1on given

: ﬁﬂthq. (D.17) is an exper1menta11y acce551b1e quant1ty,as shown by the

~ result of Eq. (D 18)

We now turn our attent1on to the ca]cu]at1on of the A (w ) in the

- case Of,magnet1c superconductors, We s1mp11fy the analysis somewhat

e

and assume first of all that fi and H are re1ated linearly as

P

fir= x(ws-10H, e - (D.20)

. o . ’ o .“‘

e ,

furthermore 1f we restr1ct our cons1derat1ons to tne paramagnet1c doma1n,

then the suscept1b111ty may be assumed to have. the hydrodynam1ca1 form

- iy - # L IR [
i) = (), L | Y o)

. ‘ ( w+iT(k) : | o b
where X(E)‘is thevstatic‘susceptib11ity ngenfby - W

4

Wy e —C e ,(‘D‘.’227)‘ |

9§ . T-‘T"+Dk2 Lo ﬂ_'

"lwhere as in Chapter 4, C denotss the Curie constant T the Curie con-

stant of. the norma1 phase D the st1ffness constant and (E) the decay

vw1dth (_.e. the 1nverse of the spin re]axat1on t1me) wh1ch it is-

_ e
assumed may be written as R
RERNCE ’ :
S o : | » L
S T(k) = ox(k) . s S L - (D.23)

The superconduct1ng current J(w,k) may be computed in the Tlinear

vapprox1mat1on as B R o
Tk = - —e—+ L oMPwt) - .y (024
: 4ﬂXL(T) - . ‘ v s
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~ where K 1s the vector potential for the magnet1c induct1on field B
| (i.e. § =V AK The express1on for the current g1Ven in Eq (D.24)
| d1ffers from that used in Chapten\4 Eq. (4.21) in a “number of wayié
first of a]] vie have s1mp]1f1ed the expression by taking the London
11m1t, C(- 1V)'w1, second]y we have 1nc1uded the Tow frequency part of
the cont1nuum contr1but10n to the photon se]f energy wh1ch we have para;
meter1sed in terms of the constant o. Th1s term is 1nc1uded in order
tobaflow’us to treat the region in the vicinity of‘TC in a realistic
'_manner. Finally we note that,'sincekwe'are considering the»HeiSner
L state,f(x) |  '» : R
we s1mp11fy the analys1s somewhat further by assum1ng pa1r breaki:

'~Jthe d-f 1nteract1on, are neg11g1b1e and

ing effects, 1nduced thf

' thathkL(T) may be’compu“_,)s1ng the standard BCS formu]a By means

- of constitutive Eqs'“(0~'4 and D'20) to@ether w1th the Maxwe11 equat1onsr
. (D. 13a, 6&13b and D 1,c) we obtain the following express1on for

B

' magnet1c ﬁ1e1d ' A
e d2 y , )
- = h(wsz) = - {x s -1 —=}1h(w;z)s » - (D.25)
> dz7 , o ) L .
_where §2ﬁ§ c/4nwo

Equat1on (D. 25) may be so]ved subJect to the boundary cond1t1ons

that
Tim h(w;z) = 0, | - -+ (D.262)
27 r ' )
113 h(wsz) = hw). Rt © (D.26b)
; « e | . R
~and d B - ' L . | :
Lo g w2 wmws07), (D- 26c)

1220 S .
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4 #

tohgive

h(@;z) A, exp{- @

o 214 A exp{- 252, - . (D.27)

14

The term a,, appeafing in the exponent, are determined.from the

roots of- the equation. _ e

4

a% = {e-dn-icy ¢ /(e -'dn.-‘i.cY)2 - 4cdn} lz—d- : (D.28)

where n is defined by n=1 Qiaf/az and y =wi/47, while d = b/meE;'
=‘T/T -1 and\c —4wc/T 1h'a manner simi]af the definitioné preFv

sented in Chapter 4. The c0nstants A are determ1ned in terms of h (w)

and”pararﬂeter u. i It ‘!S obv1ous from the boundary cond1t1ons that

.the root of o, computed ﬁnﬁm Eg ~(D.28) shou]d have a pos1t1ve rea]

' part Slnce b (w; z) = [ *4nx§§$—18 )]h(w,z) and 1 + 4nx(w,-1a /A Tﬁf A

'a /n which follows from Eq. (D. 25) we obta1n agﬁer some stra1ghtforward

0 s
man1pu1at10n the result. ¢ : ﬁg, N Z. , sﬁp
- T aga (e ta, '+uk (1) +nur (T) T | b g
A(w) = Rel= 5 > - T (D.29) °
n. +*_'0t+a +a +u)\L(T)(a++a y-nl . :

- The result for the normal'state_may be obtained‘from Eq. (D.29) by ..
~ taking the limit iL»w ' oy

Near TC, xt(T) is 1arge and thereﬁore the momentum dependence of
x(wsK) 1s neg}1glb1e and may -be approx1mated by "the stat1c susceptnb111ty
x(T) = C/(T - Tm). In this case Eq. (D 25) shows that the behaviour of

. . 4 4
h(w;z) may be obta1ned from the resu]t of the non magnetic case by -

‘

means dﬁathe'simpte sC

1]

1ing rule: AL(T) > A (T )/vq +4hx and § - 6/vq +4nx

~ Because b = (1 +4mh, A(w) i given by’

)e/ﬁwmnewﬂ )i - (0:30)

(4



In particular we have A(w) = A3 By (T G/Jr for T > Ty, and
= /1 + 4y (T) A (T) for T<T cl with AL <<‘%. This shows -that the

character1st1c 1ength X( 0) obtained from the 1mpedance may 1ncrease jP”

with decreas1n%’temperature owing to the factor [1<+4nx( )]]/2.

o

When the temperature is lowered; the frequency and momentum

dependence of the suscept1b11ﬁty x(w,k) becomes important and 1nduces
a sh1ft of the magnet1c tran€1t1on temperature To understand this let
' : #

us note that, for w = p = 0, the roots a, given by Eﬂ

(p 8) have

VV) , with

-

ﬂ,‘
positive real parts only for T >.Tp, where Tp =

2

.odo= D/ImAL(O);ﬂgenotes tne critical temperature

spfh.periodig pQgseaniHowever N :r\at,w = p = 0"

T_(1+(1/2)d - /de +(1/4)d |
surface magnétjzation;

1 . v .

. T 174 1 4

: 5(0) " m_d° 1 -

VT ToT 22 e

At finite frequency, however; the cr1t1ca1 behaviour at T 1s smeared

x Uq+/d+4ci L .(D31)

out due to the effects of the skin depth*d the reLaxatun rate

Y,,(#';ﬁ)-ﬂ o S i |

: In Fig. (24) we present t@gftheoretﬁca1 va]ues tor the inverse
' of the penetrat1on depth X(m) (so1id‘curve)yca1cu1ated by means of
&Fq ?Uﬁ?@) for ErRh together with the exper1menta1 values (c1rc1es)
' obta1ned from recent measureﬁbnts[ 36] ca]cu]ated from the observed

Sh1ft in the resonant frequency of a cathy The parameters used in |
~ the ca]cuﬂat1on d1fﬁ§$ s]1ght1y from those presented 1in Tab]es (1 2)

here T =8.7°¢ '_m=1.0?€T 10.85° K -and d(= D/T A (T=0)) = 0.2529

2.

.x- 10 The va]uesffor xL(O)»and G/AL( ) are determtneda{n such a

‘ Wayfthat the maximum value of A*] agrees with;the‘maximum'experimenta]9

-
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max
1

value (A_] =7.7 uj}) and'X;](T =TC) is equal tn the experimental value
0.149 y . ‘This givesba value of A(T=0) =9083vand'a ratie 8/X (T»=05' |
= 97.8. In spite of the discrepancy around T 1 due to the f1n1te value
of the’freggency 9.3 Ghz (mO 4°K), the agreement between theory&and
experiment‘is Satisfactory Furthermbre it is worth noting that the
va1ue of AL(O) 908A is very c]ose to the value obta1ned in Chapter 4 “
Page ‘ ~ from the analysis of the m'gnet1c propert1es of single crysta]
ErRh4B4.(XLO = 825A). For comparison we ‘also presentlthe result of the
Le . ; y .

static Timit (dash dotted curve) calculated by the method described in.

Refs.w{150] and [T49]}using a non-local kernerthgether with’the para-

 meters KB 4, d =0.4254 x 1052 and 2 (0) =74§@§ "The dashed curve is.

" the é%g x ) with. the parameter choice«k’ 0)@? 1184A. We note that

the effect of the sp1n f1uctuat1ons, as evidenced by the departure of
the- data from the BCS f1tt1ng, is qu1te pronbunced 1n part1qy1ar at low®
temperatures. The 'ﬁjysis suggest\s that_,éif T were to be- %h‘er |
decreased, surface ferromagnetic ef*éctswdu]d»show.up ) '

.

In Fig. (25) the experimental data oflk (w) for ErO 5 0.5Rh454

presented’(circ1es) together'with the BCSlkil(T) (dashed cugve)-with

- the parameter choice XL(O) = 1186A ' The-experimental A-](m) sh,gsva

mild deviation from the BCS rnsu1t above T 21and jumns discontinuous]y

to its. norma] va1ue at I»~ T 2’ 1nd1cat1ng that there is no additional

'magnet1c transition above TC2 (i.e. TS < Tc2)' 'Th1s is cons1stent vwith

e 181 . N
‘ the,neutron data- ~'- for Er0.4H00.6Rh4B4, 1n which ahc]ear first Qrder

R

mean-field-type magnetic transition at~T 2 is“observed without shawing .

- any‘effect of spin f1uctuation. Th1s pseudo ternary has a rather

J"‘éﬁhﬁ]?catedJSpinaspinfinteraetioq~- § because of - the da;ference in the

LS

easy axes associated with the Er and Ho spins. Assuming that the value

[y
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o

of Tﬁ may be obtained from the extrapolation of théadetrease'of T, with
jncreas1ng x in the pseudo- ternary Ho.l Er Rh484 and that the Curie
constant C is given by the mean value of thé va]ue obtained in the Er‘
and Ho case (4nC = 2.57K), the theory sdTﬁd cgrve) y1e1ds d =1.0
and y = O. 5 wh1ch are fa1r1y large (this cho1ce of d. means that T

is well below TCZ); For compar1son, the theoret1ca1 curve for y=0

(i.e. w =Q) is also présentedﬁ and shows a sma]] decrease at lower

;'teﬁperature e to‘the fluctuation ‘effect. Therefore the present

a@*

J 1n the superconduct1ng state is due to T << T 2 and also to the effect

<

anqﬁysls suggests that the apparent suppress1on of the spin f1uctuat1ons

".y'-{.

L

of spin re]axat1on time. b o & R S

N _ LR
» i

To summar1se we began this sect1on w1th a br1ef discussion on

the def1n1t1on of the surface 1ﬁ’edance in e]ectrodynam1cs In par-

\ t1cu1ar it was shown how, in a very general way, the e]ectromagnetic

v

properties of a resonant cav1ty cou]d be determ1ned from a know]edge

of the surface 1mpedance at the cav1ty-wa]1s, together with Maxwells

| equatioris. An explicit expression was given-for. the change*“h the_

*

. resonant frequency of the cavity induced by the finite value of ZS.

Having established the experimental importance of the surface

ihpedance we then went on to show how it may be hsed to define in an

entire]y unambigyous fashion the penetration depth for a conddcting .

ha]f space F1g (23). An explicit expreSsion for the penetration depth

-

»
was_ obtained for the case of a magnet1c superconductor and e;5m1ned

-~

for var1ous limiting cases. In particular 1t was‘shownz “in the case

. » .‘ -‘,.‘ «‘. s " . . »
of ErRh4B4, how the'penetration>depth clearly manifests the effect of
the critical fluctuations in the surfacé madgnetisation around Tc2' A

. comparison of the analytiCaliresults with recent experimental measuree:
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ments on polycrystalline ErRh4B4 is satisfactory suggesting that if the
temperature range of the measurements were to be extended the surface

ferromagnetic effect would show up.



