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Abstract 

Hybrid magnetic resonance imaging (MRI) and radiation therapy devices are capable of imaging 

in real-time to track intrafractional lung tumour motion during radiotherapy.  In the real time 

tumour tracking treatment scheme, MR images are acquired in real time, then the tumour target 

is localized using an automatic contouring algorithm, allowing the radiation beam to follow the 

moving tumour.  Highly accelerated magnetic resonance (MR) imaging methods can yield large 

increases in acquisition speed at the cost of some increase in reconstruction time.  If employed 

effectively, they can potentially reduce system delay time and/or improves imaging spatial 

resolution, provide flexibility in imaging parameters and allow for the imaging of multiple slices 

without reducing frame rate.   

The aim of this thesis is to develop and validate an MR acceleration strategy which can be used 

to improve real time tumour tracking.  First, an in-house tumour auto-contouring software is 

validated against a gold standard in both phantom and patient data.  Once validated, the auto-

contouring algorithm is used to validate the MR acceleration strategy developed. 

The novel MR acceleration strategy, Prior Data Assisted Compressed Sensing (PDACS), 

combines the advantages of 2D compressed sensing and the view-sharing strategy.  Like 2D 

compressed sensing, it uses L1 regularization to reconstruct images from undersampled k-space.  

However, the acceleration achievable with 2D-CS is quite limited, as the line-by-line data 

acquisitions restricts random sampling to only the phase encode direction in k-space.  PDACS, 

improves the reconstruction by adding previously acquired, motion averaged data into the CS 

reconstruction via an additional penalty term.  Our results have shown that this method is 

superior to 2D-CS, in terms of reduced artifact power and improved tumour tracking metrics. 

However, PDACS relies on prior data acquired at the beginning of a dynamic imaging sequence, 

and thus is dependent on the stability of the baseline MR signal.  For shorter duration (i.e. 1 

minute) dynamic scans, PDACS is shown to be adequate.  However, for longer duration scans (3 

minutes), PDACS results in a gradual decline in image quality due to drifts in MR signal.  An 

improved implementation, sliding window PDACS, varies the sampling pattern and allows for 

“prior data” to be continuously refreshed.  Using this improved implementation, sliding window 

PDACS is shown to successfully remove the negative effect of signal drifts from longer scans.  
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Chapter 1 Introduction 

1.1 Background 

Cancer is the leading cause for death in Canada1, responsible for approximately 30% of deaths 

amongst Canadians. It is estimated that in 2015, there will be approximately two hundred 

thousand new cases of cancer in Canada1, with the majority of new cases (51%) being lung, 

breast, colorectal and prostate cancers.  Of the various types of cancers, lung cancer is 

particularly deadly, being responsible for more deaths than the other three major types 

combined1 (27%).  The economic impact of cancer is substantial, with an estimated total direct 

and indirect economic cost2 of 22.5 billion, or 1.5% of Canada’s Gross Domestic Product. 

For several decades, an intensive scientific effort has been underway to develop and improve 

methods to prevent, diagnose and treat cancer.  Medical Physicists have made significant 

contributions to new technological developments that have improved survival rates and quality 

of life for cancer patients.  Two particular areas of cancer care in which physicists play a major 

role are radiation therapy (RT), and medical imaging. 

Radiation therapy is the clinical application of ionization radiation, such as high energy photons, 

for the treatment of disease3.  In cancer treatment, ionizing radiation destroys cancer cells by 

damaging its DNA.  Currently, approximately half of all cancer patients will receive adjuvant 

radiation treatment, with either curative or palliative intent.  The goal of radiation therapy is to 

deliver a high dose of radiation to a specific target volume while minimizing the dose to the 

surrounding healthy tissues.  Therapeutic radiation can be delivered internally via radioactive 

implants, as in the case of brachytherapy, or can be delivered with an external beam.   

Over the previous century, a variety of technologies have been developed to deliver external 

beam radiation.  The Coolidge tube was developed early in the 20th century, capable of 

generating peak energy of 140 kilovolts (kV) in 1913 and 200kV in 1920.  Radiation beams of 

megavoltage (MV) energy were achieved in the 1940's with the Betatron unit.  The Cobalt-60 

radio-isotope based tele-therapy system, developed in Canada, was used to treat cancer patients 

for the first time in 1951; these systems are still commonly used in developing countries.  In 

1953, the first medical linear accelerator (linacs) was built in England and reached clinical status 

in the 1960's.  Today, the vast majority of radiation therapy treatments in the developed world 
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are delivered using Linac technologies.  Linacs typically emit higher energy photons compared 

to Cobalt-60 (i.e. 6 – 18 MVs x-rays vs. ~1.25 MeV).  The benefits of higher energies include 

reduced skin dose, sharper beam penumbras, and greater beam penetration4.  

Medical imaging is the clinical application of low energy radiation, nuclear magnetic resonance 

and ultrasound waves to image patients for anatomical and physiological diagnosis of disease.  

Medical Imaging has broad range of applications in cancer ranging from early detection and 

diagnosis to treatment planning, verification and response assessment.  Two-dimensional (2D) 

imaging modalities such as radiography, mammography and fluoroscopy, are still commonly 

used in clinics today.  More advanced modalities which are capable of three-dimensional (3D) 

imaging include computed tomography (CT), single photon emission computed tomography 

(SPECT), positron emission tomography, (PET), ultrasound and magnetic resonance imaging 

(MRI). 

1.2 Modern Radiation Therapy 

While imaging and therapy have traditionally been separate disciplines within medical physics, 

the advancement in imaging technologies has contributed to improvements in RT.  The 

developments of 3D imaging modalities in the 1970’s (CT and MRI) have led to a major 

improvement in the radiation therapy (RT) process, known as 3D conformal radiation therapy 

(3D-CRT)3. In the 3D-CRT process, the physician identifies a specific 3D target volume in these 

images.  The radiation treatment planning system (RTPS) employs a number of different 

radiation treatment beam orientations to conform the high radiation dose to a complex shape of 

the target volume.  More recently, Intensity Modulated Radiation Therapy (IMRT) has 

introduced radiation beams with non-uniform intensity distribution within the exposed portal. 

The beam intensity patterns are obtained through an iterative algorithm for plan optimization5, 

and are implemented using dynamic multi-leaf collimator (dMLC) for beam delivery6.  IMRT 

allows for further conformation of dose to the target volume while maintaining tolerable doses to 

surrounding healthy organs and tissues.  IMRT represents the state of the art technology 

available today for conforming radiation dose to the shape of a tumor. 

1.2.1 Target Volumes – Basic Definitions 

IMRT based treatment plans have very sharp dose fall off away from the intended treatment 

volume.  Therefore, the positional accuracy of the treatment volume with respect to the beam 
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geometry is of paramount importance.  Several important concepts and standard terminology for 

this topic, as defined by the International Commission of Radiation Units and Measurements 

(ICRU) in a series of reports including 507, 628, and 719 are introduced in this section. These 

definitions, among other issues, specifically address the uncertainty in positioning both the 

patient and the treatment volume within. 

On an image, the Gross Tumour Volume (GTV) is the visible extent and location of the 

malignant growth; GTV may include the primary tumour site, metastatic lymph nodes and other 

metastases.  However, due to limitations of imaging modalities, microscopic malignant cells 

cannot be adequately visualized, therefore, a clinical target volume (CTV) is defined by the 

physician to include both the GTV and the suspected extent of microscopic diseases that 

surrounds it.  The ideal goal of radiation therapy is to deliver a uniform, therapeutic dose of 

radiation to this volume spanned over a large number (typically 30) of daily fractions.   

There are several sources of uncertainty in the radiation therapy process that hinders in achieving 

this ideal goal.  These uncertainties occur in 1) the daily set-up of patient, 2) the mechanical 

components of radiation therapy machine and 3) organ motions.  These uncertainties make it 

difficult to exactly align the CTV to the treatment beam in each fraction. To account for the 

uncertainties due to internal organ motions, an internal margin (IM) is added to CTV to yield 

an internal target volume (ITV).  To account for the mechanical tolerances of linacs and day-

to-day positioning uncertainty in setting up the patient, a set-up margin (SM) is further added to 

yield the Planning Target Volume (PTV).  It should be noted that the term PTV margin 

describes the all margins added to the CTV, which includes both the IM and the SM.  Of the 

three factors that contribute to the PTV margin, the mechanical tolerance of the radiation therapy 

treatment machine is the least contributing factor. The uncertainty in the daily patient setup can 

be reduced by employing some form of imaging which is, at least, capable of imaging bony 

anatomy of the patient in the treatment position.  For some tumour sites, the most significant, and 

also the most difficult to circumvent factor is the internal organ motion. It is important to 

distinguish between two types of organ motions: inter-fractional organ motion, which is the 

organ motion that occurs in the timescale of the days of treatment (such as a shrinking of the 

tumour as a response to treatment and weight loss) and intra-fractional organ motion, which is 

the type of motion the occurs during treatment, such as due to cardiac or respiratory motion, 
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swallowing etc.  A PTV margins must account for all of these uncertainties.  Due to limitations 

of irradiation techniques, the Treated Volume, or volume of tissues receiving the prescribed 

dose, is usually larger and of a simpler shape compared to the desired PTV.  Finally, the 

irradiated volume also includes healthy tissues that receive significant dose in respect to their 

sensitivity to radiation i.e. the tolerance dose.  A schematic diagram showing the various target 

volumes is shown in Figure 1-1. 

 

Figure 1-1: Schematic Diagram representing the various volumes described by ICRU reports.  GTV represents the 

visible tumour in the image. CTV includes the GTV and a margin to account for microscopic disease.  ITV includes 

CTV and the internal margins that account for organ motion.  PTV includes a further set up margin accounting for 

mechanical uncertainties and set up errors.  The treatment volume is the actual volume of tissue that received the 

prescribed dose, and the irradiated volume also includes any healthy tissues that have received significant dose with 

regards to normal tissue tolerance. 

1.3 Image Guidance in Radiation Therapy 

The main advantage of modern radiotherapy (i.e. via IMRT) of delivering a high dose to the 

CTV while sparing normal tissues cannot be fully realized if there is a large PTV margin (IM 

and SM).  Therefore, considerable research has focused on developing methods to reduce these 

margins.  One major effort has been the incorporation of imaging devices with radiation therapy 

treatment units. The form of RT in which patient imaging in treatment position is used daily to 
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align the patient (or the CTV if visible), with the treatment beam(s) for the purpose of reducing 

PTV margin is known as the image guided radiation therapy (IGRT). 

1.3.1 Image Guidance Based on 2D Imaging and Fiducial Markers 

A relatively simple addition to the linac that allows 2D radiographic projection imaging, akin to 

the conventional radiography, is a portal imaging device.  In this approach, a film or a digital 

detector, such as an electronic portal imaging device (EPID) is used to acquire an image using 

the x-ray photons of the treatment beam10.  The significant drawback of portal imaging using 

MV photons is the extremely poor soft tissue contrast in the patient image.  This limits the use of 

portal imaging to visualizing bony structures and air pockets.  Most tumours are far away from 

bony markers and their independent motion relative to bones makes it an ineffective approach to 

reduce PTV margins11; aligning the bones in the portal images to those in the reference planning 

image does not ensure the alignment of the PTV incorporating soft tissue tumour.  To improve 

the utility of portal images, implanted fiducial markers are inserted near or inside the tumour. 

Measured locations of the fiducials in the portal images then serve as the surrogate of tumour 

position in the patient, which can be used for daily alignment of the tumour with the treatment 

beams’ geometry. If the fiducial based guidance is successful then it can potentially reduce the 

PTV margins; however, there are several issues with this approach including: 1) fiducial 

insertion is an invasive procedure and can result in infection12; 2) not all treatment sites are 

amenable to fiducial insertion; 3) fiducials can migrate from their initial location during the 

treatment13; resulting in a poor correlation between fiducial and tumour position, and finally 4) 

the fiducials’ images do not provide any information regarding the tumour’s shape and volume 

changes.  Further improvement to this approach is provided by the introduction of peripheral kV 

energy x-ray units into the treatment room14.  While soft tissue contrast remains limited in kV 

projection images, bony contrast and the contrast of radio-opaque fiducial markers are 

significantly improved, while the additional radiation dose to the patient resulting from MV 

imaging is reduced.   

1.3.2 Image Guidance by Direct Imaging of Soft Tissues  

To overcome some of the shortcoming of fiducial marker based IGRT techniques, other devices 

have been developed to directly image the tumour and the surrounding tissues.  Ultrasound 

imaging devices have been proposed as an in-room imaging modality for soft tissue 
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visualization.  However, the utility of ultrasound imaging is limited to the visualization of soft-

tissue, albeit poorly, in pelvic and abdominal regions14. The image quality is strongly correlated 

with the operators’ skill and experience level. In addition, the operator is required to operate the 

probe during the imaging process which makes it difficult to use this system while the radiation 

beam is on. Thus, the system is limited to pre-treatment image guidance and not suitable for real-

time IGRT.   

Diagnostic CT devices have also been introduced into the treatment room which allows for 

limited soft tissue imaging14.  In these systems, the patient will be transferred in and out of the 

CT gantry using a couch, or the CT imaging unit itself may be moved into position using rails15.  

Unfortunately, patient position and inter organ location within may alter during the transition 

from CT imaging and beam delivery.  Moreover, many soft-tissue solid tumour are poorly 

visualized in CT imaging. Another alternative approach is to acquire cone-beam volumetric CT 

(CBCT) images by integrating a kV source and an active matrix flat panel imaging detector onto 

the linac gantry16, orthogonal to the treatment beam direction.   The disadvantage of a gantry 

mounted cone-beam imaging system is scattered radiation that degrades the quality of CT images 

obtained from these systems14.  Additional weight on the gantry may cause it to sag, reducing the 

mechanical accuracy of the overall treatment system14.  Full integration of the treatment unit and 

imaging device is achieved with the Tomotherapy device17.  In this system, a 6 MV linac is 

mounted on a ring shaped gantry and it rotates continuously while the patient translates through 

the axis of rotation of the gantry.  From the perspective of the patient, the treatment beam is 

delivered in a helical manner.  Conceptually, the tomotherapy unit can be thought of as a CT unit 

in which the kV source is replaced with a 6MV Linac.  The tomotherapy unit can operate in CT 

imaging mode, in which the linac is operated at reduced energy of 3.5 MV, to provide pre-

treatment cross-sectional images of the bony anatomy of the patient; however soft-tissue contrast 

in these images is significantly poorer than the diagnostic CT images. 

Many of these IGRT methods are beneficial in reducing the patient set up errors (SM) in terms of 

aligning bones. In that sense, the inter-fractional displacement of bony anatomy is reduced that 

provides some reduction of PTV margins. However, due to limits in soft tissue contrast in 

MV/kV projection imaging and the inability to perform CBCT (or CT on rails or MVCT) in real 
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time, they are generally ill suited to directly image the moving tumours in real-time while the 

treatment beam is delivering radiation.   

1.3.3 Linac-MR Hybrid Systems 

One exciting development in IGRT technology is the integration of a radiation therapy and 

magnetic resonance imaging devices.  The Viewray system18 consists of the integration of three 

Cobalt-60 sources with a low field (0.3T), double donut magnet.  Another system19, currently in 

development, by Philips Medical Systems and Elekta, uses a linear accelerator which irradiates 

through a 1.5T cylindrical magnet.  The current prototype of the Linac-MR system20 developed 

at the Cross Cancer Institute (CCI), based in Edmonton, Alberta, Canada, consists of 6 MV 

Linac mounted on a gantry along with 0.5T bi-planar magnet (Figure 1-2).  MR images offer 

vastly superior soft tissue contrast compared to the imaging systems mentioned previously.  

Improved visualization of tumour and surrounding soft tissues may further reduce set up 

uncertainties.  Since MR imaging uses non-ionizing radiofrequency (RF) pulses, no additional 

radiation dose will be delivered to the patient for daily positioning, which can be significant21.  

Another potential benefit of the Linac-MR system is large flexibility in MR imaging sequences, 

including some sequences that are capable of generating several images per second.  Therefore, 

the system can, in principle, provide real time, intra-fractional tracking of moving tumours using 

volumetric images of the tumours and surrounding tissues.  This application is not possible with 

the other systems mentioned in the previous section.  The Linac-MR unit represents a major 
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breakthrough in IGRT technology. 

 

Figure 1-2 – Current prototype of the Linac-MR system developed at the Crossed Cancer Institute. (www.linac-

mr.ca) 

 

1.4 Respiratory Motion in Radiation Therapy 

Lung cancer is the deadliest of all types of cancers1.  For the treatment of lung cancer, radiation 

therapy is used both as primary treatment, or adjuvant to surgery and/or chemotherapy.  Using a 

technique known as stereotactic body radiation therapy (SBRT), a very high dose of radiation is 

given in very few fractions; a treatment procedure that, in some cases, can be given as an 
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alternative to surgery for smaller tumours.  The organ motion caused by the patient's respiration 

creates a considerable challenge in both conventional lung RT and SBRT.  Various studies of 

lung tumour motion have observed a complex 3D trajectory, with the superior-inferior (SI) 

direction carrying the predominant motion.  Reports of range of tumour motion vary widely, with 

the maximum motion reported being 50 mm in the SI direction, 24 mm in the anterior posterior 

(AP) direction and 16 mm in the left right (LR) direction22. In addition to lung, significant 

respiratory motion also is reported for abdominal organs such as pancreas, liver, kidney and the 

diaphragm.  This section covers some of the common strategies in addressing respiration motion 

in radiation therapy. 

1.4.1 Encompassing the Entire Volume of Motion (ITV) 

In order to deliver the prescribed radiation dose to the CTV in the presence of organ (tumour) 

motion, a larger, motion encompassing ITV can be contoured instead.  Imaging techniques have 

been used to create images with tumours that appear to encompass the entire volume bounding 

the motion trajectory. Free-breathing, slow CT scans are used to image the moving tumour so 

that the image is acquired over several phase of respiration23.  This causes the tumour signal in 

the image to be blurred out over the entire volume of motion.  The motional blurring also 

worsens the resolution of the image, which may lead to increasing inter and intra-observer 

variability in the radiation oncologists’ contouring22.  Another approach is to acquire CT images 

while the patients are holding their breath.  Two sets of images are acquired: one at inhalation 

and the other at exhalation.  After the appropriate image fusion and registration, a maximum 

intensity projection (MIP) from the two image sets is generated, creating the motion 

encompassing ITV24.  Breath-hold technique creates less blurred images than the slow CT 

method, but this procedure requires twice the scan time and radiation dose22.  This approach is 

not suitable for patients with compromised lung function who cannot hold breath for scan 

duration22.  In a typical 4D-CT scan, due to the inherent imaging speed limitation by the rotation 

of the gantry, the different slices in a single 3D acquisition will be in a different phases of the 

breathing cycle.  Therefore, in a typical in 4D-CT scan, about 8-25 complete CT data sets are 

reconstructed, and the 3D volumes are "sorted" in the correct phases during post processing22.  

Using these 3D volumes in different breathing phases, the 3D trajectory of the moving tumour 

can be reconstructed.  The accuracy of 4D-CT (artifacts in the images) is affected by any 
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variations in the patient's breathing pattern22, and the radiation delivered to patient is increased 

when collecting data for all phases.  As 4D-CT images are reconstructed after data is acquired 

for several breathing cycles, it is not a true real time imaging modality.  

Defining a sufficient large ITV to encompass the entire range of tumour motion will ensure that 

the CTV receives the prescribed dose. However, the major disadvantage of this method is the 

irradiation of larger volume makes it difficult to lower the dose to the healthy lung. 

1.4.2 Breath-hold Methods 

Another way of managing respiratory motion is to train patients to hold their breath during both 

treatment planning CT imaging and radiation delivery.  In a deep inspiration breath hold (DIBH) 

position25, intra-fraction motion of the internal organs is reduced and the critical organs are 

located away from the PTV due to increased lung volume Therefore, the critical organs are better 

protected as a result.  A spiro-meter monitors the level of inspiration in the patient to improve 

reproducibility.  For radiotherapy treatment planning, three CT scans are required, a free 

breathing CT scan, a spirometer monitored DIBH CT scan, and a spirometer inhalation scan.  

Treatment planning is performed on the DIBH CT scan while the free breathing and the 

inhalation image sets are used for quality assurance, and to generate an alternative treatment plan 

if the DIBH is unsuccessful.  In general, the applicability of breath-hold technique is limited by 

patient compliance.  In the DIBH study, 60% of lung cancer patients were not able to maintain 

their breath with the required degree of reproducibility for the DIBH treatment22. 

1.4.3 Gating Methods 

Respiratory gating is another approach to address breathing motion.  The concept of "gating" is 

to only deliver radiation when the tumour is located in a specified window in the respiratory 

cycle.   There are numerous gating techniques available22, and they are performed using either an 

external motion detectors or internal fiducial markers.   A gated set of CT images are typically 

required during the CT simulation session for gated therapy.  Fiducial markers or the external 

tumour motion surrogates are used to generate a "respiratory signal" that is assumed to correlate 

with respiratory phases of lung motion.  When the respiratory signal is within the preset gating 

window (i.e. gate width), the CT scanner acquires a single CT slice.  The time required to 

acquire this single slice should be matched with the gate width.  If the scan time is too short 
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compared to this gate width, the image will not fully encapsulate the motion within the gating 

window, resulting in a tumour that appears too small to account for the motion within the gating 

window. If the scan-time is too long compared to gate width, the opposite is true; the image 

captures motion that does not belong in the gating window, resulting in a tumour that appears too 

large. The gating process is time consuming because only a single slice of the 3D volume is 

acquired per breathing cycle.  For beam delivery, a similar procedure is performed, with the 

radiation beam being delivered when the respiration signal falls within the gating window.  As 

these methods use fiducial markers, more typically the external motion monitoring devices, as a 

surrogate for the tumour motion, these suffer from all the limitations as mentioned in section 

1.3.122.   Compared to motion encompassing methods, a gating technique avoids the need for an 

ITV, and therefore it significantly reduces PTV margins and dose to normal tissues.  This 

improvement does come with a cost; as the beam is only on for a narrow portion of the breathing 

cycle, the treatment time will be significantly increased22.  

1.4.4 Tumour Tracking Methods 

Perhaps the most useful approach is to track the moving tumours. In this approach, the moving 

tumour is imaged in real-time and the radiation beam is always aligned with the tumour. This 

procedure is commonly called tumour tracking.  In principle, this approach eliminates the main 

disadvantages from the other techniques22.  Compared to the tumour encompassing/ITV 

methods, the ability for the beam to follow the tumour trajectory can substantially reduce PTV 

margins.  Patient compliance will be significantly less challenging as breath-hold is not required.   

Since radiation is continuously delivered while being repositioned to tumour in real time, tumour 

tracking methods will not increase the treatment time to the degree of the gated methods.  

There are several aspects of real time tumour tracking.  Firstly, the position of the tumour must 

be determined in real time.  Secondly, all tumour tracking devices will have a significant delay 

time between imaging and radiation delivery (imaging time, computer processing time, multi-

leaf collimator motion (MLC) delay etc.). This must be in some ways compensated by an 

efficient and accurate prediction algorithm to track tumour location during the latency.  The 

accuracy of these prediction algorithms rapidly worsens with the increased delay time, therefore 

a delay time of more than 0.5 seconds is not considered suitable for tumour tracking22  Thirdly, 

the beam must be repositioned in real time, either by motion of the Linac head, or by movement 
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of the MLC.  Lastly, any dosimetric effects of breathing (such as the change in air volume) that 

is not captured by the static treatment planning images may lead to second-order dosimetry 

errors.  The degree of impact of these effects require further investigation22 . 

1.5 Real Time Tumour Localization 

1.5.1 Non MRI technologies 

There are currently several technologies available for performing real time tracking of tumour in 

radiation therapy.  The Calypso system26 does not actually track the tumour with imaging, but 

relies on RF transponder as an external surrogate to predict the location of the tumour27, 

however, the complex and non-stationary correlation between these surrogates and the actual 

tumour could lead to uncertainties.  Direct imaging of the tumour will eliminate these 

uncertainties but acquiring an image every 0.5 second is a considerable challenge.  Full 3D 

visualization using cone beam computed tomography (CBCT) is not currently feasible in real 

time. In the absence of full 3D imaging, the most useful imaging plane for tracking tumor is the 

Beam’s Eye View (BEV) plane, because any tumour motion captured in this this plane has the 

greatest impact on tumour dose caused mainly due to the geographic miss.  In terms of currently 

available technology, the EPID imager on the Linac can, in principle, capture BEV images in 

fluoroscopy mode at MV energies in real time (Figure 1-3, left).  However, MV images are of 

little value for visualizing tumours as the tissue contrast is very poor.  The addition of kV sources 

can improve tissue contrast for fluoroscopy.  However, due to interference with the MV beam, it 

is not possible to capture BEV kV images during MV irradiation.  The On Board Imaging (OBI) 

devices added on conventional linacs are only capable of capturing kV images on a plane 

orthogonal to BEV (Figure 1-3, center left), missing one of the key dimension of motion.  More 

specialized devices designed for motion tracking, such as the robot based Cyberknife system28, 

or the gimbal based VERO system29, both use two separate, oblique kV energy sources, 

positioned at 45 degree angle to the beam axis (Figure 1-3, center right),.  In principle, by 

performing fluoroscopy simultaneously, the device can track the tumour in all the relevant 

directions.  However, kV fluoroscopy still has limited contrast, if the tumour cannot be 

accurately visualized in either of the two views, parts of the motion cannot be captured, and PTV 

must be expanded to compensate.  In some cases, radio-opaque fiducial markers are used instead, 

which comes with all of the associated disadvantages mentioned previously.   
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Figure 1-3 – Comparing the real time imaging strategies for tracking lung tumours. 

1.5.2 Advantage of Real time MR Imaging of the Lung 

Real time fluoroscopy, which is based on transmission of x-rays, captures images that contain 

superposition of all structures (i.e. bone, lung, tissue) between the x-ray source and the detector.  

The presence of structures above and below the tumour results in poor overall contrast.  On the 

other hand, in MRI, only signals from only a user-defined imaging volume are detected, yielding 

a 2D slice in any orientation, with excellent soft tissue contrast compared to fluoroscopy.  The 

geometric flexibility is particularly useful for tracking tumours, as it allows, BEV plane to be 

imaged, capturing the relevant motion of tumours (Figure 1-3, right).  Fast MRI sequences have 

been developed such that 2D images, at modest resolutions can be acquired at the speed of 

several frames per second.  The basic principles of MRI and fast sequences will be discussed in 

detail in the next chapter. 

1.6 Objectives 

While dynamic MRI provides real time imaging capability with vastly superior contrast 

compared to fluoroscopy, the achievable frame rate and spatial resolution is modest.  The main 

goal of this thesis is to devise a novel acceleration strategy for real time MR tracking of lung 

tumours.  The ability to increase MR acquisition speed will have many potential benefits: 

including 1) a reduction in the system delay time of the tumour tracking process, 2) an increase 

in frame rate that may improve the precision of the real time tumour location, 3) an increase in 

image spatial resolution and 4) the potential to acquire multiple slices while still be under the 

maximum delay time of 0.5 s, as recommended by TG-7622.  
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The novel strategy devised, called Prior Data Assisted Compressed Sensing (PDACS), is a 

method designed to take advantage of spatial-temporal redundancies in dynamic MR sequences 

that can be used for tracking tumour motions.  In essence, this method aims to reconstruct images 

that provide tumour contours using partial data acquisition.  This method relies on drawing from 

a pool of prior data, acquired at the beginning of the sequence to aid in reconstruction of 

dynamic images of a plane. 

A key indicator of the quality of any accelerated MR image is the ability to generate accurate 

tumour contours.  A novel neural-network based tumour tracking algorithm30 has been developed 

at the CCI.  In this thesis, a validation study of the new acquisition/reconstruction methods using 

this tumour tracking algorithm is performed, against a gold standard, using a motion phantom as 

well as for lung cancer patients.  Once this algorithm is validated, it is used to evaluate the 

PDACS algorithm. 

The PDACS algorithm is evaluated by performing a retrospective study.  Six patients with lung 

cancer are recruited with ethics approval.  A free breathing, dynamic MR scan is performed on 

each patient.  These fully sampled images serve as a useful standard for testing our algorithm.  

MR acceleration with partial k-space is simulated by removal of k-space data from these fully 

sampled standard data sets.  Reconstruction of these partial k-space data is compared against the 

original, fully sampled datasets using various quantitative metrics.   

Due to the instability in the MRI system, relying on outdated prior data may lead to negative 

consequences in long dynamic sequences.  These effects are explored, and potential solutions, 

which use a sliding window to refresh the prior data, are presented. 

While the overall goal of the thesis is algorithm development, we propose following hypotheses 

in this work: 

1. The auto-contouring algorithm is capable of extracting contours of tumours from real time 

MR images.  These contours are accurate when compared to a gold standard, in terms of 

Dice’s coefficient and centroid positions. 

2. The inclusion of motion averaged prior data in compressed sensing improves image quality, 

in terms of the global and local performance indicators, including artifact power, auto-
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contouring Dice’s coefficient and centroid displacement error, compared to conventional 

compressed sensing. 

 

3. A reconstruction algorithm that allows for the prior data pool to be constantly refreshed using 

more recent data further improves compressed sensing image quality, in terms of indicators 

stated above, especially for the long duration dynamic scans. 

 

1.7 Thesis Organization 

This thesis is organized in the following manner.  Chapter 1 contains introductory background 

information on image guided radiation therapy and the benefits of MR/Linac hybrid systems, as 

well as the potential of real time tumour tracking.  Chapter 2 contains the basic physics of 

magnetic resonance imaging, as well as it introduces the various image acceleration strategies 

currently available, including compressed sensing.  Chapter 3 describes the validation of the 

neural network based tumour tracking algorithm developed at the CCI.  Parts of this chapter have 

been published as a co-authored article in the journal Medical Physics.  Additional experiments 

including intra and inter-observer variation experiments is included.  Chapter 4 describes the 

novel MR acceleration strategy PDACS, and an important weakness of the method.  Parts of this 

chapter have been published as a first authored article in the journal Medical Physics.  Chapter 5 

presents a modified version of PDACS, which uses a sliding window that mitigates this 

weakness.  Parts of this chapter have been accepted for publication as a first authored article in 

the journal Medical Physics.  Chapter 6 includes a conclusion and possible future directions for 

this research. 

 



16 

 

Chapter 2 Theory 

2.1 Magnetic Resonance Physics 

2.1.1 Spins in a Magnetic Field 

The atomic nuclei are made of elementary particles (i.e. protons, neutrons) which contain a 

fundamental property known as magnetic spin.  Atoms with nuclei containing an odd number of 

protons and/or an odd number of neutrons possess an intrinsic angular momentum, which gives 

rise to a magnetic dipole moment31 vector, 𝝁 

 𝝁 = γS =γℏI (2.1) 

where γ is a constant known as the gyromagnetic ratio (2.68x108 rad/s/T or 42.6MHz/T for 1H 

protons), S is the spin angular momentum, ℏ is Planck’s Constant (1.055x10-34J.s.), and I is 

known as the spin operator.  For atomic nuclei with a non-zero magnetic dipole moment, nuclear 

magnetic resonance (NMR) occurs in the presence of external magnetic fields.  The magnetic 

moment interacts with the external magnetic field, which gives rise to the energy31 

 𝐸 = −𝝁 ⋅ 𝑩 (2.2) 

where vector 𝑩 is the external magnetic field.  If the magnetic field is applied in the z direction, 

that is, 𝑩 =𝐵0�̂�, then the energy can be calculated as 

 𝐸 =  −𝜇𝑧𝐵𝑜 = −γ𝑆𝑧𝐵0 =  −γℏ𝐼𝑧𝐵0 (2.3) 

From quantum mechanics it is known that 𝑆𝑧, the z-component of spin angular momentum, can 

exist only in certain quantized states, or ℏ𝐼𝑧 , where 𝐼𝑧 is the spin quantum projection number.  

For a spin ½ particle such as a proton, used almost exclusively in clinical MRI,  𝐼𝑧 can only take 

two possible values: +1/2 or -1/2.  This gives rise to a high energy “spin down” state, E+, and a 

low energy “spin up” state E-, with an energy difference of  

 Δ𝐸 = γℏ𝐵𝑜 (2.4) 



17 

 

2.1.2 Statistical Mechanics and Net Magnetization 

For each of the energy states, E+ and E-, the fraction of particles occupying an energy state is 

described by the Boltzmann’s distribution, which can be expressed as32 

 𝑁+

𝑁
=  

𝑒
−𝐸+
𝑘𝑏𝑇

𝑍
 (2.5) 

 𝑁−

𝑁
=  

𝑒
−𝐸−
𝑘𝑏𝑇

𝑍
 (2.6) 

and 

 𝑍 =  𝑒
−𝐸+
𝑘𝑏𝑇 + 𝑒

−𝐸−
𝑘𝑏𝑇  (2.7) 

is the partition function for this two state system.  N is the total number of particles and, 𝑁+ and 

𝑁− are the number of particles with the energies 𝐸+ and𝐸−, respectively. The constant 𝑘𝑏 is the 

Boltzmann’s constant, and 𝑇 is the temperature of the sample.  Using these equations, one can 

calculate the ratio between these two states as follows32 

 𝑅 =
𝑁−

𝑁+
= 𝑒

Δ𝐸
𝑘𝑏𝑇 (2.8) 

In the case where the magnetic field is at 3.0 T and a body temperature of 𝑇 = 310K, 
Δ𝐸

𝑘𝑏𝑇
 = 2.0 x 

10-5, 𝑅 can be approximated, using the Taylor’s series, as 

 𝑅 =  𝑒
Δ𝐸

𝑘𝑏𝑇 ≈ 1 + 
∆𝐸

𝑘𝑏𝑇
= 1.000020 (2.9) 

The excess amount of low energy “spin up” state will give rise to a net magnetization, given as 

 

𝑀0 = 𝑚(𝑁+ − 𝑁−) = 𝑚(𝑁+ + 𝑁−)
(𝑁+ − 𝑁−)

(𝑁+ + 𝑁−)

= 𝑚𝑁
𝑅 − 1

𝑅 + 1
 

(2.10) 

Substitution in equation 2.8, one can derive the equation 
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 𝑀0 = 𝑚𝑁
𝑒

∆𝐸
𝑘𝑏

−1

𝑒
∆𝐸
𝑘𝑏

+1
= 𝑚𝑁𝑡𝑎𝑛ℎ(

∆𝐸

2𝑘𝑏𝑇
) (2.11) 

As the argument in the hyperbolic tangent is small, the expression further simplifies to 

 𝑀0 ≈ 𝑚𝑁
∆𝐸

2𝑘𝑏𝑇
 (2.12) 

In most MR scanners, there is a strong main magnetic field applied in one direction, or, 𝑩 = 𝐵0�̂�.  

If this is true, we can substitute Equation 2.1 and 2.4 into equation 2.12, which gives us the 

expression 

 𝑀0 ≈ 𝑁𝛾2ℏ2
𝐵0

4𝑘𝑏𝑇
 (2.13). 

One can observe that the magnetization of the sample is linearly dependent on the main magnetic 

field strength B0.  MR scanners typically operate with a strong magnetic field𝐵0.  Even MR 

scanners colloquially described as "low field", such as a 0.5 T magnet, still operates at 10000x 

the earth's magnetic field strength. 

2.1.3 Magnetic Precession 

The interaction between magnetization vector and an external magnetic field can be described 

classically by the differential equation31 

 
𝒅𝑴

𝑑𝑡
=  𝛾𝑴 × 𝑩 (2.14) 

where 𝑴 is the vector describing the magnetization of the sample and 𝑩 is the magnetic field 

vector.   Assuming again that in the MR scanner where 𝑩 = 𝐵0�̂�, equation 2.14 can be separated 

into 3 components, as 

 

𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵0 

𝑑𝑀𝑦

𝑑𝑡
=  −𝛾𝑀𝑥𝐵0 

(2.15) 
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𝑑𝑀𝑧

𝑑𝑡
= 0 

The solution of these equations yields the expressions 

 

𝑀𝑥(𝑡) =  𝑀𝑥(0)𝑐𝑜𝑠(𝜔0𝑡) + 𝑀𝑦(0)𝑠𝑖𝑛(𝜔0𝑡) 

𝑀𝑦(𝑡) =  −𝑀𝑥(0)𝑠𝑖𝑛(𝜔0𝑡) + 𝑀𝑦(0)𝑐𝑜𝑠(𝜔0𝑡) 

𝑀𝑧(𝑡)  =  𝑀𝑧(0) 

(2.16) 

If there are transverse magnetization components present, such that 𝑀𝑥 or 𝑀𝑦 is greater than 

zero, these equations describe a "spinning top" like motion known as the Larmor precession 

about the z axis.  The frequency,  

 𝜔0 = 𝛾𝐵0 (2.17) 

is known as the Larmor frequency.  However, at the equilibrium position where 𝑴 = 𝑀0�̂�, there 

are no transverse magnetization components, such that 𝑀𝑥(0) = 0, 𝑀𝑦(0) = 0, and no spin 

dynamic occurs.  Transverse magnetization can be generated by perturbation of the system with 

a radiofrequency (RF) pulse, which will be described in section 2.1.6. 

2.1.4 Bloch's equation and MR Relaxation  

While external perturbation causes MR magnetization to precess, the system will gradually 

return to thermal equilibrium.  This process is known as relaxation.  By adding relaxation terms 

to Equation 2.14 yields the Bloch's equation, given as31 

 
𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × 𝑩 −

𝑀x𝐱 + 𝑀𝑦𝐲

𝑇2
−

(𝑀𝑧 − 𝑀0)𝐳

𝑇1
 (2.18) 

In Equation 2.18, there are two separate relaxation terms describing the relaxation in transverse 

plane and z-direction.  The middle term describes transverse, spin-spin (𝑇2) relaxation, in which 

the individual spins interacts with one another and lose coherence at a rate described by the 𝑇2 

relaxation time.  The last term describes the longitudinal, spin-lattice (𝑇1) relaxation, a process 
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where spins lose energy to its surrounding environment, at a rate described by the 𝑇1 relaxation 

time.  Separating the Bloch`s equation into 3 components yields 

 

 

𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵0  −  

𝑀𝑥

𝑇2
 

𝑑𝑀𝑦

𝑑𝑡
= −𝛾𝑀𝑥𝐵0 −

𝑀𝑦

𝑇2
 

𝑑𝑀𝑧

𝑑𝑡
=

𝑀0 − 𝑀𝑧

𝑇1
 

(2.19) 

with the solution 

 

𝑀𝑥(𝑡) =  [𝑀𝑥(0)𝑐𝑜𝑠(𝜔0𝑡) + 𝑀𝑦(0)𝑠𝑖𝑛(𝜔0𝑡)]𝑒
−

𝑡
𝑇2 

𝑀𝑦(𝑡) =  [−𝑀𝑥(0)𝑠𝑖𝑛(𝜔0𝑡) + 𝑀𝑦(0)𝑐𝑜𝑠(𝜔0𝑡)]𝑒
−

𝑡
𝑇2 

𝑀𝑧(𝑡)  =  𝑀0 + (𝑀𝑧(0) − 𝑀0)𝑒
−

𝑡
𝑇1 

  

(2.20) 

 

2.1.5 Rotating Frame of Reference 

The equations describing MR physics can be greatly simplified if these are expressed in a frame 

of reference that is rotating about the z-axis at the Larmor frequency.  In this frame of reference, 

there is no precession from the static field, so the effective static 𝐵0, or 𝐵𝑒𝑓𝑓 = 0, the cross 

product term in the Bloch equation is zero.  The solutions of the Bloch equations are greatly 

simplified to31 

 𝑀𝑥(𝑡) =  𝑀𝑥(0)𝑒
−

𝑡
𝑇2 (2.21) 
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𝑀𝑦(𝑡) =  𝑀𝑦(0)𝑒
−

𝑡
𝑇2 

𝑀𝑧(𝑡)  =  𝑀0 + (𝑀𝑧(0) − 𝑀0)𝑒
−

𝑡
𝑇1   

Generally, equations describing MR signals will be expressed in the rotating frame of reference. 

2.1.6 RF (B1) Tipping Pulse  

As mentioned previously, the net magnetization in equilibrium does not precess, however, MR 

magnetization within a sample can be made to precess by applying a transverse 𝐵1 RF field to 

the sample.  In the rotating frame of reference, the magnetization vector 𝑴 can be rotated out of 

its equilibrium position, along z direction in the rotating frame of reference, by the application of 

a magnetic field B1 in a direction orthogonal to the z-axis (i.e. either in x or y direction).  The 

angle of rotation, 𝛼 of the magnetization vector 𝑴 is described by the equation32 

 𝛼 =  𝛾𝐵1𝜏  (2.22) 

where 𝜏is the time during of RF (𝐵1) pulse (RF pulse at the Larmor frequency), the rotation 

angle is sometimes called the ``flip angle``.  After the magnetization has rotated away from 

equilibrium, it undergoes precession and relaxation as described by the Bloch`s equation.  The 

transverse component of the magnetization can be detected by placing one or more receiver coils 

along either x or y direction.  Generally, the signal induced in the receiver coil is the largest for a 

flip angle of 90o.  The time-dependent voltage detected by the receiver coil after the application 

of a single 𝐵1  pulse is called the free-induction decay (FID).   

2.1.7 T2 and T2* 

After a 90o B1 pulse is applied to a sample, the observed signal decay is known as free induction 

decay (FID).  One might expect the FID to occur at a rate (𝑇2) described by equation 2.29 and 

2.30.  However, the observed decay time is generally shorter than this expected value.  This 

phenomenon is due to the local magnetic field inhomogeneity within the sample caused by small 

spatial variations in the 𝐵0  field.  These small differences in 𝐵0  cause the spins to precess at 

slightly different Larmor frequencies, which causes the signal to decay at rate described by32 
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1

𝑇2
∗ =

1

𝑇2
+  𝛾Δ𝐵 (2.23) 

where 𝑇2
∗ represents the shortened relaxation time, and Δ𝐵 represents local field inhomogeneity.  

The term 𝛾Δ𝐵 is sometimes denoted as 1/𝑇2
′. 𝑇2

∗ relaxation is therefore a combination of two 

different effects. Irreversible thermodynamic processes cause 𝑇2 decay whereas inhomogeneity 

in the external magnetic field and magnetic susceptibility differences cause reversible 𝑇2
′ decay.  

The effect of 𝑇2
′ dephasing can be reversed by applying a 180o RF pulse following the 90o 

excitation RF pulse which leads to the formation of a ``spin-echo``.   

 

2.1.8 MR Signal Detection 

The voltage induced in these coils can be described by Faraday`s law, which states that32 

 𝑉 = −
𝑑Φ

𝑑𝑡
  (2.24) 

where Φdescribes the magnetic flux, which is expressed as  

 Φ = 𝑁𝐴𝐵𝑥 =  𝜇𝑜𝑁𝐴𝑀𝑥  (2.25) 

where 𝑁 is the number of loops in the coil, 𝐴 is the cross sectional area of the sample, and 𝐵𝑥 = 

𝜇𝑜𝑀𝑥 is the magnetic field in the x direction, 𝜇𝑜= 4𝜋 × 10−7𝐻/𝑚 is the permeability of vacuum, 

and 𝑀𝑥 magnetization in the x-direction.  After a 90 degree excitation pulse where all the 

magnetization is on the y axis (i.e. 𝑀𝑥(0) = 0, 𝑀𝑦(0) =  𝑀𝑇(0), 𝑀𝑧(0) =  0), the x-component 

from equation 2.20 simplifies to: 

 𝑀𝑥 = 𝑀𝑇𝑠𝑖𝑛(𝜔0𝑡)  (2.26) 

Where 𝑀𝑇 =  𝑀𝑇(0)𝑒
−

𝑡

𝑇2   is the magnitude of the transverse (x,y) component of the 

magnetization.  Therefore, the voltage inducted in the coil is given as follows. 

 𝑉 =  − 𝜇𝑜𝑁𝐴
𝑑𝑀𝑥

𝑑𝑡
  (2.27) 

where 
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𝑑𝑀𝑥

𝑑𝑡
= [𝑀𝑇𝜔0𝑐𝑜𝑠(𝜔0𝑡) +

𝑑𝑀𝑇

𝑑𝑡
𝑠𝑖𝑛(𝜔0𝑡)]   (2.28) 

The first term describes the contribution from precession (proportion to 𝜔0, which is ~128 MHz 

for a 3 T scanner), which is many orders magnitude larger than the second term that describes the 

contribution from transverse relaxation (proportion to 1/𝑇2 which is in the order of a few Hz for 

most tissues).  Ignoring the 2nd term, the voltage induced in the coil is 

 𝑉 = − 𝜇𝑜𝑁𝐴 𝑀𝑇𝜔0𝑐𝑜𝑠(𝜔0𝑡) (2.29) 

One can therefore observe that the amount of induced voltage is proportional to 𝐵0
2 as both the 

net magnetization 𝑀𝑇 and the Larmor frequency 𝜔0 are linearly dependent on 𝐵0 

2.2 Imaging Principles 

The previous section discussed the use of an RF pulse to tip away the net magnetization of the 

sample from z-axis to the transverse plane and the signal induction by the transverse 

magnetization within a receiver coil.  However, in order to visualize anatomy in 2D or 3D 

images, spatial localization of samples that produce MR signal must be performed. 

2.2.1 Fourier Transform 

The Fourier transform is an important mathematical operation that decomposes a function into its 

constituent frequencies, and is also an important concept in for MR imaging.  The Fourier 

transform in 1-D is defined as follows 

 𝐹(𝑘) =  ∫ 𝑑𝑥𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝑘

+∞

−∞

 (2.30) 

The function 𝑓(𝑥) describes the variation of image intensities in spatial domain whose Fourier 

transform is given by the function 𝐹(𝑘).  Both functions are assumed, in general, to be complex. 

Conceptually, 𝐹(𝑘) is the frequency spectrum of 𝑓(𝑥).  The original function 𝑓(𝑥) can be 

mathematically recovered from 𝐹(𝑘) by applying the inverse Fourier transform, described as,  
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 𝑓(𝑥) = ∫ 𝑑𝑘𝐹(𝑘)𝑒2𝜋𝑖𝑥𝑘

+∞

−∞

  (2.31) 

Equations 2.30-2.31 are the Fourier transform pairs in 1D, but these two formulations generalize 

to N-dimensions with straight forward extensions. 

2.2.2 Magnetic Field Gradients 

MR signals can be spatially localized by the application of linearly spatially varying magnetic 

fields since the Larmor frequency is linearly proportional to the total magnetic field at a point.  

An MR imaging device typically contains a set of gradient coils that produce linear magnetic 

field gradient in the three orthogonal directions.  The effect of magnetic field gradients can be 

mathematically described as31 

 ∆𝐵(𝑥, 𝑦, 𝑧) = 𝒓 ∙ 𝑮 = 𝑥𝐺𝑥 + 𝑦𝐺𝑦 + 𝑧𝐺𝑧 (2.32) 

where B is the additional magnetic field strength at a point (𝑥, 𝑦, 𝑧) due to the application of 

linear gradient, the vector 𝒓 is position vector, and 𝑮 is magnetic field slope vector, also known 

as gradient strength.  It is worth noting that while the gradient field ∆𝐵 varies in the three 

orthogonal directions, this additional magnetic field is oriented in z-direction, parallel to B0.  

Combining the main magnetic field to the gradient field yields the expression 

 𝑩(𝒓) = �̂�(𝒓 ∙ 𝑮 + 𝐵0) (2.33) 

2.2.3 Slice Selection 

In tomographic imaging, one of the three spatial dimensions is usually localized by selecting a 

slice (i.e. a 2D plane) or a set of slices to be imaged. In MR imaging, this is achieved through the 

application of a slice selective RF pulse in conjunction with gradients in any desired direction.  A 

slice selective gradient can be applied such that the magnetization in a plane within the sample, 

perpendicular to vector 𝑮, will precess at the same Larmor frequency.  Since it is not practical to 

select an infinitesimally thin plane, a rectangular slice profile can be obtained by applying a sinc 

shaped RF pulse in time domain.  With relatively small flip angles (< 90), the slice profile can 

be approximated by taking the Fourier transform of the RF pulse shape.  The sinc and 



25 

 

rectangular functions are Fourier transform pairs.  The width of the rectangular function, ∆𝜔 is 

related to the physical slice thickness, d, described by the following expression32. 

 𝑑 =
∆𝜔

𝛾𝐺
 (2.34) 

Where the frequency bandwidth, ∆𝜔,isthe difference between the maximum and the minimum 

precession frequencies within the rectangular slice.  In some applications, other factors, such as 

RF energy deposition are of greater importance compared rectangular slice profile.  In these 

cases, other RF pulse shapes (i.e. Gaussian) are used, resulting in non-rectangular slice profiles.   

Finally, it should be noted that the Fourier transform relationship between the RF time domain 

pulse and the shape of the slice profile is only valid for the small flip angles.  At larger flip 

angles (> 90), the Fourier transform relationship in no longer valid, which requires specifically 

designed pulses to achieve the desired slice profile33 (i.e. Shinnar – Le Roux method). 

2.2.4 Frequency Encoding and Quadrature Detection 

If a linearly varying magnetic field with known gradient is applied in a direction (e.g. x-

direction) orthogonal to the slice selective direction (e.g. z-direction) during acquisition, the 

detected time domain FID will comprise a range of frequencies.  With the gradient 𝐺 applied in 

the x-direction, the magnetization in the x-direction of the selected plane will precess at a range 

of frequencies. In particular, the Larmor frequency at 𝑥 is 𝜔0 + 𝛾𝑥𝐺, and the voltage induced is 

given as follows32 

 𝑉(𝑡) =  ∫ 𝑑𝑥𝑃(𝑥) cos(𝜔0 + 𝛾𝑥𝐺) 𝑡   (2.35) 

where 𝑃(𝑥) is the projection of 2-D magnetization of the selected plane onto the x-direction.  In 

quadrature detection, this induced voltage is split into two components each obtained by 

multiplication with a reference signal oscillating at the natural Larmor frequency. The reference 

signals of the two components are 90o out of phase with one other as  

 𝑉1(𝑡) = 𝑉(𝑡) cos(𝜔0𝑡) = ∫ 𝑑𝑥𝑃(𝑥)[cos(2𝜔0 + 𝛾𝑥𝐺) 𝑡 + cos(𝛾𝑥𝐺) 𝑡] (2.36) 
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 𝑉2(𝑡) = 𝑉(𝑡) sin(𝜔0𝑡) = ∫ 𝑑𝑥𝑃(𝑥)[sin(2𝜔0 + 𝛾𝑥𝐺) 𝑡 − sin(𝛾𝑥𝐺) 𝑡]   (2.37) 

For each of two signal components, the high frequency component of the signal is removed by 

means of a low-pass filter.   

 𝑉1(𝑡) = ∫ 𝑑𝑥𝑃(𝑥)cos(𝛾𝑥𝐺𝑡)   (2.38) 

 𝑉2(𝑡) = ∫ 𝑑𝑥𝑃(𝑥)sin(𝛾𝑥𝐺𝑡)   (2.39) 

The two components are generally described as the “real” and “imaginary” component of the 

detected signal.  The two 90o out of phase signals allow one to distinguish whether the frequency 

is positive or negative.  The combination of the two signals is a generally a complex signal given 

as follows.  

 𝐶(𝑡) = 𝑉1(𝑡) − 𝑖𝑉2(𝑡)  (2.40) 

which can be expressed as, using Euler’s formula  

 𝐶(𝑡) = ∫ 𝑑𝑥𝑃(𝑥)𝑒−𝑖𝛾𝑥𝐺𝑡   (2.41) 

By making the substitution 𝑘 = 𝛾𝐺𝑡 in Equation 2.41, one gets the expression 

 𝐶(𝑘) = ∫ 𝑑𝑥𝑃(𝑥)𝑒−𝑖𝑘𝑥   (2.42) 

A simple application of an inverse Fourier transform in eq.2.42 one can recover the spatially 

localized signal  

 𝑃(𝑥) =
1

2𝜋
∫ 𝑑𝑘𝐶(𝑘)𝑒𝑖𝑘𝑥   (2.43) 

In summary, in frequency encoding, a magnetic field gradient is applied during data acquisition.  

Spatial information is recovered by the inverse Fourier transform of the resulting time-domain 

quadrature detected signal.  
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2.2.5 Phase Encoding 

From Equation 2.41, we can extract the important physical quantity 

 𝜙 = 𝛾𝑥𝐺𝑡 (2.44) 

which is known as phase.  Spatial information in the direction orthogonal to the frequency 

encoding direction can be localized by manipulating the phase of the magnetization within the 

selected plane.  This is known as phase encoding process which varies the phase along the phase 

encoding direction (i.e. y-direction) by the application of another linearly varying gradient.   

For simplicity, let us say that the total magnetization is to be spatially localized at 3 different 

points, −𝑦, 0, 𝑦, with an associated magnetization of 𝑚−𝑦, 𝑚0 and 𝑚𝑦, at these points, 

respectively.  In order to achieve this, 3 frequency encoding steps, with y-direction gradients of 

magnitudes, 𝐺𝑦= −𝑔, 0 and 𝑔 are applied after the slice selective z-gradient, but prior to 

frequency encoding gradient applied during acquisition of the time domain FID.   The phase can 

be determined by eq. 2.44.  In the first experiment, the encoding gradient 𝑔 will create the phase 

of 𝜙 = -𝜃, 0, and 𝜃where 𝜃 = 𝛾𝑦𝑔𝑇, for 𝑚−𝑦, 𝑚0 and 𝑚𝑦.  The projection from the first 

experiment is 

 𝑝+𝑔 =  𝑚−𝑦𝑒−𝑖θ+𝑚0 + 𝑚𝑦𝑒𝑖θ  (2.45) 

The 2nd experiment, there is no phase, the projection is therefore simply 

 𝑝0 =  𝑚−𝑦+𝑚0 + 𝑚𝑦  (2.46) 

For the 3rd experiment, the gradient of – 𝑔, the projection is 

 𝑝−𝑔 =  𝑚−𝑦𝑒𝑖θ+𝑚0 + 𝑚𝑦𝑒−𝑖θ  (2.47) 

We can define the matrix notations 

 𝑭 = [
𝑒𝑖𝜃 1 𝑒−𝑖𝜃

1 1 1
𝑒−𝑖𝜃 1 𝑒𝑖𝜃

]   (2.48) 



28 

 

 𝒎 = [

𝑚𝑔

𝑚0

𝑚−𝑔

]   (2.49) 

 𝒑 = [

𝑝𝑔

𝑝0

𝑝−𝑔

 ] (2.50) 

Equations 2.45-2.47 can be written in matrix form 

  P  = F m (2.51) 

 

The goal is to recover the spatially localized matrix m from the acquired projections P, by using 

matrix inversion as follows. 

 m  =  𝑭−𝟏𝑷 (2.52) 

Three phase encoding gradient steps are not sufficient to generate acceptable images.  For 

maximum computational efficiency, the number of phase encoding steps in MR imaging 

experiment is typically chosen as 2N numbers such as 64, 128, 256, and 512.  The phase 

encoding gradients are chosen such that the phase increases linearly from negative maximum to 

positive maximum in a step-by-step manner.  For 256 phase encodes (i.e. 256 frequency encoded 

data acquisition each with a different phase encode gradient), the elements of the matrix F are 

defined as 

 𝐹𝑗𝑘 =
1

√256
𝑒−𝑖

2𝜋𝑗𝑘
256  (2.53) 

The matrix F and inversion matrix F-1 are the forward and inverse discreet Fourier transform 

operators.  The spatially localized signal (image) is a 2D inverse Fourier transform of the series 

of projections. 

2.2.6 2D Signal Equation and k-space 

The more general formulation of time varying signal (i.e. gradient modified FID), after slice 

selection gradient along the z direction, and the time varying gradients along the x and y 

directions, is the expression known as the 2D signal equation31 given as follows. 
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 𝑆(𝑡) = ∬ 𝑑𝑥𝑑𝑦𝑃(𝑥, 𝑦)𝑒−𝑖(𝑘𝑥(𝑡)𝑥+𝑘𝑦(𝑡)𝑦) (2.54) 

Where 

 𝑘𝑥(𝑡) =  𝛾 ∫ 𝐺𝑥(𝜏)𝑑𝜏
𝑡

0

 (2.55) 

and 

 𝑘𝑦(𝑡) =  𝛾 ∫ 𝐺𝑦(𝜏)𝑑𝜏
𝑡

0

 (2.56) 

Where 𝑘𝑥and 𝑘𝑦 define the two orthogonal axes of k-space.  Note that the time integral of the 

gradients 𝐺𝑥 and 𝐺𝑦 effectively determines k-space trajectory.  In the most conventional MR 

studies, a sequence of varying gradients are applied, acquiring sufficient data to cover a 2D k-

space, M(kx, ky).  MR images are reconstructed by performing a 2D inverse Fourier transform.  

The next section describes a few examples of such sequences. 

2.3 Imaging Sequences: Spin Echo 

2.3.1 Spin Echo Sequence 

This section introduces several basic MRI sequences.  As noted previously, an FID signal from a 

90o RF pulse leads to 𝑇2
∗ related signal losses caused by local magnetic field inhomogeneity.  

However, this loss is recoverable by a sequence known as the spin-echo experiment.  In the spin 

echo experiment, the 90o RF excitation pulse is followed by a 180o RF refocusing pulse after a 

time 𝑡.  The polarity of spins dephasing due to the local magnetic field inhomogeneity is now 

reversed causing them to re-phase in time.  At a time precisely at 2𝑡 after the 90o RF pulse, also 

known as the echo time (𝑇𝐸), the phase coherence is again at the maximum, and the FID signal 

formed from this coherence is called an echo.   

However, the de-phasing from spin-spin interaction (𝑇2) is not recoverable.  If only one re-

focusing pulse is applied, the signal dependence on 𝑇𝐸 is given as follows32, 

 𝑆(𝑇𝐸) =  𝑀0𝑒
−𝑇𝐸

𝑇2  (2.57) 
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where 𝑀0 magnetization as defined as equation 2.13.  Each spin echo signal, with appropriate 

phase and frequency encoding gradients, represents a single line in k-space along the frequency 

encode direction.  Multiple excitations (with different magnitudes of phase encode gradients) are 

required to acquire a full 2D k-space in order to generate a 2D image.  The time interval between 

excitations is known as the repetition time (TR).  Due to repeated excitations, longitudinal 

relaxation time (𝑇1) has an impact on the overall signal.  Prior to the initial excitation, 𝑀𝑧 is at its 

maximum point at thermal equilibrium. A 90o pulse flips the magnetization vector onto the x-y 

plane, and 𝑀𝑧 = 0. The spin-lattice relaxation occurs, with a time constant 𝑇1  , between 

consecutive excitation pulses at time intervals of TR.  𝑇1 and 𝑇𝑅 determine how much of the 𝑀𝑧 

magnetization will recover and available for the subsequent excitations.   Eventually, a steady 

state level of 𝑀𝑧 is achieved at the beginning of each excitation.  The amount of signal available 

is described by 

 

 𝑆(𝑇𝐸, 𝑇𝑅) =  𝑀0 (1 − 2𝑒
−

−(𝑇𝑅−
𝑇𝐸
2

)

𝑇1 + 𝑒
−

𝑇𝑅
𝑇1 ) 𝑒

−𝑇𝐸
𝑇2  (2.58) 

 

Figure 2-1: Sequence diagram for a spin echo sequence.  RF describes the radiofrequency pulse, Gx,Gy, Gz describes 

the x, y, z gradients, and Acq. describes the acquired signal. TE is the echo time, and TR is the repetition time. The 

lower magnitude RF pulse is 90 excitation and the higher magnitude RF pulse is 180 re-focusing pulse that falls 

mid-way between 90 excitation pulse and the center of the acquired FID, Acq. 
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While 𝑇1 and 𝑇2 time constants are the inherent property of the MR sample, 𝑇𝐸 and 𝑇𝑅 times are 

parameters chosen by the user in the MRI experiment.  The effect of spin-spin relaxation (T2-

relaxation) in the image is minimized when 𝑇𝐸 << 𝑇2, while the effect of spin-lattice relaxation 

(𝑇1-relaxation) is minimized when 𝑇𝑅 >> 𝑇1.  Hardware limits, such as gradient strength (i.e. 

magnitude of the slope of the linearly varying magnetic field) of an MR system, limits the 

minimum TE, while scan time limits the maximum TR, as the total scan time required for a spin 

echo sequence to generate an image is given as follows. 

 𝑆𝑐𝑎𝑛 𝑇𝑖𝑚𝑒 =  𝑁𝑝𝑒 ∗ 𝑇𝑅 (2.59) 

Where Npe is the number of phase encode lines, or the number of k-space lines. 

2.3.2 Turbo Spin Echo Sequences  

At times after the data acquisition at t = TE, the spin system in the slice plane both de-phases due 

to 𝑇2
∗ and diminishes due to T2-relaxation; however, there may still be adequate spin population 

left in the slice plane.  If one then applies another phase encode gradient and a refocusing RF 

pulse, one can acquire another line of the k-space without flipping a renewed spin system that 

has relaxed in the direction orthogonal to slice plane (i.e. z-direction).  This step can be repeated 

as long as there is adequate spin population remains in the slice plane allowing multiple k-space 

lines within the same TR. This approach is known as the turbo spin echo (TSE) approach.  This 

sequence has different names among different vendors including the Fast Spin Echo (FSE) or 

Rapid Acquisition with Relaxation Enhancements (RARE).    This sequence acquires the FID of 

each phase-encode with a different TE value. Therefore, the relationship of pixel values and 

relaxation time is not simple32.  However, in applications where quantitative information about 

relaxation times is not important, TSE sequence offers high quality SE like images while 

significantly reducing the imaging time.  The scan time for such a scan is 

 𝑆𝑐𝑎𝑛 𝑇𝑖𝑚𝑒 =  
𝑁𝑝𝑒

𝑇𝑆𝐸 𝐹𝑎𝑐𝑡𝑜𝑟
∗ 𝑇𝑅 (2.60) 

Where the TSE factor represents the number of echoes acquired per excitation, i.e. in each TR. 
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2.4 Imaging Sequences: Gradient Echo Imaging 

2.4.1 Spoiled Gradient Echo Sequence 

To further reduce the data acquisition time for an image, a whole family of gradient echo based 

sequences has been developed.  In a gradient echo sequence, only RF excitation pulse of a 

specified flip angle is used in a fixed interval of time (𝑇𝑅).  The magnetization undergoes 

relaxation before the next excitation.  After some initial pulses, the spin system gradually reaches 

a steady state in which each RF pulse produces the same amount of magnetization in the 

transverse plane.  Instead of refocusing spins by 180 RF pulse, echoes are formed by the de-

phasing and re-phasing of spins by the application of the reversed frequency encoding gradient.  

As there is no 180o refocusing, the 𝑇2
′ effect is not reversed.  As a result, gradient echo sequence 

is 𝑇2
∗ weighted rather than  𝑇2 weighted.  A version of the spoiled gradient echo sequence with 

gradient spoiling is shown in Figure 2-4.  RF pulses with phase cycling are another means to 

achieve spoiling.  The purpose of spoiling is to remove the remaining transverse signal at the end 

of each excitation to create  𝑇1 weighting in the image.  This sequence is also known as  𝑇1-FFE 

or FLASH.  The signal acquired in the spoiled gradient echo sequence is described by the 

following expression33. 

 𝑆 =
𝑀0 sin 𝜃(1 − 𝑒−𝑇𝑅 𝑇1⁄ )

(1 − 𝑐𝑜𝑠𝜃𝑒−𝑇𝑅 𝑇1⁄ )
𝑒

−𝑇𝐸
𝑇2

∗
  (2.61) 

 

Figure 2-2: Sequence diagram of the spoiled gradient echo sequence.  Random gradients are employed to spoil the 

remaining transverse magnetization at the end of each TR interval. 
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It should be noted that the scan time of a gradient echo sequence can be expressed with the same 

expression as spin echo sequence as follows. 

 

 𝑆𝑐𝑎𝑛 𝑇𝑖𝑚𝑒 =  𝑁𝑝𝑒 ∗ 𝑇𝑅 (2.62) 

However, the scan time of gradient echo sequences can be significantly reduced by using a much 

shorter TR with a small flip angle. When TR is short, a 90o RF pulse will not provide maximum 

signal, as there is not enough time for the longitudinal component to recover.  An optimal flip 

angle to generate maximum signal in steady state is known as the Ernst angle, described as 

follows33. 

 𝛼𝑜𝑝𝑡 = arccos (𝑒
−𝑇𝑅

𝑇1 ) (2.63) 

2.4.2 SSFP-FID and SSFP-Echo 

Compared to the spoiled gradient echo sequence, which sacrificed some signal for enhanced T1 

contrast, an unspoiled, steady state free precession (SSFP) sequence makes a greater amount of 

signal available than spoiled gradient echo.  A necessary step in the SSFP sequence is a re-

winder phase encoding gradient (Gy in Figure 2-3).  Two different signals can be acquired from 

SSFP sequence.  The SSFP-FID is formed from the FID of each excitation pulse.  SSFP-FID has 

more signal but less T1 contrast compared to the spoiled gradient echo.  On the other hand, the 

SSFP-echo, a time reversed FID, that appears before each excitation pulse due to the refocusing 

effect of consequence RF pulses.  SSFP-echo sequence has more T2 contrast compared to SSFP-

FID.  An example of SSFP-FID and SSFP-echo sequence is shown in Figures 2-5   
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Figure 2-3: Sequence diagram for the SSFP-FID sequence (Top) and the SSFP-echo sequence (Bottom).  They are 

mirror image of each other 

2.4.3 Balanced SSFP 

Balanced SSFP (bSSFP) incorporates a SSFP sequence in which the net area under gradients on 

any axis is zero in each 𝑇𝑅 interval, as shown in Figure 2-6. The signal peaks from the SSFP-

FID and the SSFP-echo will coincide in-time with each other to create a signal that is a coherent 

sum of the two separate signals. Thus a signal larger in magnitude is produced compared to the 

other SSFP sequences.  The signal of a bSSFP sequence can be expressed as follows33. 
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 𝑆 = 𝑀0sinθ 
1 − 𝐸1

1 − (𝐸1 − 𝐸2)𝑐𝑜𝑠𝜃 − 𝐸1𝐸2
𝑒

−𝑇𝐸
𝑇2  (2.64) 

Where 𝐸1 and 𝐸2 are equal to 𝑒
−𝑇𝑅

𝑇1 and 𝑒
−𝑇𝑅

𝑇2 respectively. In cases where 𝑇𝑅 << 𝑇2, the equation 

simplifies to 

 𝑆 =  
𝑀0sinθ 

𝑇1 𝑇2⁄ (1 − 𝑐𝑜𝑠𝜃) + (1 + 𝑐𝑜𝑠𝜃)
𝑒

−
𝑇𝐸
𝑇2  (2.65) 

Due to the 𝑇1 𝑇2⁄  term in the denominator of Eq. 2.65, bSSFP is often described to have 

𝑇2 𝑇1⁄  contrast weighting.  Also, one can observe from the term “𝑒
−

𝑇𝐸

𝑇2” that the bSSFP sequence 

is 𝑇2weighted rather than being 𝑇2
∗ weighted33.  Proof of 𝑇2 weighting was given by Scheffler 

and Hennig34 for the case where 𝑇𝐸 = 𝑇𝑅/2, a condition satisfied in most applications of bSSFP. 

The optimal flip angle for maximum signal for bSSFP is given as follows33. 

 𝜃𝑚𝑎𝑥 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑇1 − 𝑇2

𝑇1 + 𝑇2
)   (2.66) 

 

Another important characteristic of this sequence is the presence of banding artifacts.  Local field 

inhomogeneity creates unwanted phase to be accumulated during each TR cycle.  A low signal 

region (a band) occurs when the accumulated phase is 180o.  As phase accumulation is 

proportional to 𝑇𝑅, a shorter 𝑇𝑅 is an effective method to reduce banding artifacts.  Due to the 

presence of increased field inhomogeneity at high fields scanners, banding artifacts can be quite 

severe in high field MRI.  Balanced, SSFP sequence is inherently more suitable for imaging at 

lower static magnetic fields.  
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Figure 2-4: Sequence diagram for the balanced SSFP sequence. 

2.5 Signal, Noise, Contrast 

2.5.1 Signal-to-Noise Ratio 

The discussion in the previous sections was confined to the magnitude of the MRI signal 

available in each of the MRI sequence. However, the presence of noise in the acquired signal is 

an important factor as the noise in the data propagates as noise in the MR images. Large random 

fluctuations in MRI images are detrimental to the image quality.  Noise in the acquired FID 

arises from Brownian (thermal) motion of electrons in a conductive material, which is also 

known as resistance noise31.  Noise arises from both resistance in the coil and the imaged sample.  

In the presence of such noise, an important indicator of image quality is the signal to noise ratio 

(SNR) defined as follows. 

 SNR = 
𝑆𝑖𝑔𝑛𝑎𝑙 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
  (2.67) 

Where the ‘signal magnitude’ is usually the mean pixel intensity of a region of interest in the 

image, and the standard deviation of noise is measured by calculating the standard deviation in a 

region of the image with uniform signal. Recall that in quadrature detection, MR signal is a 

complex quantity with real and imaginary components required for Fourier transform.  After 

Fourier transform, complex images with real and imaginary components are generated.  While 

real and imaginary images have little physical meaning individually, they can be combined to 

calculate magnitude and phase images.  The scalar magnitude images are the images most 

commonly used in clinical MRI.   However, one must be careful in measuring noise from the 
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magnitude images.  Due to the manner in which magnitude signal is calculated, the noise in the 

magnitude images follows a probability distribution resembling a Rician distribution (non-

negative).  If noise is measured in the magnitude images of a uniform phantom in regions where 

SNR > 2, the Rician and Gaussian distributions are approximately equal and no correction would 

be needed35. As patients are generally non-uniform, the noise would be best measured in a region 

outside the patient image where there is no signal.  In such instances (SNR < 2), the Rician 

distribution becomes a Rayleigh distribution, and the measured standard deviation will not be 

representative of the noise in the high SNR region of interest within the patient image.  A 

correction factor, thus, must be applied.  The noise characteristics for phased array coils are more 

complicated, and are beyond the scope of this work. 

The problem of noise bias can be avoided if noise is measured in a zero signal region in the real 

or imaginary images where negative values are allowed.   

The overall SNR depends on many factors, which can be summarized in the following 

equation31. 

 

 𝑆𝑁𝑅 ∝  ∆𝑥∆𝑦∆𝑧√𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑓(𝜌, 𝑇1, 𝑇2) (2.68) 

Where, ∆𝑥, ∆𝑦, ∆𝑧, represents the voxel dimension, the readout interval term describes the 

number of excitations and the number of encoding steps on each dimension, and the 𝑓(𝜌, 𝑇1, 𝑇2) 

is a sequence dependent function, such as eq. 2.58 for spin echo images, eq.2.61 for FLASH and 

eq. 2.64 for bSSFP sequences.  The proton density term 𝜌 is built into 𝑀0 in those equations. 

2.5.2 Contrast to Noise Ratio 

The key objective in many applications of MR imaging is to distinguish between diseased and 

healthy tissues.  The signal in both the diseased and healthy areas will fluctuate due to the noise. 

The difference in the mean signals of two types of tissue is known as contrast.  However, this 

mean signal difference must be larger than the standard deviation of the noise in order for the 

two tissues to be visually distinguished; the larger the signal difference compared to noise 

standard deviation the better is visualization.  The concept of contrast to noise ratio (CNR) is 



38 

 

thus introduced as a quantitative measure of image quality.  Assuming uniform noise over the 

imaging field of view, CNR is defined as 

 CNR = 
𝑆𝑖𝑔𝑛𝑎𝑙 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
= ∆𝑆𝑁𝑅 

(2.69) 

 

In the context of lung tumour tracking, CNR is an important quality that describes the ability of 

imaging system to distinguish a lung tumour from healthy lung parenchyma tissues in the 

presence of imaging noise.  Tumour and normal tissues may exhibit differences in 𝜌,  𝑇1 and 𝑇2, 

giving rise to differences in SNR (eq. 2.68). 

2.6 Effects of Changing Main Magnetic Field Strength 

2.6.1 SNR Dependence on B0 

The effect of varying the main magnetic field strength (B0) on image quality is an important 

aspect of this thesis. Eq. 2.29 shows that the induced voltage in an MR experiment is 

proportional to both the sample’s magnetization and the precession frequency which, in turn, are 

both linearly proportional to B0 (Eqs. 2.13 and 2.17).  Thus the MR signal amplitude is 

proportional to B0
2.  However, MR noise also depends on B0, but in a more complex manner.  

MR noise, as previously described, comes from two sources: resistance from the coil; and 

resistance from the body.  Noise arising from the body has been shown to be proportional to 𝐵0, 

whereas noise arising from the coil is known to be proportional to 𝐵0

1

431.  If either coil noise or 

body noise is dominant, the relationship between SNR and 𝐵0 can be approximated as follows. 

 𝑆𝑁𝑅 ∝ 𝐵0 (2.70) 

 𝑆𝑁𝑅 ∝ 𝐵0

7
4 (2.71) 

Where expression 2.70 represents the SNR relation when resistance from the body is the 

dominant factor, while equation 2.71 represents the relationship when coil resistance is the 

dominant effect.  In typical MR coils used for imaging patients, for lower field strength (i.e. 

roughly 0.2 T or less), coil noise dominates and equation 2.70 is used to estimate the relationship 

between SNR and 𝐵0; whereas for higher field strengths (i.e. roughly 0.2T or more), body noise 

dominates and equation 2.71 is used to estimate the relationship between SNR and 𝐵0
36.   For 
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example, going from 3 T to 0.5 T would mean a reduction of SNR by a factor of 6.  These 

relationships are often used to justify the modification of an image acquired at a higher field 

strength to simulate an image acquired at lower field.  SNR can be downgraded by the addition 

of zero mean Gaussian random number to the image.  This process does not modify the signal 

amplitude but increases noise, resulting in a reduction of SNR and CNR. The previous example 

of scaling from 3 T to 0.5 T will suggest that the noise be amplified by a factor of 6. This process 

will be described in this work as linear SNR/CNR scaling to 𝐵0. 

It should be noted that expressions 2.70 and 2.71 do not account for any potential changes in 

relaxation times of a tissue when the main magnetic field is lowered. This issue is described in 

details in the next section. 

2.6.2 Relaxation Values Dependence on B0 

𝑇1 relaxation time is known to be dependent on 𝐵0, while 𝑇2 relaxation time is known to be 

relatively independent of it37.  The relaxation of spin system in MR experiment is largely caused 

by fluctuating magnetic fields at the sites of nuclear spins.  The tumbling motion of a molecule 

can be characterized by its correlation time 𝜏𝑐, which is the average amount of time required by 

the molecule to rotate by approximately 1 radian.  The spectral density function 𝐽(𝜔) =
𝜏𝑐

1+𝜔2𝜏𝑐
2 

describes the probability that a molecule 𝜏𝑐 with is rotating at a frequency 𝜔.  In systems where 

the fluctuations are rapid such as the case of liquid water, the spectral density is broad, whereas 

in systems where the fluctuations are very slow (such as water molecules bound in very tight 

spaces), the spectral density is narrow38.  Most tissues are within the intermediate region between 

these two extremes.  A few sample spectral density curves are shown in Figure 2-7.  
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Figure 2-5: Sample spectral density for protons in 3 different environments.  Blue curve represents protons in a 

tightly bound environment, green curve represents protons in free water, and the red curve represents water in most 

tissues, which is an intermediate between the other two extreme cases. 

For NMR protons, spinning at Larmor frequency 𝜔0, 𝑇1 and 𝑇2 relaxation efficiencies are 

dependent on the tumbling frequencies of its environment.  For pure substances, the relaxation 

times can be calculated from these spectral density curves using the Soloman-Bloembergen 

equations as follows38 

 
1

𝑇1
= 𝑐𝑜𝑛𝑠𝑡 ∗ [𝐽(𝜔0) + 4𝐽(2𝜔0)] (2.72) 

 
1

𝑇2
= 𝑐𝑜𝑛𝑠𝑡 ∗  [3𝐽(0) + 5𝐽(𝜔0) +  2𝐽(2𝜔0)] 

(2.73) 

 

When 𝐵0 is increased, the Larmor frequency will increase proportionally.  The spectral density 

function has a lower value at higher frequency, which leads to an increase in 𝑇1.  For 𝑇2  

relaxation, however, the effect is much less pronounced, because of the presence of the term -

 𝐽(0) which is independent of 𝐵0.  In tissue relaxation studies with varying 𝐵0, 𝑇1 is generally 

modelled with the function37 

 

 𝑇1(𝜔0) = 𝑎𝜔0
𝑏  (2.74) 
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where 𝜔0 is the Larmor frequency which scales linearly with 𝐵0.  Constants ‘a’ and ‘b’ differ for 

each types of tissues, and 𝑇2 is generally assumed to be constant37.  𝑇2
∗, as described previously, 

is dependent on local field inhomogeneity.  In some tissues, such as the lung parenchyma, the 

magnetic susceptibility gradients between air and tissue are the main sources of local magnetic 

field inhomogeneity. The magnetic field inhomogeneity scales with 𝐵0.  as follows. 

 Δ𝐵 = Δχ𝐵0 (2.75) 

In these tissues, the local susceptibility differences Δχ are significant, and increasing the field 

strength would have the effect of shortening 𝑇2
∗ relaxation times.  The dependence of relaxation 

values on field strength means that the Eqs. 2.67 and 2.68 do not completely describe the 

relationship between SNR and B0 

2.7 k-space Sampling 

In section 2.2.6, we briefly introduced the concept of the k-space domain, in which MRI coil data 

are collected, in the form of M(kx, ky), prior to Fourier transform into MR images containing 

relaxation weighted proton density distributions.  It should be noted that while the MR signal is 

continuous, the data are quantized and sampled at discrete locations.  For a typical conventional 

MR sequence with regular sampling intervals, the sampled k-space data M̂ can be expressed as31 

 M̂(k𝑥, k𝑦) = M(k𝑥, k𝑦) (
1

∆k𝑥
∆k𝑦

) ΙΙΙ2𝐷 (
k𝑥

∆k𝑥

,
k𝑦

∆k𝑦

) ⊓2𝐷 (
k𝑥

𝑊𝑘𝑥

,
k𝑦

𝑊𝑘𝑦

) (2.76) 

In this equation, the 2 dimension Dirac comb function, ΙΙΙ2𝐷 (
k𝑥

∆k𝑥

,
k𝑦

∆k𝑦

), represents sampling 

density, with the spacing between each tooth of ∆k𝑥 along the kx direction and of ∆k𝑦 along the 

k𝑦direction.  On the other hand, the 2D rectangular function defines the maximum range of 

sampling, with the maximum width in kx of 𝑊𝑘𝑥
= 2 (𝑘𝑥,𝑚𝑎𝑥 +

∆k𝑥

2
) and the maximum width in 

ky of 𝑊𝑘𝑦
= 2 (𝑘𝑦,𝑚𝑎𝑥 +

∆k𝑦

2
). 
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As stated previously, the image is reconstructed by taking a 2D Fourier transform of M̂(k𝑥, k𝑦).  

In the images space, the multiplications equation 2.76 is now represented as convolutions, as 

follows. 

 m̂(x, y) = m(x, y)⨂2𝐷ΙΙΙ2𝐷 (∆k𝑥
𝑥, ∆k𝑦

𝑦) ⨂2𝐷𝑆𝐼𝑁𝐶(𝑊𝑘𝑥
𝑥)𝑆𝐼𝑁𝐶(𝑊𝑘𝑦

𝑦) (2.77) 

Where the desired image m(x, y) are now convolved with a dirac comb function of width 1/∆k𝑥
 

and 1/∆k𝑦
, which creates copies, or aliasing of the desired image, as well as the sinc functions 

which blur the images.   

2.7.1 Field of View and the Nyquist Criterion 

The field of view of a particular image is defined as the distance at which the image is replicated 

in real-space due to the COMB sampling in k-space, which is given as follows31. 

 FOV𝑥 =
1

∆k𝑥

=
1

𝛾
2𝜋 𝐺𝑥∆𝑡

 (2.78) 

 FOV𝑦 =
1

∆k𝑦

=
1

𝛾
2𝜋 ∆𝐺𝑦𝜏

 (2.79) 

The difference in FOV𝑥 and FOV𝑦 in 2.78 and 2.79 is due to the fact that readout gradient 𝐺𝑥 is 

constant for the acquisition, hence the separation between sampling points in frequency encode 

direction (x-axis) is dependent on the time period ∆𝑡 between subsequent A/D conversions.  On 

the other hand, along the phase encode gradient direction (y-axis), the sampling period between 

phase encode lines is dependent on the increment changes in gradient strength ∆𝐺𝑦, which is 

turned on for a fixed time 𝜏. 

In most commercial MRI systems, the readout direction is oversampled, as there is usually no 

time penalty for doing so, there is usually no aliasing along this direction.  On the other hand, 

increasing sampling in the phase encode direction tend to increase the overall scan time (see Eqs 

2.59 and 2.62).  To prevent aliasing in the phase encode direction, the MR equivalent of the 

Nyquist Criterion is simply given as  
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 d𝑦 < FOV𝑦 (2.80) 

where d𝑦 represents the maximum length of the imaged object along the phase encode direction, 

since commercial systems allow the user to choose the FOV, one simply chooses a FOV larger 

than the imaged object to prevent aliasing, with potential implications on both the scan time and 

nominal voxel size, which is discussed in the next section. 

2.7.2 Spatial Resolution and Voxel Size 

The ability to resolve small object (i.e. spatial resolution) is related to the voxel size of the 

images.  The voxel size of the image is typically characterized as follows31. 

 Δ𝑥 =
1

𝑊𝑘𝑥

=
1

∆k𝑥
𝑁𝑟𝑒𝑎𝑑

=
FOV𝑥

𝑁𝑟𝑒𝑎𝑑
 (2.81) 

 Δ𝑦 =
1

𝑊𝑘𝑦

=
1

∆k𝑦
𝑁𝑝𝑒

=
FOV𝑦

𝑁𝑝𝑒
 (2.82) 

Recall from equations 2.59 and 2.62 that the scan time for spin echo and gradient echo sequences 

is given as follows. 

𝑆𝑐𝑎𝑛 𝑇𝑖𝑚𝑒 =  𝑁𝑝𝑒 ∗ 𝑇𝑅 

Hence, scan time can be reduced by using a gradient echo sequence to shorten TR, or by 

reducing 𝑁𝑝𝑒.  The example shown in Figure 2-6 is a case where 𝑁𝑝𝑒is quartered, by sampling 

only 1-quarter of central k-space.  If the sampling period ∆k𝑦
is maintained, voxel size will be 

quadrupled along that direction, while FOV𝑦is maintained, as shown in the blurred image in the 

second row of Figure 2-6.  Alternatively, ∆k𝑦
 can be quadrupled to maintain the voxel size, but 

FOV𝑦 will be quartered as a result, as shown in the aliased image in the 3rd row of Figure 2-6.  By 

making the substitution to 2.82, we derive an intuitive relationship between the inherent trade off 

with respect to scan time, voxel size and FOV, expressed as follows. 

 𝑆𝑐𝑎𝑛 𝑇𝑖𝑚𝑒 = 𝑇𝑅 
FOV𝑦

Δ𝑦
. (2.83) 
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Figure 2-6: A demonstration of how various reductions of Npe affect the fully sampled image in the first row.  

Second row represents the acquisition of central 25% of k-phase encode lines while maintaining ∆k𝑦
and FOV, 

resulting in a loss in resolution.  Third row represents 25% sampling over the entire k-space while increasing ∆k𝑦
by 

4 folds in order to maintain FOV, which leads to aliasing versions of base image within the FOV.  Un-sampled 

locations are zero filled to maintain nominal resolution. 

2.8 MR Acceleration 

The fast sequences introduced in the previous section, such as turbo spin echo, or gradient echo 

techniques shorten MR acquisition time by acquiring the full k-space data in a more efficient 

manner, either via acquiring multiple lines of k-space within a single TR in the case of TSE or 

having very short TR’s in the case of gradient echo.  However, these fast techniques can be 

further sped up by reconstructing images with only partial k-space acquisition, which reduces 
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𝑁𝑝𝑒 and hence, the scan time.  Generally speaking, the act of trading spatial resolution for speed 

(second row of Figure 2-6) is not considered to be an MR acceleration technique.  Therefore, in 

this work, an MR acceleration technique is defined as means to increase k-space acquisition 

speed by partial k-space sampling while maintaining nominal spatial resolution i.e. the methods 

that increase ∆k𝑦
.    

In partial k-space sampling, the degree of under-sampling is inversely related to the acceleration 

factor.  For example, if an image is acquired with only 50% k-space, the acceleration factor will 

be 2, if the image is acquired with 20% k-space, the acceleration will be 5x. 

2.8.1 Regular Under-sampling and Parallel Imaging 

The aliased image in Figure 2-6 appears a very poor representation of the original fully sampled 

image.  However, techniques have been developed such that aliasing artifacts that arise from 

regular under-sampling of k-space can be removed by the use of multiple element array coils.  

Since the 1980’s39 multiple array coils have been proposed as means to provide encoding 

information for MRI.  The most ambitious proposal40, called massively parallel approach, phase 

encoding is completely replaced with as many coil elements.  In this approach, to replace 128 

phase encodes, one would require at least 128 different coil elements.  Thus far, this has yet to 

become clinically feasible.  Currently, a much more popular approach is to take advantage of the 

encoding power of a modest number of array coils (i.e. 6-8) to accelerate MR acquisition in a 

method known as the parallel imaging.  There are two general approaches to solve this problem; 

one based is on unfolding the artifact in the image domain, the other is based on filling the 

missing k-space lines using encoding information from the coil elements. 

Consider a very simple case of a 2 coil system shown in Figure 2-7.  
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Figure 2-7 – A schematic diagram, describing a hypothetical 2 coil system positioned around a digital phantom. 

Each coil element is inherently more sensitive towards signals originating from regions that are 

closest to it.  This is can be described by the coil’s sensitivity profile, S(x,y).  The reconstructed 

pixel value from the jth element coil can described as Dj(x,y) = Sj(x,y) * ρ(x,y), where ρ(x,y) 

represents the “true” value of the pixel determined by the amount of magnetization present.  The 

(theoretical) representation of Dj, and Sj of the system is shown in Figure 2-8. 

2.8.1.1 Sensitivity Encoding (SENSE) 

The following describes the simplest implementation of the image domain based acceleration 

strategy, SENSE41.  Consider a regular under-sampling factor of 2, in which the missing k-space 

points are NOT filled with zeros, the resulting reconstruction is a reduced FOV image with the 

signal outside the FOV folded on to the other side of the image (Figure 2-2).  Each point of 

detected signal is a contribution from two distinct points from the original image as shown 

below. 

 𝐷1(𝑥, 𝑦) =  𝑆1(𝑥, 𝑦)𝜌(𝑥, 𝑦) +  𝑆1(𝑥, 𝑦 ± 𝐹𝑂𝑉/2)𝜌(𝑥, 𝑦 ± 𝐹𝑂𝑉/2)           (2.84) 

 𝐷2(𝑥, 𝑦) =  𝑆2(𝑥, 𝑦)𝜌(𝑥, 𝑦) +  𝑆2(𝑥, 𝑦 ± 𝐹𝑂𝑉/2)𝜌(𝑥, 𝑦 ± 𝐹𝑂𝑉/2)           (2.85) 
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Note the ± sign, if y < 0, the + sign is used, if y > 0, the negative sign is used.  In this system of 

equations for a given pixel at (x,y), the unknowns are 𝜌(𝑥, 𝑦) and 𝜌(𝑥, 𝑦 ± 𝐹𝑂𝑉/2), while the 

remaining parameters are known.  This is a system of two equations with two unknowns, which 

could be solved algebraically.  This procedure will need to be repeated to solve for all values of 

𝜌(𝑥, 𝑦) to reconstruct the entire image. 

 

Figure 2-8 - First row: Theoretical Sensitivity maps for coil1 (left) and coil 2(right).  Second row: detected signal for 

each coil when k-space is fully sampled and Third Row: detected signal for each coil when k-space is under-

sampled by 50% along the phase encode direction. 
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2.8.1.2 Limits to Acceleration 

With an acceleration factor of 2, the effective FOV is halved, and the maximum number of fold-

over represented in a single point in the aliased image is 2.  Hence, equation 2.1 is sufficient to 

unfold all the points in the image.  However, if the acceleration factor is increased to an arbitrary 

number, Nf, there will be a maximum of Nf total fold-overs.  The number of coils Nc will need to 

be greater or equal to Nf.  The general expression for this system of equations is as follows. 

 𝐃 = 𝐒 (2.86) 

Where is 𝐃 is now a matrix with Ncx1 matrix representing the data acquired from each coil 

element.  𝐒 is a NCxNf matrix representing the sensitivity data for each coil at each fold-over 

location, and  is a Nfx1 matrix representing the unfolded data.  D and S are known, and the 

SENSE problem becomes one inverting the matrix 𝐒 to solve for  

Another problem that arises from performing the SENSE reconstruction is the geometric 

positions of coils.  Let’s solve for equation 2.84/2.85 for 𝜌(𝑥, 𝑦).  For brevity, 𝐷1(𝑥, 𝑦) is now 

expressed as 𝐷1 while 𝐷1(𝑥, 𝑦 ±  𝐹𝑂𝑉/2) is expressed as 𝐷1∆, and so on, the solution for 𝜌(𝑥, 𝑦) 

and 𝜌(𝑥, 𝑦 ± 𝐹𝑂𝑉/2) are 

 𝜌 =
𝐷1𝑆2∆ − 𝐷2𝑆1∆

𝑆1𝑆2∆ − 𝑆2𝑆1∆
      𝜌∆ =

𝐷2𝑆1 − 𝐷1𝑆2

𝑆1𝑆2∆ − 𝑆2𝑆1∆
 (2.87) 

Of course, these equations are unsolvable if the denominator is zero, which may or may not 

occur depending on the sensitivity information.  However, an interesting phenomenon also 

occurs if the absolute value of denominator is very small.  Intuitively, there should be no reason 

that the physical magnetization 𝜌, should be large solely due to coil sensitivities in 𝑆1𝑆2∆ −

𝑆2𝑆1∆.  It follows the numerator in the right hand side (RHS) must also be small (due to the 

similarity of the 2 terms in the numerator).  However, a problem arises when the measurement 

matrix D also contains noise.  Suppose our detected signal Dk each have an associated 

uncertainty (noise), now expressed as Dk + Dk, the first expression in 2.87 becomes the 

following. 
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 𝜌 =  
𝐷1𝑆2∆ − 𝐷2𝑆1∆

𝑆1𝑆2∆ − 𝑆2𝑆1∆
  +  

𝛿𝐷1𝑆2∆ + 𝛿𝐷2𝑆1∆

𝑆1𝑆2∆ − 𝑆2𝑆1∆
 (2.88) 

Note that due to the rules of error propagation, the uncertainty term in the RHS now has a 

positive sign.  It follows that noise is amplified when |𝑆1𝑆2∆ − 𝑆2𝑆1∆| is small.  Figure 2-9 shows 

|𝑆1𝑆2∆ − 𝑆2𝑆1∆| calculated from the hypothetical sensitivity map in Figure 2-8. 

From Figure 2-9, we can see that the regions with fold-over artifacts correspond where the 

denominator is relatively high in Figure 2-3, and hence the noise amplification is relatively mild.  

However, suppose the coil geometry is placed such that Figure 2-3 is rotated by 90 degrees – the 

fold-over will occur in a region with small denominator where noise amplification will be 

relatively large. 

The notion that the quality of SENSE reconstruction (and hence SNR) is dependent on the 

geometric position of each pixels relative to distribution of coil elements is expressed as a term 

known as geometric factor, g41.  The SNR in SENSE reconstruction with an acceleration factor 

of R is expressed as follows. 

 

 𝑆𝑁𝑅𝑟𝑒𝑐𝑜𝑛 =
𝑆𝑁𝑅𝑓𝑢𝑙𝑙

𝑔√𝑅
   (2.89) 

 

 

Figure 2-9 – A map describing the absolute value of the denominator 𝑺𝟏𝑺𝟐∆ − 𝑺𝟐𝑺𝟏∆  Noise amplification becomes 

a problem when this value is low (blue). 
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The “ideal” reduction of SNR due to reduction of sampling is represented by square root term in 

the denominator.  This represents the loss in SNR due to the reduction of samples in the most 

ideal scenario.  In SENSE, the geometric factor, g>1 represents an additional loss in SNR.  As 

the acceleration factor approaches the number of coil elements, the g factor can become quite 

large in some regions of the image with many fold-over points. 

2.8.1.3. K-space based Parallel Imaging - SMASH 

A different approach to performing parallel MRI reconstruction operates in k-space, rather than 

in the image domain.  To understand this technique, it is intuitive to look at the problem in 

reverse.  Ideally, after the coil data has been combined, the ideal image one would get is simply 

𝜌(x,y).  To further simplify the mathematics, only under-sampled direction is considered, i.e. the 

phase encode direction.  The coil combined k-space point is related to the 𝜌(x,y) by a simple 

Fourier transform, or 

 𝐷𝑐(𝑘) =  ∫ 𝜌(𝑦)𝑒𝑖2𝜋𝑘𝑦𝑑𝑦 (2.90) 

The adjacent points in k-space, along the phase encode direction is different by the virtue of a 

“phase encoding step”, k 

 𝐷𝑐(𝑘 +  Δk) =  ∫ 𝜌(𝑦)𝑒𝑖2𝜋𝑘𝑦𝑒𝑖2𝜋Δ𝑘𝑦𝑑𝑦 (2.91) 

 𝐷𝑐(𝑘 +  2Δk) =  ∫ 𝜌(𝑦)𝑒𝑖2𝜋𝑘𝑦𝑒𝑖2𝜋2Δ𝑘𝑦𝑑𝑦 (2.92) 

When k-space is fully sampled, both 𝐷𝑐(𝑘) and 𝐷𝑐(𝑘 +  Δk) are acquired.  However, for an 

acceleration factor of 2, every second data point along the phase encode direction is missing.  

Simultaneous Acquisition of Spatial Harmonics, SMASH42, is a technique that attempts to 

estimate 𝐷𝑐(𝑘 +  Δk) from 𝐷𝑐(𝑘) using coil sensitivity data.  The SMASH technique attempts to 

simulate the phase encoding information 𝑒𝑖2𝜋Δ𝑘𝑦 by using linear combination of the coil 

sensitivity data.  The complex exponentials  𝑒𝑖2𝜋Δ𝑘𝑦 are simply sines and cosine functions. 
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Figure 2.4 shows that linear combinations of a 4-coil set up where the spatial harmonics are 

simulated by the coil sensitivity profiles. 

The “phase encoding step”, or spatial harmonic, is replaced by the linear combination of 

sensitivity information as the following expression.  

 𝑒𝑖2𝜋Δ𝑘𝑦 =  ∑ 𝑊𝑗𝑆(𝑦)
𝑁

𝑗=1
 (2.93) 

Which is substituted in equation 2.91, yielding the following. 

 𝐷𝑐(𝑘 +  Δk) =  ∑ 𝑊𝑗 ∫ 𝑆𝑗(𝑦)𝜌(𝑦)𝑒𝑖2𝜋𝑘𝑦𝑑𝑦
𝑁

𝑗=1
= ∑ 𝑊𝑗𝐷𝑗(𝑘)

𝑁

𝑗=1
 (2.94) 

where 𝐷𝑗(𝑘)is the acquired data for each individual coil.  The weights 𝑊𝑗 can be considered 

position invariant in k-space, which means the same weights can used to estimate adjacent k-

space points at any location of k-space.  The determination of Wj is quite complicated and time 

consuming, requiring one to first acquire sensitivity profiles. 

2.8.1.4. Auto-SMASH/VD SMASH/GRAPPA 

Auto calibrated SMASH is a very convenient method to perform SMASH by eliminating the 

need to estimate sensitivity profiles.  AUTO-SMASH43 takes advantage of the positional 

invariance of the calibration weights, by acquiring small amount of “missing data” near the 

center of k-space, called the auto calibration signal (ACS), which replaces the left hand side of 

equation 2.94, as follows. 

Figure 2-10 - The linear combination of 4 coil sensitivity profiles is used to simulate spatial harmonics on the right, 

as described in a figure adapted from Blaimer et al
46. 
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 𝐴𝐶𝑆 =  ∑ 𝑊𝑗𝐷𝑗(𝑘)
𝑁

𝑗=1
 (2.95) 

Since both ACS and 𝐷𝑗(𝑘) are known, 𝑊𝑗 can be estimated by performing a best fit optimization.  

Variable Density (VD) SMASH44 improves the accuracy of weight estimation by acquiring 

multiple ACS in different regions of k-space. 

GRAPPA45 is an improvement over SMASH in that instead of attempting to simulate combine 

coil data, 𝐷𝑐(𝑘 +  Δk), it attempts to simulate missing k-space in each coil individually, or 

𝐷𝑗(𝑘 +  Δk).  Simulation for each coil, separately, will require a different set of coil weights, 

which is determined from the ACS acquired from each individual coil.  Compared to SENSE, 

GRAPPA tend to be more robust against local inaccuracies in coil sensitivity maps46.  A 

particular relevant examples is the lung, where low signal and tissue inhomogeneity 46makes it 

difficult to make an accurate measurement of the sensitivity maps46. 

2.8.2 Compressed Sensing 

Image compression methods, such as the JPEG, are widely used for efficient storage of image 

data.  In JPEG compression, the image can be stored with a fraction of the data needed while 

maintaining an arbitrarily high degree of fidelity.  In JPEG compression, a discrete cosine 

transform (DCT) or Wavelet transform is performed on the image.  In this transformed domain, 

the DCT data is represented with relatively few pixels with high values while many pixels with 

very low values close to zero are discarded.  This property is known as sparsity.  JPEG 

compression takes advantage of this property by throwing away many of these low value pixels, 

while the remaining high DCT value are stored and subsequently re-transformed to recover the 

image domain data.   

Recently there has been great interest in the MRI community to take advantage this data 

compressibility during data acquisition in a method called Compressed Sensing (CS)47.  If it is 

possible to reconstruct a high fidelity image by simply acquiring the few important data points in 

the sparse domain, then MR data acquisition speed can be significantly increased.  However, it is 
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immediately obvious that this is not a trivial problem for several reasons:  Firstly, even if MR 

images are known to have sparse representation, there is no way to know, a priori, which pixels 

are the important.  Secondly, MRI signal is detected in k-space, which in itself is not a sparse 

representation.   

2.8.2.1 – Compressed Sensing 

Compressed Sensing theory48 , in the context of MRI, states that it is indeed possible to acquire 

an accurate image reconstruction from a small subset of k-space data if the following conditions 

are met: 

1) The desired MR image has a sparse representation in a known domain;  

2) Under-sampling of k-space is performed in such a manner that its resulting aliasing 

artifact is incoherent (noise like) 

3) Nonlinear reconstruction that enforces sparsity and data consistency is utilized. 

Most clinical MRI images, with the exception of angiography images, are not sparse in the image 

domain.  However, the sparsifying transform used for JPEG compression (DCT, Wavelet) are 

suitable for MR images. 

2.8.2.2 - Incoherent Artifacts 

As shown in the Figure 2-6, regularly spaced under-sampling of k-space leads to the foldover 

artifacts that are dealt with using parallel imaging.  However, a random sampling of k-space 
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leads to artifact that is noise like as shown in Figure 2-7  

 

Figure 2-11 Left: randomly acquired k-space points with the center of k-space acquired with higher frequency.  

Compared to the under-sampling pattern of Figure 1-3, the artifact from random under-sampling manifests itself as 

incoherent noise. 

 

 

2.8.2.3 – Sampling Strategies 

One way to quantify the incoherence of artifacts generated by a particular k-space under-

sampling pattern is to study its point spread function47.   PSF analysis (Figure 3-3) starts with an 

impulse function in the image domain and transforms the impulse into k-space.  Under-sampling 

is performed, and the image is transformed back into the image domain.   Coherent artifacts 

appear as large side peaks along with the original peak, while incoherent artifacts are essentially 

spread out. For CS to be effective, the maximum height of these secondary peaks must be kept as 

small as possible.  

Another factor to consider in choosing an under-sampling scheme is that the center of k-space 

contains most of the energy of the image.  Empirically, it has been shown that often CS performs 

best with a variable density random under-sampling with a high probability in the central k-space 

and decreasing probability in the periphery, as shown in Figure 2-12.   
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In most instances, under-sampling is only performed along the phase encoding direction.  

Therefore, in a 2D images, random under-sampling can only be performed in the phase encode 

direction, which is less effective in terms of spreading the side lobes (Figure 3-3, center),  In 3D 

acquisitions, however, phase encoding is used in both the z and the y directions - which allows 

for a sampling pattern similar to that shown in Figure 2-12.

 

Figure 2-12 - Top Row: from left to right, k-space sampling pattern of 4x regular under-sampling, 4x random under-

sampling in 1D and 4x random under-sampling in 2D.  Bottom row: corresponding PSF analysis (k-space) for each 

pattern.  Regular under-sampling 4 foldover points with similar intensity to the main peak.  In 1D random under-

sampling, those peaks are evenly spread along one axis, whereas in 2D random, it is further spread out along both 

axes.  CS performs best when the interference peaks are low. 

2.8.2.3 - Regularized Reconstruction 

Before the discussion of CS reconstruction, it is important to review the mathematical concepts 

of Lp norm, which is defined as follows. 

 ‖𝑥‖𝑝 =  (|𝑥1|𝑝 + |𝑥2|𝑝 + ⋯ |𝑥𝑛|𝑝)
1
𝑝 (2.96) 

When p = 0, the L0 norm simply sums the number of non-zero elements of the system.  In the 

case where p = 1, the L1 norm is simply the sum of all the elements in the image, whereas the L2 

norm, is the root sum of squares of the system  
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The CS reconstruction attempts to iteratively solve the following inverse convex optimization 

problem47. 

 𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(‖𝓕{�̃�}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
+ 𝝀‖𝚿�̃�‖𝟏) (2.97) 

where Ψ is the sparsifying transform, such as the total variations47, wavelet47, DCT47, Shearlet49, 

and Coutourlet50, �̃� is the solution (in the imaging domain), D is the measured data, 𝓕{ }|𝑘𝑠
 is 

the Fourier transform operator, followed by the application of a mask that keeps the sampled 

locations 𝑘𝑠values only, and 𝜆 represents arbitrary weighting factor between the two terms.  The 

first term in the penalty function is an L2 norm whose minimization promotes data consistency.  

On the other hand, minimization of the L1 term, also known as the regularization term ‖𝚿�̃�‖𝟏, 

promotes sparsity in the domain of 𝚿�̃�.  It should be noted that the L0 norm, which is the number 

of non-zero elements, is essentially the definition of sparsity.  It is therefore more intuitive to 

promote sparsity by minimizing L0 norm.  However, L0 minimization problems tend to be very 

computationally intensive as its constrained cost function is non-convex in expected solution 

space.  L2 minimization, on the other hand, is guaranteed to be convex and easily solved.  

However, this process does not promote sparsity very well as it penalizes the high valued pixels 

rather than driving low valued pixels to zero.  L1 norm on the other hand has been demonstrated 

to be a reasonably good approximation of L0.   

The weighting factor, 𝜆 determines the relative importance of the two penalty terms.  One 

method of determining the best 𝜆 value is by the construction of an L-curve, an example of 

which is shown in Figure 2-1351.  A series of reconstructions are performed using different 𝜆 

values.  For each reconstruction, the values of sparsity and consistency penalty terms are plotted 

against each other.  The optimal solution is the one for which both these penalty terms are small - 

which occurs at the lower left corner of the curve.  To demonstrate the effect of different 𝜆, the 
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4x under-sampled (in 2D) image shown in Figure 3-2 is reconstructed with 3 different weights 

and shown in Figure 2-14.  

 

Figure 2-14 - From left to right: CS reconstructed image from figure 3-1 using optimal CS weight (lower left corner 

of L-curve), very low weight (upper left corner of L curve) and very high weight (lower right corner of L-curve). 

 

 

Regularization is the introduction of a priori knowledge (i.e. the image has a known sparse 

representation Ψ) to solve the under-determined problem 𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(‖𝓕{�̃�}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
).  

Other types of a priori knowledge can also be used.  In some special cases, such as MR 

Figure 2-13 - A demonstration of the L-curve method, adapted from by Kim et al.
51 
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angiography images, the image is already sparse in the image domain.  One can solve equation 

2.97 with the unity operator 𝚿 = 1 and still yield a good solution.  In other situations, if it is 

known that the image is mostly smooth, one can also apply the more time efficient, 2D finite 

difference operator as the sparsifying transform 𝚿.  Minimization of finite difference for 

improving image reconstruction has been used outside the context of compressed sensing, in a 

well-known method known as Total Variations (TV) de-noising. 

2.8.3 Split Bregman Solver for Compressed Sensing 

Unfortunately, the mix of L1 and L2 norms in equation 2.97 makes it a relatively difficult 

problem to solve.  This section briefly introduces a very popular solver of the compress sensing 

optimization.  As an example to demonstrate this technique, we attempt to solve equation 2.97, 

with anisotropic total variations as the regularizer, i.e. 𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(𝝁‖𝓕{�̃�}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
+

‖∇�̃�𝒙‖𝟏 + ‖∇�̃�𝑦‖
𝟏

), with the L1 and L2 norms coupled together. Using a method proposed by 

Goldstein et al52, we solve an reformulation of the same problem, replacing ∇�̃�𝒙, ∇�̃�𝒚 with 𝐝𝒙, 

𝐝𝒚, while constraining for 𝐝𝒙 → ∇𝑥�̃� and 𝐝𝒚 → ∇𝑦�̃�. 

 

𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�,𝐝𝒙,𝐝𝒚

(𝝁‖𝓕{�̃�}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
+ ‖𝐝𝒙‖𝟏 + ‖𝐝𝒚‖

𝟏

+ 𝝀‖𝐝𝒙 − ∇𝑥�̃�‖𝟐
𝟐 + 𝝀‖𝐝𝒚 − ∇𝑦�̃�‖

𝟐

𝟐
) 

 

(2.98) 

Goldstein et al, then proposed to apply the Split Bregman formulation52 to solve the above 

problem. This method splits the problem into smaller iteratively steps which are much more 

easily solved individually.  For the above problem, the 5 steps are as follows. 

𝑺𝑩𝟏: �̃�𝑘+1= 𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(𝝁‖𝓕{�̃�}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
+ 𝝀‖𝐝𝒙 − ∇𝑥�̃� − 𝒃𝒙

𝒌‖
𝟐

𝟐
+ 𝝀‖𝐝𝒚 − ∇𝑦�̃� − 𝒃𝒚

𝒌‖
𝟐

𝟐
) 

𝑺𝑩𝟐: 𝒅𝒙
𝑘+1

= 𝒂𝒓𝒈 𝐦𝐢𝐧
𝒅𝒙

(‖𝐝𝒙‖𝟏 − 𝝀1‖𝐝𝒙 − ∇𝑥�̃�𝑘+1 − 𝒃𝒙
𝒌‖

𝟐

𝟐
) 

𝑺𝑩𝟑: 𝒅𝒚
𝑘+1

= 𝒂𝒓𝒈 𝐦𝐢𝐧
𝒅𝒚

(‖𝐝𝒚‖
𝟏

− 𝝀1‖𝐝𝒚 − ∇𝑦�̃�𝒌+𝟏 − 𝒃𝒚
𝒌‖

𝟐

𝟐
) 
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𝑺𝑩𝟒: 𝒃𝒙
𝑘+1

= 𝒃𝒙
𝒌 + (∇𝑥�̃�𝒌+𝟏 − 𝒅𝒙

𝒌+𝟏) 

𝑺𝑩𝟓: 𝒃𝒚
𝑘+1

= 𝒃𝒚
𝒌 + (∇𝑦�̃�𝒌+𝟏 − 𝒅𝒚

𝒌+𝟏) 

It should be noted that 𝑺𝑩𝟏 has all L2 norms, it is therefore convex and can be solved by 

differentiation.  On the other hand, 𝑺𝑩𝟐 and 𝑺𝑩𝟑, while non-convex, are in a simpler form 

which can be solved, explicitly, using the Shrinkage method52.  For SB2, that is 

 

 𝒅𝒙
𝑘+1 = 𝒎𝒂𝒙(𝒔𝒌 −

𝟏

𝝀1
, 𝟎)

∇𝑥�̃�𝑘 − 𝒃𝒙
𝒌

𝒔𝒌
 

 

(2.99) 

and for SB3, that is 

 

 𝒅𝒚
𝑘+1 = 𝒎𝒂𝒙(𝒔𝒌 −

𝟏

𝝀1
, 𝟎)

∇𝑦�̃�𝑘 − 𝒃𝒚
𝒌

𝒔𝒌
 

 

(2.100) 

where 

 
𝒔𝒌 = √|𝛁𝒙�̃�𝒌 + 𝒃𝒙

𝒌|𝟐 + |𝛁𝒚�̃�𝒌 + 𝒃𝒚
𝒌|

𝟐
 

 

(2.101) 

Finally, SB4 and SB5 can also be explicitly evaluated.  By running these 5 steps iteratively, 

Goldstein et al has found the solution converges much quickly compared to alternative methods, 

such as the standard gradient descent. 

2.9 Dynamic MR Acceleration 

Dynamic MRI is the acquisition of a series of images at the same spatial location at different 

time points.  It has a wide range of applications for studying body function, including the 

quantification of contrast agent uptake, blood flow, cardiac and breathing functions, as well as 

organ motions, etc53.  It is also a valuable tool for various types of interventional MRI, providing 
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real time guidance for various types of medical treatments ranging from image guided surgery to 

radiation therapy. 

Several methods described in the previous chapter are similar in that they exploit the spatial 

redundancy of k-space.  Dynamic MRI additionally exploits the redundancy in the temporal 

domain.   Acceleration methods for dynamic MRI can broadly be separated into 3 categories: 

methods that exploit temporal redundancy only, methods that exploit temporal and spatial 

redundancy serially, and finally the newest methods that exploit temporal and spatial redundancy 

jointly. 

2.9.1 Exploiting Temporal Redundancy: Viewsharing 

The techniques that belong to this category are mostly developed prior to the spatial-redundancy 

exploiting methods mentioned in the previous sections.  They are mostly based on the idea of k-

space sharing (Viewsharing), that is, only a part of k-space is acquired at each dynamic point, 

whereas the missing k-space lines are filled by k-space points that are acquired previously.  The 

first of such techniques is known as MR fluoroscopy where in each dynamic only a single k-

space line is acquired in a pattern described by Figure 2-15.  The apparent frame rate of this type 

of technique is comparable to fluoroscopy54.  The most of energy in the image is contained in the 

central areas of k-space. Thus, although this technique generates images at a high frame rate, the 

important part of image is only updated when the central k-space lines are acquired. 
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Figure 2-15 – k-space acquisition scheme of MR fluoroscopy. 

Because of the importance of the central area of k-space, a different method, known as 

KEYHOLE55 is developed, which starts with a fully sampled scan followed by under-sampled 

dynamics, as shown in Figure 2-16. 

 

Figure 2-16 - k-space acquisition scheme of MR fluoroscopy. 

time 

ky 

time 

ky 
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KEYHOLE is an effective method in studying dynamic systems where most of the changes 

between dynamics are contrast changes rather than the positional variation (i.e. the study of 

contrast uptake).  Figure 2.17 shows an example of an artifact that is created when there are 

motional changes, where the edge of the structure (high resolution) is outdated compared to the 

location of the contrast (low resolution).   

 

Figure 2-17 – Demonstration of a potential pitfall of KEYHOLE imaging.  The left image represents the base image, 

whereas the middle image represents the fully sampled dynamic image.  The right image represents a keyhole 

dynamic in which the central 25% of k-space acquired but the remainder of k-space is shared from the base image.  

The high frequency component from the base image manifests itself as artifacts.  

 

 

TRICKS56 is another approach that allows for less frequent updating of periphery of k-space. It is 

based on variable density under-sampling.  Note that in this example the central k-space is 

updated twice as frequently as the periphery.   
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Figure 2-18 k-space acquisition scheme of TRICKS 

2.9.2 Exploiting Temporal and Spatial Domain Serially 

Two examples that exploit temporal and spatial redundancy serially are T-SENSE57 and T-

GRAPPA58.  In these methods, under-sampling of k-space is performed in an interleaved manner.  

A sliding window is used to average these interleaved data into a high spatial resolution but 

temporally blurred data. This blurred data is used to improve the estimate of coil sensitivity in 

the case of SENSE, and to improve the accuracy of coil weights in GRAPPA.  After this step is 

performed, standard SENSE and GRAPPA reconstruction is performed on each dynamic image.  

Figure 2-19 shows an example comparing GRAPPA with T-GRAPPA with an acceleration 

factor of 3.  In the GRAPPA example, the minimum required amounts of ACS are acquired.  In 

T-GRAPPA, the complete set of ACS can be generated acquired using the 2 set of interleaved 

data prior to it.  Note that these ACS points are NOT used during GRAPPA reconstruction, but 

only for the accurate determination of coil weights. 

 

time 

ky 
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Figure 2-19 – GRAPPA compared to T-GRAPPA.  In T-GRAPPA, k-space points from previous dynamic serves as 

ACS used to determine coil weight for GRAPPA reconstruction. 

2.9.3 Exploiting Temporal and Spatial Redundancy Jointly 

2.9.3.1Regular Sampling: UNFOLD, kT-BLAST  

This section describes a subset of powerful methods that exploit spatial and temporal redundancy 

jointly.  These methods tend to have the highest ability to under-sample dynamic images.  

However, these methods tend not to be suitable for on-the-fly imaging needed for real time 

tumour tracking, as it typically requires the entire dataset to be acquired prior to reconstruction, 

and relatively long reconstruction times.   

In section 2.8.1, it was discussed that the under-sampled k-space generates predictable artifacts 

in image space related through the 2D Fourier transform.  However, in the context of dynamic 

under-sampling, the under-sampling occurs in k-t space, the analogues 2D Fourier of k-t space is 

commonly called the x-f space.  A set of dynamic images has three coordinates (x1, x2, t) with 

the corresponding k-space coordinates (kx1, kx2, t).  In order to generate a series of xf-planes, we 

first perform a 1D Fourier transform along the frequency encoding direction x1, resulting in (x1, 

kx2, t).  In this representation, there is a k-t plane along every point in x1.      

The appearance of an x2-f plane is a “cross” shape as shown in Figure 2-20.  The central region 

along the x2 dimension tends to contain more signals since the FOV is located such that the 

organs of interest are located in the center of the FOV.  However, along the f-axis, the signal 

time 

ky 

ACS 

GRAPPA T-GRAPPA ky 

time 
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concentrated near the origin represents the static or slow time varying signals – which in most 

cases represent the majority of energy in the image.   

Now let’s consider an interleaved, alternating regular under-sampling.  Recall from the Figure 1-

3 that regular under-sampling in k-space leads to foldover artifacts in the image domain.  The 

analogues effect occurs here, except that the under-sampling occurs in a 45 degree rotated axis, 

which leads to rotated foldover artifacts in the x-f domain (Figure 2-20, left), because the 

“corners” of x-f space contains relatively little signal, the foldover artifact tend not to 

contaminate the central region.  In the UNFOLD59 method, the operator defined “cross” shape 

region (white dotted region in Figure 2-20, left), in which all the signal outside the region is 

simply removed.  This has the effect of filling in the missing k-space points.  Note that method 

does not fully preserve all the missing information, as the regions outside the cross in x-f space, 

namely the fast changing information in the periphery of the image is sacrificed.  Increasing the 

under-sampling means the aliasing in x-f space is closer to the central region, which means the 

“cross” region must be reduced, sacrificing more dynamic information.   

k-T BLAST60 eliminates the need for an operator to define the appropriate “cross” region by 

acquiring low resolution training data (Figure 2-20, right).  This low resolution training data is 

used to generate a “blurred” x-f image which is then used to guide image reconstruction.   

 

Figure 2-20 – Left the UNFOLD technique, Right: k-T BLAST technique, adapted from Tsao53. 

2.9.3.2 Irregular Undersampling: kT-SPARSE, kT-SLR 

The principle of CS MRI can also be applied in dynamic imaging, in the form of k-T SPARSE61.   

From the UNFOLD example, a regular under-sampling of k-T space leads to foldover artifacts in 
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x-f space.  Recall the first condition required for Compressed Sensing is that sampling must be 

done in a random manner that leads to incoherent artifacts, and the second condition required for 

CS MRI is to find a sparse representation of the image data.   In the x-f space, the data is sparse 

along the f-dimension but not sparse in the spatial (x) dimension.  The solution is therefore to 

perform a Wavelet transform along the spatial dimensions, resulting in the sparse w-f space.  

After which, the familiar convex optimization can be used to perform reconstruction 

𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(‖𝓕𝒙,𝒚{�̃�(𝒙, 𝒚, 𝒕)}|
𝑘𝑠

− 𝐃(𝑘𝑠)‖
𝟐

𝟐

+ 𝝀‖𝚿𝒙,𝒚𝓕𝒕{�̃�(𝒙, 𝒚, 𝒕)}‖
𝟏

) 

It is important to accurately keep track of the domain in which these variables operate.  We 

desire our solution �̃� please change, to be a set of dynamic MRI images, therefore �̃� is in the x-t 

domain.  However, our acquired data, D, is in the k-t domain.  Therefore the Fourier transform 

term Fu only operates on the spatial domain.  In the L1 term, the sparsifying transform Ψ is a 1D 

wavelet that only operates in the spatial domain of �̃�.  While the k-T SPARSE method is 

conceptually the easiest to understand, other more advanced k-T CS methods have been 

developed.  One example is k-T FOCUSS62, which _decomposes the total signal into predicted 

and residual components.  The prediction component can be obtained from viewshare images of 

the dynamic data.  The reconstruction then exploits the sparse representation of the remaining 

residual signal. .  Another example of an advanced spatial temporal CS method is the k-T SLR 

method63.  In k-T SLR the Karhumen Louve transform is used, which decomposes the k-t data to 

a series of orthogonal basis functions.  In this approach, rather than enforcing sparsity in a 

particular domain, the method applies a spectral penalty to estimate temporal basis function and 

its weights, fully exploiting the correlations within a temporal data set.  XD-GRASP64 is a radial 

based spatial temporal strategy which is particularly effective if there are multiple sources of 

motion present at different temporal frequencies (i.e. respiratory and cardiac).  These different 

motions types are separated into their individual motion state dimensions and sparsity is 

exploited in these dimensions.  Generally, these methods are retrospective in nature, requiring 

the complete dataset, in temporal sense, to be acquired before the image construction can start.  

They also tend to be much more computationally intensive than the standard compressed 

sensing, as the optimization solver must be applied to a larger matrix (i.e. 3D for dynamic 2D 

images, 4-D for dynamic 3D images). 
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2.10 Summary 

To summarize, there are many strategies which one can use to accelerate MR acquisition.  

However, they are not all suitable for the purpose of real time imaging.  The non-dynamic 

strategies that rely on spatial redundancy only (Compressed Sensing, Parallel Imaging) can 

potentially be used in real time, with CS having the advantage of not being reliant on specialized 

phase-array coils not available in some situations.  For dynamic imaging, view sharing strategies 

that rely on temporal redundancies only (i.e. Keyhole, TRICKS) are suitable for real time use, 

whereas the more powerful spatial-temporal strategies tend to be more suitable for retrospective 

reconstruction due to the requirement of significantly longer reconstruction times.  In chapters 4 

and 5, a novel strategy that is presented, improving upon the CS strategy by incorporating prior 

data (i.e. taking advantage of temporal redundancy in addition to CS), while maintaining near 

real time image reconstruction times. 
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Chapter 3 Validation of a tumour autocontouring algorithm 

Parts of this chapter have been adapted from a published article: Yun J, Yip E, Gabos Z, 

Wachowicz K, Rathee S, Fallone BG. Neural-network based autocontouring algorithm for 

intrafractional lung-tumor tracking using linac-MR. Medical Physics. 2015;42(5):2296-2310. 

3.1 Introduction 

One of the most exciting applications of hybrid Linac-MR system20 is real time tumour tracking 

(RTTT), which takes advantage of the simultaneous MR imaging and radiation delivery.  In the 

RTTT scheme currently being developed at the Cross Cancer Institute, the moving tumour is 

imaged with the dynamic MRI in real time, and the tumour is segmented in real time using an in 

house autocontouring algorithm65.  This chapter describes this in-house method and its latest 

developments, as well as the experiments designed to validate our auto-contouring algorithm 

using both phantom images, where the tumour shape and location is known a priori, as well as in 

patients, in which the auto-contouring algorithm is compared against the manual contours by a 

radiation oncologist – the current gold standard for contouring tumours in MR images.  Once 

validated, the tumour autocontouring algorithm is a valuable tool in evaluating MR acceleration 

strategies, as all MR acceleration strategies inevitably result in some reconstruction errors 

compared to a fully sampled, albeit slow, image.  By applying a validated autocontouring 

algorithm to the undersampled images and analyzing the changes in contours, allows us to 

compute a series of metrics which can be used to assess image reconstruction quality.  This 

chapter describes a study designed to validate the current tumour auto-contouring software at the 

CCI. 

3.1.1 Artificial Neural Network Based Tumour Tracking Algorithm 

As the emphasis of this chapter is on the validation, rather than the development of the 

algorithm, and details of the algorithm will only be summarized here.  For the detailed 

description of the inner workings of the algorithm, please refer to the appendix of the 

manuscript30.  Compared to the previous version65, the latest autocontouring software uses 

artificial neural networks, which is be briefly discussed here.  Artificial neural network is a 

mathematical model to emulate the electrochemical mechanism of a cat’s visual cortex.  In this 

model, a nerve comprises of a matrix of individual neurons.  Each individual neuron receives 

continuous signals as inputs, but it can only have a binary output (firing / not firing).  These 
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neurons are also interlinked with each other such that a neuron’s output its dependent not only on 

its own input, but on the inputs of neurons in close proximity, thus, neurons tend to fire together 

as a cluster.  In our MR images, a tumour consists of heterogeneous cluster of hyper-intense 

pixels in comparison to surrounding healthy tissue(s).  Each pixel in the image can emulate as a 

neuron; the actual pixel’s value being the input of neuron.  The neural network model hence 

serves as a way to group together heterogeneous tumour pixels to give a uniform output value 

based on a uniform criteria for firing.  Applying this algorithm iteratively enhances the contrast 

of the tumour compared to the surrounding healthy tissue(s) 

The current clinical standard for segmenting tumour in an image is the manually drawn contour 

by the radiation oncologist. The algorithm is designed to mimic the performance of a human 

clinician, and described in the following steps. 

3.1.2 Preparatory Steps and User Input. 

As a preparatory step, the user acquires a set (approximately 30) of fully sampled dynamic 

images prior to the real time dynamic series.  The user (a clinician) then contours the tumour in 

all 30 images, which will be referred to as ROISTD (Fig 3.1, a); the shape of these ROISTD is used 

for training the algorithm. From these 30 ROISTD, a single representative region, least impacted 

by the breathing motion at the end of the exhale phase, is chosen as a representative tumour, 

ROIREP.  Next, from observing tumour trajectory of motion in 30 images, the user determines a 

larger “background region” (Fig 3.1, c) that encompasses the motion trajectory of the tumour.   

 

Figure 3-1 – (a) A dynamic MR image containing the tumour (red arrow), which is zoomed in, and displayed with 

the manually defined (b) ROISTD (c) background. 

3.1.3 Parameter Optimization 

The manually defined contours are used to optimize neural network parameters that governs the 

iterative process (i.e. degree of contribution from neighboring pixels, firing thresholds, etc.) 
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which is used to enhance tumour contrast (Figure 3-2, b) as well as 2 morphological parameters 

(dilation/erosion) that is applied after thresholding (Figure 3-2, e-f).    

These contours are also used to train the neural network algorithm by optimizing the similarity 

between the manual standard and automatically determined contours.  To find the optimal 

parameters, the main algorithm, described in the next section is performed, and the results 

ROIauto compared to the 30 ROISTD.  The optimal set of parameters yield the contours that are 

best matched to the standard manual contours in terms Dice Coefficient (DC), define as: 

 𝐷𝐶 = 2
𝐴𝑟𝑒𝑎(𝑅𝑂𝐼𝑆𝑇𝐷 ⋂ 𝑅𝑂𝐼𝐴𝑢𝑡𝑜)

𝐴𝑟𝑒𝑎(𝑅𝑂𝐼𝑆𝑇𝐷) + 𝐴𝑟𝑒𝑎(𝑅𝑂𝐼𝐴𝑢𝑡𝑜)
  (3.1) 

3.1.4 Main Processes 

Once all the parameters have been determined, the image segment of each newly acquired 

dynamic image contained within the background region is extracted using a masking procedure  

The main processes of the neural network consists of the following steps: 1.) Normalized cross 

correlation is performed between the extracted background region of the new image against 

ROIREP 2) From the region centered at this new location, a smaller region, defined by a dilated 

version of ROIREP is further extracted, yielding the image in Fig 3-2(a); 3) A neural network 

algorithm is then applied iteratively, with the optimized parameters to enhance the tumour 

contrast, yielding the image in Fig. 3-2(b); 4) This image is then thresholded via the Otsu’s 

Method66  to give the image in Fig. 3-2(c); 5) Small islands in this image are then removed to 

give the image in Fig. 3-2(d); 6)  The tumour shape is then smoothened, yielding the image in 

Fig.3-2(e); and 7).  Dilation and erosion steps are finally applied to provide the final contour as 

shown in Fig. 3-2(f).

 

Figure 3-2: The multi-step process in which the tumour shape is determined from the image: (a) The expanded 

ROISTD from which the algorithm determines the tumour region. (b) The neural network contrast enhancement.  (c) 

Thresholding by Otsu’s method.  (d) Removal of small discontinuous islands, e) smoothing and f) Dilation/Erosion. 
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3.2 Validation Study – Methods 

The goal of this study is to validate the neural network based autocontouring algorithm that 

automatically segments lung tumours in the dynamic images of both the phantom and patients.  

During the course of this dissertation, only the 3T clinical Philips Acheiva MRI system (Philips 

Medical Systems, The Netherlands) was capable of performing the real time (i.e. dynamic 

images at 4 frames per sec e.g.) imaging. Furthermore, the ethical approval from the hospital’s 

ethical board was only feasible and obtained for the patients that were imaged using this system.  

On the other hand, the Linac-MR system operates at a lower field strength of 0.5T, with the real 

time imaging (and potentially tumour tracking) capability to be available in the very near future.  

Thus, we designed a series of phantom and patient studies on the available clinical 3T system.  In 

the post-processing step of the images obtained using this 3T system, we generated pseudo 0.5 T 

noise-equivalent dynamic images of both the patients and the phantom to validate the auto-

contouring software’s ability to accurately contour the tumour in images equivalent to those 

obtained with our the Linac-MR system. 

3.2.1 Phantom Experiment Setup  

Our phantom and its experimental setup are shown in Figure 3-3. The phantom is placed inside 

the MRI’s field of view, and it contains a moving “lung compartment” that can freely slide 

within the “thorax” region.  The thorax region contains the standard phantom solution67 of 

sodium chloride (3.6 g/L) and copper sulfate (1.25 g/L) to mimic a realistic electric load to the 

coil.  In the lung compartment, the lung “tumour model” (red circle in Fig. 3-3) is located 

approximately at the center of the lung compartment, and the tumour model is surrounded by 

simulated lung tissue (green rectangle). 
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Figure 3-3: A schematic diagram describing the motion phantom. 

The lung phantom was designed65 to mimic the lung tumour and the normal lung parenchyma 

contrast characteristics in the 0.5T Linac-MR system in the 3T clinical system available (see 

Table 3-1).  The lung tumour model consists of a spherical shaped container filled with an 

aqueous solution of Manganese (II) Chloride (MnCl2, Signa Aldrich), with concentrations by 

volume of 0.020 g/L, whereas the simulated normal parenchyma is made of mixture of 2mm 

plastic beads (no MR signal) mixed with porcine gel in a 70:30 volume ratio.  The porcine gel 

contains 0.0125 g/L MnCl2.  Finally, 3.6 g/l NaCl is added to all solutions to simulate the electric 

conductivity of tissues.  On the 3T system, the measured T1, T2 and relative PD values of the 

simulated lung are shown to be comparable to the literature values of the actual lung at 0.5 T, as 

shown in Table 3.1. 
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Table 3-1 – Lung Tumour and Normal Lung Parenchyma Contrast Parameters measured on the 3T scanner 

compared to literature values at 0.5T as used in the phantom designed to mimic 0.5T MR contrast in a 3T scanner. 

 Lung Tumour Normal Lung Parenchyma 

 

Literature 

(0.5T) Measured (3T) 

Literature 

(0.5T) Measured (3T) 

𝑇1 Mean±SD 

(ms) 532±27137 519±2.4 599±11437 604±4.9 

 𝑇2 Mean±SD 

(ms) 69±4537 61±1.9 79±2937 97±5.9 

Relative PD 

to tumour 
N/A N/A 

0.20 - 

0.3468,69 
0.30 

 

_The lung compartment is attached to a programmable motor via a rigid aluminum rod, creating 

1-D motion parallel to the aluminum rod and to the longitudinal axis of magnet bore. This 

motion is in the same direction as the patient’s superior-inferior (SI) direction that is known to be 

the largest motion of the lung tumour caused by free-breathing.  The aluminum rod is grounded 

to the wave guide using a small amount of copper tape to eliminate any RF noise coupled by the 

metal rod.  To provide an independent, reference measurement of the lung tumour position, an 

optical encoder (model #: AEDR-8300-1Q2, Avago technologies, San Jose, CA) was attached to 

the thoracic cage as shown in Figure 4-1. Paired with the encoder, a reflective code strip 

(resolution: 180 lines per inch) which is attached to the moving compartment that contains the 

tumour model. Because all other parts of the phantom are stationary, and the tumour model is 

fixed in the lung compartment, any change in the tumour position in SI direction is measured by 

the encoder as a change in counts (1 count ≈0.035mm).  In our experiments, the phantom is 
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programmed to undergo 4 breathing motion patterns: a basic sine pattern, and 3 realistic 

breathing patterns based on a CyberknifeTM study70, shown in Figure 3-4.   

 

Figure 3-4 – S-I Motion Pattern applied to the phantom.  A sine pattern and 3 patient patterns, based on a 

CyberknifeTM study70 is used. 

3.2.2 The MRI Protocol for Phantom Data Acquisition 

For the phantom, two scans are performed.  A high quality, high resolution TSE scan (MRI 

Parameters: FOV = 400 mm x 400 mm, voxel size = 0.4 mm x 0.4 mm x 4 mm, 5 slices, TE = 87 

ms, TR = 1798 ms) is performed.  These images accurately visualize the wall of the tumour to 

determine the “standard shape” of the tumour.  For dynamic imaging, the 2D bSSFP sequence 

was used to acquire images at approximately 4 fps (Identical FOV to TSE scan: 400 mm x 400 

mm, Acquired at 128x128, which translate to 3.1 mm x 3.1 mm x 20 mm, TE = 1.1 ms, TR = 2.2 

ms, Dynamic Scan Time = 275 ms) in the horizontal plane through the middle of the tumour 

model, known as the coronal plane. A total of 600 dynamic images were acquired. Prior to each 

dynamic image acquisition, an external synchronization pulse at known time point is sent to the 

optical encoder. Using this pulse, the optical encoder records the position of the tumour at the 

mid-point time of each dynamic data acquisition when the signal acquisition is occurring at the 

center of k-space.  The first few images in the dynamic scan series are acquired prior to the 
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commencement of motion, with the phantom in the same position as the reference TSE scan.  

These images are visually inspected to ensure alignment with the high-resolution TSE image. 

All MR images were acquired with a 6 channel Philips torso coil.  Noise is measured as the 

standard deviation for each individual image in a 10x10 pixel region at the corner of the image 

containing no MR signal. To ensure there is no positive bias to the measured noise, the noise is 

measured in the real and imaginary images and averaged, rather than being measured in the 

magnitude images. 

 

Figure 3-5 – Left : High Resolution (0.4 mm) reference scan allows for visualization of edge of tumour, Right, lower 

resolution (3.1mm) dynamic scans acquired at 4 fps. 

3.2.3 Phantom Image Post Processing 

Gaussian distributed random values are added, as additional noise, to the images that were 

acquired on the 3 T MRI system, in order to reflect the lower CNR at 0.5 T.  Downscaling of 

CNR from 3 T images could be achieved by linear CNR scaling, amplifying the measured 

background noise by a factor of 6 to reduce CNR according to equation 2.69.  One additional 

correction must be added, as the tumour model of aqueous solution (~100% water), whereas 

actual tissues contain approximately 75% water71.  Therefore, image noise is further increased by 

another 33% to account for this difference in absolute proton density. Combining these two 

corrections, noise amplification factors of (N = 8) were applied to simulate the 0.5 T images. 

Noise amplification is achieved by the addition of uncorrelated noise, in the form of zero mean 

Gaussian random numbers, to the images. Assuming statistical independence, the required 

standard deviation of the added noise is derived from the standard deviation of measured noise 

using the following equations 
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 (𝑁 ∙ 𝜎𝑚𝑒𝑎𝑠)2 = σmeas
2 + σadded

2    

 𝜎𝑎𝑑𝑑𝑒𝑑  = √𝑁2 − 1 ∙ 𝜎𝑚𝑒𝑎𝑠 (3.2) 

The adjusted 0.5T SNR/CNR for the tumour is measured and shown in table 3-2.  It should be 

noted that despite accounting for contrast parameters (T1, T2) at lower fields, this simulation of 

0.5 T image is still has the following limitations.  While considering the SNR at 0.5 T, reduced 

specific absorption ratio (SAR) allows the larger flip angles, compensating somewhat for the lost 

SNR due to the lower B0-field.  In terms of structured artifacts, imaging at 0.5 T is less sensitive 

to the off-resonance effects, reducing bSSFP banding artifacts present at the 3T images. 

Table 3-2 – Measured SNR and CNR of the Phantom Tumour model in the pseudo 0.5 T images. 

Motion Pattern Tumour SNR (Mean ± SD) CNR (Mean ± SD) 

Sin 11.7±0.7 7.5±0.5 

Pattern 1 11.7±0.8 7.6±0.5 

Pattern 2 12.3±0.8 8.0±0.5 

Pattern 3 12.6±0.8 8.2±0.5 

3.2.4 Patient Study – Data Acquisition 

With ethics approval from the Alberta Cancer Research Ethics Committee, we have recruited 6 

non-small cell lung cancer patients who are candidates for lung radiotherapy/radiosurgery to 

undergo dynamic MRI in the clinical 3.0 T MR system, under free breathing for 3 minutes using 

the same dynamic balanced steady state free precession (bSSFP) sequence as described in the 

previous section.  A total of 650 full sampled images are acquired at a rate of 270 ms/image.  

Examples of these images are shown in Figure 3-6. 
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Figure 3-6: Fully sampled images of our 6 patients.  Red arrows indicate the location of lung tumour. 

3.2.5 Patient Data - Image Post Processing 

Downscaling of the noise from 3T to 0.5T in the patients’ images is performed by linear scaling 

SNR as described in equation 3.2.  Noise is measured in the image, and amplified by a factor of 

N = 6 according to equations 3.2, leading to the example images of Figure 3-7. After the noise is 

added, we were unable to detect any meaningful signal from the background parenchyma. (i.e. 

the detected signal is so low that we cannot make our measurements in the magnitude images, 

and found that regions have ~ zero mean in their real and imaginary images), hence have 

background of SNR of zero.  From equation 2.69, CNR = SNR in this case.  The results are 

given in Table 3-3.  Please note that only the pseudo 0.5 T equivalent images are used in this 

validation study.  For the compressed sensing studies presented in chapters 4 and 5, we use both 

3T and pseudo 0.5 images. 
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Figure 3-7 – Noise added, pseudo 0.5 T equivalent images of our 6 patients. 

 

Table 3-3 – Measured Tumour SNR, Area, and Maximum extent of motion for the 4 patients. 

Patient 
# 

Original 3T 
SNR/CNR  

Pseudo 0.5 
T SNR/CNR  

Area (cm2) Max. Extent 
SI Motion 

(mm) 

Max. Extent 
AP Motion 

(mm) Mean (SD) Mean (SD) Mean (SD) 

1 39.7 (1.9) 6.7 (0.5) 4.76 (0.19) 25.7 5.4 

2 18.0 (1.0) 3.1 (0.5) 6.81 (0.37) 34.9 9.9 

3 24.2 (1.8) 4.2 (0.4) 2.35 (0.31) 20.9 8.7 

4 31.5 (1.5) 5.4 (0.4) 6.41 (0.68) 11.0 5.7 

5 24.6 (1.0) 4.3 (0.5) 3.10 (0.35) 13.4 9.4 

6 26.5 (1.2) 4.6 (0.3) 7.97 (0.29) 12.6 1.9 

3.2.6 Contour Comparisons 

The auto-contouring algorithm generates a contour for every dynamic image acquired and fed 

into the software.  We assessed the accuracy of automatically delineated contours by comparing 
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to the reference, “gold standard” contours.  For the phantom, the standard shape is determined 

from the high resolution (1024x1024) TSE image which allows the shape to be easily delineated 

manually in MATLAB as the line between “tumour” and “healthy” (Figure 3-5, left) regions.  

This “standard shape”, which is a 1024x1024 mask, is translated in the superior and inferior 

direction at positions determined using the optical encoder readings.  This provides a series of 

high resolution standard contours whose position is determined independently using the optical 

encoder.  The automatic contours, generated at 256x256 resolution, is upscaled to 1024x1024, 

and compared to this high resolution standard. 

For the patient datasets, separate high resolution scans cannot be acquired, therefore, the standard 

contours around the GTV are delineated on every 3T image manually by a senior radiation 

oncologist.  A subset of 100 out of 650 images is first uploaded into the CERR (Computational 

Environment for Radiotherapy Research) environment. A standard “MRI” window and level is 

used, and the radiation oncologist is asked to manually contour the GTV in these 100 images.  In 

this case, both the standard and the auto-contours are at 256x256 resolution.  To compare the 

standard and auto contours, two metrics are used.  The first metric is to measure the displacement 

error ∆𝑑 between the centroid of the two contours, given as: 

 ∆𝑑 =  √∆𝑥2 + ∆𝑦2 (3.3) 

The second metric of contour comparison is the Dice’s coefficient, which is the same metric as 

used for parameter optimization of the algorithm given in Eq. (3.1). 

3.2.7 Intra-observer and Inter-observer variability experiment 

The validation of our auto-contouring algorithm is by comparison to the radiation oncologist’s 

manual contours as our standard (ROISTD), it is important to assess the inherent variability in 

these contours.  We therefore designed a study of intra-observer variability, which is defined as 

the variation in contours obtained in the same images, by the same radiation oncologist at 

different times 

For our patient datasets, the senior radiation oncologists was asked to re-contour the 100 3T 

images of every patient on a different day, several months after the initial contouring.  The 

images are re-contoured in CERR using the identical window and leveling (“MR”) setting.  

These new contours (ROIINTRA) are now compared to the original standard contours, (ROISTD) 
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which allows us to determine both the intra-observer Dice’s coefficient, as well as intra-observer 

centroid error. 

To evaluate the uncertainty of contouring between different oncologists, a second radiation 

oncologist, blind to the original contours, was asked to contouring the images using the same 

software with identical images, using the identical computer and window/leveling.  These new 

contours (ROIINTER) is compared against the original standards (ROISTD), to determine inter-

observer Dice coefficient and inter-observer centroid error. 

3.3 Results 

The extent of tumour motion for 6 patients, as determined by the auto-contouring algorithm is 

shown in Figure 3-8. 

 

Figure 3-8: Degree of Superior Inferior (Green, Solid) and Anterior Posterior (Blue, Dashed) tumor motion of 6 

patients. 
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3.3.1 Auto-Contouring Results 

Results of comparing the automatically generated contours of the phantom and patients, to their 

respective standards are shown in table 3-4.   

Table 3-4 – Dice’s Coefficient and Centroid Displacement Error of Autocontours compared against Standard. 

  Dice’s Coefficient Centroid Displacement Error 

(mm) 

  Mean (Std) Max/Min Mean (Std) Max/Min. 

Phantom 

 

Sine Pattern 0.95 (0.01) 0.97/0.93 0.93 (0.29) 2.04/0.23 

Pattern 1 0.96 (0.01) 0.97/0.94 0.68 (0.24) 1.40/0.04 

Pattern 2 0.96 (0.01) 0.97/0.93 0.73 (0.24) 1.40/0.03 

Pattern 3 0.96 (0.01) 0.97/0.93 0.74 ( 0.24) 1.87/0.05 

Patient 1 0.92 (0.03) 0.97/0.86 0.96 (0.52) 2.27/0.10 

2 0.90 (0.03) 0.95/0.82 1.22 (0.69) 3.77/0.12 

3 0.88 (0.05) 0.97/0.71 0.90 (0.55) 3.25/0.05 

4 0.89 (0.04) 0.89/0.77 1.31 (0.75) 3.10/0.07 

5 0.77 (0.07) 0.91/0.61 3.90 (1.65) 7.76/0.10 

6 0.89 (0.04) 0.95/0.72 1.55 (1.12) 5.86/0.09 

 

From the results, one can see that that the auto-contouring method generates very accurate 

matches to the phantom standards; yielding the DC of 0.95-0.96 and the centroid error of 0.68-

0.93 mm.  For 5 of 6 patients, the match between the automatic contours and the gold standard 

contours is still high, yielding the DC of 0.88-0.92 and the centroid displacement of 0.96 – 

1.55mm.  Patient 5’s agreement is noticeably poorer compared to other 5, with a DC of 0.77 and 

a centroid displacement of 3.90 mm. 
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3.3.2 Intra-observer/Inter-observer Reliability 

The evaluation of intra-observer variability (ROISTD vs ROIINTRA) is shown in Table 3-5, and the 

inter-observer variability (ROISTD vs.ROIINTER) is shown in Table 3-6. 

Table 3-5 – Intra-observer variability 

  Dice’s Coefficient Centroid Displacement Error 

(mm) 

  Mean (Std) Max/Min Mean (Std) Max/Min. 

Patient 1 0.90 (0.03) 0.95/0.81 1.12 (0.62) 2.73/0.02 

2 0.92 (0.02) 0.96/0.86 1.10 (0.59) 2.69/0.04 

3 0.89 (0.04) 0.97/0.77 0.96 (0.47) 2.96/0.05 

4 0.93 (0.02) 0.98/0.89 0.94 (0.49) 2.10/0.94 

 

 

5 0.74 (0.08) 0.90/0.48 5.07 (1.43) 8.48/1.69 

6 0.89 (0.03) 0.95/0.79 1.64 (0.87) 4.10/0.22 

The auto-contouring accuracy against standard (ROIAUTO vs ROISTD) in terms of Dice’s 

Coefficient (DCAUTO) for each of the 6 patients is shown next to the intra-observer variation 

(ROISTD vs ROIINTRA) and inter-observer variation (ROISTD vs ROIINTER) in terms of the Dice’s 

coefficient (DCINTRA, DCINTER) in Figure 3-9.  DCAUTO is significantly higher than DCINTRA in 

patients 1, 5, while being significantly lower than DCINTRA in patient 2 and 4, as indicated by the 

non-overlapping 95% confidence intervals in Figure 3-9.  On the other hand, DCAUTO is higher 

significantly higher compared to DCINTER for patients 1, 2, 6, and significantly lower in patient 4 

and 5. 

 



83 

 

Table 3-6 – Inter observer variability 

  Dice’s Coefficient Centroid Displacement Error 

(mm) 

  Mean (Std) Max/Min Mean (Std) Max/Min. 

Patient 1 0.89 (0.04) 0.95/0.79 1.28 (0.71) 4.32/0.08 

2 0.83 (0.05) 0.92/0.69 1.62 (0.78) 3.53/0.26 

3 0.89 (0.04) 0.97/0.78 0.90 (0.46) 2.19/0.09 

4 0.93 (0.03) 0.98/0.88 0.96 (0.51) 2.42/0.12 

 

 

5 0.84 (0.04) 0.94/0.66 2.77 (1.54) 7.52/0.14 

6 0.85 (0.04) 0.92/0.75 1.72 (0.94) 4.82/0.17 
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Figure 3-9 Intra-observer variations, (DCINTRA, blue) and Inter-observer variations (DCINTER, gray) for all 6 patients 

is plotted next to autocontouring accuracy in terms of Dice’s coefficient, (DCAUTO, orange).  Error bars represents 

95% confidence interval.  DCAUTO is significantly larger than DCINTRA in patients 1 and 5, while significantly lower 

in patients 2 and 4.  DCAUTO is significantly larger than DCINTER in patients 1, 2 and6 and significantly lower in 

patients 4 and 5. 

3.4 Discussion 

It should be noted that there are some inherent differences in performing imaging at the 0.5 T 

field of the Linac-MR vs 3 T of the present clinical system which cannot be easily accounted 

modeled in degrading the 3T images into equivalent 0.5T images.  Firstly, at 0.5 T, substantially 

less SAR is deposited to the patient.  Therefore, the larger flip angles at high speeds can be used 

at 0.5 T as opposed to 3T systems limited by the clinical SAR.  The larger flip angle in bSSFP 

generates images with a higher SNR.  Secondly, the balanced SSFP sequences tend to be less 

affected by banding artifacts at 0.5 T compared to 3T, even though, after the application of local 

shimming around the tumour, there are no bands are observed near the tumour regions in our 

experiments. 

The CNR results from Table 3-2 indicate some differences between phantom and patients.  There 

are several reasons as to why matching phantom and patient CNR in the lung can be quite 

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6

D
ic

e'
s 

C
o

ef
fi

ci
en

ts

Patient #

Auto Intra-observer Inter-observer



85 

 

difficult.  Firstly, as one can observe from Fig. 3-6, the phantom tumour has considerably higher 

signal amplitude compared to that of the patients’ tumours.  The patient tumour is heterogeneous 

(i.e. contains a mixture of tissue, air, vessels, etc.), with some pixels of considerably lower signal 

compare to others; this may lead to an average PD in the tumor region to be lower compared to 

PD of muscles. The muscle tissue was used as the basis of the homogeneous tumour model in the 

phantom.  Secondly, the surrounding solution contained in the “phantom thorax” may not fully 

simulate the coil load generated by the patient’s body and the resulting body noise is highly 

dependent on accurate geometry.  Finally, as shown in Eq. 2.74, the T1 tends to increase with 

magnetic field strength, and hence the T1 of patient tumour is likely higher compared to the 

phantom tumour model which has its T1 deliberated lowered to mimic 0.5 T contrast.  According 

to Eq. 2.65, bSSFP signal decreases with higher T1.  All these factors may contribute to the 

higher signal in in the phantom’s lung tumour image.  The phantoms’ lung parenchyma also has 

significantly higher SNR compared to the ones in the patients, in which there is almost no 

detected signal.  One possible reason is that the lung parenchyma in the sagittal slice has a lower 

PD (as the range of PD from references is 0.20-0.31) then the phantom (0.30).  The other two 

factors, i.e. underestimation of the noise in the phantom’s image and shortening of the T1 in the 

phantom, increase SNR, contributing to a higher SNR in the phantom’s images. 

Despite of all these limitations of the pseudo 0.5 T images, these images have a range of CNR’s 

that are reasonably similar; 3.1 – 6.7 for patients, 7.5 – 8.2 for phantom.  Particularly, the 

patients’ CNRs values are likely an underestimate of the real CNR values attainable at 0.5 T.  If 

the tumour tracking performs effectively via tumour segmentation in these images, it can be 

assumed to be as effective in the actual 0.5T images of the Linac-MR system, or for similar 

images with higher CNR. 

One can observe from Table 3-4 that the auto-contouring algorithm yields a closer match in the 

phantom data compared to patients’ images.  There are inherent differences between the two sets 

of experiments.  In the phantom study, the tumour contours in the standard images are obtained 

only once, in high quality, high resolution images containing homogeneous tumour.  Due to 

these favorable conditions, the variability within the “gold standard” set of contours is expected 

to be very small.  On the other hand, in the patient images, the ROISTD are generated by the 

radiation oncologist on every image, at a lower resolution, containing a more heterogeneous 
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tumour.  The variability in the oncologist’s test standard contours will have a negative impact on 

the tumour tracking metrics in terms of agreement between the standard contours and the auto-

contours, even though this source of error has nothing to do with the auto-contouring algorithm 

itself.  This is supported by the results from our intra-observer/inter-observer variation study 

shown in Table 3-5.  In terms of the Dice’s Coefficient, as shown in Figure 3-9, DCAUTO and 

DCINTRA/DCINTER are generally comparable.  This result is perhaps unsurprising, as a recent 

study72 has shown that the intra-observer variation for primary lung tumour volumes for 4DCT 

has Dice’s coefficient values from 0.77 to 0.83.  On the other hand, the patient 5 represents a 

particularly difficult case for the automatic algorithm due to the ambiguous group of pixels (red 

arrow in Figure 3-10) around the tumour.  This region is missed by the auto-contouring 

algorithm (ROISTD, bottom left) leading to a reduced DCAUTO.  However, an experienced 

radiation oncologist, on a different day, contoured an even smaller area (ROISTD2, bottom right), 

leading to an even lower DCINTRA.  Clearly, ambiguous pixels with similar brightness to the 

tumour present a challenge for both an experienced human observer and the auto-contouring 

algorithm alike, and improving robustness of the algorithm in these situations will require further 

research and development.  

 

Figure 3-10: Example contours of the most difficult case encountered in our data (patient 5).  Top Left – Image to be 

contoured, with ambiguous region shown by the red arrow.  Top right, ROISTD contoured by the radiation oncologist. 

Bottom left ROIAUTO contoured by the automatic algorithm, missing part of the ambiguous region.  Bottom left 

ROISTD2, contours drawn by the same oncologist on the identical image/window/level on a different day. 
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3.5 Summary 

In this chapter, we have described the phantom and patient experiments in which the neural 

network based algorithm for automatic tumour segmentation, developed at the CCI, is validated.  

In phantom experiments, the automatic contours show a very high agreement (DC 0.95-0.96) 

with a set of gold standard contours in high resolution imaging combined with optical encoders.  

In 5 of 6 patient experiments, the automatic contours show a high agreement (DC = 0.88-92) 

with a set of contours manually contoured by a radiation oncologist, these numbers are 

comparable to intra and inter-observer variations.  For patient 5, the contouring algorithm fares 

poorly (DC = 0.79) due to some ambiguous structures (Figures 3-10), however this is still higher 

compared to intra-observer reliability (DC = 0.74).  After validation, this automatic contouring 

algorithm itself is used as one of the tools to validate MR acceleration strategies described in the 

following chapters.  Instead of contouring identical images and comparing human vs algorithm, 

the same algorithm will be used to contour images using different acceleration strategies.  For 

identical images, the algorithm yields identical contours.  Accelerated images, reconstructed with 

only partial k-space will necessarily suffer from some image reconstruction errors, studying how 

that affects the auto-contouring output yields insight about the quality of the image 

reconstruction strategy.  
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Chapter 4  Prior Data Assisted Compressed Sensing 

Parts of this chapter have been adapted from a published article: Yip E, Yun J, Wachowicz K, 

Gabos Z, Heikal A, Rathee S, Fallone BG. Prior Data Assisted Compressed Sensing: A Novel 

MR imaging strategy for real time tracking of lung tumors. Medical Physics. 2014;41(8):082301 

(12pp.) 

4.1 Introduction 

In order for the real time image guidance of the Linac-MR system to be beneficial in tumour 

tracking, the system’s delay time, i.e. the total time required for image acquisition, image 

reconstruction, tumor auto-contouring and MLC collimation, should be shorter than 0.5s, 

according to the AAPM’s task group report on respiratory management, TG-7622.  We have 

previously shown3 that the fast MR sequences, such as balanced steady state free precession 

(bSSFP), can acquire a single 2D slice at 4 frames per second at a modest spatial resolution 

(~3mm).  However, accelerated MR acquisition can benefit tumor tracking in several ways: 1) by 

in imaging frame rate, or 2) by increasing the spatial resolution, or 3) by imaging more planes 

while maintaining the necessary frame rate.  The acquisition of images in 3D, or in multiple 2D 

orthogonal planes, captures the 3D motion of mobile tumors73.  

Compressed Sensing47 (CS) has recently been applied to increase data acquisition speed in MRI 

by reducing the amount of acquired k-space data.  CS relies on the assumption that the 

reconstructed MR image has a known sparse representation.  Under-sampling of the k-space is 

performed in a pseudo-random manner to ensure that the ensuing aliasing artifact appear as 

incoherent, noise like structure in the conventionally reconstructed image.  The final image is 

reconstructed using an iterative method that removes these artifacts by promoting sparsity in a 

transformed domain while maintaining fidelity to the acquired k-space.  CS can be applied to any 

MR sequence, including bSSFP, and unlike parallel MRI41,45 methods, it does not require 

specialized hardware such as multiple array coils. 

The original CS method proposed for MRI47 is generally applied to non-dynamic MR image 

acquisitions.  While this technique accelerates dynamic imaging, the maximum achievable 

under-sampling or acceleration potential is not reached if the temporal redundancy within the 

dynamic image series is not exploited.  There have been several proposed methods, presented in 
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section 2.9.3, such as kT-Sparse61 and kT SLR63, that exploit this spatial-temporal redundancy 

within the dynamic image series.  However, these retrospective reconstruction methods are 

generally not suitable for real time image guidance, for two reasons. Firstly, these methods 

acquire the full dynamic dataset (x, y, t) before reconstruction commences, which makes them 

suitable for diagnostic purposes but not for real time image guidance.  Secondly, even if these 

methods are modified to work on-the-fly, the data to be reconstructed is increased in dimension 

(i,e, from a single 2D image with domain (x, y) to a 2D temporal series with domain (x, y, t)).  

This will significantly increase reconstruction time, making it unsuitable for real time uses.  As 

an example, even with GPU implementation, the reported reconstruction time for k-T SLR 

reconstruction of an entire 2D time series of 70 images (128x128x70) is still too large at 8-10 

minutes63. 

In this chapter, we present a novel CS reconstruction method, Prior Data Assisted Compressed 

Sensing (PDACS), that is suitable for future use on-the-fly, while taking advantage of spatial-

temporal redundancy. To assist in reconstruction, this method requires the acquisition of a series 

of prior data that spans at least one cycle of periodic breathing motion.  Unlike the other spatial-

temporal methods, this method has a similar reconstruction time to the original 2D CS technique.  

For validation, we retrospectively applied our technique to the dynamic data acquired for lung 

cancer patients, and evaluated the reconstruction technique by (1) assessing its image artifact 

power, and (2) applying our auto-contouring software to the reconstructed images. 

4.2 Methods  

4.2.1 Original CS Method  

According to CS Theory described in Section 2.8.2, it is possible to accurately reconstruct an 

image from a small subset of k-space data if the following two conditions are met 

simultaneously: 

1. The desired MR image has a sparse representation in a known domain; 

2. Undersampling of the k-space is performed in an incoherent manner so that the resulting 

aliasing artifacts appear incoherent and noise-like. 
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Some common sparse representations of MR images include the wavelet and discrete cosine 

transforms8.  Additionally, a finite difference operation as a sparse transform has also been 

shown to produce satisfactory results8.  For incoherent sampling, Lustig et al.8 reported that the 

best results are obtained by using a pseudo-random sampling pattern governed by a probability 

distribution function that samples the centre of k-space more densely than the periphery.  Let �̃� 

represent the 2D MR image to be reconstructed by the CS method. In the original CS method, 

the two CS conditions pose a constrained optimization problem, which is solved by minimization 

of the following unconstrained penalized objective function (eq. 2.97) 

 𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(‖𝓕{�̃�}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
+ 𝝀‖𝚿2D �̃�‖𝟏) (2.97) 

Where �̃�(𝑥, 𝑦) is the solution matrix in image space, 𝑘𝑠are the pre-defined incoherent sampling 

k-space locations, 𝓕{} is the 2D Fourier Transform operator, 𝐃(𝑘𝑠) represents acquired data in k 

space(𝑘𝑥, 𝑘𝑦).  The minimization of L2 norm enforces fidelity of the solution’s k-space 

representation to the originally acquired k-space data.  In the L1 regularization term, 𝚿2D 

represents a sparsifying transform (e.g. wavelet, discrete cosine or finite difference).  Some 

commonly used optimization techniques to solve this problem include the conjugate gradient 

method used by Lustig et al.8, and the Split Bregman method proposed by Goldstein et al.15. 

4.2.2 Spatial-Temporal CS  

The conventional 2D-CS method treats each 2D image of the dynamic series as an independent 

image.  However, this approach does not exploit the temporal redundancy of the data.  To 

address this, a modification to the conventional CS method has been made to incorporate 

temporal information in the k-T SPARSE11 method.   In the k-T SPARSE method, the random 

sampling pattern is a function of the k-T domain i.e. (𝑥, 𝑦, 𝑡).  The modified objective function is 

given as follows. 

 𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(‖𝓕𝒙,𝒚{�̃�(𝒙, 𝒚, 𝒕)}|
𝑘𝑠

− 𝐃(𝑘𝑠)‖
𝟐

𝟐

+ 𝝀‖𝚿𝟑𝑫{�̃�(𝒙, 𝒚, 𝒕)}‖𝟏) (2.99) 

In this formula 𝓕𝒙,𝒚 represents 2D Fourier transform, applied only to the two spatial dimensions 

(x,y) of the 3D solution matrix �̃�(𝑥, 𝑦, 𝑡) in order to enforce consistency for all data acquired, 𝑘𝑠 

represents the selected sampling points in the 2D temporal series represented by (𝑥, 𝑦, 𝑡) 
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coordinates. 𝚿3D represents a 3D sparsifying transform, often including the standard 

wavelet/discrete cosine in the two spatial dimensions (x, y) as well as a Fourier transform in the 

temporal dimension.  As shown in section 2.9.3, there are numerous approaches, discussed in the 

literature, that are even more sophisticated than the k-T SPARSE method.  However, while these 

approaches have much greater acceleration potential due to the exploitation of spatial-temporal 

data, they can be computationally intensive in an iterative reconstruction process, and thus these 

are ill-suited for real time applications.   

4.2.3 Prior Data Assisted CS (PDACS)  

We propose a novel approach, PDACS, to improve the image acquisition speed adequate for real 

time MR tumor tracking by the acquisition of training data prior to the real time dynamic data 

acquisition.  In the real time radiotherapy scenario, these training data will add to the total 

treatment session time but not to the system delay during the dynamic acquisition.  We modify 

the objective function by adding a second fidelity term to constrain the un-sampled locations of 

k-space, 𝑘𝑢𝑠of the solution to the mean prior data, �̅�(𝑘𝑢𝑠)as the following.   

 

𝒂𝒓𝒈 𝐦𝐢𝐧
�̃�

(‖𝓕2D{�̃�(𝑥, 𝑦)}|𝑘𝑠
− 𝐃(𝑘𝑠)‖

𝟐

𝟐
+ 𝜆1‖𝚿2D�̃�(𝑥, 𝑦)‖𝟏

+ 𝜆2‖𝓕2D{�̃�(𝑥, 𝑦)}|𝑘𝑢𝑠
−  �̅�(𝑘𝑢𝑠)‖

2

2
) 

 

(4.1) 

In this approach, instead of performing multiple 2D Fourier Transforms and 3D sparsifying 

transform, only a single 2D Fourier Transform and 2D sparsifying transform are required in each 

iteration. To construct quality image with PDACS it is important for the prior data �̅�(𝑘𝑢𝑠) to be 

as similar to current data 𝐃(𝑘𝑠) as possible.  For tracking motion that are near periodic such as 

the lung motion, a simple solution is to acquire �̅�(𝑘𝑢𝑠) over at least a single breathing cycle, 

generating composite prior data with contributions from different tumour locations along its 

motion trajectory.  This compromise allows �̅�(𝑘𝑢𝑠) to always be a “reasonable” match to the 

current data 𝐃(𝑘𝑠) as it tracks the tumour in real time.  The reconstruction weight 𝜆2 is chosen to 

be < 1 to indicate that the prior data will be given less weight compared to the most current data 

acquired in the dynamic scan.  The idea of anchoring CS reconstruction to a similar, previously 

acquired image has been shown to work well in CT, in a method called PICCS74.   
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It should be noted that the tumour motion must still be captured by the currently acquired data in 

the under-sampled k-space, and not by the prior data.  Nevertheless, in very poorly defined 

problems, such as the case where there are large regions of k-space with very little fidelity 

information, the addition of prior data containing only an “approximate” solution can still 

improve the overall image quality significantly.  The slightly mismatched k-space may result in 

some artifacts in the image, which the algorithm reduces with the L1-regularization term.  The 

positional integrity of the moving parts in the image is expected to be preserved as the “current” 

data in the relatively central areas of the k-space contains most of the energy in the image, and is 

given a higher weight by the PDACS algorithm.  In this work, CS and PDACS reconstruction is 

performed with MATLAB implemented Split Bregman method15, introduced in Section 2.8.3 

using the finite difference operator as 𝚿2D.   

4.2.4 Retrospective Study Based on in-vivo Data  

To test our image reconstruction methods, we performed a series of retrospective studies based 

on fully acquired data from lung cancer patients.  While the PDACS reconstruction method is 

designed to work on the fly, the retrospective study is a common method to test and evaluate 

image acceleration methods as the fully acquired data set serves as a gold standard for the 

evaluation of reconstructed images.  Several under-sampling fractions of k-space are simulated 

by the application of varying k-space sampling patterns. Each sampling pattern is a binary image 

in which a particular k-space point is either sampled (i.e. ‘1’) or not sampled (i.e., ‘0’).  The 

binary mask image is pixel by pixel multiplied with the fully acquired k-space to simulate under-

sampling. The under-sampled k-space is reconstructed using the conventional 2D-CS and the 

PDACS, and the resulting images are compared against images obtained with the fully sampled 

data, as a simple way of comparing different reconstruction techniques. 

4.2.5 MR Data Acquisition/Manipulation 

This study is focuses on patient data, and uses 6 patients with non-small cell lung cancer were 

recruited which were recruited with with institutional ethics approval. The patients are imaged in 

a 3T MR Acheiva Scanner (Philips Medical Systems, The Netherlands) for three minutes under 

free breathing. Dynamic images were acquired using a 2D bSSFP sequence at ~ 4 fps (FOV: 40 

cm x 40 cm, 3.1 mm x 3.1mm x 20 mm, TE = 1.1ms, TR = 2.2 ms, Dynamic Scan Time = 

275ms) in a sagittal plane containing the lung tumor.   The images are acquired using a 6 channel 
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torso coil.  The data from the individual coils are first combined and then treated as single coil 

data for further use in retrospective undersampling and reconstruction.  In order to preserve fully 

sampled complex data for our retrospective study we turned off all the acceleration methods 

available on the scanner.  Moreover, we chose a relatively large FOV as to ensure the 

applicability of our methods in most clinical scenarios (i.e. a smaller patient could allow for 

improved resolution).  With these restraints, the achieved spatial resolution at 4 frames per 

second is relatively modest.  However, we expect that in actual clinical scenarios, with 

acceleration and smaller FOV that is chosen specifically for particular patient anatomy, the 

resolution can be improved significantly.  

To explore the potential impact of SNR on CS reconstruction, the CS experiments are performed 

on both the original 3T images, and the noise added, pseudo 0.5 T images, for the measured 

SNR/CNR of these images, please refer to Table 3-3 in section 3.3.4. 

4.2.6 Generation of Sampling Patterns 

Coherent undersampling of k-space violates the Nyquist criterion, leading to coherent aliasing 

artifact (i.e. copies of the imaged object) that is difficult to eliminate.  However, Lustig et al., 

have shown47 that incoherent sampling pattern leads to aliasing artifacts which appear as 

incoherent, noise like structures with much lower signal amplitude compared to imaged object, 

which can then be removed by the iterative reconstruction algorithm. 

Random sampling patterns are generated using the Monte Carlo process described by Lustig et 

al.47  For our study, we restricted the k-space undersampling so that only the phase encode 

direction is randomized as it is only practical to undersample along the phase encode direction in 

a Cartesian 2D MR bSSFP imaging sequence.   

A probability density function (PDF) is defined, with the total area under the PDF scaled 

proportional to the degree of undersampling (total probability of 0.4 x 128 for 40% 

undersampling).  The PDF is separated into two zones: a central region where it is sampled with 

100% probability and a peripheral region governed by a decreasing function defined as p(k) = (1 

– k/kmax)
2 where k/kmax is the normalized distance from the k-space center.  Once p(k)is defined, 

sampling patterns are generated in the manner described by Lustig et al.47: A uniformly 

distributed random number (0 < n(k) < 1) is generated for each k space line location, and the line 
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locations where n(k) < p(k) are sampled.  If n(k) results in a sampling pattern that violates the 

degree of undersampling, the pattern is rejected and a new pattern is created by generating new 

random numbers.  Using this scheme, the algorithm then generates 1000 patterns with the correct 

number of sampling lines, and selects the pattern using a criterion suggested by Lustig et al47, as 

follows: an image consisting of a single signal peak is Fourier transformed into k-space, 

undersampled with every test pattern, and transformed back to the image domain.  This resulting 

image is the point spread function (PSF) of an undersampling pattern; containing the original 

signal peak with many additional smaller side peaks due to incoherent aliasing.  The sampling 

pattern whose PSF contains the lowest secondary side lobe is chosen as the pattern47.  This single 

pattern was used for the entire dynamic sequence.  It should be noted that the 2D Cartesian 

sampling is not the most effective way of generating an incoherent sampling pattern with 

variable density.  Golden angle radial patterns75 or variable density spiral trajectories76 could lead 

to even more incoherent pattern and better image quality.  However, image reconstructions with 

these types of trajectories require extra computation time for gridding.  As the clinical feasibility 

of the dynamic image reconstruction algorithm is highly favored by the shorter reconstruction 

times, the non-Cartesian signal acquisition methods are not considered in the study.   

To explore the effect of increasing acceleration factors, we generated sampling patterns that 

represent 50%, 40%, 30%, 25%, 20% of total sampling representing acceleration factors of 2, 

2.5, 3.3, 4, and 5, respectively.  The resulting sampling pattern are shown here.  The chosen 

patterns, used for both CS and PDACS are shown in Figure 4-1. 
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Figure 4-1 – Sampling Pattern in k-space used for 2D – CS and PDACS reconstruction 

4.2.7. Determination of Reconstruction Weights  

The conventional 2D-CS method requires the estimation of parameter 𝜆1that represents the 

relative significance of the data consistency and the sparsity terms.  In the proposed PDACS 

method however, the two parameters 𝜆1 and 𝜆2 must be determined which represent the relative 

importance of the complementary consistency and the sparsity terms.  As the choice of 

appropriate weighting factors affects the quality of the reconstruction, it is important that the 

optimal weights are chosen.  For this work, we optimize our weights in the following manner. A 

single fully sampled test image is chosen and the artifact power between the fully sampled image 

and various under-sampled test images is determined.  The image artifact power is defined as  

𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡 𝑃𝑜𝑤𝑒𝑟 =  
∑ (�̃�US − �̃�Full)𝑖

2

∑ �̃�Full𝑖
2  

 

(4.2) 

where �̃�US and �̃�Full are the images reconstructed from the under-sampled and fully sampled k-

space respectively, 𝑖 represents an index of individual pixels in the image.  The algorithm then 
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determines optimal weights that minimize this error.  In this study, we simply used the first 

image in the dynamic series as the test image for weight optimization.  For time efficiency, 

optimization for 𝜆1 in the 2D-CS method is performed in two steps: a “rough tuning” step in 

which 𝜆1varies in orders of magnitude followed by similar “fine tuning” step with a smaller 

change around the value determined in the first step.  In the PDACS method, 𝜆1, 𝜆2 are 

optimized jointly by varying both weights simultaneously using the same 2 step method.  The 

ranges of tested values of 𝜆1 and 𝜆2are from 6x10-6 to 0.4, and from 0.02 to 0.68 respectively.  

For the images acquired with our protocol, we have found that our reconstruction algorithm 

generates an acceptable solution using weights in the range of 10−4 < 𝜆1 < 10−1 and 0.02 <

𝜆2 < 0.1.  While our optimization method doesn’t guarantee a global minimum, the region of 

weights searched (Figure 6) were generally adequate for a near optimal solution for images 

encountered in our MRI protocol, though this may require modification for images acquired with 

a different protocol.  This optimization is practically feasible because a very few images are 

required (a single test image for CS in < 1 second, 20 images of prior data for PDACS in < 6 

seconds) and the entire optimization takes less than 30 seconds.  In the context of an actual 

treatment, the weight optimization may be performed immediately prior to the tracking scan. For 

this validation study, the optimization is performed for every pattern andpatient combination. 

 

Figure 4-2 A plot describing the search for the optimal 𝜆1, 𝜆2 values.  Dots represent a tested pair of 𝜆1, 𝜆2, with the 

color and size of the dots representing the artifact power.  Once the minimum is found in the rough search (left), a 

finer search (right) is performed in the neighbouring region. 
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One interesting aspect of the PDACS method is the solution that occurs when 𝜆1 = 0.  In such a 

scenario, the solution would simply be a combination image between the under-sampled k-space 

in the current dynamic image and the complementary k-space data from the prior data, similar to 

many view-sharing methods20-23.   

The optimized weights for 2D-CS are shown in Table 4-1. 

Table 4-1 - Optimal weights 𝜆1 for CS, determined by the 2-step algorithm for this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  3T 0.5T 

Patient Acceleration log10(𝜆1) log10(𝜆1) 

1 2 -3.22 -4.00 

 2.5 -3.10 -3.92 

 3.3 -3.22 -3.64 

 4 -3.10 -3.76 

 5 -2.92 -1.80 

2 2 -3.00 -1.70 

 2.5 -2.80 -3.67 

 3.3 -2.92 -3.54 

 4 -2.80 -3.54 

 5 -2.00 -3.44 

3 2 -3.00 -1.10 

 2.5 -3.00 -1.40 

 3.3 -1.49 -3.67 

 4 -1.70 -1.70 

 5 -1.49 -1.49 

4 2 -1.10 -1.00 

 2.5 -2.80 -1.40 

 3.3 -1.10 -1.22 

 4 -1.22 -1.32 

 5 -1.32 -1.39 

5 2 -3.00 -2.00 

 2.5 -3.00 -2.00 

 3.3 -2.80 -1.40 

 4 -2.92 -1.70 

 5 -1.49 -1.70 

6 2 -2.80 -1.40 

 2.5 -1.49 -1.70 

 3.3 -1.40 -1.40 

 4 -1.40 -1.49 

 5 -1.40 -1.40 
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Table 4-2. Optimal weights 𝜆1, 𝜆2 for PDACS, determined by the 2-step algorithm for this study. 

 

  3T 0.5T 

Patient Acceleration log10(𝜆1) 𝜆2 log10(𝜆1) 𝜆2 
1 2 -4.00 0.04 -4.70 0.10 

 2.5 -4.00 0.04 -4.40 0.10 

 3.3 -4.00 0.04 -4.40 0.10 

 4 -4.00 0.04 -4.70 0.10 

 5 -4.00 0.06 -4.70 0.10 

2 2 -3.70 0.04 -4.22 0.10 

 2.5 -4.00 0.06 -4.22 0.10 

 3.3 -4.00 0.06 -4.22 0.10 

 4 -4.00 0.06 -4.22 0.10 

 5 -4.00 0.10 -4.22 0.10 

3 2 -3.70 0.02 -0.40 0.04 

 2.5 -3.70 0.02 -3.22 0.04 

 3.3 -3.70 0.02 -4.40 0.04 

 4 -3.70 0.02 -4.40 0.04 

 5 -3.70 0.02 -4.22 0.04 

4 2 -3.70 0.02 -4.10 0.04 

 2.5 -3.40 0.02 -4.10 0.04 

 3.3 -3.40 0.02 -4.22 0.04 

 4 -3.70 0.02 -4.22 0.04 

 5 -3.40 0.02 -4.22 0.04 

5 2 -0.70 0.04 -4.40 0.12 

 2.5 -1.00 0.04 -4.40 0.12 

 3.3 -1.10 0.04 -4.40 0.12 

 4 -2.10 0.04 -4.40 0.12 

 5 -4.00 0.10 -4.40 0.12 

6 2 -0.40 0.04 -4.22 0.20 

 2.5 -3.70 0.04 -4.22 0.20 

 3.3 -3.70 0.06 -4.22 0.20 

 4 -3.70 0.10 -4.22 0.20 

 5 -3.70 0.10 -4.22 0.30 
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To demonstrate the value of the more time consuming iterative L1 regularization step in PDACS, 

we also reconstructed view-sharing images by simply combining the same prior data with current 

k-space using the same random pattern to serve as a “control” dataset – that is PDACS without 

L1 regularization.  As there are many viewsharing strategies in the MR literature, these images 

do not necessarily represent the most optimal viewsharing strategy, the determination of which is 

beyond the scope of this work. 

4.2.7. Image Reconstruction 

Using the weights shown in Tables 4-1 and 4-2, Split Bregman iterative reconstruction is 

performed to generate the 2DCS and PDACS images, using number of 10 inner iterative steps 

and 5 outer iterative steps as suggested by the author.  The amount of time required is 

approximately 0.1s/ image, which makes this method potentially suitable for real time tumor 

tracking.  In summary, we reconstructed each dynamic series using 3 methods: the conventional 

2D-CS method without temporal acceleration which requires iterative reconstruction but no prior 

data; the view-sharing method which requires prior data but no iterative reconstruction; and 

finally, the PDACS method that requires both the prior data and iterative reconstruction.  The 

reconstructed images are evaluated by looking at the overall artifact power and two different 

tumor tracking metrics.  

4.2.7 Evaluate of Overall Image Reconstruction Quality (Artifact Power) 

The overall quality of the reconstructed image is evaluated by calculating its artifact power, as 

defined at equation 4.2.  In our evaluations, under-sampled images in simulations, performed at 

the 3.0T SNR, is compared to the fully sampled 3.0T images; while the simulations for 0.5T 

equivalent SNR is compared to the fully sampled 0.5T images.  The superior reconstruction 

technique generates images with lower artifact power.   

4.2.8 Evaluation of Tumor Tracking Accuracy 

While the overall image quality of the image is important, for real time image guidance purpose, 

it is even more important that the under-sampled images accurately capture the dynamically 

changing location and shape of the tumor.  Thus, we evaluated each reconstruction technique 

using our automatic tumor delineation algorithm for 6 patients validated in the chapter 3.  For the 

analysis, the automatic algorithm was applied to the fully sampled images to generate a set of 
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“standard contours”.  We then contoured the under-sampled images to obtain the set of test 

contours. The test contours are compared to the corresponding standard contours by using two 

separate metrics:  centroid displacement (equation 3.3) and Dice’s coefficient (equation 3.1).  

Centroid displacement is simply the mean difference (in mm) of the tumor centroids of the 

standard and the test contours while the Dice’s coefficient measures the degree of overlap.  . 

Artifact power, centroid position difference and Dice’s coefficient are evaluated using each of 

three reconstruction algorithms (2D-CS, PDACS, View-share).  Please note that as this study is 

updated from the published study of patients 1-3, patient 5 was found to be an outlier due to poor 

reliability of auto-contouring on fully sampled images and thus it is excluded in the contouring 

analysis, but included in the artifact power analysis. 

4.2.9 Distinction between “Recent” vs. “Outdated” prior data 

As PDACS relies on the previously acquired prior data, the amount of time between the 

acquisitions of the prior vs current data may have an impact on PDACS images.  The possible 

cause and quantitative analysis of this effect will be discussed in the next chapter.  In this 

chapter, the first 20 images are treated as the prior data and the next 630 images are treated as 

dynamic test data and we limit our analysis for data acquired within 1 minute of prior data 

(Images 1 – 210 out of 630).  

4.2.10 3T vs Pseudo 0.5T Experiments 

The entire analysis is performed on both the original 3T images, as well as the noise added 

pseudo 0.5T images, as compressed sensing can be sensitive to SNR.   

4.3 Results. 

4.3.1 Image Evaluation – Global Image Quality (Artifact Power) 

A demonstration of image quality using different reconstruction methods is provided in Figure 4-

3.  At 2x acceleration, the organ contrasts in the image are qualitatively similar across the three 

methods, with a subtle difference in the view-sharing image that contains additional structured 

noise as pointed by the arrows.  This difference is also evident in the quantitative artifact power 

comparison presented in Figure 4-4, where view-sharing method has slightly higher artifact 

power than PDACS method.  At 5x acceleration, the resolution in the CS reconstructed image 

(Figure 4-3, second row, left) is poor compared to the other two techniques – this is again 
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supported by the artifact power analysis in Figure 4-4, where 2D-CS have very large artifact 

power at 5x acceleration.  The overall trends in Figure 4-4 suggest that PDACS images generally 

have the lowest artifacts power as compared to the 2D-CS method and the view-share 

techniques. At the lower acceleration factors, 2D-CS performs well but the image quality 

deteriorates rapidly as the acceleration factor is increased.  While the PDACS method generates 

the lowest artifact power overall, the advantage of PDACS relative to view-sharing method is 

reduced at high accelerations.  At 0.5T SNR, artifact power is increased significantly in all three 

methods.   

 

Figure 4-3 - Examples of reconstructed images based on the fully sampled image in Figure 2, top row, left.  First 

Row: Reconstructed image at 2x acceleration (50% sampling), Left, 2D-CS; Centre, Viewshare; Right, PDACS; 

Second Row: reconstructed at 5x acceleration (20% sampling), Second Row: Left: 2D-CS, Centre, Viewshare; 

Right, PDACS.  Red arrows indicate presences of noise like artifacts. 
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Figure 4-4 - Left: Aggregate artifact power for the three patients at the original 3T SNR images.  Right: Aggregate 

artifact power in the pseudo 0.5 T SNR images.  Please note the difference in y axis.  Error bars indicate 95% 

confidence interval as determined from the standard error of the mean.   

4.3.2 Tumour Tracking Accuracy. 

The PDACS method essentially uses a motion averaged image as “prior data” which does not 

necessarily contain the accurate current tumour location to assist in reconstruction.  Since the 

ultimate aim of the technique is to track moving lung tumours, it is therefore important to assess 

whether PDACS has any negative impact on the ability to accurately localize a tumour in the 

reconstructed images.  Figure 4-5 contains a set of three zoomed in images of the tumour of the 

fully sampled image as well as 4x accelerated PDACS images at different phase of the breathing 
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cycle.  While there are subtle differences between the two sets, the use of motion averaged 

supporting data does not significantly impact the ability to localize a tumour. 

 

Figure 4-5 - Top Row: Zoomed in fully sampled images of the tumour as it undergoes breathing motion from inhale 

to exhale (Images 62, 65, 69).  Bottom Row: Identical Images reconstructed with PDACS 4x acceleration.  Tumour 

is indicated by red arrow. 

For quantitative comparisons, Figures 4-6 and 4-7 show the results of Dice’s Coefficient and the 

centroid displacement averaged over 5 patients and for both the original 3T and the equivalent 

0.5T images.  Using the Dice Coefficient metrics (Figure 4-6, left), CS gives the highest 

accuracy at 2x but its performance declines rapidly as the acceleration factor increases, with 

PDACS yielding the higher Dice`s coefficient above 2x acceleration factor.  At 0.5 SNR, CS 

performs relatively poorly, both PDACS and view-share methods provide substantial 

improvements over CS. (Figure 4-6, right).   
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Figure 4-6 - Averaged Diceès coefficients, aggregated for 5 patients for all images reconstructed at the original 3T 

SNR (left) and the pseudo 0.5T SNR (right) with the increasing acceleration factor.  Error bars indicate 95% 

confidence interval as determined from the standard error of the mean. 

In the centroid error metrics at 3T (Figure 4-7, left),  CS yields the lowest error at 2x acceleration 

while its performance decline at the higher acceleration, while PDACS is superior compared to 

CS above 2.5x acceleration factor.  Between CS and view-sharing, it is unclear which method is 

generally superior, as this metric may not be sensitive enough to distinguish the techniques, 

except at 3.3x acceleration factor, where the PDACS method has statistically lower centroid 

error. 



105 

 

 

Figure 4-7 - Mean Centroid Displacement Error, averaged over 5 patients for all images reconstructed at the original 

3T SNR (left) and the pseudo 0.5T SNR (right) with an increasing acceleration factor.  Error bars indicate 95% 

confidence interval as determined from the standard error of the mean. 

4.4 Discussion 

From the artifact power analysis (Figure 4-4) it is clear that the 2D-CS method is relatively 

sensitive to the degree of under-sampling in k-space.  Heikal et al.25 have shown that the under-

sampling in compressed sensing causes quantifiable loss in spatial frequency response (as 

described by its Modulation Transfer Function) in reconstructed image.  At lower acceleration 

factors, the sampling pattern still has a significant amount of sampled data points in the high 

frequency regions (Figure 4-1, top row).  While the random under-sampling pattern would 

generate aliasing artifacts but these are subsequently removed by the iterative process.  The small 

loss of response at high spatial frequencies makes very little qualitative difference in the image 

compared to the original image.  However, with increasing acceleration factors, it becomes 

increasingly difficult to have sufficient sampling points at the high spatial frequencies of k-space 

(Figure 4-1, bottom row).  With so few sampling points at the periphery, the CS algorithm is 

only able to generate an image with a significantly lower resolution (Figure 4-3, lower row, left 

column) as compared to the original image. 
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The premise of the PDACS and view-share methods is to provide the supporting data in the un-

acquired regions of k-space to aid in reconstruction.  Nevertheless, the quality of the PDACS and 

view-shared images is dependent on the similarity between the baseline k-space data and the up 

to date k-space information.  With increasing acceleration factors, the final reconstruction 

contains less up to date information, thus reducing the quality of the reconstruction.  In lung 

images, there is considerable temporal redundancy (since lung tumor motion contains 

periodicity).  In our examples, the increase in artifacts at higher acceleration factors is shown to 

be considerably less compared to conventional CS. This leads to much more accurate tumour 

tracking for PDACS/Viewshare as compared to conventional CS. 

To compare PDACS and view-sharing, one should consider an additional factor that limits the 

quality of these two techniques. A combination of k-space lines from data captured at different 

time points will result in discontinuous boundaries in k-space, generating noise like artifacts in 

the images domain.  The PDACS algorithm has some success in reducing these artifacts at 3T as 

shown in Figure 4-3 and in Figure4-4.  These artifacts appear to have some impact on tumour 

tracking algorithm, as indicated by higher Dice`s coefficient for PDACS vs. view-share as shown 

in Figure 4-5, left.  In other cases, the reduction in the artifact power does not translate to 

improved tracking metrics between PDACS and view-sharing. 

In summary, the PDACS method combines advantages of the view-shared and CS methods.  By 

solving the modified optimized problem as formulated in PDACS, with an additional constraint 

for prior data, the reconstruction takes advantage of the information in the un-sampled regions 

from the prior data, in a similar fashion to the view-shared method. In addition, iterative L1 

minimization process in the CS/PDACS removes the aliasing artifacts in the CS images. This 

technique is also effective in removing artifacts that arise from the discontinuous k-space of the 

view-shared method.  As a result PDACS gives better image quality than using 2D-CS and view-

shared methods independently.   

The quality of CS reconstruction also depends on the initial SNR of the image.  Removal of 

aliasing artifacts generated from random under-sampling relies on the ability to, in the sparse 

domain, separate sparse but high intensity signal peaks from the lower intensity signals, which 

include both “noise like” artifacts that result from random under-sampling, as well as the 

inherent random noise present in a fully sampled image.  Without prior data, this leads to the 
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generally poor result using the CS images.  Our data suggests that the lower SNR images 

significantly benefit from the introduction of prior data as in the formulations of PDACS and 

view-share. 

One should be cautious in interpreting the pseudo 0.5 T results, as our simulation is a simplistic 

approach that likely underestimates the quality of 0.5 T images, due to the following reasons.  

Firstly, at 0.5 T, reduced specific absorption ratio (SAR) allows for larger flip angles, partially 

compensating for lost SNR77.  Secondly, imaging at 0.5 T is less sensitive to off resonance 

effects, reducing bSSFP banding artifacts77.  Additionally, tissue contrast for bSSFP is 

determined by tissue relaxation properties (the ratio T2/T1) that are often improved at lower 

fields77.  These effects are not accounted for in our pseudo 0.5 T simulations, which only serve as 

an indicator of how the algorithm performs in a “worst case scenario” for 0.5 T magnetic fields. 

One important issue with applying CS to real time MR imaging is the reconstruction time.  The 

2D-CS and the PDACS methods require iterative optimization with similar reconstruction times; 

the reconstruction time per image is approximately 0.1s using a 3.4GHz CPU (Intel I7-4770).  In 

a single plane tracking method, any potential gain in acquisition speed by the CS techniques will 

be reduced by this reconstruction time.  However, in multiple slice imaging, the acquisition and 

reconstruction times are not equally important  in the overall impact on the interventional MRI 

application.  Consider an example of two different scenarios for a dynamic acquisition of 3 

orthogonal slices (Figure 4-8).  In the first scenario, no CS acceleration is performed, requiring 

250ms of acquisition time but negligible reconstruction time.  In the second scenario, acquisition 

speed is increased by a factor of 5x (50ms), at the cost of an additional 100ms of reconstruction 

time.   While the sum of acquisition and reconstruction time for CS is 150ms (resulting in less 

than 2x acceleration compared to non-accelerated case), the reconstruction of individual slices 

are independent processes that could be performed in parallel using different CPU’s.  As a result, 

scenario 2 results in the orthogonal images that update every 150ms; a 5x improvement 

compared to scenario 1 in which the images are updated every 750ms. 
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Figure 4-8 - A schematic diagram demonstrating the benefit of speeding up acquisition time at the expense of 

increasing reconstruction time.  As reconstruction of images from different slices are independent processes that can 

be performed in parallel, the accelerated scenario results in images that are updated at 150ms instead of 750ms in the 

first scenario 

4.5 Effect of Outdated Prior Data on PDACS and Viewshare 

The work presented in this chapter demonstrates the benefits of prior data compared to CS.  

However, this analysis is limited to the first 210 images (~1 minute of data) after the prior data is 

acquired.   For longer duration scans (>1 minute), it is observed in Figure 4-9 that the techniques 

which incorporates prior data (PDACS and view-share) suffer from an increase in artifact power 

as the scan progresses.  On the other hand, the CS technique, which does not require prior data, 

has a constant artifact power.  Consequently, this effect reduces the utility of PDACS for longer 

duration scans.  A solution to mitigate this problem will be explored in the next chapter. 
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Figure 4-9 – Mean artifact power for all patients for 3T dynamic images 21-220, 221-430, 431-650.  Progressive 

increase is artifact power observed for PDACS and viewsharing, where prior data is used, but not in CS where prior 

data is not used.  

4.6 Summary 

We have introduced a novel image reconstruction method, PDACS, which exploits the spatial-

temporal redundancy in dynamic MR imaging.  By combining the elements of compressed 

sensing with the view-sharing, we reconstruct images that are superior, in terms of artifact 

power, to both of these techniques when used separately.  However, the utility for PDACS may 

be reduced for longer duration (>1 minute) dynamic scans. 
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Chapter 5  Sliding Window PDACS 

Parts of this chapter have been adapted from an article in press: Yip E, Yun J, Wachowicz K, 

Gabos Z, Rathee S, Fallone BG. Sliding Window Prior Data Assisted Compressed Sensing for 

MRI tracking of lung tumours. Medical Physics. 2016; Accepted Author Manuscript. 

doi:10.1002/mp.12027  

5.1 Introduction 

The original PDACS method, described in the previous chapter, pre-acquires a pool of 

preparatory data at the beginning of the dynamic sequence. This data is used as a motion 

averaged prior image. All subsequent acquisitions use a partial, randomly-sampled k-space 

pattern, and 2D images are reconstructed in sequence using a modified CS method that 

constrains the non-sampled k-space locations to an averaged prior data pool.  In a sense, this 

original PDACS implementation represents some combination of compressed sensing and the 

KEYHOLE methods.  While this approach is simple to implement and improves CS 

reconstruction for dynamic images78, there are large regions of un-sampled k-space in the 

dynamic images that may become progressively more mismatched to the prior data as the scan 

series progresses.  Slow changes in the MR signal, possibly due to magnetic field instability 

arising from hardware heating79, or shifts in a patient’s position during scans could lead to the 

prior data and the current data to be severely “mismatched” in longer duration scans, leading to 

image artifacts.   

To illuminate the cause of the shift in baseline MR signal, a series of dynamic bSSFP images is 

acquired for the chest phantom described in Chapter 3, but without the motion in order to 

monitor the changes in the signal magnitude of the image.  The pixel magnitude of image 

numbers 101, 201, 301, 401, 501, 601, and 701 is subtracted from pixel magnitude of image 

number 1. These images represent dynamic scans at 30 second intervals and the resulting 

difference images are shown in Figure 5-1.  Initially, (i.e. #101, #201) only small changes are 

observed in the difference images, but in longer duration cases (bottom row) hot and cold spots 

can clearly be observed near bSSFP shifts, indicating a shift in bSSFP bands locations.  Shifts in 

the bSSFP bands are caused by a change in phase, possibly due instability of B0 due to heating of 

some of the elements in the magnet. In addition to this effect, a gradual decline in signal can be 
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observed in the body of the phantom.  Note that these effects begin to have an impact on images 

from image #201 onwards (>1 minute). 

 

Figure 5-1 – Monitoring the change in bSSFP signal over time using the difference image.  Top row, Column 1: 

initial magnitude image.  Top row, Columns 2 – 4: difference image generated by subtracting images 101, 201, and 

301 from the initial image.  Bottom Row, Columns 1- 4: difference image generated by subtracting images 401, 501, 

601, and 701 from the original image. 

In the last chapter, PDACS is demonstrated to be superior to CS for dynamic images acquired 

within 1 minute prior data, but has reduced performance beyond that.  While it is possible, in 

principle, to limit the dynamic scan acquisition to 1 minute, and then re-acquire the “prior data”, 

it will be inconvenient to perform this in the context of clinical workflow in practice.  This is 

because the tumour tracking with the prediction algorithm80 is best performed with images with a 

consistent frame rate.  The re-acquiring of slower, fully sampled data may periodically stop the 

“tracking” dynamic and result in treatment interruptions.  This chapter presents two specific 

aims:  1) Evaluate the negative impact on image quality of PDACS accelerated image 

reconstruction due to slow signal changes; and 2) Propose and test two sliding window strategies 

for PDACS reconstruction that continuously update the “prior data” as the dynamic scan 

progresses, without exclusive acquisition of  the prior data. 
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5.2 Methods 

5.2.1 Sliding Window Sampling Patterns 

The crucial difference in the sliding window reconstruction is that, instead of repetitively using a 

single sampling pattern for all dynamic images (Figure 5-2, left), a series of different random 

patterns is used (Figure 5-3 right).  These patterns cover different k-space sampling locations, 

such that whenever a k-space point is acquired, it will be used to “update” the pool of prior data, 

allowing it to be partially updated continuously.  Unfortunately, the shape of the probability 

function often drops to near zero in the most peripheral regions, often results in a long time 

between updates of peripheral k-space points.  In our new sampling strategy, k-space is separated 

into 3 regions.  The very center of k-space (5 lines) is sampled with 100% probability.  Next, the 

middle region is governed by the same polynomial function as suggested by Lustig et al.  In the 

most peripheral region, arbitrarily defined as the region where p(k) < 0.25, we devised an 

iterative process to ensure that the limited sampling points here are temporally well spaced as 

shown in Figure 5-3.  In the first iteration of this process, a uniform probability, pperipheral is 

chosen such that, ∑pcentral + ∑pmiddle + ∑pperiheral is equal to the constant total probability required 

for a particular degree of acceleration (i.e., for the fully sampled 128 k-lines, the total probability 

will ensure 64 and 32 k-space lines for 2x and 4x accelerations respectively).  A sampling pattern 

is generated resulting in sampled locations, ks,1 and un-sampled location kus,1.  For the next 

pattern, in the peripheral region, the probability for the previously sampled location is reduced to 

zero to prevent those locations from being immediately resampled again, such that, p2(ks,1) = 0.  

However, this will result into decreased ∑pperiheral by a certain amount. To maintain the constant 

total probability ∑pperiheral, the probability of the un-sampled locations is increased uniformly, 

i.e.p2 (kus,1) = p1 (kus,1) + c2, where c2 represents the lost probability equally redistributed to all 

un-sampled locations of the first iteration.  Generally, pn+1(ks,n) = 0, and pn+1(kus,n) = p1(kus,n) + 

cn+1.  Note that any previously sampled location with lost probability will eventually become un-

sampled and will have probability transferred back via the cn+1 term. This iterative sampling 

method eventually reaches a steady state that yields well distributed patterns (shown in Figure 5-

3, right).  PDACS and the sliding window PDACS (SWPDACS) patterns are generated for a 
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wide range of MR under-sampling/acceleration factors, 50%, 40%, 30%, 25%, 20% sampling 

which is equivalent to image acceleration of 2x, 2.5x, 3.3x, 4x, 5x. 

 

 

Figure 5-2 - Left: the original PDACS sampling pattern (25%) which uses identical sampling patterns for all image 

dynamic in which the non-sampled k-space locations are not updated, and the sliding window  pattern in which all 

k-space locations are updated. 
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Figure 5-3 The probability redistribution process, applied in a simple case of 5 k-space locations, the algorithm starts 

with equal probability in all locations at p1 (0.2), the Monte Carlo process determines a sampling pattern from it, 

after which the probability from the sampled location is redistributed to the non-sampled location, resulting in 

probability distribution p2.  This process ensures good temporal spacing between sampling points while maintaining 

incoherent sampling required for Compressed Sensing. 

5.2.2 Sliding Window Strategies 1 – Sliding Window Averaging 

Two different schemes are proposed to select prior data �̅� from the window to improve 

reconstruction.  The first method is a simple sliding average method where a sliding window of 

data is simply averaged as prior data (Figure 5-4, left).  The window is first “pre filled” with the 

same 20 fully sampled images as it is in the PDACS method.  As the scan progresses, additional 

data is added to the window until image #80, after that the window begins to slide, removing the 

oldest prior data from the window.  From image #101 on, the window of 100 under-sampled 

images immediately prior to a particular dynamic is averaged as �̅� in equation 4.1.  Note that 

with a sliding window implementation the “pre-filling” of the window with initial fully sampled 

prior data is not a necessity, as one can simply acquire 100 under-sampled frames to serve as 

prior data instead.  Nevertheless, it is applied in this study to give the most straight forward 

comparison to the non-sliding method. 
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Figure 5-4 – Left – sliding window averaging method, each circle represents a k-space line.  All data that 

corresponds to an unsampled location of current data (filled circle) is averaged and applied in reconstruction.  Right 

– sliding window with navigator, the data within the sliding window is ranked based on navigator similarity – with 

the closest available match in each location used as prior data. 

5.2.3 Sliding Window Strategies 2– Sliding Window with Navigator Guidance 

The second proposed scheme is a navigator guided approach (Figure 5-4, right).  It uses the same 

sliding window as described previously, but instead of averaging all the data in the window, it 

uses the data most closely matched to the current diaphragm position. The diaphragm position is 

quickly approximated by acquiring a navigator.  In order to test this approach with the patient 

data that has been acquired previously, the central, superior-inferior k-space line is used as an 

intrinsic navigator.  No additional navigator pulses are used.  The 1D Fourier transform of the 

central k-space line is an anterior-posterior projection of the 2D sagittal image as shown in 

Figure 5-5. 
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Figure 5-5 – Left, a 2D Fourier transform of the full k-space, Right, the equivalent profile resulted from a 1D FT of 

the central K-space line 

As the diaphragm and other structures move throughout the breathing cycle, the navigator profile 

will shift accordingly; for every navigator profile after the first one, a 1D cross correlation 

operation is performed against first profile and the location of maximum correlation is 

determined. The location of maximum correlation will change during the breathing period.  The 

maximum correlation location of the navigator profile is highly influenced by the diaphragm 

position in the breathing cycle, and is shown with the corresponding tumour position in Figure 5-

6.  The prior data, �̅�,  is chosen from within the sliding window based on the closest available 

match to the current navigator position, such that reconstruction artifacts will be minimized.  The 

additional computation of a 1D FFT for the navigator, a 1D cross correlation and data selection 

adds ~10ms of reconstruction time before 2D image reconstruction, but may reduce motion 

blurring81 of the tumour associated with time averaged data in the prior image. 
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Figure 5-6- Actual tumour superior-inferior centroid position(top, blue) for a single patient as determined by 

contouring vs. approximate diaphragm position (bottom, green) as determined by the maximum correlation 

calculations of the navigator profiles. 

5.2.4 Evaluating Decline in Image Quality due to the Outdated Prior Data 

One of the main benefits of a sliding window reconstruction is that the prior data will be drawn 

from relatively recent acquisitions, which would reduce the impact of gradual changes in MR 

signal unrelated to breathing motion (i.e. due to MR signal drift or patient shifting position). For 

the PDACS reconstruction that uses the prior data acquired at the beginning of the scan series, 

the slow signal drift could lead to artifacts.  In our analysis, the average of first 20 acquisitions is 

used as prior data, and the remaining 630 images are separated into 3 groups of 210 images (each 

representing ~ 1 minute of breathing data).  The 3 groups of data will be averaged separately for 

all the patients, in order to observe possible decline in image quality from the 1st to the 3rd group.  

Artifact power, Dice coefficient and centroid error for all patients are evaluated as described 

previously.  Due to the less reliable tracking metrics for patient 5 shown in the validation study, 

it is excluded in the Dice’s coefficient and centroid error analysis, but included in the artifact 

power analysis. 
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5.3 Results 

5.3.1 Artifact Power – 3 T SNR 

The average artifact power for the 3 image groups (images 1-210, 211 – 420 and 421-630) for 6 

patients.  MR acceleration factors from 2 – 5x, averaged across all patients, for 3 different image 

reconstruction methods is shown in the first row of Figure 5-7.  For all methods, the image 

artifact power increases with the increasing acceleration factor. Please note that the ordinate 

scale is different for different acceleration factors in Figure 5-7.   At each acceleration factor, 

without sliding window, the image artifact power shows a clear increasing trend as the dynamic 

scan progresses, as indicated by the increasing blue bar from image group 1 to 3 in the first row 

of Figure 5-7.  This trend is not observed for both the average or navigator based sliding window 

methods, which have very similar performances between three image groups.  The two sliding 

window techniques yield similar artifact power to each other.  The non-sliding window performs 

similarly well to the sliding window methods in the first image group; however, in image groups 

2 and 3, the two sliding window methods consistently yields lower artifact power compared to 

the non-sliding window technique.  Image group 3 and 5x acceleration presents the most 

challenging scenario for the original non-sliding method, resulting in an artifact power of 0.065; 

however, the averaging and navigator sliding window approach reduce the artifact power to 

0.030 and 0.031, respectively. 

 
Figure 5-7 – Quantitative comparison of the 3 acceleration methods for 3 T images.  First row, Artifact power 

for 2 – 5x accelereation are shown.  Second Row: Centroid Displacement Error (in mm) is shown.  Third row, 

Dice’s Coefficients are shown.  Image groups 1, 2, 3 represent a binned average of image 1-210, 211-420, 421 

- 630.  Error bars indicate 95% confidence intervals.  
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5.3.2 Tumour Tracking Error – 3 T SNR 

The centroid displacement error and Dice coefficient are shown in rows 2 and 3 of Figure 5-7 

respectively.  For all acceleration factors except 4x, without using a sliding window, the centroid 

displacement error increases and Dice coefficient decreases from image groups 1 to 3, indicating 

a loss in tracking accuracy.  The navigator sliding window yields marginally lower centroid 

displacement errors and higher Dice’s coefficient compared averaged sliding method.  At 

accelerations > 2x, the sliding window methods show improved performance and this is 

particular evident in the at 2.5 and 5x accelerations.  In the most challenging scenario for the 

original non-sliding method, (i.e. image group 3 and 5x acceleration factor), the centroid 

displacement error reduces from 2.86 mm, without sliding window, to 1.11 mm (1.04 mm) with 

the averaging (navigator) sliding window implemented, while the Dice coefficient increases from 

0.874, without sliding window to 0.932 (0.934). 

5.3.3 Image Reconstruction Error – Pseudo 0.5T SNR 

The results from the pseudo 0.5 T images are shown in the first row of Figure 5-8.  The image 

reconstruction error is generally higher compared to the 3 T images due to the higher noise 

present in the data.  There are several trends in the 0.5 T data that are similar to the 3 T data.  

Larger acceleration factors lead to larger image artifact powers for all methods.  For a particular 

acceleration factor, without sliding window, there is a clear trend of increase in image artifact 

power as the dynamic scan progresses, i.e. from image group 1 to image group 3 as indicating in 

the first row of Figure 5-8.  This trend is not observed for both the sliding average and navigator 

guided sliding window methods, which have very similar performances between groups, as 

indicated in the first row of Figure 5-8.   

Unlike the original 3 T data, the navigator sliding window method (red bars) yields higher 

artifact powers compared to the sliding averaging method (green bars), as shown in Figure 5-8.  

The averaging sliding window method results in lower artifact power compared to the non-

sliding window method, particularly in image groups 2 and 3.  Again the case of group 3 and 5x 

acceleration presents most challenging scenario for the original non-sliding method, resulting in 

an artifact power of 0.110; however, the averaging and navigator sliding window approach 

reduce the artifact power to 0.0897 and 0.0985, respectively. 
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Figure 5-8 – Quantitative comparison of the 3 acceleration method for pseudo 0.5 T images.  First row, Artifact 

power for 2 – 5x acceleration are shown.  Second Row: Centroid Displacement Error (in mm) is shown.  Third row, 

Dice’s Coefficients are shown.  Image groups 1, 2, 3 represent a binned average of image 1-210, 211-420, 421 630.  

Error bars indicate 95% confidence intervals.  

5.3.4 Tumour Tracking Error – pseudo 0.5T SNR 

For the pseudo 0.5 T images, despite having a higher artifact power in the navigator based 

sliding window, the two sliding methods actually yield similar Dice coefficient and centroid 

displacement error with each other.  Like the 3T data, the trends of reduced accuracy (increase in 

centroid error and decline in Dice coefficient) for outdated data of image groups 2 and 3 is 

observed in the 2.5x, 3x and 5x acceleration in Figure 5-8 (rows 2 and 3).  The advantage of the 

sliding window methods is most pronounced in these cases.  In the most challenging scenario for 

the original non-sliding method, (i.e. image group 3 and 5x acceleration factor), the centroid 

displacement error reduces from 3.16 mm, without sliding window, to 1.19 mm (1.17 mm) with 

the averaging (navigator sliding) window methods implemented, while the Dice coefficient 

increases from 0.859, without sliding window, to 0.911 (0.912). 

5.3.5. Qualitative Example 

The qualitative demonstration of the impact of outdated prior data, as well as the benefits of the 

sliding window methods are shown in Figure 5-9.  Without a sliding window (Row 2), minimal 

artifacts are observed in group 1, but a progressive increase in artifact structures is observed in 
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groups 2 and 3.  These artifacts are not observed in the sliding window reconstructed images.  

 

Figure 5-9 – Qualitative comparisons of representative images (chosen similar phase) from groups 1 in 3 (left to 

right).  2.5 accelerated images from Non Sliding window (row 2), Sliding window with navigator (row 3) and 

sliding window with averaging (row 4) are shown.  Progressive increase in artifacts is easily observed in row 2, 

which are not observed in the sliding window methods.  

5.4 Discussion 

One of the objectives of this work is to evaluate the impact on PDACS reconstruction quality if 

prior data is not continuously updated.  By separating the dynamic data into 3 groups, one can 
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observe a clear trend of increased image artifact power (Figures 5-7, 5-8, first row, blue bars).  

This trend is also clearly observed, in four of the five cases (2, 2.5, 3.3 and 5x acceleration), 

leading to poorer tumour tracking performance as the dynamic scan progresses (i.e. image 

groups 2 and 3) in the PDACS images (Figures 5-7, 5-8, second and third row), as the “prior 

data” gets progressively more outdated, this can also be observed qualitatively in Figure 5-9.  

The presence of these artifacts (Figure 5-9, row 2, column 2 and 3) indicate a limitation of the 

original PDACS implementation for longer duration (3 minute) dynamic scans.  The original 

PDACS strategy of incorporating of prior data in CS (i.e. equation 4.1) has been shown to 

substantially improve standard CS (i.e. equation 2.99) reconstruction in our chapter, where prior 

data supports 1 minute of dynamic images.  However, the results presented in this chapter, have 

revealed that incorporations of outdated prior data introduced additional artifacts to the images.  

The development of sliding window approach is therefore essential for implementation of 

PDACS in longer duration scans. 

This trend of increasing artifact is greatly reduced by the two sliding window methods, at 3 T 

images in Figures 5-7 and by the sliding averaging method, in pseudo 0.5 T images, as shown in 

Figure 5-8.  As shown in Figure 5.1, drift in MR signal that gradually builds up over time, 

possibly due to change in hardware temperature affecting B0, (i.e., heating due rapid switching 

gradients79), any other form of slowly varying instability.  Patient motion can also contribute to 

these signal drifts.  While the exact cause is unknown, its effect can clearly be observed in the 

form of large incremental increases in artifact power of measured in the images of groups 2 and 

3 in the non-sliding window results (Figure 5-7, Figure 5-8).  The increase in disparity between 

the current data and prior data leads to a gradual increase in image artifact power that is reduced 

by a constantly updated pool of prior data in sliding window schemes.   

It is worth noting that the global artifact power, which is often used in the literature as a 

measurement of the global image quality,  does not always correlate to tumour tracking accuracy 

(Figures 5-7 and 5-8, 4x acceleration). This is because some artifacts may appear closer to the 

tumour (Figure 5-9, row 2, right) even though the global artifact power is small. These close by 

artifacts  have a rather negative impact on tracking metrics compared to the distant ones such as 

the ones observed in the diaphragm area in the other accelerated images shown in Figure 5-9.  

Another interesting case showing the same effect is the pseudo 0.5T metrics (Figure 5-9) where 
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the navigator  reconstructed images (red bar) have a larger artifact power than the averaging 

method (green bars), but the tracking metrics are comparable in both and better than the non-

sliding window method (blue bars)..  Figure 5-10 demonstrates a possible explanation of this 

effect.  Both the navigator sliding window (left) and non-sliding window cases (right) have 

higher artifact power than the averaging sliding window case (center).  However, in the navigator 

based sliding window case (left), these artifacts are random noise, where as in the non-sliding 

window case (right), these artifacts are structured and disruptive.  The non-sliding window case 

therefore has lower tracking metrics compared to the other two cases.  Although the global 

artifact power is easily computed, the two tumour tracking metrics are more relevant to the task 

of tumour tracking in dynamic images.  However, there are several drawbacks of the tumour 

tracking metrics: 1) These metrics require a special algorithm for autocontouring and its 

validation.  2) These metrics are highly dependent on the type of autocontouring algorithm used, 

as a change in the contouring algorithm may lead to different results.  Therefore, the combination 

of the two tumour tracking metrics and the overall artifact power gives a more complete picture 

of the reconstruction quality.   

 

Figure 5-10 – Pseudo 0.5T image (#506) for the same patient shown in Figure 5-9 at 2.5x acceleration, reconstructed 

using sliding window with  navigator (left), sliding window averaging (centre) and non-sliding window (right).  

Noise measurement is performed by calculating the standard deviation (SD) in the white box. 

The pitfalls of using outdated prior data for reconstructing dynamic image series have been 

demonstrated in related techniques such as PICCS in CT imaging, and KEYHOLE in MRI.  In 

CT imaging, PICCS74 is a CS technique that relies on prior image and it also suffers from 

increased artifacts when the prior image is mis-registered with the under-sampled image82, and 

requires image registration to improve image quality.  In MRI, analogous effects are observed in 
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prospective KEYHOLE imaging83, in which changes in image contrast lead to ringing artifacts 

due to discontinuous k-space between current and prior, reference data acquired at the beginning 

of a sequence.  Similarly, we speculate that signal shifts may have occurred during our dynamic 

scans, leading to artifacts that are too coherent for the CS algorithm to remove (Figure 5-8, row 

2). 

It should be noted that the degree of signal drift over time may be dependent on the MR scanner 

and may not be the same for other MR systems (i.e. 0.5 T linac-MR).  However, since the sliding 

window methods are relatively simple to implement, they provide a solution that continuously 

updates the prior data without stoppage or a change in frame rate.  This would be particularly 

useful if the tracking scan has a long duration (> 1 minutes).  In the context of radiation therapy, 

this could potentially include MR guided Stereotactic Body Radiation Therapy (SBRT), for 

which a much larger dose is given to the patient per fraction, requiring longer treatment times.  

Another example is the case MR guided gated treatment with a lower duty cycle.  In these 

situations where longer scans are required, sliding window PDACS should be implemented in 

order to avoid unnecessary stoppages during treatment needed for re-acquisition of the prior data. 

One interesting observation from our study is that the two proposed sliding window methods 

perform differently at different SNR levels.  At 3 T SNR, the navigator guided method provides 

similar artifact power to average based method, but performs marginally better in terms centroid 

error (Figure 5-7, rows 2).  Since the navigator chooses the prior data with the closest matched to 

the current dynamic image data, it may reduce the effect of motion blurring81 in the prior data 

obtained with time averaging.  With a dedicated navigator pulse, or an external navigator signal 

(i.e., respiratory belt) the benefits of the navigator could be further enhanced. 

At pseudo 0.5 T, however, the navigator based approach leads to higher global artifacts, but 

similar tracking accuracy is achieved compared to the averaged sliding window method.  (Figure 

5-8).  The ability of the CS algorithm to suppress artifacts is dependent on its ability to 

distinguish signal (high intensity) from incoherent artifacts/noise (low intensity)47.  The presence 

of higher intensity noise therefore makes it more difficult for the algorithm to distinguish 

artifacts from signal.  Unlike the navigator process which only uses one sample from the window 

(Figure 5-4, right), the averaging of many samples (Figure 5-4, left), has the effect of reducing 

the added noise, as noise is proportional to 1/√N, where N is the number of samples averaged.  
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The increase in global artifacts may have counteracted any benefit in tracking accuracy from 

reduced motion blurring. 

One must be cautious in interpreting the results of the pseudo 0.5 T data, which is meant to serve 

as a “worst case scenario” for 0.5 T performance, due to all the un-accounted factors discussed 

previously in section 4.4.  The use of a dedicated navigator pulse, or an external navigator 

independent of SNR (i.e. respiratory belt) may improve performance for the navigator method at 

lower fields.  With all these caveats, it may be premature to rule out the use of navigators at 0.5 

T.  Nevertheless, despite being a worst case scenario, we have presented a workable solution 

(sliding window with averaging) for PDACS acceleration at lower fields. 

One of the motivations for developing a CS based strategy such as PDACS is the ability to 

accelerated k-space acquisition without specialized hardware (i.e. phase array coil and multiple 

receive channels), which may not be available or practical in some situations.  The algorithm is 

therefore designed to operate on either single coil data or combined coil data from a phase array 

coil.  In our study, the data from individual coils is combined by the manufacturer’s software to 

serve as the starting point of our study, essentially mimicking a single channel volume coil.  The 

methods of combining data from individual coils, as implemented in the MRI system software, 

may affect the image SNR.  To demonstrate our algorithm’s validity with raw coil data, we 

performed an additional scan with a healthy volunteer.  In additional to the scanner reconstructed 

data, PDACS was performed on raw coil data from individual coils after a simple k-space phase 

normalization and summation. Please note this rudimentary coil combination strategy represents 

a non-optimal, worst case scenario in terms of SNR84.  Compared to scanner reconstructed data, 

raw coil data from the individual channels resulted in reconstructed images with marginally 

larger artifact power from PDACS reconstruction, due to the reduced SNR.  The loss in SNR 

may be recovered using more sophisticated coil combination strategies84, which is beyond the 

scope of our work.  Nevertheless, this does not alter the utility of our algorithm as it has been 

demonstrated to work for a range of SNR values in this study. 

5.5 Summary 

Prior data assisted compressed sensing (PDACS) can improve compressed sensing 

reconstruction of dynamic scans by adding in prior data acquired at the beginning of a dynamic 

scan series, but the quality of the prior data can have a considerable impact on the reconstructed 
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image quality.  In this chapter we demonstrated the negative impact of slow changes in MR 

signal in longer duration PDACS dynamic scans, which consists of increases in image artifact 

power and reductions in tumour tracking accuracy.  A sliding window approach, using either 

sliding averaging at 0.5 T or preferably a navigator guided approach at 3.0 T, are solutions that 

allow prior data to be continuously updated. These schemes are preferred in dynamic MR 

tracking with durations of > 1 minute, as they reconstruct images with lower artifact power and 

higher tracking accuracy.  
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Chapter 6  Conclusions and Future Direction 

This thesis describes the development and evaluation of a novel image reconstruction strategy, 

Prior Data Assisted Compressed Sensing or PDACS, which takes advantage of the previously 

acquired data to speed up the dynamic MR acquisition.  It was shown in our retrospective study 

that at acceleration factors greater than 2x, PDACS substantially improves the image quality 

compared to the conventional 2D CS reconstruction.  MR acquisition ultimately represents a 

trade-off between imaging speed and imaging quality measured in terms of image noise and/or 

resolution.  PDACS, which incorporates the prior data and the regularized reconstruction, 

significantly reduces the loss of image quality from increasing acquisition speed, producing 

accurate images at 5x acceleration.   

The original PDACS method, presented in Chapter 4, is reliant on a stable baseline signal to be 

averaged into the prior data, however, this has shown to be problematic in the longer duration 

scans (> 1minute) where a shift in bSSFP signal can be observed.  In our patient study, this led to 

a decline of the image quality.  In these cases, the sliding window implementation of PDACS, 

shown in Chapter 5, ensures the highest quality images. 

Our experimental results of Chapter 3 support the first hypothesis that the auto-contouring 

algorithm is capable of auto-segmentation of tumour in the real-time MR images.  In the 

phantom images, these contours are comparable to a gold standard in terms of tracking 

performance indicators: Dice’s coefficient and centroid positions.  In the patient images, the 

algorithm gives metrics comparable to the intra and inter observer variability.  In chapter 4, our 

experimental results support the second hypothesis that the inclusion of motion averaged prior 

data in compressed sensing improves image quality compared to the conventional compressed 

sensing, in terms of the artifact power, auto-contouring Dice’s coefficient and centroid 

displacement error.  Finally, in chapter 5, our experimental results support the third hypothesis; 

an algorithm which constantly refreshes the prior data pool using more recent data improves 

compressed sensing image quality in terms of indicators stated above, especially for the longer 

dynamic scans.  However the 2nd and 3rd hypotheses are only tested in retrospective studies. 

These algorithms need ultimately to be tested in the prospective real-time imaging of lung 

tumour patients. 
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Translating the PDACS method from an off-line, retrospective study to an on line, prospective 

approach, that is useful for tracking tumours on the Linac-MR, is suggested as a subject of future 

research.  Some of the technical challenges include the implementation and integration of 

software required for the acquisition of pseudo-random k-space lines, PDACS reconstruction, 

auto-contouring, and MLC movement to tracked tumour position.  Overcoming these challenges 

in the on-line implementation of this approach will allow the ultimate validation of our technique 

and assessment of the benefits of these methods in actual clinical practice. 

Further investigation is required to determine how to best take advantage of the reduced k-space 

acquisition time.  In addition to the obvious benefit of increased frame rate, another possible 

application of acceleration is in the acquisition of multiple (orthogonal) slices while maintaining 

a similar frame rate (4 fps).  In the tumour tracking scenarios presented in this thesis, the BEV is 

assumed to be a sagittal plane.  If that is the case, relevant motion will be captured and the 

benefit or additional information from orthogonal slices will be limited.  However, there may be 

cases in which BEV is in an oblique plane that may have anatomy close to the tumour which 

makes it difficult to image.  In that scenario, imaging in multiple planes may become necessary 

to capture the motion required for tumour tracking. 

While one of the advantages of CS based strategies is that it is not reliant on multiple-channel 

coils, if available, numerous studies have indicated that coil sensitivity information and multiple 

coil data may be incorporated into CS reconstruction to improve image reconstruction and/or 

acceleration.  The feasibility of incorporating parallel acquisition into PDACS warrants further 

investigation, with the potential benefits of enhanced acceleration/image quality to be weighed 

against potential increases in reconstruction time, which may make the technique less suitable for 

real time tracking. 

For further acceleration, one could look into a potentially sacrifice of the image quality of less 

important anatomical regions, without compromising the image quality in the regions near the 

tumour.  In terms of the Cartesian imaging, we could, in principle, acquire images with 

significant fold-over artifacts, as long as the artifact does not overlap with the anticipated tumour 

region of the image.  In radial sampling, under-sampling leads to streaking artifacts, which tend 

to be a more benign artifact for the purpose of tumour tracking33.  Radial acquisition also has the 

advantage of being less sensitive to motion artifacts33.  However, the disadvantage of radial 
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imaging is that it covers k-space in a less efficient manner, and requires gridding 

reconstruction33, which is slower compared to FFT. 

Despite all these acceleration techniques, true real time 4D MR imaging, in which data 

acquisition and reconstruction are done in real time, may not be possible at 4 fps in the 

foreseeable future.  A combination of pre-treatment, non-real time 4D imaging (i.e. with 

retrospective sorting), in combination of real time, accelerated 2D imaging during treatment may 

be best application of current Linac-MR technology for the real time tracking of tumours. 
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