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ABSTRACT 
 

Production scheduling of any mining system has an enormous effect on the 

operation’s economics. The economics of today’s mining industry are such that 

the major mining companies are increasing the use of massive mining methods. 

Among the mining methods available, caving methods are favored because of 

their low cost and high production rates. Caving methods have become the 

underground bulk mining method of choice and are expected to continue as such 

in the foreseeable future.  

The objective of this study is to develop, implement, and verify a theoretical 

optimization framework based on a mixed-integer linear programming (MILP) 

model for block-cave long-term production scheduling, whereby a mineral is 

extracted and prepared at a desired market specification, with the maximum 

economic return measured by NPV, and within acceptable technical and 

operational constraints. In this research, three MILP formulations are introduced 

for three levels of problem resolution (i) cluster level, (ii) drawpoint level, and 

(iii) drawpoint-and-slice level. These formulations can be used in two ways: (i) as 

a single-step method in which each of the formulations is used independently; (ii) 

as a multi-step method in which the solution of each step is used to reduce the 

number of variables in the next level and consequently to generate a practical 

block cave schedule in a reasonable amount of CPU runtime for large-scale 

problems.  

The main scientific contribution of this research on the body of knowledge is the 

development, implementation, and verification of a theoretical framework for 

long-term production schedule optimization of block-cave mines using MILP. 

This research directly contributes to creating new knowledge, understanding, and 

innovative technologies that are required to generate near-optimal life-of-mine 

production schedules for block-cave mining operations. The main industrial 

contribution of this research includes development and testing of a prototype 

open-source software application with the graphical user interface, DSBC.  
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which can start in period t. 

,Ncl tN  Upper limit for the number of new clusters, the extraction from 

which can start in period t. 

,Nd tN  Lower limit for the number of new drawpoints, the extraction 

from which can start in period t. 

,Nd tN  Upper limit for the number of new drawpoints, the extraction 

from which can start in period t. 

clNDP  Number of draw columns within cluster cl. 

dNs  Number of slices within the draw column associated with 

drawpoint d. 

OC  Overhead costs. 

S  Maximum number of slices in the model. 



 
 

 
 

sSEV  Economic value of slice s. 

T  Maximum number of scheduling periods. 

ijT  Tonnage difference between draw columns i and j. 

� ijT  Normalized tonnage difference between draw columns i and j. 

clTon  Total tonnage of material within cluster cl. 

dTon  Total tonnage of material within the draw column associated with 

drawpoint d. 

sTon  Total tonnage of material within slice s. 

Re eU v  Revenue factor per unit of the element e. 

WD  Weighting factor for distance. 

WG  Weighting factor for grade. 

WT  Weighting factor for tonnage. 
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CHAPTER 1  

INTRODUCTION 

 

This chapter is a general overview of the research. It discusses the background of 
the study; the problem statement; the study’s objectives, context and scope; the 
proposed methodology; and the contributions of the research. 
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1.1 Introduction 

Mine planning consists of defining the source, destination and extraction time of 

ore and waste during the mine-life. Production scheduling of any mining system 

has an enormous effect on the operation’s economics. Nowadays, production 

scheduling is one of the key components in determining mine viability, because 

the mining industry faces lower grade and marginal reserves (Burgher and 

Erickson, 1984; Dagdelen and Johnson, 1986; Chanda, 1990). Production 

scheduling defines the tonnages and grades to be mined throughout the mine-life.  

The scheduling problems are usually complex due to the nature and variety of the 

constraints on the system. A production schedule must provide a mining sequence 

that takes into account the physical limitations of the mine and, to the extent 

possible, meets the demanded quantities of each raw ore type at each time period 

throughout the mine-life. 

The economics of today’s mining industry are such that the major mining 

companies are increasing the use of massive mining methods. Among the mining 

methods available, caving methods are favored because of their low cost and high 

production rates. Caving methods have become the underground bulk mining 

method of choice and are expected to continue in the foreseeable future. One of 

these methods is block caving, which has gained popularity due to its low 

operating cost and high productivity. Laubscher (1994) defines block caving as: 

Cave mining refers to all mining operations in which the ore-body caves 

naturally after under cutting its base. The caved material is recovered 

using drawpoints.  

Some of this method’s advantages include low cost, centralized production, 

simple ventilation control, and high production rates. Block cave mine planning 

poses complexities in different areas such as safety, environment, ground control 

and production scheduling. As the mining industry is faced with more marginal 

resources, it is becoming essential to generate production schedules which will 
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provide optimal operating strategies while meeting technical and environmental 

constraints. 

Improvements in computing power and scheduling algorithms over the past years 

have allowed planning engineers to develop models to schedule even more 

complex mining systems (Alford et al., 2007; Caccetta, 2007). Consequently, it is 

now possible to formulate a mixed-integer linear programming (MILP) 

scheduling model that captures the essential components of a caving mine to 

generate a robust, practical, near-optimal schedule. The caving industry is now 

moving towards the next generation of caving geometries and scenarios: super 

caves (Chitombo, 2010). This requires a new approach in looking at the 

scheduling of block-cave operations, and this is what this research seeks to 

introduce.  

There are three time horizons for production scheduling: long, medium and short-

term. The long-term mine production scheduling provides a strategic plan for the 

mining operations, whereas the medium-term mine production schedule provides 

a monthly operational scheme for mining while tracking the strategic plan. 

Medium-term schedules include more detailed information that allows for a more 

accurate design of ore extraction from a special area of the mine, or information 

that would allow for necessary equipment substitution or the purchase of needed 

equipment and machinery. The medium-term schedule is also divided into short-

term periods (Osanloo et al., 2008). A long-term production schedule contains 

fewer details than a short-term plan. However a long-term plan includes clear 

definitions related to mining reserves, production sequence, and production rate. 

A production scheduling methodology that is based on a limited number of 

influential parameters will lead to optimistic production schedules. In addition, 

the geotechnical behavior of the rockmass must be considered for production 

scheduling. Currently, production targets are the result of production schedules 

computed with mine planning parameters that do not evolve as a function of the 

operational performance, and are not linked to the geotechnical behavior of rock 
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mass. Also, relying only on manual planning methods or computer software that 

is based on heuristic algorithms will lead to mine schedules that are not the 

optimal global solution. 

In this research, the main focus will be on long-term production planning in block 

cave mines. Long-term production planning determines the distribution of cash 

flows over the mine-life and the feasibility of the project; and it is also a very 

important prerequisite for medium- and short-term scheduling. One of the main 

goals of long-term production planning is to integrate internal and external mine 

planning factors that affect the mine operation’s performance. Mines use the 

schedules as short-term operational guides, and as long-term strategic planning 

tools to determine when to start mining a production area. 

1.2 Statement of the Problem 

The proposed research lies within the area of applied operations research. The 

research problem is classified as production scheduling in the context of mine 

planning. 

In the case of a block-cave mine, the production schedule mainly defines the 

amount of the material to be mined from the drawpoints in every period of 

production, to achieve a given planning objective. The mine plan also defines the 

number of new drawpoints that need to be constructed, and their sequence, to 

support a given production target. In other words, scheduling a block-cave mine is 

a matter of finding the goal that better represents the strategic planning vision 

subject to the following constraints: mine design, geomechanical, operational, and 

environmental. The production schedule is subject to a variety of physical and 

economic constraints. The constraints enforce the production target, draw rate, 

mining precedence, maximum number of active drawpoints, number of new 

drawpoints in each period, continuous mining, and complete extraction of 

reserves.  

The following research question drives this dissertation.  
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Can a strategic long-term production schedule for block-cave mines be 

generated that will result in the near-optimal net present value for the 

mining operation while honoring all the operational and technical 

constraints, such as development rate, vertical mining rate, lateral mining 

rate, mining capacity, maximum number of active drawpoints, and 

advancement direction? 

The block-cave long-term production schedule must: 

� Determine the best advancement direction.  

� Determine the order, time, and tonnage of extraction of material from 

drawpoints over the mine life that maximizes the net present value (NPV) of 

the operation. 

� Determine the long-term production schedule for a block-cave mine at 

different levels of resolutions: (i) cluster level, (ii) drawpoint level, and (iii) 

drawpoint-and-slice level. 

� Generate a robust practical near-optimal schedule in a reasonable amount of 

CPU time using a multi-stage approach incorporating the models at different 

levels of resolutions. 

In this research, the block-cave long-term production scheduling problem is 

studied based on the following assumptions: 

� The ore-body is represented by a geological block model, which is a three-

dimensional array of rectangular or cubical blocks.  

� The column of rock above each drawpoint, which is referred to as a draw 

column, is divided into slices which match the vertical spacing of the 

geological block model. The slices are stored in a slice file.  

� The draw columns, which are vertical, are created based on the block model.  
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� Numerical data are used to represent each attribute of the ore-body, such as 

tonnage, density, grade of elements, elevation, percentage of dilution, and 

economic data for each slice. 

� It is assumed that the physical layout of the production level is offset 

herringbone (Brown, 2003).  

� The model is used for multi-period optimization.  

� There is no material mixing between blocks as a function of draw, meaning 

that the source model is assumed to be static over time.  

� The dilution is taken into account in the slice-file, which is the input into the 

production scheduling optimization model.  

� The draw columns are aggregated by being grouped into clusters based on 

similarities between their physical location, average grade, and tonnage. 

� The portion scheduled to be extracted from each cluster is assumed to be taken 

from all the drawpoints, based on the ratio of each draw column’s tonnage in 

the cluster (Pourrahimian et al., 2012a).  

Figure  1.1 illustrates the scheduling of a block-cave mine containing D draw 

columns. Each draw column d is made up of Nsd slices. The material in each draw 

column is scheduled over T periods respecting the constraints associated with 

mining operation and geomechanical conditions. The parameters tont and gt 

represent the amount of material scheduled to be extracted and average grade of 

material scheduled in each period, respectively. The indices indicate the periods. 

The amount of tont and gt must be computed so that (a) all constraints are 

satisfied, and (b) the NPV is maximized.  If there are multiple mines, the same 

concept is applied. For multiple mines, the value of the discounted cash flow 

(DCF) is obtained from all mines for each period. For instance, if there are four 

mines, the value of the DCF for period t is equal to the summation of the DCF 

values for four mines in period t.  
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The long-term production schedules to be developed are subject to a variety of 

technical and physical constraints. The constraints control the development rate, 

vertical mining rate (production rate per drawpoint), lateral mining rate (rate of 

opening new drawpoints), mining capacity, maximum number of active 

drawpoints, cave draw strategies, and advancement direction. 

 

 
 

Figure  1.1. Schematic representation of the problem definition  
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1.3 Summary of Literature Review 

Using mathematical programming optimization with exact solution methods to 

solve the long-term production planning problem has proved to be robust and 

results in answers within known limits of optimality. As the solution gets closer to 

optimality, it leads to production schedules that generate higher NPV than those 

obtained from heuristic optimization methods. This has led to extensive research 

on the application of mathematical programming models to the long-term 

production planning problem. When these models are applied to the long-term 

production planning problem, they result in large-scale optimization problems 

with numerous binary and continuous variables which become difficult to solve 

with the current state of hardware and software and may have lengthy solution 

times. 

The majority of the scheduling publications to date have been concerned with 

open-pit mining applications. Underground mining is more complex in nature 

than surface mining (Kuchta et al., 2004). Underground mining is less flexible 

than surface mining due to the geotechnical, equipment, and space constraints 

(Topal, 2008). As a result, many of the scheduling concepts and algorithms 

developed for surface mining have found their way into underground applications. 

Current practice in underground mine scheduling has tended toward the use of 

simulation and heuristic software to determine feasible rather than optimal 

schedules. A compromise between schedule quality and problem size has forced 

the use of mine design and planning models which incorporate the essential 

characteristics of the mining system while remaining mathematically tractable. 

Different types of scheduling methods have been applied to underground mine 

scheduling. Production scheduling algorithms and formulations in literature can 

be divided into two main research areas: 1) heuristic methods and 2) exact 

solution methods for optimization. In addition to these categories, other methods 

such as queuing theory (Su, 1986; Huang and Kumar, 1994), network analysis 

(Russell, 1987; Brazil et al., 2000; Brazil et al., 2003), and dynamic programming 
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(Sherer and Gentry, 1982; Muge et al., 1992) have been used to schedule 

production and/or material transport.  

The mathematical programming models that have been used for underground 

mine production scheduling include: linear programming (LP), mixed-integer 

programming (MIP), mixed-integer linear programming (MILP), goal 

programming (GP), and quadratic programming (QP) (Song, 1989; Chanda, 1990; 

Trout, 1995; Winkler, 1998b; Guest et al., 2000; Carlyle and Eaves, 2001; Rubio, 

2002; Rahal et al., 2003; Smith et al., 2003; Diering, 2004; Newman and Kuchta, 

2007; Rahal, 2008; Weintraub et al., 2008; Diering, 2012; Parkinson, 2012; 

Pourrahimian et al., 2012a; Pourrahimian et al., 2012c). Most of these methods 

are faced with the practical implementation due to numerous constraints and size 

of the optimization problem. Therefore, various methods of aggregation have 

been used to reduce the number of integer variables that are required to formulate 

the mine planning problem with MILP techniques (Epstein et al., 2003; Newman 

and Kuchta, 2007; Weintraub et al., 2008; Askari-Nasab et al., 2011; Tabesh and 

Askari-Nasab, 2011; Pourrahimian et al., 2012a).  

In a block-caving method, a production scheduling methodology that is based on a 

limited number of influential parameters will lead to optimistic production 

schedules. In addition, the geotechnical behavior of the rock mass must be 

considered for production scheduling. Currently, production targets are the result 

of production schedules computed with mine planning parameters that do not 

evolve as a function of the operational performance, and are not linked to the 

geotechnical behavior of rock mass. Also, relying only on manual planning 

methods or computer software that is based on heuristic algorithms will lead to 

mine schedules that do not represent optimal global solution. 

The limitations in the current production scheduling optimization in block caving 

are: (i) limitations in solving large-scale problems. These come about as a result 

of significant computer overhead, in terms of memory and speed, required to 

solve the large-scale problems; (ii) treatment of stochastic variables such as grade, 
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commodity price, and production cost as deterministic processes. This can 

generate suboptimal results; (iii) trial-and-error process to find the mining start 

point and advancement direction; (iv) integration of fewer geotechnical 

constraints into real-scale production scheduling. These limitations can affect the 

viability as well as other aspects of mining projects, emphasizing the need for 

optimization tools that take into consideration these deficiencies. Consequently, it 

is important that robust models are developed to address these challenges.  

The lack of a mathematical block-cave production schedule model for long-term 

production scheduling that takes more number of detail constraints into account 

with the ability to find the best starting point and advancement direction of 

mining, is worrisome. This research will introduce a MILP mine scheduling 

framework for block-caving in which from the mentioned limitations, solving a 

large-scale problem in a reasonable CPU time, the mining starting point and 

advancement direction will be addressed to generate a near-optimal production 

schedule with higher NPV compared to heuristic methods.  

1.4 Objective of the Study 

The objective of this study is to develop, implement, and verify a theoretical 

optimization framework for block-cave long-term production scheduling, 

whereby a mineral is extracted and prepared at a desired market specification, 

with the maximum economic return measured by NPV, and within acceptable 

technical and operational constraints.  

The resultant methodology generates practical near-optimal production schedules 

that honor the following operational constraints: the development rate, vertical 

mining rate (production rate per drawpoint), lateral mining rate (rate of opening 

new drawpoints), mining capacity, maximum number of active drawpoints, cave 

draw strategies, and advancement direction. 

To achieve the objectives, this work includes the development and testing of a 

theoretical and conceptual framework using mixed-integer linear mathematical 

programming that focuses on: 
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� Maximizing the NPV of the mining operations considering the effect of 

technical and operational conditions on mine-production schedules. 

� Developing techniques and methodologies that can generate strategic 

schedules for large block-cave projects.  

� Developing computer code and tools that implement the formulated model for 

block-cave operations. 

� Developing techniques that can generate near-optimal realistic mine plans in a 

reasonable amount of CPU time that has practical merit and is accepted as an 

implementable mine plan by practitioners and end-users.  

� Evaluating the generated results in terms of mining-practice feasibility and 

optimality of the solution on large-scale real-world problems.  

1.5 Context and Scope of Work 

The study addresses the development of a mixed-integer programming model for 

long-term production scheduling in a block-caving operation in the presence of 

operational and geomechanical constraints. Meanwhile, the approach in which 

tonnages are depleted from the draw columns is scalable from long-term to short-

term applications. The algorithm’s objective is to maximize the NPV of block-

caving operations subject to geological, operating, and marketing requirements 

and constraints. A comprehensive problem definition and mathematical modeling 

are carried out to define and develop the MILP models, which comply with the 

objectives of the study.  

It should be noted that the study will have limitations due to the assumptions and 

methodologies incorporated.  

� Gemcom’s  GEMS and PCBC (Gemcom Software International, 2012) are 

used to build geologic and economic block models, assigning the drawpoint 

locations, converting the geological and grade information from being block-



Chapter 1                                                                                                         Introduction 
 

12 
 

model-based to drawpoint-based, computing drawpoint reserves, and creating 

slice files. 

� A production schedule for a block-cave mine is generated using developed 

MILP models. 

It is assumed that data from the geologic block models are deterministic; no 

attribute uncertainties will be considered. Another assumption is that the size of 

the layout is fixed.  

The input data into the long-term production scheduler, such as geological block 

model, grades, costs, prices, recoveries, and practical mining constraints, are 

based on the best point estimates available at the time of optimization. Any 

change in the input data requires a re-optimization of the production schedule 

with the new input parameters. This is aligned with the mining industry practice 

of updating yearly, quarterly, monthly, and weekly mine plans, as new data 

become available and uncertainty is reduced over time. In other words, the 

limitation of this approach is similar to any deterministic model in capturing 

uncertainty. Detail parameters such as drilling, blasting, and ventilation are not 

considered.  

1.6 Research Methodology 

The main motivation for conducting this research is to improve long-term block-

cave production schedules with a focus on operational constraints using a MILP 

mine-planning framework. The MILP is suitable for scheduling mine production 

because it is a well known operations research technique that exploits the 

strengths of modern linear programming algorithms while allowing the 

representation of production decisions (yes/no) as binary values. The objective is 

to maximize the expected NPV. The first part of this study involves a thorough 

literature survey on block-cave mining method, mine-production scheduling 

optimization, including surface and underground mining methods, and clustering 

algorithms. 



Chapter 1                                                                                                         Introduction 
 

13 
 

The following is a summary of the research tasks that must be completed to 

achieve the study’s objectives: 

� Propose and develop a theoretical framework using mathematical 

programming, specifically MILP, for production scheduling of block-cave 

mines without considering a flow model for the material. 

� Test, calibrate and verify the formulations and analyze the results in relation to 

the expected and inherent behavior of the theoretical and practical aspects of 

the formulations. 

� Implement these formulations for block-cave-mine case studies to generate 

life-of-mine production schedules. For large mines, clustering algorithms will 

be used to combine draw columns to decrease both the number of variables in 

the model and the solution time. 

� Assess the results of the case studies in terms of feasibility from a mining-

practice point of view. Also, test the methodology to confirm that the results 

are within an acceptable range of the theoretical optimum and acceptable CPU 

runtime to be considered practical from the end-users’ point of view.  

� Quantify the impact of the use of the MILP formulations and the developed 

workflow on the block-caving operation with respect to NPV. 

� Provide complete documentation on the workflow and parameter calibration. 

Appropriate mining concepts, and mathematical and numerical models were 

formulated to define the inputs and outputs of the MILP mine-planning 

framework. The research focuses on developing, analyzing and implementing a 

theoretical framework to address the long-tem production scheduling problem of 

block-cave mines.  

Figure  1.2 illustrates a summary of the research methodology. All stages before 

scheduling, from creating a block model to converting slice file, are done using 

GEMS and PCBC (Gemcom Software International, 2012). After creating the 
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slice file, all the optimization steps are done using our developed software for 

drawpoint scheduling in block-caving (DSBC). The separated steps based on each 

software include: 

� GEMS and PCBC 

1. Creating a block model using GEMS 

2. Importing drawpoints data such as coordinates, dip, and azimuth 

3. Creating a slice file using PCBC 

4. Calculating the best height of draw (BHOD) 

� DSBC 

1. Importing the slice file, the BHOD file, and coordinates of drawpoints in 

DSBC 

2. Creating all required databases and sets to use in the developed MILP 

models 

3. Clustering the draw columns based on the similarity of the draw column’s 

tonnage, average grade, and physical location 

4. Defining the scheduling parameters 

5. Creating an objective function and constraints for each model 

6. Solving the problem using one of the methods: either single-step or multi-

step 

7. Discussing the results 

The first step is to create a block model, using GEMS, to provide a quantitative 

description of the rockmass, including and surrounding the cave zone. Then, 

drawpoint locations are defined and PCBC is used to convert block-model data 

into drawpoint-based data. Afterwards, the slices are constructed for each 

drawpoint. These slices represent the draw column above each drawpoint before 

any extraction begins. The best height of draw (BHOD) for each draw column is 

estimated. The BHOD is the height that produces the best economic value. 
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Figure  1.2. Summary of research methodology 
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Usually, it is not discounted with time (Diering and Villa, 2007). Afterwards, a 

block cave mine’s production schedule can be optimized using the MILP 

formulations. There are two different approaches for production schedule 

optimization: single-step and multi-step.  

After importing the output of the PCBC in the DSBC, the BHOD is applied to the 

original draw columns and the final height of draw is obtained for each draw 

column. It must be mentioned that, the BHOD can also be calculated by the MILP 

models. For this purpose the obtained BHOD from the PCBC is not applied to the 

original draw columns and optimization is done using the original draw columns.  

Afterwards, slices within the same draw column are grouped and the total 

tonnage, draw column economic value, and average weighted grade are calculated 

for each draw column to use at the drawpoint level model. Then, all required sets, 

and the precedence and database are created. A MATLAB (2011) application is 

used as the programming platform to define the MILP model. A 

TOMLAB/CPLEX (Holmstrom, 2011) solver, which uses a branch-and-cut 

optimization algorithm, is employed to solve the MILP problem. This algorithm is 

a hybrid of branch-and-bound and cutting-plane methods (Horst and Hoang, 1996; 

Wolsey, 1998). The user sets an optimization termination criterion in CPLEX 

known as the gap tolerance (EPGAP). The EPGAP, which is a measure of 

optimality, sets an absolute tolerance on the gap between the best integer 

objective and the objective of the best node remaining in the branch-and-cut 

algorithm. It instructs CPLEX to terminate once a feasible integer solution within 

the set EPGAP has been found. As the solution gets closer to optimality, it leads 

to production schedules that generate a higher NPV than those obtained from 

heuristic optimization methods. 

In the single-step method, which is better for use with small mines, the problem 

can be solved separately, at different levels of resolution. To solve the problem at 

the cluster-level, the drawpoints are first grouped into clusters based on 

similarities between their physical location and tonnage and average grade of 

draw column above each drawpoint. For this purpose, the planner divides the 
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mine into phases based on advancement directions. Figure  1.3a shows phases and 

their boundaries for west to east (WE) and east to west (EW) mining directions.  

 

Figure  1.3. Proposed clustering steps for block cave in west to east (WE) or vice versa 
(EW) with dots representing individual drawpoints 

Then, the draw columns within each phase are aggregated into practical 

scheduling units, using modified hierarchical clustering algorithms based on an 

algorithm presented by Tabesh and Askari-Nasab (2011) (see Figure  1.3b). 

Similar to drawpoints, each cluster has coordinates representing the center of the 

cluster and its coordinates. We assume that the portion scheduled to be extracted 

from each cluster is taken from all the drawpoints, based on the ratio of each draw 

column’s tonnage in the cluster (Pourrahimian et al., 2012a). Then, using the 

MILP formulation at the cluster level, the optimal life-of-mine multi-period 

block-cave production schedule is generated for different advancement directions. 

The number of practical directions that we can use is limited based on 

geotechnical constraint. The direction with the maximum NPV is chosen as the 

mining direction. This is the strategic yearly production schedule with the 

objective of NPV maximization. The strategic plan honors the mining capacity 

and uniform feed to the processing plant.  

To solve the problem at the drawpoint level, the related MILP formulation is used 

and the optimal long-term block-cave production schedule at the drawpoint level 
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is generated for different advancement directions. The direction with the 

maximum NPV is chosen as the mining direction. At the drawpoint-and-slice 

level, the related MILP formulation can be used to generate the optimal medium-

term plan at the drawpoint level including slices. The time horizon for this 

detailed 3D model could vary as a subset of the time horizons chosen in the 

drawpoint level or the life of the mine. It should be mentioned that at the cluster 

and drawpoint level formulations, the precedence between clusters or drawpoints 

is controlled in a horizontal direction, but at the drawpoint-and-slice level 

formulation, the precedence between drawpoints and slices is controlled in 

horizontal and vertical directions, respectively. 

To overcome the size problem of mathematical programming models and to 

generate a robust practical near-optimal schedule, the multi-step method for long-

term production scheduling of block caving is used. After clustering, the problem 

is solved using the related MILP formulation at the cluster level for different 

possible advancement directions based on geotechnical constraints. Then, 

according to the value of the NPV and the practicality of the schedule, the best 

advancement direction is chosen among the assessed directions. The problem is 

only solved for the best direction at the two other levels of resolution. The 

solution of the cluster level is used to eliminate the variables to reduce the 

computational time at the drawpoint-level model. After solving the drawpoint-

level model, the solution is used to eliminate the variables at the drawpoint-and-

slice level. The time horizon for this detailed 3D model could vary as a subset of 

the time horizons chosen in the drawpoint level or life-of-the-mine. 

In general, the development and implementation of the MILP optimization models 

framework was undertaken in three major stages. The first stage involved 

introducing the MILP model and how it can be applied for mine production 

scheduling (Pourrahimian and Askari-Nasab, 2009a; Pourrahimian and Askari-

Nasab, 2009b; Pourrahimian et al., 2009c; Pourrahimian and Askari-Nasab, 

2010a; Pourrahimian and Askari-Nasab, 2010b). The second stage included 
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extending the MILP models for different level of resolutions (Pourrahimian and 

Askari-Nasab, 2011; Pourrahimian et al., 2012a; Pourrahimian et al., 2012c).  

Finally, an efficient form of the MILP models was deployed. Based on the size of 

the mine, production scheduling can be achieved by two methods: single-step or 

multi-step (Pourrahimian et al., 2012c). These approaches were used to facilitate 

continuous feedback from the research community and industry experts in an 

effort to improve the model. 

1.7 Scientific Contributions and Industrial Significance of the Research 

The main scientific contribution of this research on the body of knowledge is the 

development, implementation, and verification of a theoretical framework for 

long-term production schedule optimization of block-cave mines using MILP. 

This research directly contributes to creating new knowledge, understanding, and 

innovative technologies that are required to generate near-optimal life-of-mine 

production schedules for block-cave mining operations.  

The proposed formulation and methodology developed offers the following 

significant improvements over the previous research in the context of 

mathematical programming models for block-cave production scheduling: 

� Proposition of three MILP production scheduling models at three levels of 

detailed resolution. 

� Consideration of a multistage solution methodology using the three above-

mentioned MILP models to generate a practical block-cave schedule in a 

reasonable amount of CPU runtime. 

� Consideration of a multistage solution methodology using the three above-

mentioned MILP models to generate a practical block-cave schedule in a 

reasonable CPU runtime.  

� Proposition of using a hierarchical clustering algorithm based on the cave 

advancement direction to aggregate drawpoints into selective mining-units of 
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scheduling. The contribution of drawpoint aggregation is twofold: (a) it 

generates a practical mining schedule that follows a selective mining-unit, and 

(b) reduces the number of variables, especially binary variables in the MILP 

formulation, to make it computationally tractable.  

� Introduction of the concept of different cave advancement directions to find 

the best single operation direction or combination thereof, and the best starting 

location. Since the caving industry is now moving towards the next generation 

of caving geometries and scenarios, super caves, this concept will be useful. 

The main industrial contribution of this research includes development and testing 

of a prototype open-source software application with the graphical user interface, 

DSBC. The prototype software contributes to transferring knowledge and 

optimization technology developed in this research to practitioners and end-users 

in the field of block-cave production scheduling.  

DSBC allows block-cave mine planners to generate practical near-optimal life-of-

mine production schedules while controlling: 

1. Mining capacity 

2. Draw rate 

3. Grade blending 

4. Continuous mining 

5. Reserves 

6. Mining precedence 

7. Maximum number of active drawpoints 

8. Number of new drawpoints in each period 
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1.8 Organization of Thesis 

Chapter 1 is a general overview of the research. It discusses the background of the 

study, followed by the problem statement, objectives, context, scope, proposed 

methodology and contributions of the research. 

Chapter 2, the literature review, provides an overview of production scheduling in 

mining operations. It presents the difference between production scheduling in 

surface and underground operations. It provides background about the block-cave 

mining system, as well as planning methodologies used in block caving. 

Clustering algorithms and their applications in mine planning are also highlighted. 

The chapter concludes with the rationale for this PhD research. 

Chapter 3 contains the theoretical framework for the MILP formulations for 

block-cave production-scheduling optimization. It contains the mixed integer 

linear programming (MILP) formulations for three levels of resolution: (i) cluster 

level, (ii) drawpoint level, and (iii) drawpoint-and-slice level. This chapter 

describes how the production models can be used in practice. To overcome the 

size problem of mathematical programming models and to generate a robust, 

practical, near-optimal schedule, a clustering method for long-term production 

scheduling of block caving is presented. The production scheduler aims to 

maximize the net present value of the mining operation while the mine planner 

has control over the development rate, vertical mining rate, lateral mining rate, 

mining capacity, maximum number of active drawpoints, and advancement 

direction. To support a given production target, the production scheduler defines 

the opening and closing time for each drawpoint and cluster, the draw rate from 

each drawpoint and cluster, the number of new drawpoints and clusters that need 

to be constructed, and the sequence of extraction from the drawpoints and 

clusters. 

Chapter 4 discusses the mixed-integer linear programming (MILP) models’ 

implementation. The chapter describes the numerical modeling of the MILP 

models’ different components and how they can be set in a MATLAB 
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(MathWorksInc, 2011) programming environment for a TOMLAB/CPLEX 

optimization solver (Holmstrom, 2011). This includes the numerical modeling of 

the objective function and constraints. The chapter concludes with an elaboration 

on techniques for implementing an efficient MILP model framework.  

Chapter 5 presents experimentation with the MILP model framework and DSBC 

software. This includes case studies and verification of the models. The models 

for different levels of the resolution cluster level, drawpoint level, and drawpoint-

and-slice level are discussed separately. A modified hierarchical clustering 

algorithm based on the algorithm presented by Tabesh and Askari-Nasab (2011) 

for long-term production scheduling of block caving is applied to the data. A 

multi-step case study is carried out to verify the models and generate a near-

optimal realistic mine plan in a reasonable amount of CPU time.  

Chapter 6, the last chapter, contains the thesis summary and concluding 

statements. The benefits and contributions of this research are highlighted, as well 

as recommendations for future work in integrated mine planning and production 

scheduling. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 
 

Chapter 2 provides an overview of production scheduling in mining operations. It 
presents the difference between production scheduling in surface and 
underground operations. It provides background about the block-cave mining 
system, as well as planning methodologies used in block caving. Clustering 
algorithms and their applications in mine planning are also highlighted. The 
chapter concludes with the rationale for this PhD research. 
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2.1 Introduction 

The economics of today’s mining industry are such that major mining companies 

are increasing the use of massive mining methods. Of the methods available, 

caving mines are favored because of their low cost and high production rates. 

Caving is most often applied to low-grade, massive deposits. In this method, the 

full block or an approximately equi-dimensional block is fully undercut to initiate 

caving. The undercut is drilled and blasted progressively and some broken ore is 

withdrawn to create a void into which initial caving of the overlying material can 

take place. As material is extracted from drawpoints located on the production 

level, the caving propagates upwards throughout the ore-body until the overlying 

rock also caves and surface subsidence occurs. The area required to establish a 

cave depends on the strength of the rock mass, but the lateral extend of the ore-

body must be large enough to insure that a cave can be established (Julin, 1992). 

In addition to the size and shape of the deposit, the rock mass characteristics must 

be considered. The deposit should be neither very soft nor extremely tough (Tobie 

and Julin, 1982). The current trend in caving is moving toward harder and tougher 

ore deposits, as experts have recognized that caving can be initiated in harder rock 

if it has a suitable structure (Laubscher, 1994). The caving industry is now 

moving towards the next generation of caving geometries and scenarios: super 

caves (Chitombo, 2010). Based on the size of broken material, different handling 

systems can be used. For fine ore fragmentation, the full gravity system (Grizzly) 

is most suitable. For somewhat coarse material, a slusher system should be 

implemented. For coarse material, the Load-Haul-Dump (LHD) system might be 

the best option.  Figure  2.1 shows a typical caving layout.   

 Caving methods have become the underground bulk mining methods of choice, a 

trend that is expected to continue into the foreseeable future. One of these 

methods, block caving, has been shown to be promising and has gained popularity 

in the last years due to its low operating cost and high productivity. The 

conceptual and practical definition of block caving as stated by Laubscher (1994) 

is that “cave mining refers to all mining operations in which the ore-body caves 
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naturally after undercutting its base. The caved material is recovered using 

drawpoints.” Some of the advantages of this method include low cost, centralized 

production, simple ventilation control, and high production rates. 

 

Figure  2.1. Isometric view of a caving operation at Henderson mine (Doepken, 1982) 

Laubscher (1994) identified 25 parameters that should be considered before the 

implementation of any caving operation. The following parameters are common 

to all cave mining methods: capability, fragmentation, production level layout, 

draw-zone spacing, draw control, dilution entry, undercutting sequence, and 

support requirements. 

Caving has been used successfully for mining of a wide range of deposits such as 

porphyry copper, molybdenite, diamond, asbestos, nickel, and magnetite (De 

Wolfe, 1981; Guest et al., 2000). The first block-caving operation recognized as 

such was the Pewabic mine, Menominee Range, Michigan (Peele, 1941). The 

only similarity to present-day operations was the ore handling.  The production 

level was conditioned as a room and pillar mine in which the pillars were reduced 

in size to induce the caving. Since 1950, De Beers has used block-cave methods 
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for its operations in South Africa (Owen and Guest, 1994). Not all methods 

introduced at the De Beers operations were successfully initiated, and often plans 

had to be reviewed and modified according to the mine’s performance. 

Mechanized panel caving was introduced at the Premier diamond mine in 1990 

(Barlett, 1992). The Henderson mine was the first block-cave operation to 

introduce fully mechanized equipment (Rech et al., 2000). The El Teniente mine 

first used LHDs in the early 1980s (Chacon et al., 2004) and introduced a novel 

way of designing the production level layout that is now known as the El Teniente 

layout (Rojas et al., 2000). 

Even though the technology and methods applied in block caving have evolved 

dramatically over the years, concepts for mine planning have not evolved along 

the same path. Mine planning and production scheduling for any mining system 

have an enormous effect on the operation’s economics. In recent years, much 

attention has been given to understanding the principles of gravity flow and rock 

mechanics, but without considering mine planning as an important part of the 

mining system. The caving methods present many advantages, such as low cost, 

centralized production, simple ventilation control, high production rate, and 

increased safety for production workers (Julin and Tobie, 1973; Tobie and Julin, 

1982; Owen and Guest, 1994). However, the successful application of this method 

depends not just on its advantages, but on correctly designing the production 

level, and establishing an accurate and well-organized draw-control system 

(Butcher, 1999).  

2.2 Caving Production System 

Block caving is a mining method that relies on natural processes for its success. 

Therefore, it requires more detailed geotechnical investigations of the ore-body 

than do other methods in which conventional drilling and blasting are employed 

as part of the mine production (Rubio, 2006). In the case of caving, the draw 

control is concerned with extracting ore in such a way as to achieve production 

targets while minimizing waste entry, and preventing the transfer of stress onto 

mine workings. It is important to ensure that this draw management system is in 
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place before production begins, to prevent resource loss due to production 

pressures during cave initiation (Pretorius and Ngidi, 2008).   

The physical layout of the production level is critical to the success of a caving 

operation. Therefore, the first consideration in developing a caving draw-control 

system is the operation’s physical design. Among the different existing panel 

layouts in active use  at caving operations, the Herringbone and El Teniente 

layouts appear to be preferred designs, as they are used at more than 90% of 

current operations (Flores et al., 2004).  

Undercutting is also one of the most important aspects of caving operations, as it 

initiates caving and reduces stresses (Laubscher, 1994). The speed of the undercut 

advance is important and the yearly cave line must move at a reasonable velocity 

(De Wolfe, 1981). The magnitude of stress-induced damage on the production 

level can be controlled with the speed of the undercut (Butcher, 1999). According 

to Brown (2003), there are several methods by which the undercut may be 

advanced across a panel cave: 

 Henderson “Just-In Time” undercutting: a method in which the drawbells are 

blasted from the undercut level just before the undercut is fired. 

 Post-undercutting: undercut drilling and blasting takes place after the 

production level has been developed. 

 Pre-undercutting: no development or construction takes place on the 

production level before the undercut has been blasted. 

 Advance undercutting: the production level is developed in advance of the 

blasting of the undercut. This method was introduced to reduce the 

drawpoints’ exposure to the abutment stress zones, which were induced as a 

result of the undercutting process. 

Figure  2.2 illustrates pre-undercutting and advance undercutting methods.  
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Figure  2.2. Undercutting methods (Barraza and Crorkan, 2000) 

Butcher (1999) recommended five guidelines to reduce damage to the production 

level in caving operations: 

 Use advanced undercutting where possible. 

 Minimize horizontal irregularities in the undercut front. 

 Ensure that the undercut advance rate is high enough to de-stress the 

production level. 

 Place the undercut level as high above the production level as practically 

possible.  

 Advance undercutting from the weakest ground toward the strongest to ensure 

that cave propagation occurs. 

2.3 Geotechnical Parameters Affecting the Planning of the Block Cave 

The properties of rock mass have a significant impact on mine design and 

production. The ability to represent the variability of the geotechnical parameters 

throughout the ore-body results in decreasing the risk of the mining methods as 
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well as increasing the ability to forecast production (Summers, 2000). The main 

geotechnical parameters affecting the planning of the block cave can be grouped 

into four categories: (i) cavability, (ii) stress, (iii) fragmentation, and (iv) flow and 

mixing (Rahal, 2008). 

Rubio (2004b) proposed an illustrated representation of the link between the 

geotechnical and the mine planning parameters of block caving. He introduced 

four fundamental models to determine mine-planning parameters such as draw 

rate, undercut sequence, development rate, tonnage, draw method, and production 

targets. These models are (i) fragmentation, (ii) geomechanical, (iii) geological, 

and (iv) reconciliation.  

The first task in block-cave planning is to determine the cavability of an ore-body. 

For a good caving action, generally the ore body should have fractures in three 

orientations (Julin, 1992). Cavability, in the context of draw control, is primarily 

concerned with balancing caving rates and production. Production should be high 

enough to prevent re-compaction of the broken material in the cave while 

allowing the cave to propagate upward through the rock mass (Julin and Tobie, 

1973).  The effect of stress on draw horizon stability must be reduced by mine 

planning. Stress-induced damage is normally proportional to a number of mining 

related factors, such as depth below surface, undercut height, distance between the 

undercut and draw horizon, rock mass strength, and pillar size on the extraction 

level (Butcher, 1999). Fragmentation affects drawpoint productivity and the 

ingress of diluting materials (Laubscher, 1994; Rubio et al., 2004b). Drawpoint 

productivity is affected by fragmentation because the frequency and severity of 

“hang-ups” dictate the production rate (Rahal, 2008). An understanding of broken 

ores is of particular importance in caving operations. Current research in flow and 

mixing falls into three categories: (i) numerical flow studies, (ii) physical 

modeling, and (iii) full-scale flow experiments (Heslop and Laubscher, 1981; 

Pretorius and Ngidi, 2008; Rahal, 2008; Van As and Van Hout, 2008). 



Chapter 2                                                                                                   Literature Review 
 

30 
 

2.4 Mine Production Scheduling 

Mining is the process of extracting a beneficial, naturally occurring resource from 

the earth. The historical assessment of mineral resource evaluations has 

demonstrated that project profitability is sensitive to mine-planning decisions 

(Askari-Nasab and Awuah-Offei, 2009; Newman et al., 2010). Production 

scheduling for any mining system has an enormous effect on the operation’s 

economics. As the mining industry is faced with more marginal resources, it is 

becoming essential to generate production schedules that will provide optimal 

operating strategies while meeting practical, technical, and environmental 

constraints (Burgher and Erickson, 1984; Dagdelen and Johnson, 1986; Chanda, 

1990). Some of the benefits expected from better production schedules include 

increased equipment utilization, optimum recovery of marginal ores, reduced 

costs, steady production rates, and consistent product quality (Dagdelen and 

Johnson, 1986; Chanda, 1990; Wooller, 1992; Chanda and Dagdelen, 1995; 

Winkler, 1996). 

The majority of the scheduling publications to date have been concerned with 

open-pit mining applications. Underground mining is more complex in nature 

than surface mining (Kuchta et al., 2004). Underground mining is less flexible 

than surface mining due to the geotechnical, equipment, and space constraints 

(Topal, 2008). As a result, many of the scheduling concepts and algorithms 

developed for surface mining have found their way into underground applications. 

There are three time horizons for production scheduling: long-, medium- and 

short-term. Long-term mine-production scheduling provides a strategic plan for 

mining operations, whereas medium-term mine-production scheduling provides a 

monthly operational scheme for mining while tracking the strategic plan. 

Medium-term schedules include more detailed information that allows for a more 

accurate design of ore extraction from a special area of the mine, or information 

that allows for necessary equipment substitution or the purchase of necessary 

equipment and machinery. The medium-term schedule is also divided into short-

term periods (Osanloo et al., 2008). A long-term production schedule contains 
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fewer details than a short-term plan. However, a long-term plan includes clear 

definitions related to mining reserves and the production sequence and production 

rate. 

A wide range of packages are available for mine scheduling, the majority of 

which are devoted to surface-mining operations. The development of software for 

underground operations is slower than that for surface mining.  Despite this slow 

uptake in underground applications, improvements in computing power and 

scheduling algorithms over the past few years have allowed planning engineers to 

develop models to schedule even complex mining systems (Alford et al., 2007; 

Caccetta, 2007). 

2.4.1 Open-Pit Production Scheduling 

For nearly 30 years, research in surface-mine scheduling has focused on 

developing the optimum ultimate pit-limit algorithm rather than solving for the 

optimum open-pit production sequence. The ultimate pit-limit method is relatively 

easy to solve, but it does not directly constrain production other than to impose 

limits on the pit slope. Since mining companies have been forced to account for a 

wider range of production constraints, different methods have been used to 

optimize mine production (Kim and Zhao, 1994). 

Recent production scheduling algorithms and formulations in literature have been 

developed along two main research areas: 1) heuristic methods and 2) exact 

solution methods for optimization (Askari-Nasab and Awuah-Offei, 2009). 

Most of the commercial software has been developed based on heuristic methods. 

Commercial mine-scheduling software such as XPAC Auto Scheduler 

(RungeLimited, 2009), Whittle (Gemcom Software International Inc., 2012), and 

NPV Scheduler (Datamine Corporate Limited, 2008) use heuristic methods to 

generate long-term production schedules. Heuristic methods iterate over different 

alternatives leading to the generation of the ultimate pit limit, with each 

alternative having a different discounted cash flow and, hence, different NPV. 

Due to this, the solution generated may be sub-optimal in terms of NPV. 
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Authors including Denby and Schofield (1994) and Askari-Nasab (2006) have 

conducted extensive research using artificial intelligence techniques to solve the 

problem of long-term production planning. Denby and Schofield (1995) used 

multi-objective optimization to deal with an ore-grade variance. Using genetic 

algorithms, they tried to maximize value and minimize risk in open-pit production 

planning. Askari-Nasab (2006) also developed and implemented an intelligence-

based theoretical framework for open-pit production planning. The drawback in 

applying these techniques is that the solution is not reproducible or optimal. 

In recent years, there has been an increase in the use of operations research 

techniques for scheduling problems. A variety of operations research, including 

linear programming (LP) and mixed-integer linear programming (MILP), has 

been applied to the mine-production scheduling problem. Newman et al. (2010) 

presented a comprehensive review of operations research in mine planning. Using 

different methods, they summarized authors’ attempts to develop methodologies 

to optimize production scheduling in underground and surface mines. 

Exact solution methods for optimization with mathematical programming models 

have proved to be robust in solving the long-term production planning problem. 

Using exact solution methods results in solutions within known limits of 

optimality. As the solution gets closer to optimality, it leads to production 

schedules that generate higher NPVs than those obtained from heuristic 

optimization methods.  

The pioneering work of Johnson (1969) used an LP model, which led to the 

mixed-integer programming (MIP) formulations by Gershon (1983) for the 

production scheduling problem. The LPs’ suitability for mine scheduling relies on 

the fact that non-linear functions can be approximated by a series of piecewise 

linear functions. In other words, it is often possible that under a weak assumption, 

integer programming problems be reformulated as an equivalent linear problem 

(Jordi and Curin, 1979; Smith, 1999). These characteristics have made it possible 

to use LP for optimizing ore blending (Chanda and Dagdelen, 1995), quality 
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control (Maitra et al., 1994), and economic optimization (Winkler and Griffin, 

1998). The classical LP formulation has two major shortcomings. The first is that 

only one objective function is permitted at a time (Chanda and Dagdelen, 1995). 

The second is that LP is unable to restrict variables to integer values. The first 

problem can be overcome by using goal programming (GP) to allow the use of 

multiple objectives during optimization. The second problem may be overcome 

by using MILP (Barbaro and Ramani, 1986). MILP mathematical optimization 

models have the capability to consider multiple ore processors and multiple 

elements during optimization. This flexibility of mathematical programming 

models results in production schedules generating significantly higher NPVs than 

those generated by other traditional methods (Askari-Nasab et al., 2011). When 

MILP models are applied, production schedules generate near theoretical optimal 

NPVs. MILP is an extension of LP in which all constraints remain linear but 

variables may be continuous or integer values. 

Various models based on MILP mathematical optimization have been used to 

solve the long-term open-pit scheduling problem (Caccetta and Hill, 2003; 

Ramazan and Dimitrakopoulos, 2004b; Dagdelen and Kawahata, 2007; Boland et 

al., 2009; Askari-Nasab et al., 2011). 

An integer programming formulation that was developed by Dagdelen and 

Johnson (1986) uses Lagrangian relaxation and subgradient optimization 

algorithms to solve the long-term production planning problem. Subsequent 

integer programming models developed by Akaike and Dagdelen (1999) and 

Caccetta and Hill (2003) use 4D-network relaxation and subgradient optimization, 

and branch-and-cut, respectively to solve the long-term  production planning 

optimization problem. These authors noted that implementation on large-scale 

problems or with dynamic cut-off grades was a challenge. 

MIP formulations developed by Ramazan and Dimitrakopoulos (2004a) attempted 

to reduce the number of binary variables and solution times by setting certain 

variables as binary and others as continuous. This resulted in partial mining of 
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blocks that have the same ore value affecting the generated NPV. Ramazan et al. 

(2005) and Ramazan (2007) developed an MIP model that used an aggregation 

method to reduce the number of integer variables in scheduling. This formulation 

was solved based on a fundamental tree algorithm and was used in scheduling a 

case with 38,457 blocks within the final pit limit. The problem was broken down 

into four push-backs based on the nested pit approach using Whittle (Gemcom 

Software International Inc., 2012) and formulated as separate MIP models. This 

may not guarantee a global optimum solution of the problem. Caccetta and Hill 

(2003) presented an MILP model and Boland et al. (2009) presented an LP 

approach to generate mine production schedules with block processing selectivity. 

However, they did not present enough information on the generated schedules to 

enable an assessment of the practicality of the solutions from a mining operation 

point of view. 

Recent research work by Askari-Nasab et al. (2011) on applying exact solution 

methods of optimization to the long-term production planning problem has led to 

the development of MILP models that use block-clustering techniques to address 

the problem of having a large number of decision variables. With a combination 

of their MILP models and a block clustering algorithm, Askari-Nasab et al. (2011) 

applied their models to a large-scale problem. The formulations use a combination 

of continuous and binary variables. The continuous variables control the portion 

of a block to be extracted in each period. Binary variables control the order of 

block extraction or precedence of mining cuts through a dependency-directed 

graph using a depth-first search algorithm. The concept of mining cuts using 

clustering techniques is reinforced as an option for solving MILP problems for 

large-scale deposits. The formulation was implemented on an iron-ore-mine 

intermediate scheduling case study over 12 periods in TOMLAB/CPLEX 

(Holmstrom, 2011) environment. This model does not consider multiple material 

types or waste disposal planning. 
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2.4.2 Underground Mines Production Scheduling 

The majority of the scheduling publications to date have been concerned with 

open-pit mining applications. Underground mining is more complex in nature 

than surface mining (Kuchta et al., 2004). As a result, the development of 

software for underground operations has been delayed and many of the scheduling 

concepts and algorithms developed for surface mining have found their way into 

underground mining. Underground mining methods are characterized by complex 

decision combinations, conflicting goals and interaction between production 

constraints. Current practice in underground-mine scheduling has tended toward 

using simulation and heuristic software to determine feasible, rather than optimal, 

schedules. A compromise between schedule quality and problem size has forced 

the use of mine design and planning models, which incorporate the essential 

characteristics of the mining system while remaining mathematically tractable. 

Different types of methods have been applied to underground mine scheduling. 

Similar to open-pit mines, production scheduling algorithms and formulations in 

literature can be divided into two main research areas: 1) heuristic methods and 2) 

exact solution methods for optimization.  

In addition to these categories, other methods such as queuing theory (Su, 1986; 

Huang and Kumar, 1994), network analysis (Russell, 1987; Brazil et al., 2000; 

Brazil et al., 2003), and dynamic programming (Sherer and Gentry, 1982; Muge 

et al., 1992) have been used to schedule production and/or material transport.  

Heuristic methods are generally used to generate a good solution in a reasonable 

amount of time. These methods are used when there is no known method to find 

an optimal solution under the given constraints. Despite shortcomings such as 

frequently required intervention, and the lack of a way to prove optimality, 

simulation and heuristics are able to handle non-linear relationships as part of the 

scheduling procedure. 

One of the earlier successful applications of simulation in underground mining 

was developed for room-and-pillar mining (Hanson and Selim, 1975). The model 



Chapter 2                                                                                                   Literature Review 
 

36 
 

was event-oriented, with all event times treated as stochastic variables. Mine 

simulation incorporated drilling, blasting, mucking and roof bolting into a system 

that reported equipment utilization, production tonnage, and the number of holes 

drilled. The authors made no claim that this system could be used to optimize the 

production system.  Maxwell (1978) used a simulation system to estimate mill-

feed grades given a predicted drawpoint production rate. This application 

highlighted the ability of simulation to address non-linear effects in the 

underground mining system. In this case, the flow of material in the cave was 

simulated based on scraper production from the finger raise. As in the previous 

example, this system made no claim that the schedule produced was optimal. 

Gerling and Helmz (1986) used the simulation to handle different components 

within the mining system. The proposed model used a series of sub-models to 

deal with the deposit reserves, the drift system, the development drifting 

operations, and the stoping operations. This integrated heuristic produced a 

schedule based on maximizing the NPV over the mine-life. The authors found that 

the heuristic sometimes produced schedules that were technically and 

operationally unrealistic. 

Gershon (1987) proposed that the sequence of mining that yields the largest NPV 

return is the one that should be chosen from a group of candidate schedules. He 

described two heuristic methods that were appropriate for surface and 

underground mining. The first of these was based on scheduling decisions 

regarding blending criteria, while the second was most appropriate for 

commodities that have difficult blending requirements. In the first method, the 

assumption is made that the best long-term schedule is one that allows the 

blending specifications to be met for the longest period time. The second method 

proposed that a block should be mined if it enables the extraction of additional 

material. Gershon concluded that the schedules produced with heuristic 

algorithms must only be regarded as a useful guide. 

Unlike surface mining, in underground mining, such as caving, the resource 

model changes with time. Because the draw history affects the current contents of 
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the cave by allowing the influx of waste or by eliminating sections of the reserves 

when insitu stresses collapse, production drifts. One of the leading candidates in 

the block-caving method is a simulation system called PCBC (Gemcom Software 

International, 2012).  Diering (2000) presented the principles behind the 

commercial tool PCBC to compute production schedules using several case 

studies with different draw methods. PCBC is a simulation tool to prepare and 

evaluate various production schedules. The program is capable of modeling the 

material mixing model using two mixing mechanisms: vertical mixing and 

horizontal mixing. Vertical mixing allows materials to migrate vertically at 

different rates in each draw column while horizontal mixing allows horizontal 

migration based on relative draw rates. The software simply simulates extraction 

from each active drawpoint on a period-by-period basis subject to various draw 

constraints. The developers of PCBC have also given PCBC the ability to solve 

incremental periods using linear and integer programming (Rubio and Diering, 

2004a). In PCBC, the mining sequence is controlled manually using the trial-and-

error process to find the mining start point and advancement direction. 

Consequently, it cannot yield an optimum solution for the problem. 

Mathematical models can provide a mathematically provable optimum schedule. 

The LP method has been used most extensively. Scheduling underground mining 

operations is primarily characterized by discrete decisions to mine blocks of ore, 

along with complex sequencing relationships between blocks. Since LP models 

cannot capture the discrete decisions required for scheduling, MIPs are generally 

the appropriate mathematical programming approach to scheduling. The 

advantage of using these methods for production scheduling is that they can 

provide a mathematically provable optimum schedule. These methods are able to 

approximate some non-linear systems, but they are not as flexible as simulation. 

In the MILP method, any feasible schedule produced has an associated gap that 

provides a measure of how far the feasible schedule is from its linear relaxation.  

This gap is based on the difference between the best node and best integer feasible 

value found within the branch-and-bound search tree. 
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The early sequencing models for underground operations use a combination of 

simulation and optimization. They use simulation to assess production schedules 

and linear programming to make decisions regarding the extracted ore (Newman 

et al., 2010). Chanda (1990) implemented an algorithm to write daily orders and 

developed the interface between mathematical programming and simulation by 

integrating the two into a short-term planning system for a continuous block cave. 

The objective function was defined to minimize the fluctuation in the average 

grade drawn between shifts. The production schedule given by the integer 

program was used as input to a simulation model that considered constraints such 

as production capacity. Winkler (1998b) described a production-scheduling model 

to determine the amount of ore to mine in each period from each production 

block. He used linear programming to solve a corresponding single-period model, 

and simulation to fix the current period’s decisions and optimize over the 

successive period. Song  (1989) also attempted to account for material movement 

within the panel by using simulation with mathematical programming. However, 

unlike Chanda (1990), he used simulation to determine the effect of undercut 

parameters, drawpoint spacing, caving probability, and drift stability on 

production. A MILP formulation was then developed using regression equations 

for the restrictions revealed within the simulation study. The resulting MILP 

optimized the draw by enforcing the geometrical and operational limitations 

which satisfy cavability and stability demands in the block cave. The author does 

not give any indication of solvable problem size or solution time. 

Trout  (1995) implemented the first attempt to optimize underground mine 

production schedules using integer programming. The objective was to maximize 

the NPV subjected to the constraints on stope sequencing, stope extraction and 

backfill quantities, equipment capacities, and production grade. He used binary 

variables to control the timing of extraction from or backfilling of a stope and 

used continuous variables to track the material extracted from or backfilled into a 

stope in a given period. The model was run over a 17-period horizon in which the 

last four periods were aggregated into durations that were three times longer than 
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the previous 13. Trout’s model ran out of memory, but it yielded a 25 percent 

improvement over the NPV generated by current operational policies. 

Guest et al. (2000) applied mathematical programming to long-term scheduling in 

block caving. In this case, the objective function was explicitly defined to 

maximize draw-control behavior. However, the author stated that the implicit 

objective was to optimize net present value (NPV). There are two problems with 

this approach. The first is that maximizing tonnage or mining reserves will not 

necessarily lead to maximum NPV. The second is that draw control is a planning 

constraint and not an objective function. The objective function in this case would 

be to maximize tonnage, minimize dilution, or maximize mine life.  

Carlyle and Eaves  (2001) presented a model that maximized revenue from 

Stillwater’s sublevel stoping platinum and palladium mine. They used integer 

variables to schedule the timing of various expansion-planning activities. There 

were three constraints in their model: sequencing of operations and stope 

preparation, production limits of stopes, and bounds on the change in crew size 

between periods. They obtained near-optimal solutions for a variety of scenarios 

over a 10-quarter time horizon (Newman et al., 2010). Smith et al. (2003) 

formulated a large-scale, time-dynamic, life-of-complex mixed-integer program 

production schedule to optimize lead/zinc cash flow based on a detailed life-of-

project production-scheduling study. The objective was to maximize NPV subject 

to operational constraints such as ore availability, mill capacity, mine-

infrastructure production capacity, grade limits, continuous production rules, and 

precedence relationship between production blocks. The authors were unable to 

solve all instances of their problem in a reasonable amount of time (Newman et 

al., 2010).  

Rubio (2002) developed a methodology that would enable mine planners to 

compute production schedules in block-cave mining. He proposed new production 

process integration and formulated two main planning concepts as potential goals 
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to optimize the long-term planning process, thereby maximizing NPV and mine 

life.  

Rahal et al. (2003; 2008) described a mixed-integer goal program. The model had 

the dual objectives of minimizing the deviation from the ideal draw. This 

algorithm assumes that the optimal draw strategy is known.  The authors 

developed life-of-mine draw profiles for notional scenarios and showed that by 

using the results from their integer program, they greatly reduced deviation from 

ideal drawpoint depletion rates while adhering to a production target. 

Diering (2004) presented a non-linear optimization method to minimize the 

deviation between a current draw profile and the target defined by the mine 

planner. He emphasized that this algorithm could also be used to link the short-

term plan with the long-term plan. The long-term plan is represented by a set of 

surfaces that are used as a target to be achieved based on the current extraction 

profile when running the short-term plans. Rubio and Diering (2004a) described 

the application of mathematical programming to formulate optimization problems 

in block-cave production planning. They formulated two main planning strategies: 

maximization of NPV and maximization of mine life. They used the operational 

constraints presented by Rubio (2002).  

Newman and Kuchta  (2007) formulated a multi-period mixed-integer program 

for iron ore production at Kiruna, Sweden. They designed a heuristic method 

based on solving a smaller and more tractable model. For this purpose, they 

aggregated periods and then solved the original model using information gained 

from the aggregated model. Weintraub et al. (2008) developed and used 

successfully MIP models for El Teniente, a large Chilean block-caving mine. 

They used a priori and a posteriori aggregation procedures to reduce the model 

size in their model. 

Parkinson  (2012) developed three integer programming models: Basic, Malkin, 

and 2Cone. All of the models share three basic constraints. The start-once 

constraint ensures that each drawpoint is opened once and only once. The global-
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capacity constraint ensures that the number of active drawpoints does not exceed 

the downstream-processing capacity. The last constraint, that the opened draw 

points must form a single, contiguous group, or cave, is the source of the model 

variations.  

2.5 Application of Clustering in Mine-Production Scheduling 

The applications of MILP models result in production schedules generating near 

theoretical optimal NPVs. In practice, formulating a real-size mine production 

planning problem by including all the blocks as integer variables will simply 

exceed the capacity of the current commercial mathematical optimization solvers.  

An efficient way of overcoming the large number of decision variables and 

constraints is by applying a clustering technique. Clustering can be referred to as 

the task of grouping similar entities together so that maximum intracluster 

similarity and intercluster dissimilarity are achieved. This can be modeled and 

solved as a mathematical programming problem, but will require more resources 

and time. Therefore, non-exact algorithms have been developed in the literature to 

solve these problems. These algorithms are usually implemented by defining a 

measure of similarity or dissimilarity among the objects. There are two main 

categories: partitional and hierarchical clustering. Partitional clustering is done by 

partitioning data objects into a number of groups. Hierachical clustering, on the 

other hand, is performed by creating a hierarchy of clusters. In comparison, 

hierarchical clustering creates better clusters, though more CPU time is required 

(Johnson, 1967; Feng et al., 2010; Tabesh and Askari-Nasab, 2011).  

Various methods of aggregation have been used to reduce the number of integer 

variables that are required to formulate the mine-planning problem with MILP 

techniques (Epstein et al., 2003; Newman and Kuchta, 2007; Weintraub et al., 

2008; Askari-Nasab et al., 2011; Tabesh and Askari-Nasab, 2011; Pourrahimian et 

al., 2012a).  

Epstein et al. (2003) used aggregation for underground block-sequencing 

operations and embeded it in an optimization-based heuristic. Newman and 
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Kuchta (2007) formulated a mixed-integer program to schedule iron-ore 

production over multiple time periods. To overcome the size problem, they 

designed a heuristic based on solving a smaller, more tractable model. In this 

model, they aggregated time periods and then solved the original model using 

information gained from the aggregated model. Askari-Nasab et al. (2011) 

developed and implemented a deterministic MILP formulation for a long-term 

large-scale open-pit production scheduling problem capable of solving real-size 

open-pit production optimization problems in a reasonable time frame. To reduce 

the number of binary variables in the formulation, the blocks within the same 

level or mining bench were grouped into clusters based on their attributes, spatial 

location, rock type, and grade distribution. Askari-Nasab et al. divided the major 

decision variables into two categories: continuous variables representing the 

portion of a block which is going to be extracted and processed in each period, 

and binary variables controlling the order of extraction of blocks or the 

precedence of mining-cuts through a dependency-directed graph. Tabesh and 

Askari-Nasab (2011) presented a two-stage clustering approach based on an 

agglomerative hierarchical algorithm and tabu search. Their algorithm aggregates 

blocks into selective mining units based on a similarity index which is defined 

based on rock types, ore grades, and distances between blocks. Weintraub et al. 

(2008) used a priori and a posteriori aggregation procedures to reduce the model 

size in their MIP models developed for El Teniente, a large Chilean block-caving 

mine. They divided the mine into sectors and sub-sectors. Each sector was divided 

into columns of extraction points which were composed of blocks, and these 

blocks were the basic units of extraction. The planning process considered a 25-

year horizon. Weintraub et al. used a priori and a posteriori methods to aggregate 

the blocks and columns, respectively. They reported that the percentage error in 

the value of the objective function for the original model with the disaggretion of 

the aggregate model was 3.62%. The execution time was reduced by 73.68%. The 

model dimension was reduced by 90%. 
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2.6 Rationale for PhD Research 

The economics of today’s mining industry are such that the major mining 

companies are increasing the use of massive mining methods. Among the mining 

methods available, caving methods are favored because of their low cost and high 

production rates. Caving methods have become the underground bulk mining 

methods of choice, a trend expected to continue in the foreseeable future. 

Scheduling a block-cave mine is a matter of finding the goal that better represents 

the strategic planning vision. The scheduling process is subject to mine design, 

geomechanical, operational, and environmental constraints. 

Although simulation and heuristics are able to handle non-linear relationships and 

effects as a part of the scheduling procedure, they cannot guarantee the optimal 

solution. Applying mathematical programming models such as LP and MILP with 

exact solution methods for optimization has proved to be robust. Solving these 

models with exact solution methods, results in solutions within known limits of 

optimality. As the solution gets closer to optimality, it results in production 

schedules that generate higher NPV than those obtained from heuristic 

optimization methods. The literature has shown that both surface and underground 

mining systems are adaptable to formulations as set of linear constraints. This has 

resulted in extensive research on the application of mathematical programming 

models to the long-term production planning problem. The inherent difficulty in 

applying these models to the long-term production planning problem is that they 

result in large-scale optimization problems containing many binary and 

continuous variables. These are difficult to solve with the current available 

computing software and hardware, and may require lengthy solution times.  

The literature review showed that in a block-caving method, a production 

scheduling methodology that is based on a limited number of influential 

parameters will lead to optimistic production schedules. In addition, the 

geotechnical behavior of the rockmass must be considered for production 

scheduling. Currently, production targets are the result of production schedules 
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computed with mine planning parameters that do not evolve as a function of the 

operational performance, and are not linked to the geotechnical behavior of rock 

mass. Also, relying only on manual planning methods or computer software that 

is based on heuristic algorithms will lead to mine schedules that are not the 

optimal global solution. 

The lack of a mathematical block-cave production scheduling model for long-

term production scheduling that takes more number of detail constraints into 

account with the ability to find the best starting point and advancement direction 

of mining, is worrisome. This research will introduce a MILP mine scheduling 

framework for block-caving which will determine the mining starting point, 

advancement direction, and generate a near-optimal production schedule with 

higher NPV compared to heuristic methods in a reasonable time. 

2.7 Summary and Conclusions  

A review of the relevant literature for this research has shown that production 

scheduling of any mining system has an enormous effect on the operation’s 

economics, and that deviations from the optimal mine plan can have a great 

impact on mine economics. Over the last 50 years, continuous attempts have been 

made to address the pit limit and production scheduling optimization problems. 

However, the literature on underground mining is more recent, partially because 

of the complicated nature of underground operations. The current practice in 

underground mine scheduling has tended toward the use of simulation and 

heuristic software to determine feasible rather than optimal draw schedules.  

This reliance on heuristic methods to find usable, rather than optimal schedules 

was necessitated by the great computational expense required to find a provable 

optimum. In other words, a compromise between schedule quality and problem 

size has forced the use of mine design and planning models which embody the 

essential characteristics of the mining system while remaining mathematically 

tractable. As a result, many types of scheduling methods have been applied to 

underground mine scheduling. A summary includes: (i) queuing theory; (ii) 
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network analysis; (iii) dynamic programming; (iv) simulation; (v) LP; (vi) MILP; 

and (vii) goal programming. 

The literature review showed that in a block-caving method, a production 

scheduling methodology that is based on a limited number of influential 

parameters will lead to optimistic production schedules. In addition, the 

geotechnical behavior of the rockmass must be considered for production 

scheduling. Also, relying only on manual planning methods or computer software 

that is based on heuristic algorithms will lead to mine schedules that are not the 

optimal global solution. 

The limitations in the current production scheduling optimization in block caving 

are: (i) limitations in solving large-scale problems. These come about as a result 

of significant computer overhead, in terms of memory and speed, required to 

solve the large-scale problems; (ii) treatment of stochastic variables such as grade, 

commodity price, and production cost as deterministic processes. This can 

generate suboptimal results; (iii) trial-and-error process to find the mining start 

point and advancement direction; (iv) integration of fewer geotechnical 

constraints into real-scale production scheduling. These limitations can affect the 

viability as well as other aspects of mining projects, emphasizing the need for 

optimization tools that take into consideration these deficiencies. Consequently, it 

is important that robust models are developed to address these challenges.  
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CHAPTER 3  

THEORETICAL FRAMEWORK: 
BLOCK-CAVE PRODUCTION SCHEDULING 

 

Chapter 3 contains the mixed integer linear programming (MILP) formulations 
for three levels of resolution: (i) cluster level, (ii) drawpoint level, and (iii) 
drawpoint-and-slice level. This chapter describes how the production models can 
be used in practice. To overcome the size problem of mathematical programming 
models and to generate a robust, practical, near-optimal schedule, a clustering 
method for long-term production scheduling of block caving is presented. The 
production scheduler aims to maximize the net present value of the mining 
operation while the mine planner has control over the development rate, vertical 
mining rate, lateral mining rate, mining capacity, maximum number of active 
drawpoints, and advancement direction. To support a given production target, the 
production scheduler defines the opening and closing time for each drawpoint 
and cluster, the draw rate from each drawpoint and cluster, the number of new 
drawpoints and clusters that need to be constructed, and the sequence of 
extraction from the drawpoints and clusters. 
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3.1 Introduction 

The goal of long-term mine production scheduling is to determine the mining 

sequence, which optimizes the company’s strategic objective while honoring the 

operational and geotechnical limitations over the mine life. There are a number of 

strategic objectives common in the industry. Usually, the target is to maximize the 

net present value (NPV) of mining operations within the existing economic, 

technical, and environmental constraints. However, other objectives such as cost 

minimization or reserve maximization could also be considered. The production 

schedule defines the management investment strategy. An optimal plan in mining 

projects will result in cost reduction, increasing equipment utilization, optimum 

recovery of marginal ores, steady production rates, and consistent product quality. 

This chapter describes steps in planning a block cave mine. Also, it focuses on the 

modified clustering method for block caving, formulating, and developing the 

MILP models for block-cave production-scheduling optimization. The production 

scheduler aims to maximize the mining operation’s NPV, while the mine planner 

has control over: (i) mining capacity, (ii) draw rate, (iii) mining precedence, (iv) 

maximum number of active drawpoints, (v) number of new drawpoints in each 

period, (vi) continuous mining, and (vii) total reserves. The production scheduler 

defines the opening and closing time of each drawpoint and cluster, the draw rate 

from each drawpoint and cluster, the number of new drawpoints and clusters that 

need to be constructed, and the sequence of extraction from the drawpoints and 

clusters to support a given production target. 

3.2 Planning a Block-Cave Mine 

Scheduling a block-cave mine is a matter of finding the goal that best represents 

the strategic planning vision subject to several mine design, geomechanical, 

operational, and environmental constraints. The production schedule is subject to 

a variety of physical and economic constraints. To compute this production 

schedule, many decisions need to be made with regard to accessibility and 

infrastructure, mining capacity, mining sequence, grade target, etc. Strategic 
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planning defines the project goal. Figure  3.1 shows the workflow that has to be 

followed to schedule a block-cave mine using the developed MILP models in this 

research. These steps include: 

1. Creating a block model using GEMS software (Gemcom Software 

International, 2012). 

2. Importing drawpoint data including coordinates, dip, and azimuth. 

3. Creating a slice file using PCBC software (Gemcom Software 

International, 2012). 

4. Calculating the best height of draw (BHOD). 

5. Importing a slice file, the BHOD file, and coordinates of drawpoints into 

the software that we have developed for drawpoint scheduling in block-

caving (DSBC). 

6. Creating all required databases and sets to use in the developed MILP 

models. The sets are used to define the predecessor clusters, drawpoints, 

and slices. 

7. Clustering the draw columns based on the similarity of the draw column’s 

tonnage, average grade, and physical location. 

8. Defining the input scheduling parameters. 

9. Creating the objective function and constraints at each level of resolution: 

(i) cluster level, (ii) drawpoint level, and (iii) drawpoint-and-slice level. 

10. Solving the problem using one of the methods: either single-step or multi-

step. 

11. Discussing the results 

The first step is creating the resource model. The resource model is a block model 

in which each block represents an attribute of the geological deposit. The second 

step is to find the mining unit that will properly represent the mining method. In a 

block-caving method, the caved material is extracted from a drawpoint. A 

disturbance zone called the ellipsoid of draw can be observed above the 

drawpoint. When the height of this ellipsoid is large enough, the disturbance zone 
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is called the draw column. Thus, these draw columns will be modeled in a block-

cave mine. Every column represents a drawpoint. Then, the total column is 

divided into slices, which match the vertical spacing of the geological block 

model. Afterwards, the BHOD (Diering, 2000) for each draw column is 

calculated. 

 

Figure  3.1. Required steps for block-cave production scheduling using MILP 

 

Table  3.1 shows the calculation for one draw column of copper and gold. The 

revenue per ton is calculated using the revenue factors per unit of grade material 
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(e.g., $ per gram of gold or $ percent of copper) and the mining cost, which 

includes per ton overheads and per ton milling costs (see Equation (3.1)). 

 
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n

e e
e

venue U v gr DC MC OC
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 
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 
  

 
 (3.1) 

Where  

 Re eU v is the revenue factor per unit of the element e ,  

 egr is the grade of the element e ,  

 DC is the direct mining cost, and  

 MC  and OC  are milling cost and overhead costs, respectively.  

In Table 3.1, it is assumed that copper and gold revenue factors, and mining cost, 

are $28/t, $13/t, and $22/t, respectively.  The number of possibilities for finding 

the optimal height is equal to the number of slices above each drawpoint. A 

simple comparison of the dollar value for each combination (slice 1; then slices 1 

and 2; then slices 1, 2, and 3) allows the best height to be found. The maximum 

value in this case is obtained for slice number 14. If the height of each slice is 

10m, the BHOD for this draw column is 140m. After applying the BHOD, the 

final height of draw is obtained. Afterwards, the production schedule of a block-

cave mine can be optimized using the MILP formulation. 

Although not an optimal way to calculate the BHOD, this is the method used in 

current industrial practice and commercial software such as PCBC (Gemcom 

Software International, 2012). Using our MILP models, this height of draw can be 

calculated as part of the optimization problem with setting the reserve constraint 

less than or equal to one. 
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Table  3.1. Calculating best height of draw (BHOD) 

Slice No. Cu% Au% Current value 
Maximum 

Cumulative value 

25 0.04 0.01 -20.75 90.54 

24 0.05 0.01 -20.47 111.29 

23 0.07 0.02 -19.78 131.76 

22 0.10 0.02 -18.94 151.54 

21 0.14 0.03 -17.69 170.48 

20 0.19 0.04 -16.16 188.17 

19 0.25 0.06 -14.22 204.33 

18 0.33 0.08 -11.72 218.55 

17 0.42 0.1 -8.94 230.27 

16 0.53 0.12 -5.6 239.21 

15 0.64 0.15 -2.13 244.81 

14 0.77 0.18 1.9 246.94 

13 0.89 0.21 5.65 245.04 

12 1.01 0.24 9.4 239.39 

11 1.11 0.26 12.46 229.99 

10 1.20 0.29 15.37 217.53 

9 1.28 0.31 17.87 202.16 

8 1.34 0.32 19.68 184.29 

7 1.39 0.33 21.21 164.61 

6 1.43 0.34 22.46 143.4 

5 1.46 0.34 23.3 120.94 

4 1.48 0.34 23.86 97.64 

3 1.49 0.35 24.27 73.78 

2 1.48 0.36 24.12 49.51 

1 1.53 0.35 25.39 25.39 
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3.3 Clustering 

In mathematical programming using MILP formulations, usually the size of the 

branch-and-cut tree becomes so large that insufficient memory remains to solve 

the LP sub-problems. The size of the branch-and-cut tree can actually be affected 

by the specific approach one takes in performing the branching and by the 

structure of each problem. So, there is no way to determine the size of the tree 

before solving the problem. Attempts have been made to overcome the curse of 

dimensionality using aggregation, which causes difficulties for long-term 

production scheduling combinatorial optimization in open pit and underground 

mines (Epstein et al., 2003; Newman and Kuchta, 2007; Weintraub et al., 2008; 

Askari-Nasab et al., 2011; Tabesh and Askari-Nasab, 2011).  

Clustering is defined as the process of grouping similar entities together so that 

maximum intra-cluster similarity and inter-cluster dissimilarity are achieved. The 

clustering problem is proven to be NP-Hard (Gonzalez, 1982). Therefore, a wide 

range of non-exact algorithms has been developed in the literature. These 

algorithms are usually performed by defining a measure of similarity or 

dissimilarity between the objects. These techniques can be categorized into two 

major groups: hierarchical and partitional clustering. The hierarchical clustering is 

performed by creating a hierarchy of clusters. It is known to result in better 

clusters compared to partitional algorithms, but it does so by taking more CPU 

time (Feng et al., 2010).  

Hierarchical clustering algorithms are divided into two main groups: 

agglomerative versus divisive clustering. In the former group, clusters are formed 

by merging smaller ones. This means that at the beginning, the number of clusters 

is the same as the number of objects. As the algorithm goes on, more similar 

clusters are merged together until the stopping criteria are met or all the objects 

fall into the same cluster. The procedure is the other way around for the divisive 

clustering techniques: i.e., all the objects are considered to belong to the same 

cluster in the beginning of the algorithm, and clusters are divided into two in each 

step of the algorithm. Finding the target cluster to split and the way they are 
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divided is a tricky step. That is the reason this method of clustering has not 

attracted as much attention as the other groups.  

3.3.1 Draw Columns Aggregation Using Hierarchical Clustering 

To overcome the size problem of mathematical programming models, the draw 

columns are aggregated into practical scheduling units using clustering 

algorithms. For this purpose, the algorithm by Tabesh and Askari-Nasab (2011) 

was modified for its application in block-cave mining. Draw column aggregation 

is required for two reasons: (i) to generate a practical mining schedule that follows 

a selective mining unit, and (ii) to reduce the number of variables, especially 

binary variables in the MILP formulation to make it computationally tractable. 

The planner has to divide the mine into phases based on advancement directions. 

These phases will control practical cave advancement. Clustering is done within 

each phase. This means two drawpoints that are located within two different 

phases cannot be in the same cluster (Figure  3.2).  

 

 

 

 

Figure  3.2. Defined phases based on advancement directions and their boundaries for 
west to east (WE) and east to west (EW) mining directions, with dots representing 
individual drawpoints. 
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Figure  3.3 shows an example of impractical clusters for west to each direction 

when the phases are not defined. It is obvious that defining precedence between 

clusters and controlling practical cave advancement are impossible. 

 

Figure  3.3. Clustering without phases for the west to east direction 

The general procedure of the algorithm is as follows: 

1. Define the maximum number of required clusters and the maximum 

number of allowed draw columns within each cluster. 

2. Each draw column is considered a cluster, so if there are D draw columns, 

then there are D clusters. The similarities between clusters are the same as 

the similarities between the objects they contain. 

3. Similarity values are calculated. 

4. The most similar pair of clusters is merged into a single cluster. 

5. The similarity between the new cluster and the rest of the clusters is 

calculated. Steps 2 and 3 are repeated until the maximum number of 

clusters is reached or there is no pair of clusters to merge because of the 

maximum number of allowed draw columns within each cluster.  

The similarity value between draw columns i and j is defined by Equation (3.2), 

Where ijD represents the normalized distance value between draw columns i and 
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j , ijG  represents the normalized grade difference between draw columns i and j , 

and ijT represents the normalized tonnage difference between draw columns i and 

j . WD , WG , and WT  are weighting factors for distance, grade, and tonnage, 

respectively. 

  
1

ij WD WG WT
ij ijij

S
D G T


 

  (3.2) 

A mine with D  draw columns has a D D  distance matrix. The matrix is 

normalized by dividing all of its elements by the maximum value. The calculated 

normalized distance factor is then raised to the power of DW . The same approach 

is taken for grade and tonnage differences. To avoid infinite numbers in similarity 

indices, the grade and tonnage difference values are considered equal to a very 

small number wherever these values for two draw columns are the same. The 

mine planner defines the weights. 

3.4 Mathematical Programming Formulation 

In this section, the MILP formulations are presented for three levels of problem 

resolution: (i) cluster level, (ii) drawpoint level, and (iii) drawpoint-and-slice 

level. The production scheduler aims to maximize the NPV of the mining 

operation, while the mine planner has control over the development rate, vertical 

mining rate, lateral mining rate, mining capacity, maximum number of active 

drawpoints, and advancement direction. To support a given production target, the 

production scheduler defines the opening and closing time for each drawpoint and 

cluster, the draw rate from each drawpoint and cluster, the number of new 

drawpoints and clusters that need to be constructed, and the sequence of 

extraction from the drawpoints and clusters. The MILP models can be used in two 

ways. In the single-step method, the problem is solved at each level of resolution 

independently. This means the objective function and constraint are set up for 

each level and then the problem is solved. In the multi-step method, the cluster 

level results are used for variable elimination in the drawpoint level. The 
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drawpoint level results are used for variable elimination in the drawpoint-and-

slice level formulation.  

3.4.1 Models Assumption 

Several major assumptions are used in the MILP formulations. These assumptions 

are all valid at different resolution levels: 

1. For planning and operational purposes, the geological configuration of the 

deposit is expressed by a block model. Each block is uniquely identified 

with its geological characteristic, in particular the ore grades. A draw 

column, which is vertical, is created based on the block model. The total 

column is divided into slices, which match the vertical spacing of the 

geological block model. Numerical data are used to represent orebody 

attributes in each slice, such as tonnage, density, grade of elements, 

elevation, percentage of dilution, and economic data. 

2. The model is used for multi-period optimization. There is no material 

mixing between blocks as a function of draw. The source model is 

assumed to be static with time. The dilution modeling is carried out in 

PCBC (Gemcom Software International, 2012) at the slice level, prior to 

using this static model. 

3. To create the clusters, the draw columns are grouped into clusters based on 

similarities between their physical location, average grade, and tonnage. 

4. The portion scheduled to be extracted from each cluster is assumed to be 

taken from all the drawpoints, based on the ratio of each draw column’s 

tonnage in the cluster. 

5. Models are solved in different advancement directions which are limited 

based on geotechnical constraints. Thus, the extraction precedence among 

clusters and drawpoints should be known and given as an input to the 

algorithm. These are handled in the models using binary parameters that 
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control which cluster, drawpoint, or slice are preferred over others based 

on the advancement direction.  

6. The rate of the undercutting and subsequent cluster, drawpoint, or slice 

opening periods is handled in the models using binary parameters that 

regulate whether or not a cluster, drawpoint, or slice is available for 

production. 

7. The models are used to determine a long-term production schedule at three 

different levels of resolution: (i) aggregated draw columns (cluster level), 

(ii) drawpoint level, and (iii) drawpoint-and-slice level. The models do not 

provide guidance for short-term planning. 

3.4.2 Formulation of MILP Models 

In a typical block-cave long-term scheduling problem, the number of integer and 

continuous decision variables, and the number of constraints formulating a 

problem exceed the capacity of the current state of hardware and software to solve 

the problem in a reasonable time. To overcome the size problem of mathematical 

programming models and generate a robust, practical, near-optimal schedule, a 

multi-step method for long-term production scheduling of block caving is 

presented. There are three levels of resolution, each with a formulation that can be 

used individually (see Figure  3.4). The three levels of resolution for the MILP 

models are: a) cluster level model, b) drawpoint level model, and c) drawpoint-

and-slice level model. 

In the cluster-level model, the draw columns are aggregated into practical 

scheduling units using a hierarchical clustering algorithm. Aggregation is 

necessary to generate near-optimal realistic mine plans in a reasonable CPU time 

that could be considered useful in real-world mine planning. At this level, the 

optimal life-of-mine multi-period block-cave production schedule is generated at 

the cluster level. This is the strategic yearly production schedule with the 

objective of NPV maximization. The strategic plan honors mining capacity and 

uniform feed to the processing plant.  
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Figure  3.4. Three different levels of resolution for block-cave production scheduling with 
dots representing individual drawpoints 

The drawpoint-level model, in which the slices within each draw column are 

grouped without considering the grade of slices, uses draw columns to optimize 

the production schedule.  

At the drawpoint-and-slice level, the model uses drawpoints and slices.  At this 

level, precedence between slices and between drawpoints and grades of slices, are 

also involved. The time horizon for this detailed 3D model could vary as a subset 

of the time horizons chosen in the previous models.   

At the cluster and drawpoint levels, the precedence between clusters or 

drawpoints is controlled in a horizontal direction. In other words, we treat the 
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problem at these levels as a strategic long-term plan, and the slices are not used in 

the formulations. 

3.4.3 Objective Function at Three Level of Resolution 

There are a number of strategic objectives common in industry. Usually, the target 

is to maximize the mining operations’ NPV within the existing economic, 

technical, and environmental constraints. However, other objectives, such as cost 

minimization or reserve maximization, could also be considered. 

One of the main goals of planning a block-cave mine is to maximize the mine’s 

value. In this research, the MILP formulations’ objective functions are to 

maximize the mining operation’s NPV. According to the level of resolution, the 

strategy is to mine the clusters, drawpoints, or slices with higher economic value 

early in order to maximize the NPV. 

At the drawpoint-and-slice level formulation, profit from mining a drawpoint 

depends on the value of the slices and the costs incurred in mining, while at the 

drawpoint level, profit from mining a drawpoint depends on the value of the 

material within the related draw column. At the cluster level, profit from mining a 

cluster depends on the economic value of the draw columns located within the 

cluster.  

3.4.4 Constraints 

The following set of constraints is included in the formulation at three levels of 

resolution: 

 Mining capacity  

 Grade blending 

 Maximum number of active clusters or drawpoints 

 Number of new clusters or drawpoints 



Chapter 3                                                                                         Theoretical Framework 

60 
 

 Continuous mining 

 Mining precedence 

 Reserves 

 Draw rate 

3.4.4.1 Mining Capacity 

This constraint forces a mining system to achieve its desired production target.  It 

ensures that the total tonnage of material extracted from clusters, drawpoints, or 

slices in each period is within the acceptable range that allows flexibility for 

potential operational variations. This constraint is applied to all levels of 

resolution. 

3.4.4.2 Grade Blending 

This constraint forces the mining system to achieve the desired grade. It ensures 

that the average grade of production is within the desired range in each period. 

This constraint is only used at drawpoint-and-slice-level model. 

3.4.4.3 Maximum Number of Active Clusters or Drawpoints 

This constraint controls the maximum number of active clusters or drawpoints at 

any given period in the schedule. In each period, the number of active clusters or 

drawpoints must not exceed the allowable number and has to be constrained 

according to the size of the ore-body, available infrastructure, and equipment 

availability. A large number of active clusters or drawpoints might lead to serious 

operational problems. Figure  3.5 illustrates how the number of active clusters or 

drawpoints is calculated in each period. This number in each period is equal to the 

summation of the lines under that period.  

3.4.4.4 Number of New Clusters or Drawpoints 

This constraint defines the maximum feasible number of clusters or drawpoints to 

be opened at any given time within the scheduled horizon. This constraint is 
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usually based on the footprint geometry, the geotechnical behavior of the rock 

mass, and the existing infrastructure of the mine, which will typically define 

available mining faces. 

 

Figure  3.5. Determination of the number of active clusters or drawpoints in each period. 
The green line shows the periods in which the related cluster or drawpoint is active   

3.4.4.5 Continuous Mining 

This constraint forces the mining system to extract material from clusters, 

drawpoints, or slices continuously after opening until closing. In other words, 

after starting the extraction from a cluster, drawpoint, or slice, at least the 

acceptable minimum portion of them must be extracted in each period during the 

life of them. 

3.4.4.6 Mining Precedence 

This constraint defines where to start the caving within the layout and how to 

progress. The planner gives the advancement direction to the model. There are 

different methods to define the advancement direction. Barlett (1992) 

recommended starting the caving where the weak rock is located. This method has 
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two advantages: (i) the hydraulic ratio can be reached earlier in the life of the 

mine, which shortens the time needed to recover the investment; (ii) the mine can 

reach a steady production earlier since adequate fragmentation is achieved. 

Another method consists of starting where the high grade ore is located. This 

method leads to early payback of the investment or high NPV.  

Because of the continuous advancement of the cave front in block caving, the 

production schedules using the MILP formulation are implemented for different 

advancement directions. The mining precedence is defined based on the level of 

resolution. At the cluster level, according to the advancement direction, for each 

cluster there are some clusters among adjacent clusters that must be started before 

the considered one is extracted. Also, it is possible that there is no predecessor 

cluster. The same concept is applied to the drawpoints and the slices at other 

levels of resolution.  

At the cluster level, to determine the clusters that extraction from them must be 

started before the considered cluster, the three steps below must be followed.  

1. The boundary drawpoints of the considered cluster are determined. These 

boundary drawpoints are located behind an imaginary line perpendicular 

to the desired advancement direction at the cluster’s center point. 

2. All clusters that have at least one adjacent drawpoint with the boundary 

drawpoints are determined.  

3. Clusters whose center point is behind the center point of the considered 

cluster are defined as clusters from which extraction must be started before 

the considered cluster in the considered advancement direction out of 

selected clusters in the previous step. 

For instance, Figure  3.6 shows four clusters which have been created for the south 

to north (SN) advancement direction. The boundary drawpoints of cluster 25, 

which are located behind of the red imaginary line, are d17, d24, d31, and d37. 

Clusters 23 and 26 have at least one adjacent drawpoint with the boundary 
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drawpoints of cluster 25. Therefore, they have the potential to be considered 

clusters from which extraction must be started before extracting from cluster 25. 

Since the center point of cluster 23 is behind the center point of cluster 25 in the 

considered direction (SN), it is only selected as a cluster from which extraction 

must be started before extracting from cluster 25.  

 

Figure  3.6. Determination method of the predecessor cluster based on the advancement 
direction 

At the drawpoint level, the drawpoints from which extraction must be started 

before extracting from the considered drawpoint are determined based on clusters 

and drawpoints within clusters. For this purpose, the two steps below must be 

followed: 

1. Each drawpoint belongs to a cluster that has its predecessor clusters. 

Therefore, members of the predecessor clusters are considered as 
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drawpoints from which extraction must be started before extracting from 

the considered drawpoint. 

2. Imagine a line perpendicular to the desired advancement direction at the 

location of the considered drawpoint. All adjacent drawpoints located in 

the same cluster and behind the imaginary line are considered drawpoints 

from which extraction must be started before extracting from the 

considered drawpoint. 

In the offset herringbone layout (Brown, 2003), each drawpoint is surrounded by 

a maximum of seven drawpoints (see Figure  3.7). Figure  3.8 shows the procedure 

to determine the precedence between the adjacent drawpoints. The adjacent 

drawpoints for drawpoint d4 include d1, d2, d3, d5, d6, d7, and d8. In the 

advancement direction of north to south (NS), the extraction of drawpoints d1, d2, 

and d3 has to be started prior to extracting from drawpoint d4. Figure  3.8b shows 

the advancement direction of south west to north east (SW to NE). The extraction 

of drawpoints d1, d6, and d7 has to be started prior to extracting from drawpoint 

d4.   

Figure  3.9 illustrates the above-mentioned steps. Drawpoint d30 belongs to cluster 

CL32. So, extraction from all drawpoints within clusters CL20 and CL15 must be 

started before d30. In addition to this, among adjacent drawpoints for drawpoint 

d30 within cluster CL32, the extraction of drawpoints d37, d43, and d44 has to be 

started prior to extracting from drawpoint d30. Consequently, extraction from d30 

can be started if only if extraction from the determined 19 drawpoints has been 

started. 

The precedence between drawpoints or clusters is controlled in a horizontal 

direction. At the drawpoint-and-slice level model, in addition to the horizontal 

direction, the precedence between slices in a vertical direction must be controlled 

as well. Extraction from a slice can be started only if the slice below the slice in 

question has been extracted completely. 
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Figure  3.7. Offset herringbone extraction level layout (Brown, 2003) 

 

Figure  3.8. Determination method of the predecessor drawpoints among the adjacent 
drawpoints based on the advancement direction. 

  
Figure  3.9. Determination method of the predecessor drawpoints based on the 

advancement direction 



Chapter 3                                                                                         Theoretical Framework 

66 
 

3.4.4.7 Reserves 

This constraint ensures that the fractions of the cluster or draw column that are 

extracted over the scheduling periods sum to one, which means there is no 

selective mining, and thereby all the material in the cluster or draw column must 

be extracted. The all material must be extracted because the BHOD, which is the 

maximum cumulative value along the draw column, has already been calculated 

for all draw columns. If this constraint be set less than or equal one, there is no 

need to use the calculated BHOD by PCBC, because in this case the BHOD draw 

is calculated for each draw column during the optimization. 

3.4.4.8 Draw Rate 

This constraint controls the maximum and minimum tonnage that can be drawn 

from a drawpoint in a period of time. This rate should be fast enough to avoid 

compaction and slow enough to avoid air gaps. The fragmentation process usually 

determines the maximum limit to the draw rate, since time is required to achieve 

good fragmentation. However, sometimes the maximum rate may be dictated by 

the LHD productivity. It is important to notice that the draw rate is a function of 

the planning horizon.  

3.4.5 MILP Formulations at Three Level of Resolution 

3.4.5.1 Cluster-Level Model 

At the cluster level, profit from mining a cluster depends on the economic value 

of the draw columns located within the cluster. The economic value of each 

cluster (CLEV) is equal to the summation of the economic value of the draw 

columns within the cluster and the costs incurred in mining. The CLEV is a 

constant value for each cluster. To solve the problem at the cluster level, three sets 

of decision variables are employed: one continuous decision variable and two 

binary variables. The continuous decision variable indicates the portion of 

extraction from each cluster in each period. Two binary variables control the 

number of active clusters, precedence of extraction between clusters, opening and 

closing time of each cluster, draw rate from each cluster, and the number of new 
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clusters that need to be constructed in each period. At the cluster level 

formulation, binary variables are defined to identify at what period a given cluster 

is started and active. At this level of resolution, the objective function tries to 

mine the cluster with a higher CLEV earlier than others.  

The notation used to formulate the problem at the cluster level is classified as sets, 

indices, parameters and decision variables.  

Sets 

clS  For each cluster, cl, there is a set, Scl , defining the predecessor 

clusters that must be started prior to extracting cluster cl. 

Indices 

{1,..., }cl CL  Index for clusters. 

k  Index for a cluster belonging to the set Scl. 

{1,...., }t T  Index for scheduling periods. 

Parameters 

CL  Maximum number of clusters in the model. 

clCLEV  Economic value of cluster cl. 

,d tDR
 

Minimum possible draw rate of drawpoint d in period t. 

,d tDR  
Maximum possible draw rate of drawpoint d in period t. 

,k tDR
 

Minimum possible draw rate of drawpoints belonging to set Scl in 

period t. 

,k tDR  
Maximum possible draw rate of drawpoints belonging to set Scl in 

period t. 

i  Discount rate. 
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tM  Lower limit of mining capacity in period t. 

tM  Upper limit of mining capacity in period t. 

,Acl tN  Maximum allowable number of active clusters in period t. 

,Ncl tN  Lower limit for the number of new clusters, the extraction from 

which can start in period t. 

,Ncl tN  Upper limit for the number of new clusters, the extraction from 

which can start in period t. 

clNDP  Number of draw columns within cluster cl. 

T  Maximum number of scheduling periods. 

clTon  Total tonnage of material within cluster cl. 

Decision variables 

, {0,1}cl tA   Binary decision variable equal to 1 if cluster cl is active in period 

t; otherwise it is 0. 

, [0,1]cl tU   Continuous decision variable, representing the portion of cluster 

cl to be extracted in period t. 

, {0,1}cl tZ   Binary variable controlling the precedence of extraction of 

clusters. It is equal to 1 if extraction from cluster cl is started in 

period t; otherwise it is 0. 

Objective function: 

  ,
1 1

Maximize
1

CLT
cl

cl tt
t cl

CLEV
U

i 

 
 

  
   (3.3) 

Constraints: 
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 ,
1

CL

tt cl t cl
cl

M U Ton M


     

  1,...,t T   (3.4) 

 
 

, ,

max

min number of drawpoints within a cluster minimum draw rate

.cl t cl t

Toncl

A L U

L




 
 
 
 

 
 

  1,..., , {1,..., }t T cl CL    (3.5) 

, ,cl t cl tU A  
 

  

  1,..., , {1,..., }t T cl CL    (3.6) 

, ,
1

CL

cl t Acl t
cl

A N



 

  

  1,...,t T   (3.7) 

 
 , ,

1

min number of drawpoints within a cluster minimum draw rate

max
1

t

cl t k j
j Toncl

Z U


 
   
 
 


 

  {1,..., }, 1,..., , clcl CL t T k S     (3.8) 

,
1

1
T

cl t
t

Z


    

 {1,..., }cl CL   (3.9) 

, ,( 1) ,cl t cl t cl tA A Z 
 

  

  {1,..., }, 2,...,cl CL t T    (3.10)

,1 ,1 0.5cl clA Z 
 

  

 {1,..., }cl CL   (3.11)
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     ,,, , k tk tcl t cl cl t cl clA NDP DR U Ton NDP DR     
 
  

  {1,..., }, 1,..., , clcl CL t T k S     (3.12)

,, ,
1

CL

Ncl tNcl t cl t
cl

N Z N


 
 

  

  2,...,t T   (3.13)

,1 ,1
1

CL

cl Acl
cl

Z N



 

 (3.14)

,
1

1
T

cl t
t

U



 

  

 {1,..., }cl CL   (3.15)

The objective function, Equation (3.3), is composed of the CLEV, discount rate, 

and a continuous decision variable that indicates the portion of a cluster, which is 

extracted in each period. The most profitable clusters will be chosen as part of the 

production in order to optimize the NPV. The total tonnage and draw rate of each 

cluster, and the cluster economic value, are all a function of the number of draw 

columns within the cluster. The constraints are presented by Equations (3.4) to 

(3.15). 

Equation (3.4) represents the mining capacity, which ensures that the total 

tonnage of material extracted from clusters in each period is within the acceptable 

range that allows flexibility for potential operational variations. The constraints 

are controlled by the continuous variable Ucl,t. There is one constraint per period. 

Equations (3.5) to (3.7), control the maximum number of active clusters at any 

given period of the schedule. During the mine life, each cluster can be in three 

different situations: open, active, and closed. Equation (3.5) forces variable Acl,t  to 

be zero if a portion of cluster cl is not extracted in period t, while Equation (3.6) 

changes variable Acl,t to 1 when a portion of cluster cl is extracted in period t.  
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The MILP formulation is implemented for different advancement directions based 

on the precedence between clusters. According to the advancement direction, for 

each cluster cl there is a set Scl which defines the predecessor clusters among 

adjacent clusters that must be started before cluster cl is extracted. The number of 

datasets is equal to the number of advancement directions defined for each cluster.  

To control the precedence of extraction, a binary decision variable, Zcl,t , is 

employed. Equation (3.8) is applied to all members of set Scl. If the summation of 

extracted portions from each cluster belonging to set Scl until the considered 

period, t, is equal to or greater than the minimum allowable draw rate for the 

cluster, then extraction from cluster cl can be started. It should be mentioned that 

at the right side of Equation (3.8), the required percentage of the extraction for the 

predecessor clusters can be defined for each cluster. Equation (3.9) ensures that 

cluster cl is opened once during the mine life. 

Extraction from each cluster must be continuous. Equation (3.10) ensures that if 

extraction from cluster cl is started during or after period two, at least a portion of 

the cluster is extracted until all of the material within that cluster has been 

extracted; otherwise the cluster must be closed. The minimum portion of 

extraction must be equal or greater than the minimum allowable draw rate of the 

cluster. Equation (3.11) is used for period one. It ensures that if extraction from 

cluster cl is started in period one, the related variable Acl,1 for the cluster is equal 

to 1. 

Equation (3.12) controls the maximum and minimum rate of draw from the 

cluster. The draw rate of each cluster is a function of the number of draw columns 

within the cluster. When cluster cl is not active, variable Acl,t is equal to zero and 

this relaxes the lower bound of Equation (3.12).  

The number of new clusters opened in each period is controlled by Equation 

(3.13). Variable Zcl,t  is equal to 1 if the extraction from cluster cl  is started in 

period t. Therefore, the summation of this variable for all clusters in each period 

indicates the number of new clusters opened in that period. At the beginning and 
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in period one, the number of new clusters is equal to the maximum number of 

active clusters. 

Equation (3.15) ensures that the fractions of each cluster that are extracted over 

the scheduling periods sum to one, which means that all the material within the 

cluster is going to be extracted. To solve the problem without considering the 

obtained BHOD form the PCBC, this equation must be less than or equal to 1. 

Using this method, the best height of draw for each cluster can be obtained. 

3.4.6 Drawpoint-Level Model 

At the drawpoint level formulation, profit from mining a drawpoint depends on 

the value of the material within the related draw column. The economic value of 

each draw column (DEV) is equal to the summation of the economic value of the 

slices within the draw column and the costs incurred in mining. The DEV is a 

constant value for each drawpoint. At this level of resolution, the objective 

function, Equation (3.16), seeks to mine draw columns with higher DEV earlier 

than others. The objective function is composed of the DEV, discount rate, and a 

continuous decision variable that indicates the portion of a draw column, which is 

extracted in each period. The most profitable drawpoints will be chosen as part of 

the production in order to optimize the NPV. Two binary variables control the 

number of active drawpoints, precedence of extraction between drawpoints, 

opening and closing time of each drawpoint, draw rate from each drawpoint, and 

the number of new drawpoints that need to be constructed in each period. At the 

drawpoint level formulation, binary variables are defined to identify at what 

period a given drawpoint is started and active. The total tonnage and the draw 

column economic value are all a function of the number of slices within the draw 

column. The DEV is the summation of economic value of slices within the draw 

column and is a constant value for each drawpoint. 

The notation used to formulate the problem at the drawpoint level has classified as 

sets, indices, parameters and decision variables.  
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Sets 

dS  For each drawpoint, d, there is a set Sd defining the predecessor 

drawpoints that must be started prior to extraction of drawpoint d. 

Indices 

{1,..., }d D  Index for drawpoints. 

l  Index for a drawpoint belonging to set Sd. 

{1,...., }t T  Index for scheduling periods. 

Parameters 

D  Maximum number of drawpoints in the model. 

dDEV  Economic value of the draw column associated with drawpoint d. 

,d tDR
 

Minimum possible draw rate of drawpoint d in period t. 

,d tDR  
Maximum possible draw rate of drawpoint d in period t. 

,Ad tN  Maximum allowable number of active drawpoints in period t. 

,Nd tN  Lower limit for the number of new drawpoints, the extraction 

from which can start in period t. 

,Nd tN  Upper limit for the number of new drawpoints, the extraction 

from which can start in period t. 

dTon  Total tonnage of material within the draw column associated with 

drawpoint d. 

Decision variables 

, {0,1}d tA   Binary decision variable equal to 1 if drawpoint d is active in 

period t; otherwise it is 0. 

, [0,1]d tU   Continuous decision variable, representing the portion of 

drawpoint d to be extracted in period t. 
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, {0,1}d tZ   Binary variable controlling the precedence of extraction of 

drawpoints. It is equal to 1 if extraction from drawpoint d is 

started in period t; otherwise it is 0. 

Objective function: 

  ,
1 1

Maximize
1

T D
d

d tt
t d

DEV
U

i 

 
 

  
  (3.16) 

Constraints: 

 ,
1

D

tt d t d
d

M U Ton M


  
 
  

  1,...,t T   (3.17) 

 
, ,

max

minimumdraw rate
. ,d t d t

TondA L U L 
 

  

  1,..., , {1,..., }t T d D    (3.18) 

, ,d t d tU A
 

  

  1,..., , {1,..., }t T d D    (3.19) 

, ,
1

D

d t Ad t
d

A N



 

  

  1,...,t T   (3.20) 

 , ,
1

minimum draw rate

max
1

t

d t l j
j Tond

Z U


 
   
 
 


 

  

  {1,..., }, 1,..., , dd D t T l S     (3.21) 
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1
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d t
t

Z



 

  

 {1,..., }d D   (3.22) 

, ,( 1) ,d t d t d tA A Z 
 

  

  1,..., , {1,..., }t T d D    (3.23) 

,1 ,1 0.5d dA Z 
 

  

 {1,..., }d D   (3.24) 

  ,,, , d td td t d t dA DR U Ton DR      

  1,..., , {1,..., }t T d D    (3.25) 

,, ,
1

D

Nd tNd t d t
d

N Z N


 
 

  

  2,...,t T   (3.26) 

,1 ,1
1

D

d Ad
d

Z N



 

 (3.27) 

,
1

1
T

d t
t

U


    

 {1,..., }d D   (3.28) 

The constraints are presented by Equations (3.17) to (3.28). Equation (3.17) 

represents the mining capacity, which ensures that the total tonnage of material 

extracted from drawpoints in each period is within the acceptable range that 

allows flexibility for potential operational variations. The constraints are 

controlled by the continuous variable Ud,t. There is one constraint per period. 

Equations (3.18) to (3.20), control the maximum number of active drawpoints at 

any given period in the schedule. Similar to the cluster level formulation, each 

drawpoint can be in three different situations during the mine life: open, active, 
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and closed. Equation (3.18) forces variable Ad,t be zero if a portion of drawpoint d 

is not extracted in period t, while Equation (3.19) changes variable Ad,t to 1 when a 

portion of drawpoint d is extracted in period t.  

The MILP formulation is implemented for different advancement directions based 

on the precedence between drawpoints. According to the advancement direction, 

for each drawpoint d there is a set Sd, which defines the predecessor drawpoints 

among adjacent drawpoints that must be started before drawpoint d is extracted. 

The number of datasets is equal to the number of advancement directions defined 

for each drawpoint. To control the precedence of extraction, a binary decision 

variable, Zd,t , is employed. Equation (3.21) is applied to all members of set Sd. If 

the summation of extracted portions from each drawpoint which belongs to set Sd 

until the considered period, t, is equal to or greater than the minimum allowable 

draw rate, then extraction from drawpoint d can be started. It should be mentioned 

that at the right side of Equation (3.21), the required percentage of the extraction 

for the predecessor drawpoints can be defined for each drawpoint. Equation (3.22) 

ensures that drawpoint d is opened once during the mine life. 

Extraction from each drawpoint must be continuous. Equation (3.23) ensures that 

if extraction from drawpoint d is started during or after period two, at least a 

portion of the draw column is extracted until all of the material within the draw 

column associated with the drawpoint has been extracted; otherwise the drawpoint 

must be closed. The minimum portion of extraction must be equal to or greater 

than the minimum allowable draw rate. Equation (3.24) is used for period one. It 

ensures that if extraction from drawpoint d is started in period one, the related 

variable Ad,1 for the drawpoint is equal to 1. 

Equation (3.25) controls the maximum and minimum rate of draw from each 

drawpoint. When drawpoint d is not active, variable Ad,t is equal to zero and this 

relaxes the lower bound of Equation (3.25).  

The number of new drawpoints in each period is controlled by Equation (3.26). 

Variable Zd,t  is equal to 1 if the extraction from drawpoint d  is started in period t. 
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Therefore, the summation of this variable for all drawpoints in each period 

indicates the number of new drawpoints opened in that period. At the beginning 

and in period one, the number of new drawpoints is equal to the maximum 

number of active drawpoints. 

Equation (3.28) ensures that the fractions of the draw column extracted over the 

scheduling periods are going to sum up to one, which means that all the material 

within the draw column is going to be extracted. To solve the problem without 

considering the obtained BHOD form the PCBC, this equation must be less than 

or equal to 1. Using this method, the best height of draw for each draw column 

can be obtained based on the optimization. 

3.4.7 Drawpoint-and-Slice Level Model 

At the drawpoint-and-slice level, profit from mining a drawpoint depends on the 

value of the slices and the costs incurred in mining. The objective function, 

Equation (3.29), is composed of the slice economic value (SEV), discount rate, 

and a continuous decision variable that indicates the portion of the slice extracted 

in each period. The objective function seeks to mine slices with higher SEV 

earlier than other slices. The SEV is a constant value for each slice. 

To solve the problem at this level of resolution, one continuous decision variable 

and one binary variable for slices, and two binary variables for drawpoints, are 

employed. The continuous decision variable indicates the portion of extraction 

from each slice in each period. The binary decision variable for slices controls 

precedence of extraction between slices. The binary decision variables for 

drawpoints control the number of active drawpoints, precedence of extraction 

between drawpoints, opening and closing time of each drawpoint, draw rate from 

each drawpoint, and number of new drawpoints that need to be constructed in 

each period. For the drawpoint-and-slice level formulation, instead of using 

binary variables to define explicitly at what period a drawpoint is started or is 

active, the binary variables specify whether a drawpoint is started by a certain 
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period, because the “by period” formulations tend to be solved faster than those 

the “at period” formulations. 

The notation used to formulate the problem at the drawpoint-and-slice level is 

classified as sets, indices, parameters and decision variables.  

Sets 

dS  For each drawpoint, d, there is a set, Sd, defining the predecessor 

drawpoints that must be started prior to extracting drawpoint d. 

dsS  For each drawpoint, d, there is a set Sds defining the slices in the 

draw column associated with drawpoint d. 

dlsS  For each drawpoint, d, there is a set Sdls defining the lowest slice 

within the draw column associated with drawpoint d. 

sS  For each slice, s, there is a set Ss defining the predecessor slices 

that must be extracted prior to extracting  slice s. 

Indices 

{1,..., }e E  Index for elements of interest in each slice. 

l  Index for a drawpoint belonging to set Sd. 

n  Index for a slice belonging to set Sds. 

p  Index for a slice belonging to set Sdls. 

q  Index for a slice belonging to set Ss. 

{1,..., }s S  Index for slices. 

{1,...., }t T  Index for scheduling periods. 

Parameters 

esG  Average grade of element e in the ore portion of slice s. 

,e tG  Upper limit of the acceptable average head grade of element e in 

period t. 



Chapter 3                                                                                         Theoretical Framework 

79 
 

,e tG  Lower limit of the acceptable average head grade of element e in 

period t. 

dNs  
Number of slices within the draw column associated with 

drawpoint d. 

S  Maximum number of slices in the model. 

sSEV  Economic value of slice s. 

sTon  Total tonnage of material within slice s. 

Decision variables 

, {0,1}s tB   Binary variable controlling the precedence of the extraction of 

slices. It is equal to 1 if the extraction of slice s has started by or 

in period t; otherwise it is 0. 

, {0,1}d tC   Binary variable controlling the closing period of drawpoints. It is 

equal to 1 if the extraction of drawpoint d has finished by or in 

period t; otherwise it is 0. 

, {0,1}d tE   Binary variable controlling the starting period of drawpoints and 

precedence of extraction of drawpoints. It is equal to 1 if the 

extraction of drawpoint d has started by or in period t; otherwise it 

is 0. 

, [0,1]s tX   Continuous decision variable representing the portion of slice s to 

be extracted in period t. 

Objective function: 

  ,
1 1

Maximize
1

T S
s

s tt
t s

SEV
X

i 

 
 
  

  (3.29) 

Constraints: 
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  1,...,t T   (3.30) 
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  1,..., , {1,..., }t T d D    (3.34) 
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  {1,..., }, 1,..., , dd D t T l S     (3.38) 
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The constraints are presented by Equations (3.30) to (3.45). Equation (3.30) 

represents the mining capacity which ensures that the total tonnage of material 

extracted from slices in each period is within the acceptable range that allows 

flexibility for potential operational variations. The constraints are controlled by 

the continuous variable Xs,t. There is one constraint per period. 

Equations (3.31) and (3.32) control the production’s average grade. They force 

the mining system to achieve the desired grade. The average grade of the element 

of interest has to be within the acceptable range and between the certain values. 

Each draw column is divided into slices. The lowest slice controls the starting 

period of extraction from each drawpoint. This means that the extraction from the 

draw column associated with drawpoint d is started by the extraction from the 

relevant lowest slice. Equation (3.33) controls this concept and forces variable Ed,t 

to change to 1 when a portion of the lowest slice of the draw column is extracted 

in period t. Equation (3.34) ensures that when variable Ed,t changes to 1, it remains 

1 until the end of the mine life. 

When the extraction of the last portion of a slice is finished in period t, extraction 

of the slice above can start in period t or t+1. In other words, the extraction of a 

slice can start if the slice below has been totally extracted. If the extraction of a 

slice is not started after finishing the extraction of the slice below in period t or 

t+1, the relevant drawpoint must be closed. The concept is applied using Equation 

(3.35). This ensures that when drawpoint d is open, at least a portion of one of the 

slices within the draw column associated with drawpoint d is extracted; otherwise, 

the drawpoint must be closed. This means extraction must be continuous; 

otherwise, the drawpoint will be closed. Equation (3.36) ensures that when 

variable Cd,t changes to 1, it remains 1 until the end of the mine life. 

As mentioned, when variables Ed,t and Cd,t change to 1, they remain 1 until the end 

of the mine life. This helps us to control the maximum number of active 

drawpoints in each period using Equation (3.37).   
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At the drawpoint-and-cluster level formulation, the mining precedence is 

controlled in vertical and horizontal directions. The precedence between 

drawpoints is controlled in a horizontal direction while the precedence between 

slices is controlled in a vertical direction. Equation (3.38) ensures that all 

drawpoints belonging to the relevant set, Sd, are started before drawpoint d is 

extracted. This set is defined based on the selected mining advancement direction. 

The set can be empty, which means the considered drawpoint can be extracted in 

any time period in the schedule. Equation (3.38) also ensures that only the set of 

the immediate predecessor drawpoints needs to start prior to starting the 

drawpoint under consideration. 

Extraction of slice s can be started if the slice below it has been totally extracted.  

For each slice within the draw column except the lowest, there is a set Ss defining 

the predecessor slice that must be extracted prior to the extraction of slice s. The 

extraction precedence of the slices within each draw column is controlled by 

Equations (3.39), (3.40) and (3.41). Equation (3.39) forces variable Bs,t changes to 

1 if extraction from slice s  is started in period t. Equation (3.40) ensures that 

variable Bs,t  can change to 1 only if the slice below it has been extracted totally. In 

other words, this ensures that the extraction of the slice belonging to the relevant 

set, Ss, has been finished prior to the extraction of slice s. Equation (3.41) ensures 

that when variable Bs,t  changes to 1, it remains 1 until the end of the mine life. 

Equation (3.42) guarantees that slice s is extracted when the relevant drawpoint is 

active. 

The drawpoint opening is controlled by the variable, Ed,t , which takes a value of 1 

from the opening period to the end of the mine life. From period two to the end of 

the mine life, the difference between the summation of opened drawpoints until 

and including period t, and the summation of opened drawpoints until and 

including previous period t-1, indicates the number of new drawpoints that need 

to be opened in each period. Equation (3.43) ensures that the number of new 

drawpoints opened in each period except period one is within the acceptable 
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range. At the beginning and in period one, the number of new drawpoints is equal 

to the maximum number of active drawpoints. 

Equation (3.45) ensures that the draw rate from each drawpoint is within the 

desired range in each period. Equation (3.45) imposes upper and lower bounds for 

the draw rate. When drawpoint d is not active, (Ed,t – Cd,t) is equal to zero and this 

relaxes the lower bound of the equation.  

Equation (3.46) ensures that the fractions of the slice extracted over the 

scheduling periods sum to one and thereby all the material in the draw column 

must be extracted. To solve the problem without considering the obtained BHOD 

form the PCBC, this equation must be less than or equal to 1. Using this method, 

the best height of draw for each draw column can be obtained based on the 

optimization. 

3.5 Multiple Mines  

All the mentioned equations at three levels of resolution were only for a single 

mine. To solve the problem at the cluster level, drawpoint level, or drawpoint-

and-slice level models for multiple mines, similar objective functions and 

constraints are applied. The only difference is that everything must be controlled 

for all mines. For example, the discounted cash flow (DCF) for each period is 

equal to summation of the DCF of the mines in that particular period. For the 

constraints, for instance the production target, the total production of each period 

is calculated based on the production of each mine in that particular period. To 

generate a production schedule, a different mining precedence can be applied to 

each mine.   

3.6 Summary and Conclusion 

This chapter has presented the MILP models that are suitable for life-of-mine 

production scheduling in block-caving operations. The models provide an 

optimum, tactical production schedule. The production scheduler aims to 

maximize the NPV of the mining operation while the mine planner has control 



Chapter 3                                                                                         Theoretical Framework 

85 
 

over the development rate, vertical mining rate, lateral mining rate, mining 

capacity, maximum number of active drawpoints, and advancement direction. To 

support a given production target, the production scheduler defines the opening 

and closing time for each drawpoint and cluster, the draw rate from each 

drawpoint and cluster, the number of new drawpoints and clusters that need to be 

constructed, and the sequence of extraction from the drawpoints and clusters. 

The introduced modified clustering method based on an algorithm presented by 

Tabesh and Askari-Nasab (2011) brings two advantages that will help solve  the 

problem. First, it reduces the number of variables, especially binary variables in 

the MILP formulation to make it computationally tractable. The second advantage 

of clustering lies in generating a practical mining schedule. 

The models may be used for two purposes. They can be used for mine planning 

and feasibility studies, or production scheduling. Mine planning and feasibility 

studies are normally carried out prior to production. For this purpose, MILP 

allows the investigation of a wide range of production schedules and development 

strategies. The models can be used individually for small mines. But they can be 

used successively to help large mines overcome the size problem of mathematical 

programming and generate a robust, practical, near-optimal schedule. For this 

purpose, the output of each model is used as the input for the other model. 
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CHAPTER 4  

MILP FORMULATION IMPLEMENTATION 
 
 
 
 

Chapter 4 discusses the mixed-integer linear programming (MILP) models’ 
implementation. The chapter describes the numerical modeling of the MILP 
models’ different components and how they can be set in a MATLAB 
programming environment for a TOMLAB/CPLEX optimization solver. This 
includes the numerical modeling of the objective function and constraints. The 
chapter concludes with an elaboration on techniques for implementing an 
efficient MILP model framework.  
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4.1 Introduction 

The mathematical formulations and theoretical architecture development resulted 

in the mixed-interger linear programming (MILP) formulations discussed in 

Chapter 3. This chapter focuses on the development and application of numerical 

models using a set of procedural instructions and methods in order to achieve the 

research objectives. The formulation and application of the MILP model begins 

with considering its main subcomponents: (i) objective function, and (ii) 

constraints.  

The MILP formulation development starts with identifying the appropriate 

numerical modeling platform that can be used in setting up the problem and 

solving it in a reasonable time. MATLAB (Math Works Inc, 2011) was used as 

the numerical modeling platform and TOMLAB/CPLEX (Holmstrom, 2011) as 

the optimization solver. MATLAB is a high-level language and interactive 

environment for numerical computation, visualization, and programming. Using 

MATLAB, the user can analyze data, develop algorithms, and create models and 

applications. The language, tools, and built-in math functions enable users to 

explore multiple approaches and reach a solution faster than with spreadsheets or 

traditional programming languages, such as C/C++ or Java. TOMLAB is a 

general-purpose development and modeling environment in MATLAB for 

research and teaching about, and finding practical solutions to optimization 

problems. TOMLAB/CPLEX integrates the solver package CPLEX with 

MATLAB and TOMLAB. The CPLEX solver is a large-scale mixed-integer 

linear and quadratic programming solver. The package includes simplex and 

barrier solvers for linear, quadratic, and conic programming.  

The generalized structure that TOMLAB/CPLEX uses to solve a MILP problem 

was identified and used as the basis for the numerical modeling of the MILP 

formulations. With this in mind, MATLAB was used to create the numerical 

model of the main subcomponent of the MILP formulations to be passed on to 

TOMLAB/CPLEX for optimization. This chapter includes a discussion about 

further numerical modeling techniques used to implement an efficient, practical 
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MILP model for block-cave production planning. The chapter also includes 

discussions about the numerical implementation of the MILP model, and 

explanations about the techniques deployed to make the MILP model efficient.  

4.2 Numerical Modeling 

Using mathematical programming models like the MILP formulation for mine 

optimization usually results in large-scale optimization problems. A commercial 

optimization solver capable of handling such problems is CPLEX (IBM, 2009). 

This optimization solver uses a branch and cut algorithm and makes it possible for 

the MILP model to solve large-scale problems. Branch and cut is a method of 

combinatorial optimization for solving integer-programming problems. This 

algorithm is a hybrid of branch-and-bound and cutting plane methods (Horst and 

Hoang, 1996; Wolsey, 1998). 

The MILP model solver in this research was TOMLAB/CPLEX (Holmstrom, 

2011). The user sets an optimization termination criterion in CPLEX known as the 

gap tolerance (EPGAP). The EPGAP, which is a measure of optimality, sets an 

absolute tolerance on the gap between the best integer objective and the objective 

of the best node remaining in the branch-and-cut algorithm. It instructs CPLEX to 

terminate once a feasible integer solution within the set EPGAP has been found. 

The numerical modeling techniques for the MILP formulation, together with 

strategies in developing a MILP problem that can be compiled efficiently, are 

discussed here. This includes compiling the matrices for the objective function 

and constraints. These matrices are compiled using the format as outlined in the 

TOMLAB/CPLEX user’s guide (Holmstrom, 2011). 

4.3 General Formulation 

TOMLAB generalizes an MILP problem in the form stated by Equations (4.1) to 

(4.3). These were reorganized to the generalized structure of a MILP problem. 

min ( ) c xTf x   (4.1) 
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Subject to: 

x x xL U� �
 

 (4.2) 

b Ax bL U� �
 

 (4.3) 

Where 

� c  is the linear objective function coefficients of the MILP model; a vector 

j×1. 

� x  is the decision variable of the MILP model: a vector j×1. 

� xL and xU define the lower and upper bounds on the decision variables: 

vectors j×1. 

� A  represents the coefficients of the constraints of the MILP model: a matrix 

i×j. 

� bL and bU  define the lower and upper bounds on the constraints vectors j×1. 

Equality constraints are defined by setting the lower bounds equal to the upper 

bounds for the respective elements of vectors bL and bU .  

4.3.1 The MILP Models Objective Function 

The objective of the block-cave production planning as defined by the Equations 

(3.3), (3.16), and (3.29) is to maximize the NPV of the mining operation. As 

shown by Equation (4.1), the general form of the MILP model in TOMLAB is to 

minimize the objective function. Therefore, the objective function coefficient 

vector for Equations (3.3), (3.16), and (3.29) must be multiplied by a negative 

sign changing it to minimize the –NPV of the mining operation. For notation 

simplification, the matrix vertical concatenation operator, “;” is used. This 

operator creates a matrix or vector by concatenating them along the vertical 

dimension of the matrix or vector. The MILP models’ objective function, as 
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represented by Equations (3.3), (3.16), and (3.29), has a coefficient vector, c . 

Table  4.1 shows the size and structure of these vectors for each model. In the third 

column of Table  4.1, DCLEV is a � � 1CL T� �  vector holding the discounted cluster 

economic values (CLEV) shown by Equation (3.3), and 0cl is a  � �2 1CL T� � �  

vector with all elements equal to zero; CL  is the maximum number of clusters 

and T is the number of scheduling periods. DDEV is a � � 1D T� �  vector holding 

the discounted drawpoint economic values (DEV) shown by Equation (3.16), and 

0d is a  � �2 1D T� � �  vector with all elements equal to zero; D  is the maximum 

number of drawpoints. DSEV is a � � 1S T� �  vector holding the discounted slice 

economic values (SEV) shown by Equation (3.29), and 0s is a � �� �2 1S D T� � �  

vector with all elements equal to zero; S is the maximum number of slices. 

Table  4.1. Size of the coefficient vector of objective function for each model 

Model 
Size of the  

coefficient vector 
Coefficient vector 

Cluster level � �3 1CL T� � �  � 	;D 0CLEV cl  

Drawpoint level � �3 1D T� � �  � 	;D 0DEV d  

Drawpoint and slice level � �� �2 1S D T� � � �  � 	;D 0SEV s  

The objective function coefficient vector and constraints’ coefficient matrices 

have different units and orders of magnitude. It therefore becomes important to 

transform them to unitless vectors and matrices. This is done by normalizing the 

vectors and matrices by dividing them by norm(s) of their multiplier vector(s). 

Table  4.2 represents the size of the decision variables’ vector and its order for 

each model. At the cluster level, Ucl is a � � 1CL T� �  vector holding the 

continuous decision variables controlling the portion of the cluster to be extracted 

in each period: , [0,1]cl tU 
 . Acl is a � � 1CL T� �  vector holding the binary decision 
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variables controlling the cluster’s activity in each period: , {0,1}cl tA 
 . Zcl is a 

� � 1CL T� �  vector holding the binary decision variables controlling the 

precedence of the clusters’ extraction in each period: , {0,1}cl tZ 
 . At the drawpoint 

level, Ud is a � � 1D T� �  vector holding the continuous decision variables 

controlling the portion of drawpoints to be extracted in each period: , [0,1]d tU 
 . 

Ad is a � � 1D T� �  vector holding the binary decision variables controlling the 

activity of drawpoints in each period: , {0,1}d tA 
 . Zd is a � � 1D T� �  vector 

holding the binary decision variables controlling the precedence of extraction of 

drawpoints in each period: , {0,1}d tZ 
 . At the drawpoint-and-slice level, Xs is a 

� � 1S T� �  vector holding the continuous decision variables controlling the portion 

of the slice to be extracted in each period: , [0,1]s tX 
 . Bs is a � � 1S T� �  vector 

holding the binary decision variables controlling the precedence of the extraction 

of slices: , {0,1}s tB 
 . Ed  is a � � 1D T� �  vector holding the binary decision 

variables controlling the starting period of drawpoints and the precedence of 

extraction of drawpoints: , {0,1}d tE 
 . Cd is a � � 1D T� �  vector holding the binary 

decision variables controlling the closing period of drawpoints: , {0,1}d tC 
 . 

Table  4.2. Size of the decision variables’ vector and its order for each model 

Model 
Size of the decision  

variable vector 
Structure 

Cluster level � �3 1CL T� � �  � 	; ;U A Zcl cl cl  

Drawpoint level � �3 1D T� � �  � 	; ;U A Zd d d  

Drawpoint-and-slice level � �� �2 1S D T� � � �  � 	; ; ;X B E Cs s d d  

4.3.2 The Constraints of the MILP Models 

We proceed to develop the numerical models for the inequality and equality 

constraints of the MILP models represented by Equations (3.4) to (3.15) for the 
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cluster level, Equations (3.17) to (3.28) for the drawpoint level, and Equations 

(3.30) to (3.46) for the drawpoint-and-slice level. 

For cluster-level and drawpoint-level formulations, binary variables are defined to 

identify at what period a given cluster or drawpoint is started and active. For the 

drawpoint-and-slice level formulation, instead of using binary variables to define 

explicitly at what period a drawpoint or slice is started or is active, the binary 

variables specify whether a drawpoint or slice is started by a certain period. 

Caccetta and Hill (2003) employed this approach in their formulation of the open-

pit mine-scheduling problem. Instances using the “by period” formulations tend 

to be solved faster than those using the “at period” formulations, because the 

resultant branch-and-bound tree is more balanced. Figure  4.1 and Figure  4.2 show 

the structure of the constraints’ coefficient matrix for the different levels of 

resolution. The number of rows for each constraint at different levels of resolution 

is shown in Table  4.3.  

In addition to the constraints, the constraints’ coefficient matrix is divided into 

different areas according to the decision variables. Figure  4.3 shows these areas 

for the drawpoint-and-cluster-level formulation. The number of these areas is 

defined based on the number of the decision variables type for each model. 

Therefore, there are three areas at the cluster level and the drawpoint level 

formulations belonging to the related variables, and four areas at the drawpoint-

and-slice level formulation.  Each area itself is divided into sub-areas based on the 

number of scheduling periods. Figure  4.4 illustrates the structure of each variable 

in the constraint coefficient matrix and decision variable vector. The number of 

columns in each period depends on the level of resolution at which the problem is 

going to be solved. At the cluster level formulation, the number of columns in 

each period is equal to the maximum number of the clusters for all variables U , 

A , and Z . At the drawpoint-and-slice level formulation, the number of columns 

in each period for both variables X and B  is equal to the maximum number of 

slices while for variables E  and C , it is equal to the maximum number of 

drawpoints.  
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Figure  4.1. Order of constraints in the constraint’ coefficient matrix for the cluster level 
and drawpoint level formulations  

 
 

 
Figure  4.2. Order of constraints in the constraint’ coefficient matrix for the drawpoint-

and-slice level formulation 
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Table  4.3. Number of rows in constraint’ coefficient matrix for different models 

Constraint 
Number of rows in coefficient matrix 

CL level DP level DP & SL level 

Mining capacity T  T  T  

Ave. grade of production 0 0 2T  

Opening, closing, and continuous 

mining 
� �1CL T� �  � �1D T� �  � �5 2D T� �  

Max. number of active DP/CL � �2 1CL T� �  � �2 1D T� �  T  

Precedence between slices 0 0 
Subject to 

change 

Number of new CLs/DPs T  T  T  

Reserves  CL  D  S  

Draw rate CL T�  D T�  2D T�  

Mining direction precedence Varies based on the advancement direction 

 

 

Figure  4.3. Divisions of the constraints’ coefficient matrix according to the decision 
variables at the drawpoint-and-slice level formulation 
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Figure  4.4. The structure of each variable in the constraints coefficient matrix and 
decision variables vector 

It must be mentioned that the structure of the all constraints is explained in detail 

in this chapter. But when the constraints are created using the DSBC, in order to 

save memory space and handle the size of constraints’ coefficient matrix, 

MATLAB’s sparse function is used. This function converts a full matrix to sparse 

form by squeezing out any zero elements. 

4.3.2.1 Mining capacity 

In all models, this constraint forms T rows of the constraint coefficient matrix. 

Equation (4.4) shows the structure of this constraint. U p , A p , and Z p  are  

� �T CL T� �  and � �T D T� �  matrices at the cluster-level and drawpoint-level 

formulations, respectively. All the elements of A p  and Z p  matrices are equal to 

zero. Equation (4.5) shows the structure of the area related to the decision variable 

U p in the coefficient matrix of the mining capacity constraint. K t
ton is a 1 CL�  row 

vector containing the tonnage of the clusters at the cluster-level formulation and a 

1 D� row vector containing the tonnage of the drawpoints at the drawpoint level 
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formulation. 0  is a 1 CL�  and 1 D� vector at the cluster level and the drawpoint 

level formulations, respectively. All the elements of these vectors are equal to 

zero. In this constraint, each row represents a period. Therefore, in each row the 

K t
ton vector is placed in the corresponding period, t . For instance, to define this 

constraint for period 1, the 1K ton  vector must be in row 1 at period 1.  

Equation (4.6) shows the structure of the mining capacity constraint at the 

drawpoint and slice level formulation. X p  and B p  are � �T S T� �  matrices while 

E p  and C p  are  � �T D T� �  matrices. All elements of the B p , E p , and C p  

matrices are equal to zero. The structure of matrix X p is similar to that of matrix 

U p . But, here, K t
ton is a 1 S�  row vector containing the tonnage of the slices and

0  is a 1 S�  vector with all elements equal to zero. The lower and upper bounds of 

the mining capacity constraint are 1T �  vectors for all models. In all models, after 

creating the coefficient matrix and lower and upper bound vectors for the mining 

capacity constraint, each row of this matrix and vectors is divided by the norm of 

the same row of the coefficient matrix. 

   Lb U A Z Ubp p p p p� 
 � 
 � 
� �� � � � � �  (4.4) 

1

2

.

.
. . .
. . .

.

K 0 0
0 K 0

U 0
0

0 0 K

ton

ton

p

t
ton

� 

� �
� �
� ��
� �
� �
� �� �

 (4.5) 

   Lb X B E C Ubp p p p p p� 
 � 
 � 
� �� � � � � �  (4.6) 

4.3.2.2 Average Grade of Production 

This constraint, which is applied only to the drawpoint-and-slice-level 

formulation, forms 2T  rows of the constraints’ coefficient matrix. Each of 

constraints (3.31) and (3.32) form T rows of the constraints’ coefficient matrix.  
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The first T rows represent the lower bound equation and the rest represent the 

upper bound equation. Equation (4.7)  illustrates the structure of this constraint. 

Xg and B g  are � �2T S T� �  matrices while Eg  and Cg  are  � �2T D T� �  

matrices. All elements of the B g , Eg , and Cg  matrices are equal to zero. In 

Equation  (4.8), G l and Gu are 1 S�  row vectors. Each element of these vectors is 

calculated according to the period of extraction, tonnage of the slice, acceptable 

grade for the production in the considered period, and grade of the slice. The 

lower and upper bounds of grade constraint are 2 1T �  vectors. In the lower 

bound, all the elements are –infinity while in the upper bound all the elements are 

zero. 

Lb X B E C Ubg g g g g g� 
 � 
 � 
� �� � � � � �  (4.7) 

.

.
. . . .
. . . .

.

.

.
. . . .
. . . .

.

G 0 0
0 G 0

0 0 G
X

G 0 0
0 G 0

0 0 G

l

l

l
g

u

u

u

� 

� �
� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �
� �
� �� �

 (4.8) 

4.3.2.3 Opening, Closing, and Continuous Mining 

At the cluster-level and drawpoint-level formulations, each cluster or drawpoint 

can be opened once during the mine life. After opening, the extraction from each 

level must be continuous. The related part in the coefficient matrix for the cluster 

level is created according to Equations (3.9), (3.10), and (3.11). At the drawpoint 

level, it is created using Equations (3.22), (3.23), and (3.24).  Equations (3.9) and 

(3.22), form CL  and D  rows of the coefficient matrix in the related formulation. 

Equation (4.9) shows the structure of these constraints and their upper and lower 
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bounds at the cluster level and the drawpoint level formulations. Based on the 

considered formulation, index 1 is used for Equations (3.9) and (3.22) while index 

2 is used for Equations (3.10), (3.11), (3.23), and  (3.24). 1Uoc , 1Aoc , and 1Zoc are 

� �T CL T� �  and � �T D T� �  matrices at the cluster-level and drawpoint-level 

formulations, respectively. All the elements of the 1Uoc  and 1Aoc  matrices are 

equal to zero.  

Equation (4.10) illustrates the structure of matrix 1Zoc . K t
r  is a 1 CL�  and 1 D�  

vector for the cluster-level and drawpoint-level formulations, respectively. In this 

vector, only the r th element is equal to 1. The rest are zero. r represents the ID 

number of the cluster or drawpoint. For example, if there are 100 drawpoints, 2
43K  

is a 1 100� vector in which the 43rd element is 1 and the rest are zero. 2
43K  is 

located under the column representing period 2. Equations (3.10) and (3.11) at the 

cluster level and Equations (3.23) and (3.24) at the drawpoint level form T rows 

for each cluster or drawpoint. Equations (3.11) and (3.24) are applied to the first 

row of T rows for each cluster or drawpoint. 2Uoc , 2Aoc , and 2Zoc  are 

� � � �CL T CL T� � �  and � � � �D T D T� � � matrices at the cluster-level and the 

drawpoint-level formulations, respectively. All elements of matrix 2Uoc  are equal 

to zero. In the 2Aoc and 2Zoc  matrices, each cluster or drawpoint allocates T  rows 

to itself. The first line is created based on Equation (3.11) at the cluster level and 

Equation (3.24) at the drawpoint level.   

   1 1 1 1 1

2 2 2 2 2

Lb U A Z Ub
Lb U A Z Ub

oc oc oc oc oc

oc oc oc oc b

� 
 � 
 � 

� �� � � � � �

� � � � � �
 (4.9) 

   

1 2
1 1 1
1 2
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1 1 1
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. . . .
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 (4.10) 
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Equations (4.11) and (4.12) show the structure of the 2Aoc  and  2Zoc  matrices. 

,1K t
r and , 1K t

r �  are 1 CL�  and 1 D�  vectors at the cluster-level and the drawpoint-

level formulations, respectively. r  represents the ID number of the cluster or 

drawpoint, and t  is the period. ,1K t
r indicates that all elements of this vector are 

zero except the r th element, which is equal to 1. , 1K t
r �  indicates that all the 

elements of this vector are zero except the r th element, which is equal to -1. 

1
1,1

1 2
1, 1 1,1

2 1
1, 1 1,1

1
1, 1 1,1

2

1
,1

1 2
, 1 ,1

2 1
, 1 ,1

1
, 1 ,1

K 0 . 0 0
K K . 0 0

. . . . .
0 . K K 0
0 . 0 K K
. . . . .A . . . . .
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. . . . .
0 . K K 0
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T T
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 (4.11) 
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 (4.12) 

0  is a 1 CL�  and 1 D�  vector at the cluster-level and the drawpoint-level 

formulations, respectively.  All the elements of these vectors are equal to zero. 

The lower and upper bounds of this constraint are � �1CL T� �  and � �1D T� �

vectors at the cluster- and the drawpoint-level formulations, respectively. In the 

lower bound, all the elements are –infinity. In the upper bound vector, all the 

elements are zero except at the location of the first period for each cluster or 
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drawpoint, where the elements are 0.5. For example, if there are 10 drawpoints in 

the model which has to be scheduled over three periods, the ID numbers of the 

elements of the upper bound vector for this constraint, which are equal to 0.5, 

include 1, 4, 7, and 10. 

At the drawpoint-and-slice-level formulation, the opening and closing constraints 

are controlled using Equations (3.33), (3.34), (3.35), (3.36), and (3.42). Equation 

(4.13)  illustrates the structure of these constraints. Indices 1 to 5 are associated 

with Equations (3.33), (3.34), (3.35), (3.36), and (3.42), respectively. 1X , 1B , 3X , 

3B , 5X , and 5B  are � � � �D T S T� � � matrices. 1E , 1C , 3E , 3C , 5E , and 5C  are 

� � � �D T D T� � �  matrices. 2X , 2B , 4X , and 4B  are � �� � � �1D T S T� � � �

matrices. 2E , 2C , 4E , and 4C  are � �� � � �1D T D T� � � �  matrices. All the 

elements of the 1B , 1C , 2X , 2B , 2C , 3B , 4X , 4B , 4E , and 5B matrices are equal 

to zero. Equation (4.14) illustrates the structure of the matrix 1X . ,1
, d

t
d lsK is a 1 S�  

vector with all the elements equal to zero except the dls th element, which is equal 

to 1. dls is the ID of the lowest slice of the draw column associated with 

drawpoint d . In each row these vectors are placed in a column related to the 

considered period. 0  is a 1 S�  vector with all the elements equal to zero. 

Equation (4.15) illustrates the structure of matrix 1E . , 1t
d
�K  is a 1 D�  vector with 

all the elements equal to zero except the d th element, which is equal to -1. In 

each row these vectors are placed in a column related to the considered period. 0  

is a 1 D�  vector with all the elements equal to zero. 1Lb  and 1Ub  are � � 1D T� �  

vectors. All the elements of 1Lb  and 1Ub  vectors are –infinity and zero, 

respectively. Equation (4.16)  illustrates the structure of the matrix 2E . ,1t
dK  and 

, 1G t
d
�

 are  1 D�  vectors with all the elements equal to zero except the d th 

element, which is equal to 1 and -1, respectively. d is the ID of the draw column 

associated with drawpoint d . In each row these vectors are placed in a column 
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related to the considered period. 0  is a 1 D�  vector with all the elements equal to 

zero. Matrix 4C  is similar to matrix 2E . 2Lb , 4Lb , 2Ub  , and 4Ub  are 

� �� �1 1D T� � �  vectors. All the elements of the lower bound and upper bound 

vectors are –infinity and zero, respectively.  

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

5 5 5 5 5 5
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 � 
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� � � � � �
� � � � � �� � � � � �

Lb X B E C Ub
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 (4.14) 

Equation (4.17) illustrates the structure of matrix 3X . ,
,K ds

t L
d S
�  is a 1 S�  vector in 

which all the elements are zero except the elements whose indices are equal to 

indices of the slices within the draw column associated with drawpoint d . These 

elements are equal to L� . dsS is a set which defines the slices in the draw column 

associated with drawpoint d . These vectors are placed in a column related to the 

considered period. 0  is a 1 S�  vector with all the elements equal to zero. 

Equation (4.18) illustrates the structure of the matrix 3E . ,1t
dK  is a 1 D�  vector 
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with all the elements equal to zero except the d th element, which is equal to 1. 

Each vector is placed in the related column based on the considered period. t  

represents the considered period. 
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 (4.17) 

0  is a 1 D�  vector with all the elements equal to zero. The structure of matrix 3C  

is similar to matrix 3E with the difference being that in matrix 3C  the d th 

element is replaced with -1 instead of 1. 3Lb  and 3Ub  are � � 1D T� �  vectors. All 

the elements of the lower bound and upper bound vectors are –infinity and zero, 

respectively. 
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 (4.18) 

Equation (4.19) illustrates the structure of matrix 5X . 
11,

,K D
ds

T Ns
d S

�
 is a  1 S�  vector 

in which all the elements are zero except the elements whose indices are equal to 

indices of the slices within the draw column associated with drawpoint d . These 
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elements are equal to � �1 dNs , in which dNs  is the number of the slices within 

the draw column associated with drawpoint d . 0  is a  1 S�  vector with all the  

elements equal to zero. These vectors are placed in a column related to the 

considered period. Matrix 5E  is similar to matrix 3C  while matrix 5C  is similar to 

matrix 3E . 5Lb  and 5Ub  are � � 1D T� �  vectors. All the elements of the lower 

bound and upper bound vectors are –infinity and zero, respectively. After creating 

the coefficient matrix and lower and upper bound vectors of Equation (4.13), each 

row of the matrix and vectors is divided by the norm of the same row of the 

coefficient matrix. 
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 (4.19) 

4.3.2.4 Maximum Number of Active Clusters and Drawpoints 

This constraint is controlled using Equations (3.5), (3.6), and (3.7) at the cluster-

level formulation, and Equations (3.17), (3.18), and (3.19) at the drawpoint-level 

formulation. Equation (4.20) shows the structure of this constraint at both 

formulations in which the indices indicate that there are three equations. Based on 

the considered formulation, index 1 is used for Equations (3.5) and (3.17), index 2 

is used for Equations (3.6) and (3.18), and finally index 3 is used for Equations 

(3.7) and (3.19). 1U , 2U , 1A , 2A , 1Z and 2Z are � � � �CL T CL T� � �  matrices at 
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the cluster-level and � � � �D T D T� � �  matrices at the drawpoint-level 

formulations. 

All the elements of matrices 1Z  and 2Z , are equal to zero. Equations (4.21) and 

(4.22) represent the structure of matrices 1A  and 1U  , respectively. Matrix 2U  is 

equal to matrix 1A and matrix 2A is equal to matrix 1U  divided by L . ,1K t
r and 

, 1K t
r �  are 1 CL�  and 1 D�  vectors at the cluster-level and drawpoint-level 

formulations, respectively. r  represents the ID number of the cluster or drawpoint 

and  t  is the considered period. ,1K t
r  indicates that all the elements of this vector 

are zero except the r th element, which is equal to 1. , 1K t
r �  indicates that all the 

elements in this vector are zero except the r th element, which is equal to -1. 
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 (4.22) 

3U , 3A , and 3Z are � �T CL T� �  matrices at the cluster-level and � �T D T� �  

matrices at the drawpoint-level formulations. All the elements of matrices 3U  and 

3Z , are equal to zero. Equation (4.23) illustrates the structure of matrix 3A . K t
one  

is a 1 CL�  and 1 D�  vector of ones at the cluster-level and drawpoint-level 

formulations, respectively. t  represents the considered period. 1Lb  and 2Lb  are 

� � 1CL T� �  and � � 1D T� �  vectors at the cluster-level and drawpoint-level 

formulations with the all the elements equal to –infinity. 1Ub  and 2Ub  are 

� � 1CL T� �  and � � 1D T� �  vectors at the cluster-level and drawpoint-level 

formulations with all the elements equal to zero. 3Lb  and 3Ub  are 1T �  vectors at 

both the cluster- and drawpoint-level formulations. The elements of vector 3Lb  

are equal to zero for both formulations. The elements of vector 3Ub  are equal to 

,Acl tN  and ,Ad tN  at the cluster-level and the drawpoint-level formulations, 

respectively. After creating the coefficient matrix and lower and upper bound 

vectors, each row of the matrix and vectors is divided by the norm of the same 

row of the coefficient matrix. 
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 (4.23) 

The maximum number of active drawpoints at the drawpoint-and-slice-level 

formulation is controlled using Equation (3.37). Equation (4.24) shows the 

structure of this constraint. ActX and ActB  are � �T S T� �  matrices and ActE and 

ActC  are � �T D T� �  matrices. All the elements of the ActX and ActB matrices are 

equal to zero.  Equation (4.25) illustrates the structure of matrix ActE . K t
one is a 

1 D�  vector of ones and t  represents the considered period. In each row, this 

vector is placed in a column related to the considered period.  

Matrix ActC  has a structure similar to that of matrix ActE  , with the difference 

being that all the members of vector K t
one  are equal to -1 instead of 1. LbAct  and 

UbAct  are 1T �  vectors. All the elements of the LbAct and UbAct  vectors are zero 

and ,Ad tN , respectively. After creating the coefficient matrix and lower and upper 

bound vectors of Equation (4.24), each row of the matrix and vectors is divided 

by the norm of the same row of the coefficient matrix. 

4.3.2.5 Mining Precedence 

At the cluster-level and the drawpoint-level formulations, the mining precedence 

is controlled in the horizontal direction based on the advancement direction. 

Equations (3.8) and  (3.21) control this constraint for these formulations.  

Equation (4.26) illustrates the structure of this constraint at the cluster-level and 

the drawpoint-level formulations. Matrix ,U prec r  represents the area of the 

coefficient matrix related to variable U  for cluster or drawpoint r . The number of 

rows depends on the defined precedence in the advancement direction.  
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� 	 � 	 � 	Act Act Act Act Act Act� �Lb X B E C Ub  (4.24) 
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The number of rows allocated to each cluster or drawpoint is calculated using 

Equation (4.27).  The dimension of matrix A prec  in each row is same as the 

related U prec  and Z prec  matrices. All the elements of matrix A prec  are equal to 

zero. To better clarify the issue, this part continues using the cluster level 

formulation. The same concept must also be used at the drawpoint level 

formulation. Equation (4.28) illustrates the structure of matrix ,1Z prec .  

,1 ,1 ,1 ,1 ,1

,2 ,2 ,2 ,2 ,2

, , , , ,

. . . . .

. . . . .

prec prec prec prec prec

prec prec prec prec prec

prec r prec r prec r prec r prec r
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 (4.26) 

  

� �
� �

number of members in set cluster level
number of members in set drawpoint level

cl

Rows d
T SN T S
� �� � ��

 (4.27) 
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(4.28) 

,1
,K t

n cl  is a 1 CL�  vector with all the elements equal to zero except cl th element, 

which is equal to 1. n  is the number of members for cluster cl in set clS . 

Equation (4.29) illustrates the structure of matrix ,1U prec .  , 1
,K t

n cl
�  is a 1 CL�  vector 

with all the elements equal to zero except n th element, which is equal to -1. n  is 

the ID number of the n th member for cluster cl  in set clS .  

For example, if there are 100 clusters in the model which must be scheduled over 

15 periods, there will be 100 sections for each variable (e.g. 

,1 ,2 ,100U , U ,..., Uprec prec prec ). , 1
8,45K t �  is a 1 100�  vector in which all the elements are 

zero except the 8th element, which is equal to -1. This vector is placed under the t

th column, which represents the considered period. The number 45 is the cluster’s 

ID number. The size of the ,45U prec or ,45precZ  matrices depends on the number of 

members in set 45S . For instance, if the number of members in this set is nine, 

cluster 45 allocates 135 rows to itself. The elements of the lower bound vector of 

all sections are –infinity. But, for the upper bound, the elements can be changed 

from cluster to cluster based on geotechnical conditions. 
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(4.29) 

In other words, the required percentage of extraction from the predecessor clusters 

can be defined for each cluster separately. In equations (3.8) and (3.21), this 

amount is same for all clusters.    

At the drawpoint-and-slice-level formulation, the mining precedence is controlled 

in both the horizontal and vertical directions. The precedence between drawpoints 

is controlled in a horizontal direction while the precedence between slices is 

controlled in a vertical direction.  For this purpose, Equations (3.38), (3.39), 

(3.40), and (3.41) are used.  

Equation (4.30) illustrates the structure of the coefficient matrix of this constraint. 

Matrices with index H  are created using Equation (3.38), and matrices with index 

V are created using Equations (3.39), (3.40), and (3.41). Matrices XHprec , BHprec , 

EHprec , and CHprec  have the same size, which depends on the defined precedence 

in the advancement direction. The number of rows in vectors LbHprec  and UbHprec  

is similar to the number of rows in these matrices. All the elements of the XHprec , 
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BHprec , and  CHprec  matrices are zero. The number of rows allocated to each 

drawpoint in matrix EHprec  is calculated using the drawpoint part of Equation 

(4.27). 

1 1 1 1 1 1
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3 3 3 3 3 3
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 (4.30) 

Equation (4.31) illustrates the structure of matrix EHprec . , 1,1
,Kt

n d
�  is a 1 D�  vector 

with all the elements equal to zero, except the n th and d th elements, which are 

equal to -1 and 1, respectively. d represents the ID number of the drawpoint, and 

n  is the ID number of the n th member of set dS  which defines the predecessor 

drawpoints that must be started prior to extraction of drawpoint d . 0  is a 1 D�  

vector with all the elements equal to zero.  The elements of the lower and upper 

bound vectors are –infinity and zero, respectively. As mentioned before, the 

indices 1, 2, and 3 in Equation (4.30) are related to Equations (3.39), (3.40), and 

(3.41) , respectively. 1XVprec , 1EVprec , and 1CVprec  and 1BVprec  are � � � �S T S T� � �  

matrices and 1EVprec  and 1CVprec  are � � � �S T D T� � � matrices. All the elements of 

the 1EVprec and 1CVprec  matrices are zero. In matrices 1XVprec  and 1BVprec  , each slice 

allocates T rows to itself. 

 Equations (4.32) and (4.33) illustrate matrix 1XVprec  and 1BVprec . ,1Kt
s  and , 1Kt

s
�  are 

1 S�  vectors with all the elements equal to zero except the s th element, which is 

equal to 1 and -1, respectively. Each vector is placed in a column related to the 

considered period. 0  is a 1 S�  vector with all the elements equal to zero. 

Matrices 2XVprec , 2BVprec , 2EVprec , and 2CVprec  have the same number of rows. All 

the elements of matrices 2EVprec and 2CVprec  are zero. Matrices 2XVprec  and 2BVprec  

should be prepared in a way to ensure that variable ,s tB  can change to 1, only if 

the slice below has been extracted totally. In matrices 2XVprec  and 2BVprec  each 
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slice allocates T rows to itself. On the other hand, it is obvious that there is no 

restriction for the lowest slices, so the size of these matrices is  

� �� � � �S D T S T� � � �  , in which D is the maximum number of the drawpoints 

that is equivalent to the number of the lowest slices. 
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Equations (4.34) and (4.35) illustrate matrices 2XVprec  and 2BVprec . ,1Kt
s  and , 1Kt

s
�  

are 1 S�  vectors with all the elements equal to zero except the s th element, which 
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is equal to 1 and -1, respectively. Each vector is placed in a column related to the 

considered period. 0  is a 1 S�  vector with all the elements equal to zero. 

Equation (4.36) illustrates the structure of matrix 3EVprec . All the elements of the

3XVprec , 3BVprec  and 3CVprec  matrices are zero. ,1t
sK  and , 1G t

s
�  are 1 S�  vectors with 

all the elements equal to zero except the s th elements which are equal to 1 and -1 

respectively. s is the ID number of the slice. In each row, these vectors are placed 

in the columns related to the considered period. 0  is a 1 S�  vector with all the 

elements equal to zero.  In Equation (4.30), the size of the lower and upper bound 

vectors is defined based on the related sections in the coefficient matrix. All the 

elements of the lower and upper bound vectors are –infinity and zero, 

respectively. 

 

1, 1
1
1, 1 2, 1
1 1
1, 1 2, 1 3, 1
1 1 1

1, 1 2, 1 3, 1 , 1
1 1 1 1
1, 1
2
1, 1 2, 1
2 2
1, 1 2, 1 3, 1
2 2 2

1,1 2,1 3, 1 , 1
2 2 2 2

2 1, 1

1, 1 2, 1

1, 1 2

K 0 0 . 0
K K 0 . 0
K K K . 0

. . . . .
K K K . K
K 0 0 . 0
K K 0 . 0
K K K . 0

. . . . .
K K K . K

. . . . .

. . . . .X K 0 0 . 0
K K 0 . 0
K K

T

T

Vprec
s

s s

s s

�

� �

� � �

� � � �

�

� �

� � �

� �

�

� �

�

�

, 1 3, 1

1, 1 2, 1 3, 1 , 1

1, 1

1, 1 2, 1

1, 1 2, 1 3, 1

1, 1 2, 1 3, 1 , 1

K . 0
. . . . .

K K K . K
. . . . .
. . . . .

K 0 0 . 0
K K 0 . 0
K K K . 0

. . . . .
K K K . K

s

T
s s s s

S

S S

S S S

T
S S S S

� �

� � � �

�

� �

� � �

� � � �

� 

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 

(4.34) 
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 (4.36) 

 

4.3.2.6 Number of New Clusters and Drawpoints 

At the cluster-level and the drawpoint-level formulations, this constraint is 

controlled using two equations for each model. One equation is applied to period 
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one and the other is applied to the rest of the mine life. Equation (4.37) illustrates 

the structure of this constraint at the cluster-level and the drawpoint-level 

formulations. Matrices Unew , Anew , and Znew  are � �T D T� �  that all the elements 

of  Unew  and Anew  are zero.  Equation (4.38) illustrates the structure of matrix 

Znew . K t
one is a 1 CL�  and 1 D�  vector of ones at the cluster-level and the 

drawpoint-level formulations, respectively. This vector is placed in the related 

column to the considered period. 0  is a 1 CL�  and 1 D�  vector with all the 

elements equal to zero at the cluster-level and the drawpoint-level formulations, 

respectively. Lbnew  and Ubnew  are 1T �  vectors. Each row represents a period and 

is based on the geotechnical conditions it can be changed. The elements of vector 

Lbnew  are the minimum acceptable number of the clusters or drawpoints 

according to the considered model. In vector Ubnew  , the first element is equal to 

the maximum number of the acceptable active clusters or drawpoints based on the 

considered model. 

� 	 � 	 � 	Lb U A Z Ubnew new new new new� �  (4.37) 

1

2

3

K 0 0 0 . 0
0 K 0 0 . 0

Z 0 0 K 0 . 0
0 0 0 . . 0
0 0 0 0 . K

one

one

new one

T
one

� 

� �
� ��
� �
� �� �

 
 (4.38) 

At the drawpoint-and-slice-level formulation, this constraint is controlled using 

Equations (3.43) and (3.44). Equation (4.39) illustrates the structure of this 

constraint for this formulation.  The Xnew  and Bnew  matrices are  � �T S T� � . The 

Enew  and Cnew  matrices are � �T D T� � .  All the elements of matrices Xnew , Bnew , 

and Cnew are zero. In matrix Enew  , the first row represents Equation  (3.44) and the 

rest represent Equation (3.43). The structure of matrix Enew  is shown in Equation 

(4.40). K t
one  and Gt

one�  are 1 D�  vectors with all the elements equal to 1 and -1, 

respectively. Lbnew  and Ubnew  are 1T �  vectors which are created in a way 
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defined for the cluster-level and the drawpoint-level formulations. After creating 

the coefficient matrix and lower and upper bound vectors of Equations (4.37) and 

(4.39), each row of the matrix and vectors is divided by the norm of the same row 

of the coefficient matrix. 

� 	 � 	 � 	Lb X B E C Ubnew new new new new new� �  (4.39) 

  

1

1 2

2 3

1
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T T
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� �
� ��
� �
� �� �

 
 (4.40) 

4.3.2.7 Draw rate 

At the cluster-level formulation, the amount of the material that can be extracted 

from each cluster varies with the number of the draw columns in the cluster. This 

constraint is controlled using Equation (3.12). Equation (4.41) illustrates the 

structure of this constraint at the cluster-level formulation. UDR , ADR , and ZDR  

are � � � �CL T CL T� � �  matrices and all the elements of ZDR  are equal to zero. 

Equation (4.42) illustrates the structure of matrix UDR . ,K
cl

t
cl Ton  is a 1 CL� vector 

with all the elements equal to zero except the cl th element, which is equal to the 

tonnage of cluster cl . This vector is placed in the related column under the 

considered period. Equation (4.43) illustrates the structure of matrix ADR . ,G
cl

t
cl DR�

is a 1 CL� vector with all the elements equal to zero except the cl th element, 

which is equal to multiplying the number of draw columns in the cluster by the 

minimum acceptable draw rate of a drawpoint. In both Equations (4.42) and 

(4.43), 0  is a 1 CL� vector with all the elements equal to zero. LbDR  and UbDR  are 

� � 1CL T� �  vectors. All the elements of the lower bound vector are zero. In the 

upper bound vector, the first T rows belong to cluster 1, the second T rows belong 

to cluster 2, and so on. Therefore, the upper bound of each cluster which is a 1T �  

vector is calculated using Equation (4.44). clNDP is the number of draw columns 
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in the cluster. tDR  and tDR  are the maximum and minimum draw rates of the 

drawpoints in the cluster. At the drawpoint-level formulation, the similar method 

is applied with the difference being that here, clNDP  is equal to 1. 

� 	 � 	 � 	Lb U A Z UbDR DR DR DR DR� �  (4.41) 
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 (4.43) 

� 	 � �1
Ubcl t tDR clT

NDP DR DR
�
� � �  (4.44) 

The draw rate constraint is controlled at the drawpoint-and-slice-level formulation 

using Equation (3.45). To create the required matrices, this equation is simplified 

to two inequalities (4.45) and (4.46). Constraint (4.47) represents the structure of 

this constraint at the drawpoint-and-slice-level formulation. Indices 1 and 2 
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represent inequalities (4.45) and (4.46), respectively. All the matrices – 1XDR , 

2XDR , 1BDR , 2BDR , 1EDR , 2EDR , 1CDR  , and 2CDR  – have D T�  rows. All the 

elements of matrices 1BDR , 1EDR , 1CDR , and 2BDR  are equal to zero. Equation 

(4.48)  illustrates the structure of matrix 1XDR . ,K ds
t
S ton  is a 1 S� vector with all the 

elements equal to zero except the elements whose IDs are equal to the IDs of the 

slices within the draw column associated with drawpoint d . 

� � ,,. d tn n tTon X DR��  (4.45) 

� � � �,, , ,. . 0d td t d t n n tE C DR Ton X� � ��  (4.46) 

 � �{1,..., }, 1,..., , dsd D t T n S� 
 
 
   

1 1 1 1 1 1

2 2 2 2 2 2

Lb X B E C Ub
Lb X B E C Ub

DR DR DR DR DR DR

DR DR DR DR DR DR

� 
 � � � 
� �� � � � � �� � � � � �
 (4.47) 

The values of these elements are equal to the tonnage of the related slices. 0  is a 

1 CL� vector with all the elements equal to zero. 1LbDR  and 1UbDR  are � � 1D T� �  

vectors with all the elements equal to -infinity and the maximum acceptable draw 

rate, respectively. Matrix 2XDR  is similar to matrix 1XDR  with the difference 

being that in matrix 2XDR  , all the tonnage must be multiplied by -1. Equation 

(4.49) illustrates the structure of matrix 2EDR .  

,K
d

t
d DR is a 1 D�  vector with all the elements equal to zero except the d th  , which 

is equal to the minimum draw rate of drawpoint d . 0  is a 1 D�  vector with all the 

elements equal to zero. Matrix 2CDR  is similar to matrix 2EDR  with the difference 

being that in this matrix, the minimum draw rate of the drawpoint must be 

multiplied by -1. 2LbDR  and 2UbDR  are � � 1D T� �  vectors with all the elements 

equal to -infinity and zero, respectively. After creating the coefficient matrix and 
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lower and upper bound vectors of Equations (4.41) and (4.47), each row of the 

matrix and vectors is divided by the norm of the same row of the coefficient 

matrix. 
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 (4.49) 

4.3.2.8 Reserves 

Equation (4.50) illustrates the structure of this constraint at the cluster-level and 

the drawpoint-level formulations. Ures , Ares , and Zres  are CL CL�  and D D�  

matrices at the cluster level and the drawpoint level formulations, respectively. 

All the elements of matrices Ares  and Zres  are zero. Equation (4.51) illustrates the 

structure of the Ures  for the cluster level formulation. ,1Kt
r  is a 1 CL�  and 1 D�  

vector at the cluster level and the drawpoint level formulations, respectively. All 

the elements of these vectors are zero except the r th element, which is equal to 1. 
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r represents the ID number of the cluster or drawpoint at the related formulation. 

Lbres and Ubres are 1CL�  and 1D �  vectors of ones at the cluster-level and the 

drawpoint-level formulations, respectively. 

� 	 � 	 � 	Lb U A Z Ubres res res res res� �  (4.50) 
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 (4.51) 

Equation (4.52) illustrates the structure of this constraint at the drawpoint-and-

slice-level formulation. Xres and Bres are � �S S T� �  matrices, and Eres and Cres

are � �S D T� �  matrices. All the elements of matrices Bres , Eres , and Cres are 

zero. The structure of matrix Xres is similar to that of matrix Ures  in Equation 

(4.51). The lower and upper bounds are 1CL�  vectors of ones. 

� 	 � 	 � 	Lb X B E C Ubres res res res res res� �  (4.52) 

4.3.3 Multiple Mines 

For multiple mine problems, similar structures are used. As explained in Figure 

 4.3 and Figure  4.4, the coefficient vector of the objective function and constraints’ 

coefficient matrix are divided into different areas based on the existing decision 

variables in each model. Then each area is divided into periods.  According to the 

selected level of resolution, each period consists of clusters, drawpoints, or 

drawpoints and slices. For multiple mine problems, each period consists of 

clusters, drawpoints, or drawpoints and slices for different mines. Figure  4.5 

illustrates this concept for multiple mines.   
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Figure  4.5. The structure of each variable in the constraint coefficient matrix and decision 
variable vector for multiple mines problem 

4.4 Implementation of an Efficient MILP Model 

We have progressively developed an efficient and robust MILP models for long-

term block cave production scheduling (Pourrahimian et al., 2012a; Pourrahimian 

et al., 2012b; Pourrahimian et al., 2012c). This leads to a large-scale optimization 

problem with numerous decision variables and constraints that leads to significant 

memory overhead and time to solve. We implemented a practical mine production 

sequencing program using the advancement direction and modified hierarchical 

clustering algorithms based on an algorithm presented by Tabesh and Askari-

Nasab (2011) which resulted in reduced number of binary variables to be solved 

for during optimization. We have further developed techniques to reduce the 

number of non-zero decision variables. 
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4.4.1 Implementation of MILP Model with Fewer Binary Decision 
Variables 

The most common problem in the MILP formulation is the size of the branch-and-

cut tree. The tree becomes so large that insufficient memory remains to solve the 

LP sub-problems. The size of the branch-and-cut tree can actually be affected by 

the specific approach one takes in performing the branching, and by the structure 

of each problem. So, there is no way to determine the size of the tree before 

solving the problem. But, the number of decision variables in each formulation 

affects the size of the branch-and-cut tree. The general strategy in formulating the 

MILP for block-cave production scheduling is therefore to reduce the number of 

decision variables, thereby reducing the solution time significantly. Variable 

reduction techniques are used to improve the solution time. These techniques 

endeavor to limit the search space by eliminating certain variables or by a priori 

setting the values of other variables. 

As mentioned before, the general form of the MILP formulation can be 

represented by Equation (4.1), subject to constraints of the MILP model. The 

objective functions for long-term block-cave production scheduling, as stated by 

Equations (3.3), (3.16), and (3.29), for three levels of resolution. At each level of 

resolution, the objective function coefficient vector, c , is a column vector 

containing the discounted cash flows in all periods. The objective function 

decision variables vector, r , is a column vector containing non-zero elements to 

be solved in the MILP model during optimization. Reducing the number of non-

zero decision variables in vector r  results in a production-scheduling problem 

with a smaller size. 

Clustering reduces the number of variables, especially binary variables in the 

MILP formulation, to make the formulation computationally tractable. The size of 

the problem and number of the binary decision variables are managed at the 

clustering level formulation using the defined number of clusters. 
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After solving the problem at the cluster level, the earliest period that each cluster 

can be reached and the cluster life, if all the constraints are satisfied, are known. 

On the other hand, it is assumed that the portion scheduled to be extracted from 

each cluster is taken from all the drawpoints, based on the ratio of each draw 

column’s tonnage in the cluster. The drawpoints of each cluster are known, so the 

earliest start time and the cluster life allow elimination from the drawpoint level 

model of any variables that would mine each drawpoint before its earliest start 

time. Two years flexibility for the earliest start time is assumed at the drawpoint 

level. For this purpose, if, at the cluster level, the extraction of a drawpoint is 

started in period t with the cluster life of n , at the drawpoint level any variables 

that would mine this drawpoint before period 2t �  and after � � 2t n� �  are 

eliminated. This is done by changing the related decision variables in vector r to 

zero. 

Theoretically, this variable reduction technique decreases the solution space for 

the optimization problem. Thus during optimization, some of the branches in the 

branch-and-cut tree are eliminated, ensuring that the solution for the practical 

production scheduling problem is reached faster. 

The results of the drawpoint level are used at the drawpoint-and-slice-level 

formulation to eliminate the unnecessary variables. The same concept is used to 

eliminate the variables related to the drawpoints. In addition to eliminating the 

variables related to the drawpoints, some of the variables related to the slices can 

also be eliminated. These variables are eliminated based on the earliest extraction 

time of each slice as well. According to the maximum-allowed draw rate, the 

earliest extraction time for each slice is defined. For this purpose, each draw 

column is divided into groups based on the maximum allowable draw rate from 

the drawpoint. The total tonnage of slices within each group must be equal to or 

greater than the maximum allowable draw rate from the drawpoint. Then these 

groups are numbered from bottom to top. The numbers are added to the starting 

period of the drawpoint to obtain the earliest starting time of each group and, 
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consequently, the earliest starting time of each slice. For example, in Figure  4.6, 

the draw column associated with drawpoint D50 has 20 slices.  

 

Figure  4.6. Elimination of the variables related to the slices  

Based on the maximum allowable draw rate, this draw column is divided into six 

groups, which are numbered from bottom to top. This means if extraction from 

drawpoint D50 is started in period t , only the slices within group 1 can be 

extracted in period t ; the earliest starting time for the slices within group 2 is 1t �

and so on. This concept makes it possible to eliminate from the drawpoint-and-

cluster level any variables that would mine each slice before its earliest start time. 
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4.5 Summary and Conclusion 

In summary, the mathematical models and theoretical architecture developed in 

Chapter 3 were used as the basis for the MILP formulation framework 

development in the first part of this chapter. The models involve the interactions 

of the objective function and the constraints in an optimization framework to 

achieve the objective. The main objective is to maximize the mining operation’s 

NPV. 

The numerical model of the MILP formulations is developed in MATLAB (Math 

Works Inc, 2011), with the generalized structure used by TOMLAB/CPLEX 

(Holmstrom, 2011) in solving large-scale MILP problems. After creating all 

requirements such as vectors and matrices, the resulting numerical model is 

passed on to TOMLAB/CPLEX for optimization. The second part of this chapter 

explores further numerical modeling techniques needed to implement an efficient, 

practical MILP model for block-cave long-term production planning. 
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CHAPTER 5  
 

VERIFICATION, EXPERIMENTS, AND 
DISCUSSION OF RESULTS 

 

Chapter 6 presents experimentation with the MILP model framework and DSBC 
software. This includes case studies and verification of the models. The models for 
different levels of the resolution cluster level, drawpoint level, and drawpoint-and-
slice level are discussed separately. A modified hierarchical clustering algorithm 
based on the algorithm presented by Tabesh and Askari-Nasab (2011) for long-
term production scheduling of block caving is applied on the data. A multi-step 
case study is carried out to verify the models and generate a near-optimal realistic 
mine plan in a reasonable CPU time.  
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5.1 Introduction 

The study proceeded with the application and verification of the models. This 

chapter will include discussions about the application of the methodology using 

the models on a dataset, and the results. In order to develop the models proposed 

in this research, the main dataset was obtained from Gemcom. This is the sample 

dataset in PCBC. The small dataset is a part of the main dataset. The slice file, 

drawpoints coordinates, and best height of draw (BHOD) were used as the input 

data for the MILP models for long-term production scheduling of block-cave 

mines. First, different models were applied on the small dataset to explain the 

single-step method. Then, the results were analyzed. To describe the multi-step 

approach, the method was explained using the main dataset, and the results were 

discussed. 

5.2 Main Dataset 

The main dataset contained 298 drawpoints. The minimum and maximum 

numbers of slices, which were 10m, were 29 and 36 within draw columns, 

respectively. There were 9790 slices within the main dataset. Figure  5.1 illustrates 

a plan view of the drawpoint configuration based on the relevant coordinates.  

 

Figure  5.1. Plan view of 298 drawpoints 
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The total tonnage of material in the slice file was almost 66 Mt with an average 

density of 2.7 (t/m3). The tonnage from individual drawpoints varied between 184 

and 362kt. Figure  5.2 shows the tonnage distribution for draw columns. Only 

twenty-six percent of the columns contained more than 220kt of ore. 

 

Figure  5.2.  Draw columns tonnage distribution 

Figure  5.3 shows the surface created from the initial height of draw columns based 

on the slice file. It is obvious that the draw columns located at the south end of the 

mine have a higher elevation than the other draw columns. Figure  5.4 shows the 

surface created from the weighted average grade of slices in each draw column. 

This shows that maximum area of the mine has a grade between 1.2% and 1.4%.  

5.3 Application of the MILP Models using the Single-step Method 

The performance of the proposed MILP models was analyzed based on the net 

present value (NPV), smoothness and practicality of the generated schedules, 

number of new drawpoints that must be opened in each period, and number of 

active drawpoints. 

The application of the models was implemented on a Dell Precision T7500 

computer at 2.7 GHz, with 24GB of RAM. The goal was to maximize the NPV at 

a discount rate of 12%, while assuring that all constraints were satisfied during the 

mine-life. 
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Figure  5.3. Height profile based on the main database 

 

Figure  5.4. Grade profile based on the average grade of each draw column 

A part of the main dataset containing 102 drawpoints with the slice height of 10 

meters was considered. Figure  5.5 illustrates a plan view of the drawpoint 

configuration based on the relevant coordinates and distance between the center-

lines of draw columns.  
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Figure  5.5. Plan view of 102 drawpoints 

The minimum and maximum numbers of slices within draw columns were 33 and 

36, respectively. The initial slice file contained 3470 slices, of which 1412 were 

eliminated after applying the BHOD. The BHOD was limited to not less than 50 

m and at least 50 m of the drawpoints with the BHOD of zero was extracted. After 

applying this assumption, minimum and maximum heights of the draw column 

were 50m and 290m, respectively. 
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Figure  5.6 illustrates a 3D view of the draw columns after applying the BHOD. 

The total tonnage of material to be extracted was almost 13.5 Mt. The tonnage 

from individual drawpoints after applying the BHOD varied between 28.1kt and 

220.5kt. The deposit was scheduled over 15 periods, equivalent to 15 years. 

 

Figure  5.6. 3D view of draw columns after applying the BHOD (102 draw columns) 

 

5.3.1 Application of the Single-step Method at the Cluster Level 

To aggregate the draw columns, the advancement lines which distinguish the 

phases were defined for each direction. These phases control practical cave 

advancement. We tested models with no phases defined and the solutions were not 

practical. After the test, clustering was done within the phases for each direction. 

Figure  5.7 shows the created clustering phases for four advancement directions: 

west to east (WE), east to west (EW), north to south (NS), and south to north 

(SN). We ran different scenarios to choose the best possible solution among the 

different possible directions.  
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Figure  5.7. Defined advancement lines to create clustering phases: (a) west to east or east 
to west direction, and (b) north to south or south to north direction. 
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The tonnage of material within each phase is shown in Figure  5.8. The total 

tonnage of material was calculated for each phase based on the tonnage of draw 

columns within the phase. For clustering, the maximum number of clusters that 

could be created was set to 17. The weight factors of the tonnage, average grade, 

and distance between the draw columns were set to 0.05, 0.05, and 5. The 

maximum number of draw columns in each cluster could not be more than 10.  

Figure  5.9 and Figure  5.10 illustrate the clusters in cardinal directions with 

tonnage value, dollar value, and average grade for each cluster. The total tonnage 

of material to be extracted was almost 13.5 Mt.  

 

 

Figure  5.8. Available tonnage within each phase for different advancement directions: (a) 
WE/EW, and (b) NS/SN 
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Figure  5.9. Clusters and their information in WE and EW directions 



Chapter 5                                         Verification, Experiments, and Discussion of Results 
 

136 
 

 

Figure  5.10. Clusters and their information in NS and SN directions 
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A capacity of 900kt/yr was considered as the upper bound on the mining capacity 

for the cluster level formulation. The maximum number of active clusters in each 

period was set to five. The maximum number of the new clusters which could be 

opened in each period was set to two. The lower and upper bounds of the draw 

rate for drawpoints were set to 10kt/yr/per drawpoint and 40kt/yr/per drawpoint. 

The draw rate bounds for each cluster were calculated based on number of the 

draw columns within the cluster. An EPGAP of 1% was set for the optimization at 

cluster level. Table  5.1 shows the summary of the parameters. Table  5.2 shows the 

number of decision variables and constraints for each direction at the cluster level. 

Table  5.3 shows a summary of the results for each direction at the cluster level. 

The results show that the maximum NPV was gained in the west to east direction. 

A comparison between the difference in percent from the maximum NPV shows 

that the difference in percent for east to west and south to north was more than the 

defined EPGAP. 

Table  5.1. Production scheduling parameters at cluster level 

Parameter Value 

Total tonnage of material (Mt) 13.5 

Number of periods 15 

Discount rate (%) 12 

Maximum mining capacity (kt/yr) 900 

Maximum number of active clusters 5 

Maximum number of new clusters 2 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10 / 40 

 

Table  5.2. Number of variables and constraints for cluster level with 17 clusters 

Direction 
Number of  

clusters 

Number of 
constraints 

Decision variables 

Total Continuous Binary 

WE 17 1,429 765 255 510 

EW 17 1,429 765 255 510 

NS 17 1,444 765 255 510 

SN 17 1,399 765 255 510 



Chapter 5                                         Verification, Experiments, and Discussion of Results 
 

138 
 

Table  5.3. Numerical result for cluster level formulation with 17 clusters 

Direction 
CPU time  

8 CPUs @ 2.7 GHz 

EPGAP 
(%) 

Optimality 
GAP (%) 

NPV 
($M) 

Difference from 
Max. (%) 

WE 00:01:24 1 0.99 123.21 0 

EW 00:02:57 1 1.00 121.71 1.22 

NS 00:00:50 1 0.82 121.98 1.0 

SN 00:00:47 1 0.99 121.28 1.57 

Figure  5.11 to Figure  5.16 show that all assumed constraints were satisfied for the 

cluster-level formulation. Figure  5.11 shows the tonnage of production in each 

period for different directions. It is obvious that the formulation tried to keep the 

mining capacity at the upper bound. 

 

Figure  5.11. Production tonnage for different directions at the cluster level over the mine 
life  

Figure  5.12 and Figure  5.13 illustrate the maximum number of active clusters and 

drawpoints in each period for the different advancement directions, respectively. 

In Figure  5.12, in the west to east direction during the first four years, the 

maximum allowable number of clusters was activated, while in the east to west 

direction from year three, there were five active clusters.  
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Figure  5.12. Number of active clusters for different directions at the cluster level over the 
mine life 

 

Figure  5.13. Number of active drawpoints for different directions at the cluster level over 
the mine life 
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In the west to east direction, from periods 12 to 15, the number of active 

drawpoints gradually decreased. For mining in the north to south and south to 

north directions, the maximum allowable numbers of clusters were activated. 

Period 15 had the least number of active clusters in all advancement directions. 

Figure  5.14 shows the number of new clusters which had to be opened in each 

period for different advancement directions. The number of new clusters opened 

in period one could be equal to the maximum allowable number of active clusters 

to reach the required production in this period. In all directions except east to west, 

the number of clusters opened was equal to the maximum allowable number of 

active clusters. Also, in these three directions, there was no need to open new 

clusters in periods two and three. In all directions, in periods seven, 14, and 15, 

the clusters that had already been opened were extracted and a new cluster was not 

opened in these periods. 

 

Figure  5.14. Number of new clusters that must be opened for different directions at the 
cluster level over the mine life 
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Figure  5.15 and Figure  5.16 show the tonnage extracted from clusters two, eight, 

and 17 in different directions. The lower and upper bounds of the draw rate for 

drawpoints were known and these boundaries were defined for each cluster 

according to the number of draw columns within the cluster. In other words, the 

lower and upper bounds of the draw rate for each cluster were equal to the number 

of the draw columns within the cluster, times the minimum or maximum draw 

rate, respectively. 

Figure  5.15 shows that cluster eight, which contained six drawpoints, was mined 

in six periods from period eight to period 13 in the west to east direction. This 

cluster was mined in four periods from period one to period four in the east to 

west direction. In the west to east direction, extraction from cluster eight was 

started with 60kt/period in period eight and gradually increased to near the 

240kt/period until period 11. It then reached 60kt/period again in period 13. But in 

the east to west direction, extraction from this cluster had to be started with the 

maximum allowable draw rate. Extraction from cluster 17, which contained nine 

drawpoints, was started with 90kt/period in both the west to east and east to west 

directions, but the life of the cluster in the east to west direction was more than in 

the west to east direction. In the west to east direction, the draw rate of cluster 17 

increased after the first period of extraction, while it was mined with a uniform 

draw rate of 90kt/period during the first five periods in the east to west direction.  

Figure  5.16 compares the extraction amount from clusters two and 17 in the north 

to south and south to north directions. The life of cluster two in both directions 

was four periods and it had the exact same behavior. Extraction from cluster 17, 

which contained seven drawpoints, was started with 70kt/period and finished with 

280kt/period after four periods in the north to south direction. In the south to north 

direction, this cluster was extracted with a draw rate of 100kt/period in periods 

one and two. Then the draw rate increased to 280kt/period in period four. The 

extraction finished with the draw rate of 160kt/period in period five. 
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Figure  5.15. Amount of depletion from clusters 8 and 17 in the WE and EW directions 

 

 
Figure  5.16. Amount of depletion from clusters 8 and 17 in the NS and SN directions 
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Figure  5.17 illustrates the cumulative discounted cash flow and discounted cash 

flow for different directions. It is obvious that in period one, the west to east 

direction had the maximum discounted cash flow and in the last period, the north 

to south direction had the minimum one. 

 

 

Figure  5.17. Discounted cash flow and cumulative DCF for different directions at the 
cluster level over the mine life 

Figure  5.18 illustrates the opening pattern at the cluster level for the west to east 

direction, which has the maximum NPV. If the mine was divided into two parts, 

west and east, it is obvious that all drawpoints within the west area were opened 

during the first five periods. All drawpoints were opened before period 12 and 

after that extraction continued by extracting the material from the active 

drawpoints. 
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Figure  5.18. Opening pattern using the cluster-level formulation in the WE direction 

5.3.2 Application of the Single-Step Method at the Drawpoint Level 

This formulation was implemented on the same dataset with 102 drawpoints. The 

total tonnage of material to be extracted was almost 13.5 Mt. A capacity of 

900kt/yr was considered as the upper bound on the mining capacity for the 

drawpoint level formulation. The maximum number of active drawpoints in each 

period was set to 40. The maximum number of the new clusters which could have 

been opened in each period was set to 15. The lower and upper bounds of the draw 

rate for drawpoints were set to 10kt/yr/per drawpoint and 40kt/yr/per drawpoint, 

respectively. The summary of the parameters are illustrated in Table  5.4.  An 

EPGAP of 3% was set for the optimization at the drawpoint level. The drawpoint 

level formulation had a 4590-decision variable in which 3060 were binary 

variables.  

 Table  5.5 shows the number of constraints and a summary of the results for each 

direction at the drawpoint level. The results show that the maximum NPV was 

gained in the west to east direction.  
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Table  5.4. Production scheduling parameters at drawpoint level 

Parameter Value 

Total tonnage of material (Mt) 13.5 

Number of periods 15 

Discount rate (%) 12 

Maximum mining capacity (kt/yr) 900 

Maximum number of active drawpoints 40 

Maximum number of new drawpoints 15 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10 / 40 

 

 Table  5.5. Numerical results for the drawpoint level formulation 

Direction 
Number of 
constraints 

CPU time  

8 CPUs @ 2.7 GHz 

EPGAP 
(%) 

Optimality 
GAP (%) 

NPV 
($M) 

WE 19,854 00:30:56 3 2.72 125.27 

EW 19,884 00:49:46 3 2.98 124.70 

NS 20,874 00:27:46 3 2.93 124.31 

SN 19,284 01:03:17 3 2.99 124.78 

It is obvious that due to the increase in the number of the constraints, despite the 

increased value assumed for EPGAP, the CPU time increased compared to the 

cluster level formulation. Figure  5.19 to Figure  5.23 show that all assumed 

constraints were satisfied for the drawpoint level formulation.  

Figure  5.19 shows the tonnage of production in each period for different 

directions. The formulation tried to keep mining capacity at the upper bound. For 

all directions, the tonnage of mined material was equal to the maximum allowable 

capacity in all periods except the last period. In the last period, only the remaining 

reserve was extracted and this was less than the defined higher bound for the 

mining capacity.  

Figure  5.20 illustrates the maximum number of active drawpoints in each period 

for the different advancement directions. In all directions, the number of active 

drawpoints decreased between periods 11 and 15. Only in the first period of the 

south to north direction was the number of active drawpoints fewer than 30. 
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Figure  5.19. Production tonnage for different directions at the drawpoint level over the 
mine life 

 

Figure  5.20. Number of active drawpoints for different directions at the drawpoint level 
over the mine life 
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Figure  5.21 shows the number of new drawpoints that were opened in each period 

for different advancement directions. The number of new drawpoints opened in 

period one could be equal to the maximum allowable number of active drawpoints 

in this period to reach the required production. It can be seen that only in the first 

period of the north to south direction, the number of new drawpoints that had to be 

opened was close to the maximum allowable number of active drawpoints. In the 

west to east direction, the number of new drawpoints reduced from 32 drawpoints 

in the first period to two drawpoints in the fifth period. Then, 13 new drawpoints 

were opened in period six and, after this period, the number of new drawpoints 

that had to be opened was fewer than 13. In the west to east direction, the last 

drawpoints were opened in period 13 and, after that, the extraction continued from 

the active drawpoints.  

 

Figure  5.21. Number of new drawpoints that must be opened for different directions at the 
drawpoint level over the mine life 
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Figure  5.22 and Figure  5.23  show the tonnage which must be extracted from 

drawpoints 96, 80, and 57 in different directions. Figure  5.22 shows that 

drawpoint 96 was mined in six periods from periods 10 to 15 in the west to east 

direction. But it was mined in seven periods between periods four and 10 in the 

east to west direction. In both directions, the extraction was started with 

10kt/period and increased gradually to 40kt/period. It continued with the 

maximum allowable draw rate during the last three periods of the drawpoint life. 

In the west to east direction, extraction from drawpoint 80 was started with a draw 

rate greater than the minimum draw rate and then it increased and reached the 

maximum draw rate from the second period of extraction. But in the east to west 

direction, drawpoint 80 was extracted with the minimum draw rate during the first 

three periods. Figure  5.23 shows that extraction from drawpoint 57 is started in 

period six in both directions, north to south and south to north. In the north to 

south direction, the extraction is started with the minimum draw rate of 10kt/yr, 

while in the south to north direction; it is started with a draw rate of 20kt/yr. 

 

Figure  5.22. Amount of depletion from drawpoints 96 and 80 in the WE and EW 
directions 



Chapter 5                                         Verification, Experiments, and Discussion of Results 
 

149 
 

 

Figure  5.23. Amount of depletion from drawpoints 57 and 80 in the NS and SN directions 

Figure  5.24 illustrates the cumulative discounted cash flow and discounted cash 

flow for different directions. In the west to east direction, the discounted cash flow 

for period two was more than period one, because of the number of new 

drawpoints opened in this period. Figure  5.25 illustrates the opening pattern at the 

drawpoint level for the west to east direction, which has the maximum NPV. If the 

mine was divided into two parts, west and east, it is obvious that the greatest part 

of the drawpoints within the west area opened before period six. The last 

drawpoint opened in period 13 and after that the extraction continued from the 

active drawpoints. It is obvious that practicality the obtained opening pattern from 

the cluster level formulation was better than at the drawpoint level. At the cluster 

level, the formulation dealt with bigger mining units than at the drawpoint level. 

Consequently, when a cluster was opened, a number of drawpoints were opened. 

But, at the drawpoint level, the model dealt with drawpoints and it was possible 

that only one drawpoint be opened. It should be noted that the time horizon for the 

drawpoint level formulation can vary as a subset of the mine-life.  
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Figure  5.24. Discounted cash flow and cumulative DCF for different directions at the 
drawpoint level over the mine life 

 

Figure  5.25. Opening pattern using the drawpoint level formulation in the WE direction 
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The drawpoint-level method can be used to control the size of the MILP 

formulation when the sequence of extraction of the drawpoints for a mine with a 

large number of drawpoints is going to be optimized at the drawpoint level. 

5.3.3 Application of the Single-Step Method at the Drawpoint-and-Slice 
Level 

The scheduling parameters at this level of resolution were the same as at the 

drawpoint level. In addition, this level of resolution had a constraint to control the 

average grade of production per period. The lower and upper bounds of the 

average grade were set to 0.7% and 1.6%.  An EPGAP of 5% was set for the 

optimization run.  The problem was only solved for the west to east (WE) and 

south to north (SN) directions because these were shown to generate the highest 

NPV at the drawpoint resolution level. Table  5.6 shows the number of decision 

variables and the number of constraints for the WE and SN directions at the 

drawpoint-and-slice level formulation. There are many binary variables, and 

consequently, more CPU time must be spent to solve the problem.   

Table  5.7 shows a summary of the results for the WE and SN directions at the 

drawpoint-and-slice level.  

Table  5.6. Number of variables and constraints at the drawpoint-and-slice level 
formulation with 102 drawpoints and 2,058 slices 

Direction 
Number of  

DP/SL 

Number of 
constraints 

Decision variables 

Total Continuous Binary 

WE 102 / 2,058 115,146 64,800 30,870 33,930 

SN 102 / 2,058 114,576 64,800 30,870 33,930 

 

 

Table  5.7. Numerical result for the drawpoint-and-slice level formulation with 102 
drawpoints and 2,058 slices 

Direction 
CPU time  

8 CPUs @ 2.7 
GHz 

EPGAP 
(%) Optimality 

GAP (%) 
NPV 
($M) 

WE 110:43:26 5 5 131.63 

SN 124:31:18 5 5 126.63 
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The resulting NPVs of the drawpoint-and-slice level were $131.63M and 

$126.63M in the WE and SN directions, respectively. The obtained optimality gap 

for both directions was 5%. The results show that even to solve the small-size 

problem at the drawpoint-and-slice level, a long CPU time is required. 

Figure  5.26 to Figure  5.29 show that all assumed constraints were satisfied at the 

drawpoint-and-slice level formulation in the considered directions. Figure  5.26 

illustrates the production tonnage in each period. In both directions, the 

formulation tried to extract the maximum allowable amount of material. 

 

Figure  5.26. Production tonnage in the WE and SN directions at the drawpoint-and-slice 
level over the mine life 

Figure  5.27 illustrates the number of active drawpoints in each period. In both 

directions, the number of active drawpoints in period one was fewer than 40. In 

the west to east direction, the number of active drawpoints gradually increased, 

from 33 in period one to 40 in period four. Then, the mine worked with the 

maximum number of active drawpoints until period 13 and after that the number 

of active drawpoints reduced. In the south to north direction, the mine worked 

with the maximum number of active drawpoints from periods two to 12. In the last 

years of the mine life, the number of active drawpoints in the south to north 

direction was less than in the west to east direction.    

Figure  5.28 illustrates the number of drawpoints that had to be opened in each 

period. The number of new drawpoints that could be opened in the first period was 



Chapter 5                                         Verification, Experiments, and Discussion of Results 
 

153 
 

set to 40. From period two to period 15, a maximum of 15 new drawpoints could 

be opened. In both directions, the number of new clusters from period two to 

period 15 was less than 15 except in period 11 of south to north direction in which 

15 new drawpoints had to be opened. In the west to east direction, the last 

drawpoints were opened in period 13 while a number of new drawpoints were 

opened in period 14 in the north to south direction. 

 

Figure  5.27. Number of active drawpoints in the WE and SN directions at the drawpoint-
and-slice level over the mine life 

 

Figure  5.28. Number of new drawpoints that must be opened in the WE and SN directions 
at drawpoint-and-slice level over the mine life 

Figure  5.29 illustrates the average grade of production. In the west to east 

direction, during the first three periods the average grade of the production was 

higher than the south to north direction. In both directions, during the mine life the 

average grade of the production was higher than 1 % except the last period. In the 

west to east direction, the average grade of production had a downward trend. 

After period 11, the average grade of production increased. In the south to north 
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direction, the average grade of production increased significantly. This was 

because of the high grade draw columns located at the north side of the mine. 

Figure  5.30 and Figure  5.31 show the opening pattern of the drawpoints in the 

west to east and south to north directions. 

 

Figure  5.29. Average grade of production in the WE and SN directions at the drawpoint- 
and-slice level over the mine life 

 

 
Figure  5.30. Opening pattern using the drawpoint-and-slice level formulation in the WE 

direction 
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Figure  5.31. Opening pattern using the drawpoint-and-slice level formulation in the SN 
direction 

In the west to east direction, if the mine was divided into two sections, west and 

east, most of the drawpoints in the west section were opened during the first five 

periods. In west to east direction, if the mine was divided into two sections north 

and south, most of the drawpoints in the south section were opened during the first 

five periods. 

5.3.4 Summary and Comparison of Results of Three Different Levels of 
Resolution 

The MILP formulations for three levels of problem resolution -- cluster level, 

drawpoint level, and drawpoint-and-slice level -- were applied independently on a 

dataset containing 102 drawpoints and 2,058 slices.  

At the cluster level, the optimal life-of-mine multi-period block-cave production 

schedule is generated. This is the strategic yearly production schedule with the 

objective of NPV maximization. The strategic plan honors mining capacity and 

uniform feed to the processing plant. At the drawpoint level, the optimal long-term 
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block cave production schedule is generated. The time horizon for this model can 

vary as a subset of the life-of-mine to control the size of the MILP to be solved. 

At drawpoint-and-slice level, the optimal long-term plan at the drawpoint level, 

including slices, is generated. The time horizon for this detailed 3D model could 

vary as a subset of the time horizons chosen in the previous levels. 

In all the levels, the problem was solved over the mine life and the same input 

scheduling parameters were considered. The results showed that all the considered 

constraints had been satisfied and the models worked properly. The obtained 

NPVs were the optimal values that could be reached based on the obtained 

optimality gap.  

Table  5.8 summarizes the results of three levels of resolution for the single-step 

method. It is obvious that the number of the constraints and variables increased 

from the cluster level to the drawpoint-and-slice level and, consequently, the 

solving time increased.  

To solve the problem at these three levels of resolution, the EPGAP was set to 1%, 

3%, and 5% at the cluster, drawpoint, and drawpoint-and-slice levels, respectively. 

Despite the higher obtained optimality gap for the drawpoint-and-slice level, the 

solving time for this level was significantly longer than for others. The obtained 

NPV at the drawpoint-and-slice level was more than at the drawpoint level, and 

drawpoint level’s NPV was more than at the cluster level.  

In the west to east direction, the NPV of the drawpoint-and-slice level was 4.8% 

and 6.4% more than the drawpoint and cluster levels, respectively. But, the 

solving time of the problem at the drawpoint-and-slice level for this direction was 

4745 times more than cluster level and 215 times more than drawpoint level. 

It is obvious that it is not possible to solve a real-size problem at the drawpoint 

and drawpoint-and-slice levels in a reasonable CPU time. So, to overcome the size 

problem of mathematical programming models and to generate a robust practical 

near-optimal schedule, a multi-step method is explained in the next section. 
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Table  5.8. Comparison of results of the three levels of resolution for the single-step 
method 

Level of 
resolution 

Dir. 
Number of 

CL/DP/SL 

Number of 

Constraints 
& 

variables 

Opt. 
GAP 
(%) 

CPU time 

8 CPUs 
@ 2.7 
GHz 

NPV 
($M) 

Diff. 
from 
the 
best 
(%) 

Cluster level 

WE 17 / 0 / 0 
1,429 
765 

0.99 00:01:24 123.21 -6.4 

EW 17 / 0 / 0 
1,429 
765 

1.00 00:02:57 121.71 -7.54 

NS 17 / 0 / 0 
1,444 
765 

0.82 00:00:50 121.98 -7.33 

SN 17 / 0 / 0 
1,399 
765 

0.99 00:00:47 121.28 -7.86 

Drawpoint 
level 

WE 0 / 102 / 0 
19,854 
4,590 

2.72 00:30:56 125.27 -4.83 

EW 0 / 102 / 0 
19,884 
4,590 

2.98 00:49:46 124.70 -5.26 

NS 0 / 102 / 0 
20,874 
4,590 

2.93 00:27:46 124.31 -5.56 

SN 0 / 102 / 0 
19,284 
4,590 

2.99 01:03:17 124.78 -5.2 

Drawpoint-
and-slice 

level 

WE 0 / 102 / 2,058 
115,146 
64,800 

5 110:43:26 131.63 
The 
best 

SN 0 / 102 / 2,058 
114,576 
64,800 

5 124:31:18 126.63 -3.8 

5.4 Application of the MILP Models using the Multi-Step Method 

In a multi-step method, the performance of the proposed models was analyzed 

based on the NPV, mining production, and practicality of the generated schedules. 

The models were tested on a Dell Precision T7500 computer at 2.7 GHz, with 

24GB of RAM. The goal was to maximize the NPV at a discount rate of 12%, 

while assuring that all constraints were satisfied during the mine life. In this 

method, the results of each level were used to reduce the number of variables in 

the next level. The main dataset containing 298 drawpoints with the slice height of 

10 meters was considered. The minimum and maximum numbers of slices within 

draw columns were 29 and 36, respectively. The initial slice file contained 9790 

slices, of which 4251 were eliminated after applying the BHOD. The BHOD was 

limited to not less than 50m. After applying this assumption, the minimum and 
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maximum heights of the draw column were 50m and 290m, respectively. The 

models were optimized on a dataset containing 298 drawpoints and 5539 slices 

over 15 periods in four different advancement directions. Figure  5.32 illustrates a 

3D view of the draw columns after applying the BHOD. The total tonnage of 

material to be extracted was almost 37 Mt. The tonnage from individual 

drawpoints after applying the BHOD varied between 28kt and 233kt.   

 

Figure  5.32. 3D view of the draw columns after applying the BHOD (298 draw columns) 

In this method, the problem was solved at the beginning for different advancement 

directions, using the cluster level formulation. Then, based on the results, the best 

advancement direction was recognized.  

At the drawpoint and the drawpoint-and-slice level models, the problem was only 

optimized for the recognized best advancement direction. Using the starting period 

of drawpoints and the cluster life in the best advancement direction, all the 

variables that would mine each drawpoint before its earliest start time were 

eliminated at the drawpoint level model. Then, the problem was optimized at this 

level of resolution. Afterwards, based on the results of the drawpoint level 

formulation, all the variables that would mine each drawpoint before its obtained 
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earliest start time from the drawpoint level model were eliminated at the 

drawpoint-and-slice level model. Theoretically, this variable reduction technique 

decreased the solution space for the optimization problem. Thus, during 

optimization, some of the branches in the branch-and-cut tree were eliminated, 

ensuring that the solution for the practical production scheduling problem was 

reached faster. In addition to the elimination of the variables related to the 

drawpoints, some of the variables related to the slices were eliminated based on 

the earliest extraction time of each slice, which was calculated using the maximum 

allowed draw rate and the earliest start time of the drawpoint. 

To aggregate the draw columns, the advancement lines for each direction were 

defined. Afterwards, clustering was done between lines for each direction. Figure 

 5.33 shows the created clustering phases for four advancement directions: west to 

east (WE), east to west (EW), north to south (NS), and south to north (SN). The 

tonnage of material within each phase is shown in Figure  5.34. The total tonnage 

of material was calculated for each phase based on the tonnage of draw columns 

within the phase. For clustering, the maximum number of clusters was set to 35. 

The weight factors of the tonnage, average grade, and distance between the draw 

columns were set to 0.1, 0.1, and 5, respectively. The maximum number of draw 

columns in each cluster could not be more than 15.  

Figure  5.35 and Figure  5.36 illustrate the clusters in cardinal directions with 

tonnage value, dollar value, and average grade for each cluster. A capacity of 

2.5Mt/yr was considered as the upper bound on the mining capacity for all 

formulations. The maximum number of active clusters in each period was set to 

15. The maximum number of the new clusters which could be opened in each 

period was set to 5. The lower and upper bounds of the draw rate for drawpoints 

were set to 10kt/yr/per drawpoint and 50kt/yr/per drawpoint. The draw rate 

bounds for each cluster were calculated based on number of the draw columns 

within the cluster. The summary of the parameters is illustrated in Table  5.9.  An 

EPGAP of 1% was set for the optimization at the cluster level.  
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Figure  5.33. Defined advancement lines to create clustering phases: (a) west to east or 
east to west direction (WE/EW), and (b) north to south or south to north direction 

(NS/SN).  
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Figure  5.34. Available tonnage within each phase for different advancement 
directions: (a) WE/EW, and (b) NS/SN 

 

Table  5.10 shows the number of decision variables and the number of constraints 

for each direction at the cluster level. Table  5.11 shows a summary of the results 

for each direction at the cluster level. The maximum NPV was gained in the west 

to east direction. A comparison between the difference in percent from the 

maximum NPV shows that the difference in percentage for the east to west and 

north to south directions was more than the defined EPGAP, while for the south to 

north direction it was less than the defined EPGAP. 
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Figure  5.35. Clusters and their information in the WE and EW directions 



Chapter 5                                         Verification, Experiments, and Discussion of Results 
 

163 
 

 

Figure  5.36. Clusters and their information in the NS and SN directions 
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Table  5.9. Production scheduling parameters at cluster level 

Parameter Value 

Total tonnage of material (Mt) 37 

Number of periods 15 

Discount rate (%) 12 

Maximum mining capacity (Mt/yr) 2.5 

Maximum number of active clusters 15 

Maximum number of new clusters 5 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10 / 50 

 

Table  5.10. Number of variables and constraints for cluster level with 35 clusters 

Direction 
Number of  

clusters 

Number of 
constraints 

Decision variables 

Total Continuous Binary 

WE 35 2,935 1,575 525 1,050 

EW 35 2,965 1,575 525 1,050 

NS 35 2,950 1,575 525 1,050 

SN 35 3,070 1,575 525 1,050 

 

Table  5.11. Numerical result for cluster level formulation with 35 clusters  

Direction 
CPU time  

8 CPUs @ 2.7 
GHz 

EPGAP 
(%) Optimality 

GAP (%) 
NPV 
($M) 

Difference 
from Max. (%) 

WE 00:00:05 1 0.74 313.56 0 

EW 18:47:07 1 1.00 306.56 2.2 

NS 00:36:28 1 0.94 300.01 4.3 

SN 00:00:13 1 0.68 312.54 0.3 

As a result, only the WE and SN directions had the potential to be considered as 

mining directions based on the obtained NPVs. Therefore, the results of these two 

directions were compared. 

Figure  5.37 to Figure  5.41 show that all assumed constraints were satisfied for the 

cluster level formulation. Figure  5.37 shows the tonnage of production in each 

period for different directions. It is obvious that the formulation tried to keep 

mining capacity at the upper bound.   
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Figure  5.37. Production tonnage for different directions at the cluster level over the mine 
life  

Figure  5.38 illustrates the maximum number of active clusters in each period for 

the different advancement directions. In the west to east direction, the numbers of 

active clusters never reached the maximum allowable number, while in the south 

to north direction 15 clusters were active in period four. On the other hand, 

between periods two and nine, the number of active drawpoints in the south to 

north direction was more than in the west to east direction. After period nine, there 

were more active clusters in the west to east direction than in the south to north 

direction. 

Figure  5.39 shows the number of new clusters which had to be opened in each 

period for different advancement directions. The blue line represents the upper 

bound for this constraint. The number of new clusters opened in period one was 

equal to the maximum allowable number of active clusters in this period to reach 

the required production. From period two to the end of the mine life, the 

maximum number of new clusters which could be opened in each period was 

equal to five. 
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Figure  5.38. Number of active clusters for different directions at the cluster level over the 

mine life 

 

Figure  5.39. Number of new clusters that must be opened for different directions at the 
cluster level over the mine life 
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In the west to east direction, all the clusters were opened by period 13. However, 

in the south to north direction, this happened by period 14. In the west to east 

direction, from period six to period 10, at least one new cluster had to be opened, 

while in south to north direction there was no need to open a new cluster in 

periods seven and eight.  

Figure  5.40 and Figure  5.41 show the amount of tonnage which could be extracted 

from different clusters in the WE/EW and NS/SN directions. The lower and upper 

bounds of the draw rate for each cluster were equal to the number of the draw 

columns within the cluster times, the minimum or maximum draw rate, 

respectively. Figure  5.40 shows the draw rate of clusters 10 and 22 in the west to 

east direction and clusters 20 and 35 in east to west direction. Cluster 10 contained 

eight drawpoints and was mined in four periods, from period one to period four, in 

the west to east direction. Extraction from cluster 10 was started with 240kt/period 

in period one and gradually increased to 400kt/period in period three, continuing 

with 200kt/period in period four. 

 

Figure  5.40. Amount of depletion from clusters 10, 20, 22, and 35 in the WE and EW 
directions  
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Cluster 22, with 12 drawpoints, was extracted during the first five periods. 

Extraction from this cluster was started with a draw rate of 120kt/period and 

continued up to period three. After period three, the draw rate increased in period 

four, reaching 600kt/period in period five. Cluster 35, with nine drawpoints, was 

extracted in six periods from period 10 to period 15. Cluster 20, with eight 

drawpoints, was extracted during the first six periods. After two years of 

extraction with a draw rate of 80kt/period, extraction from this cluster continued 

with a draw rate 400kt/period in period three. The draw rate decreased and 

reached 80kt/period in period five. 

Figure  5.41 shows the draw rate of clusters 20 and 28 in the north to south 

direction, and clusters 16 and 33 in the south to north direction. In the south to 

north direction, extraction from clusters 16 and 33 started with the minimum 

allowable draw rate and gradually increased to reach the maximum allowable 

draw rate of each cluster.  

 

Figure  5.41. Amount of depletion from clusters 16, 20, 28, and 33 in NS and SN 
directions 
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Figure  5.42 illustrates the cumulative discounted cash flow and discounted cash 

flow for different directions. Figure  5.43 and Figure  5.44 illustrate the opening 

pattern at the cluster level for the west to east and south to north directions, 

respectively. In both directions, it is obvious that most of the drawpoints located 

around the right side and top boundaries were opened after period 10. 

 

Figure  5.42. Discounted cash flow and cumulative DCF for different directions at the 
cluster level over the mine life 

To solve the problem at the drawpoint level, both the west to east (WE) and south 

to north (SN) directions were selected because of the close NPV. In other words, 

percentage difference between the NPVs of these two directions is less than the 

assumed EPGAP. To solve the problem at the drawpoint level in the west to east 

(WE) and south to north (SN) directions, the solution from the previous stage was 

used, based on the early start and late finish, to eliminate the variables. As 

mentioned before, theoretically, this variable reduction technique decreased the 

solution space for the optimization problem. Thus during optimization, some of 

the branches in the branch-and-cut tree were eliminated, ensuring that the solution 

for the practical production scheduling problem was reached faster. 
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Figure  5.43. Opening pattern using the cluster level formulation in the WE direction for 
298 drawpoints 

 

Figure  5.44. Opening pattern using the cluster level formulation in the SN direction for 
298 drawpoints 
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Table  5.12 shows the number of decision variables and the number of constraints 

for the WE and SN directions at the drawpoint level. There are 8,940 binary 

decision variables in both directions.   

Table  5.12. Number of variables and constraints at the drawpoint level with 298 
drawpoints 

Direction 
Number of  

drawpoints 

Number of 
constraints 

Decision variables 

Total Continuous Binary 

WE 298 79,046 13,410 4,470 8,940 

SN 298 89,336 13,410 4,470 8,940 

The number of decision variables was reduced using the obtained starting periods 

from the cluster level solution. Two years flexibility was assumed for the earliest 

start time at the drawpoint level. For this purpose, if at the cluster level, the 

extraction of a drawpoint was started in period t  with the cluster life of n , at the 

drawpoint level any variables that would mine this drawpoint before period 2t   

and after   2t n   were eliminated. This was done by changing the related 

decision variables in the decision variables vector to zero.  

 In the west to east direction, the total number of variables, 13410, was reduced to 

8860, of which the 1093 were from continuous variables and the 3457 were from 

binary variables. In the north to south direction, the total number of variables, 

13410, was reduced to 8969, of which the 1065 were from continuous variables 

and the 3376 were from binary variables. The problem was solved for two 

different EPGAPs of 4% and 1%.  

Table  5.13 shows a summary of the results for these directions at the drawpoint 

level. The problem was solved in 15 and 31 minutes for the WE and SN directions 

for an EPGAP of 4%, respectively. The obtained NPVs for these directions were 

almost $312M. To solve the problem with an EPGAP of 1%, more CPU time was 

spent in comparison to the EPGAP of 4%. As a result, the NPV was improved 

almost 1.7% in both directions. The reason for the higher NPV for this level was 

the resolution of the level. In other words, when the problem was solved at the 

drawpoint level, the economic value of each draw column was taken into account. 
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Therefore, the model tried to mine the draw columns with higher economic values 

earlier than other draw columns. 

Table  5.13. Numerical result for drawpoint level formulation with 298 drawpoints 

Direction 
CPU time  

8 CPUs @ 2.7 
GHz 

EPGAP 
(%) Optimality 

GAP (%) 
NPV 
($M) 

Improvement 
(%) 

WE 00:15:40 
4 

2.92 312.38 -------- 

SN 00:31:45 3.23 311.52 -------- 

WE 06:58:47 
1 

1 317.60 1.65 

SN 210:22:29 1 317.09 1.77 

Figure  5.45 to Figure  5.48 show that all assumed constraints were satisfied for this 

level of resolution. Figure  5.45 illustrates the tonnage of production in each period 

for directions WE and SN. The formulation wanted to maximize the NPV so it 

tried to keep the mining capacity at the upper bound. This resulted in the same 

yearly production for both directions.  

 

Figure  5.45. Production tonnage for WE and SN directions at the drawpoint level over the 
mine life 

Figure  5.46 shows the number of active drawpoints for WE and SN directions. 

During the early years, the number of active drawpoints in the west to east 

direction was less than that in the north to south direction. Although in both 

directions the maximum allowable tonnage was produced in each period, the 

number of active drawpoints did not reach the defined maximum allowable 

number. In both directions after period 11, the number of active drawpoints 
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gradually decreased. In both directions, period 15 had the minimum number of 

active drawpoints, but this number for the SN direction was more than the number 

for the WE direction. 

 

Figure  5.46. Number of active drawpoints in WE and SN directions at the drawpoint level 
over the mine life 

Figure  5.47 illustrates the number of new drawpoints that were opened in each 

period. The extraction started with more drawpoints in the south to north direction 

compared to the west to east direction. In the west to east direction, 296 

drawpoints were opened by period 12. After this period the extraction continued, 

using the available active drawpoints. In all periods of the south to north direction, 

there was at least one drawpoint that had to be opened, but in none of the periods 

did the number of new drawpoints reach the maximum allowable number. 

 

Figure  5.47. Number of new drawpoints that must be opened in the WE and SN directions 
at the drawpoint level over the mine life 
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Figure  5.48 illustrates the draw rate of drawpoint 123 in WE and SN directions. 

This drawpoint is located almost in the middle of the mine. The drawpoint life in 

the SN direction is one period less than that in the WE direction, but it behaves in 

a manner similar to that of the draw rate point of view in both directions. The 

extraction started with the draw rate of 10kt/period, which is the minimum 

acceptable draw rate for an active drawpoint. In the west to east direction, the 

extraction from this drawpoint continued with a draw rate of 10kt/period during 

the next two periods. The draw rate then increased to reach 50kt/period, which 

was the maximum allowable draw rate. In the south to north direction, after the 

first period, the draw rate increased and reached 50kt/period in the third period of 

the extraction.  

 

Figure  5.48. Amount of depletion from drawpoint 123 in the WE and SN directions  

Figure  5.49 and Figure  5.50 illustrate the opening patterns in WE and SN 

directions, respectively. In both directions, it is obvious that most of the 

drawpoints, which are located around the right side and top boundaries, were 

opened after period nine. 

According to the obtained NPVs and satisfied constraints, both WE and SN 

directions can be considered as the mining directions. But, to solve the problem at 

the drawpoint-and-slice level formulation, the WE direction was considered. An 

EPGAP of 5% was set for optimization. Unlike the cluster level and drawpoint 

level formulations, the grade of production was considered at the drawpoint-and-

slice level formulation.  
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Figure  5.49. Opening pattern using the drawpoint level formulation in the WE direction 
for 298 drawpoints (multi-step method) 

 

Figure  5.50. Opening pattern using the drawpoint level formulation in the SN direction 
for 298 drawpoints (multi-step method) 
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The lower and upper bounds of the average grade were set to 0.7% and 1.6%. For 

this level also, the solution from the drawpoint level was used based on the early 

start and late finish to eliminate the variables. Table  5.14 shows the number of 

decision variables and the number of the constraints for the WE direction at the 

drawpoint-and-slice level formulation. 

Table  5.14. Number of variables and constraints at the drawpoint-and-slice level 
formulation with 298 drawpoints and 5,539 slices 

Direction 
Number of  

DP/SL 

Number of 
constraints 

Decision variables 

Total Continuous Binary 

WE 298/5,539 336,079 175,110 83,085 92,025 

The solution from the drawpoint level was used based on the early start and late 

finish to eliminate the variables at the drawpoint-and-slice level formulation.  

Consequently, the total number of variables of 175,110 was reduced to 125,708, 

of which 23,675 were continuous variables and 25,727 were binary. 

It is obvious that even after eliminating 28% of the binary decision variables, there 

are still a large number of decision variables in the model. Table  5.15 shows a 

summary of the results for these directions at the drawpoint-and-slice level. The 

resulting NPV of the drawpoint-and-slice level was $324.42M, with an optimality 

gap of 4.9%. The obtained NPV for the west to east direction at the drawpoint-

and-slice level was 3.4% and 2.1% more than at the cluster level and drawpoint 

level, respectively. 

Table  5.15. Numerical result for the drawpoint-and-slice level formulation with 298 
drawpoints and 5,539 slices 

Direction 
CPU time  

8 CPUs @ 2.7 GHz 
EPGAP (%) 

Optimality 
GAP (%) 

NPV 
($M) 

WE 16:34:23 5 4.9 324.42 

The reason for the higher NPV at the drawpoint-and-slice level is the resolution of 

the level. In other words, when the problem is solved at the drawpoint-and-slice 

level, the method deals with the slices. The economic value of each slice is taken 

into account. Therefore, the model tries to mine slices with higher economic 

values and grades, earlier than other slices. But, at the drawpoint level, all the 
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slices within a draw column are grouped, and the summation of the economic 

value of slices is considered as the draw column economic value, which is a 

constant value for each draw column. At the cluster level, the summation of the 

economic value of the draw columns which are within the cluster is considered to 

be the cluster economic value and is a constant value for each draw column. 

Figure  5.51 shows that all defined constraints were satisfied. The number of active 

drawpoints increased gradually until period five. Afterwards, during the next six 

periods, the mine will work with maximum allowable active drawpoints. From 

periods 12 to 15, this number gradually decreases. Figure  5.51c shows that until 

period 12 at least five new drawpoints were opened in each period. Figure  5.51d 

shows the average grade of production in each period. It can be seen that the 

model tried to mine the slices with a higher grade earlier so that the average grade 

of production had a descending trend. During the last periods, because of more 

dilution, the average grade of production was less than that of previous years. 

During the first ten periods, the average grade of production was greater than 

1.2%. Only in two periods 12 and 15 was the average grade of production less 

than 1%. 

Figure  5.52 shows how to extract the material from the draw column associated 

with drawpoint 56. Figure  5.52a shows the extraction periods and depletion 

tonnages from this drawpoint during its life. Figure  5.52b shows the percentage 

extracted from each slice located within the draw column associated with 

drawpoint 56. In Figure  5.52b, the vertical axis represents the ID number of slices 

located within the considered draw column. The numbers in front of each slice 

indicate the percentage extracted from that slice in the related period. It is obvious 

that there is a continuous extraction order between slices, and the defined 

precedence between slices of a draw column is observed. For instance, 21% of 

slice 849 was extracted in period nine, so extraction from slice 850 would not start 

until the rest of the material was extracted from slice 849 in period 10.  
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Figure  5.51. Satisfied constraints and opening pattern of drawpoints based on the 
drawpoint-and-slice level solution for the west to east direction 
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Figure  5.52. How to extract from drawpoint 56: (a) draw rate, and (b) percentage 
extraction from each slice within draw column associated with drawpoint 56 

The discounted cash flow (DCF) over the mine life and the cumulative discounted 

cash flow for the three levels of resolution are shown in Figure  5.53. It is obvious 

that the DCF during the first two years of the mine life for the drawpoint-and-slice 

level formulation was greater than the other levels, but it fluctuated between 

periods two and 15. The resulting NPV for the drawpoint-and-slice level was 

greater than that for other levels in the west to east direction. At the drawpoint-

and-slice level, the model extracted slices with a higher economic value earlier 

than other slices. But at the drawpoint level, the method dealt with a draw column 

whose economic value was a weighted average of slices within the related draw 

column. The economic values of draw columns were used to calculate the cluster 

economic value. In addition, the defined flexibility for the starting period helped 

the model to mine earlier the drawpoints or slices with higher economic values. 
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Figure  5.53. Comparison of the discounted cash flow for three levels of resolution in the 
west to east direction using the multi-step method  

5.4.1 Summary of the Multi-Step Method 

The multi-step method was applied on a dataset containing 298 drawpoints and 

5,539 slices over 15 periods. Table  5.16 shows a summary of the results for the 

multi-step method. After defining the advancement lines and phases, the draw 

columns within each phase were clustered. Then, the problem was solved in four 

directions at a cluster level with an EPGAP of 1%. Based on the results, directions 

west to east and south to north with an NPV of $313.56M and $312.54M, 

respectively, were selected as directions in which to solve the problem at the 

drawpoint level. Then, the solution from the previous stage was used based on the 

early start and late finish to eliminate the variables. Consequently, the number of 

decision variables was reduced by 34% in the both directions. Then the problem 

was solved in the both directions with two EPGAPs of 4% and 1%. Based on the 

results, the NPV of both directions was $317M. For the last step, the west to east 

direction was selected. 



Chapter 5                                         Verification, Experiments, and Discussion of Results 
 

181 
 

Table  5.16. Results of the three levels of resolution for the multi-step method 

Level of 
resolution 

Dir. 
Number 

of  

CL/DP/SL

Number of 
constraints 

&variables 

Opt. 
GAP 
(%) 

CPU time 

8 CPUs 
@ 2.7 
GHz 

NPV 
($M) 

Diff. 
from the 
best (%) 

Cluster 
level 

WE 35 / 0 / 0 
2,935 
1,575 

0.74 00:00:05 313.56 -3.35 

EW 35 / 0 / 0 
2,965 
1,575 

1.00 18:47:07 306.56 -5.51 

NS 35 / 0 / 0 
2,950 
1,575 

0.94 00:36:28 300.01 -7.52 

SN 35 / 0 / 0 
3,070 
1,575 

0.68 00:00:13 312.54 -3.66 

Drawpoint 
level 

WE 0 / 298 / 0 
79,046 
13,410 

2.92 00:15:40 312.38 -3.71 

SN 0 / 298 / 0 
89,336 
13,410 

3.23 00:31:45 311.52 -3.98 

WE 0 / 298 / 0 
79,046 
13,410 

1 06:58:47 317.60 -2.1 

SN 0 / 298 / 0 
89,336 
13,410 

1 210:22:29 317.09 -2.26 

Drawpoint-
and-slice 

level 
WE 

0 / 298 / 
5,539 

336,079 
175,110 

4.9 16:34:23 324.42 The Best 

After eliminating 28% of the decision variables based on the solution of the 

drawpoint level, the problem was solved at the drawpoint-and-slice level with an 

EPGAP of 5%. The NPV was $324.4M. In the west to east direction, the NPV of 

drawpoint-and-slice level was 2.1% and 3.4% more than drawpoint level and 

drawpoint-and-slice level, respectively. 

At all levels, all the defined constraints were satisfied and the models worked 

properly. It is obvious that the small EPGAPs increase the CPU time. From the 

cluster level to drawpoint-and-slice level, increasing the number of constraints and 

decision variables increases the solution time.  

5.4.2 Sensitivity Analysis 

Impact of changes in constraints on the NPV and CPU time was investigated for 

each level of resolution. For this purpose three constraints were only considered, 

because some of the constraints such as mining capacity, continuous mining, and 
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precedence between clusters or drawpoints are not changeable. Considered 

constraints included draw rate, the maximum number of active clusters/drawpoints 

in each period and the maximum number of new clusters/drawpoints that need to 

be constructed in each period. The sensitivity analysis was done for the dataset 

containing 102 drawpoints using one-at-a-time approach. In this method a 

sensitivity ranking is obtained by increasing each parameter while leaving all 

others constant, quantifying the change in model output.  Table  5.17 shows the 

main production scheduling parameters. Table  5.18, Table  5.19, and Table  5.20 

show production scheduling parameters for different scenarios according to 

changes in draw rate, the maximum number of active clusters or drawpoints, and 

the maximum number of new clusters or drawpoints, respectively. According to 

the Table  5.18, Table  5.19, and Table  5.20, the problem solved for 31 different 

conditions. Figure  5.54 to Figure  5.62, show the results. In these figures the blue 

bars, red lines, and black lines represent NPV, amount of CPU time and 

percentage difference from the optimal solution based on results’ EPGAP, 

respectively. 

 Table  5.17. Production scheduling parameters for main scenario 

Common parameters Value 

Number of periods 15 

Discount rate (%) 12 

Maximum mining capacity (kt/yr) 900 

Cluster level  

Maximum number of active clusters 5 

Maximum number of new clusters 2 

Draw rate  (lower / upper) (kt/yr/per drawpoint) × clNDP  (10 / 40) × clNDP  

Drawpoint and drawpoint-and-slice levels 

Maximum number of active drawpoints 40 

Maximum number of new drawpoints 15 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10 / 40 
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Table  5.18. Different scenarios according to changes in draw rate 

 Scenarios 

Cluster level 1 2 3 4 

Maximum number of active clusters 5 5 5 5 

Maximum number of new clusters 2 2 2 2 

Draw rate  (lower / upper) (kt/yr/per drawpoint) ×

clNDP  
10/40 10/50 10/55 10/60 

Drawpoint and drawpoint-and-slice levels     

Maximum number of active drawpoints 40 40 40 40 

Maximum number of new drawpoints 15 15 15 15 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10/40 10/50 10/55 10/60 

 

Table  5.19. Different scenarios according to changes in the maximum number of active 
clusters or drawpoints 

 Scenarios 

Cluster level 1 2 3 4 

Maximum number of active clusters 5 6 7 8 

Maximum number of new clusters 2 2 2 2 

Draw rate  (lower / upper) (kt/yr/per drawpoint) ×

clNDP  
10/40 10/40 10/40 10/40

Drawpoint and drawpoint-and-slice levels     

Maximum number of active drawpoints 40 50 60 ---- 

Maximum number of new drawpoints 15 15 15 ---- 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10/40 10/40 10/40 ---- 

Figure  5.54 to Figure  5.56 show impact of changes in draw rate on the NPV and 

CPU time at three levels of resolution. At all levels of resolutions the NPV 

increased with increasing the upper bound of the draw rate. Unlike cluster and 

drawpoint-and-slice levels, at drawpoint level, the amount of CPU time increased 

with increasing the upper bound of the draw rate. At cluster and drawpoint-and-

slice levels, percent changes of CPU time from maximum draw rate of 40 

(kt/yr/per drawpoint) to 50 (kt/yr/per drawpoint) were 74% and 82%, respectively.     
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Table  5.20. Different scenarios according to changes in the maximum number of new 
clusters or drawpoints 

 Scenarios 

Cluster level 1 2 3 

Maximum number of active clusters 5 5 5 

Maximum number of new clusters 2 3 4 

Draw rate  (lower / upper) (kt/yr/per drawpoint) ×

clNDP  
10/40 10/40 10/40 

Drawpoint and drawpoint-and-slice levels    

Maximum number of active drawpoints 40 40 40 

Maximum number of new drawpoints 15 20 30 

Draw rate  (lower / upper) (kt/yr/per drawpoint) 10/40 10/40 10/40 

 

 

Figure  5.54. Impact of changes in the draw rate on the NPV and CPU time at the cluster 
level 
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Figure  5.55. Impact of changes in the draw rate on the NPV and CPU time at the 
drawpoint level 

 

 

Figure  5.56. Impact of changes in the draw rate on the NPV and CPU time at the 
drawpoint-and-slice level  
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Figure  5.57 to Figure  5.59 show impact of changes in the maximum number of 

active clusters and drawpoints on the NPV and CPU time at three levels of 

resolution. At all levels of resolution, with increasing the upper bound, the NPV 

increased, while amount of CPU time decreased. At the cluster level, with 

changing the number of active clusters from five to six, amount of CPU time 

decreased 98%. Despite the increase in the NPV from six to eight active clusters, 

there was no significant change in the amount of CPU time. Figure  5.60 to Figure 

 5.62 show impact of changes in the maximum number of new clusters and 

drawpoints on the NPV and CPU time at three levels of resolution. At all levels of 

resolution the NPV increased with increasing the upper bound. At cluster level 

amount of CPU time decreased from two to three new clusters, but it increased 

from three to four new clusters. Amount of CPU time had a same situation at 

drawpoint-and-slice level with higher percent changes. 

It must be mentioned that the constraints of each level of resolution have a 

complicated interaction, therefore changing of the parameters, changes the 

structure of the problem.  

 

Figure  5.57. Impact of changes in the maximum number of active clusters on the NPV 
and CPU time at the cluster level 
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Figure  5.58. Impact of changes in the maximum number of active drawpoints on the NPV 
and CPU time at the drawpoint level 

 

 

Figure  5.59. Impact of changes in the maximum number of active drawpoints on the NPV 
and CPU time at the drawpoint-and-slice level 
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Figure  5.60. Impact of changes in the maximum number of allowable new clusters on the 
NPV and CPU time at the cluster level 

 

 

 

Figure  5.61. Impact of changes in the maximum number of allowable new drawpoints on 
the NPV and CPU time at the drawpoint level 
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Figure  5.62. Impact of changes in the maximum number of allowable new drawpoints on 
the NPV and CPU time at the drawpoint-and-slice level 

5.4.3 Effectiveness of Multi-Step Method  

To demonstrate the effectiveness of the multi-step method, two different datasets 

were solved using the single-step and multi-step methods in the west to east 

direction. For each dataset the same input scheduling parameters were used to 

solve the problem using single-step and multi-step methods. Table  5.21 

summarizes the results. 

For dataset containing 102 drawpoints, in the single-step method at the drawpoint 

level, the EPGAP was set to 3%. At the drawpoint level, the solve time for the 

multi-step method with optimality gap of 0.55% was 68 times faster than the 

single-step method. At the drawpoint-and-slice level, the solve time for the multi-

step method with optimality gap of 4.7% was 17 times faster than the single-step 

method with the optimality gap of 5%, while percentage difference between the 

NPVs was only 0.34%. 

For dataset containing 298 drawpoints, in the single-step method the EPGAP was 

set to 5%. At the drawpoint level, the solve times for the multi-step method with 

optimality gaps of 1% and 2.92% were 6.8 times and 183 times faster than the 
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single-step method, respectively. At the drawpoint-and-slice level, the single-step 

method was still running after six days without any feasible solution. This 

comparison showed the effectiveness of the proposed method. A higher number of 

drawpoints increased the execution time of the problem exponentially, and 

reduced the probability of finding a near-optimal solution. 

Table  5.21. Comparison of the results of MILP formulations for multi-step and single-step 
methods  

Dir. 
Level of 

formulation 

Multi-step  Single-step 
Diff. 

between 
methods’ 

NPV 

(%) 

CPU 
time 

8 CPUs  

 2.7 
GHz 

NPV 
($M) 

Optimality 

 GAP (%) 

CPU time 

8 CPUs  

 2.7 GHz 

NPV 
($M) 

Optimality 

 GAP (%) 

WE 

102 drawpoints and 2,058 slices  

Cluster 00:01:24 123.21 0.99 00:01:24 123.21 0.99 0 

Drawpoint 00:00:27 126.84 0.55 00:30:56 125.27 2.72 1.24 

DP & Slice 06:24:37 132.07 4.7 110:43:26 131.63 5 0.34 

WE 

298 drawpoints and 5,539 slices  

Cluster 00:00:05 313.56 0.74 00:00:05 313.56 0.74 0 

Drawpoint 
06:58:47 317.60 1 

47:38:43 310.25 4.8 
2.4 

00:15:40 312.38 2.92 0.68 

DP & Slice 16:34:23 324.42 4.9 I stopped running after six days. ------- 

The multi-step method made it possible to solve the problem with a smaller 

EPGAP in a reasonable amount of time. The method presented here can solve 

large-scale problems. At the cluster level, the optimal life-of-mine multi-period 

block cave production schedule is generated. The time horizon for the drawpoint 

level can vary as a subset of the life-of-mine. At the drawpoint-and-slice level, the 

time horizon for this detailed 3D model can vary as a subset of the time horizons 

chosen in the previous levels.  

Figure  5.63 shows a schematic comparison of the multi-step and single-step 

methods from solution time and quality point of view. At the cluster level, the 

solution time and quality for both methods are same. It is obvious that at the 

drawpoint and drawpoint-and-slice levels the solution time of single-step method 
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is more than multi-step method. In multi-step and single-step methods, the 

solution time increases from cluster level to drawpoint-and-slice level and the 

solution quality improves so that the maximum NPV is obtained at drawpoint-and-

slice level. 

 

Figure  5.63. Schematic comparison of the methods and levels of resolutions in terms of 
solution time and solution quality 

Production scheduling of any mining system has an enormous effect on the 

economics of the operation. The scheduling problems are complex due to the 

nature and variety of the constraints acting upon the system.  In the available 

block-cave scheduling software, the mining sequence is controlled manually and, 

consequently, cannot yield an optimum solution for the problem. A series of 

opening sequences are evaluated and the results used to try to create an opening 

sequence that improves on the highest achieved net present value. This trial-and-

error approach cannot be guaranteed to deliver a schedule with the highest NPV. 

Also, it is not possible to estimate or put bounds on the highest NPV for a given 

problem using trial-and-error methods. Hence, relying only on manual planning 

methods or computer software based on heuristic algorithms will lead to mine 

schedules that are not the optimal global solution.  

All the presented MILP formulations for three levels of problem resolution -- 

cluster level, drawpoint level, and drawpoint-and-slice level -- guarantee that a 

practical schedule with the best NPV will be delivered for the assessed directions 
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because the exact algorithms are used. The MILP formulations use a solver 

developed based on exact solution methods for optimization where an 

optimization termination criterion is set up to define how far our generated 

solution is from the optimal solution. The solution is subject to practical and 

technical mining constraints that include (i) mining capacity, (ii) draw rate, (iii) 

mining precedence, (iv) maximum number of active drawpoints, (v) number of 

new drawpoints in each period, (vi) continuous mining, and (vii) total reserves.      

The production scheduler defines the best starting point and advancement 

direction based on optimization. Also, the scheduler defines the opening and 

closing time of each drawpoint and cluster, the draw rate from each drawpoint and 

cluster, the number of new drawpoints and clusters that need to be constructed, 

and the sequence of extraction from the drawpoints and clusters to support a given 

production target. 

5.5 Summary and Conclusion 

This chapter covered the case studies and verification of the MILP formulations 

for three levels of problem resolution: (i) cluster level, (ii) drawpoint level, and 

(iii) drawpoint-and-slice level. All formulations maximized the NPV subject to 

several constraints such as the vertical mining rate, lateral mining rate and mining 

capacity, and the maximum number of active drawpoints or clusters. These 

formulations could be used in two ways: (i) single-step, and (ii) multi-step. In both 

methods, to solve the problem at the cluster level, after defining the advancement 

lines and phases, the draw columns within each phase were clustered using a 

modified  hierarchical clustering algorithm based on the algorithm presented by 

Tabesh and Askari-Nasab (2011).  

First, the MILP formulations for three levels of problem resolution were applied 

independently on a dataset containing 102 drawpoints and 2,058 slices. The goal 

was to maximize the NPV at a discount rate of 12%, while assuring that all 

constraints were satisfied during the mine life. The BHOD was limited to not less 

than 50m. The total tonnage of material which had to be extracted was almost 13.5 
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Mt. The deposit was scheduled over 15 periods. Details of the results have been 

summarized in Table  5.8.  

The performance of the proposed models was analyzed based on NPV, mining 

production, and practicality of the generated schedules. At all the levels, the 

maximum NPV was obtained in the west to east direction. The cluster level, 

drawpoint level and drawpoint-and-slice level formulations generated production 

schedules which yielded NPVs of $123.2M, $125.2M, and $131.6M over a 15-

year mine life at an annual discount rate of 12% in the west to east direction. The 

NPV of the drawpoint-and-slice level formulation was 4.8% and 6.4% more than 

that of the drawpoint and cluster levels, respectively.    

The obtained NPVs are near-optimal values that can be reached based on the 

obtained optimality gap. In the standard industry software currently used for 

block-cave production scheduling, there is no measure of the quality of the 

solution against the upper bound of the theoretical optimum. At each of the levels 

of resolution, the opening pattern is gained based on the optimal solution, while in 

the industry software it is assumed that the opening pattern is known. 

At the cluster level, any number of drawpoints can be handled according to the 

defined number of clusters and the number of draw columns within each cluster. 

However, solving a real-size problem at the drawpoint level and drawpoint-and-

slice level in a reasonable amount of CPU time is not possible. To overcome the 

size problem of mathematical programming models and to generate a robust 

practical near-optimal schedule, the multi-step method was introduced.  

The multi-step method was applied on a large dataset containing 298 drawpoints 

and 5,539 slices. The goal was to maximize the NPV at a discount rate of 12%, 

while assuring that all constraints were satisfied during the mine life. The BHOD 

was limited to not less than 50m. The total tonnage of material to be extracted was 

almost 37 Mt.  In this method, the results of each level were used to reduce the 

number of variables in the next level. In multi-step method, the performance of the 

proposed models was analyzed based on NPV, mining production, and practicality 
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of the generated schedules. At the beginning, 35 clusters were created and the 

problem was solved for different advancement directions at the cluster level. 

Based on the results, the west to east and south to north directions had the 

maximum NPVs. Then, the solution from the previous stage was used based on 

the early start and late finish to eliminate the variables. Almost 34% of decision 

variables were eliminated in both directions. After solving the problem at 

drawpoint level, using the solution of this level and two years flexibility, the 

number of decision variables was reduced by 28% at the drawpoint-and-slice level 

formulation in the west to east directions. In this direction, the multi-step method 

generated production schedules which yielded NPVs of $313.5M, $317.6M, and 

$324.4M over a 15-year mine life at an annual discount rate of 12%. The NPV of 

the drawpoint-and-slice level formulation was 2.1% and 3.4% more than 

drawpoint and cluster levels, respectively.   

In both the single-step and multi-step methods, the resulting NPVs for the 

drawpoint-and-slice level were greater than those for other levels. At the 

drawpoint-and-slice level, the method uses the slices’ economic value. The model 

extracts slices with a higher economic value earlier than other slices. But at the 

drawpoint level, the method uses a draw column whose economic value is a 

weighted average of slices within the related draw column. 
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CHAPTER 6  

SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS 

 

Chapter 7 contains the thesis summary and concluding statements. The benefits 
and contributions of this research are highlighted, as well as recommendations 
for future work in integrated mine planning and production scheduling.  
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6.1 Summary of Research 

As the mining industry is faced with lower grades and marginal reserves, 

production scheduling algorithms are continually coming to the forefront as one 

of the important methods for determining the viability of mining projects. A 

production schedule must provide a mining sequence that takes into account the 

physical limitations of the mine and, to the extent possible, meets the demanded 

quantities of each raw ore type at each time period throughout the mine-life. The 

economics of today’s mining industry are such that the major mining companies 

are increasing the use of massive mining methods. Among the mining methods 

available, caving methods are favored because of their low cost and high 

production rates. Caving methods have become the underground bulk mining 

method of choice, a trend that is expected to continue in the foreseeable future. 

The optimal  production schedules play an important role in generating economic 

returns from the block-caving method because it is not possible to change the 

mining method once the cave is initiated and the loss of large amounts of the 

deposit if production is carried out with poor draw practice. Currently, the 

software packages use simulation and heuristic methods to determine feasible 

rather than optimal production schedules. These methods rapidly provide different 

schedules for review by a planner, but they suffer from their inability to provide 

an optimal solution.  

Because of the improvement in both computer processing power and optimization 

solution algorithms, the ability to find an optimum schedule has been increased. 

Many efforts have been made recently to address open pit optimization and 

production scheduling problems. But the literature on underground mining is 

more recent. In summary, the major shortcomings of the current production 

scheduling methods in block caving are: a) limitations in solving large-scale 

problems; b) treatment of stochastic variables as deterministic processes; c) the 

trial-and-error process to find the mining start point and advancement direction; d) 

integration of fewer geotechnical constraints into real-scale production 
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scheduling. These inadequacies can cause distortions in the mine plans, resulting 

in sustainability, regulatory and profitability issues. 

To solve the limitations in dealing with large-scale problems, the trial-and-error 

process to find the mining start point and advancement direction, and integration 

of fewer geotechnical constraints into real-scale production scheduling, this 

research has developed a mixed-integer linear programming (MILP) mine 

planning framework to address long-term optimal block-cave production 

scheduling. Figure  6.1 shows a summary of the workflow for completing a case 

study based on the developed models. 

The objective of this research is to develop, implement, and verify a theoretical 

optimization framework for block-cave long-term production scheduling, 

whereby a mineral is extracted and prepared at a desired market specification, 

with the maximum economic return measured by NPV, and within acceptable 

technical and operational constraints. These constraints are the development rate, 

vertical mining rate (production rate per drawpoint), lateral mining rate (rate of 

opening new drawpoints), mining capacity, maximum number of active 

drawpoints, cave draw strategies, and advancement direction. 

Three MILP formulations were introduced for three levels of problem resolution: 

(i) cluster level, (ii) drawpoint level, and (iii) drawpoint-and-slice level. At the 

cluster level, the optimal life-of-mine multi-period block-cave production 

schedule is generated. This is the strategic yearly production schedule with the 

objective of net present value (NPV) maximization. At the drawpoint level, the 

optimal long-term block-cave production schedule is generated. The time horizon 

for this model can vary as a subset of the life-of-mine to control the size of the 

MILP to be solved. At drawpoint-and-slice level, the optimal long-term mine plan 

at the drawpoint level, including slices, is generated. The time horizon for this 

detailed 3D model can vary as a subset of the time horizons chosen in the 

previous levels. 
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Figure  6.1. Summary of the research methods 

These formulations can be used in two ways: (i) as a single-step method in which 

each of the formulations is used independently, (ii) or as a multi-step method in 
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which each step’s solution is used to reduce the number of variables in the next 

level and consequently generate a practical block-cave schedule in a reasonable 

CPU runtime for large-scale problems.  

In both methods, to solve the problem at the cluster level, after defining the 

advancement lines and phases, the draw columns within each phase are clustered 

using a modified  hierarchical clustering algorithm based on the algorithm 

presented by Tabesh and Askari-Nasab (2011). 

In general, the development and implementation of the MILP optimization model 

framework was undertaken in different stages. The results at each stage were 

published to facilitate continuous feedback from the research community and 

mining industry experts to improve the research methodology and models 

(Pourrahimian and Askari-Nasab, 2009a; Pourrahimian and Askari-Nasab, 2010a; 

Pourrahimian and Askari-Nasab, 2011; Pourrahimian et al., 2012a; Pourrahimian 

et al., 2012b; Pourrahimian et al., 2012c). 

MATLAB (Math Works Inc, 2011) programming platform was used to capture 

the MILP model framework. The model’s main components include the objective 

function and constraints. These components interact with the draw columns’ slices 

through the user input scheduling parameters. TOMLAB/CPLEX (Holmstrom, 

2011), which is a large-scale optimization solver developed based on the branch-

and-cut algorithm, was used for this research.  

The MILP formulations for three levels of problem resolution were applied 

independently on a data set containing 102 drawpoints and 2,058 slices. At all the 

levels, the problem was solved over 15 periods and the same input scheduling 

parameters were considered. The results showed that all the considered constraints 

had been satisfied and the models worked properly. The obtained NPVs were the 

optimal values that could be reached based on the obtained optimality gap. The 

number of the constraints and variables increased from the cluster level to the 

drawpoint-and-slice level and, consequently, the solving time increased. To solve 

the problem at these three levels of resolution, the EPGAP was set to 1%, 3%, and 
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5% at the cluster level, drawpoint level, and drawpoint-and-slice level, 

respectively. Despite the higher obtained optimality gap for the drawpoint-and-

slice level, the solving time of this level was significantly more than at other 

levels. The obtained NPV at the drawpoint-and-slice level was more than at the 

drawpoint level. The NPV of the drawpoint level was more than at the cluster 

level. The cluster level, drawpoint level and drawpoint-and-slice level 

formulations generated production schedules which yielded a NPV of $123.2M, 

$125.2M, and $131.6M in the west to east direction, which was the best 

advancement direction. The NPV of the drawpoint-and-slice level was 4.8% 

higher than that of the drawpoint level and 6.4% more than the cluster level.  

However, the solving time of the problem at drawpoint-and-slice level for this 

direction was 4745 times more than cluster level and 215 times more than 

drawpoint level. 

The results of single step showed that solving a real-size problem at the drawpoint 

level and drawpoint-and-slice level in a reasonable CPU time is not possible. To 

overcome the size problem of mathematical programming models and to generate 

a robust practical near-optimal schedule, a multi-step method was introduced. 

The multi-step method was applied on a dataset containing 298 drawpoints and 

5,539 slices over 15 periods. After defining the advancement lines and phases, the 

draw columns within each phase were clustered. Then, the problem was solved in 

four directions at the cluster level with an EPGAP of 1%. Based on the results, the 

directions west to east and south to north with NPVs of $313.56M and $312.54M 

were selected as directions to solve the problem at the drawpoint level. Then, the 

solution from the previous stage was used, based on the early start and late finish, 

to eliminate the variables. Consequently, the number of decision variables was 

reduced 34% in the both directions. This variable reduction technique decreased 

the solution space for the optimization problem. Thus during optimization, some 

of the branches in the branch-and-cut tree were eliminated, ensuring that the 

solution for the practical production scheduling problem was reached faster. Then, 

the problem was solved in the both directions with two EPGAPs of 4% and 1%. 
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Based on results, the NPV of both directions was $317M. For the last step, the 

west to east direction was selected. After eliminating 28% of the decision 

variables based on the solution of the drawpoint level, the problem was solved at 

the drawpoint-and-slice level with the EPGAP of 5%.  The NPV was $324.4M. At 

all levels, all the defined constraints had been satisfied and the models worked 

properly. Table  6.1 shows a summary of the results for both the single-step and 

multi-step.  

Table  6.1. Summary of results from numerical application for single-step and multi-step 
methods 

Level of 
resolution 

Dir. 
Number of  

CL/DP/SL 

Number of 
constraints 

variables 

Opt. 
GAP 
(%) 

CPU time  

8 CPUs @ 
2.7 GHz 

NPV 
($M) 

Diff. 
from 

the best 
(%) 

Single-step Method (102 drawpoints)  

Cluster 
level 

WE 17 / 0 / 0 1,429 / 765 0.99 00:01:24 123.21 -6.4 

EW 17 / 0 / 0 1,429 / 765 1.00 00:02:57 121.71 -7.54 

NS 17 / 0 / 0 1,444 / 765 0.82 00:00:50 121.98 -7.33 

SN 17 / 0 / 0 1,399 / 765 0.99 00:00:47 121.28 -7.86 

Drawpoint 
level 

WE 0 / 102 / 0 19,854 / 4,590 2.72 00:30:56 125.27 -4.83 

EW 0 / 102 / 0 19,884 / 4,590 2.98 00:49:46 124.70 -5.26 

NS 0 / 102 / 0 20,874 / 4,590 2.93 00:27:46 124.31 -5.56 

SN 0 / 102 / 0 19,284 / 4,590 2.99 01:03:17 124.78 -5.20 

Drawpoint- 
and-slice 

level 

WE 0 / 102 / 2,058 115,146/64,800 5 110:43:26 131.63 
The 
best 

SN 0 / 102 / 2,058 114,576/64,800 5 124:31:18 126.63 -3.8 

 Multi-step Method (298 drawpoints)  

Cluster 
level 

WE 35 / 0 / 0 2,935 / 1,575 0.74 00:00:05 313.56 -3.35 

EW 35 / 0 / 0 2,965 / 1,575 1.00 18:47:07 306.56 -5.51 

NS 35 / 0 / 0 2,950 / 1,575 0.94 00:36:28 300.01 -7.52 

SN 35 / 0 / 0 3,070 / 1,575 0.68 00:00:13 312.54 -3.66 

Drawpoint 
level 

WE 0 / 298 / 0 79,046 / 13,410 2.92 00:15:40 312.38 -3.71 

SN 0 / 298 / 0 89,336 / 13,410 3.23 00:31:45 311.52 -3.98 

WE 0 / 298 / 0 79,046 / 13,410 1 06:58:47 317.60 -2.1 

SN 0 / 298 / 0 89,336 / 13,410 1 210:22:29 317.09 -2.26 

Drawpoint-
and-slice 

level 
WE 0 / 298 / 5,539 336,079/175,110 4.9 16:34:23 324.42 

The 
best 
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To demonstrate the effectiveness of the multi-step method, the problem was 

solved using a single-step method for the same input scheduling parameters in the 

west to east direction. In the single-step method, the EPGAP was set to 5%. At the 

drawpoint level, the solving time for the multi-step method with an optimality gap 

of 1% was six times faster than the single-step method. With an optimality gap of 

2.92%, it was 183 times faster.  

The multi-step method made it possible to solve the problem with a smaller 

EPGAP in a reasonable CPU time. At the drawpoint-and-slice level, the single-

step method was still running after six days without any feasible solution. The 

increase in the number of drawpoints increased the run time of the model 

exponentially and reduced the probability of finding a near-optimal solution. 

The method presented here can solve large-size problems. At the cluster level, the 

optimal life-of-mine, multi-period block-cave production schedule is generated. 

The time horizon for the drawpoint level can vary as a subset of the life-of-mine. 

At the drawpoint-and-slice level, the time horizon for this detailed 3D model can 

vary as a subset of the time horizons chosen in the previous levels.  

6.2 Conclusions 

In pursuing this research, the literature review conducted established the 

limitations in the current body of knowledge in production scheduling 

optimization. These limitations can affect the viability as well as other aspects of 

mining projects, emphasizing the need for optimization tools that take into 

consideration these deficiencies. Consequently, it is important that robust models 

are developed to address these challenges. In addition, relying only on manual 

planning methods or computer software based on heuristic algorithms will lead to 

mine schedules that are not the optimal global solution. In this research we 

developed a theoretical framework for long-term production schedule 

optimization of block-cave mines using MILP. The theoretical framework was 

implemented and verified on a real dataset. The research objectives outlined in 

Chapter 1 have been achieved within the research scope. The following 
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conclusions were drawn from the implementation of the MILP model framework 

for block-cave production scheduling: 

 The presented MILP models maximize the NPV of the mining operations 

while enforcing production control constraints.  

 The MILP models generate production schedules for large-scale block-caving 

projects using clustering and multi-step techniques. 

 The presented MILP models can generate production schedules at three levels 

of problem resolution: (i) cluster level, (ii) drawpoint level, and (iii) 

drawpoint-and-slice level.  

 The cluster-level model generates the optimal life-of-mine multi-period block-

cave production schedule. This is the strategic, yearly production schedule 

with the objective of NPV maximization.  

 The drawpoint-level model generates the optimal long-term block cave 

production schedule. The time horizon for this model can vary as a subset of 

the life-of-mine to control the size of the MILP to be solved. 

 The drawpoint-and-slice level model generates the optimal medium-term plan 

at the drawpoint level, including slices. The time horizon for this detailed 3D 

model could vary as a subset of the time horizons chosen for the previous 

levels. 

 The MILP models provide a fast and flexible production scheduling 

optimization approach through the use of the multi-step method. In the 

considered case study, at the drawpoint level, the solving time for the multi-

step method with an optimality gap of 1% was 6 times faster than the single-

step method with a larger optimality gap of 4.8%. With an optimality gap of 

2.92%, it was 183 times faster. Also, the obtained NPV for the multi-step 

method was 2.3% more than single-step method. The single-step method was 
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not able to reach a feasible solution at the drawpoint-and-slice level, while the 

multi-step method generated a schedule with a NPV of $324.4M. 

 The MILP models generate a production schedule with the maximum NPV. 

 The MILP models show the starting point and advancement direction needed 

to reach the maximum NPV. 

6.3 Contributions of PhD Research 

This research has developed mathematical, MILP models for block-cave 

production scheduling. The resulting formulations and methodology offer the 

following significant improvements over the previous research in the context of 

mathematical programming models for block-cave production scheduling: 

 Proposition of three MILP production scheduling models and their 

implementation as prototype software with a graphical user interface at three 

levels of detailed resolution: (i) cluster level, (ii) drawpoint level, and (iii) 

drawpoint-and-slice level.  

 Consideration of a multistage solution methodology using the three above-

mentioned MILP models to generate a practical block-cave schedule in a 

reasonable CPU runtime.  

 Proposition of using a hierarchical clustering algorithm based on the cave 

advancement direction to aggregate drawpoints into selective mining units of 

scheduling. The contribution of drawpoint aggregation is twofold: (a) it 

generates a practical mining schedule that follows a selective mining unit; and 

(b) reduces the number of variables, especially binary variables in the MILP 

formulation, to make it computationally tractable.  

 Introduction of the concept of different cave advancement directions to find 

the best single operation direction or combination thereof, and the best starting 

location. Since the caving industry is now moving towards the next generation 

of caving geometries and scenarios, super caves, this concept will be useful. 
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 The models provide the starting point and the advancement direction to use in 

the commercial software packages in which the opening pattern is defined 

manually. 

6.4 Recommendations for Future Research 

Although models developed in this thesis have provided new methods and 

formulations for block-cave production scheduling, there is still the need for 

continued investigation into using mathematical programming models in 

production scheduling of block-cave mines. The following recommendations 

could improve and add to the body of knowledge in this research area. 

 The MILP models assumed that data from geologic block models were 

deterministic values. As a result, no attribute uncertainties were considered. 

It also assumed that future cost and price data used for the slice economic 

value were constant. This assumption means that as cost and price change in 

the future, there will be a need to re-optimize the production schedules. To 

overcome these limitations, the MILP model framework should be extended 

to include stochastic variables like grade and mineral prices during 

optimization. 

 In addition to the assumed constraints in this research, there are other mine 

planning parameters that are a function of the rock mass. Future research 

will need to define all these parameters and the relationships between them 

to establish a more comprehensive production-scheduling model. 

 The MILP models assumed that there was no material mixing between 

blocks as a function of draw. The dilution modeling was carried out in 

PCBC at the slice level, prior to using this static model. Future research will 

need to consider material mixing during optimization. 
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APPENDIX 

CONFIGURATION OF DSBC FOR BLOCK-
CAVE PRODUCTION SCHEDULING         

(DSBC: Drawpoint Scheduling in Block-Caving) 

 
 
 

This appendix introduces the open-source software application with a graphical 
user interface called drawpoint scheduling in block-caving (DSBC). This 
appendix explains how the sequence of extraction in a block cave mine can be 
optimized using the mixed-integer linear programming (MILP) formulations in 
the DSBC. This appendix presents the workflow and documentation on how to use 
DSBC software. The prototype software helps transfer knowledge and 
optimization technology developed in this research to practitioners and end-users 
in the field of block-cave production scheduling. 
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1 Introduction 

The main industrial contribution of this research includes development and testing 

of a prototype open-source software application with a graphical user interface, 

DSBC. The prototype software helps transfer knowledge and optimization 

technology developed in this research to practitioners and end-users in the field of 

block-cave production scheduling.  

The mining concepts and strategy, clustering, and mathematical formulations 

outlined in Chapter 3 were developed as numerical models representing the MILP 

framework application in Chapter 4. In this appendix, an open-source software 

application with a graphical user interface called drawpoint scheduling in block-

caving (DSBC) is introduced. The appendix also explains how the sequence of 

extraction in a block-cave mine can be optimized using the MILP formulations in 

the DSBC.  

All stages before scheduling, from creating a block model to converting a slice 

file, are done using GEMS and PCBC (Gemcom Software International, 2012).  

These stages include: 

1. Creating a block model using GEMS. 

2. Importing drawpoints data such as coordinates, dip, and azimuth. 

3. Creating a slice file using PCBC. 

4. Calculating the best height of draw (BHOD). 

After creating the slice file, all the clustering and optimization steps are done 

using the DSBC. These steps are as follows: 

1. Importing the slice file, the BHOD file, and coordinates of drawpoints into 

DSBC. 

2. Creating all required databases and sets to use in the developed MILP 

models. 
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3. Clustering the draw columns based on the similarity of the draw column’s 

tonnage, average grade, and physical location. 

4. Defining the scheduling parameters. 

5. Creating the objective function and constraints for three levels of 

resolution: cluster level, drawpoint level, and drawpoint-and-slice level. 

6. Solving the problem using one of the methods: either single-step or multi-

step. 

7. Plotting the results. 

2 Required Software to Run the DSBC 

To run the DSBC, at the beginning MATLAB and TOMLAB/CPLEX must be 

installed on the computer. MATLAB is a high-level language and interactive 

environment for numerical computation, visualization, and programming. Using 

MATLAB, the user can analyze data, develop algorithms, and create models and 

applications. The language, tools, and built-in math functions enable users to 

explore multiple approaches and reach a solution faster than with spreadsheets or 

traditional programming languages, such as C/C++ or Java. TOMLAB is a 

general-purpose development and modeling environment in MATLAB for 

research, teaching, and finding practical solutions to optimization problems. 

TOMLAB/CPLEX integrates the solver package CPLEX with MATLAB and 

TOMLAB.  

3 Experiments Framework for the MILP Models 

The methodology applied to the block-cave production scheduling problem in the 

MILP framework includes a solution scheme that is based on the branch-and-cut 

optimization algorithm (Horst and Hoang, 1996) implemented in 

TOMLAB/CPLEX (Holmstrom, 2011). To be able to obtain reliable experimental 

results, the solution scheme employed in solving the problem should be able to 

capture the complete definition of the block-cave production scheduling problem. 



Appendix 
 

219 
 

The assumptions are based on the framework for applying operations research 

methods in mining. Figure 1 shows the general workflow of database creation in 

the DSBC. After creating the database, based on the selected level of resolution, 

the problem is solved. These levels include the cluster level, drawpoint level, and 

drawpoint-and-slice level. 

The three MILP formulations for three levels of problem resolution -- cluster 

level, drawpoint level, and drawpoint-and-slice level -- can be used in two ways: 

(i) single-step, in which each formulations is used independently; and (ii) multi-

step, in which each step’s solution is used to reduce the number of variables in the 

next level and consequently generate a practical block-cave schedule in a 

reasonable CPU runtime for large-scale problems. Figure 2 and Figure 3 show the 

general workflow for single-step and multi-step methods, respectively. It should 

be mentioned that the MILP formulations use a solver developed based on exact 

solution methods for optimization. In this solver, an optimization termination 

criterion is set up to stop the algorithm when an integer feasible solution has been 

proved to be within a specific percentage of optimality, subject to the practical 

and technical mining constraints.     

4 Input Data 

To solve the problem we use the PCBC’s slice file. Three Excel files with the 

following information have to be prepared: 

 Coordinates: This file contains two sheets titled “Drawpoints” and “Tunnels.” 

Figure 4 shows the order of these Excel sheets. The order of columns in the 

sheet titled Drawpoints is record, drawpoint’s name, X, Y, and depth. In the 

sheet titled Tunnels, the coordinates of the start point and endpoint of each 

tunnel are defined. 
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Figure 1. Database creation in the DSBC 

 

 
 

Figure 2. General workflow for single-step method 
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Figure 3. General workflow for multi-step method 
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Figure 4. Structure of drawpoints and tunnels sheets in the Excel file 

 

 Slice info: This file contains information about slices within each draw 

column. These data include dilution, density, tonnage, dollar value, and 

percentage of the elements within each slice. Figure 5 shows the order of 

parameters in this file. 

 BHOD: This file contains the BHOD information for draw columns and other 

economic information. Figure 6 shows the order of this file. 

5 Guideline on Running DSBC 

The DSBC folder contains sub-folders, .tif and .m files (see Table 1). Within the 

folder DSBC, right click on the DSBC_Login.m, and then open it in MATLAB. In 

MATLAB, run the opened text file. If you have been asked to change the 

directory, accept it and change the directory. In the opened login window, enter 

User name and Password. Then press Login (see Figure 7). The main window of 

DSBC comes up (see Figure 8).  
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Figure 5. Structure of the slice file 

 

Figure 6. Structure of the file containing the BHODs 
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Table 1. Existing sub-folders, photos and MATLAB files within the DSBC’s folder 

Folders .tif files .fig files .m files 

1. FUNCTION 

2. IMPORT 

3. Input Data 

4. MODELS 

5. REPORTS 

6. RESULTS 

7. TOMLAB Input 

8. TOMLAB Output 

1. BlockCave1 

2. BlockCave2 

3. BlockCave3 

 

1. DSBC_Login 1. DSBC_Login 

 

 

Figure 7. DSBC’s login window  

The components of the main window are menu bar, system information area, and 

date and time information area. The menu bar contains File, Preparation, 

Clustering, Display, Sets, Models, Variable Elimination, Run, and Solution 

Analysis.  

In the system information area, useful information about the computer which the 

DSBC is running on that and version of the MATLAB are presented. Under the 

system information area, the date and time of the current and previous login is 

displayed. 
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Figure 8. Main window of the DSBC 

5.1 Database Preparation 

After executing the DSBC, to create a new project, go to: 

File > Set New Problem 

If there is another project, this option makes a back up from that project and then 

creates a new project. To import the three main Excel files into the DSBC, go to 

File > import .xls to DSBC. In the opened window, import the Excel files one by 

one. Then press OK (see Figure 9). After the Excel files are imported, they have 

to be converted to the MATLAB format. For this purpose, go to File > Convert 

To .mat. 
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Figure 9. Import window 

A window titled Excel 2 MATLAB comes up (see Figure 10). In this window 

you have to follow the steps. After each step the window is updated at the left 

bottom corner, and green lines appear. 

 

Figure 10. Excel 2 MATLAB window to convert .xls files to .mat 
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In the Excel 2 MATLAB window, Press Load BHOD Info. (.xls).  Then, from 

the pop-up menu in front of Step 2, select the sheet which contains the BHODs 

(see Figure 11). 

 

Figure 11. Selection of the sheet which contains the BHOD information 

Press Load Slice Info. (.xls) to convert the slices info, and then Press Load 

Coordinates (.xls). Check the data. Then press OK. 

As the next step, the adjacent drawpoints and the drawpoints located between 

tunnels are recognized. Also, for each drawpoint-and-slice, an index is defined 

and the BHODs are applied on the initial draw columns. All this is done using the 

Preparation menu. Under this menu, there are five options. Select these options 

in the following order. After each step a dialog box is opened and displays useful 

information about the step. 

1. Preparation > Find Adjacent Drawpoints 

2. Preparation > Create Index for Drawpoints 

In the opened window, enter the height of the slices. 

3. Preparation > Find Drawpoints Between Tunnels 

4. Preparation > Apply BHOD on Slice file 

5. Preparation > Create Index for Slices 

The Display menu allows a user to show the plan view of drawpoints, 3D view of 

draw columns, initial height of draw columns, and height of draw columns after 

applying the BHOD. To show these views, go to the Display menu and select the 
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related option. If there is a draw column with BHOD = 0 in the data, it can be 

displayed using the last option under the Display menu. 

5.2 Clustering and Creating the Sets 

The next step is clustering. Before clustering, the advancement directions must be 

defined. For this purpose, go to Clustering > Advancement Areas. In the opened 

window, select a direction and press APPLY. This will display the plan view of 

the drawpoints and tunnels. Now, based on the advancement direction, the 

boundary of phases must be created in the following order: 

 WE or EW: the lines should be created from left to right. 

 NS or SN: the lines should be created from bottom to top. 

 SWNE or NESW: the lines should be created from the left bottom corner to 

the right top corner. 

 NWSE or SENW: the lines should be created from the right bottom corner to 

the left top corner. 

Each line has two points. These points must be out of the black dash-line 

boundary. To pick the start and end points of the lines, use the LEFT click on the 

mouse. However, for the last line, the last point MUST be selected by the RIGHT 

click on the mouse. Figure 12 shows the advancement lines for the west to east 

(WE) and east to west (EW) directions. There are seven lines for the WE and EW 

directions. To define the phases boundaries for other directions, press CLEAR 

and then select another direction and press APPLY. Then, repeat the steps 

described in the previous sentence. Finally, press OK. The next step is the 

clustering of the draw columns within each phase. However, before clustering, the 

data must be prepared. For this purpose, go to Clustering > Preparation.  

To cluster the draw columns within each phase using the hierarchical clustering 

method, go to Clustering > Method > DPs Clustering Hierarchical. Then, 

select a direction for clustering and press Plot.  
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Figure 12. The window for advancement line selection with the phases boundaries for the 
WE or EW directions 

Afterwards, the clustering parameters input window comes up; in this window 

type the required numbers (see Figure 13 ). If you press OK, the clusters in the 

selected direction appear. To find the best weights that create practical clusters, 

you have to repeat the clustering with different weights. 

After clustering, you can analyze the clusters or display them. For this purpose, go 

to Clustering > Display. 

Two options are available (see Figure 14 ). Using DP Clusters, you can display 

the clusters in the selected direction. Using DP Clusters Analysts, you can obtain 

useful information about the clusters and drawpoints within each cluster. This 

information includes tonnage, average grade, economic value, and number of 

drawpoints within each cluster. Go to Clustering > Display > DP Clusters 

Analysts. 
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Figure 13. The clustering parameters input window 

 

Figure 14. Available options for cluster displaying and analyzing in the DSBC 

The DP Cluster Analysts window comes up. Select one of the existing directions 

and then press PLOT. The window on the left will display clusters from the 

selected direction. The window on the right will display tonnage, average grade, 

economic value, and number of draw columns for each cluster. At the bottom of 

the main window, each cluster can be analyzed based on tonnage, grade, and the 

economic value of the draw columns within the cluster. Figure 15 illustrates the 

DP Cluster Analysts window. 

All the required sets explained in Chapter 3 are created through the Sets menu. To 

create sets Sds, Sdls, Sadj, SCL, and Sd, go to the menu called Sets (see Figure 16) 

and then select the options in the following order: 

Sets > Create Sds, Sdls, Sadj  
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Sets > Create SCL 

Sets > Create Sd 

 

Figure 15. Cluster analysts window 

 

Figure 16. Sets menu to create all the required sets 

5.3 MILP Models Preparation 

To create the MILP models, the first step is to define of all the scheduling 

parameters based on the considered model.  For this purpose there are two 

options. To define the scheduling parameters for the clustering-level model, go to 
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Models > Scheduling Parameters > Model With Cluster 

In the opened window, select a direction and then press the Schedule button. A 

window will come up in which to enter the scheduling parameters for the 

clustering-level model (see Figure 17).  

 

Figure 17. Scheduling parameters definition window for the cluster-level model 

At the top part of this window, there is a summary about the minimum and 

maximum grade and tonnage among the clusters. Displayed on the right side of 

the window are the average grade of each cluster and its tonnage with the average, 

mode, and median lines. Fill out the blank boxes based on the project 

requirements. At the cluster-level model, user does not need to define the 

acceptable grade. For the draw rate, two different methods can be applied: (i) 

constant range, and (ii) production rate curve (PRC). Enter the drawpoint 

production rate in method 1. It will be automatically calculated for each cluster. 
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Finally press the SAVE button. The summary of the entered data will appear; 

review the summary. If it is correct, press OK. 

To define the scheduling parameters for the other models, go to 

Models > Scheduling Parameters > Model Without Cluster 

At the top of the open window, a summary of the useful data about the drawpoints 

and slices is presented. The right-hand side of the window displays the histograms 

related to the mentioned data (see Figure 18).  

 

Figure 18. Scheduling parameters definition window for the drawpoint level and 
drawpoint-and-slice level models 

Press the Select button in front of Desired Advancement Direction(s) and then 

select the scheduling directions. Then, press OK (see Figure 19). Fill out the 

blank boxes according to the project requirements. This time the acceptable grade 

must be defined. Finally, press the SAVE button. The summary of the entered 

data will appear. Check for accuracy. If everything is correct, press OK. 
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Figure 19. Direction selection window 

 

After defining the scheduling parameters and in order to create the models go to 

Models > Create and select the level of resolution needed to solve the problem. 

For example, to solve the problem at the cluster level, go to Models > Create > 

Clustered DPs. A mathematical model creator window will appear (see Figure 

20). To see the formulation in detail, press the Display Model button. Create 

objective function and constraint in the order that has been appeared.  

To create the draw rate constraint, select the Lower and Upper Bounds option. 

For the mining precedence, at the cluster level select Set_SCL.mat from the 

folder SetSCL. At the drawpoint level, select Set_Sd.mat from the folder SetSd. 

Finally, press OK. 
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Figure 20. Mathematical model creator window for the cluster-level model 

5.4 Scheduling Optimization 

The MILP formulations presented for three levels of problem resolution -- cluster 

level, drawpoint level, and drawpoint-and-slice level -- can be used in two ways: 

(i) a single-step method in which each of the formulations is used independently, 

and (ii) a multi-step method in which each step’s solution is used to reduce the 

number of variables in the next level and consequently generate a practical block-

cave schedule in a reasonable CPU runtime for large-scale problems. 

 Single-Step Method 
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After the model for each level of resolution has been created, it can be solved 

using the Run menu. For this purpose, go to Run > Export to TOMLAB. Select 

the model that you have created, and press the Export button. Then go to Run > 

Solve the Model. 

TOMLAB/CPLEX is executed automatically. Then, a window comes up (see 

Figure 21). In this window, select the model and the advancement direction for 

optimization. Then enter the relative tolerance on the gap between the best integer 

objective and the objective of the best node remaining. For example, for the 

EPGAP of 1%, type 1 in the box. Finally, based on the number of available CPUs 

on your computer, enter the number of required CPUs to solve the selected model 

and press Solve. 

 

Figure 21. The window for defining the optimization criteria 
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After solving the problem in the selected advancement direction, to display the 

obtained results, go to Solution Analysis > Results Preparation and then select 

the related model and prepare it. To plot the results, go to Solution Analysis > 

Plot Results.  

  Multi-Step Method 

To solve the problem using the multi-step method, create all models. After 

creating the models, go to Run > Export to TOMLAB. 

Select the cluster level model and export it. Then go to Run > Solve the Model. 

Select Clustered Drawpoints as a model and a direction to run the optimization. 

Enter the proper numbers for the EPGAP and the number of required CPUs. 

When the problem was solved, select another direction and solve the problem in 

that direction. Using Plot Wizard, recognize the best advancement direction for 

the obtained solutions in the selected directions. For this purpose, go to Solution 

Analysis > Results Preparation and then select the cluster-level model and 

prepare it. Afterwards, go to Solution Analysis > Plot Results and analyze the 

results to find the best advancement direction.  

Then, go to Variable Elimination > Cluster to Drawpoint Level. Afterwards, 

go to Run > Export to TOMLAB. Select Drawpoint Without Slices and export 

it. Then, go to Run > Solve the Model. Select Drawpoint Without Slices as the 

model. The advancement direction must be the direction which had the maximum 

net present (NPV) value at the cluster level. Enter the proper numbers for EPGAP 

and the number of required CPUs and then solve the problem. After solving the 

problem at the drawpoint level, in order to solve it at the drawpoint-and-slice 

level, go to Solution Analysis > Results Preparation and select Drawpoint 

Without Slices and prepare it. Afterwards, go to Variable Elimination > 

Drawpoint to Slice Level. Select the solution of the drawpoint level as the 

starting period. Then, go to Run > Export to TOMLAB. Select Drawpoint With 

Slices and export it. Solve the problem at the drawpoint-and-slice level. The 

advancement direction must be that direction which had the maximum NPV at the 
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cluster level. Enter the proper numbers for EPGAP and the number of required 

CPUs and then solve the problem. 

After solving the problem, using the Plot Wizard you can analyze the results and 

compare different models. 

5.5 Result Analysis 

After solving the problem, results must be prepared for display. For this purpose, 

go to Solution Analysis > Results Preparation and select the related model and 

prepare it. Next, to plot the results, go to Solution Analysis > Plot Results. The 

Plot Wizard window will appear (see Figure 22). Select a model and then plot the 

results based on available options. 

 

Figure 22. Plot wizard window 
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