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Abstract

This thesis develops a background subtraction algorithm for detecting moving objects with

a pan-tilt camera. Traditional background subtraction methods assume that the camera is

static, limiting their applications on a moving platform. To relax this assumption, the cam-

era motion is compensated by registering the current image with respect to the background

model image, and then conventional background subtraction approaches can be applied.

Precise image registration is non-trivial and pixels can be misaligned. Appearance-based

background subtraction approaches are sensitive to pixel misalignment which may gener-

ate false positives, i.e., background pixels labelled as foreground. Motion information can

be used to separate these noises from truly moving objects. However, motion estimation

can be inaccurate, and thus may also contribute to false positives. We observe that pixel

misalignment and motion inaccuracy tend not to co-occur for a given pixel. This leads to

a decision rule that a pixel can be foreground only if it neither follows the appearance nor

the motion background model. This strategy can largely reduce false alarms though it may

be conservative in terms of false negatives, i.e., foreground pixels labeled as background.

Consequently, we propose to classify a pixel by evaluating its appearance and motion mod-

els marginally. We can minimize the detrimental effect of spurious false negatives caused

by this conservative classification rule by imposing spatial constraints on pixel label in a

Markov-Random-Field (MRF) framework - solved via the graph-cut algorithm. To be more

specific, a two-layer graph model is proposed - one layer for evaluating appearance model

and the other the motion model - where two types of spatial constraints are imposed, one

of which considers the correspondence of pixel labels in two layers (label consistency con-

straint) whereas the other considers the spatial information between neighbouring pixels

(spatial coherence constraint). The final label of a given pixel can be determined by anding

its corresponding labels (background/foreground) in two layers according to the strategy.

We show through extensive experiments (both outdoors and indoors) that our solution is

superior to the competing background subtraction algorithms designed for dealing with a

pan-tilt camera.
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You’ve gotta dance like there’s nobody watching,

Love like you’ll never be hurt,

Sing like there’s nobody listening,

And live like it’s heaven on earth.

– William W. Purkey
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Chapter 1

Introduction

Moving object detection is one of the active and challenging problems for high-level tasks of

computer vision applications, such as object tracking, video surveillance and indoor/outdoor

navigation. A good object detection approach requires low false alarm rate and miss-

detection rate that are of great importance for the higher level tasks.

There has been considerable work on moving objects detection which can be divided

into three categories: feature-based object detection, motion segmentation and back-

ground subtraction. The idea of feature-based object detection is to model the moving

objects with representative features. Its performance heavily depends on the features’

quality, which might be sensitive to illumination changes and scale changes, etc. The num-

ber of detected features also plays an important role. A moving object with too few features,

e.g., an object with only few pixels, might not be detected with feature-based approaches.

Motion segmentation methods detect moving objects by grouping those pixels with similar

motion. Yet, these approaches may be sensitive to noises and have difficulty in detect-

ing exact object boundaries. Different from the first two categories, background subtrac-

tion models the background and thus, moving objects, which deviate from the background

model can be detected. Compared to the first two categories, background subtraction is

stable and robust which can identify any moving object independent of its size or shape.

The rationale of background subtraction is to identify the moving objects from a video

frame that differ significantly from a background model [37]. The success of background

subtraction algorithms has led to their ubiquitous use in surveillance system with station-

ary cameras. However, the common requirement of traditional background subtraction

approaches that the camera remains static severely limits its usage to moving platforms,

such as mobile and PTZ cameras.

In this thesis, we propose a novel background subtraction method which is able to detect

moving objects both in a static camera or a pan-tilt camera. In section 1.1, we discuss the

problem in detail and Section 1.2 describes our goal and contributions. An outline of the

thesis is given in Section 1.3.
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1.1 Problems in Existing Background Subtraction Meth-
ods from a Pan-Tilt Camera

Traditionally, the extension of background subtraction to a pan-tilt camera can be achieved

by compensating the camera motion. Here pixels are aligned with their corresponding

background models which are built and maintained from the previous frames, thus con-

ventional background subtraction can be performed. Yet precise image registration is non-

trivial and a pixel may turn out to be a false positive, i.e., a false foreground detection, due

to pixel misalignment. False positives usually occur on edges since the background models

on the boundaries are very different, e.g., a misaligned pixel (marked as red surrounded by

a red circle) in Figure 1.1 (a), is falsely labeled as foreground due to the large difference to

its unmatched background model.

This problem can be alleviated by exploiting pixel wise motion information, since we

assume that a background pixel does not move after the camera motion is compensated.

However, as we mentioned in the previous section, motion estimate itself can be inaccurate.

For example, in Figure 1.1 (b), the motion of a pixel in the grass area (surrounded by a red

circle) is incorrectly large due to the lack of texture leading to a false detection. These

inaccuracies can result in either false positives (when motion estimate is incorrectly large)

or false negatives (when motion estimate is incorrectly small).

Motion and appearance information are important to detect moving objects from back-

ground. In this thesis, how to incorporate the motion and appearance information in back-

ground subtraction to improve the performance of detection in a pan-tilt camera is our main

concern.

1.2 Thesis Objective and Contribution

In this thesis, we propose a novel and robust background subtraction method to detect

moving objects from a pan-tilt camera.

Existing extension of background subtraction to a pan-tilt camera is to compensate the

background motion caused by camera movements, i.e., the consecutive frames are aligned

in the same coordinate system so that pixels can be compared to its corresponding back-

ground models. Image registration can be global or local. In global approaches, a homog-

raphy is computed and used to align the background model image with the current image

before applying background subtraction. Since it is hard to align objects with different depth

variations properly with a global homography transformation, these approaches usually fo-

cus on improving the robustness of the conventional background subtraction approaches.

One way to reduce the false positives caused by pixel misalignment is to consider the spa-

tial information in the local region, assuming that pixels can be aligned properly from its
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(a) False positives generated by pixel misalignment

(b) False positives generated by inaccurate motion estimate

Figure 1.1: Problems in existing background subtraction methods from a pan-tilt camera.
(a) From left to right: the current frame; image difference between the warped image and
the current frame; the ground truth; the detection result. (b) From left to right: the current
frame; the motion magnitude of the current frame: the darker the intensity, the smaller the
motion magnitude; the ground truth; the detection result.

neighbourhoods. Even though, these approaches can not deal with large misalignment es-

pecially when the camera moves fast. Local image registration, on the other hand, focuses

on improving the accuracy of pixel alignment by registering each pixel locally. In local ap-

proaches, an Expectation-Maximization (EM) framework is usually employed to iteratively

switch between pixel wise motion estimation and background subtraction to detect moving

objects. One drawback of these local registration approaches is that it is susceptible to

reach in the local minima.

Most of the conventional background subtraction approaches are based on appear-

ance only. These approaches are vulnerable to illumination changes, etc. Besides, these

approaches are sensitive to outliers in image registration. Motion can be incorporated with

appearance to provide higher discriminative power. However, accurate motion estimate

is impractical, and these inaccuracies can result in either false positives, i.e., background

pixels can be classified as foreground when their apparent motion estimate is incorrectly

large, or false negatives, i.e., foreground pixels can be classified as background when the

motion estimate is incorrectly small.

As both motion and appearance are important for detecting moving objects, yet their

inaccuracies may contribute to false positives, our goal is to design a background subtrac-

tion algorithm using both appearance and motion cues that can suppress significantly false

positive detections while introducing minimum false negatives.

Our algorithm exploits the observation that pixel misalignment and inaccurate motion

estimation tend to occur not simultaneously or concurrently at a pixel (Figure 1.2), i.e., the
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Figure 1.2: Appearance difference and motion difference to the background model.

majority of the outlier background pixels exhibit the property that one of the two features

(appearance or motion) is correct while the other is wrong. In other words, a foreground

pixel can be determined if and only if it is different from background from the perspective

of both motion and appearance. This strategy is effective to reduce false positives, but

rather ”conservative”, i.e., it will generate false negatives if the difference to background

model from either cue is not significant enough. Considering spatial information around

the neighbourhoods and the spatial constraint on pixel labels are useful to reduce false

negatives while maintaining low false alarm rate. Particularly, we propose a robust and

real-time background subtraction approach which considers the marginal statistical models

of appearance and motion separately and also the spatial constraints in a Markov Random

Field framework (MRF) - solved via the graph-cut algorithm, to reduce the false positives at

the minimum expense of recall The extensive experiments show that our approach is supe-

rior to other competing background subtraction algorithms designed for a pan-tilt camera.

1.3 Organization

The rest of the thesis is organized as follows. In Chapter 2, a review of background subtrac-

tion for both static and pan/tilt camera is given. Descriptions of background modelling and

object detection of our approach are discussed in detail in Chapter 3. Chapter 4 provides

both the qualitative and quantitative results of the experiments on different datasets and

the comparison with different background subtraction methods. Our conclusions are given

in Chapter 5.
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Chapter 2

Related Work

In this chapter we present the background and related work of the thesis, which includes

background subtraction from a static camera and a pan-tilt camera. Then we illustrate

the motivation of our approach which designs a novel and robust background subtraction

method to detect objects from a pan-tilt camera.

2.1 Introduction

Background subtraction is a group of algorithms used to detect moving objects in video se-

quence from a static camera. It is one of the basic low-level operations in many computer

vision applications, including human-computer interaction [35], video surveillance [11, 50],

robotics [20, 43] and traffic monitoring [9, 25]. Intuitively, moving objects differentiate from

background in terms of both appearance and motion. Assuming that the background is

static, background subtraction ”subtracts” the observed image from the estimated back-

ground, i.e., objects that are static, and areas with large differences are referred to as the

foreground, i.e., the moving objects (Figure 2.1(a)).

Traditional background subtraction approaches assume that the camera is static, oth-

erwise the new field-of-view becomes unmatched with the prebuilt background model (Fig-

ure 2.1(b)). This assumption severely limits its usage in the moving platforms, such as cell

phones, PTZ cameras, etc. Efforts have been made to extend background subtraction to

moving cameras by compensating the camera motion. The consecutive frames, including

the background model image, are registered to the same coordinate system, thus con-

ventional background subtraction approaches can be applied to detect the moving objects.

Precise image registration is not trivial and pixels can be misaligned. False alarms usually

occur on the misaligned pixels which are compared to the unmatched background models,

deteriorating the performance of background subtraction. Post-processing can be applied

to filter out the noises, yet it does not work effectively when the size of the noises are

comparable to that of moving objects.

5



(a)

(b)

Figure 2.1: Illustration of traditional background subtraction approaches and their limitation
on the moving platform.(a) An example of a traditional background subtraction approach;
(b) An example when background subtraction fails (the camera pans to the left). From left
to right of both (a) and (b): the current frame, the estimated background, the detection.

This problem can be alleviated by incorporating motion information via optical flow es-

timation, assuming that background pixels are static after camera motion is compensated

whereas the foreground pixels move. Meanwhile, motion can also provide higher discrimi-

native power than the conventional appearance-based background subtraction approaches

which are sensitive to illumination changes. However, pixel wise motion estimate can be

inaccurate, and together with the inaccuracies from image registration, may contribute to

the false detections.

In this thesis, we propose a novel background subtraction method that evaluates the

marginal probabilities of motion and appearance and considers the spatial constraints ex-

isting in pixel labels of motion and appearance, and also in neighbouring pixels, to suppress

most of the false positives at the minimum expense of miss detections. Section 2.2 gives

a literature review of background subtraction from a static camera, while in Section 2.3

introduces the extension of background subtraction to a moving camera.

2.2 Background Subtraction from a Static Camera

The simplest way to model the background is to obtain a background image without any

moving object. This approach will only work when all background pixels are static. Consid-

ering robustness and adaptability to complex background, repetitive motion from clutters

and long-term/short-term scene changes, numerous background models have been pro-

posed which can be divided into two categories: a) parametric background modelling [27,
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44, 57, 48, 25, 49] and b) non-parametric background modelling [7, 55, 53, 14, 36, 29, 24].

In this section, we present an overview of each category in background modelling from a

static camera.

2.2.1 Parametric Background Modelling

If the background is nearly static and the variation of a pixel’s value is mainly due to camera

noise, it is natural to model each pixel as Gaussian distribution. Deriving from this assump-

tion, parametric methods describe each pixel as a parametric distribution or a mixture of

distributions, e.g., Kalman filter [25], Wiener filter [49], running Gaussian Average (single

Gaussian) [52], and Gaussian Mixture Model (GMM) [44, 57].

Kalman Filter

A Kalman filter-based adaptive background model [25, 41] allows the background estimate

to evolve as the illumination changes gradually. For each frame, segmentation is per-

formed by thresholding the difference Dt between the current frame and the background

model Bt−1. The background is updated at each frame by involving the previous estimated

background model Bt−1 and the difference Dt using the following update equation:

Bt = Bt−1 + (α1(1−Mt) + α2Mt)Dt (2.1)

where Mt is a binary mask of the current frame. The gains α1 and α2 are based on the

estimates of the rate of change of background.

Running Gaussian Average (Single Gaussian)

A comparable approach, running Gaussian average scheme [52] is proposed where the

background for each pixel p at time t is modelled as a Gaussian distribution N (µp,t, σp,t)

with mean µp,t and variance σp,t. Thus pixel p is classified as a foreground pixel if the

inequality between its observation Ip,t at time t and its background model N (µp,t, σp,t):

|Ip,t − µp,t| > kσp,t (2.2)

holds; otherwise, p will be classified as background; For the background pixel p, the back-

ground model is updated as:

µp,t = αIp,t + (1− α)µp,t−1 (2.3)

where α is an empirical weight as a trade-off between stability and quick update. Kalman

filtering and running Gaussian Average have the advantages of low computation and low

memory requirement. Their learning rates enable the background model to adapt to grad-

ual lighting changes. However, they can’t handle dynamic background with more than one

Gaussian distribution.
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Gaussian Mixture Model (GMM)

To account for complex backgrounds containing more than one Gaussian distribution, [44]

models each pixel as a mixture of K Gaussians corresponding to either background or

foreground. The probability of the occurrence of a current pixel is:

P (Ip,t) =

K
i=1

ωi,p,t ∗ η(Ip,t;µi,p,t,Σi,p,t) (2.4)

where η(µi,p,t,Σi,p,t) is the ith background Gaussian model and ωi,p,t its weight. Pixel val-

ues that do not fit the background distributions are considered as foreground until there is

sufficient and consistent evidence to initiate a new Gaussian to support them. The back-

ground Gaussians can be determined in terms of its persistence and the variance which

can be measured by ω/σ. This value increases both as a distribution gains more confi-

dence and more persistent. After ordering the Gaussians by ω/σ, the first B distributions

are chosen as the background model, where

Bp,t = argmin
b

(

b
i=1

ωi,p,t > T ) (2.5)

where T is a measure of the minimum portion of the data that should belong to background.

Thus Ip,t is labeled as background if it is within 2.5 standard deviation of a background

Gaussian model.

GMM has gained vast popularity [30, 38, 28, 31]. Yet [14] points out that it fails to

achieve sensitive detection in the case where the background has very high frequency

variations such as waving water or shaking tree leaves, i.e., background having fast vari-

ations cannot be accurately modelled with just a few Gaussians. Another important point

is its ability to adapt to sudden change in the background which depends on the learning

rate. Low learning rate is suitable for long-term change but it has a poor adaptivity to sud-

den change. High learning rate can adapt to changes quickly, but slowly moving objects

can be easily incorporated into background.

Summary

Parametric background modelling fits a probability density function that can be modelled

parametrically (e.g. Gaussian distribution) on the previous background observations to

adapt to the changes of background. The pixel-wise background model refers to only a few

parameters which guarantees low time complexity and memory load. However, the natural

scene in the real world is usually complex that cannot be modelled by just some specific dis-

tributions. Another limitation is that most of the parametric background modelling methods

only consider each pixel independently which rely heavily on post-processing to filter out the
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noises. This problem becomes serious in background subtraction from a moving camera

where the size of a false positive caused by pixel misalignment is comparable to a moving

object. It would be a dilemma to trade off between miss-detections and false-detections.

For parametric approaches, a training process is required to learn the parameters which

may not satisfy the need of quick initialization and quick object detection in the new field of

view when the camera moves. Furthermore, most of the parametric background modelling

approaches are appearance-based only, which are sensitive to appearance changes due

to camera distortion, weather, etc.

2.2.2 Non-parametric Background Modelling

In most of the time, scenes are complex that cannot be described by parametric methods.

To improve the robustness of background subtraction towards complex background, non-

parametric background modelling approaches estimate the density function directly from

the data without any underlying distribution assumptions. Histogram over time [55], kernel

density estimation [13], background clustering including support vector machines [29, 1]

and codebook [53], graph cut [10, 22, 46], and ViBe [3] are some of the non-parametric

background modelling methods.

Histogram over Time

An approximation of the background probability density function can be given by the his-

togram of the most recent values classified as background values [55]. However, as the

number of samples is necessarily limited, it only has probability density function (pdf) on

those background values existed in the observing window, but miss the ”tails” of the true

pdf [37]. Another drawback is the lack of convergence to the right density function if the

dataset is small. Besides, it is not suitable for higher dimensional features.

Kernel Density Estimation (KDE)

Unlike histograms, kernel density estimation [13] guarantees a smooth, continuous and

differentiable density estimate to any density shape with no assumption on the underlying

distribution (Fig 2.2 (a)). Different from Gaussian Mixture Model, kernel density function

does not need the number of Gaussian distributions. With kernel density estimators learned

from the previous samples, KDE can handle shaking videos caused by camera jittering or

dynamic background such as waving trees, fountains/falls [15, 47, 12]. Besides, KDE can

be performed in a higher-dimensional space integrating appearance and motion features

for the purpose of modelling the background density [13]. In general, the probability density

function can be given as a weighted sum of kernels in terms of each sample xi,p for pixel
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(a) (b)

Figure 2.2: Illustration of kernel density estimation. (a): The comparison of the construction
of histogram and kernel density estimators using six data points (red dots on the x-axis).
The horizontal axis is divided into bins covering the range of the data. A box of height
of 1/12 is placed whenever a data point falls inside this interval. For the kernel density
estimate, a normal kernel (a red dash curve) is placed on each of the data point. The final
kernel density estimate is the blue curve. (b): KDE with different bandwidths of a random
sample with 1000 points from a standard normal distribution. Green: the true density
(standard normal). Red: KDE with H = 0.2; Blue: KDE with H = 1.37; Magenta: KDE with
H = 3.16.

p, i = 1..n:

P (Ip,t) =
1

n

n
i=1

KH(Ip,t − xi,p) (2.6)

where KH(x) =∥ H ∥−1/2 K(H−1/2x). The bandwidth H which is the smoothness pa-

rameter, specifies the ”width” of the kernel around each samples point xi,p. An important

issue which exhibits a strong influence on the resulting estimate is the kernel bandwidth

selection. Because of the limitation of the number of samples and the real-time computa-

tion requirement, the choice of appropriate bandwidth is essential which is shown in Fig 2.2

(b). Small values of H make the estimate look ”wiggly” and show spurious features (red

curve), whereas to big values of H lead to an over-smooth estimate that is too biased and

may not reveal structural features [51] (magenta curve). Another problem for kernel density

estimation is the memory load to keep those samples and the computational cost. What’s

more, the appearance of the moving objects in the training phase can bias the probability

density estimation and thus may cause miss detection.

Background modelling via Clustering

Object detection can also be regarded as clustering problem, and a number of background

subtraction algorithms based on clustering have been proposed during the past 20 years

[29, 8, 7, 24, 53]. Here we introduce SVM and codebook which are used widely in back-

ground subtraction.

• Support Vector Machines (SVMs). Generally speaking, SVMs [29] separate the
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Figure 2.3: Illustration of support vector machine. H1 does not separate the classes. H2

does but the margin is small. H3 is an appropriate hyperplane with the maximum margin.

data points with a hyperplane or set of hyperplanes in a high- or infinite-dimensional

space constructed by maximizing its functional margin to any class, given that a larger

margin indicates lower generalization error of the classifier (Fig 2.3). Training two-

class SVM needs data points for both background and foreground. However, collect-

ing samples for foreground can be rather expensive, or just impossible as foreground

has a wide range of variance. One-class SVM [8] can handle background/foreground

segmentation with the absence of foreground training data. One important issue of

SVM is the selection of the kernel bandwidth, but little guidance for choosing an ap-

propriate bandwidth is available.

• Codebook. Apart from SVM, foreground can also be extracted by applying k-means

clustering [7], sequential clustering [53], and codebook [24] by quantizing the back-

ground into clusters/codewords. For example, in [24], each pixel is attached with a

adaptive and compressed background model encoded with a set of codewords learn-

ing from the previous frames. Each codeword defines a vector of features describing

some statistics, such as color value, minimum and maximum pixel brightness, and

codeword access frequency [24]. A thresholding operation is performed based on

the distance of the occurrence from the nearest codeword. modelling the background

with codebook is capable of coping with dynamic background such as shaking leaves,

for each object that has been seen frequently in the pixel will be encoded with a

codeword. It is also robust in dealing with illumination changes. Unlike kernel density

estimation, it allows moving foreground objects in the scene during the initial train-

ing period. Furthermore, it can model a background from a long training sequence.

The limitation is that a codebook needs a long training sequence which may not be

reuseful in other sequences.
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Figure 2.4: A standard graph designed for background subtraction

Graph Cut

Background/Foreground segmentation can be formulated in terms of energy minimization

integrating regional bias and spatial dependence. Such energy minimization problems can

be reduced to instances of the maximum flow problem in a graph which can solved by

graph cut model. Specifically, Fig 2.4 shows a typical graph derived from an image. Each

pixel corresponds to a node, and all pixel nodes are connected to two special terminals,

one is the source s representing foreground, and one is the sink t for background. The

weights of the links between pixel vertices and s/t derive directly from the similarity be-

tween the current frame and the foreground/background model where the background can

be built with the existing background modelling methods. The neighbour links are assigned

weights in terms of the difference of the neighbouring pixels. Once a graph is constructed,

a global optimal (minimum cost) cut is achieved by energy minimization framework sepa-

rating the source from the sink. The graph-based approach can overcome the effects of

noise by aggregating the neighbourhood information. Other priors can also be imposed

when constructing a graph, such as motion prior [10], shape prior [19], etc.

VIsual Background Extractor (ViBe)

Most of these methods construct background models based on temporal information where

the first n frames are used to train the parameters in the group of parametric methods or

collect the background samples in the group of non-parametric methods. Moving objects

are not allowed to appear in the training phase otherwise it will bias the background model.

12



Instead of training the background models with the temporal sequences, ViBe model pro-

posed in [3] claims that the probability density function learned from temporal sequences

can be replaced by spatial distribution, and thus the background model can be built within

one frame and no training phase is needed. The underlying assumption is that those

neighbouring pixels should share similar appearance and variations. In this approach, a

pixel-wise background model is constructed by sampling N data points randomly from its

connected neighbourhood, and the moving objects is detected if the appearance is close to

sufficiently enough samples in its background model. ViBe is a parameter-free method with

low computational load and the background model can be constructed instantly. Though it

is a simple technique, it is robust to noise and able to deal with dynamic background.

Summary

Compared to parametric methods, the non-parametric approaches may need more mem-

ory to keep the information that is representative to the probability density function, which

may also require more computation. Nevertheless, non-parametric background modelling

can handle complex and dynamic background where parametric methods fail easily. Be-

sides, it is more straightforward to incorporate different features, e.g., contrast and motion,

in background model to improve the robustness. Among the non-parametric methods,

graph cut not only take the regional bias but also consider boundary property to reduce

noises while ViBe takes the advantage of spatial similarity of neighbouring pixels to speed

up the background modelling. These two properties enable the background subtraction

algorithm to reduce noises caused by pixel misalignment and adapt the background model

to the new field of view. In our approach, we incorporate these two methods and design a

robust real-time background subtraction approach to detect moving objects with a moving

camera.

2.3 Background Subtraction with a Pan-Tilt Camera

The limitation that traditional background subtraction can only be applied to a static cam-

era severely restricts its applications to moving platforms. This problem arises as the new

field-of-view becomes unmatched with the prebuilt background model when the camera

moves. Camera motion can be compensated via image registration, which aligns the con-

secutive frames and the background model image in the same coordinate system, thus

the conventional background subtraction approaches can be applied to detect the moving

objects. Ideally, pixels are aligned properly and thus background subtraction functions well.

However, ideal image registration is non-trivial and pixel misalignment exists when pixels

are incorrectly aligned due to geometric distortion, illumination changes and environmen-
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tal noises. As a result, those misaligned pixels are compared to unmatched background

models and become false positives.

In this section, we will first briefly introduce how pixels can be aligned before applying

background subtraction (Section 2.3.1), and then discuss how people deal with pixel mis-

alignment which is a common and important issue when extending background subtraction

algorithms to a pan-tilt camera (Section 2.3.2).

2.3.1 Image Registration

Image can be registered globally or locally. In global image registration, all pixels are trans-

formed with the same transformation matrix while in local image registration, the transfor-

mation is pixel-dependent.

Global Image Registration

Global image registration assumes that two images taken from two different point of views

can be aligned by a 3×3 transformation matrix H, which is called homography. To be

specific, H defines the camera motion - rotation, translation and scale change - thus a 3D

vector x′ can be projected to a new point x rigidly by

x′ = Hx (2.7)

Generally speaking, this assumption holds in a pinhole camera model where the depth

of objects in the scene are not changed, and thus the outliers caused by parallax-translation

problem can be reduced. In other words, global image registration can be used in one of

the following two cases:

• the optical centre does not move, i.e., pure rotation and possibly change of camera

settings, or

• the views scene is planar, i.e., all objects are in the same depth.

The linear transformations are global in nature, thus, they cannot model local geometric

differences between images. The accuracy of global registration methods proves insuffi-

cient when the underlying assumptions are invalid, e.g., the depth variations of the back-

ground objects, which often happens. However, due to its good approximation and fast

computation, global image registration is usually used for aligning images before applying

background subtraction ([45, 5, 2, 42, 39, 21, 32]).

Local Image Registration

Local image registration allows ”elastic” or ”nonrigid” transformation, which is capable of

locally warping the target image to align with the reference image by modelling local geo-
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metric differences between images. In local approaches ([4, 26]), an Expertation-Maximum

(EM) framework is usually employed to iteratively switch between fine image registration (in

pixel level) and background subtraction to detect the moving objects until the process con-

verges. One drawback of the local approaches is that it is susceptible to reach a local

minima due to the iterative nature, which gives rise to pixel misalignment. Besides, local

image registration may be more sensitive to noises than global image registration, such as

local illumination changes.

2.3.2 Background Subtraction Approaches with a Pan-Tilt Camera

Existing background subtraction methods from a static camera can be performed normally

after registering the target frame to the reference frame. For example, [45] performed back-

ground subtraction through temporal median filter after global image registration, while [5]

applies a AR filter to background modelling. As image registration may introduce outliers,

the performance of background subtraction approaches may be deteriorated by pixel mis-

alignment compared to the situation in a static camera, thus the conventional background

subtraction approaches should be improved to deal with these outliers.

Existing methods to improve the robustness of background subtraction algorithms can

be divided into two categories according to the features they use: one is based on appear-

ance cue only, the other is based on both motion and appearance cues. In the following,

we will discuss each category in detail.

Background Subtraction with Appearance Only

Most of the appearance-based background subtraction approaches proposed to deal with

pixel misalignment focus on making use of spatial information.

One way to use spatial information is to locate the most appropriate background model

from the neighbourhoods. The assumption is that the correct alignment should exist in the

surrounding neighbourhoods, so do the appropriate background models. Thus, a back-

ground pixel can be determined if it matches with one of the background models from its

neighbourhoods. [39] proposed a Spatial Distribution Gaussian model (SDG) based on

this assumption whereas [32] also proposed a similar background subtraction method to

accommodate small alignment errors.

The main drawbacks of this strategy are from two perspectives. One is that the perfor-

mance of the background subtraction methods heavily depend on the range of the search-

ing region; Searching within a small region can locate small misalignments but fail to deal

with pixels that are misaligned outside this region, whereas searching in a large region will

severely slow down the detection process. The other drawback is that the searching nature

can bring in miss detection if the appearance of a foreground pixel accidentally falls into
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the background distribution of a nearby position. In other words, small moving objects may

be ignored and discarded.

Another way to make use of the spatial information is to assume that the observation of

a pixel is the convolution of several pixels from its surroundings as the camera moves, thus

it can be modelled as a random process which was generated by a mixture of K random

processes from the surrounding pixels[21]. In this way, foreground pixels can be detected

by thresholding the PDF of the so-called Mixel Distribution (MD). This approach is claimed

to handle various sources of error, including motion blur, sub-pixel camera motion, mixed

pixels at object boundaries, and also uncertainty in background stabilization caused by

noise, unmodelled radial distortion and small translations of the camera.

Background Subtraction with Appearance and Motion Cues

Background Subtraction approaches that incorporate motion and appearance cues can be

divided into three categories: a) motion is used as sparse labelling ([43, 16]), b) Motion is

modelled jointly with appearance cue ([33, 18]), and c) Motion and appearance cues are

incorporated but used separately ([56, 17]).

• Motion cue is used as sparse labelling ([43, 16]). The intuition is that the move-

ments of moving objects and the background objects obey different geometric con-

straints that are useful to tell them part. A sparse-to-dense background subtraction

framework is usually employed. In these approaches, motion is used for separating

background and foreground at the sparse level which is useful for later dense seg-

mentation since the BG/FG movement trajectories lie in different spaces. Thus, the

sparse labelling offers information for further dense segmentation. In [43], sparse

appearance model is built and used for dense (pixel-level) segmentation, while in [16]

dense appearance model is built which is propagated from sparse appearance model

and used for dense segmentation.

In [43], the dependence on long-term trajectories for sparse modelling may make it

discard the new-incoming moving objects or objects with short-term trajectories. Also

sparse modelling may fail to detect small objects as well. [16] overcomes these prob-

lems by using different geometric constraints and dense appearance modelling. Even

though, both methods may generate false positives when the orthographic projection

assumption is not satisfied since the background objects with large depth variation

might not be separable to the foreground objects using these geometric constraints.

Meanwhile, both algorithms only model the appearance cue that is sensitive to il-

lumination change, which is a common problem of appearance-based background

subtraction approaches.
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• Motion is modelled jointly with appearance cue ([33, 18]). The assumption is that

the background pixels (the same for misaligned background pixels) are static after

compensating the camera motion, whereas the foreground pixels move. Thus motion

and appearance can be incorporated to provide higher discriminative power. One

way is to model them jointly. For example, support vector machine ([18]) and kernel

density estimation ([33]) model the background incorporating both appearance and

motion cues via kernel functions.

The effectiveness of incorporating motion cue is illustrated through a simple example

in Figure 2.5. Background can be modelled using Gaussian mixture model (GMM)

- due to Stauffer and Grimson [44] - in which given the appearance I of a pixel at

location (x, y) of the image, its probability of being background is described as:

P (It(x, y)) =

K
i=1

wi,tN(It|µi,t,Σi,t) (2.8)

where K is the number of Gaussians in the mixture weighted by wi,t, µi,t and Σi,t are

their means and covariance matrices. For simplicity of discussion and without loss

of generality, we use a single Gaussian to describe the background model, and thus

given the appearance I, its probability of being background can be described as:

P (I) = N (I|µI ,ΣI) (2.9)

Background pixels should be static after camera motion compensation, and thus, their

motion M can also be modelled as a single Gaussian distribution with mean 0. As

motion and appearance cues are independent to each other, the joint probability is

computed as:

P (I,M) = P (I)P (M) = N (I|µI ,ΣI)N (M |µM ,ΣM ) (2.10)

Without loss of generality, we simplify the appearance model by using gray scale and

the motion model by using motion magnitude in the toy example. Instead of learning

pixel-dependent variations, and in order to illustrate the idea, we compute a global

variation for appearance and motion cue respectively after removing the outliers. If

motion and appearance are modelled jointly, the classification of a pixel is based

on thresholding P (I,M) or evaluating the exponent of the Gaussian probability in

Eq.( 2.10). That is, a pixel is background if

(I − µI)
TΣ−1

I (I − µI) + (M − µM )TΣ−1
M (M − µM ) ≤ Th (2.11)
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(a)

(b) (c)

Figure 2.5: A simple example: illustrate two types of outliers that background subtrac-
tion approaches may fail to deal with: a) the outliers from pixel misalignment produced by
imprecise image registration; b) the outliers from inaccurate motion estimate if motion is
incorporated.

where Th is a threshold.

The Precision-Recall (PR) curve from Fig 2.5 (b) demonstrates that incorporating mo-

tion information with appearance information (blue curve) can reduce false positives

effectively in terms of its higher precision compared to the appearance-only approach.

However, motion estimate can be inaccurate. These inaccuracies, together with the

inaccuracies from appearance cue caused by imperfect image registration, may dete-

riorate the performance of background subtraction if motion and appearance cue are

modelled jointly. To be more specific, a background pixel that exhibits a difference

appearance from its model due to pixel misalignment or large motion due to incorrect

motion estimate, corresponding to either small P (I) or small P (M), result in a small

P (I,M), and thus may become a false detection. This is proved by the simple exam-

ple we discuss above (Fig 2.5 (c)), where some background pixels (blue points) still

fall outside the 2σ decision boundary, which indicate that these pixels may become

false positives.
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• Motion cue and appearance use are incorporated but used separately ([56, 17]).

The intuition is that only those detected pixels share uniform motion ([17]) or relatively

large motion magnitude ([56]) are considered as foreground otherwise they should be

the noises.

Both methods use appearance cue for detection and motion cue for filtering out the

noises from detection. Compared to those approaches that model motion and ap-

pearance jointly, these approaches prefer incorporating motion and appearance cues

separately, which can separate the outliers of each cue and reduce the chance of

producing false positives. These approaches are similar to modelling the marginal

probabilities of these two cues to enhance the power of each cue to filter out the

outliers. Returning to the simple example where appearance and motion is modelled

with Gaussian distribution, the procedure of evaluating the marginal probabilities of

appearance and motion for pixel labelling can be generalized as:

if (I − µI)
TΣ−1

I (I − µI) ≤ ThI or

(M − µM )TΣ−1
M (M − µM ) ≤ ThM then

pixel← background

else

pixel← foreground

end if

Such a classification procedure corresponds to the rectangular decision boundary

in Fig 2.5 (c), where its PR curve (red curve) demonstrates that this strategy can

suppress the false positives and outperforms the other two approaches.

However, as these approaches consider pixels individually, they may be too conser-

vative and thus lower the number of retrieved foreground pixels, i.e., the recall rate.

For example, a pixel with inaccurate motion estimate could become false negative

when the motion estimate is incorrectly small though it may look different from the

background appearance model. In fact, neighbouring pixels should share similar mo-

tion or appearance as long as they are not on the boarders (of the moving objects),

and thus should be given the same label.

2.4 Summary

In this chapter, we briefly review the literature of background subtraction from a static

camera and a pan-tilt camera. Parametric background modelling is not suitable to model

complex background. Non-parametric background modelling methods may require higher

memory than parametric background modelling, but it can handle complex and dynamic
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background where parametric methods fail easily. Most of these approaches only con-

sider pixels individually, which make them sensitive to noises. This problem can be solved

by defining a graph model where spatial constraints can be imposed to filter out the noises

and maintain good recall rate. Existing background subtraction methods that relax the cam-

era stationary assumption face the problem of pixel misalignment when compensating the

camera motion. This problem can be alleviated by taking the advantage of the spatial infor-

mation which is used commonly in appearance-based background subtraction approaches.

They work well on dealing with small misalignments but fail when the misalignments are

large. Motion can be incorporated with appearance which is useful to suppress the false

detections. It can be used to model the background jointly with appearance, but the inac-

curacies from motion, together with inaccuracies from appearance, may contribute to the

false positives. A conservative rule which models the marginal probabilities of motion and

appearance is robust to these two types of outliers, but may generate miss detections when

inaccuracies from either cue occurs. The strength of filtering false positives by exploiting

marginal probabilities of motion and appearance, and also the benefit of considering dif-

ferent spatial constraints via graph model, motivate us to design a novel background sub-

traction method, that evaluates the marginal properties of appearance and motion through

a two-layer graph model with imposed spatial constraints on pixel labels. More details are

discussed in Chapter 3.
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Chapter 3

Methodology

In Chapter 2, we introduced the state-of-the-art background subtraction approaches from a

static camera and a pan-tilt camera. Existing methods that extend background subtraction

to a moving platform are vulnerable to pixel misalignment when registering consecutive

images or motion inaccuracies if motion is incorporated to classify foreground and back-

ground pixels. In this chapter, we introduce a novel background subtraction algorithm which

is robust to these two types of outliers at the minimum expense of recall. To be more spe-

cific, we evaluate the marginal probabilities of appearance and motion cues and impose

spatial constraints to reduce false positives at the minimum expense of false negatives via

a two-layer graph model. In the following sections, we present the graph model in detail.

3.1 Introduction

Background subtraction detects the moving objects (foreground) that are significantly differ-

ent from the background where motion can be incorporated with appearance in background

modelling to provide higher discriminative power. Motion inaccuracies can deteriorate the

performance of background subtraction when motion estimate is incorrectly large for a

background pixel leading to a false detection or when motion estimate is incorrectly small

for a foreground pixel which may become a miss-detection. Image registration is necessary

for compensating the camera motion so that conventional background subtraction can be

performed. Yet perfect registration is not trivial and misaligned pixels may turn out to be

false detections when they are compared to unmatched background models. As these two

types of outliers tend not to co-occur simultaneously, background subtraction approaches

that marginally model appearance and motion cues can reduce many false positive fore-

ground pixels committed by approaches that jointly model these two cues. Yet this decision

rule might be conservative towards the foreground pixels and give rise to false negatives

when foreground pixels look similar to background or move slowly. This classification pro-

cedure can be implemented as two one-layer graph models, one of which models appear-
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Figure 3.1: The main steps of our approach

ance, the other models motion, and thus the detection result can be achieved by anding the

graphs’ labelling solved by graph cuts. Yet this decision rule might be conservative towards

the foreground pixels as it consider pixels individually, and give rise to false negatives when

foreground pixels look similar to background or move slowly. In fact, labelling from the two

graphs should satisfy some topological constraints. Intuitively, a pixel should achieve iden-

tical labels from the perspective of both appearance and motion. Moreover, neighbouring

pixels should also share the same label if they are similar to each other. These constraints

should also be considered when labelling pixels. Instead of building two one-layer graph

models, we exploit the marginal probabilities of appearance and motion via a two-layer

graph model where two types of spatial constraints are imposed to reduce false positives

at the minimum expense of false negatives. The main steps of our approach include: image

registration, background modelling, graph construction and graph cut (Figure 3.1).

3.2 Image Registration

Image registration is the process of estimating an optimal transformation between two im-

ages, where a transformation can be rigid or non-rigid. Particularly, for a pinhole camera

model, an image can be registered to another through a homography matrix H if any of the

two cases is satisfied:

• the optical centre does not move (pure rotation and possibly change of camera set-

tings), or

• the viewed scene is planar.

H can be estimated as similarity transformation, affine transformation, projective trans-

formation, etc., in terms of the degrees of freedom that are considered. Considering model

complexity and accuracy, affine transformation which considers rotation, translation and

scale change, is often used as a satisfactory approximation of the projective camera model,
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provided that the background can be well approximated by a plane or where the camera

motion is restricted to pan, tilt, or zoom, i.e., camera movements without change of optical

centre. In our experiments, the camera is hinged at a fixed point, and thus we use affine

transformation model to spatially register the images (and also the background models) .

Feature-based image registration is used widely to estimate the homography H by es-

tablishing a correspondence between a number of especially distinct points in images. A

transformation is determined to map the target image (the previous frame) to the reference

image (the current frame) based on the correspondence between a number of points in

images. Here, the feature correspondences can be extracted by Kanade Lucas Tomasi

(KLT) tracker which estimates the motion of a feature iteratively. KLT derives from two as-

sumptions: one is the brightness constancy constraint, i.e., the brightness does not change

a lot within a period of time; the other is common motion heuristic, i.e., neighbouring pix-

els move with the same speed. As features can be mismatched if the iterative framework

falls into a local solution due to clutters in the appearance, cross-cutting trajectories and

scene parallax, we apply RANSAC to determine a set of inliers so that the homography can

then be estimated in an optimal fashion from these matched feature correspondences. The

mapping function is constructed with the selected feature correspondences and the target

frame is transformed through the estimated H and overlaid over the reference image with

interpolation methods such as nearest neighbour function. A simple example of feature

based image registration is illustrated in Figure 3.2.

Perfect image registration is not trivial and pixel misalignment is generated from two

perspectives. One is the parallax problem due to depth variance, i.e., an apparent dis-

placement of difference of orientation of an object viewed along two different lines of sight.

Nearby objects have a larger parallax than further objects when observed from different po-

sitions, thus a rigid transformation is inappropriate to compensate displacements in terms

of different depths yet a non-rigid transformation needs heavy computation which may be

impractical in real-time. Another reason that gives rise to pixel misalignment comes from

the assumption of the interpolation process, i.e., the smoothness of the neighbourhood

pixels, which does not hold on the edges or object boundaries. The consequence is that

the misaligned pixels are compared to the unmatched background model resulting in false

detections. A further refinement after image registration can reduce small misalignments

(here we use nearest neighbour search to locate the most matched background model),

even though, it is not effective when the camera keeps moving.
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(a)

(b)

Figure 3.2: Feature-based global image registration by applying Kanade-Lucas-Tomasi
Tracker for tracking detected features (features matching) and RANSAC to reduce the fea-
tures that are outliers. (a) Left: the target frame. Right: the reference frame which is shifted
to the right. (b) Matched feature points. Green rectangle: the location of the target frame
in the reference frame.
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3.3 Background Modelling

Background modelling here includes the initialization and maintenance of appearance model

and motion model which will be discussed in detail in the following sections.

3.3.1 Appearance Model

The basic principle of background subtraction is to compare the background model with the

current frame in order to detect regions referred to as the foreground where a significant

difference occurs. Generally, most background subtraction approaches build a background

model based on a sequence of frames. It makes sense from a statistical point of view that

the temporal distribution of the background pixels is a good estimation of the background

model. Yet constructing the background model temporally does not satisfy the need of

quick initialization and quick object detection in the new field of view when the camera

moves. Meanwhile, pixels are considered independently for maintaining and updating their

background models based on the observations. Thus individual pixels affected by pertur-

bations, e.g., lens distortion, are easily misclassified. In return, these approaches heavily

rely on the post-processing algorithms to clean up these misclassifications. Instead, neigh-

bouring pixels belonging to the same cluster should follow similar variations over time,

and thus background subtraction algorithms should also consider the spatial information of

neighbouring pixels.

VIsual Backgorund Extractor(ViBe)

VIsual Background Extractor (ViBe) is a universal non-parametric background subtraction

technique that has a quick initialization of background model and high resilience to noises

by exploiting the spatial distribution of pixels. The idea of ViBe comes from an assumption

that the neighbouring pixels share a similar temporal distribution which has been proved in

[23]. Particularly, ViBe substitutes the estimation of temporal distribution with the estimation

of spatial distribution which enables it to initialize the background model within one frame.

• Background Model Initialization

To be more specific, the temporal distribution of the background model for each pixel

can be approximated by sampling from its neighbourhoods in the first frame, i.e.,

its background can be modelled non-parametrically with a sets of samples collected

from its neighbourhoods. Mathematically, the background model of pixel p can be

formulated as:

Bp = {sj |j ∈ NG(p)} (3.1)

where NG(p) defines the neighbourhood of p.
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Figure 3.3: Background/Foreground Classification with ViBe

Compared to parametric approaches that rely on probability density functions (pdfs)

or statistical parameters, ViBe does not require a statistical estimation of the pdfs as it

is a sample-based approach and it is free from the problem of finding an appropriate

shape for the pdfs which might be sensitive to outliers.

• Background/Foreground Classification

Normally, pixel p, with its appearance Ip (here we use the RGB colour space) can

be classified as background if the probability of belonging to background is high. In

ViBe, this probability can be measured as the number of votes that Ip is close to its

collection of background samples Bp. To be more specific, the label of p depends on

whether the number of its background samples that are within a distance R to Ip is

larger than or equal to a given threshold ♯min (Figure 3.3). Mathematically, the label

fp (BG or FG, which are the abbreviations of background and foreground) can be

determined by:

fp =


BG, ♯{|sj − Ip| < R | j ∈ NG(p)} > ♯min

FG, otherwise (3.2)

The accuracy of the ViBe model is determined by two parameters only: ♯min and R.

With the assumptions that a) there is no moving object in the field of view when ini-

tializing the background model, b) only background pixels should populate the back-

ground model and c) the spatial distribution collected from its neighbourhoods simu-

lates the temporal distribution, the underlying idea is that it is more reliable to estimate

the statistical distribution of a background pixel with a small number of close values

than a large number of samples. The closeness can be measured by the distance

threshold R and the confidence can be measured as ♯min in a sense of voting.

• Background Model Maintenance
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Figure 3.4: Background Model Update Scheme of ViBe

Updating the background model is a crucial step to adapt to lighting changes and

handle new objects that appear in the scene. The update scheme should extend

the time window covered by the background models and ensure the spatial consis-

tency by propagating background samples spatially. Here ViBe adopts a memoryless

update policy.

Put it simply, the update scheme of ViBe includes time subsampling and spatial sub-

sampling. Time subsampling extends the size of the time window covered by a pixel

model of a fixed size by randomly replacing one of the background samples for pixel

p with its observation Ip in the current frame. Spatial subsampling maintains the

spatial consistency of the background model by randomly replacing one of the back-

ground sample for pixel p with one of its neighbourhoods which is selected randomly

(Figure 3.4).

Usage of ViBe in Our Graph Model

To initialize the background model, we borrow the idea of ViBe benefiting from its quick

background model initialization and low time complexity. Instead of classifying pixels by

comparing the observation and the background model which might not be good at dealing

with inaccuracies of image registration, we leave the classification to graph cut which can

integrate appearance and motion cues and incorporate some topological constraints to

refine the segmentation. In appearance layer which evaluates the appearance model, we

compute the confidence of belonging to its background as the similarity of pixel p to its

closest background sample. Mathematically, Pr(Ip|BG) is defined as:

Pr(Ip|BG) = max
sj∈Bp

exp(− (Ip − sj)
2

2R2
) (3.3)

Thus we can compute the probability of a pixel belonging to foreground in the appear-
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ance layer as Pr(Ip|FG):

Pr(Ip|FG) = 1− Pr(Ip|BG) (3.4)

The background model is updated using the same mechanic of ViBe.

3.3.2 Motion Modelling

In the motion layer, a background pixel should be static after compensating the camera

motion, while a foreground pixel, i.e., a pixel belonging to a moving object, has a non-zero

motion. Considering the noise of motion estimation, the background motion model can be

formulated as Gaussian distribution N (mi;0,Σ) with mean 0 and the covariance matrix Σ.

For computational reason, the covariance matrix is assumed to be of the form:

Σ = σ2I (3.5)

This assumes that the noises from x and y directions are independent and have the same

variances.

Thus in the motion layer, given the motion mp of pixel p, we can evaluate the probability

belonging to background Pr(mp|BG) and that belonging to foreground Pr(mp|FG) as:

Pr(mp|BG) ∼ N (mp;0,Σ), (3.6)

Pr(mp|FG) = 1−N (mp;0,Σ) (3.7)

To approximate the motion field, we compute the dense optical flow for each pixel after

compensating the camera motion. Given two frames I0 and I1 which are registered on the

same coordinate system, the objective of optical flow estimation is to find the motion field

m such that the image-based error after shifting I0 with m can be minimized together with

a regularization force. Formally, m can be solved by minimizing

min
m


Ω

{λ|(I0(x)− I1(x+m(x))|+ |m|} dx (3.8)

where λ|(I0(x)− I1(x+m(x)| is the image data fidelity, and |m| depicts the regularization

term. λ balances the weights between the data fidelity and the regularization force.

The pixel-wise optical flow can be computed through TV-L1 flow algorithm [54] based

on total variation (TV) regularization and the robust L1 norm in the data fidelity term, which

can preserve discontinuities in the flow field and offer an increased robustness against

illumination changes, occlusions and noises. This method results in an efficient numerical

scheme which is based on a dual formulation of the TV energy and which can be speeded

up by graphics processing units (GPU).

Even though, perfect optical flow estimate is not trivial and it can be affected by camera

noises, quantization noise, weak texture, reflections and illumination changes. Meanwhile,
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in the case of a pan-tilt camera, the estimation computed based on the current frame and

the warped frame, can also be affected by pixel misalignment ending up with imprecise

motion estimation on the misaligned pixels. Inaccurate motion estimation generates false

positives and false negatives. In the first case, the motion estimate of background pixels

may be imprecisely large (e.g., blue dots along x axis with values much larger than zero

in Figure 1.2 (c)) which might be excluded from the decision boundary and turn out to be

false detections. In the second case, miss detections happen when the motion estimate of

foreground pixels are imprecisely small (e.g., some red dots with motion estimate close to

zero in Figure 1.2 (c)) and thus might be falsely labeled as background pixels.

3.4 Graph Construction and Graph Cuts

In Section 3.4.1, we introduce the graph cut algorithm. We then define our graph model in

detail in Section 3.4.2.

3.4.1 Graph Cuts Algorithm

Background subtraction can be solved by graph cuts efficiently and effectively which not

only consider regional properties, i.e., the individual penalties for assigning pixel p to fore-

ground and background, but also integrate some topological constraints, e.g., spatial con-

straints or temporal constraints. The latter property is of great importance to reduce false

labelling on those individual pixels that are affected by noises. Graph cut approaches are

robust and reliable as they provide global optimal solutions. Furthermore, graph cuts can

also be applied to solve N-D problems [6].

Mathematically, both the regional properties and the topological constraints can be

encoded in an energy function E(f) which combines of the data term Edata(f) and the

smoothness term Esmooth(f),

E(f) = Edata(f) + Esmooth(f) (3.9)

where labelling f = {fp|p ∈ P} defines a segmentation for an arbitrary set of data elements

(pixels or voxels) P.

The data term Edata defines the individual penalties of assigning pixel p to either fore-

ground (FG) or background (BG) and can be modelled as the negative log-likelihoods of

given foreground and background models. Esmooth captures the ”boundary” properties in-

terpreted as the penalties for discontinuity between neighbouring pixels where a variety of

topological constraints can be imposed. Such energy minimization problems can be fur-

ther formulated into a maximum flow problem in a graph which can be solved efficiently by

graph cuts.
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Suppose G = (V, E) is an undirected graph with a set of nodes V and a set of undi-

rected edges L. Each pixel in the image corresponds to a node in the graph and there are

two more special vertices (terminals), namely, the source s and the sink t. In the back-

ground subtraction problem, s is usually referred to as the foreground terminal and t the

background terminal. The set of edges E consist of two types of undirected edges: n-links,

i.e., links connecting neighbouring pixels, and t-links, i.e., links connecting to the terminals.

Each node p has two t-links {p, s}, {p, t}, with non-negative costs, which encode the re-

gional bias, representing dissimilarity to the corresponding foreground/background model.

Each pair of neighbouring nodes p, q are connected by an n-link encoding the topological

constraints. Usually, spatial constraint is imposed here assuming that similar neighbour-

hoods should be assigned with the same label. In this way, n-link is given the weight

defined in terms of the similarity of neighbouring pixels.

Graph cut is applied here to find a cut C with the smallest cost, which is equivalent to

computing the maximum flow from the source to the sink. Such a cut C defines a partition

that segments P to two disjoint sets S and T such that S is referred to as background

cluster while T as the foreground cluster (Figure 2.4).

3.4.2 A Two-layer Graph Model

To incorporate motion information and appearance information, we define a two-layer graph

which is robust towards two types of outliers illustrated in Figure 1.2.

To be more specific, given a set of pixels P, we construct a two-layer graph G = {V, E}

with a set of nodes V and a set of undirected edges E (Figure 3.5). Each pixel p in P is

mapped to two corresponding nodes in the graph, one (green node) in the appearance

layer La and the other (blue node) in the motion layer Lm. In this graph, E consists of

two types of undirected weighted edges: a) t-links (red and black edges) which connect

each node in two layers to the terminals, S and T , encode the regional properties, i.e.,

how pixels fit into the appearance model / motion model, b) n-links, consist of two types of

edges, each of which encodes one topological constraint that will be discussed later. The

first type of edges connect neighbouring nodes in each layer (blue and green edges), while

the second type of edges connect two corresponding nodes in two layers (purple edges).

Given a labelling f over the two-layer graph model, the final labelling would be achieved by

anding the labels of corresponding nodes in two layers.

As we have two layers in the graph, Edata(f) now composes of two summation terms,

i.e.,

Edata(f) =

p∈La

Da
p(fp) +


p∈Lm

Dm
p (fp) (3.10)
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Figure 3.5: The two-layer graph model of our proposed approach.

Da
p(fp), which corresponds to the weight of a t-link in appearance layer, estimates the

regional bias of the given appearance model in ratio of the negative log-likelihoods which

is originally motivated by the MAP-Markov Random Field formulation, while Dm
p (fp) corre-

sponding to the weight of a t-link in motion layer, is defined in a similar fashion in terms of

the motion model.

In our graph model, we consider two types of constraints: label consistency constraint

and spatial coherence constraint.

• Label consistency constraint

This constraint implies that the labels of two corresponding nodes in two layers should

be identical. Intuitively, the appearance of foreground should be different from the

learned background appearance model according to the assumption of background

subtraction. Meanwhile, the moving objects have their own motion patterns which

also deviate significantly from the background. Label consistency constraint is also

satisfied for a background pixel which is similar to its background appearance model

and whose motion is small compared to moving objects after image registration. To

impose label consistency constraint, we connect each node in each layer with its

spatial neighbourhoods in the other layer by vertical links. In this thesis, we use five-

connected neighbourhoods, i.e., each node in one layer is connected to the node

in the same position and nodes that are spatially on the left, right, up and down

from the other layer . For simplicity, in Figure 3.5, we only illustrate the vertical con-

nections but not the connections to other spatial neighbourhoods. A large constant
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weight τ is given to these vertical links to prevent a cut through these links so that the

corresponding nodes receive the same label. One advantage of label consistency

constraint is that we can lower the chance of miss-detections. Two-layer graph model

without label consistency constraint will increase miss-detections caused by either

small motion or insignificant appearance difference to background model. Imposing

label consistency constraint can push a cut to group the two corresponding nodes to

the foreground cluster if the other cue has a strong confidence to be foreground, in

return, maintaining a high recall.

• Spatial coherence constraint

This constraint derives from the pairwise Markov property, i.e., a variable is condi-

tionally independent of all other variables given its neighbours. In graph cut, it can be

interpreted as any two neighbouring pixels with high similarity should keep the same

label while the discontinuity should be preserved. As we have two layers, the spatial

coherence constraint can be measured in terms of the similarity of two neighbouring

pixels with respect to its appearance in La or its motion in Lm and imposed through

n-links. Imposing spatial coherence constraint can smooth out the noises caused by

small pixel misalignment and motion inaccuracies, thus in return, maintaining a high

precision.

In the two-layer graph model, the smoothness term can be extended as:

Esmooth(f) =


p,q∈Na

V a
p,q(fp, fq) +


p,q∈Nm

V m
p,q(fp, fq) +


p,q∈Na,m

V a,m
p,q (fp, fq) (3.11)

The first two terms encode spatial coherence constraint which is imposed through n-

links while the last term encodes label consistency constraint which is imposed through

vertical links. N a,Nm,N a,m contain unordered pairs of neighbouring nodes in La, Lm,

and between two layers respectively.

In a word, the weights of edges in E are summarized in Table 1, where σa and σm are

two constants, dist(p, q) defines the distance between p and q, δfp ̸=fq is a delta function

which returns 1 if fp ̸= fq, otherwise 0 if fp = fq.

3.5 Summary

In this Chapter, we introduce a background subtraction method which is robust to outliers

of appearance and motion cues while maintaining high recall. A two-layer graph model
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Table 3.1: Weights definition of the edges in the two-layer graph model G

edge notation weight(cost)

{p, S} Da
p(fp = BG) − lnPr(Ip|BG)

Dm
p (fp = BG) − lnPr(mp|BG)

{p, T} Da
p(fp = FG) − lnPr(Ip|FG)

Dm
p (fp = FG) − lnPr(mp|FG)

{p, q}
V a
p,q(fp, fq) e

− (Ip−Iq)2

2σ2
a dist(p, q)δfp ̸=fq

V m
p,q(fp, fq) e

− (mp−mq)2

2σ2
m dist(p, q)δfp ̸=fq

V a,m
p,q (fp, fq) τδfp ̸=fq

is proposed with one layer evaluating the appearance model and one layer evaluating the

motion model. Each pixel is mapped to two corresponding nodes, one in each layer, thus

the evaluation of belonging to background/foreground in terms of appearance and motion

cues can be exploited individually. This graph model can be solved efficiently by graph

cut algorithms. The final labelling can be achieved by anding the results from two layers

based on the assumption that foreground should be different from background with respect

to both appearance and motion. This strategy can effectively reduce the outliers caused

by pixel misalignment and motion inaccuracies. To reduce false detections at the minimum

expense of miss detections, we consider two types of constraints. One is label consis-

tency constraint by introducing a vertical n-link between the spatial neighbouring nodes of

the two layers, inferring the labelling in two layers should be identical; the other is spatial

coherence constraint by adding edges between neighbouring pixels within each layer, in-

ferring that the labels of similar neighbouring pixels should be the same. The background

appearance model can be built within one frame by substituting temporal distribution of

spatial distribution which enables it to detect objects immediately when the camera moves

to a new position. The background/foreground motion model can be built assuming that

the background motion is zero after compensating the camera motion. To demonstrate the

effectiveness of our approach and the usefulness of the imposed constraints, experimental

results on comparing different state-of-the-art background subtraction methods are shown

quantitively and qualitatively in Chapter 4.
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Chapter 4

Experimental Results and
Discussion

In this chapter, we conduct three sets of experiment. The first set of experiment is to

evaluate the importance of motion cue when applying background subtraction in a moving

platform via comparing the performance of [40] and [56]. Both use GMM to model back-

ground, the difference is that [40] only relies on appearance cue while [56] incorporates

motion cue to filter out the appearance outliers. [56] and our approach derive from the

same assumption that the foreground objects should be different from the background in

terms of both appearance and motion cues and the rest should be the background. Yet as

we discussed in chapter 2 through a simple example, [56] only considers pixels individually

thus may result in false negatives. Different from [56], our approach concerns the spatial

information of neighbouring pixels and also the constraints existing in corresponding pixel

labels in terms of motion and appearance via a two-layer graph model. The second set

of experiment is to evaluate the effectiveness of these spatial constraints we impose to re-

duce false negatives while maintaining high recall. The last set of experiment is to illustrate

which way is better to exploit motion and appearance cues in background modelling, either

jointly ([18]) or marginally (our approach). The implementation of our approach which runs

in real-time, uses the GPU and the NVIDIA CUDA framework.

Six competing video sequences with resolution of 240 × 320 at 30 frames per second

were used in order to analyze the performance of the background subtraction approaches

in different environments. These six video sequences can be divided into two categories:

three video sequences are taken outdoors and the other are taken indoors. Among these

six video sequences, two outdoor sequences are from [3], and the rest are taken from a

pan-tilt-zoom camera (AXIS Q6034-e PTZ Dome Network Camera) at a fixed point.

The detection results are presented qualitatively and quantitatively. The parameters

for each algorithm were determined experimentally. For each sequence, several repre-

sentative frames, the ground truth and detection results produced by each algorithm are
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presented. The detection results are shown as black and white images where white pixels

represent foreground objects while black pixels represent background. The performance

of each approach is also evaluated quantitatively using a) the traditional pixel wise evalu-

ation metrics (precision, recall, F-measure) which are used commonly in evaluating back-

ground subtraction approaches and b) the component-based evaluation metrics which are

designed from the perspective of object detection, here we use the correct detection rate,

miss detection rate and false alarm rate defined in [34]. The extensive experiments show

that our solution is superior to the competing background subtraction algorithms designed

for dealing with a pan-tilt camera.

Section 4.1 overviews the video sequences we use. In Section 4.2, we will introduce the

evaluation metrics. A brief introduction of the state-of-the-art algorithms that we compare

with is given in Section 4.3. The qualitative detection results of the three set of experiments

are shown in Section 4.4 while the quantitative evaluations are illustrated in Section 4.5.

4.1 Datasets

Six video sequences involving camera panning and tilting (with three from outdoors and

three from indoors) are used to evaluate the performance of our approach. The first two

outdoor sequences are used in [3] while the rest are captured by the AXIS camera which is

mounted in our lab. The frame rate of all of the three sequences is 30 frames per second.

4.1.1 Outdoors Sequences

The first two sequences show a person walking along a terrace house captured by a tripod-

mounted camera. The camera pans to the left in these two sequences while the person

moves in different directions. The third sequence involves both panning and tilting move-

ments which may result in depth variations in the field of view which is more challenging

than the previous two sequences. Meanwhile, as the sequence was captured in a snowy

weather leading to some untextured area in the camera view, it is more difficult to register

images correctly, i.e., the detection of this sequence is more vulnerable to pixel misalign-

ment and inaccurate motion estimate (Figure 4.1).

4.1.2 Indoors Sequences

These three indoor sequences are captured with a pan-tilt-zoom camera mounted in our lab

which moves under the same focal length with different speeds and different angles, mean-

while, the lighting conditions are also different. The background in these three sequences is

complicated where image registration may be fragile to align those edges properly, mean-

while, the depth variation of background objects due to camera movements also gives rise
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(a) Outdoor Sequence 1

(b) Outdoor Sequence 2

(c) Outdoor Sequence 3

(d) Indoor Sequence 1

(e) Indoor Sequence 2

(f) Indoor Sequence 3

Figure 4.1: The datasets used for evaluation
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to pixel misalignment (Figure 4.1).

4.2 Evaluation Metrics

In this thesis, we use two types of measurements to evaluate the performance of different

approaches, one defines in pixel-level, the other in component-level.

The first type of evaluation metrics defined in pixel level is the most direct measure

which is used often to evaluate the performance of background subtraction approaches,

including precision, recall and F-measure. They are defined as follows:

Precision =
♯TruePositives

♯TruePositives+ ♯FalsePositives
(4.1)

Recall =
♯TruePositives

♯TruePositives+ ♯FalseNegatives
(4.2)

F −measure = 2 · Precision ·Recall

Precision+Recall
(4.3)

These evaluation metrics measure the accuracy of the approach at the pixel level, how-

ever, in some cases, people are not interested in the detection of point targets but object

regions instead. Thus, we also use the object-based evaluation metrics proposed in [34].

To be more specific, we consider three cases mentioned in [34] which are shown as follows:

• Correct Detection (CD) or 1-1 match: the detected region corresponds to one and

only one ground truth region.

• False Alarm (FA): the detected region has no correspondence in the ground truth.

• Detection Failure (DF): the ground truth region is not detected.

According to the definitions, we need to determine the correspondence of the fore-

ground region in the detection result and in the ground truth, i.e., whether the foreground

region in the ground truth is matched with the segmentation. Based on the correspon-

dences, we can evaluate a selected approach in terms of the correct detection rate, the

false alarm rate and the detection failure rate.

Object matching can be defined by a binary correspondence matrix Ct that describes

the correspondence of the detected components and the ground truth. The match can be

determined by the overlap between the detected region and the ground truth region. Let us

assume that we have N ground truth regions Ri and M detection regions Rj . Under these

conditions Ct is a N ×M matrix, defined as follows

Ct(i, j) =

 1, if ♯( Ri


Rj)

♯( Ri


Rj)
> T

0, if ♯( Ri


Rj)

♯( Ri


Rj)
< T

∀i∈{1,...,N},j∈{1,...,M} (4.4)

37



where T is a threshold determining whether two regions are matched in terms of their

overlap area.

According to the definition of correct detection, a correct detection event is associated

to a one-to-one match between the ith ground truth region and the jth detected region

if and only if C(i, j) = 1. No other detected region is matched to the same ground truth

region (otherwise indicating that the ground truth region is split in the detection) and no

other ground truth region is matched to the same detected region (otherwise indicating the

detected regions are merged). A false alarm event is associated to a detected region Rj if

no match can be found in the ground truth regions. Respectively, a detection failure event

corresponds to a ground truth region Ri if no detected region is matched to it. The three

events can be defined mathematically with two auxiliary vectors shown as follows

L(i) =

M
j=1

C(i, j) i ∈ {1, ..., N} (4.5)

C(i) =

N
j=1

C(i, j) i ∈ {1, ...,M} (4.6)

CD ∃i : L(i) = C(j) = 1 ∧ C(i, j) = 1,

FA ∃i : C(j) = 0

DF ∃i : L(i) = 0

(4.7)

The region-based measures described here depends on an overlap requirement T be-

tween the region of the ground truth and the detected region. A higher T indicates a more

conservative evaluation rule. Here we set T = 10% as [34] does.

In the evaluation, we use the percentage of each event for comparison. The percentage

of correct detection, detection failures were obtained by normalizing the number of each

type of event by the total number of moving objects in the whole sequence. The percentage

of false alarms which is a number in the range 0-100% is defined by normalizing the number

of false alarms by the total number of detected objects.

4.3 Approaches for Comparison

Our approach is compared to three state-of-the-art methods: [40], [18] and [56].

[40] proposes an improved GMM algorithm to deal with the outliers from image registra-

tion. The key idea is that the matched background model should exist in neighbourhoods,

and thus a local search can locate the matched background model. A spatial distribution

of Gaussians model is proposed to deal with moving object detection where the motion

compensation is not exact but approximated. To be more specific, instead of comparing

a pixel p with its mapped background model, [40] seeks a matched background model
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among its neighbourhood which is effective to rectify small misalignment in image registra-

tion. However, as we will see later, the performance is sensitive to the size of the defined

local region.

[56] observed that the motion information can be used for reducing the noises gener-

ated from appearance-based approaches. The intuition is that only those detected pixels

sharing large motion magnitude can be considered as foreground otherwise they should

be the background pixels. Here motion is used for post-processing, to filter out those de-

tected blobs that do not move. In other words, motion and appearance cues are exploited

separately. Theoretically, [56] can be approximated by evaluating the marginal probabilities

of appearance and motion cues in background modelling, which can be implemented as a

two-layer graph model without spatial constraints.

[18] incorporates motion cue and appearance cue through a Markov Random Field

(MRF) graphical model where spatial constraints can be imposed for further refinement on

the segmentation. To be more specific, a Gaussian kernel function is proposed to combine

these two cues with a trade-off weight λ to balance their contributions. Formally, given the

appearance observation Ip, the motion estimate mp, and the background model which is

composed of a few background samples Bi(p), i = 1..n at pixel p, the Gaussian kernel

function in terms of background is defined as:

FB(p) =

n
i=1

Bi(p).ω · exp−
∥Ip−Bi(p).a∥2+λ∥mp−Bi(p).m∥2

2σ2 (4.8)

Each background sample contains two components, i.e., the appearance component

Bi(p).a and the motion component Bi(p).m in x and y directions, which are collected from

the first n consecutive frames. The importance of each background sample is measured

by Bi(p).ω, which can be computed in terms of the sample’s contribution to the Gaussian

kernel function. The segmentation is obtained by applying graph cut on a Markov Random

Field (MRF) graphical model where the input is the pixel-wise score map computed from

the Gaussian kernel function.

As [18] models both appearance and motion jointly, it could be vulnerable to the inac-

curacies from these two cues, and thus, may contribute to false positives.

4.4 Qualitative Results

In this section, we illustrate the performance of different background subtraction algorithms

qualitatively of those three sets of experiments. Table 4.2 - Table 4.7 show the detection

results over outdoors and indoors sequences. Six representative frames are selected from

each sequence and shown in each table followed by their ground truths (GT). The results

produced by background subtraction using appearance only ([40]), background subtraction
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Appearance Motion Marginally
modelled

Jointly mod-
elled

Spatial
Constraints

GIR [40] Y
MBGS [56] Y Y Y
JBGS [18] Y Y Y Y
Ours Y Y Y Y

Table 4.1: Summarization of our approach and three other approaches for comparison.
”Marginally modelled” and ”Jointly modelled” refer to as the two ways of incorporating ap-
pearance cue and motion cue in background modelling.

of evaluating marginal probabilities of appearance and motion without considering spatial

information ([56]), or evaluating the joint distribution of these two cues in an MRF framework

([18]) are illustrated in row four to six with the abbreviations GIR, MBGS, JBGS respectively.

The performance of our approach is shown in the last row. Table 4.1 summarizes the

characteristics in each method.

4.4.1 Ex.1 - Appearance Only vs Appearance and Motion

Here, we compare the performance of [40] which only considers appearance cue and that

of [56] which combines appearance and motion cues, i.e., modelling background with ap-

pearance and filtering out the noises with the use of motion cue (row ”GIR” and row ”MBGS”

in Table 4.2 to Table 4.7). Several conclusions can be made from the detection results:

• Combining motion information is useful to reduce false positives caused by the

outliers from image registration. From the detection results of the six sequences,

the spatial distributed Gaussian models proposed in [40] by searching among local

neighbourhoods for matched background model may fail to label those misaligned

pixels correctly. In fact, the performance of [40] heavily depends on the size of search-

ing region. A small searching region will lower the chance of locating the match

background model and thus increasing false positives while a large searching region

will lead to high computation. The performance is worse when dealing with complex

background where lots of edges occur (Table 4.5 to Table 4.7). Combining motion

information, on the other hand, can effectively and robustly reduce these outliers as

their motion is usually separable from foreground pixels.

• Combining two cues separately without considering spatial constraints is con-

servative with respect to the foreground pixels. Accurate motion estimation through

dense optical flow algorithm is not trivial, i.e., the motion estimate of static background

pixels could be incorrectly large or that of moving objects could be incorrectly small.

The first case would possibly not affect the performance as pixel misalignment and
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inaccurate motion estimate tend not to occur simultaneously, while the second case

may increase the false negatives, i.e., labelling foreground pixels as background due

to their small motion estimate. The detection results in the row of ”MBGS” from

Table 4.2 to Table 4.7 where some pixels are usually mis-detected in the detected

objects also demonstrate that the strategy of [56] may be too conservative.

4.4.2 Ex.2 - Importance of Spatial Constraints: with vs without

To illustrate the importance of spatial constraints, we conduct the experiment of comparing

[56] and our approach (row ”MBGS” and row ”Ours”). Both methods evaluate the marginal

probabilities of appearance and motion cues, yet our approach takes two types of spatial

constraints into account while [56] considers pixels individually. From the detection results,

our approach can detect the moving objects with better silhouette and fewer holes, i.e.,

fewer false negatives.

More true positives pixels can be retrieved through imposing the two types of spatial

constraints we define in Chapter 3. More specifically, label consistency constraint imposed

through the high-cost vertical links can prevent a cut through the connection of two corre-

sponding nodes, thus the same label can be given to these two nodes depending on their

higher confidence of either labelling as foreground or background. This constraint can re-

duce the false negatives whose motion might be small but largely different from background

appearance, or whose appearance is similar to background but who are actually moving.

Spatial coherence constraint, can prevent a cut through similar neighbouring pixels which

should share similar labels while preserving discontinuities by defining weights based on

the similarities of the neighbouring pixels in terms of appearance layer and motion layer.

Some false positives may be generated but, from Table 4.2 to Table 4.7, these constraints

have much improved the recall at the minimum expense of precision.

4.4.3 Ex.3 - Modelling Appearance and Motion: Jointly vs Marginally

This set of experiment involves the comparison of background modelling with appearance

and motion cues jointly (row ”JBGS”, [18]) and our approach (row ”Ours”), which eval-

uates the marginal their statistical models separately. Both approaches consider spatial

constraints through an MRF framework which is solved by graph cut algorithm, and the

difference is the way of modelling appearance cue and motion cue: either jointly or sepa-

rately.

Modelling motion and appearance jointly may be more sensitive to the outliers from

appearance cue and motion cue than modelling them marginally.

• Modelling appearance and motion cues jointly is vulnerable to the inaccuracies
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(a) Frame 155th (b) Motion Magnitude

(c) Registration Error (d) Performance in [18]

Figure 4.2: Illustration of the motion field of Frame 155th in outdoor sequence 1.

of motion estimate.

Motion estimate in the pixel domain may be unreliable because of the lack of the

edge information, especially in untextured regions. Thus the inaccuracies in motion

estimate will cause a bias in the Gaussian kernel estimation, which may produce

false positives if the background motion estimate is incorrectly large (Table 4.2, frame

155th, 591st and 811st, Table 4.4 frame 181st) or false negatives if the foreground

motion estimate is incorrectly small. Here a detailed explanation is given based on

the frame 155th in Table 4.2. The pixel wise motion magnitude is shown in Figure 4.2,

where the whiter the appearance, the larger the motion magnitude. We notice that the

motion magnitude on the bottom right corner is comparable to walking person as they

share similar appearance. However as we can see, this region is only part of the grass

field, it should be static as other grass region does not move. Meanwhile from the

image difference between the current frame and the wrapped frame (Figure 4.2(c)),

we know that this region can be registered well using the KLT+RANSAC registration

method, i.e., these false alarms are not produced by registration error. Thus, we can

guess that these false alarms in Figure 4.2(d) result from the inaccuracies of motion

estimate.

• Modelling appearance and motion cues jointly is vulnerable to the inaccuracies
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from appearance cue.

These inaccuracies may come from reflection (Table 4.2, frame 1063rd), or pixel mis-

alignments (Table 4.2 frame 221st, Table 4.3 frame 362nd, Table 4.4 frame 214th,

Tabel 4.5 frame 345th).

As one cue can help rectify the error brought by the other cue, the performance can be

improved by tuning the parameter λ of these two cues in the Gaussian kernels. However, it

is hard to find a suitable λ to fit all of the situations. Our approach instead, is robust to these

outliers by modelling appearance and motion cues separately, meanwhile, it can suppress

the false negatives by considering the spatial information compared to [56].

4.5 Quantitative Results

In this section, we give the quantitative evaluation over the six video sequences (Table 4.8

to Table 4.13) at both the pixel level using precision, recall, and F-measure, and at the

object level using correct detection (CD), false alarms (FA), and detection failure (DF).

First of all, in the pixel level evaluation, our algorithm enjoys similar recall compared to

those competing approaches but a high precision which indicates much fewer false posi-

tives and thus a significant higher F-measure value. Second, in the component level evalu-

ation, our approach shares similar correct detection (CD) rate, which is similar to recall but

at the component level, and similar detection failure (DF) rate, i.e., the number of moving

objects that our approach fails to detect. However, the false alarms (FA) rate is much lower

than other approaches.

4.6 Summary

In this chapter, experimental results comparing our approach and other three competing

background subtraction algorithms designed for a pan-tilt camera are presented. Experi-

ments are conducted on both outdoors sequences and indoors sequences, both of which

demonstrate that our approach outperforms among these algorithms and it is robust to

the outliers from inaccurate motion estimate and pixel misalignment when registering con-

secutive images. The result of comparing the appearance-based approaches with that of

incorporating motion and appearance demonstrates that, motion can provide higher dis-

criminative power than using appearance cue alone, which can improve the robustness to

the outliers from image registration, yet modelling motion and appearance cues jointly is

vulnerable towards these outliers from either cue, since these outliers may be introduced

into the joint kernel function, which will deteriorates its accuracy. Evaluating marginal prob-

abilities is useful to deal with the outliers and provides higher precision, yet the recall may
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ith 155th 221st 336th 591st 811st 1063rd

Img

GT

GIR

MBGS

JBGS

Ours

Table 4.2: Qualitative comparison on outdoor sequence 1.

be much lower since it may be overly conservative. The two types of spatial constraints we

consider in this thesis (label consistency constraint and spatial coherence constraint) can

alleviate this problem, and thus, by imposing these constraints through a two-layer graph

cut model which models appearance and motion separately in two layers can effectively

reduce the false positives at the minimum expense of miss detections.
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ith 125th 237th 272nd 305th 362nd 372th

Img

GT

GIR

MBGS

JBGS

Ours

Table 4.3: Qualitative comparison on outdoor sequence 2.
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ith 36th 74th 150th 181st 214th 250th

GT

GIR

MBGS

JBGS

Ours

Table 4.4: Qualitative comparison on outdoor sequence 3.
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ith 62nd 97th 191st 345th 505th 983th

Img

GT

GIR

MBGS

JBGS

Ours

Table 4.5: Qualitative comparison on indoor sequence 1.
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ith 61st 300th 359th 500th 588th 945th

Img

GT

GIR

MBGS

JBGS

Ours

Table 4.6: Qualitative comparison on indoor sequence 2.
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ith 61st 78th 98th 130th 167th 197th

Img

GT

GIR

MBGS

JBGS

Ours

Table 4.7: Qualitative comparison on indoor sequence 3.

Outdoor-1 Precision Recall F-
measure CD FA DF

GIR [40] 0.46 0.79 0.58 0.86 0.87 0.05
MBGS [56] 0.90 0.42 0.58 0.59 0.02 0.29
JBGS [18] 0.59 0.84 0.69 0.87 0.57 0.08
Ours 0.85 0.74 0.79 0.82 0.15 0.08

Table 4.8: Quantitative evaluation on outdoor sequence 1.

Outdoor-2 Precision Recall F-
measure CD FA DF

GIR [40] 0.33 0.93 0.49 0.95 0.97 0.03
MBGS [56] 0.91 0.70 0.79 0.39 0.03 0.50
JBGS [18] 0.66 0.93 0.77 0.92 0.64 0.05
Ours 0.87 0.88 0.88 0.88 0.27 0.07

Table 4.9: Quantitative evaluation on outdoor sequence 2.
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Outdoor-3 Precision Recall F-
measure CD FA DF

GIR [40] 0.18 0.78 0.29 0.65 0.90 0.40
MBGS [56] 0.68 0.77 0.72 0.64 0.48 0.07
JBGS [18] 0.29 0.77 0.42 0.60 0.89 0.21
Ours 0.85 0.93 0.89 0.80 0.24 0.20

Table 4.10: Quantitative evaluation on outdoor sequence 3.

Indoor-1 Precision Recall F-
measure CD FA DF

GIR [40] 0.55 0.72 0.63 0.75 0.86 0.15
MBGS [56] 0.94 0.52 0.67 0.44 0.08 0.45
JBGS [18] 0.33 0.93 0.49 0.98 0.93 0.01
Ours 0.90 0.76 0.83 0.86 0.18 0.07

Table 4.11: Quantitative evaluation on indoor sequence 1.

Indoor-2 Precision Recall F-
measure CD FA DF

GIR [40] 0.58 0.61 0.60 0.81 0.83 0.12
MBGS [56] 0.91 0.32 0.48 0.44 0.10 0.46
JBGS [18] 0.40 0.89 0.55 0.96 0.90 0.02
Ours 0.83 0.66 0.74 0.78 0.22 0.10

Table 4.12: Quantitative evaluation on indoor sequence 2.

Indoor-3 Precision Recall F-
measure CD FA DF

GIR [40] 0.50 0.58 0.54 0.42 0.53 0.39
MBGS [56] 0.96 0.59 0.73 0.43 0.06 0.34
JBGS [18] 0.31 0.95 0.47 0.94 0.93 0.03
Ours 0.91 0.75 0.83 0.78 0.22 0.09

Table 4.13: Quantitative evaluation on indoor sequence 3.
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Chapter 5

Conclusion and Future Work

In this thesis, we have presented a novel background subtraction algorithm incorporating

appearance and motion cues for detecting moving objects with a pan-tilt camera. The

observation that false positive detections due to pixel misalignment or inaccurate motion

estimate tend not to occur simultaneously motivates us to model the appearance and mo-

tion separately rather than jointly. Particularly, we evaluate the marginal statistical models

of appearance and motion via a two-layer graph - one layer for appearance model and one

for motion model where spatial information is considered by imposing label consistency

constraints and spatial coherence constraint. Our approach can be applied to detect both

large and small moving objects no matter the camera moves fast or slow, as long as the

two consecutive frames share sufficient overlap of the field of view, and it can detect the

moving objects instantly when the camera moves without a learning process for the new

background model. We should also mention that our method is implemented on GPU and

we have developed a real-time system to detect objects with a hinged pan-tilt camera.

We have demonstrated the effectiveness and the usefulness of our method through

extensive experiments. The comparison with three state-of-the-art background subtraction

approaches show that our method reduces most of the false positives produced by pixel

misalignment and inaccurate motion estimate at the minimum expense of false negatives.

Our approach can be applied to both indoors environment and outdoors environment, or

even high-textured environment which still maintains high precision and high recall with

few miss detections and false alarms. The GPU implementation allows our approach to

process each frame quickly, i.e., a real-time frame rate can be accessed, and thus the

pan-tilt camera can be moved smoothly towards the object of interest once it is detected.

Our future work includes the extension of our method to a hand-held camera. Up to now,

our method can be applied to any of the two cases: a) the optical centre of a camera does

not move, and b) the viewed scene is planar. These two cases enable us to simplify the

image registration by approximating it as affine transformation. However, this approximation

is not practical on a hand-held camera as the assumptions do not hold. It is important to
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relax the restriction and apply the proposed method on a hand-held camera as object

detection on such moving platforms is more and more important.

What’s more, another concern to improve the proposed approach is to improve its pre-

cision and recall of object detection when dealing with zoom-in/zoom-out movement of the

camera. Thus, once an object of interest is detected, the camera can zoom in to get a

closer look at the tracking object or zoom out if necessary, which will be very helpful in a lot

of applications.
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