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Abstract

Open and closed-loop flatness-based tracking control of flexible beams is considered. A
rotating beam system is modeled using an Euler-Bernoulli partial differential equation.
Flatness is used to derive an open-loop control by introducing a so-called flat output which
parameterizes the system state and input in terms of an infinite series depending on the
flat output and its time derivatives. The series are truncated to derive finite-dimensional
state-space form system approximations for which linear estimated state feedback tracking
laws are applied. A finite-element analysis model, required to simulate the performance
of the proposed closed-loop design, is derived and implemented. Both open and closed-
loop controls are successfully validated experimentally on a test stand. Generalization of
the open-loop control for rotating beam systems with tip payload are presented, and a

superposition-based open-loop control for a levitated beam is described.
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Chapter 1

Introduction

1.1 Control of Flexible Structures

The control of flexible structures is an established area of research with numerous important
practical applications. An example of a controlled flexible structure is the Shuttle Remote
Manipulator System, also known as the Canadarm [25] shown in Figure 1.1. Closer to
home, applications include flexible robotic arms [1], construction cranes [54], heavy cables
[56], piczoelectric microsystem positioning devices [22, 65}, offshore oil and gas exploration
equipment {12], and hard disk read/write head actuators [48].

TV TR IV AT g

Figure 1.1: Example of a flexible manipulator — the Canadarm

Flexible manipulators are intentionally slender to provide low mechanical inertia. This
allows for fast motion control in weight critical applications. Such slender designs have
low geometric stiffness and hence the control of lightly-damped oscillations becomes a key
issue when trying to achieve motion planning objectives. As the speed of desired motion
increases, especially in the presence of a tip payload mass, the system experiences larger
inertial forces which can worsen vibrational problems. One way to reduce the level of
oscillations is to control the manipulator in open-loop and move sufficiently slowly. This
non-model-based simplistic approach to control is used to keep swaying at safe levels in the
Canadarm, which translates at 6 cm/second fully loaded. However, this solution may not
be acceptable in applications where accurate high-speed motions are critical. For example,
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manufacturing robots must move fast to ensure the assembled product is profitable. Hence,
it is natural to make use of a physical model of the system which accounts for flexibility
in order to obtain better performance. For example, a closed-loop scheme might sense
deformations of a manipulator and apply corrective actuator action using a model-based
control strategy. Typical sensors include strain gages for measuring deflection, and encoders
at the articulated joints to measure angular position and velocity. The actuator, typically a
servo motor, applies torque to control the structure. The control of flexible manipulators has
been studied extensively over the last two decades, especially in the context of robotics. A
recent survey paper [5] classifies existing work in the area according to manipulator design
(single versus multi-link), dynamic model (spring-mass discrete, continuous, Lagrangian
formulation, finite-element decomposition, modal decomposition), control objective (end-
effector position regulation, tracking of desired angular trajectory in rotating joints, tracking
of end-effector trajectory) and control technique used (input-output linearization, PID, pole-
placement, adaptive, neural network, sliding-mode, robust, optimal, and others). This thesis
makes a contribution to the problem of controlling flexible structures by proposing flatness-
based open and closed-loop control laws for flexible systems.

1.2 Distributed Parameter Systems

A distributed parameter system (DPS) is one whose behaviour can be naturally modeled by
partial differential equations (PDEs). Such systems are a special case of infinite-dimensional
systems whose state space has infinite dimension (e.g. a linear delay systems). In contrast
to infinite-dimensional systems, lumped-parameter systems are described by ordinary differ-
ential equation (ODE) models. The behaviour of a DPS is described by dependent variables
which are functions of at least two independent variables, usually time and space. On the
other hand, lumped-parameter systems’ variables depend on time alone. For example, the
macroscopic description of the position and orientation of an airplane, or the voltage and
current terminal characteristics of an analog circuit can be well-modeled using a lumped
parameter ODE model. Distributed phenomena often results from a microscopic analysis
and leads to a PDE model. For example, the vibration of an airplane wing, or electric
charge distribution inside a transistor are systems which have an infinite number of system
variables or degrees of freedom and are best modeled using PDEs.

The study of controlled DPS is an interesting and challenging current area of research.
Much of the challenge arises from the additional complexity of working with PDEs relative
to ODEs. This increased complexity can be seen when investigating even fundamental issues
indirectly related to control such as existence or uniqueness of solutions to PDEs. Existing
control methods can be roughly divided into two categories.

1. Indirect methods which first spatially discretize the PDE model to obtain a system
of ODEs. Spatial discretization can be performed in a number of ways including the
use of modal decomposition and Finite-Element Analysis (FEA). Lumped parameter
control design methods can then be readily applied to the resulting finite-dimensional
model. Examples of this approach are in [28, 72, 10] which treat the motion control
problem for rotating flexible beams. Robust H.-optimal control methods are applied
to spatially discretized models [3, 69]. Such spatial discretization model-based methods
are commonly used in practice but can lack theoretical justification for their underlying
approximations.

2. Direct methods use the PDE mnodel for design without explicitly performing a spatial
discretization step and are a more modern approach [9, 2, 17, 75, 8]. Theoretical
methods in {8] rely on a semigroup functional analysis framework in order to develop
a theory for DPS similar to the established linear finite-dimensional state space sys-
tem theory [6]. This thesis adopts a direct approach which generalizes the notion of
differential flatness [13] to infinite-dimensional systems. Recent work in [45, 46] intro-
duces practical methods for superimposing a closed-loop flatness-based control on top
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of feedforward. Another body of work which adopts a direct approach to controlling
DPS makes use of Lyapunov’s method. Examples of such work include [50] and are
typically focused on simple control structures which ensure closed-loop stability.

1.3 Flatness-based Control

Differential flatness-based control was originally developed for finite-dimensional nonlinear
systems by Fliess et al. [13, 14]. An overview of recent results on flatness is in [43]. Although
the concept of {latness originally arose in a differential algebraic framework, it is more
easily explained as the ability to express system variables in terms of a so-called flat output
function. The trajectories of a flat systems are completely parameterized differentially by
the trajectories of a flat output which can be freely assigned (at least from a mathematical
point of view). We consider a system in explicit state space form

= f(z,u) (1.1)

where £ € R" denotes the state and u € R™ the input vector. If system (1.1) is flat, there
exists a flat output vector y € R™ with

y=h(a:,u,'u,...,u('))

for some smooth function h, and locally there exist smooth functions &, ¢ such that

z =y, 3,....y'7)
uv=a(j...,y™)

(1.2)

where 7, q, s are finite integers. We remark the number of flat output components is equal
to m, the number of system inputs. As well, the flat output y is differentially independent,
which means there does not exist an ODE such that v(y, 3, ...,y®) = 0.

A simple example of a flat system is the kinematic car [14] shown in Figure 1.2 and
described by the ODE

&1y =vcosf
I =vsinf (1.3)
by = vtanqb

l

where the linear velocity of the rear axle is denoted v, the position coordinate of the centre
of the rear axle is (x;, z3), the angle the rear axle makes with the horizontal is 6, the angle
the front axle makes with the frame of the car is ¢, and the distance between the front and
rear axle centers is denoted [. If we take the system input as (v,$)” and choose the flat
output as position of the rear axle y = (z,,z2)7, we have the following expressions for state
¢ and input (v, )7 in terms a finite number of time derivatives of y:

@ = arctan ('L—2)
I
v=/d? + i3

¢ = arctan (_lvﬁ) = +arctan (.l@‘___z.lx_z))

T+ B

Hence, the kinematic car is flat and we remark the local domain of definition of the functions
a, p introduced in (1.2).

The particular relationship between flat output and system variables (i.e., input and
state), which involves only derivatives and no integration, allows us to readily incorporate
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T

Figure 1.2: The kinematic car

motion planning objectives into the trajectory ¢ — y(t), and having fixed this trajectory
an expression for the steering control follows by differentiation and algebraic computation.
Flatness implies dynamic feedback linearizability and hence generalizes the important notion
of static state feedback linearization [23, 27]. For example, the kinematic car (1.3) is flat but
not static state feedback linearizable. A flatness-based control law also naturally leads to a
closed-loop feedback with a linear tracking error dynamics system. Consequently, flatness-
based feedback control provides robust tracking performance. A final important property of
flatness is that, unlike feedback linearization, it can be generalized to the infinite-dimensional
system case. In this thesis we will make extensive use of this fact which is discussed further
in the following section.

1.4 Flatness-based Control of Infinite-dimensional Sys-
tems

An overview of flatness applied to infinite-dimensional systems is in [60, 63] with the presen-
tation in [63] giving a particularly complete account. The original work in this area is [16]
which considers a position tracking problem for a flexible rod with torsional flexibility. In
this case a linear hyperbolic wave equation is reduced to a delay system and the open-loop
input is parameterized by constant amplitude delays and predictions on the flat output tra-
jectory and its time derivatives [49, 16]. Although a complete theoretical basis for flatness
in the infinite-dimensional system case does not yet exist, the type of PDE (e.g. parabolic,
hyperbolic, etc...) determines how the state and input is parameterized by the flat output.
For example, for the hyperbolic undamped wave equation the parametrization is in terms
of delays and advances of the flat output and its derivatives. Other hyperbolic equations
modeling heat exchangers, telegraph lines, or heavy chains lead to finite distributed delay
and prediction operators which require an integration of the flat output over a finite time
interval [15, 62, 55, 56, 57]. Parabolic or biharmonic equations lead to infinite series pa-
rameterizations, e.g. [17]. Terms of these series depend on time derivatives of a flat output

4
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chosen to be of Gevrey class at most 2 to ensure series convergence. Early work on the
parabolic case considered a constant coefficient linear diffusion equation modeling a tubular
reactor (18, 19] and linear heat equations [43]. Generalizations to the linear diffusion equa-
tion with spatially dependent coefficients is considered in [32, 33, 31, 30], and special cases
of this work concern cylindrical coordinate models [59, 31]. Work on the biharmonic case
includes the Euler-Bernoulli equation modeling a rotating flexible beam in a horizontal plane
(17, 2], a vertical plane [35, 36], or a clamped-free piezoelectric positioning device [22, 65].
The case of a non-rotating Euler-Bernoulli beam with spatially varying beam parameters is
in [66].

Most of the flatness-based work on infinite-dimensional systems to date and almost all
work cited above has [ocused on the linear system case. Nonlinear extensions to the parabolic
case are in [39, 38, 40, 41]. Other flatness-based work on the nonlinear infinite-dimensional
case taking different approaches can be found in [11, 43, 61, 53, 57].

While flatness-based open-loop steering of infinite-dimensional systems has been exten-
sively studied, closed-loop control has received much less attention. Of course in practice
closed-loop control is required to reduce the effect of disturbances and model error. For ex-
perimental validation a common approach has been to augment the open-loop design with
a simple PID control (2, 22]. In these last two references no rigorous way of determining
suitable parameters of this PID controller were given. More recently published work [45, 46]
gives a more systematic basis for designing the closed-loop component of the flatness-based
control law. In this work the same series expressions used in open-loop motion planning are
used to derive the closed-loop control. The technique has successfully been demonstrated in
simulation for certain linear and nonlinear parabolic systems including a heat equation [46].
The work presented in this thesis makes use of the approach in [46] for a rotating flexible
beam system.

1.5 Scope of the Research

The main objective of the research described in this thesis is to extend the closed-loop
flatness-based tracking control design method [46] to a rotating flexible beam system. We
derive the open-loop series expressions using hub torque as an input. We design a closed-
loop estimated state feedback controller using series expressions derived for the open-loop
control. To test the tracking feedback law, we derive a Finite-Element Analysis (FEA) model
for the beam system. The controller is then implemented in simulation and experiment,
demonstrating robust performance. Open-loop controls for a multi-input levitated flexible
beam and rotating beam with payload are also considered as generalizations.

1.6 Overview of the Thesis

The thesis is organized as follows. Chapter 2 introduces the experimental flexible-beam
plant and models the various subsystems from first principles. Chapter 3 derives the flatness-
based open-loop design. Chapter 4 derives an estimated state feedback law based on the
feedforward result in Chapter 3. Chapter 5 implements different techniques for simulat-
ing the beam system and tests the closed-loop design in simulation using the FEA model
developed. Chapter 6 presents experimental validation results. Chapter 7 generalizes the
rotating flexible beam model by including a payload and beam rotary inertia. Chapter 8
considers the open-loop control of a levitated flexible rotor, and makes use of a superposition
technique which reduces the complexity of the multi-input system design.
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Chapter 2

System Description and
Modeling

In this chapter, we describe the model of the system to be controlled. This system is shown
in Figure 2.1. Numerical values of the system’'s parameters are identified for the physical
apparatus.

2.1 Description of the Plant

Figure 2.1: Flexible beam system

As shown in Figure 2.1, the system consists of a flexible steel ruler which is clamped to a
hub. A DC motor drives the beam through a gear train. The motor is powered by a linear
power amplifier, whose voltage is controlled from a computer via a Multi-I/O card. The
hardware provides three output sensors. A strain gage is bonded to the base of the ruler,
and is calibrated to measure the linear deflection of the tip during bending. An encoder
attached to the rotating hub measures the angle 6(t). Finally, a tachometer measures the
angular velocity of the hub, 8(¢t). Further details on the experimental setup are contained
in [58).
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The control objective for this plant is rest-to-rest motion, i.e., rotating the flexible ruler
between undeformed equilibrium configurations. The open-loop trajectory will be derived
in Chapter 3 using flatness techniques applied to the infinite-dimensional model developed
here.

2.2 Derivation of the Bearn Model

We model the ruler as a flexible beam described by an Euler-Bernoulli PDE {26, Section
6.5]. In this section, we derive the beam equation, and work out the boundary conditions
used to model the beam system,

2.2.1 Background

The following are some facts from mechanics which are relevant to the modeling [4, 44].

e The beam is elastic [7]. When it deforms, restoring internal loads appear which are
proportional to the magnitude of the deflection. These restoring loads ensure the beam
returns to its undeformed configuration if the deflecting input is removed.

e Internal loads (forces and moments) always appear in oppositely-directed pairs, creat-
ing a state of stress within the body, but not movement. By contrast, external loads,
such as payload reaction forces and motor torque, appear alone and cause the body
to accelerate, by Newton's second law.

e The displacement field w(xz, t) measures the transverse motion of the beam along its
length at a given instant of time. It is measured from an inertial (non-accelerating)
coordinate frame. This is schematically illustrated in Figure 2.2.

o The beam possesses two moments of inertia: I, the area moment of inertia, and J,
the mass moment of inertia. Inertia I is a function of geometry only, and measures
the bending stiffness of the body. J is a function of both mass and geometry, and is
used in the moment balance [44).

w w

Figure 2.2: Combined deformation and rigid-body translation of a flexible beam

We also make the following simplifying assumptions about the beam being modeled.

e As the beam is deforming, its cross-sections remain plane to each other, i.e., do not
rotate. This is also illustrated in Figure 2.2, where the beam’s ends remain parallel,
and the horizontal length L remains constant.

e The mass moment of inertia J about the beam’s bending axis is negligibly small, and
can be taken as zero. This assumption is used when performing a moment balance in
Section 2.2.2.
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o The beam is uniform along its length — the physical parameters (volumetric density p,
Young’s Modulus E) and geometric parameters (cross-sectional area A, arca moment
of inertia I) are taken as constants.

The first two points are necessary assumptions used to obtain the Euler-Bernoulli model.
They are valid for long, slender beams with small deflections. As a general rule of thumb,
8 beam can be modeled using the Euler-Bernoulli PDE if its length is at least ten times
greater than its width. Since this is the case for the plant’s flexible ruler, we will use the
Euler-Bernoulli equation as the beam model.

There exist more sophisticated PDE models of flexible beams, including the Rayleigh and
Timoshenko models [73]. The Rayleigh model does not neglect rotational inertia, although
it still assumes planar cross-sections. The Timoshenko model drops both assumptions by
including a cross-section rotation field in addition to a displacement field, leading to a system
of two coupled PDEs. Using either of these models increases the complexity of the control
design [74, 63].

2.2.2 FEuler-Bernoulli Beam PDE

Consider the free-body diagram of a deformed infinitesimal beam clement, as shown in
Figure 2.3. Note the end-sections remain plane, and restoring internal loads are present due
to the beam deformation.

M(z,t) //

F(z + dz,t)

Mz + dz,t)

Figure 2.3: Free-body diagram of infinitesimal beam segment

Performing a force balance using Newton'’s second law we have

2 .
ZFw _ ma w(z,t)

ot?
2
F(z +dz,t) - F(z,t) = pAdz% (2.1)
Expanding F(z + dz,t) about z using a first-order Taylor series expansion,
_ OF(z,t), N
F(z +dz,t) = F(z,t) + —a;—(:z. +dz — z) + HOT (2.2)

~0

Where the higher-order terms (HOT), containing the terms (dz)?, (dz)3,... are neglected
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since the length of the segment dz is infinitesimally small. Substituting (2.2) into (2.1) gives

OF (z,t) _ 0%w(z, t)
Tdﬁ: - F(z,t) = pAd:c——é-tz—

OF(z,t) _  0*w(z,t)
Franial i

F(z,t) +

(2.3)

Next, performing a moment balance about the center of mass (CM) and using J = 0
according to the second Euler-Bernoulli assumption, we have

Z Mcm =0

M(z +dz,t) + %EF(:I:-!-da;,t) + %F(z,t) - M(z,t)=0 (2.4)
Performing a Taylor series expansion of M (z+dz, t) about  and neglecting the higher-order
terms:
_ OM (z,t)
M(x +dz, t) = M(z,t) + Tdm + H~OD’I‘ (2.5)
Using (2.2) and (2.5) in (2.4) gives
oM (z,t) dz OF(z, t)
R —_— g F M =
M(3,t) + =5 ——dz + 3 (F(x, )+ —p 4o 5 Fle,t) = M(z,t) =0
; 2
oMz t) a(m t)d s+ F(x, t)dz + 01;5:”’ 2 —(d;) =0
’ ~0
OM (z,t)

+F(z,t)=0 (2.6)
Oz
where (dz)? is neglected as in the Taylor series expansion (2.2).

Next, we need to use a fundamental relationship from mechanics which relates internal
restoring moment to beam curvature [4, pp. 187-192]:

0w(z, t)
Employing (2.7) in (2.6) gives
0 w(z, t
8(3 )d + F(z,t)dz =0
Pw(z,t)
F((D, L) = —E]——é-m—a— (28)
Finally, substituting (2.8) into the force balance result (2.3) leads to the Euler-Bernoulli
PDE
o} PPw(z,t)\ _ azw(a: t)
oz ( R = ) =P
w(z,t) Ow(x,t)
EI Er + pA = 0 (2.9)

Neglecting the higher-order terms (dz)?, (dz)3, ... is standard practice in deriving the Euler-
Bernoulli model, see for example [24, p. 157). This approach is justified for a continuum
which satisfies the infinitesimal deformation assumption of linear elasticity [7, pp. 34-37].
When higher order terms are not neglected, nonlinear finite elasticity PDE models result.
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2.2.3 Force and Moment Boundary Conditions

In this section, we discuss how forces and moments acting on the beam edges can be ex-
pressed as boundary conditions for the Euler-Bernoulli PDE (2.9). This will be required in
Section 2.3, and the equations are readily obtained from the previous discussion.

The left-hand side, with external force Fez: and external moment M.,; applied is shown

in Figure 2.4.
A 1\’[(0, t) F(dl‘, L)
M(dz,t)
w(0,t)

F(0,t)

Fext A/]c:rt

Figure 2.4: External force and moment acting on left beam edge

A force balance on the left-hand side of the beam, taking upwards as positive, gives
Fert — F(0,t) =0 (2.10)

from (2.8), the internal force at z =0 is

_ 3*w(0,t)
F(0,t) = ~EI—5 7~ (2.11)
Using (2.10) in (2.11) gives
3Pw(0,t
Fe:ct = _EI_‘L;L;,_)
03111(0, t) _ "Fe::t
3 - Bl (2.12)

Now performing a moment balance on the left side, taking counter-clockwise as positive,
Mege — M(0,t) =0 (2.13)

from (2.7), the internal moment at =0 is

9*w(0, t)
Using (2.13) in (2.14) gives
9?w(0,¢t
N[emt = E[%
azw(oa t) A/Ie:rt
32 = Bl (2.15)

The beam’s right-hand side is shown in Figure 2.5, again with an external force and moment
applied.

10
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M(L — dz, ) F(Lt)  ar,p

w(L,t)

F(L - dax,t)
Fext Mz

Figure 2.5: External force and moment acting on right beam edge

A force balance with upwards as positive, using (2.8) with z = L leads to

Fezt+F(L,t)=0

3w(L, 1)
Ft:.‘tl - El—ax—i—— =0
Bw(L,t) _ Fem
5~ EI (2.16)

containing the opposite sign to (2.12). Next, we perform a moment balance at z = L with
counter-clockwise as positive and use (2.7):

Megs + M(L,t) =0

0%w(L,t
Iwe:tt + E]—_aiz ) =0
Pw(L,t) ~Mex
0z EI (@17)

Which, once again, has the opposite sign from (2.15).
When using the edge load to displacement conversions (2.12), (2.15), (2.16) and (2.17),
the sign of F,y, is positive if facing upwards, while M, is positive if counter-clockwise.

2.3 Derivation of the Rotating Beam Model

We now derive the system equations for the ruler-hub assembly, modeled as an Euler-
Bernoulli beam clamped to a rotating rigid body [2]. A schematic diagram of the system is
shown in Figure 2.6 ’

The governing Euler-Bernoulli PDE, which was derived by using a force and moment balance
in a stationary frame, must be formulated using a displacement field measured in an inertial
(non-accelerating) frame of reference. However, the V(z,t) field in Figure 2.6 is measured
in the frame of the beam, which is non-inertial due to rotation.

To deal with this, the governing PDE (2.9) will use w(z,t) = V(x,t) + x6(t) as the
displacement field, made up of two components: z6(¢), which measures the curvilinear
translation of a point on the beam due to rigid-body rotation; and V(z,t), which measures
the linear translation of the point due to elastic deformation.

The governing equation for the rotating beam in Figure 2.6 will be written in terms
of the combined displacement field w(z,t). Once an expression for the field is found, it is
possible to separate w(z,t) into its rigid and elastic components, by differentiating with

11
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Figure 2.6: Rotating flexible beam model

respect to z and evaluating at x = 0, using the fact the beam is clamped to the hub:
Qw(z,t) _ dV(x,t)

dr Oz
dw(0, t) av (0, t)

oz ox +6(t)
=0
o(t) = awa(g ) (2.18)

Equation (2.18) gives the rigid-body component of the solution. The elastic component can
be then obtained by

+0()

V(z,t) = w(z,t) _xf)wa(o .4 (2.19)

To model the rotating flexible beam {rom Figure 2.6, we start by looking at the rigid hub
to which the input torque 7(t) is applied, and perform a moment balance. The free-body
diagram is shown in Figure 2.7. The term Mpcan, represents the reaction moment by the
beam on the hub.

Jhub

“ KQ >M,,,.,m>9

Figure 2.7: Free-body diagram of hub

2
Z M= Jhubﬂﬂ

di?
d?o(L
Myeam + T(t) = Jhudel(z)
d20(t
Mpeamn = Jhung) - T(t) (220)

The Mpcam moment reaction (2.20) acts on the beam’s left edge by Newton's third law, as
shown in Figure 2.8. Note the direction of Mycam has changed direction from Figure 2.7,
since it now represents the reaction by the hub on on the beam.

12
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Figure 2.8: Free-body diagram of flexible beam

The reaction moment is used as a boundary condition for the beam PDE by converting
6(t) to w(0,t) using (2.18), and making use of the boundary moment equivalence (2.15).

*w(0,t) 1 (Jhub03w(0, t) ‘r(t))

dz2  EI o2z
9*w(0,t) O*w(0,t)
Jhub 0r EI Fr R 7(t) (2.21)

The three remaining BCs are deduced visually from Figures 2.6 and 2.8. The beam is pinned
to the hub on the left edge, thus

w(0,¢) =0 (2.22)
The beam is free from external moments on the right edge, so My =0 in (2.17)
S%w(L,t)

The beam is also free from external forces on the right, so Fez, = 0 in (2.16)
Pw(L,t)
az%

Using the governing Euler-Bernoulli PDE (2.9) with boundary conditions (2.21), (2.22),
(2.23) and (2.24) gives the BVP formulation of a rotating elastic beam with torque boundary

0 (2.24)

input: . )
0wz, t) w(z,t)
Bl=— 3 +pA—pz =0 (2.25)
2,
w(0,t) = 0 %ﬁ’t) =0
5 ) 0 (2.26)
J aw(O,t)_Ela w(O,t)_T(t) FBw(L,t) —0
b 520z or? ox3

The torque acting on the hub 7(t) is the input to the system model. In the experimental
plant, a DC motor drives the hub through a gear train, with u(t) as the controlled voltage
input. To convert between voltage and torque, the following equation, derived in Appendix

A, is used:

KK, K .

w0+ [ 22mfe Y by = (EKefm ) (2.27)
R, R,

Where K, is the gear ratio, K, is motor torque constant, Kj is the back EMF constant,
R, is the armature resistance, and b is the viscous friction coefficient. The numerical values
of these parameters are given in Section 2.4.

13
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The hub angular velocity 8(t) can be directly measured using a plant sensor, so (2.27)
gives an algebraic relation between 7(t) and u(t).

Using 7(t) instead of u(t) for the PDE system input reduces expression complexity of
the BVP boundary conditions (2.26). The importance of keeping the system equations as
simple as possible will become apparent in Section 3.4.

2.4 System Parameters

The parameters used in the system model must be identified from the experimental hard-

ware.

The numerical values are required to produce numerical simulations in Chapter 5,

and for experimental validation in Chapter 6.

The following parameters were straightforward to obtain, either from direct measure-
ments or from reference tables. For ecasy reference, Table 2.1, provided at the end of this
chapter, summaries the parameter values.

Beam length L = 0.440 m. The distance from the ruler’s rotation axis to the tip.
Measured directly.

Beam density p = 780 x 10" kg/m®. The volumetric mass density of the steel material.
Obtained from reference tables.

Beam cross-sectional area A = 1.66 x 10~% m?. The ruler’s cross-section is shown in
Figure 2.9. From direct measurements, b = 20.7mm, h = 0.8mm.

Young’s modulus of elasticity E = 200 x 10° Pa. Measures the resistance of a material
to deformation. Obtained from reference tables for steel.

Area moment of inertia / = 8.83 x 10~!3 m®. The geometric stiffness of a solid to

bending. For a rectangular cross-section bending about the axis shown in Figure 2.9,
the calculation formula is [ = {5 bh®.

Gear ratio (g = 70. The multiplication factor of torque and reduction factor of speed,
going from the DC motor to the hub.

Motor torque constant K,, = 0.00767 Nm/A. The relationship between armature
current and torque produced by DC motor.

Motor back EMF constant K}, = 0.00767 Vs/rad. The relationship between motor
speed and voltage loss across the terminals.

Armature resistance R, = 2.60Q. The total electrical resistance across the motor
terminals.

A i

:l; bending axis

Figure 2.9: Beam cross-section diagram

The remaining two parameters are identified using a closed-loop step response test as
described in Appendix B:

14
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o Hub's mass moment of inertia Jyyp = 3.64 x 10~3 kgm?2, The rotational inertia of the
rigid hub, with the flexible ruler detached.

e Viscous friction coefficient b = 2.09x 10~2 N ms. This parameter measures the friction
in the gear train and motor.

Although more sophisticated methods for system identification could have used as described
in [34], we observed little sensitivity of experimental controller performance to any error in
the parameter values for Juyb and b. The complete list of system parameters, including their
symbols and numerical values, is summarized in Table 2.1.

Parameter Value
Modulus of elasticity - E 200 x 10” Pa
Area moment of inertia — | 8.83x 10~13 m?
Cross-sectional area — A 1.66 x 10~% m?
Density - p 780 x 10! kg/m?®
Length ~ L 0.440 m
Hub mass moment of inertia — Juyup | 3.64 x 10~3 kg m?
Gear ratio - K, 70
Motor torque constant — K, 0.00767 Nm/A
Motor back-EMF constant — 0.00767 Vs/rad
Armature resistance - R, 2.60 Q
Viscous friction coefficient — b 2.09 x 10~2 Nms

Table 2.1: Physical parameters for the flexible beam plant

15
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Chapter 3

Flatness-based Open-loop
Control

In this chapter, we present the flatness-based open-loop control for the rotating beam system
discussed in Chapter 2. The method used is based on work in [63, 17, 43].

3.1 Transformation of System Equations

The method used relies on applying a Laplace transform to a PDE in the dependent variable
w(z, t), treating x as constant. As a result, the PDE, containing derivatives with respect to
z and t, gets transforined into an ODE containing derivatives with respect to z only. The
system can then be put into transfer function form, the steering law is designed, and the
inverse Laplace transform bring us back to the time domain.

We denote the Laplace transform of w(z,t) as

W(x,s) = L[w(z,t)]

We require the time-differentiation property of the Laplace transform:

L [M] = sW(z, s) — w(z,0)

ot
Pw(@, )] _ 2000 duw(z,0)
L [T} = s‘W(z,s) — sw(z,0) — o

Partial derivatives with respect to z remain unaffected by the transform:

- [Bw(:z:,t)] _ OW(z,s)

Oz T Oz
r Pw(z,t)] SOW(m, s) _ dw(z,0)
dxdt | oz Oz

A BVP with zero initial conditions and one boundary input transforms into a transfer
function form

W(z,s) = G(z, s) U(s)
where U(s) denotes the Laplace transformed system input, and G(z, s) the system’s transfer
function.

A more rigorous framework for the above process is Mikusiiiski operational calculus [47],
where s is interpreted as an operator acting on the PDE. Transforming a PDE into the
s domain is called taking the Mikusinski transform by some authors [63, 17, 30], and the
Laplace transform by others [43, 46, 10]. From a practical point of view, there is little
difference between the two in terms of the controls derived. Hence, to ease readability this
thesis will use Laplace transform notation.

16
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3.2 'Transfer Function of the System

The BVP describing the system is given below. For compactness, we use J instead of Jyqp
to denote the mass moment of inertia of the hub.

oM w(z, t) Qw(z,t)
EI=— 3= + pA—g 7 =0 (3.1)
w(0,¢) =0 Full,t) _,
Jaf’w(o, t) E102w(0, t) 033:(1;2 £) (3.2)
oror U e -7 =20
w(z,0) =0 du(=0) _ (3.3)

ot
Applying the Laplace transform to the PDE (3.1) and BCs (3.2) using zero ICs (3.3) yields

23174
E,[O W(z,s)

P + pAs*W(z,s) =0 (3.4)
W(0,s) =0 PW(L.s) _ 0
ox?
. 3.5
J2W0) _ 5 WO 1y BW(Ls) _ 0 (39
Oz Ox oz

where T'(s) denotes the transformation of the torque input 7(t). Equation (3.4) is an ODE
for W(zx, s) with respect to independent variable z. The general solution for this ODE is

W (z,s) = Ci(s)eVP=(8D)'"" 1y (5)e V™ ()" 4 Oy (s)e=VP= (1) 4.0y (s)eVi=(81)"
1/4
Or using v = (DL’;) / for compactness,

W(z,s) = C1(s)e™V5= + Cy(s)e* V= 4 Cy(s)e= VT 4+ Cy(s)e™V™ = (3.6)

We would like to change the basis functions of the solution (3.6) into a set of trigonometric
functions. This is done by introducing the new terms

Cs(S)=g:(;—)—%:)' C4(S)=@+D—2(is—)

which gives

2 2 2 2
C(S) D(S) —ivVisz C(S) D(S) ivvVisr
+(T‘—zr)e +(T+ 2 )e
- Ags) (euﬁ-:r +e—uﬁx) + @ (eu\/'_z e—umz)
- @ (o 4 emwviiz) 4 D2(:) (o — gmivi)
Thus
W (z,s) = A(s) cosh(vVisz) + B(s) sinh(vVisz) + C(s) cos(vVi s z) + D(s) sin(vVisz)

(3.7)
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The transformed BCs in (3.5) lead to a linear system of four linear equations in four un-
knowns

A(s)+C(s)=0
—A(s)iEIsi? + B(s)JViss?v + C(s)iElsv? + D(s)J Viss?v = T(s)
A(s) cosh(LVisv) + B(s) sinh(LVisv) — C(s) cos(LVisv) — D(s)sin(LVisv) = 0

A(s) sinh(LVisv) + B(s) cosh(LVisv) + C(s) sin(LVisv) — D(s) cos(LVisv) = 0
(3.8)
We solve (3.8) for A(s),B(s),C(s), D(s) and substitute into (3.7). This results in the transfer

function representation
P(z,s)

W(z,s) = Oms) T(s) (3.9)
where
Pla,s) = %{ — cos(Viszv) sin[(1 + i) LVisy] + cosh(viszv) sin[(1 -+ i) Lv/isv]
— i cos(Lv2sv) sin(Viszv) + cosh(Lv2sv) sin(Viszv)
+ (1 = i) sin(Viszv) + cos(Viszv) sinh[(1 + i) LVisy] (3.10)

— cosh(Viszv) sinh[(1 + 5) LVisv] + cos(LV2sv) sinh(Viszv)
— i cosh(Lv/2sv) sinh(Viszv) + (1 - 1) sinh(\/Ea:u)}

Q(z,s) = 2u\/§{(1 — i)JV/iss cos(LVisv) cosh(LVisv) + (1 — i)JViss
(3.11)
— iElvsin|[(1 + 1) LVisv] +iElvsinh[(1 + i)L\/i—su]}

3.3 Introducing the Flat Output

The BVP in transfer function form is given in (3.9), where the input is the torque applied
at the beam boundary, T'(s), and the output is the beam displacement field, W (x, s). This
form is Q-free controllable [63, p.96], leading to the parametrization of the system input as

T(s) = Q(z,s)Y (s) (3.12)

where Y (s) is the transformed system flat output y(t). This choice immediately gives the
system state parametrization

W(z,s) = %%(Q(m,s))’(s)) = P(z,s)Y (s) (3.13)

Note that this choice is not unique, since P(z,s) and Q(z, s) form a ratio in (3.9). It
is therefore possible to multiply both terms by a common factor, giving a different system
parametrization. For example, having % instead of 7‘; multiplying P(z,s) in (3.10), and vs

in place of 2v\/s in front of Q(z,s) in (3.11) gives an alternate parametrization.

3.4 Series Manipulations

The parameterizations (3.12) and (3.13) are given in the s-domain. In order to obtain a
time-domain expression for the control, we need to return to the time domain by performing
an inverse Laplace transform,
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The current expressions, P(z,s) in (3.10) and Q(z,s) in (3.11), have the s operator
embedded in the arguments of trigonometric and hyperbolic [unctions, making a closed-
form inversion impossible. To get around this, we will express both in terms of their infinite
series expansions, which will make it possible to factor out the s operator and allow the
inversion to be performed.

The series manipulation steps are conceptually straightforward:

1. Break up the s-domain expression into sums of individual functions, using trigonomet-
ric and hyperbolic identitics

2. Convert each term into its infinite series representation
3. Combine all series into one
4. Factor out the s operator

Unfortunately, the process is tedious, due to the necessity of manipulating the series by
hand. Computer algebra systems such as Mathematica cannot handle the complexity.

3.4.1 Background

The power series representations of trigonometric functions, expanded about z = 0, are

given by
ad 2k k. .2k
o x (=1)"22*
coshzx = k§=0 %) COST = E (2L)'
et x2k+1 (_l)kx2k+l
inhz = e i = —
S kzzo 2k + 1)1 s ?‘:o @k +1)!

The hyperbolic addition theorems [67] use complex arguments:

cosh(X x:zY) = cosh X cosY L isinh XsinY
sinh(X £:Y) =sinh X cosY icoshXsinY

Adding and subtracting the above leads to the identities

cosh X cosY = cosh(X +1Y') + cosh(X —iY)

2
sinh X cosY = sinh(X +1Y) -;-smh(X -1iY)
sinh XsinY = cosh(X +14Y) 2_; cosh(X — 1Y)
cosh XsinY = sinh(X 4+ 1Y) 2—ism11(X - 1Y)

We need two more identities,

sinh{(X +Y) +sinh(X - Y)
2
sin(X +Y) +sin(X - Y)
2

sinh X coshY =

sinX cosY =
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In order to simplify the use of the above identities, we will temporarily adopt the following
conventions in the P(z,s) and Q(z, s) expressions (3.10) and (3.11):

A= /s

B = Viszv
C=(1+1i)LVisv
D = LV2sv

V =sVis

W = LVisv

3.4.2 Series Representation of P(z,s)

Using the conventions from Section 3.4.1, expression (3.10) for P(z, s) is rewritten as

1
P(z,s) = —{ —cos BsinC + cosh BsinC —~ icos Dsin B + cosh Dsin B + (1 —i)sin B

A
+ cos Bsinh C — cosh Bsinh C + cos Dsinh B — i cosh D sinh B + (1 — ¢) sinh B}

Using the trigonometric identities,

P(z,s) =

1 sin(C + B) +sin(C — B) sinh(B + iC) — sinh(B — iC)

- 2 J+| 2 )
. [sin(B + D) +sin(B — D) sinh(D + iB) — sinh(D — iB)

S s e |

+(1=i)sinB + [sinh(C +1iB) -;— sinh(C - iB)] 3 [sinh(C + B) -;— sinh(C - B)]
sinh(B + D) + sinh(B — iD) . [sinh(B + D) + sinh(B — D)

| 2 | o=

+(1 —i)sinhB}
1 —lsin(C+B)—lsin(C—B)——isin(B+D)—isil(B—-D)
—Al T2 2 2 g o

1, . 1. . 1 . . 1 . .
+ % sinh(B +iC) — % sinh(B - iC) + % sinh(D +iB) — % sinh(D — iB)

+ %sinh(C +1iB) + %sinh(C —1iB) - % sinh(C + B) — -;— sinh(C — B)
+ %sinh(B +1iD) + %sinh(B —1iD) — %sin]n(B + D) - % sinh(B — D)

+(1—i)sinB+(1-1) sinhB}

= %{ - %sin[\/i_su(L +il +z)] - -;-sin[\/z"Eu(L +iL — z)]
- %sin[\/gu(\/fm + LV2)) - %sin[ﬁu(\/zz - LV72)]

+ 2% sinh{Visv(z +iL — L)] — % sinh[Visv(z — iL + L)]

+ ‘élgsinh[\/Eu(L\/ﬁ +iViz)] - 51; sinh[v/sv(LV?2 — iViz)]
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+ 5 sinhlVEsu(L +iL +iz)] + & sinh[VEs(L + iL, ~ )]
- %sinh[\/i_su(L +il + )] - %sinh[\/z’_SV(L +il — 1))
+ %sinh[ﬁu(\/{x +ilV3)| + %sinh[ﬁu(\/{x N
- %sinll[\/éu(\/z"x +LV2)| - %sinh[\/Eu(\ﬁm - LV3)]
+ (1 = i) sin[Viszv] + (1 — i) sinh[\/i_sxu]}

Converting to infinite series representation,

P(z,s) =
1 1 & (—D)F(Visv) YL + 3L + )2+ 1 & V¥ (Visv)RHV (L 4 1L — z)2k+!
%{'EM 2k + 1) 'Ek_o (2k +1)!

i & (—l)k(ﬁu)2k+l(ﬂm+Lﬁ)2k+l i (- l)k(\/gu)%“(\ﬁm—-L\/ﬁ)?k“
‘Eg_o (2k + 1)! ‘Ek; (2k +1)!

1 o= (Visp)# ! (z +iL — L2+ 1 &S (Visv) 2+ (@ —iL + L)%+
+Z;§) @k + 1)1 'Eié 2k + 1)

1 & (\/Eu)zk+‘(L\/§+i\/i'm)2k+l 1 &= \/-x/)%’“ L\/_ z\/zfm)zkﬂ
*55;) 2k + 1) ‘52:4_2 @k + 1)

1 oo (\/{Eu)2k+l(L+iL+iw)2k+‘ 1 0 (\/EU)2k+l(L+iL—i:l:)2k+l
+§k2=0 k1) +§k§ @k + 1))

1 00 (\/i—.s_y)2k+x(L+iL+:1:)2k+l 1 00 (\/Eu)”‘+'(L+iL—x)2"+1
”51\_};) 2k +1)! “5?;2 2k + 1)

1 X (VEr)2 4 (Vie +iLv2)PMH+! 1 SN (Vav)PH (Ve — iLv2)H!
+§k§ 2k +1)! +§§) 2k + 1)1

i (\/Eu)zk+l(\/'zm+L\/§)2k+l i \/gu)2k+l(\/;$_ L\/§)2k+1
- ﬁkz (2k +1)! B 5:.-:0 (2k +1)!

S |
+(1—1)Z (2k +1)! + (1 )k=0 (2k + 1)! }

Factoring into a single summation,

P(z,s) =

1 z (\/EV) [ (—1)k(\/§)2k+](L+iL+w)2k+l —(—])k(\/{)zk+l(L+iL—$)2k+l

Vs & 2k + 1)
—i(=1)F(Viz + LV2)H+ —i(-1)*(Viz — LV2)*+!
— (V) (@ +iL — L) 4 i(Vi)+ (z — iL + L)?FH!
— {(LV2 + iViz)*+! 4 i(LV2 — iViz)?k !
+ (\/{)2k+l(L +iL + iw)2k+1 + (\/Z)2k+l(L + il — im)2k+l
(\/T)2k+l(L +il + z)2k+l _ (\/7)2k+1(L +il — x)2k+l
+ (Viz + iLV2)*t! 4 (Viz — iLV?2)%+!
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(Vi 4+ LB (Vi - LB
+ (2 = 2) (- 1) (Viz) ! 4 (2 - 2i)(Viz)?+H!

Note that the s operator has been factored out in the preceding step. This will enable the
inverse transformation to be carried out.

P(z,s) =

%i 2}::;),[ ~DF(VDFL + 4L + z)2 ! — (= 1)F (VIR (L + L — z)2FH

—i(=1)*(Viz + LY+ —j(—1)*(Viz — Lv/2)2+!

—i(VA)#H (x4 iL — L)+ 4 (V) P+ (x — iL + L)2FH!

—i(LVZ + iViz) ) 4 i(LV2 — iViz) 2+

+ (VAL 4L + iz)* ) 4 (Vi) HY (L +iL — i)t
(f)2k+'(L+iL+x)2k+‘ (\/7)2k+1 L+iL—:z:)2k+l
\/—a:+zL\/— 2Zk+1 + ( \/_z—zL\/— Zk+1

—i(Viz + LV2)*#* — i(Viz — LV2)?+!

+(2 = 26) (- 1)F(Viz)*+! 4 (2 - 2i)(xﬁz)”+‘]

The contents of the square bracket are a function of z and k only. It can be verified that

flz,k)y=0 k=1,3,5,...

flz,k)#0€R k=0,2,4,...
The fact that f(z, k) is always real-valued is as expected, since this term remains unchanged
during the inverse transformation of W(xz, s) into w(z, t).

Returning to the series expression for P(z, s), welet k = 2m,m = 0,1, 2,... to guarantee
that & is even:

P(z,s) =

i R A A e
D) Am+1)!

=0 (
— (=12 (Vi)™ (L + L — z)tmH
— i(=1)2(Viz + LV2)™H — i(=1)2" (Viz — LVZ)ImH
— (VA (@ 5L — LYY (VR MY (g — L 4 L)AmH
= (LVZ +iviz) ™+ 4 i(LVE - Vi)t
+ (\/,Z)dm+l (L +iL + i:z:)""'"'l + (\/17)4m+] (L +iL - i:z:)""‘“
— (V™YL 4L + 2)¥ D = (VD)L 44 — )i
+ (Viz + iLV2)Y ! 4 (Viz — iLV2)imH
—i(Viz + LV2)"™ ! — i(Viz — LV2)VH!
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+(2 = 2i) (1) (Viz) ™+ 4 (2 - 2i)(\/§x)4m+l]

00 g2mydm
= % Z ,lm:1)|[ (ﬁ)4m+l(L+iL+z>4m+l _2(\/2)4m+1(L+iL_m)4m+l

- 2%(Viz + LV2)'™* — 2i(Viz — LV2)*m+!
+ 2(VEAYHY(L 4 4L — dz) P 4 (VA (L 4L + dz) i
+2(Viz — iLV2)"™H 4 9(Viz 4+ iLV2)im !

+2(2- 2i)(\/€x)“"'+‘]

It can be verified that

_ 2(\/;")4m+l(L +il + z)dm+l — 2(\/;)4"14'1 (L +il — m)4m+l

~ 2i(Viz + LV2)*™ ! — 2i(Viz — LV2)'™mt!

+ 2V ™ (L 4L — i)™ 4 V)L + L + i)t

+ 2(Viz — iLV2)'"™ ! 4 2(Viz + iLV2) !

= (=)™ [4\/§Re {(z = L+iL)"™ "} —4V2Im {(z - L - iL)"’"“}]
And

2(2 — 2i)(Viz)'™t! = (=1)™4y/2z1m+!

Using these in the infinite series,

lm
m(, _ s ydm1
~4V3Im {(z — L —iL)"™1} | + (—1)'"4\/%4'"“]
Cleaning up
P(z,s)
3 \/_ 0o (-l)"ls?ﬂludm dm+1 R L iL am+1 1 L L Am+1
=2 z"mz::(, am+r = 7 e{(x—L+iL)"*} —Im{(z - L —iL)"*+'}

(3.14)

3.4.3 Series Representation of Q(z,s)
We start with the expression for Q(z, s) from (3.11) and use the definitions for A, B,C, D, V,
and W from Section 3.4.1:

Q(z,s) =20vA{(1 —1)JV cos W cosh W + (1 — i)JV —iElvsinC +iElvsinh C}

4 YA/ S
=2W\{(1—i)JV [cosh(w +zW)—;—cosh(W iW )]

+(1—i)JV
—iElvsinC + iElvsinh C}
= QUA{ ( 5 ) JV cosh(W +:iW) + (%) JV cosh(W —iW) + (1 -i)JV

—iEIvsinC +iEIvsinh C}
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= 21/\/_{ ( ) JsVis cosh[LVisv(1 + )] + ( ) JsVis cosh(LVisv(1 — 1))
+ (1 = i)JsVis — iElvsin[(1 + i) LVisv] + i EIvsinh[(1 + i)L\/i—su]}

-2 (4F) i B

+ (}__;__) Jsz\/zTZ (L\/_V()::)('l ) i +(1=i)Js?Vi

l)k L\/—II 2k+1 1+z)2k+1
—sz!uz 2k + 1)!

2k+1 2k+1
+z\/_EIuZ Lﬁ”zu +(;);”> }

= 21/{(1 —i)Js?Vi + ( ) 2\/‘2 (LV/isv)? [(1(—;—}:))?* + (1 - )2

L\/—V)'Zk-i-l(l +Z)2k+l [( I)L _ 1]
"‘/_E“’E @k +1)! }

2 (L) (is)* [(1+6)%* + (1 —1)*]
) \/'Z (2k)!

Lu)”‘(zs)"(] +i)% [(-1)* - 1]
@k + 1) }

= 21/{(1 —i)Js*Vi+ (

— iVsSEIv(LVisv)( 1+z)z

It can be verified that:

(1-iWi=V2
~iVi(l+i)=(1—-i)Vi= V2

So the expression becomes

Qz,5) = 2f”{Js + = J 22 (L) (@is)® [(1 +14)%F + (1 — )?¥]

(2k)!
9 (Lu)z"(zs)"(l +14)% [(-1)F —1]
+sEIv Lkz:=0 Ok + 1)
It can be verified that:
@*[1+)*+(1-i)%*] =0 k=1,3,5,.
= ok+! k=0,24,...

Thus, let £ = 2m,m = 0,1,2,... in the first summation term of Q(z,s). It can also be
verified that:

@FQ+)* [(-1)* -1} =0 k=0,24,...
= k+1 k=1,3,5,...
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Let k=2m+1,m=0,1,2,... in the second summation term. Returning to Q(z, s):

)4m 2m 22m+l

:cs)—2\/_u{Js + = J Z(LU

m—O dm)!
L‘/)47n+232m+122m+2
EL S ¢
+sbly mz;:o (@m +3)!

dmn 2m+‘2 m im 2m+2 m
—2\/_1/{.]8 +J Z % ‘1E1U4L3 Z (L—U)‘mgj-'-fl—}

Combining into a single summation gives

m=0 m=0

_ 2 e (Lu)«lm‘lms?m+2
Q(z,s) = 2\/§V{Js + Z Amiar

m=0

[J(dm + 3)(4m + 2)(dm + 1) + 4E1u"L3] }
(8.15)

3.4.4 Final Series Expressions
A final set of adjustments is made to the infinite-series expressions for P(z,s) (3.14) and

Q(x,s) (3.15):

e Both series have a 2v/2 v term in front. Since we are taking their ratio via (3.13), we
can cancel this term out.

e The term v? appears throughout the series. We define the new constant k = v =

(m
ET )
o The summation index m is changed back to k.

With this, the final forms of the series expressions in the s-domain are

Plz,s) = i ((;”)k—- [z"“‘ +Re{(z— L+iL)"**"} —Im{(z - L - iL)“‘“}]sﬂ

2 @k + 1)1
(3.16)
L¥*(ak)* . . 3| 2k+2
Oz, s) = Js? + Z @) [J(‘lk +3)(4k +2)(dk + 1) + dEIKL ]s (3.17)

3.5 Open-loop Control

Using the series expressions (3.16) and (3.17) in the system input and state parameteriza-
tions (3.12) and (3.13) gives

W(z,s) = i ﬁzi—)' [z“kH +Re{(z - L+ iL)"k+1} —Im{(z-L- iL)ik+! } ] s*kY (s)
£ !
’ (3.18)
T(s) = Js*Y (s) + Z (‘;’k (+1’?;))| [ (dk + 3)(4k + 2)(4k + 1) + 4EInL3] s 42y (s)

(3.19)
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For which the inverse Laplace transform is immediately available:

)= 32 0 a4 e (o L)) (o £} 3900

(3.20)

L¥(dr)* .

2) 2 | L aF 31,,(2k+2)

(1) = Jy (¢)+Z O 3 J(dk + 3)(dk + 2)(dk + 1) + AEIL? |y (t) (3.21)
In other words, the flat output y(t) and its (infinitely many) time derivatives parameterize
both the system state and input.

In our control application, we wish to steer the flexible beam from rest to rest: #(0) =
0,V(z,0) = 0,Vz € [0, L] and 8(ts) = ©,V(x,ty) = 0,Vx € [0, L], where V'(z,t) represents
the beam’s elastic deformation. In terms of w(z, t), the desired system endpoints are written
as

w(z,0) = V(z,0) +z6(0) =

w(z,ty) =V, ty) +z0(ty) = 2O (3.22)

We now develop some requirements for the steering function y(t). The state expression
(3.20) can be equivalently written as

w(z,t) = ig(z‘, k) y¥) (1) (3.23)
k=0

Taking time derivatives of (3.23),
Zulnl) Zg(x By ()

Pu(z,l) (3.24)

Wz, = N (2k42)

i ;g(w,k)y (t)

At the trajectory endpoints (3.22), w(z,t.),t. € {0,ts} is a function of z only. From (3.24),

this means
) - o Zg(w By (L)
(3.25)
Pw(z, t.) 2 ‘
T= z .’Lk)y(2 +2)¢)

The g(z, k) term in (3.25) cannot be 0, otherwise the w(z, t) solution (3.23) is trivial. Thus,
Y=y (L) = =0  bLe{ot} (3.26)
Expanding the £ = 0 term from the series (3.23),
oo
w(z,t) = gz, 0)y(t) + Y _ o=, k) y* (1) (3.27)
k=1

The g(z,0) term in (3.27) can be evaluated by returning to (3.20):

0
g(z,0) = ((1';3 [:v+Re{(:c—L+zL)}—Im{(:v— —iL)}]
(3.28)
=lz+x—-L-(-L)
= 2r
26
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Evaluating (3.27) at the starting endpoint ¢ = 0, making use of (3.22), (3.26) and (3.28), we

obtain ~
w(z,0) = g(z,0)y(0) + » _ g(z, k) y**(0)
=0 \:5:/ k=1 T (3.29)
y(0)=0
The t = t; endpoint gives
o0
w(z,ty) = Mg(t,) + &g(m, k) ¥R (L)
=0 g - =0 (3.30)
W) =3

We need to find a steering [unction y(t) which meets conditions (3.26), (3.29) and (3.30).
Note this is not a trivial task, since the only analytical function which meets the requirement
y(0) = y'(0) = y”(0) = - -- = 0 is the trivial one y(t) = 0, which cannot reach y(t;) > 0. For
example, polynomial flat outputs, often used for finite dimensional system motion planning,
cannot be used in this infinite-dimensional problem.

The steering function y(¢) must also meet the requirements of being:

e Smooth, of class C*
e Bounded for ¢ > 0, for all derivative orders y¥)(¢),k > 0

A steering function which meets all the above requirements is given by [63, p.91]

2{2t -1

1 1
(5 (1-%))

belonging to the class of Gevrey functions [20]. Function (3.31) is plotted in Figure 3.1 for

ty =1 and v € {1.4,10,50}. Note the amplitude of 7,(t) is always 1, and the v parameter
determines the “steepness” of the transition.

1

o8f

[+X:] 4

04

o2F

L
0 0.1

Figure 3.1: Sample 7,(t) plots for ¢ty = 1 and v € {1.4, 10, 50}
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The Gevrey function (3.31)} can be shown to have Gevrey order 0 = 1 + Gevrey

functions are C* on [0, ¢;] and satisfy

1
of

ne
sup Ol <m nx0

te(0,ty] n -
where m,n and p are some real constants. Gevrey functions are non-analytic for ¢ > 1. It
can be shown that the series (3.20), (3.21) have an infinite radius of convergence provided
y is of Gevrey order o < 2 [35, 63]. Hence, we require 1 <o <2or1 <+ < oco.

Function (3.31) will be used to steer the flat output, using the endpoint relationship
(3.30)

v = (0 (3.32)

The successive time derivatives of y(¢) in (3.32) can be calculated by recursion, as shown in
the next section.

The open-loop design presented here provides rest-to-rest motion between specified beam
angles. A generalization which allows for transitions between non-stationary configurations
could be derived using the Fourier series-based results in [30). In contrast to the finite-
dimensional system case [29, 71, 42, 70], a flatness-based open-loop design for infinite-
dimensional systems does seem to be readily extended to include a full range of motion
planning constraints, e.g. bounds on the input or state amplitude during transition. A
partial solution for infinite-dimensional systems is to split the desired motion into a number
of smaller rest to rest motions, as in [2]

3.6 Calculation of Time Derivatives of 7,(t)

We now derive a method for calculating the successive time derivatives of the steering
function (3.31). Leaving out the constants, we work with the related function

224 - 1) )

A=) 39

Ye(t) = tanh (

We need to calculate y,(;")(t) derivatives of any order. The actual driving function will then
be given by

v =3 (5+550)

0/1
(R gy = = [ Zqylm)
w0 =3 (300)  nz1

The derivation presented is found in [64, Appendix A.2], although it has been generalized
to allow the case of ty # 1.
First, it can be verified that equation (3.33) is equivalent to

Ye = tanha (3.34)
where -
y (1% (1= %))
0= — 2 (3.35)
2(v-1)

Taking the time derivative of (3.34),
e = (sech®a)i
= (1 — tanh?a)d
( ' \Ca)d (3.36)
= (L(l - yc)

= dz
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where we have introduced the new quantity
z=1-92 (3.37)

Taking the time derivative of (3.36) a few more times, we recognize a binomial pattern in
the coefficients:

fe = 2t + za®

y,(:a) = 3d + 22a® + 2™

y¢ = 234 4 320 + 320 + 2a®

(3.38)

n-1

> =3 ("; 1)a<k+2)z(n—n—k) n>1

k=0
(:) = &=

From (3.38), note y£") requires knowing the values 2(n=1) 2. We time differentiate
equation (3.37) several times in order to find another pattern:

where

z=1-y;
2= —2ycyc
= —~Yclic — Yc¥c

£ = =2Yclc — 2yclic
= —~Yelc — 2¥cVec — VcYe
2 = ~6gefic — 2yey (3:39)
= -ycyga) — 3Ycije — ijclc — y((:S)yC

n
n . —k
M =-3 (,v) y Iy nze

k=0

Also from equation (3.38), y&™ requires a(™*1), ..., a, so we need a formula for a(™). Re-
turning to equation (3.35), it can be verified that

(=)0

=y

; (l - 'tf}) 4= (2;? - 1) (7= 1e (3.41)
Fi(d = Fa(6)(y - 1)a

where we introduced the terms I (t) and F»(t) for compactness. We again time differentiate

= a (3.40)

thus
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equation (3.41) a few times to find a pattern:
d .
& (R =Ra)0r-1a)
d
p (F{(t)c’z + Fi(t)d =(y - ){F3(t)e + Fg(t)é})

% (F,”(t)d +2F|(t)d + Fi(8)a® =(y — 1){F} (t)a + 2F3(t)a +.F2(L)ii})
FO(t)a + 3F) (t)a + 3F|(t)a® + Fy(t)a™ =(v - 1)

{F(8)a + 3FY ()i + 3FY(L)i + Fa(t)a®}

n-1 -
-1 N (K _1 - .
Z (n ; >a(n—k)}:‘l(k)(t) =(y-1) Z (n . )a("“‘ ')Fék)(t)

k=0 k=0
(3.42)
We now isolate a{™ in (3.42):
n-1 l/n-1 (k) = (k)
- - (n—k) = a(n—k-1) Rk
o i
k=1 k=0

=1

a("’=——[('7 y S (%7 e o)

k=0

“R® [Zl ("3 "))

(3.43)

From the definitions of Fy(t) and Fy(t):

Fl(‘)=t(1—i) Fz(c)=2i—1
ty iy
' ¢ 9
Flt)y=1-2— p2(t)__
Ly ts
Fi(t) = ;—2 Pty =FP(t)=-=0
/
FOW=Ft) = =0
30
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Using the expressions for Fy(t) and ;(t) in (3.43) we get

o e () () (1) ()

I

Z—(li—;‘—!) [(7 ~ 1)alm=" (2;; — 1) + (7 - 1)(n - 1)al"=? (%)

— (n=1)a-D (1 _ 2%) _ (”;)2(”‘_?2,1@-2) (:3) ] n>2

tr
— __l_ (,Y _ 2+n) (2_{_ _ 1) a(n—l) + (n__ l)a(u-z) (3) I:’Y_ 1 + (Tl—— 2)]
L(l -~ L) ty i 2
ty
S S S PP SR YLD DU NN (Chulld IV WIS WSS} R
t(l -4 t ty

(3.44)

The recursion formulas from (3.44) and (3.39) can be used in (3.38) to find all orders of y,(;")
forn > 1.

Observe that because the recursion formulas cannot handle n = 0 (nor n = 1 for the
a(®) expression), the values of y., 2, @ and @ must be found using the original definitions in
equations (3.33), (3.37), (3.35) and (3.34), respectively.

Finally, we summarize the recursion calculations. First we obtain the values

y(ag(1-4)"

2(v-1)
2(24 -1)
(48 (1-4))

ye = tanh(a)

a=

a=

z=1-y
And then loop through the following three equations for successive n = 1,2,..., M4z tO
obtain y/,...  yinmaz),
1
) = — — [('y —1+4n) (2—t- - 1) a™ + 1(2’7 -3 +n)alrV
t(1-4) ty ty
!
n-1
(n) — (n - l)a(k+2)z(n—-l—-k)
¢ k

n
n . -}
dM =% (k) yFyrh)
k=0
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The equations are recursive because
a"t) = f (a("),...,a)
y,(:") =f (a("). a2 .,z)
2™ =1 (4, ve)

3.7 Additional Series Expressions

Series (3.20) allows the calculation of the total displacement field w(z,t) of the beam. It
is possible to use expressions (2.18) and (2.19) to obtain series to calculate 8(t), the rigid-
body angle, and V(L,t), the elastic deflection of the tip. Plotting these alongside w(z,t)
will provide a clearer pictures of the beam’s behaviour. The series will also be useful during
the closed-loop design in Chapter 4 where they are the physically measured variables forcing
the observer.

3.7.1 Series Expression for 6(t)

Differentiating the w(z, t) series (3.20) with respect to z gives
ath Z(M [zlh+1)m'”"+Re{(4k+1)(:z:—L+iL)‘“"}

—Im {(dk + 1)(z — L —iL)**} ] ¥ (1)

JPAYY
o0 = 2500 _ 5~ Lk 4 (o)
k=0

+,§)(fl(k+:)7)—'[l{e{(”"+l)( L+iL)*}

— Im {(4k + 1)(~L ~ iL) M}] @) y)
( y(t) +Z . TaF + 1)! [(zm +1)L%*Re {(~1 +1)"}
— (4K +1)(~L)*Im { (1 + 1)} ] 4 ()
P <4(T+)’1? [(‘”‘ + DL (Re{(-1+1)*} - Im {1 +i>"k})]y‘2“’<c)
It can be verified that
Re{(-1+)*} —Im{(1+0)%} = (~)* k=0,1,2,...

Giving
6(t) y(t)+2('8k;'; y (1) (3.45)
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3.7.2 Series Expression for V(L,t)

The elastic deflection of the tip of the beam V(L,t) is directly measurable from a strain
gage sensor in the experimental plant. Evaluating the w(z, t) series in (3.20) at z = L,

w(L,t) = Z (l(k :)1)' [L4k+l + Re{(iL)dk+l} —1Im {(_iL)4k+1} y(Zk)(t)

It can be verified that
(’i)4k+l =1

(—i)"““:—i k=012,...
We then have

w(L,t) = i .(.ﬁ:% [qu-H +Re {iL‘”"“} —1Im {_iL4k+l}]y(2k)(t)

= Z (zl(k -T-)l)' [L4k+1 _ (_L4k+l) y(2k)(t) (3.46)

)k2L4k+l )
Z( S RARC

Taking (2.19) at = = L, then substituting in (3.45) and (3.46),
V(L,t) = (L t) — LO(t)

% 0 (4,c)k [Ak+1
-3 Gy - 10 - X e
k=0 )

which leads to

__ o LT kg b (ak (28)
V(L. t) Ly(t)+k§)(4k+l)! [( 1)¥2 1(4k+1)]y (t) (3.47)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4

Flatness-based Closed-loop
Tracking Control

In this chapter, we augment the open-loop trajectory planning with an estimated state
feedback tracking controller. This control, which is based on the infinite series developed
in Chapter 3, is intended to compensate for initial tracking error, model uncertainty, and
system disturbances.

4.1 Approximate State-space System Representation

The key step in designing the closed-loop controller is to convert the system series expressions
into an approximate LTI state-space representation. The method uses results in [46] which
considers the control of a diffusion PDE.

In the Laplace domain, the system state and input expressions (3.18) and (3.19) were
found to be

W(z,s) = i (—(:—'?—)k— [:10‘“‘+1 +Re{(z— L+iL)* '} —Im {(z — L —iL)***} ] 2Ky (s)

= 4k + 1)!
(4.1)
T(s) = Js*Y (s) + Z L) J(4k + 3)(4k + 2)(4k + 1) + 4EIs L3 | s*+2Y (s)
(4k + 3)!
(4.2)
Based on (4.1), we define the coeflicient
_ (=REsPY(s) ,
/‘4};.}.](3)— (‘”\?'*'l)! l“ZO (1'3)
Using definition (4.3), (4.1) becomes
o0
W(z,s) = ZA;H.](S)[ AR L Re{(z — L+iL)* '} —Im{(z - L - zL)4k+'}]
k=0

or in time domain:

w(z,t) = i @k (8) [x“‘“ +Re{(z - L+iL)**'} —Im{(z - L - iL)“‘“}] (4.4)
k=0

with aqx41(t) being the inverse Laplace transform of A4 (s),

) (28)
O (—("1)#1),“) k>0 (4.5)
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Using (4.5), we can find a recursion formula between successive coefficients. Observe that
for k=0 in (4.5) we have a;(t) = y(t): the flat output.

k=0 ai(t)=y(t)

k=1 a5 (z)_ﬂﬁ——a,(t)
it e E 2 2t 209 -
k=3 an()= (_'f')%'('m(_t) - _1_:';?{1%23 [(29—(3)2'] BRER 12_-n11 10 %)
k=4 anlt) = Lli;j'mu = 171v ;; [al(a(f;))?'} 17- 16—R15 77 Ba(t)
b=ntl ams(l) = (—n)(";izsn;z)(t) _ (—({1)7’:4:;;:1 ;_; [a.m+(1£tl))(;1:"+ 1)!
Using definition (4.5) in the last line above gives
atmss(®) = x5 lani1l) n>0 (4.6)

(4n + 5)(An + 4)(4n + 3)(dn + 2) -

The recursion formula (4.6) will be used shortly. First, we introduce A,x41(s) into the series
(4.2) for T(s). Using the change of variables &’ = k + 1, expression (4.2) becomes

Ll(k/_l)(‘lﬁ',)“,_l 2k Y(s)
Ak = 1) + )1

T(s) = Js*Y (s) + Z

k'=1

[J(zl(k’ — 1) +3)(d(K = 1) +2)AK = 1) + 1) + zlElnLa]

Z L4k’—4(4~)k'—l 2"’)’(3)

@k — 1)1 [J (4K" — 1)(dk" — 2)(4K" - 3) + tlEIraL“]

= JsZY
kl.—

Rearranging this last expression we can introduce Ayx41(s):
_ -k(8)Y\ 2
T(s)=J ( fi(5')) s°Y (s)

(=1)*(dk + 1)(4k)\ L¥=1(4r)~14*kks2FY (s)
+Z< zlk+1)(4k)) @k =1

[J(zlk —1)(4k — 2)(4k — 3) + tlElnLa]

. (54 (4K + 1)(4k) LAk —14k
-0 () +ZA o ()
[J(4k — 1)(dk — 2)(4k = 3) + :1E1n53]

((4k + l)kL‘”‘“‘(—zl)")

—120J

As(s) + ZA1A+I(S)

k=1

[J(lllc —1)(dk — 2)(4k - 3) + 4E1n53]

K
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Inverse transformation of the last expression gives

-1

7(t) = as(t)—

b 4k + 1)LAk=4(—4)*
207 45 g (i) HEEE )’; D (b —1)(ak—2)(Ak—3) +4ETR L3
k=1
(4.7)
At this point, {4.4) and (4.7) give the state w(z,t) and the input 7(¢) as functions of the
coefficient ayr+1(t) from (4.5), which in turn possesses a recursion formula (4.6).
We now perform the key step of truncaling the series (4.4) and (4.7), using N terms

for the input 7(t) but only N — 1 terms for the state w(z,t). This gives the approximate

relations
N-1
w(z, t) = Z asks1(t) [m“k“ +Re{(z — L+iLy**'} —Im {(z — L — iL)"+! }] (4.8)
k=0
_ N LAl [Ak=d(_q\k
(1) ~ a5 () 22 1+ 5 g (o) HEEE I)IK (=4) J(tlk—1)(tik—2)(‘lk——3)+4ElnL3]
k=1

(4.9)
Observe that the coefficient with the largest index which appears in (4.8) and (4.9) is
asn41(t), and this coefficient only appears in the expression for 7(t). We consider a finite
number of relations from the recursion formula (4.6):

—(dn + 5)(dn + 4)(4n + 3)(4n + 2)

" Angs(t) 0Sn<N-1 (4.10)

dans1(t) =
where n = N — 1 is the highest index value due to asn41(¢) being the coefficient with the
largest index.

Equation (4.10) represents a system of N second order ODE’s, with {d, - ,8an-3}
terms on the left-hand side. We would like {ay, - ,a4n-3} to appear on the right-hand
side, so that the coefficients can be redefined using a set of states, and (4.10) can be put
into state-space form. Currently, the extra term ayn.41 is present on the right-hand side
of (4.10). To remove it, we use the truncated 7(t) expression (4.9), and isolate ayny+1 as a
function of {a;,--- ,eqn—3} and the input 7(¢):

() = as(t) (27 )

N-1 . Akd g3k
+3 awn(®) (““ + 1)[; Y ’)L) [J(dk — 1)(4k — 2)(dk — 3) + szran*]
k=1

+ o (NN + l)i‘w—d(_‘l)N [J(le ~1)(4N = 2)(4N — 3) + 4E1nL3]
£) = K
aan+1(t) TNAEN + 1) LAN-A(=4)N [JAN = 1)(4N — 2)(dN — 3) + 4EIxLI]
N-1 (Al Ak—d(__g\k
{12:J as(t) — > asksr(t) (WHI)I; (=4) ) (4.11)
k=1

[J(zlk —1)(dk - 2)(dk - 3) + zlEIrcL'“‘] + 'r(t)}
By using (4.11), the system (4.10) takes the form

(@1, ydan-3) = f (a1, ,aqn-3) + g (a1, -+ ,aan-3) 7(t) (4.12)
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a set of N second order linear ODE's. (4.12) is put into state-space form by introducing 2N

states {¢1," -+ ,(an} 8S
aar41(t) = Cars 0<kE<SN-1

dgkp1(t) =Cnyz O0<ESN-1

The state definitions (4.13) are used in conjunction with the recursion formula (4.10) to
derive a state-space representation of (4.12):

(4.13)

Cakg1 = darsr = Goraa 0<kSN-1
: . —(dk + 5)(4k + 4)(4k + 3)(dk + 2 (4.14)
Cokt2 = Qak41 = ( X K)( X ) Gkts 0SkESN-2

Equations (4.14) give {C,+-,Can—1}. The last term, (o, requires a different approach.

From (4.13) and (4.10) we have

Gan = aan-3(t)
—(4(N =1) +5)(d(N - 1) + 4)(4( -1 +3)4(N-1)+2)

Con = dan-3(t) = asN-1)+5(t)
_ ~(4N + 1)(AN)(4N — 1){dN ~ 2)

K

ain+1(t)

Using (4.11) gives

—(AN + 1)(AN)(AN = 1)(4N - 2)
K

Gon =

K
(N(dN + D)LN-1(—4)N [J(4N — 1)(dN — 2)(dN — 3) + 4ElnL3])

N-1 (AL dk-4(_ sk
{12;?J G — Z G2k <k(4k+ e ) [J(‘”v 1)(4k — 2)(4k — 3) + 4EIkL?

:
00}

Leading to

- _4(4N - 1)([dN - 2)
GV = Faw=ags VUGN = AN - BN =9 + AETRLY]

) Ak=d(_gyk
{1—2—"143— ZC2L+ (LA DEEE Lok - 1y - 2k - ) + BT

K
+ T(t)}
(4.15)
Equations (4.14) and (4.15) define a state-space system representation of the form
C' = A( + Bt
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where(=[¢1 & - CzN]T € R?V, and A € R?V*2N B ¢ R?V*! are defined as

0 1 0 0 0 0] "0
00 -2 0 0 0 0
00 0 1 0 0
00 0 0 -3 0 0
¢=1: ) YT
00 0 0 0 o 1 (4.16)
0 0 N(2 0 g -soxsou,‘ e 0 0
3 7 an
+80E1L3) —1152ETL ) ] ~——

~ > 7 B

A
_ _4(AN = 1)(dN - 2)
ON = TAN=T(ZD)N[J(AN — 1)(AN — 2)(AN — 3) + AEIxL3]

The system (4.16) is an approximation of the infinite-dimensional system (3.9).

4.2 Observer Design

The state ¢ is not a directly measurable quantity. Hence, an observer is required in order to
implement a state feedback law. For our experimental test stand the two measured outputs
are the hub angle 6(t), and the tip deflection V(L,t). To obtain a C matrix of the output
equation ¥ = C(, we use the previously worked-out series expressions (3.45) and (3.46) for
6(t) and V(L,t), respectively':

o) = (0 + Z ("(‘jk;ﬁ ¥

(4.17)
V(L,t) = —Ly(t) + Z (lk — 1)' [(—»1)*‘2 _ 4k(4k +1) y(zk)(t)

We will need to express the y(¥)(¢) flat outputs in terms of ¢. Using (4.13) and (4.5),

Yk, (2K)
Cokg1 = aarg1 (t) = (—(%Sl(_tz

(2k+1) (4
Qakt2 = Qar41 () = L—W

0<k<SN-1 (4.18)

The series expressions (4.17) are rearranged to introduce (4.18):

l"l - 1
0(0) = +Z L N LT oy

V(L.t) = ~Ly(t) + Z % [2 = (=) 4k + 1) [y (1)

Using N — 1 as the highest summation index leads to the output in terms of state:

N-1

0(t) = C1 + Y (=) (Ak + 1) L™ G (4.19)

k=0

V(L) ==L+ Y [2— () (@k +1)] L¥** ¢y (4.20)

IThe non-conventional notation ¥(t) is used for the measured output to avoid confusion with the flat
output y(t).
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In matrix form we have

Y(t) = [V%f) z)] =C¢ CeR¥»W (4.21)

We can shows the system is observable for all N by directly computing the rank of the

observability matrix
C

CA
CA? | c RiINx2N

N1
Since the system is observable, we can use a Luenberger observer of the form
= A+ Br+L{y—-Cf)  LeRNx2 (4.22)
where L is the observer gain matrix. The observer error ¢ = { — Cis governed by
é¢=(A~-LC)e (4.23)

and the dynamics of this error system can be arbitrarily assigned by placing the eigenvalues
of A- LC.

4.3 State Feedback Tracking Controller Design

The feedforward open-loop control law derived in Chapter 3 steers the system and the
closed-loop derived in this section provides (hopefully small) corrective action to account
for model error, initial tracking error, and disturbances.

The state-space system (4.16) is controllable for any N, which can be verified by checking
the rank of the controllability matrix

[B AB A?B ... AN-1B) e RFNX2N

We design a closed-loop state feedback control to track arbitrarily smooth reference flat
outputs y*(¢). In order to achieve rest to rest motion, the output to be tracked can be taken
as the flat output y(t) = ¢;. We time diflerentiate this output until the input appears. By
inspection of (4.16), the input does not appear at any derivative order below 2N. Using
(4.18) in the (2N — 1)* time derivative of y(t),

- 4(N - 1)+ 1)!
JEN=1(p) = Gaev—-1)+2 (4( )+1)

RN
4.24
_ Gn(N - 3)! (4.24)
(T
Time differentiating (4.24) and using (4.15),
(2N) =C.2N(‘1N - 3)!
Yy (t) (—-K,)N_l
(4N =3)! ~4(4N = 1)(d4N - 2)
T (=R)N-V [ LAN=4(—d)N [J(AN = 1)(d4N — 2)(AN - 3) + 4EIxL3]
1200, & k(dk + 1) L*-1(=a)k
{ - CS—ZC2k+1(( )R ( ))
k=1
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[J(4k —1)(dk — 2)(dk - 3) + 4EInL3] + T(t)}}

_ (4N —1)!
TLAN=-4(4g)N=1[J(AN — 1)(dN — 2)(AN = 3) + 4EIxL3)

120 Nl k(ak + 1) LYk=1(_q)k
{8 X e ()

[J(zlk — 1)(4k — 2)(4k - 3) + 4E1~L“] + T(t)} (4.25)

Hence, we have shown the relative degree of the systems is 2V and the system has no internal
dynamics. This implies we can achieve asymptotic tracking of any smooth reference y*(t)

(68].
Defining
_ (AN — 1))
v (6) = TN =T N T [J(AN = DN — 2N = 3) + AEIxL7]
N-1 (ks LAk=4(_g)k
{ 12£J G — Z Gar+1 (L(lk 1) = (=4) ) (4.26)
k=1

[J(dk —1)(4k — 2)(4k — 3) + 4E1~L3} }

(AN - 1)!

bN = GIR=T(am) N T [JN = )N — 2)AN = 3) + 4ET=L7] (4.27)
we rewrite (4.25) as
y®M () = an(C) + by (1) (4.28)
Based on (4.28), the state feedback
r(t) = Zenie) + VL) (f,) + () (4.29)
puts the system into a chain of integrators form
y20(8) = v(t) (4.30)

Defining the tracking error between the actual and desired flat output as
e(t) =y(t) —y*(t) (4.31)
we assign the auxiliary input v(t) in (4.30) to be
o(t) =y V() — po /0 ()t = pre(t) = paé(t) = -+ = pane®¥1() (4.32)
giving the tracking error dynamics
eCN(t) + pane@N=I() + - - + paé(t) + pre(t) + po /0 t e(t)dt =0 (4.33)

The tracking error system (4.33) is a linear integro-differential equation and the asymptotic
error convergence is ensured by choosing the roots of

$2NH 4 oo s 4k prs+po

in the open left-half plane.
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Once the pj coefficients of the characteristic polynomial are determined, they are sub-
stituted into the auxiliary input v(t) given in (4.32), which in turn depends on e(t) =
y(t) — y*(t). The reference y*(t) is pre-computed using the Gevrey steering function (3.32),
while the observed ¢ states are transformed to y(t) using (4.18). The actual control law 7(t)
is then obtained from (4.29). The expression for the closed-loop torque is

N-1 Al- dk—d(_ \k
(1) = 120J¢,+Zc ’”(”"“)i‘ =9 [J(zlk—l)(zlk—2)(¢lk—3)+zlElnL3]

«w--a(,m):v 1 [J(th —1)(4N = 2)(dN = 3) + 4EIxL?]
AN <=1

t N-1 .
(e -0 [ =y @)t = 3 pus [ iy
k=0

-+

B Z _ [(Ak + l'z;izwz .(2k+1)(t)] )
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Chapter 5

Numerical Simulation

In this chapter we numerically simulate the rotating beam system in both open and closed-
loop modes. An FEA model of the plant is developed in order to test the control described
in Chapters 3 and 4.

5.1 Series Computations

The first approach of calculating the PDE system response is to use the infinite series

expressions developed in Chapter 3. The series for state w(z,t) (3.20), input torque 7(t)

(3.21), rigid-body angle 6(t) (3.45) and elastic tip deflection V' (L, t) (3.47) will be evaluated.
The infinite series are parameterized by the flat output function (3.32):

v = gm() (5.1)

with ¢y the transition time, © the beam’s end equilibrium rotation angle, and 7,(t) the
Gevrey function from (3.31):

2024 ~ 1)
—_ (5.2)
(- ﬁ))*)

To obtain the system response, the infinite series are expanded to a finite number of terms.
The truncated expressions are then evaluated at a set of discrete grid of time and space
points. Evaluating the series requires the calculations of successive time derivatives of the
flat output (5.1). This is done efficiently using the recursion formulas derived in Section 3.6.

Simulation is carried out using the parameters given in Table 5.1. The physical system
parameters are taken from Table 2.1 on Page 15.

11
ny(t) = 3 + 7 tanh (

Calculation parameter Value
Series truncation order 25
Gevrey function parameter | v = 1.4

Transition time tr=1s
End beam angle 0 =90°
# of time points 1000

# of space points 1000

Table 5.1: Calculation parameters for series simulation

The results are plotted in Figure 5.1. The simulated beam behaviour is consistent with
physical intuition. A positive torque accelerates the beam, then a negative torque decelerates
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it to rest at O(ty) = 90°. It first bends downwards due to the counter-clockwise positive
moment, then upwards due to the clockwise negative one. The beam is undeformed at its
equilibrium positions.

w(x,1) total deflection V(x,t) elastic deflection
f “\\‘.
A \“.1 \‘ “
. e
0.6 SO
=04 g
2 024 >
0
1
Beam rigid-body angle Boundary torque input
100 0.15 v
0.1
80
0.05
- 60 _ 0
s ¥
© 40 -0.05
-0.1
20
-0.15
0 -0.2
0 0.2 0.4 0.6 0.8 0 0.2 04 0.6 0.8 1
t t

Figure 5.1: Results of series-based simulation
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5.2 Observer Testing

The observer designed in Section 4.2 will be used to check the accuracy of the approximate
system (4.16).

From File

Observer
gain matnx

From Filet

To Workspace

openloop_input

u{l)=tau(t)

Figure 5.2: Observer testing Simulink diagram

The Simulink diagram used for testing the observer is shown in Figure 5.2. The three
inputs are the boundary torque 7(t), the rigid-body angle 8(t) and the tip elastic deflection
V(L,t), which have been calculated for in open-loop using the series given in the previous
section. The observer output is the estimated state vector f, which is compared to the
actual state ¢ obtained by using y(t) defined in (5.1) in (4.18).

For the first test run, the value N = 2 is used, generating a fourth-order state-space
system. The state estimate error system eigenvalues are chosen to be

’\obs = {—30, —-35, —40, —45}

. The actual and observed states are then plotted in Figure 5.3. The plots show good
agreement between the estimated and actual ¢ states, even at the low state-space order of
N = 2. In a second run, we take N = 3 and

Aobs = {—70, =75, —-80, —85, —90, —95}

. The results are shown in Figure 5.4. Here again, we see good agreement between the series
and observer states. For a final run, we have N = 4 and

Aobs = {—60, —65, —70, —75, —80, —85, —90, —95}

, plotted in Figure 5.5. The lower states are well estimated, but the higher-order ones exhibit
noise.
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Figure 5.3: Observer (—) versus actual (---) states, N = 2.
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Figure 5.4: Observer (—) versus actual (---) states, N = 3.
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Figure 5.5: Observer (—) versus actual (---) states, N = 4.
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5.3 FEA Model

The series expressions in the previous section can be used to calculate the system state
w(z,t) and input 7(t) for a given flat output trajectory. This approach does not provide
a “real” simulation, in the sense that the system’s response is not determined from the
boundary input, but rather indirectly from y(t). We require a method of obtaining w(z, ¢)
from 7(t) in order to validate both the open and closed-loop controls previously derived. In
this section we develop a FEA simulation model following the work in [26, Section 8.3].

5.3.1 FEA Formulation of a Single Beam Element

u(t) uz(t)
\u"’(l) uy(t)

D) E,I,p,A 'Y

k ! A

Figure 5.6: Single beam segment

We begin by looking at a single beam element, as illustrated in Figure 5.6, which will be used
to assemble the complete beam model in Section 5.3.2. The segment has two nodes, each of
which has two nodal coordinates, denoted by ux(t). The beam element has a length { and
physical parameters E, /,p and A. The beam element is governed by the Euler-Bernoulli
FDE: dwt) 0wl L)

w(z, w(z,

pr pA CT 0 (5.3)
We assume that at any instant of time, the beam displacement w(z, t) must satisfy a static
beam deflection profile,

EI

d'w(z,t)
ozt
The beam displacement is a function of time, so the solution to (5.4) is written as

EI 0 (5.4)

w(z, t) = c1(t)z? + ca(t)x? + ca(t)z + ca(t) (5.5)

In order to find the functions ¢ (t), we use the four nodal coordinates as boundary conditions

for w(z, t):
w(0,t) = w1 (t)  w(l,t) = ua(t)
dw dw (5.6)
%(0, t) = ua(t) %([» t) = ua(t)
Using (5.5) in (5.6) results in a system of four equations:
(.‘4(t) = ul(t)
cslt) = ua(t
i i 3(t) = ua(t) (5.7)
I°cq (t) +1 Cz(t) + lC3(t) + Cq(t) = u;;(t)
302¢; () + 2ca(t) + calt) = ua(t)
System (5.7) is solved and the results substituted into (5.5):
.2 2; 3 2p2 3
wz, t) = (1 - %- + lla) wi(t) + (.z - % + %) ua(t)
(5.8)

2 3 3 2
(Y waw + (5 -2 ) w
l l l l
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Solution (5.8) is used to derive the modal eguation for the beam segment,
Mii 4 Ku = F(t) (5.9)

where u is the vector of nodal coordinates, F(¢t) is the modal forcing vector, and M and K
are the segment’s mass and stiffness matrices.

The modal matrices are found from the expressions for potential and kinetic energy of
the beam segment. The strain energy of the segment is given by [26, p.537]:

1 [0%w(z,0)]? g
Expanding the integral using (5.8),

4ET

- {Bu? + 3luyuy + l2u§ — Guyug — 3lugug

+ 3“5 + 3luyug + 12UQ114 — 3luguy + l2u3} =uTKu

The stiffness matrix is therefore

12 6 -12 6l
Erf{e 4% -6 2°

K=7l-12 .t 12 -6l (5.11)
6l 202 -6/ 412
The segment’s kinetic energy is 26, p.538]:
1t [ow(z,t)]? 1.,
() = 5/0 pA [ B dz = St M1 (5.12)
Expanding (5.12) using (5.8),
lpA .2 .. 2.2 . ..
210 T84T + 22040y tg + 20°05 + 54413 + 13ligy
+ 7802 — 13l iy — 31210ty — 22031y + 212113} =T M
The mass matrix is therefore
156 221 54 —13!
Al 472 _aj2
M=P 22! 1l 131 3l (5.13)

=120 | 54 131 156 2%
—130 ~312 —221 42

The modal forcing vector F{t) in (5.9) contains the forces and moments acting on each
nodal coordinate. In the most general case,

Fi(t)
My(t)
Fy(t)
Ma(t)

F(t) =

where Fy(t) is the force acting on the left node, M(t) is the moment acting on the left
node, and F»(t), M2(t) are the force and moment acting on the right node, respectively. If
the beam is unforced, then

F(t) =

OO OO

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3.2 Superposition of Beam Elements

The full beam model is constructed by superposition of the individual beam segment equa-
tions. Each modal equation (5.9) represents a system of 4 second-order linear ODEs with

constant coefficients.

Consider a two-segment discretization of a beam shown in Figure 5.7.

ug(t) wa(t) ug(t) \uq(t) u5(t%
+) E I p A .) EIp A ‘
2 1 sk I ’

Figure 5.7: Two-segment beam example for superposition

ug(t)

In this particular case, the segments are identical in length and physical parameters. Using

(5.11) and (5.13) gives:

[ 12

Ki=Ik,=Er| S
| = Ko = 12

|

156

=M, = P4 | 22
M, = M = 120 | 54
[—-13

The modal equations for each segment are:

156 22 54 —13] [i] [ 12
ﬁ 22 4 13 =3 }iie + 6
420 | 54 13 156 —22]| liis -12

[-13 -3 -22 4 ] |i] | 6

[156 22 54 —13] [iis] [ 12
pA 22 4 13 B fiy| |6
420 | 54 13 166 =22} |iis —-12

[-13 -3 -22 4 ] |iig | 6

6
4
-6
2
22
4
13
-3

6
4
-6
2
6
4
-6
2

—12
-6
12
-6
54
13
156

-22

-12
-6
12
-6

-12
—6
12
—6

6
2

—6
4_
6
2

zl_

cCOoO OO

o OO

0

(5.14)

(5.15)

The system above represents 8 LTI ODEs. Adding together the equations in uz and then
in uy gives a system of 6 equations, expressed in modal form as:

156 22 54

2 4 13
pA | 54 13 156+ 156
120 |-13 -3 —22+422

0 0 54

0 0 -13

12 6 —12

6 4 -6
~12 -6 12412
+EL 67 9 _g46
0o 0 -12

0 0 6

Reproduced with permission of the copyright owner.

-13
-3
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4 44
13
-3

0 0
0 0
54 -13
13 -3
156 =22
=22 4
0 0 u
0 0 Ug
-12 6 us
-6 2 Uy
12 —6] {us
-6 4 Up

o
iip
i3
ily
ii5
-iiﬁ
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which can be numerically integrated to obtain the nodal coordinates. The superposition
approach is easily coded for an arbitrary number of beam segments.

In our application, a rotating beam is modeled as an N element system with torque
input at the first node, as illustrated in Figure 5.8. Since the beam is uniform and all
segments have equal length, the local mass and stiffness terms are calculated only once,
then superimposed to form the global M and K matrices, similarly to the last example.

t t us(t ugn-1(t) ugn41(t)
ul )\ llg(t) ’U3( )\‘114([.) U ( ) Uﬁ(t) \“2)\/([' UzN.;.z(t)
)E.I.p,/\ o) EI,p, A o) E,Ip A
/ L */ L L/ L
~_A N N A F N A
7(t)

Figure 5.8: FEA model of rotating beam with N elements

Superposition is used to model the rigid hub attached to the beam. The global beam mass
and stiffness matrices are assembled without a forcing vector. The hub’s equation of motion,

Jhubiiz(t) = 7(t)

is added to the global mass matrix and creates a modal forcing term F(t).

5.3.3 Boundary Conditions in FEA

Boundary conditions on the original PDE are used to simplify the global mass and stiffness
matrices by removing the corresponding u(t) nodal coordinates. For example, if the beam
from Figure 5.7 is clamped at the left and frec at the right, then u,(t) = u2(t) = 0, although
us(t) and ug(t) remain unaltered.

The ODE corresponding to a ux(t) = 0 term is trivial and is dropped from the system
of equations. The nodal coordinate is also removed from the remaining equations. For the
two-segment problem above, the system of 8 ODEs in 8 unknowns is simplified to 6 ODEs
in 6 unknowns.

Removing equations and nodal coordinates is equivalent to deleting corresponding rows
and columns in the modal M and K matrices. In our example, u;(t) = uz(t) = 0, which
eliminates the top two rows, and the two left-most columns in the system’s global matrices,
and (5.16) becomes

156 + 156 —22+4+22 54 —13] [iis(t)
pA [-22+422  4+4 13 =3 |iia(t)
420 54 13 156 —22| |iis(t)

-13 -3 -22 4 | |ig(t)
12412 —64+6 =12 6] [ua(t) 0
-64+6 444 -6 2| [w@®| _|0

-12 —6 12 -6 |us(t)| — |0

6 2 -6 4| |ug(t) 0

For the rotating beam in Figure 5.8, u;(t) = 0, since the hub does not translate. No other
simplifications are available.

(5.17)

+ EI

5.3.4 State-space Representation of FEA model

Once the global M and K matrices are assembled and simplified using the BCs, a modal
form (5.9) can be transformed into state-space form. For the rotating beam, we have
Mii(t) + Ku(t) = F(t) = Br(t)
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Where B=[0 1 0 --- O]T due to the torque acting on the hub. Defining the variables
z1 = u(t), z2 = u(t),

;= u(t) = xo
By = ii(t) = —M ' Ku(t) + M™'Br(t) = —-M 'Kz, + M~ Br(t)

[2] - [—MO“‘K é] [2] + [M?n B] 7(t)
y=[/ 0 [2]

we obtain the state-space representation of the system’s modal equation, with the boundary
torque 7(¢) as the input and nodal displacements as the output y.

5.4 Validating the FEA Model

To validate the FEA model, an open-loop test is performed, using the series-computed 7(t)
as the input. The simulated result will then be checked against the series-computed results
in Section 5.1. The setup for this is shown in Figure 5.9.

sim_lheta
Isolate To Workspace
0 theta(t)
ul(t)
. sim_V
opentoop. i x' = Ax+Bu | -
penioop_inpul 7| y=Cx+Du Isolate To Workspacel
From File FEA VLY
‘u sim_w
Isolate To Workspace2
wix,t}

Figure 5.9: FEA open-loop testing, Simulink implementation

The physical beam parameters used to calculate the M and K matrices are taken from
Table 2.1. We use N = 20 elements in the spatial discretization.

Since u, (¢} is gets dropped as a zero boundary condition, u; (¢) = 0 is mmanually added into
the FEA model output. The simulated nodal coordinates are arranged into the displacement
field w(zi, t) = [ui(t) wua(t) ... uzn+1(t)], the hub angle 6(t) = ua(t) and the tip elastic
deflection V (L, t) = ugn41(t) — Luz(t). The results are plotted in Figure 5.10.

Comparing the FEA model results in Figure 5.10 with the series-calculated in Figure
5.1, we see good agreement between the two, indicating the FEA model is a valid simulation
tool. Based on informal testing, Nrga = 20 elements gives results which are “sufficiently
accurate” for simulating the closed-loop operation of the system. A large number of elements
(Nrga = 150) was used and no significant improvements in accuracy were observe.

5.5 Closed-loop Control Simulations

The closed-loop control Simulink diagram is shown in Figure 5.11. The FEA model is used
as a state-space model of the plant and is connected to the tracking controller and observer
systems derived in Chapter 4. The controller implementation is shown in Figure 5.12.
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Figure 5.10: Results of FEA simulation
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Figure 5.11: Closed-loop system Simulink diagram

To test control performance, we use a 90° rotation in one second as the control task, and
give the beam an initial tracking error of (0) = —10°. The open-loop operation is shown in
Figure 5.13. The beam rotation is executed smoothly, but the beam undershoots the target
and stops at #(1) = 80° due to lack of feedback.

The same control task is now performed with a closed-loop control law. In the first run,
N = 2 is used when deriving the controller and observer expressions. The observer eigenval-
ues are the same as for the N = 2 observer test in Figure 5.3, Apps = {—30, —35, —40, —45}.
The controller uses Acont = {5, —10, —15, —20, —25}. The results are shown in Figure 5.14.
Due to the closed-loop control, the system is able to compensate for the initial downward
deflection and move the system to the desired #(1) = 90° ending configuration. The torque
plot shows extra control effort at the beginning of the movement. The torque approaches
the open-loop input profile in Figure 5.13 for the end of the motion, i.e., the open-loop
control is doing most of the “work” at the end of the motion.
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Figure 5.12: Controller subsystem Simulink implementation
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Figure 5.13: Open-loop steering of beam with #(0) = —10°

In a second run, we use N = 3 terms in the series truncation, producing a 6'* or-
der state-space model. The closed-loop observer and controller eigenvalues are set to
Aobs = {—70,—75,—-80, -85, —90, —95} and Acont = {—40, —45, 50, —55, —60, —65, —70},
respectively. The results are plotted in Figure 5.15. The N = 3 plots show the controller
does its job of moving the system to the desired final configuration, but the operation ex-
hibits a high level of chatter, seen in the plot of 6(¢). A more serious problem is with
the system input 7(¢) which exhibits increasingly large oscillations which would eventually

destabilize the system.
For the last run, N = 4 is used, along with Ao = {—60, —65, —70, —75, —80, —85, —90, —95}
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Figure 5.14: Closed-loop control of beam with 8(0) = —10°, N = 2.
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Figure 5.15: Closed-loop control of beam with (0) = —10°, N = 3.

and Aeont = {—10, —15, 20, —25, —30, —35, —40, —45, —50}. The system goes unstable, as
shown in Figure 5.16.
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Figure 5.16: Closed-loop control of beam with 8(0) = —10°, N = 4. Unstable operation.
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Chapter 6

Experimental Validation

In this chapter, the control law designs from Chapters 3 and 4 are tested on the flexible
beam experimental hardware.

6.1 Overview of Experimental Setup

The rotating beam plant, shown in Figure 2.1 on Page 6, was connected to a PC running
Matlab/WinCon/RTX. The setup readily allows controller development in Simulink and
generates real-time code taking care of implementation details such as discretization and
data I/0.

6.2 Constant Gain Control

Before testing the flatness-based controllers we consider the performance of a simple pro-
portional controller as shown in Figure 6.1.

Quanser Consulting Quanser Consulting
MultiQ-PCI DAC MulbQ-PCI ENC

1eference
thata

Convert
10 degrees

Analog Output Encoder Input

Figure 6.1: Proportional controller for rotating beam

We use # = 90° as the reference input. The gain value is tuned to X = 0.2, giving a fast
response without saturating the input. The experimental data is plotted in Figure 6.2.

The constant gain controller moves the beam to the end configuration without steady-
state error. However, this solution exhibits poor transient performance, giving a large
overshoot and long settling time.

6.3 Flatness-based Open-loop Control Experiment

The next test is the open-loop control using the input 7(¢t) computed from the Chapter 3
series. The Simulink setup is shown in Figure 6.3. The experimental results are plotted in
Figure 6.4.
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Figure 6.2: 90° transition using constant gain controller

Quanser Consulting
MuttiQ-PCI DAC

A

openioop_input tauft) u(t)

input torque

Convert Analog Output
torque to voltage

Figure 6.3: Open-loop experimental testing setup

For the open-loop operation, the target rotation of 90° is not met, with the final angle
being about 75°. This is caused by the unmodeled friction present in the experiment. The
system exhibits a discontinuous ‘stiction’ effect, where input torque below a certain level
does not produce motion, since it is insufficient to overcome the static friction present. This
effect is seen by looking at the 7(t) and 8(¢) plots near the start time. The graph for 7(t)
starts to increase smoothly at about ¢ = 0.05 and yet the value for 6(¢) only begins to move
at t =0.15.

We remark however, that the transient characteristics of the system’s performance are
better than the constant gain controller, with lower tip deflection amplitude and smaller
overshoot. The settling time is the same or better.
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Figure 6.4: Experimental open-loop steering to 90°
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6.4 Flatness-Based Closed-loop Control Experiment

The experimental setup for this section is shown in Figure 6.5. The control task is still a
90° transition in 1 second.

Quarew Coneung
WA PCIENC '—'—’I :>“‘__ i roan

iui oo
Encoow oAt d Ven e »
Quanew Coreuing
[P “Wan0 PCIDAC
Quarem Conauing w P r
MAQ-PCIADC Canvent Ansiog OVt
™ ow wit Povme Cowomw LT
“Arehng oA
¥ i eceoma

Figure 6.5: Closed-loop experiment Simulink model

Quanser Consulting
MuliQ-PC1 ADC

Invest 11 theta_dot
gain

Measutod thota_dol

Figure 6.6: Closed-loop experiment, 7(t) to u(t) conversion subsystem

6.4.1 Disturbance-Free Test, N =2 Design

Using N = 2 gives a fourth order state-space system representation. The system eigenvalues
are chosen as Acont = {—5, —10,~15,-20,—25} and Agps = {—30,—35,—40,—45}. Based
on the simulation results, we expect this system to function well. The experimental data is
plotted in Figure 6.7.

In contrast to the open-loop experiment, the closed-loop control law meets the target of
6 = 90°. The transient characteristics of maximum overshoot and settling time are better
than both the proportional controller and the open-loop control.

The beam tip exhibits some residual oscillations at the end of the transition. The
controller attempts to compensate, as seen {rom the 7(¢) and u(t) input plots. However, the
plant hardware contains a “dead zone”, where actuator efforts below a certain threshold do
not produce movement, caused by static friction.

6.4.2 External Disturbances Test, N =2 Design

The controller from Section 6.4.1 is now run while manually interfering with its operation.
The goal is to test the robustness of the controller. The disturbances applied are described
as follows:

1. During transition, the ruler is stopped by hand, held briefly and released.

2. Once the system reaches its final endpoint, the beam is deflected in the counter-
clockwise direction and released.
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Figure 6.7: Experimental 1 second 90° transition, N = 2 controller

3. The deflection from the previous step is repeated in the opposite clockwise sense

The results are plotted in Figure 6.8. The controller remains stable and rejects disturbances,
both during tracking and in stabilizing mode at the end of the transition.

Beam rotation angle

Beam tip deflection
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tls) tis)
Figure 6.8: Attempted 1 second 90° transition, subjected to manual interference.
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6.4.3 Disturbance-Free Run, N = 3 Design

The final experiment is to test the performance of a controller designed using N = 3, as
done in simulation in Figure 5.15, which exhibited a large level of chatter. The param-
eters used are the same as before, Agys = {—70,—-75,—80,—85, 90, —95} and Acont =
{-40, —45, ~50, —55, —60, —65, —70}. The results are shown in Figure 6.9.

Beam rotation angle Beam tip deflection
200 0.15
01
150
0.05
5 100 E
g = 0
h-A 3
® 59 54 -0.05
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tis) ts)
Boundary torque input DC motor voltage input

oY) N ]

05 15 2 0 0§ 1.5 2

1 1
tis) t[s]

Figure 6.9: Attempted 90° transition, N = 3 controller. Unstable operation.

The N = 3 version of the controller is unstable. Note that the beam remains stationary
for about one second while the gears chatter, then goes unstable.
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Chapter 7

Generalization of the Rotating
Beam Model

In this chapter, we generalize the previously used rotating beam model to include a tip
payload, as studied in [2)], for instance. Also to increase the level of generality, the system is
initially modeled as a Rayleigh beam, which includes the Euler-Bernoulli beam as a special
case.

7.1 Derivation of the Rayleigh Beam Model
7.1.1 Rayleigh Beam PDE

Consider the free-body diagram of an infinitesimal beam element, shown in Figure 7.1. The
right-hand side force and moments have been converted to one-term Taylor series expansions,
as in Section 2.2.2.

- AF(z,t
F(z,t) + 25 gy

A/[(:Ey t) // AJ(:E,L) " OM ;-‘ dl'

Figure 7.1: Free-body diagram of infinitesimal Rayleigh beam segment

Performing a force balance, taking upwards as positive

8 Quw(z, t)
Z F at2
O*w(x,t)
ot?

aF(:L t)

F(z,t) + ———dz — F(z,t) = pAdz
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OF(z,t) 8wz, t)
o Ao

Next, performing a moment balance about the centre of mass, taking counter-clockwise as

(7.1)

positive
d?6(t)
Z Mcy =J Iz
aM (z,t) OF (z,t) dr dz _  8%w(z,t)
M(z,t) + o dz — M(z,t) + (I"(:v,t)+ %2 dz 5 +1"(a:.t)7 =J 21202
OM (z,t) , ) OF(z,t) (dz)®*  &3w(z,t)
—éz—dIL + F(.E, t)d:c + 81: D) = J 0t28x
N —’
=0
(7.2)

The internal restoring moment is related to the curvature of the beam by

0?w(z, t)
which is exactly the same as for the Euler-Bernoulli model, see (2.7). With (7.3), (7.2)
becomes Pu(z, 1) Pz, 1)
w(z, _ w(z, )

Another fact that we use is the relationship between J, the mass moment of inertia, and I,
the area of moment of inertia. Assuming the segment has a rectangular cross-section with
base b and height h,

J= -l—m(h2 + (dz)?) = imh2
12 NI

12
~0
_ 1.3
I = 12bh
Im I
J= -i)-f_l- — szd:B O pId.’L‘ (75)

In fact, (7.5) can be shown to apply to any cross-section form, providing p and A are
constants. Applying (7.5) to (7.4) gives

OPw(z,t) Bw(z,t)
E]T(ZIL‘ + F(Il:, t)dil? = p[d(L‘-W
L 0%u(z,t) O3w(z, t)
F(z,t) = pl pTEr e EI 723 (7.6)
Finally, substituting (7.6) into the force balance result (7.1) gives
7] O*w(z,t) &Pw(z, t) O*w(z,t)
%( I=oras ~ Bl )“’A 12
dw(z,t) &*w(z, t) Sw(z,t)
Bl art P oz oA a2z 0 (7

The Rayleigh PDE (7.7) is found in [73] and [21}, for example.

7.1.2 Force and Moment Boundary Conditions
In this section, we discuss how forces and moments acting on the beam edges can be trans-
lated into boundary conditions for the Rayleigh PDE.
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For moment BCs, we use equation (7.3), so that
Pw(z,t) _ M(z,t)
dz2 = EI

Result (7.8) is identical to the earlier Euler-Bernoulli case. It is important to use the sign
convention of Section 2.2.3:

(7.8)

o Left side: clockwise external moment=positive M (and vice-versa)
o Right side: counter-clockwise external moment=positive M (and vice-versa)

If there is no moment applied (free or pinned end), M = 0, the sign gets canceled out and

92—%‘,"—'2 = 0 applies.

For force BCs, we use Equation (7.6)
Puw(z,t)  pPuw(zt) —F(z,t)
923 E 029z ~  EI

Result (7.9) is not the same as for Euler-Bernoulli. We again need to observe the direction
convention from Section 2.2.3:

(7.9)

o Left side: downward external force=positive F' (and vice-versa)

¢ Right side: upward external force=positive I (and vice-verse)

t)aw(:r.l -

If there is no force applied (free or sliding end), I = 0, the sign gets canceled and =

3 . .
%8—?1%’; for either side.

7.2 Rotating Beam Model

We now derive a model for a rotating beam system with tip payload using the Rayleigh beam
equation for generality. The equations derived can be easily simplified to the Euler-Bernoulli
case, as done in the next section.

The schematic diagram of the system is shown in Figure 7.2.

Figure 7.2: Rotating beam diagram

First, focus on the payload, as shown in Figure 7.3. Note Fheam,payload 80d Mbcam,payload
are the reaction forces by the beam on the payload.
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Mpy Jp

7
M beam,payload
Pbcnm.pnylond
Figure 7.3: Free-body diagram of payload
Force balance
02
> F= my o (Le(t) + V(L, t))
62
— Fhcam,payload = mpﬁ (Le(i) + V(L, l,)>
02
Fbcx\m,pnyload = "mpm (V(L, t) + Le(t)) (7'10)
Moment balance
(’)V(L 6)
Y M=, o (O(t) )
9? aV(L,t
—Myeam,payload = patz (0(&) + —%)
9% [OV(L,t
A’[bcnm.pnyload = "Jpa—tz' ( a( ) 9(5)) (711)

Next, we look at the hub, shown in Figure 7.4, and perform a moment balance. The term
Myeam,hub represents the reaction by the beam on the hub.

Jhub

A’Ibenm.hub 0
(t)

Figure 7.4: Free-body diagram of hub

2
> M= T 220

dt?
d26(t
A/]bcnm,hub + T(t) = Jhub_d‘tg—')'
d?8
A’Ibcnm,hub = Jhubm - T(t) (712)

Finally, we consider the forces acting on the beam in Figure 7.5. Note the payload

and hub reaction forces and moments are reversed in direction from Figures 7.3 and 7.4 by
Newton’s third law.
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T Fbcmn,pnylond

> Mycam payload

(z,1)

-

w(z, t) = V(z,t) + 20(t)

o(t)
Nfbcnm,hub

< ..................................................................................................

Figure 7.5: Forces and moments acting on Rayleigh beam

We now write down the Rayleigh beam equation, defining w(z,t) = V(z,t) + z0(t) as the
deflection field formulated in an inertial frame of reference; V' (z, t) is formulated in a rotating
(non-inertial) frame, so it cannot be used by itself in the equations of motion. Recalling
equation (7.7), 1 ‘
-, 0 w(z, t) d*w(z,t)
Bl P o2an2
We have the beam boundary conditions

QPw(x,t)
e =0 (7.13)

+ pA

w(0,t) =0 azw(Lv t) - Mycam,paylond

azw(O,t) — Myeam hub 03w(L,t) _ ﬁasw(L' t) — ~ Fycam,paylond
dz? EI Oz E 08t%0z ErI
Note (7.14) respect the directional convention for forces and moments discussed in Section
7.1.2.
For the hub side, using (7.12),
Pw(0,t) 1 d26(t)
92z Bl (J"“" T T(t)) (19

By the definition of w(z, ),
duw(z,t) _ dV(x,t)

Oz Oz +6(t)
dw(0,t) _ 9V(0,¢t)
or Oz +0(t)
=0
_ 0w(0,1)
0(t) = - (7.16)
Using (7.16) in (7.15), we obtain
QPw(0,t) 1 d3w(0,t)
9% EI (J"“" 91203 _T(‘))
33w(0,¢) 9®w(0,t)
Jhub 2o ET Erommie 7(t) (7.17)
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We now look at the right-hand side BCs. Using (7.11) and the definition of w(z,t), we get
Pw(L,t)  —~J, & (Ow(L, L))

ox? EI gt2 oz
Pw(L,t)  —J, BPw(L,t)
9z2  EI 01?0z (7.18)
Using (7.10) in the fourth BC,
3 3 , 2
Pw(L,t) p Pw(L,t)  mp0fw(L,t) (7.19)

or3 E ot?0r EI o

Putting (7.14), (7.17), (7.18) and (7.19) together with (7.13) gives us the PDE problem
formulation for a Rayleigh beam with boundary torque input and tip payload:

dw(z,t) d'w(z,t) 0%w(x,t)
: ) \ ) _ 7.20
El=— 3= = pl 55 +PA—5 0 0<z<lL (7.20)
BCs:
O*w(L,t)  —J, Pw(L,t)
J Pw(0,t) E]a2w(o, t) ) Pw(L,t)  pPuw(L,t) _ mp0*w(L,t) '
hub T 920z oz? Oad E ot20r ~ EI 02
The last step is to define the new term
I
5=17
Using S, (7.20) becomes
0'w(z, t) dtw(z,t) 0%w(z,t)
5 Akl A ! = 7.22
El Er pAS 22012 + pA ETE 0 O0<z<lL (7.22)
and (7.21) becomes
‘ _ Pw(L,t) _ —J, Pw(L,t)
w(0,) =0 97 El 0i%0s
Bw(0,t) 0%w(0,t) dPw(L,t) OBw(L,t) 0*w(L,t)
o gpgg ~ Bl =70 Blgm— —pAS g =™ 720

The reason for introducing § is that it represents the rotary inertia effect; by setting S = 0,
the PDE and BC terms simplify to the Euler-Bernoulli case [73]. For the flexible beam
experiment, using Table 2.1, we calculate

S =5.3333 x 1078
meaning that the rotary inertia of the flexible beam is negligibly small for the experimental
plant we are working with.
7.3 Alternative Series Solution

In this section we give the full details of the open-loop control using special basis functions.
This calculation approach first appeared in [2], and is reprinted in [63, Section 5.4}, although
both references skip the calculation steps and only give the final solution.
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7.4 Normalizing the Boundary-Value Problem

The example we will be working with is a rotating Euler-Bernoulli beam with a tip payload.
The system model is immediately obtained by setting S = 0 in (7.22) and (7.23):

4 s 2 .
erl “’(""’L)—kpA(9 W@l _ o p<az<L

Ot 12
_ O*w(L,t) _ —J, Pw(L,t)
w(0,4) =0 9z EI 0t20x
8*w(0,t) 9*w(0,t) Bw(L,t) 8%w(L,t)
Thab ooz Er oz2 (®) Er a9 T g

(7.24)
A method to reduce the complexity of the series expressions is to replace the torque input
boundary condition, by assuming 8(t) is the input and writing the torque relationship as a
separate ODE. This gives the BVP

4 2
Ela w(z, t) + Aa w(z,t)

5] p 2 = 0 O<z<L
w(L,t)  —Jp, O®w(L,t)
= Z Ay _TYpZ A Y 7.25
w(0.4) =0 92 EI 0ROz (725)
dw(0,t) Pw(L,t)  Pw(L,t)
or o(t) BI L T
with input equation . )
_ Pw(0,t) . 0*w(0,t)
T(L) = Jhub 20z - FErI ) (7.26)
The BVP (7.25) is now normalized by introducing the change of variables
~ T ~ tVEI —
T = Z t= m w(z_:, ) = ‘lU(.’L‘, t) (727)
transforming (7.25) into
OVW(T, 1) D2 w(T, 1) _ ~
El 3] + pA oI =0 0<z<1
e Pw(1,1) _ —J, 8%w(1,1)
w(0.t) =0 dz2  EI 0t20z (7.28)
dw(0, t) tL2\/pA A3w(1,1) %w(1,1)
=4 EI =m,
oz VET 93 o2
Note that
03 _0GdE _ 103
0xr ~ Otdr LOT
Fo_ 0 (0m\_ 0 (108) _10 (00\dE _ 1 &%
9z Oz \dz/) 0z\LOT) LOzT\0%Z/)dr L2 07>
Pw_  _ 100
or3 — T L3033
o'u_ 17
Ot N
Also,
05 _ 0udi __VET 03
ot ogrdt  L2/pA &t
25 _2(35). 2 (T on) o (/T on)d_ Br (5
oz~ o\ot) ot\L2/pAart ) ot \L2V/pA at | dt  LipA \ 612
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Expression (7.28) becomes

40 T ; 2.0 7
10w(z,t)+ A El 0*w(Z,t) _

EI-L—4 PR P oA o =0 0<z«l1

2.7 i _ ” 3.~
@(0,5) =0 18%a(1,0) _ =J, EI 8°5(1,0)

L2 932 EI LSpA 01207
lam(o,f)_e tL2\/pA Eliam(l,f)_m EI 92*®(1,1)
L oz El L3 08 ~ PLipA o2

which simplifies to
4. T 2. ~/~ T\
6w(z’)+0w(~"r"t)=0 0<ZT<l1
(1,8 _ | 8%w(L,1)
0z2 " o0z
—~ 3.~ It 2.~ et
aw(0, t) ~7() w(1,t) _ 8%w(1,1)

(7.29)

5 ' op

where

J, M 1L2\/pA
b= (Z)—LG( m)

BVP (7.29) is the normalized version of the original expression (7.25). The normalization
eliminates the leading constants from the PDE and sets the space interval to unit length,
which makes the equations easier to work with. After an expression for the @(Z, t) field is
found, the normalization will be undone to produce w(z,t) in the original coordinates, and

equation (7.26) will be used to obtain 7(t), the boundary torque input expression.

7.5 Assumed Solution of Normalized BVP

For the purposes of this section, we will temporarily drop the ™ superscripts from all vari-
ables. This is done because the operator s does not have any superscripts, and to avoid
confusion with the ~ superscript notation introduced soon. However, it must be remembered
that we are still working with normalized variables, and the normalization will need to be
undone after the series manipulations are carried out.

The Laplace transform is applied to BVP (7.29), leading to

*'W(x,s
_a('AT“) +s*W(z,s) =0 (7.30)
2 3
wo,s)=0 ZWLe) __, 20W(1Ls)
o O (7.31)
W) | PW(s) .
or Us) T w(l,s)

We previously expressed the solution to (7.30) as a linear combination of trigonometric
functions, (3.7). Following [2], the solution takes the alternative form

W(z,s) = a(s)C(z) 4+ b(s)C ™ (z) + ¢(s)S™ (z) + d(s)S~ (z) (7.32)
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With basis functions

= . (7.33)
S+(.'z:) — S((E%,-:-\;ES(E)
5oy - Tt
Where ~ denotes the complex conjugate, and
C(z) = cosh[hy/5(1 —z)] C(z) = cosh[h/s(1 — z)]
S(z) = sinh[hy/s(1 — z)] S(z) = sinh[h/s(1 — z)) (7.34)

h=Vi h=v=i

It can be verified that (7.32) satisfies the governing equation (7.30). Further, the basis
functions (7.33) have properties which make the series manipulations easier, as will be seen
shortly.

It can be verified that

asé;x(z) _ )
% =C(x)
% = —sS*(z)
-aCa_T(‘”) =557 ()

Using the above when differentiating (7.32) gives

%.:’S) = —a(s)sS* (z) + b(s)sS~ (z) + ¢(s)C ™ (x) + d(s)C* (x)
%ﬁl = —a(s)sC™ (2) + b(s)sC™* (z) + c(s)sS ™ (z) — d(s)s5* (x)
6‘3%%3‘) = —a(s)s*S™(2) — b(s)s>S* (z) + c(s)sC™ () — d(s)sC~ (x)
At z = 1, the expressions simplify considerably
C(1) = cosh(0) = 1 5(1) = sinh(0) = 0
c(1) =1 3(1) =0
c+(1)=12L1=1 C_(l)=%=0
St(1) = 2_’:.'\_/’_2 =0 S=(1) = —2054\—/;'0 =0

At = 0, the terms do not simplify, so we leave them unevaluated. For compactness, we
will denote

cH0)=Cyf 5*(0) =S¢
C(0)=Cy §7(0) = Sg
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Making use of the BCs (7.31), we obtain a system of four equations in four unknowns
{a(s),b(s),c(s),d(s)}. The (s) will be dropped at this point, again for compactness.

aCg +bC5 + ¢St +dSy =0
—-asSy +bsSy +cCq +dCq = U(s)
b= -\sd
c= psa
The system of linear equations is particularly easy to solve for this choice of basis. Subbing
the expressions for b and c into the first two equations gives
aCf — AsdCy + psaSy +dS; =0
—asS§ — A\s?dSy + psaCy +dCf = U(s)
Gathering terms,
a[Cg + usSF] = d[AsCy — S5
alusCy — sSF) +d[CF — Ns?S5 ) = U(s)
The first equation above gives
[,\sC0 So ]
= “CF + 53]
Subbing into the second expression gives
[’\SCO — S5 ][usCq — s5¢)
[CF + usSF)
[AsCy — S5 )lusCq — sSF] + [CF — As*Sy][Ca + ,usS""]
[CF + nsSg]

+d[Cq — Ns®S5 ] = U(s)

U(s)

_ [Cd + 1sSH1U(s)
~ [AsCy = S5 lusCq — sSg]1+ [CF — As?S5 |[CF + psS{]
_ [\sCs = S51U(s)
= C; — S5 1usCs — sS31+ (G — 25255 1ICar + 1sSg]
B uslAsCy - 571U (s)
~ [sCs — 53 1usCo — sSFT+ (CF — 2625 1ICF +nsSg]
B =As[CF + usSFU(s)
Gy - S5llksCq — sS3]+[CF — As2S5[CF + nsSF)
Returning to (7.32), dropping (z) for compactness, leads to
W(z,s)
_ [sCq - Sg1ct - As[CF + usSFIC~ + us[AsCy — Sy ]St + [CF + usSF1S~

\sCy = 53 114sC5 — 3531+ [Cs - As75; |[Cy + oS3 e
_ [AsCq = SF)ICF + usS*) + [CF + usSF)[S~ — AsC~] Us)
= PG = o llusCy — 5531 + 105 — As25; IICF + oS3
_ P(z,s)
= SESUE) (7.35)

Where (7.35) is equivalent to the form (3.9), obtained during the earlier series manipulations
using trigonometric basis functions. The system is parameterized as before,

W(z,s) = P(z,s)Y(s)
U(s) = Q(z, 5)Y (s)

where Y (s) is the transformed flat output.

(7.36)
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7.6 Series Manipulations

We now need to manipulate the s-domain expressions (7.36) to factor out the s operator,
which will allow us to perform an inverse Laplace transform. We only need to work with
the P(z, s) term, because once w(z, t) is found and returned to the original coordinates, the
system input 7(¢) will be given by (7.26), so inverting the Q(z, s)Y (s) term in unnecessary.

Starting from (7.35), we expand P(z,s) and express it in terms of C and S components
according to (7.33):

P(z,5) = AsCy C* + Aus’Cy St = Sg Ct — usSg §* + CF S~ — AsCFC~ + pusSg S~
- \us’S§C-

C —C c+C Co—-C S+1S

- (252) (555) o (257) (57
—-go + 150 Cc+C —§0+i50 S +1i8

-(5 ) (50) -+ (5 (57)
+ (C() +—C'-o) (—S‘:-}-iS) —/\S<CO+-C"O> (C—-—C_)

2 2h\/s 2 2i
+ps <§o+i50) (—§_+i3) s (§0+i50) (C—_C—>

2hy/s 2h\/s 2h\/s 21

_ s (coc+coc CoC — coc) l\;‘f/_ (cos+zcos CoS — zCoS)

1
- m( SoC Soc +1S9C + ’lSoC) ( S()S - 'LSQS + ’LS()S SoS)
+ 4—1\/; ( - Co§+ 1CoS — .C"og + ‘i—é()S) - -—7 (CQC - Coa + C'-QC - "C_(ﬁ)
+ % ( — 505 + 1808 — 15,5 — SOS) h \/_ (SOC SoC +1iS0C — zSQC)
= ﬁ (Coﬁ - 600) - E ( - ZEQS + ZSOE)
21 2
/\us

\/_ COS 4 1CoS — COS - lCoS SoC + S()C —15,C +'LS()C>

=
.
=
=

+
1

- ( 500 — BT +i50C +iSoT + CoB — iCoS + CoB — z-aos)

zll

s

C()C; - C—OC) - % ( - 1?08 + 1So§)

il
Sk
~~

1
" dhys

As (= = As? — 1 , e
P(z,s) = 2—f (coc - coc) + (%\/{) ( —iCoS + Co8 — SoC + zSoC)

.2
+ ;\}l:/E( CoS — iCoS + CoS +iCoS + SoC — SoC + iSoC — zSoC')

S()C SQC +150C + lSoC + C()S —1CoS + CoS - 1005)

1
Aus? +1
dh\/s

1

) ( COS +'lCoS + S()C - ’lSoC) - -2- ( — ‘L?os +i50§>

/ ~

—

11 v
The P(z,s) expression has been split into four sub-groups in the last line above. These
will be analyzed separately in the following subsections.
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7.6.1 Part I of P(z,s)

AS 1, = =
= 5 [T - ToC]
= ;—‘: [cosh(hv/s) cosh{hy/s(1 — )] — cosh[hy/s] cosh[hy/s5(1 — z)]]

,\3 eh\/;.*.e_h\/s eﬁ\/s(l‘x) +e—h\/§(l_3)
T2 2 2

(ei.\/s + e-hﬁ) (eh\/'a'(l—-:r) + e-nﬁ(n—z)> }
B 2 2

= :;_?_ [ehﬁ+ﬁﬁu-x) 4 ehVE-RVE(1=2) | (=hV/E+hVE(1=2) | o~h/5-h/3(1-2)
13

— hVEHWE(L-2) _ hvE-hyE(1-2) _ o-hVE+hyE(1-3) _ e—ﬁﬁ—hﬁ(l—x)]

8i
_ e-—ihﬁ-{-hﬁ(l—z‘) _ e-—ih\/'é—-h\/;(l—:r) _ eihﬁ+h\/§(l-z) _ eihﬁ—hﬁ(l—x)]

As [eiﬁﬁ+ft\/§(l—x) + eiiz\/;-i.\/;(l—x) + e—u';\/;+ﬁ\/§(1—:) + e—-i!_z\/;—l-x\/?(l—-z:)

As -eh\/E(1+i-:c) +eﬁﬁ(i-l+x) +cfa\/3(—-i+l-:t) +chﬁ(-i-1+z)

_ ehﬁ(l—i—x) _ ehﬁ(—i—l+z) _ ehﬁ(i+l—z) _ ehﬁ(i—l+x)]

As [ ehV3(1+i-z) +e-ﬁ¢§(:’+1-x) ehva(1-i~z) +e—7xﬁ(l—i—x)
; +
di | 2 2
(ehﬁ(l-i-x) + e-hﬁ(l—i—:r)) (ehﬁ(1+i-x) +e—h\/§(l+i—r))]

2 )
= %—z‘i [cosh[f‘l\/g(l + i — )] + cosh[hV/s(1 — i — z))

— cosh[hy/s(1 — i — z)] — cosh[hy/s(1 +1i — :c)]]
—\s [cosh{hy/3(1 + ¢ — )] — cosh[hy/3(1 +i — )]
3 | %

coshfh/5(1 — i — z)] — cosh[h/s(1 — i — :z:)}]
+ 21

—As [ . .
=—2§- \C’;(l+z—z)+C;(l—z—L')]
. conjugates

=-AsRe{C;(1+i-1z)}

Where we have introduced a new term for compactness,
cosh[h/s x] — cosh[h\/5 z]
2i
which is very similar, but not identical to, the C~(z) term in (7.33); the z subscript is used

to differentiate between the two. The fact that

C; (2) =C: (3) z€C

C; (x) = (7.37)

can be directly verified.
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7.6.2 Part II of P(z,s)

s —1[ . =5 T . ]
N Y CoS —
‘lh\/.; [ iCoS + Co SoC +1SoC
2 _ _ _
= -’\“l‘;—\/_—l— [ — icosh[hy/s]sinh[hy/3(1 — z)] + cosh[h/3] sinh[hy/s(1 — z)]
dh\/s

— sinh[hy/s] cosh[hy/s(1 — z)] + i sinh[h+/s] cosh[h/5(1 — z)]]

Aus? — 1 [ ‘ (eh\/i + e-hﬁ) (ehﬁ(l—:) _ e—hﬁ(l—z))
= -1

dhy/s 2 2

e’—‘\/‘; + e_’—l\/5 e'-‘\/‘;(]_r) —_ e—’-‘\/s(l_z)
* 2 2

(eﬁﬁ - e—l‘n/i) (efnﬁu-z) + e—hﬁ(l-x))

2 2

' ehVs _ o=hvs ehva(1-x) + e—hVE(1-1)
+1 ) ) ]

_ ’\“52 -1 - eh\/s‘{-h\/z(l—-m) _ ell\/i—-h\/;(l—-z) + e—hﬁ-f-h\/i(l—z) _ e-—h\/.-_l—h\/.?(l—z)
" 16hyE
+ ei.\/;+hﬁ(1-x) _ hVa-hvE(1-2) + e—fnﬁ+fz\/§(l-z) — e~hVE-hva(1-2)

_ (ehﬁ+fz\/§(l—x) + ehVA-hva(l-2) _ g=hVathya(l-z) _ c—fzﬁ—ﬁﬁ(l—z))
+i(eit\/§+lt\/§(l-x) + eh\/;—h\/;(l—z) _ e—h\/'i+h\/§(l—z) _ e-—hﬁ—hﬁ(l—x))]

_ /\ps_2 =17 — 9ghvie + R AVE +2ie"‘/§m _ 2ie"“/h]
16hv/s |

—/\#32_1'— eﬁ\/.?x_e--ﬁ\/;z: iy eh\/;z_e—h\/;:c ]
T dhys | 2 2

2 — [ -
= /\l‘%\/g—l - sinh(hy/sz) +1 sinh(h\/Ea:)]
_ Aus® —1[—sinh(hysx) + isinh(hy/5z)
2 | 2h\/5
Aps? -1 _
= 250 (@)
Where

—sinh(hy/3 z) + isinh(h\/5 z)
2h\/s

is a new definition, similar but not identical to S~ (z) in (7.33).

Sz (z) =

(7.38)

7.6.3 Part III of P(x,s)

st 41

= 5 |~ Co8 +iCaS +5oC - iSiC
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_ st +1
T dhys

[ — cosh[hy/s]sinh[fy/s(1 — 2)] + i cosh[ky/5] sinh[hy/5(1 — 2)]

*+ sinh[hv/5] cosh[hy/s(1 — z)] — i sinh[h/5] cosh[hy/5(1 - z)]
A#S2 +1 [ (ehﬁ + e-h\/?) <eﬂ\/§(l—z) _ e—-ﬁ\/.?(l—-x))

4h/s 2 2
<ei.¢3 +e-"'\/5> <eh\/§(l—-x) _ e-—hﬁ(l—-x))
+1
2 2
Ve _ g=hVE ehv3(l~z) 4 o=hV3(1-z)
+ 3 )

. (eh\/s - e—hﬁ) (ehﬁ(l—x) + e~"»ﬁ(1—x)> ]
o 2 2

= )‘/‘3_2 +1 _ ehﬂ-{-ﬁﬁ(l—x) _ eh\/--fa\/i(l—z) + e-hﬁ-}-izﬁ(l—x) _ e-hﬁ—ﬁﬁ(l-z))
16h+/s

+i(eh\/3+h\/§(l—:c) _ (hVE-hVE(1=2) | p~hvE+hVE(1-2) _ e—inﬁ-—-hﬁ(l—m))
+ ehﬁ+izﬁ(1-x) + eﬁﬁ—l;ﬁ(l—z) _ e—ftﬁ+hﬁ(l-z) _ e-ﬁﬁ-l.ﬁ(n-x)

_ i(ehﬁ+ﬁ\/§(l—-m) + ehﬁ—hﬁ(l—z) - e-h\/ﬁ-lwfl\/i(l—:t) _ e-—hﬁ«—ﬁﬁ(l—x))]

= A#S_Z +1 _ eiﬁﬁ+ﬂﬁ(1-x) _ efﬁﬁ—ﬁﬁ(n—x) + e—iﬁ\/?+ﬁ\/3(l—x) _ e—iﬁﬁ—ﬁﬁ(l—x))
16h\/s

+i(e-ih\/§+h\/§(l—x) _ e—ihﬁ—hﬁ(l—x) + eih\fi-{-hﬁ(l—-x) _ eih\/;—h\/.;(l—z))
+ e-—ih\/g-}-hﬁ(l-:) + e-ihﬁ-hﬁ(l—z) _ eih\/iv{-hﬁ(l—:t) _ eihﬁ-hﬁ(l-x)

_ i(ei!_z\/;+7l\/§(l-:n) + eiﬁ\/i—ﬁﬁ(l—x) _ e-iﬁﬁ+hﬁ(1—x) _ e—ihﬁ—ﬁﬁ(x-x))]

- /\#3_2 +1 — [ ghVElit1-z) _ Ghva(i-1+42) + ehVaE(=it1-2) _ efz\/.'s'(—i—l+x)>
16h+/s

+i(eh\/§(-—i+l—-x) _ eh\/E(—i—l+z) + ehﬁ(ﬂ-l—z) _ eh\/i(i—-l+z))
+ ehﬁ(-i+1—x) + eh.\/.?(—-i--l+:c) _ eh\/.?(i+l—:r) _ eh\/?(i—l-{—x)

_ i(efzﬁ(i+l—z) + ehﬁ(i—wz) _ ehﬁ(—i+1—x) _ ehﬁ(-i-1+z))]

_ dus? +1 [_ (eizﬁ(i+1-z) — e—hVE(i+1-2) N ehVa(=itl-z) _ e-ﬁ\/s(-m-z))

8hy/s ) .
ehVE(=itl-x) _ o=hy/s(~itl-z)  hVs(i+1-z) _ o~hVs(i+1-1)
+1 5 + d
ehVE(—it1-2) _ o=hyE(-i+l-z)  hVEli+1-z) _ o—hy5(i+1-2)
2 2
[ AVEliH1-z) _ o=hVE(i+1-2)  GhVE(—itl-z) _ o=hVE(=it+l-z)
—i . B :
_—-——2 1 -
= )\;;-;z\/-gl [_ sinh[hv/s(1 +i — z)] — sinh[hV/s(1 — i — z))
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+ isinh[hy/s(1 — i — z)] + i sinh[hy/s(1 +i — z)]
+ sinh{hy/s(1 — i — z)] — sinh{hy/s(1 + i — z)]

— isinh{hy/3(1 + i — z)] +isinh[hy/s(1 —i — :z:)]]
_dus?+1 [— sinh[{hy/s(1 + i — x)] + isinh[hy/5(1 + i — z)]

4 2h\/3
+ —sinh{hy/s(1 - i — z)] + isinh{hV/5(1 — i — z)]
2h\/s
iy (—sinh[ﬁ\/E(l +i- :r)]_+z'sinh[h\/§(1 +i- x)])
2h\/s
_ (—sinh[l_z\/.?(l — i —2)] +isinh[hy/5(1 — i — m)]) ]
2hy/s
= LIH S;(1+i—az)+8;(1—-i—x)+i(S; (1 +i—x)—S;(1—i—-m2)]
. conjlrgntcs conjlrgntcs
st +1

L aRe (87 (1 41— 2)) +i2iIm {871 +i—:z:)}]

_ s 41
2

Re{S;(1+i—a)} —Im{S; (1 +i— :1:)}]
Where S7 (z) was defined in (7.38). It can be verified that
S;7(2) =85z (2) 2eC

7.6.4 Part IV of P(z,s)

- ’LEOS + ’LSog]

el
2
= _T’“ — sinh{hy/s] sinh[h/5(1 — z)] + sinh[hy/s] sinh[hv/s5(1 — z)]]
—pi
2

r el-a\/i _ e—flﬁ ehVs(i-z) __ o=hVs(1-x)
| 2 2

eh\/§ _ e—h\/; el_l\/s(l-:c) - e-l‘l\/.'s'(l—:r)
+ 2 2

— %1_ [ _ (eﬁﬁ+ll\/§(l—x) _ ehVE-hVa(l-z) _ o=hVE+hVE(1-z) e—ﬁf—hﬁ(l—m))
+ ehﬁ-{-ﬂﬁ(l—z) _ ehﬁ—fnﬁ(l—m) _ e—h\/E+l_z\/§(l—:c) + e-hﬁ-ﬂﬁ(l-z)]

_ [__ (e—ihﬁ-f-hﬁ(l-—:c) _ omihVA-hyE(1-2) _ ,ihy/E+hy/E(1-2) +eih\/§—h\/§(l—x))
8
+ eii;ﬁ-;—ﬁﬁ(l-m) _ eiﬁ\/E—ﬂ\/E(l—z) _ e-n‘x\/s+iz\/§(1-z) + e—;ﬁﬁ—ﬁﬁ(l—z)]
_ TH [_ (eh\/E(l—i—z) — ehVA(=1-ita) _ hya(14i-g) . ehﬁ(—l+i+x))

8
+ ei;ﬁ(w:’-:) _ eﬁ\/E(—l+i+z) — ehvE(1-i-z) + ef’xﬁ(-)—i+x)]
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_—pi [ ehva(l-i-z) 4 o—hvVs(1-i-zx) N ehVa(1+i=z) o p=hVE(1+i-z)
===

2 2
. (efl\/i(l-#-i—a:) + e-ﬁﬁ(l-}-i—z)) (efx\/.?(l—i—z) +e—fh/§(l-i—:z)>]
2 2

= :8’2[— cosh[hy/5(1 — i — )] + cosh[hy/s(1 +i — z)]

+ cosh[hy/s(1 + i — )] — cosh[hy/5(1 — i ~ :E)]]
_ —mi [cosh[h\/- (1414 — z)] + cosh[h\/5(1 + i — )]
T Ta 2

_ coshfhy/s(1 —i —=)] + cosh[hy/s(1 —i — z)]]
2

= _—fi[\C;’(l+i—:L')—C,+(l —i—xl]
conjl;;ntcs

= ——4Li2ilm{0j(l+i—:v)}

=pIlm{CH(1+i-12)}

where we introduced .
cosh[h\/s z] + cosh[h\/s ]

CHa) = 5

(7.39)

by analogy to (7.33), and

CHz)=CF(E zeC

can be verified.

7.7 Conversion to Infinite Series

Returning to the P(z,s) expression on Page 72, and making use of the expressions from
Parts I, II, III and IV,

p(m,s)=—AsRe{c;(1+i—x)}+(*’“ )s ()

Aps? + 1 - . - , + ,
+ = Re{S;(1+i—a)} ~Im{S;(1+i-2z)} | +pIm{C}(1 +i-=z)}
(7.40)
where C;, S and C} were introduced in (7.37), (7.38) and (7.39), respectively.
The individual terms of P(z, s) are now converted into their infinite-series representa-

tions, referenced in Section 3.4.1.

Re{C; (1 +i-=2)}

— Re { cosh[h/s(1 + i — z)] ;icosh[i-z\/\?(l +i—z)] }

\/_ (1 +1i—z)2k (1)2"\/_ (1 +1i—2z)%
-nef g [5  - R )
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b 11— k 3
= {%Z is) (1;1)! 2" (1—(—1)‘)}

k=0 N ,
=2,k=1,3,5,...
=0,k=0,2,4,...

let k=2n41
1 o (i8)(28)2™(1 4 i — z)4n+2
= Re{ﬁ nzﬂ (An + 2)! 2
o0
(=1)"(1 +i — g)in+2g2n+1 }
= Re
{nz—:.m (dn +2)!
_ i (-1)"Re{(1 +1i — z)int2} g2n+1
opur? (4n + 2)!
Sz (z)
_ —sinh[hy/sz] + i sinh[h\/5z]
- 2h+/5
_ —sinh[hy/s2] + isinh[ihy/5 2]
- 2hf
o bt 2k 0 2kl fra2ktl, 2K+
Z V- +i i vV-is oz
(2A+ ! = (2k +1)!
1 Lol (—zs)k:z:zl"H 242
= 5;} GEray |t
1 o0 (——23)"'1:2""'1 k1
=32 @ | D
=-2,k=0,24,...
= 0,k=1,3,5,...
let k=2n
1 o (—ZS) an-+1
=53 T (-2)
2 ’g (dn+1)!
i (_I)Zn(_l)nSZn:L.dn-H
opar (dn +1)!
0 (—1)":1,4"+IS2"
- _g (dn+ 1)

The next two terms use the S7 (z) infinite series result from the previous line

Re{S; (1 +i—z)}
_ st (—1)"(1+i—:l:)4"+132"
= Re{"z (@n+ 1) }

4n+l } g2n

Z -1)"Re {(1+i—
- 4n+1)!

Im{S; (1 +i—=z)}

& =yt {A+i- g)int1) g2n
o Z (dn +1)!

n=0
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The last term is

Im{CH(1+i-z)}
—Im { cosh[hy/s(1 + i — z)) ;—cosh[ﬁ\/.?(l +1i — )] }

1 (& Vit (1 +i-a)* & 14— )2
=Im§(2 (Ltizafh | & y=isT (14 )>}

(2k)! (2k)!

o0 (_1)71(1 +'i-—.’L‘)4"S2”
Z (4n)! }

E (=D Im{(1 +i—a)in}s"
= Z (dn)!

With these expressions worked out, (7.40) becomes

L (Lt 1) e
+ As? +1 _i (=1)"Re {(1 +i —z)"*1} &2"
2 = (dn+1)!

(=1)"Im {(1 + i — g)in+1} 52" (=) Im {(1 +i—z)in} s
Z (dn +1)! ]+ — (4n)!

n=0

expanding out,

Z ( 1)" 4n+4-1 2n li (—l)" Im{(l +i_$)4n+l}s2n

(dn+1)! (4n + 1)
(-1)"Re{(1+i-— z)""‘“} §2n (=1)"Im {(1 +i— )"} s?"
z (dn+ 1) ta Z (dn)!
n-o n=0
Aps? Z( 1)ngintigln /\/,zs Z( )" Re {(1 +i—z)in+!}s2n
2 2 (in+ 1) Z @n s 1)
Aus? S (=D Im {(1 +i — z)intl) g2n 1)" Re {(1 +i — z)int2} s2n+!
+55 Z( ) {((4 +1)') } ’\Z( : (4n+2)') }
n=0 n ' n=0
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leading to the final form

Pla,s)=2_ 2(n + 1)

n=0

o0 [mdn+l +Im {(1+i—2)"+'} —Re{(1 +i - z)'"+!}

— ns2n
+pIm{(1 +i —x)""}}(—z}d)n)—!

oo (7.41)
+Z [% (Im {(14i-2)"™"} = Re {(1 +i - )"*1} _$.1n+1)

n=0

ARe {(1 41 —z)tn+2} | (~1)ng2n+2
- (:ln + 2) (z]n + l)!

7.8 Parameterizing the System Trajectories
From (7.36), the system state was parameterized by the flat output as
W(z,s) = P(z,s)Y(s)

The P(z,s) expression (7.41) has the s operator factored out, so the inverse Laplace trans-
form can be obtained by inspection.

In Section 7.5, we dropped the ~ notation after transforming into the s-domain, for
compactness. However, we are still working with the normalized BVP, (7.29). Following the
inverse transform, the superscript notation is restored, to indicate the solution is expressed
in the normalized variables (7.27):

@(z,1) = P, D) (7.42)

where P(Z,1) is the inverse transform of (7.41) acting on F(t),

© [F4n+ 4 Im {(1 +i ~ )"} — Re {(1 +i — §)'+1}
2(dn + 1)
(—-1)" d2n

(4n)! di2n

+pIm {(1 +i—5)“"}]
o (7.43)
+ 2_:0[%“ (Im {Q+i-2)""*} —Re{(1 +i-Z)""} - 5“"“)
ARe{(1 +1i - T)in+2}
- (4n +2)

(—1)" d2n+2
(dn + 1)! dgpen+2

7.9 Undoing the Normalization

The variable normalizations in (7.27) were introduced to simplify the PDE and make the
series manipulations easier. However, we want to obtain a control law in terms of the
original independent variables, (7.25). Hence, (7.42) must be changed into the original,
non-normalized variables.

By definition in (7.27), @(%,1) = w(z,t). By the same reasoning, (t) = y(t), because
7(t) is the time-scaled version of the flat output steering the original system. All that
remains to be done is to replace T and £ in (7.43) by their z and ¢ equivalents. Using (7.27),
(7.44)

F=

S
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and

t~
[ %]

Eﬂ

| =

d_dd _
dt  dtdt  EI dt
d_z_z( DAY 4 (DA (L8
di2 ~ df\ VEI dt)  dt\ VET dt)di \ VEI / d&
(7.45)
L2VP“[ o d2n ___Ldn _’ﬁ " d’Zn — 4";{_"L—
dt2" VEI dn El) di*n dt2n
2 (LRVPANTE 2 (AN By g P
dt2"+2 El dt2n+2 - Ef dt2"+2 di2n+2

4} was introduced for compactness during the earlier series manipulations,

where k = (%
Section 3.4.4. Using (7.44) and (7.45) in (7.43) gives
) 4n+1 }

)'"+]}—Re{(1+z

o) (5)4"'H +Im<(1+i-
P(z,t) = ;[ - { n + 1)
+ pIm { (1 +i- L)‘m} ] ((43' “"n"m—m;
i Z)An-H} B (%)Jn+l )

i Ap dn+1
+'§[—2—(Im{(l+z—z) }—Re{(
4n+2
A Re{(l +1i-— ) } (-1)" Lintd d2n+2
(4n + 2) (dn + 1)! di2nt2

|2t 4+ Im {(L +iL — z)*" 1} — Re {(L +iL —z)'"+!}
2(4n+ 1)L4n+l

] (_l)n Lnlnh.'n_EF_n

]

=0

3

plm {(L +iL — )"}
+ L«ln

o0
+Z[L4"+I(Im (L +iL —z)* '} — Re {(L +iL — z)""+!} 4"“)

n=0
ARe{(L+iL—z)"™ 2} (—1)"  ynya nss &1
Lint+2(4n + 2) (4n+1)! dt?n+2
At 4 Im {(L +iL — )"} — Re {(L +iL — z)"*+!}
2L(dn +1)!

(an)! dzn

o

LA Im {(L +iL — )"} (—ra)“—‘—ﬂi
(4n)! dt?n
L3 (Im {(L +iL — z)***'} — Re {(L +iL — z)'"*1} — :c“"““)

o0
-2 [ (4n + 1)!
. d2n+2

n=0
AL2Re{(L+1L :1;)'"'*’2} nt
(4n + 2)! —K)

3

dient2
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Leading to the final form of the state parametrization,

_ &t £ Im {(L+iL — )"} — Re {(L +iL — z)'n+1)
w(z, ) = Z[ 2L{dn + 1)!

n=0
. _ 4n
ulm{(b(z)’; z) }](—n)"y(2")(t)

i ML? (Im {(L+iL —z)""*'} —Re {(L +iL — z)int!} — gint!
ol 2 (dn +1)!

(7.46)

ALZRe{(L +iL ~ z)"*?}

] (_K')n-}- 1 y(2n+'2) (t)

(dn +2)!
where, from before,
7.10 Boundary Input Torque
Referring back to (7.26), the input boundary torque
(1) = sy 20D _ gy Z20.0)

is expressed in terms of the derivatives of w(z,t), given by (7.46). We now work out 7(t)
explicitly.

w(z,t) _ i [(zln + 1)z 4 Im {(dn + 1)(L +iL — z)™"(-1)}

oz frd 2L(4n + 1)!
Re {(4n + 1)(L +iL — z)""(-1)}
\ - 2L(4n + 1)
L #Am {(4n)(E w;‘:f:)'— w)in! (—1)}J (=) 2 (1)
N ApL? (Im {(4n + 1)(L +iL — z)"(-1)} (747)
B 7;) 2 ( (dn +1)!

—Re {(dn + 1)(L +iL — &)™ (-1)} — (4n + 1)a™

+ @n+ 1) )

2 . [, 411, — an+1(_
AL Re{(ln+2(zl(;:2)l!/ z)imH( 1)}](_n)n+ly(2n+z)(t)
82
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62w(.'z:, t) 00 (dn + 1)(471):1:41!—1 +Im {(zln + 1)(411)([4 il — m)dn-l}
ZIpY 2L(An + 1)!
Re {(4n + 1)(dn)(L +iL — z)*"-1}
- 2L(dn + 1)!

. Im {(dn) 4 —(11)75)L! +iL - a:)“"‘z}] () (1)

2| ApL? (Im {(4n + 1)(dn)(L +iL — )"~}
_Z[ 2 ( (@n + 1!
—Re {(4n + 1)(dn)(L +iL — 2)1"1} = (dn + 1)(dn)z'"~! )
" (dn+1)!
MNL2Re {(471 +2)(dn +1)(L +iL - :l')4"}
B (dn +2)!

n=0

(7.48)

n=0

:I (___n)n+ 1 y(2n+2) (t)

Evaluating (7.47) at 2 = 0,
8w6§2, t) _ [00 +1Im {—12}L— Re {(-1)} +,uIm{0}} o(0)
- [ﬁ;ﬁ(lm{_l} _ Re{-1} - 00) _AL? Re{2<L2 !HL)H)}] (=)@ ()
Im {(dn + 1)(L +iL)*"(~1)} — Re {(4n + 1)(L +iL)*"(-1)}
2L(4n + 1)!
m srYdn—1¢__

+ ul {4n(L (—::L)L|) ( 1)}] (—n)"y(2")(t)
AL (Im{(dn + 1)(L +iL)"(-1)} — Re {(4n + 1)(L + iL)""(—l)})
2 ( (dn +1)!

A L2Re {(4n + 2)(L +iL)*"™+1(-1)}
- (4n + 2)!

o8]

+

]

-]
—_

M8

=1

3

:l (_K)n+ 1 y(2n+2) (t)

= 2v) + ALk

00 —-Im{(L'f'iL)‘ln}+Re{(L+iL)4n} #Im{(L_*_iL)dn—l}
+Z[ 2L(4n)' - (tln_. 1)’

S ApLd (=Im {(L+iL)*™} + Re {(L +iL)""}
"Z[ 2 ( )

} (=k)"y @M (2)

n=1

(4n)!

AL? Re {(L + L)+
+ (dn + 1)}

n=1

J (_N)n+l y(2n+2) (t)

= %1 (&) + A3y (1)

2 [Re{(1+0)"} —Im{(1+3)"} plm{(1+i)in-1}
2> [ 2(4n)! T @n =10

_ i [,\_u (Re{(l +i)*n} —Im {(1 +i)“"})

2 (4n)!

ARe{(1 +d)tn+1}
(4n+1)!

:l L4n_l(—n)"y(2")(t)

n=1

n=1

] Ldn+3(_n)n+ly(2n+2) (l)
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It can be verified that for all positive n values,
Re {(1+4)™} —Im {(1 +i)*"} = (—4)"
Im{(1+3)" 1} = —%(—4)"
Re {(1 +)""*!} = (—q)"

Returning to the preceding expression,

s | [ I S P

—Z [,\2# ((4;3? :}1(1:1)1)!] LAV (- )yt (1)

O g \nTin-1
= Zy(t) + /\L3K.y(2)(t) + Z (l") 2L [(‘li)l + (llnli 1)'] y(2n)(t)

n=1

zlu)"‘“L’"“ i 1 (2n+2)
- Z =) [2(411)! T 1)!] e

It immediately follows that

FPw(0,t) 1 3. (4) = (dx)nLin-t ) H (2n+2)
aear — L ALY (‘)’L; 2 [(zln)!+(dn-l)! e

/\(lln)"+lL4"+3 /‘ 1 (2n+4)
- Z =) st T @y Y

(7.49)
Turning to expression (7.48) and substituting z = 0,

Pw(0,t) AL? RC{ (2)( 1)}( K)y@(1)

ox2
{Im 4n+1) (An)(L +iL)*=1} — Re {(4n + 1)(dn)(L +iL)"'}

o0
+2 SL(An + 1!

= uIm{‘ln(dn_l)(L"l'lL)l" 2}
(zln)l

+
[ pL® (Im{(4n+1)(4n)(L+zL yin-1} — Re{(dn+l)(tln)(L-i-zL)“"“‘})

3

(=R)"y @M ()

>
n=l1

(dn+1)!

AL?Re {(4n + 2)(dn + 1)(L + iL)*"}
(dn + 2)!

] (—n)”+‘y(2"+2)(i)

= —AL sy (1)
. i [L""‘z (Im {(1 +3)""~'} = Re {(1 +1)"-})
n=1

2(dn —1)!

pLAn=2 I(Tn{(l2-;-l i)in-2 }] —k)"y M) (1)

AL+ (Im {(1 +14)™'} — Re {(1 +9)""'})
2(dn — 1)!

4n42 yan
AL l?j,f)(!l +1) }] (=) y(2r+2) )

-+

(=]

-2

n=1
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as before, it can be verified that for n > 0,
Im {(1 +i)""'} = Re {(1 +i)*"'} = ~(-4)"
1
NAn—-21 _ _ Z(_A\"
Im {(1 +1) } = 2( 4)
Re {(l + z‘)“"} = (—4)"

returning to the preceding expression,

%%t—) = ~AL%ky (1) +§; [";g:_(-;;l!)n _ ug'(';':’—(;t)l!)"}(_N)ny(zn)(t)
-5 [P e ey
giving
%2 = “AL2ky (1) — 2 (‘lfc)n2L4n—'2 [(4,11_ _ (dn/i 2)!}1/(2,,)“) o
. 7.50
+ g:l /\(&lre)(”:l1 )L‘ln+2 [2(4nu— i+ (4;)!] y2n42) (g

Using (7.49) and (7.50) in the input expression (7.26) gives the final input expression,

J , e J 1) [An—1 i
r(0) = 0y @ (1) 4 ALy (r) 4+ 3 Trunlle) + e [V 0
L 2 @) " {n—1)!

n=}

o0
Jllub/\(‘lfc)n+l LAn+3 o (2n+4)
+2 y sty W

n=1

X (40 An=2
+E]/\L2ny(2)(t)+ZE[(m) L [ L, * ]y‘”‘)(t)

2 (dn-1)! * (4n-2)!

o0
EI/\(‘IK,)"'*'] L[An+2 m 1 (2n+2)
+2 1 s T [V

n=1

n=1

(7.51)
where, from before,

,_fﬂ _ _ My
"= TFI S Tpa  MT LA

The expressions (7.46) and (7.51) give the state and input for the rotating beam system
with tip payload in terms of the flat output and its time derivatives. These expressions
reduce to the no-payload expressions (3.20) and (3.21) by setting A = 0 and u = 0. To
obtain the same expressions it is necessary to multiply both P(z, s) and Q(z, s) by 2L. This

is possible due to the non-uniqueness of state and input parametrization, as discussed in
Section 3.3.
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Chapter 8

Levitating Flexible Beam and
Superposition

This chapter investigates the controlled levitation of a flexible beam with multiple force
inputs. We present the system model and derive the open-loop control using the principle
of superposition.

8.1 Introduction

The original motivation for this investigation comes from an active magnetic bearing system
shown in Figure 8.1. The rotor is supported by two magnetic bearings and driven via a
flexible coupling by a DC motor seen on the far right of the figure. Since the rotor is
long and slender, it experiences lateral deformation during high-speed rotation. Here we
design an open-loop control for the system using the flatness-based approach described in
Chapter 3.

Figure 8.1: Active magnetic bearing

To keep things simple, we assume no beam rotation and only consider the problem of
levitation in a vertical plane. This situation is encountered during system start-up when the
rotor is lifted from its supports to a centered configuration. The two bearings are assumed
to exert point forces on the rotor. The system is shown schematically in Figure 8.2.

In order to use the flatness-based techniques, the system must be expressed in BVP form
with inputs appearing in the BCs. The system model consists of 3 coupled PDEs in w (z, ),
wa(z, t) and ws(z,t) and 12 BCs (4 BCs for each PDE). While modeling such a system is
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un (:L’, t) 1U2(2!, t) w:;(.’B, t)

(free) M (free)
F(t) Fy(t)

Figure 8.2: 3-input system with 3 displacement fields

straightforward, deriving its control is difficult due to the large complexity in the expressions
that result. We manage this complexity by applying the principle of superposition.

8.2 Input Superposition

As the governing Euler-Bernoulli PDEs are linear, we can apply the principle of superpo-
sition. This technique appears in [64, 65]. The idea is shown graphically in Figure 8.3: to
obtain the response of a multi-input model, we calculate the response to individual forces,
then sum up the results. As will be seen shortly, this approach requires carrying out the
symbolic calculations only once, leaving the location of where the force is applied as a
parameter.

_ Iro | B
L] |
+ I Fi(t)
| | |
| )

Figure 8.3: Graphical interpretation of superposition

8.3 Boundary Conditions and Input Forces

As mentioned before, the system inputs appear in the BCs. We will work out the expressions
for these BCs using results in Section 2.2.2. We focus on a common boundary between two
segments of the beam at 2 = [, where the external force Fe;; and moment M., are being
applied. Internal forces and moments are present in both segments. This is shown in Figure
8.4.

Performing a force balance at the inner boundary in Figure 8.4, taking upwards as
positive, and using (2.8) for the internal force expression,

P - F= Fczt
3 3
—prZwldd (—EI———B wall ‘)) o

oz3 oz3
_aawl(l,t) + Pwa(l,t) _ Fege
023 dz8  EI
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A

M 7 M,
jz wy (L, t) I CJ wa(l,t) 5])
I

Fy
Fc:rt A’Ic:tl

Figure 8.4: Internal and external forces at inner beam boundary, z =1

If no external force is applied at the boundary, Fez; = 0 and the BC becomes
83w1 (l, l) " 83w2(l,t)
9z8 =~ Ox8

A moment balance at the inner boundary in Figure 8.4, taking counter-clockwise as positive
and using (2.7) for the internal moment expression,

A’l] - 1\/[2 = A’[cxl
0%w (L, t) 0wa (L, t)
Erl 922 - EI 922
02w1 ) _ 02w2(l,t) _ Mz

Ox? Ox? EI

= Mex

If no external moment is present, M., = 0, so the BC is

%wy (L, t)  B%wa(l,t)

ozz 0a?
The above discussion provides two BCs. We have four more from the beam ends. We need
a total of eight BCs, four per PDE. The remaining two BCs are due to the beam being
continuous at the inner boundary:

wy(l, t) = wa(l,t)
ow(l,t) _ dwz(l,?)

oz oz

8.4 Problem Formulation for Single-input System

We work with the system shown in Figure 8.5: a two-segment, one-input flexible beam
modeled by the Euler-Bernoulli PDE. The results obtained will be used to treat the multi-
input case by superposition.

K
o~
¥
b
— ¥

wy (z, t) wa(z, t)

F(t)

Figure 8.5: Two-segment beam with input at z =1
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The beam is governed by the system of PDEs

041U1 (:E,t) 62w1 (.’L‘, t)

BIZ = + pAT——2 = =0 o
& wa(z, t) QPwy(z,t) '
EI 52 + pA £ =0
with BCs 2 (0,1)
wily,
——a:vz—' =0 lUl(l,t) = IU2(l,t)
83w1(0‘t) =0 dwy (i,t) _ Ows(l,t)
8wy (1, ¢) _ Pwo(l,t)  O%wa(L,t) -0 '
9z ~  9x2 Ox? -
Bw (L, 1) aswz(i,t) _F(t) PPwy(L, t) —0
oz 83 ~ EI dxz3 -
and ICs
wi(z,0)=0 we(z,0)=0
dwy(z,0) 0 Jwa(z,0) 0 (8.3)
a o

To simplify the series manipulations, we normalize the z and t variables, as was done in
Section 7.4. Let

T= z a= L = Bl 2
L L NENZY: (8.4)
(%, 1) = wy(z,t) Wa(F, 1) = wa(z,t)
Using (8.4), (8.1) becomes:
A (= 7 2.~ (~ T3
E]a wl(:c.t) 0 wl(:l:,t) =0
al‘“ 8t2 - (8-5)
Ela (%, £) 0%, (%, t)
ozt oL
Note that
0w _0udz _ 0w (1
dr Ot dr 9T \L
%0 _ 0 (0T)_ 0 (01\_10 (07\di_ 10
dx2 Oz \Oz/) Oz \9T L) LOT\OZ) dx L2072
P3_ 100
83~ L3 973
o's _ 1'%
8zt — L4 974
Also,

75 _0(28)_2(20)d_2 (AT on) JET bt (2%
= o T L3/pA  L'pA \ or
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Substituting the above expressions into (8.5):
1 o', EI 0%,
Er (F o5 ) +rd (L"pA o ) =0

1 85, EI 8%
Er (Z? 7 ) +pA (L“pA o ) =0

w9

5 om0
N, %y
a5 tgp 0

Now normalizing BCs in (8.2):

6211)1(0, t) _ &%, (0,?) _ i62f61 (0,t)

0= 9z~ 92 L2 972
0 Pun(0,t) _ 8%y (0,7) _ 10 (0,1
Ox3 ox3 L3 033
0= OPwa(L,t) _ 9%, (1,1) _ 1 8%y(1,1)
Oz? ox? L2 972
0= 03w (L, t) _ 3w (1,1) _ _1_03%(1,‘[)
Ox3 Ox3 L¥ 938
wi(l,t) = wy(l, t)
dwy(l,t)  dwq(l,t)
oz Oz
0w (a,t) _ Qiva(a,t)
r Oz
1 9 (a, t) 1 diba(a, t)
L oz L oz
Pw(l,t) _ wa(l,¢)
dz2 022
2wy (a,t) 9%y (a, t)
dx2 =~ Ox?
1 &H1(a,l) 1 0*Wa(a,l)
L* 032 L 07

And for the input term,

_83101 (UH)]

SPuwy(l,t)  F(t)

Oz O3

0<Z<a

=~
v
o

1
v
o

a<z<l1

321‘51(0,?) _
oz
w1 (0,8) 0
978
D%(1,1)
oz =0
»iwa(1,1)
oz
Wy (a, t) = Wa(a, t)

0

0

91, (a, t) _ dia(a, 1)
o = 0%

W@@B=w@mb

072 072

Pl  Piwg(e,d F (
— _l,. —
oz’

ox3
1 8%, (a,t) _1_03@2((1,?) _

)
Yoy

T3 938 L3 O3

(48
Er

~ ~ L3/
Qi (a, t) + Pip(a,l) L*F (%l) -

ElI

= u(t)

@ (E0) =0
0T, (3,0)
ot 0

013 o073
where u(t) is introduced for compactness. Normalizing the ICs in (8.3),
0 = w(z,0)
0= dwy(z,0) _ Ow(Z,0) _ VEI Jw(z,0)
T o LApA ot
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0 = wa(z, 0) @a(%,0) = 0

O_ng(:c,O) _ 0W(%,0) _ VEI 0ila(3,0) m(E,0) _
T e A LApA ot o

8.5 Normalized Problem Formulation: Single-input

Following normalization, the original problem (8.1), (8.2) and (8.3) becomes transformed
into that shown in Figure 8.6. Dropping the ~ notation for compactness, the normalized

a 5| ! >J|

@1(3, 1) @(Z,1)

xr

u(®)

Figure 8.6: Normalized 1-input 2-segment beam problem

system of PDEs is
O (z,t) N 9wy (z,t)

81:4 0t2 =0 (8 6)
9w (z, t) + Owa(z,t) 0 ‘
Ozt oz
with BCs
62w1 (0, C)
—axz_' =0 un (a, t) = ‘UI2((1, t)
P (0,8) 0 dwy(a,t)  dws(a,t)
oz oxr = Oz 8.7)
O*wi(a,t)  Pwa(a,t) Pwa(l,t) 0
oz~ 92 orz
Bw (a,t)  OPwe(a,t) BPwa(1,t)
T 0a8 923 u(t) o8 0
and ICs
wi(z,0)=0  wa(z,0)=0
ow, (z,0) 0 OJws(z,0) 0 (8.8)
o o
Applying the Laplace transform to (8.6) and (8.7),
ot W (:c, S)
T + s*Wi(z,8) =0
9*Ws(z, s)
ot + 82LV2(.’L‘, s)=0
02“/1 (0, S)
5z = 0 Wi(a,s) = Wa(a,s)
33w, (0, s) -0 oWy(a,s)  OWa(a,s)
023 - oz - Oz
82"‘,1 (a. S) _ 62”/2 (a, S) 02”/2(1, S) =0
Oz? T a2 oz?2
3 XY 3
_9'Wi(a, s) + 9°Wy(a, s) —Us) 9°Wa(1,s) -0

Ox3 Ox3 Oz3
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From (3.7}, the solution is known to be

Wi(z, s) = A(s) cosh(Visz) + B(s) sinh(vVisz) + C(s) cos(Visz) + D(s)sin(Visz)
Wa(z,s) = E(s) cosh(Visz) + F(s)sinh(Visz) + G(s) cos(Visz) + H(s)sin(Visz)

Taking the derivatives of W;(x,s) and Wa(zx,s) with respect to x, dropping the argument
of s for compactness,

Wi(@,5) = AVissinh(Visz) + BVis cosh(Visz) — CVissin(Visz) + DVis cos(Visz)

oz
ﬂ?g‘f‘zﬂ = Ais cosh(V/isz) + Bissinh(Visz) — Cis cos(Visz) — Dissin(Visz)
ﬂ?ﬁf—’s’ = Ais)*/? sinh(Visz) + B(is)¥/* cosh(Visz) + C(is)*/* sin(V/isz)
— D(is)*? cos(Visz)
6‘;‘/?)%@ = EVissinh(Visz) + FVis cosh(Visz) — GVissin(Visz) + HV/is cos(Visz)
%(‘2@ = Eiscosh(Visz) + Fissinh(Visz) — Gis cos(Visz) — Hissin(Visz)
?1”6/)2;:(%3) = E(is)*/? sinh(Visz) + F(is)*/? cosh(Visz) + G(is)*/* sin(Visz)

— H{(is)%? cos(Visz)

Using the above expressions with the transformed BCs gives a linear system of 8 equations
in 8 unknowns {A ... H}:

Ais—Cis=0
B(is)** — D(is)*? =0
Eis cosh(Vis) + Fissinh(Vis) — G(s)is cos(Vis) — H(s)issin(Vis) =
E(is)¥? sinh(Vis) + F(is)*? cosh(Vis) + G(s)(is)*/? sin(Vis) — H(s)(is)*/? cos(Vis) =
Acosh(avis) + Bsinh(aVis) + C cos(aVis) + Dsin(aVis) =
E cosh(aVis) + Fsinh(aVis) + G(s) cos(aVis) + H(s)sin(aVis)
AVissinh( aVis) + BViscosh a\/'—) CVissin(aVis) + DVis cos(aVis) =
EVissinh(aVis) + FVis cosh(aVis) — G(s)Vissin(aVis) + H(s)Vis cos(aVis)
Aiscosh(aVis) + Bis smh(a\/_) Ciscos(aVis) — Dissin(avis) =
Eiscosh(aVis) + Fissinh(aVis) — G(s)is cos(aVis) — H(s)issin(aVis)
~ A(is)¥/? sinh(aV/is) — B(is)*? cosh(aVis) — C(is)*/? sin(aVis)
+D(is)*/? cos(aVis) + E(is)*/?sinh(aVis) + F(is)*/? cosh(aVis)
+G(s)(is)*? sin(aVis) — H(s)(is)*/? cos(aVis) = U(s)

Simplifying,

0

0

E cosh(Vis) + Fsinh(Vis) — G(s) cos(Vis) — H sin(Vis) = 0
Esinh(Vis) + F cosh(V3s) + G(s) sin(Vis) — H cos(Vis) = 0
(A - E)cosh(aVis) + (B — F)sinh(aV/s)
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+(C - G) cos(aVis) + (D — H)sin(aVis) = 0
(A = E)sinh(aVis) + (B — F) cosh(aV/is)

+(~C + G)sin(aVis) + (D — H) cos(aVis) = 0
(A — E) cosh(aV/is) + (B — F)sinh(aVis)

+(~C + G) cos(aVis) + (—D + H)sin(aVis) = 0
(~A + E)sinh(aVis) + (— B + F) cosh(aVis)

+(=C + G)sin(aV/is) + (D — H) cos(aV/is) = _.(ggjzz

The above linear system of equations is solved and substituted into (8.9), giving

Wiz, s) = gg 3 U(s) Wa(z,s) = ggg U(s)

(8.10)

where

P(z,s) = (is)~3/?

{cosh[\/i_s(a +z — 1)] sin(V/is) — cosh[Vis(z — 1)]sin[Vis(a — 1)] + cosh(Vis z) sin(Vis a)
— cosh(V/is) sin[Vis(a — & — 1)] + sin[V/is(a — z)] — cosh[V/is(a — 1)]sin[Vis(z — 1))

+ cosh(Vis a) sin(Vis z) — cos|[Vis(a + z — 1)) sinh(Vis) + cos[Vis(z — 1)] sinh[V/is(a — 1)]
— cos(V/is x) sinh(Vis a) + cos(Vis) sinh[Vis(a —  — 1)) — sinh[Vis(a — z)]

+ cos|[Vis(a — 1)] sinh[Vis(z — 1)] — cos(Visa) sinh(\/i—sa:)}

(8.11)
Q(z,s) = 4{ ~ 1 + cos(Vis) cosh(\/i—s)} (8.12)

R(z,s) = (is)(~%/?
{ cosh[Vis(a +z — 1)) sin(V/is) — cosh[Vis(z — 1)]sin[v/is(a — 1)]
+ cosh(vVis ) sin(V/is a) — sin[Vis(a — )] + cosh(V/4s) sin[Vis(a — z +1)]
— cosh[Vis(a — 1)] sin[Viis(z — 1)] + cosh(V/is a) sin(Vis z)
—~ cos[Vis(a + z — 1)] sinh(V/is) + cos[Vis(z — 1)]sinh[Vis(a — 1))
~ cos(Vis z) sinh(Vis a) + sinh[Vis(a — )] — cos(Vis) sinh[Vis(a — z + 1))
+ cos[Vis(a — 1)] sinh[Vis(z — 1)] — cos(Vis a) sinll(\/i_s:z:)}
(8.13)

8.6 Infinite Series Representation: Single-input

Expressions (8.11), (8.12) and (8.13) need to be converted into their infinite series represen-
tations, in order to perform an inverse Laplace transform.
For compactness, we introduce the definitions:

A= Vis
B=Vis(a+z—1)
C = Vis(z - 1)
D= Vis(a-1)
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E=\Visz

F = Visa
G=Visla—z—1)
H = Vis(a - z)
I=Visla—z+1)
We also need the trigonometric function power series from Section 3.4.1,
o0 3
B (_1)kx2k
coshz = Z (2”' cosT = kz_% k)
o 2k+1 ( 1)kg2k+1
sinhz = Z (% O sing = Z k1)

And the identities

cosh Acos B = cosh(A +iB) + cosh(A - iB)

2
sinh A cos B = S04 +15) *2“5'"'1(/1 - iB)
sinh Asin B = OShA+B) = cosh(A - iB)
cosh Asin B = sinh(A +iB) ;ismh(A —iB)

8.6.1 Series Representation of P(z,s)

Starting from (8.11),
P(z,s)

= 711_3{ cosh Bsin A — cosh Csin D + cosh Esin ' — cosh AsinG + sin H — cosh DsinC
+ cosh F'sin E — cos Bsinh A + cos C'sinh D ~ cos E'sinh F' + cos Asinh G — sinh i/

+ cos Dsinh C' — cos F'sinh E}

{smh(B +1A) —sinh(B —iAd)  sinh(C +1D) — sinh(C ~iD)
= A3

2i 2
+ sinh(E + iF) ;ismh(E —iF)  sinh(A +1iG) ;1 sinh(A — iG) +sin i
sinh(D +iC) — sinh(D — iC) + sinh(F + i{EF) — sinh(F — iE)
- 2 2i
sinh(A +iB) + sinh(A - iB) + sinh(D + iC) + sinh(D — iC)
2 2
_ sinh(F +1iE) -;—smh(F —1FE) + sinh(G + i A) -;—smh(G —iA) sinh H
+ sinh(C +iD) +sinh(C ~iD)  sinh(E + iF) + sinh(E — iF) }
2 2

ZI-{ [smh( —1A) —sinh(B + zA)] [smh(C +iD) — sinh(C — zD)]
sinh(E — iF) — sinh(E + zF)] 2 [smh(A +iG) —sinh(A — zG')] +sin H

+3s
[smh(D +1C) — sinh(D — zC)] [smh(f’ — iE) — sinh(F + zL‘)]

lOl“‘ t\DI
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[smh(A +iB) + sinh(A4 — zB)]

ml-xolra

[smh(l" +iE) + sinh(F — zE’)]

.

+ 3 [sinh(C +1iD) +sinh(C — zD)] -3 [sinh(
L
A
. 1

+sin H + (

(5

2
+ —;— sinh(G — iA4) — sinh H}

sinh(B —iA) — L sinh(B +iA) + (1

st\)

>sth‘+zI") ( 5

i) sinh(C +iD) + (1

+i )Sinh(D +iC) + (1—'2'—’) sinh(D — iC) — (

z) sinh(F —iE) — = smh(A +iB) — = smh( —-iB)+ %sinh(G +1iA)

[smh(D +1C) + sinh(D — zC)]

E +iF) + sinh(E — ur)]}

[smh(G +iA) +sinh(G — zA)] —sinh H

2 2

— ’) sinh(C — iD)
) sinh(E - iF) + -smh(A +1iG) — = smh(A —iG)

+ 1) sinh(FF +1E)

Introducing power series representations, placing the sin and sinh terms first:

P(z,s)
- - L et e s 2
()5 (1) S e (131)2"?;’?3}“
—(1;’)52;0‘”@:5’5;“ 3 R - Y
CHLET (LR (2
- (1;")2“’@;?:;1“ i e
- L i(—l)"\/fé"";“(a'_mw & Vi (o — gkt
Vis \img (2k+1)! o (2k +1)!
+%k§[f (a+x€21 -11-)1—).1\/_ sjph i Z[‘/i—s(“+f2; i) ;;!i\/m”‘*'
(I;z)z[\/—sm;kzl/—ls):z]"”’ (l—z)z[\/—bm2—k1+lsa]2k+‘

+ivVis(z — 1)]2k H

) — ivis(e — D[Pk

+1) — [\/i_s(a—l) is
2 ); 2k + 1)!

+(1;,)§[¢,——s—(a_l
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+1i [Visa +iVisz]?k+! 1-i [Visa — iVisz]?+!
( 2 )Z 2k +1)! ”( 2 )Z (2k + 1)!
1 o= [Vis+ivis(a+z - 1)+ 1 N [Vis —ivis(a +a — 1)]2+]
“5?;0 (2k + 1)! EZ (2k + 1)!
- [\/E(a—:z:—1)+i\,/i_s]2“'+l 1 = [Vis(a — z — 1) — iv/is|?k+!
+52. @k +1)! *3 2k +1)! }

k:
2k+1

Z (2k 1) [ l)k(a _ w)Zk—H (a-— )2k+l + 2(a+$ —1- z)2;;.;.1

_i.(a-i-m—1+z)2"+l <1+z)[:v—l+z(a 1)]2k+'+(12 )[m—l—z(a~l)]2*+]

2
141 . N2kl - . \2k4l , 2k+1
il G (x +ia) - | —— ) (z — ia) +§[1+1.(a—:z:—l)]
- %[1 —i(a—z — 1)+ 4 (1 ;”) [a—1+4i(z - 1)+ 4 <%> [a—1—i(x— 1)+
141 N2kl 2k41 __ : 2k+1
-5 (a + i) (a—1iz) [1+z(a+x—1)]
- l[1 —i(a+z— 1) 4 %(a— T —1+i)+ 4 %(a— -1 —i)”‘““:]
\/—2k+l
Vs Z < 2k + 1)1 [f"(“ T ’”)]
It can be verified that
fp(a,z,k)=0 k=0,2,4,...
Sfe(a,z,k) #0€R k=1,3,5,...

Letting k = 2m + 1 to eliminate the zero terms, we obtain the following substitutions:

2k+1—-4m+3

‘/:;f | (9 = (i = (-1
i$
[( 1 _ 1] 2k+l — [(___1)2m+l _ 1] (a__ w)'lrn+3 — —2(0. — m)4m+3
The expression becomes
P(z, s)
S s [ 2a-2)™ + Lara—1-9)m - L g 14 gy
=t (dm +3)! 2 2

+ (1 J”) [z —14i(a— 1"+ + (1 ;’) [z —1-i(a—1)""*3 - (-1—;'—“) (z +ia)'m+3

(1 - ’L) (z - za)‘lm+3 + %[1 +ila—z— 1)]4m+3 — 1[1 —ila—z - 1)]-lm+3

1) [a =1 +i(@ - D"+ + (l 5 ) [a—1—i(z—1)"m+3 — (%) (a + iz)im+3

- (1 - 1) (a —iz)tm+3 — %[1 +ifa+z— 1))+ — %[1 —i(a+z — 1))+

+ ™

1
+

[\

-]

+ %(a —z—1+i)"m*3 4 %(a —z~1- i)"m+3]
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It can be verified that
: i 1
%(a +rx—1-— i)4m+3 _ -;-(a+:1: -1+ i)dm+3 _ _é[l + i(a 4z — 1)]4m+3

- l[l —i(a4+z~ 1)+ = —2Im {(a +z — 1 —4)Im+3}
(l -2{4) fx—1+i{a— l)]4m+3 + (l;—z) [z—1—1i{a— 1)]‘lm+3

+ (1_2H> [@—=1+i(z— 1)+ 4 (1_2—1) [a=1—i(x - 1)im+3

=2Re{[a—1+i(z - )"} +2Im {[a — 1 - i(z - 1)]*"+3}
- (1 ;1> (x+1 )'m+3 (T) (z - ia)4'"+3 - (1__2*-_1) (a + im)tlm-{-a

(1 - 1) (a- u:)dm-i-a = —2Re {(m +ia)4m+3} —92Im {(CL‘ _ ia)dm+3}

-;-[l + 'i(a —z— 1)]4m+3 _ _;_[1 _ i(a —r - 1)]4m+3 + %(a —zr—1+ i)4m+3

+ %(a —z—1-i)"+3 =2Re{(a -z - 1—i)""*+3}
Giving
P(z,s)
= i ———(~1)mszm [ 2(a — )"+ ~2Im{(a +z - 1 —i)*™*3}
o (4m +3)!

+2Re{la—1+i(z- D]} +2Im {[a - 1 = i(z - 1))*™*3} — 2Re {(z + ia)*™**}

—2Im {(z — ia)"*3} +2Re{(a -2z -1 - i)“"”""}]
leading to the final form

P(z,s) = 22 4(]» i)3)| [ ~ )3 Re{(a~z—1- i)dk+3}
- Im{(a+1: —1—iy*+3} 4 Re{[a — 1 +i(z — 1)]*¥+3}
+Im{[a—1—i(z - 1)]"*3} - Re {(z + ia)"**+3}

~Im{(z - ia)t+3} ]sz"'

(8.14)

8.6.2 Series Representation of Q(z, s)
Starting with equation (8.12) and using the definitions in Section 8.6,

Q(z, s) = 4(—1 + cos A cosh A)
~4 (_1 + cosh(A +iA) —;—cosh(A - zA))
= —4 + 2cosh(A +iA) + 2cosh(A — i A4)

2k S — 1 AN2k
_____4+2Z(A+1A) 23 A= id)
k=l

(2k)! < (2K
Vis +iV/is)? —iVis)?k
= —4 + QZ (_—:QT')_ Z (\/_‘; \/—)
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oo 2k
=4+ 22 \(/zi)! [(1 +i* +(1 —i)“‘]

= -4+ 22 E;’; [ 140)% 4+ (1 - i)?k]

S/

=0V k=1,3,5,..

To retain only non-zero terms, let £ =2m, m=0,1,2,...

13)2 n

Qr,8)=—-4+2 Z [ (1+ )" 4+ (1 i)dm]
m=0

1632 G4s? 25658
o 4 +

=-—£1+4+

4! 8! 12!

0 o(2k+2) g2k
= k)
0 o2k 2k
=4 Z Q—SF
= (4k)!

Giving the final expression
Qlz,s)=4) an s (8.15)
k=1 :

8.6.3 Series Representation of R(z,s)

For the third expression, we start from equation (8.13) and use the definitions in Section
8.6:

R(z, s)
= % { cosh Bsin A — cosh C'sin D + cosh E'sin ' — sin H + cosh Asin [ — cosh DsinC
+ cosh F'sin E — cos Bsinh A + cos C'sinh D ~ cos E'sinh F 4 sinh H — cos Asinh [

+ cos D'sinh C — cos F'sinh E}
{smh(B +1iA) —sinh(B — i4)  sinh(C +iD) - sinh(C — iD)
A

2i 21
+ sinh(E + iF) 2—- sinh(E —iF) sin H + sinh(A +141) 2—1 sinh(A — il)
i
_ sinh(D +1iC) — sinh(D —iC) smh(F +iE) — sinh(F — iE)
2i 2i
_ sinh(4 +iB) +sinh(4 - iB) + sinh(D + iC) + sinh(D — iC)
2 2
_ sinh(F +iE) -;—smh(F —iE) +sinh H
__ sinh(f +i4) + sinh(/ — i4) + sinh(C + iD) + sinh(C —iD)
2 2
__sinh(E +1F) + sinh(E - iF)
2

1

A3 { [smh(B —1A) —sinh(B + zA)] [smh(C +1D) — sinh(C — zD)]

+z [sinh(E —iF) — sinh(E + iF)] ~sinH + [sinh(A —iI) — sinh(A + iI)]
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sinh(D + iC) — sinh(D — zC)] [smh(F —1FE) —sinh(F + zE)]
J+
]

sinh(C + iD) + sinh(C — zD)] -3 [sinh(E' +1F) + sinh(E - z'F')]}

[smh(D +1C) + sinh(D — iC)]

+sinh H — = [smh(! +1A) + sinh(/ ~ zA)]

[smh(A +iB) + sinh(A — iB)
[smh(F +iE) + sinh(F - {E)

KOI'—' Ml'—‘&ll—‘wlﬂ

= %{ 3 sinh(B — iA) — - smh(B +1iA) + (1 ;") sinh(C +1D) + (-l—;—l) sinh(C — iD)

) sinh(E — iF) — ( ki ) sinh(E +iF) — sin H + —;-sinh(A —il) - %sinh(A +il)

)smh D +iC) + (1

= ’) sinh(F — iE)

2
1+14 1
sinh(F +iE) — 3 sinh(A +1iB) — = smh(A —1iB) +sinh H — = smh(I +1A)

(&)

(=2
+(1+z ;i)sinh(D—iC)—(1
-
1
2

sinh(/ — zA)}

Bringing in the power series representations, placing the sinh and sin terms first:

R(z, s)
1 oo sz+l ( 1)&[12&-}-! i (B _ 1A)2L+l i (B + 1A)2L+l
/13{ rd (2k+l)' Z (2k +1)! Z k+1)! _Z (2k + 1)
+ C‘HD)?"+l ( - ) Z (C — D)%+ <l - z) Z (E - iF)?k+1
2 2k +1)! 2 2k +1)! 2 )& (2k + 1)!
+i (E +iF)2+! Li i (A-zl)ml i (A 4D
2 2k +1)! 2 o 2k +1)! 2 2k + 1)
(D +iC)+! (1 Z (D —iC)y?+t (1 —i
(2k +1)! 2 (2k + 1)! 2

Rt (F _ iE)Zk-H
> 2k +1)!

EM% EMs EMs i

()%
()%
()%
()3

k=0
1414 (F +iE)?+1 _li (A+u£3)2k+l I (A-iB)HH
2 (2k + 1) 2 (2k + 1)I 2 pward (2k +1)!
i ( + 1A)2"+1 Z (] _ 1A)2"+1
(2k+1)' (2k +1)!

[Vis(a —a P‘**’ (=1)*Vis(a — z)?*+!
Vis ;) (2k + 1)! Z (2k +1)!

+3 g) [Vis(a + :22; i)l—) z\/_]2k+1 Z [V/is(a +a:21 —13;;'1\/"]2“1

+ (1 ;—1) Z"% [Vis(z — 1)(;;;/?)(;1 - 1)]2k+1 N (1 ;z) i [Vis(z — 1)(2—ki-\{-/il_s)(!a _ )k
( ; )Z [\/?z(;ki+z'ls,);z]2k+l ~ (1 +i) i [\/i_SI(;ki;/i;;)!a]2k+l

+‘;';£_:% [ﬁ—1€£a+—1§'+ ) sl i Z [\/-_+1\/;}Ea+—l:)z'+ ]2k
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+1) o= [Vis(a - 1) +iVis(z — 1)]2+! 1—1i [Vis(a — 1) — iVfis(z — 1))2k+!
( 2 ); (2k +1)! ( )Z (2k +1)!
- Visa —ivis )+ 1+i [Visa + iVisz)?+!
( 2 ) (2k + 1)! ”( )Z (2k + 1)!
1 o \/_ z\/—(a+a:— DAY 1 & [Vis —ivis(a + z — 1))+
5?:; (2k + 1)! "EZ: (2k +1)!
1 & [Vis(a — z + 1) +ivis]F ! 1 S [Vis(a ~ z + 1) — iv/is]?+!
Eg (2k +1)! - §k= (2k + 1)! }
&
\/_ Z (2LS+ l)l [( _m)2k+1 ( l)k(a z)2k+1 + (a +r—1-— 1)2k+1
%(a-i—:z, 1 41)2h+1 4 (1 ;l) [z =1+i(a— 1)+ 4 (}——2_—_—1> [z —1—i(a—1))2k+!
- (1 ;z) (x — ia)®+! — (1 ;- ) (x + ia)*+! + 2[l —i(a - + 1))+

- -[1 +ife -+ 1)+ (%) [a—1+i(z— 1P+ + (l—;—f) [a—1—i(z— D)2+

1- 1) — )2k (1 +1 ) (a + i)+ — %[1 Fifa+a— P

/\

. . 1 N2k
—-[1—1 a+$—1)]2"“——(a—x+1+i)2"+‘ —E(a—w+1—z)2k+l]

\/—2L+l
= > AerEay [ete.zi)

It can be verified that

fola,z,k) =0 k=0,24,...
fola,z, k) #0€R k=1,3,5,.

Introducing a change of variables to guarantee & odd, we obtain

k=2m+1
2k+1—4m+3
—2k+1
\/l_S 3 N (_1)11132"1
18
(a _ w)2k+l [1 - (—l)k] - 2((1 _ x)dm-i-s

R(z, s)
0 (_l)mSZm

=2 (Am + 3)!

m=0

+(1+i)[a:—1+i(a 1)]""'+3+(12 )[az—l—z(a 1)]‘“"+3-(1
-(
+(1

[2(@ — g)im+3 4 %(a 4z —1—g)tm+s %(a 4z —14)im+3

; z) (z —ia)t™+3

—

’l.) (m + ia)xlm+3 + _;_[1 _ i(a— T+ 1)]4m+3 _ %[l +i(a —z+ 1)]4,".;.3

z) [a—=1+i(x—1)]"™+ 4 (%) [a—=1—i(z—1)Tm+ - (%) (@ — iz)hm+s
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) 1
1_.-21-_2) (a+ i:l:)‘lm+3 _ 5[1 + i(a+:v _ 1)]4m+3 _ %[l _ i(a+:1: _ 1)]4m+3

ml.—-/-\

(a—z+1+3)tm+3 %(a —-z+1- i)"’"‘”]
The following simplifications can be verified

Lladz—1—i)imes _ %(a-{-m— 1+ g)hm+3 %[1 +i(a +z — 1)im+3

™o

1
- —[1 —ila+z -1 =2Im{(a+z -1 +i)4m+3}

(1 +') [z —1+i(a— 1"+ + (L;—E) [z =1 —i(a— 1)Jtm+3

+ (1'2“) [a—1+i(z - 1)+ + (1 5 ){a— 1 —i(z ~ 1))+
=2Re{[z — 1 +i(a - D}'**} + 2Im {[z - 1 - i(a - D}*"*}

(1 ; l) (z - 1a)“"l+3 — (1—-2*-—Z-> (z+ ja)im+3 _ (l ; 2‘) (a-— ig)im+3

—_ (1 '2*' ) (a -+ ia:)41n+3 = ~2Re {(I + ‘ia)‘lm+3} —921Im {(:l: _ ia)dm-{-a}

%[1 - i(a —z+ 1)]-1m+3 _ %[1 + i((l —z+4+ 1)]‘lm+3 _ %(a —z+1+ i)tlm+3
- .;_(a —z+1- i)41n+3 =_92 Re{(a —z+1 +i)‘lm+3}

Hence, we have

.'z: )= E (471,3: 32;"‘ [2(& - :z:)4m+3 +2Im {(a 4+z—1+ i)4m+3}

+ 2Re{[:1, —1+i(a— D"} +2Im {[z - 1 - i(a — 1)}*+3} - 2Re {(z + ia)'™+3}

—2Im {(z — ia)"*3} —2Re {(a -z +1 +i)""‘+3}]

Leading to the final form

R(z,s —22 zl(k 1)3)'[ m)4k+3+1m{(a+w—1+i)4k+3}

+Re{fe— 1+ i(a— D9} 4 1m {1 ia— D) — Re {(z +ia)"*)
—Im{(z - ia)**3} ~Re{(a—z+1+ i)dk+3}]sza
(8.16)

8.7 Flat Output Parametrization: Single-input
We now return to the s-domain solution (8.10),

P(z,s) R(z,s)
Q(z,s) Q(z,s)

where P(z,s), Q(z,s) and R(z,s) are given in infinite series form by (8.14), (8.15) and
(8.16), respectively. This is a one-input system, so there is one flat output.

W (.’!I, S) =

U(s) Wa(z, s) =

U(s)
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As in Section 3.5, we choose
U(s) = Q(z,s)Y(s)

as the system input parametrization by the transformed flat output. This gives

Wi(z,s) = ggi: '3 Q(z,8) Y(s) Wa(z,s) = gg::; Q(z,5)Y(s)
Wi(z,s) = P(x,s) Y(s) Wa(z,s) = R(z, s) Y (s)

The W, (z, s) term becomes
Wi(z,s) = 22 1) —(a—z)**3 +Re{(a —2 —1-i)"**3}
! (4k + 3)!
- Im {(a+ z—1-4)"%*3} 4 Re{la— 1 +i(x — 1)]**+3}
+Im{fa—1=ix—1)*"**} - Re {(z +1ia)"***} — Im {(z - i) +3} |2 v (s)
Which can immediately be inverse transformed into the time domain:
wy(z,t) = 22 CD a—z)%*3 4 Re {(a -z — 1 —i)¥+3}
(4k + 3)!
- Im {(a+x —1— )"} 4 Re{[a — 1 +i(z — 1)]**+3}
+ Im {[a —-1—-i(z— 1)]4k+3} — Re {(:v + ia)“k“} —Im { (x — ia)4k+3} ] ¥ (1)

(8.17)
Similarly, Wa(z, s) and U(s) transform back to the time domain as

2(z,t) = 22 (l(k —?3)' [(a — )%+ L Im {(a+ 2~ 1 +3)%+3)
+ Re{[ﬂf— 1+i(a— D]*43} + Im {[z - 1 —i(a — 1)]**+3} — Re {(z +ia)**+3}
- Im {(.’1: _ ,t'a)-ik+3} — Re {(a —z+1+ i)4k+3}]y(2k)(t)

(8.18)
and

u(t) =4 Z i k), y(%)(t) (8.19)

For steering purposes, we need to interpret the effect of y(t) on w(z,t). We look at the
ending equilibrium at ¢ = t; when all the y(t) derivatives are zero, such that only the k =0
term remains:

wi(z,ty) = Pe=oy(ty)

wa(z, by) = Re=oy(ty)

By direct substitution,

Py—o = = —da — 4z + 8ax

Wi oo W] oo

Ri=9 = 7 — da — 4z + 8ax

Pi=o = Ry=0 = (8a—4)z + (g - tla)
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Therefore, the end configuration is always a straight line with both slope and offset being
functions of a. Since we are using normalized coordinates, 0 < a < 1. Therefore, we have
three possibilities for the equilibrium slope:

e 0 < a < 0.5: negative (downwards) slope
e a = 0.5: zero (flat) slope
¢ 0.5 < a < 1: positive (upwards) slope

This result is consistent with the physics of a solid body subjected to an external force. This
is illustrated in Figure 8.7, where the center of mass is located at z = 0.5 since the beam is
homogenous.

L ]

bS]
]
™

1
a<gy a>3

%
+ | 7

Figure 8.7: Effect of input force location on final configuration

2
IZ—_T_J

For the special case of @ = %, the final slope value is zero, and we can figure out the

“DC gain” of the system:
8
[(Sa —d)z + (— - tla)]
3 a=}

In this situation, the flat output choice

i

2
3

v = (§7)mo

steers the beam to w(z,ts) =Y, where 7,(t) represents a Gevrey steering function on [0, 1],
given by (3.31).

For the more general case when a # %, it is still possible to pick a gain to control the
ending displacement of the center of mass:

ot (34,3

v =(57)m

as the flat output will guarantee w(0.5,ty) = Y. However, the equilibrium slope will be a
function of both a and Y (= (8a—4)Y). The final slope of the beam is thus uncontrollable for
a single input force. We will revisit this idea in Section 8.9, when we consider the two-input
case.

Therefore, choosing
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8.8 Simulation of Single-input System

The system’s open-loop trajectory and input can be directly calculated from the time-
domain series expressions, as done in Section 5.1. Two different series are used to calculate
w(z,t), (8.17) for the 0 < z < a interval and (8.18) for a < z < 1. We compute u(t) from
(8.19).

A sample simulation is provided, using the parameters in Table 8.1. The beam displace-
ment, beam deformation excluding rigid motion, and input are plotted in Figure 8.8.

Parameter Value
Gevrey parameter y 1.4
Input location a 0.25
End height Y 1
End time ¢; 2
# of time points 100
# of space points 50
Series order (Amaz) 15

Table 8.1: Simulation parameters for a one-input beam

w(x,t) beam disptacement Beam harmonics

wixl)
Awxt)
o

o
TR

AT
e

System input at a=0.25

-1

-2

-3

Figure 8.8: Simulation of 1-input beam

8.9 Two-input System

We first need to look at the issue of how to assign the flat output gains to steer the system
to a desired end state. From flatness theory, we know that the number of system inputs
equals the number of flat outputs, so we have two independent quantities to work with.
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Also, unlike the one-input case, we intuitively expect the final beam configuration to be
fully controllable.
From Section 8.7, we know that for one input, the steady-state relationship is

Wy, (T, bf) = [(8a1 —d)yz + (g - 4a1)] )

where a; is the location where the input is applied, 3, is the flat output connected to the
input, and w,, is the resulting beam deformation.
For a second input, we have

ot = [0~ (5 - 10 e

therefore

w(@, tr) = Way (2, t7) + way (T, L)
= [(801 -4z + (g - zlan)] vity) + [(802 -z + (‘785. _ 4a2)] valty) (8.20)

due to superposition.
w(z, tg) is the two-input system’s equilibrium configuration, with slope A and center of
mass displacement Y. We need to express this in y = mz + b form:

_¥y-un
r—-oT
M(z - 05)=w(z,t;)-Y
w(z, ty) = Mz + (Y — 0.5M)

(8.21)

where (z1,y1) = (0.5,Y) is a known point on the line.
Equating (8.20) and (8.21),

Mz + (Y — 0.5M) = [(8a1 —d)z+ (g - 4a1)] n(ty) + [(Sag —d)z+ (5:- - 4(12)] yalty)

therefore
M = (8a) — 4) yi(ty) + (8az — 4) ya(ty)

Y —-05M = (g - ‘lal) N (tj) + (g - ¢1a2) yz(f»f)

(8.22) is a linear system of two equations in two unknowns y;(ts), y2(ts) whose solution is

M +6Y —12a2Y

(8.22)

= 2
nit) = g (823)
M +6Y —12a,Y
nlty) = g4 (8.24)

where Y is the desired center of mass displacement, M is the desired beam slope, and ay,
ap are the locations of u; and u; respectively.

Note that both (8.23) and (8.24) are singular when a; = as. Physically, this condition
means the two inputs overlap, so we effectively revert back to the one-input case. We can
still work with the beam, but we can control only end displacement or slope, but not both.
In other words, a; = ag leads to a loss of controllability of the system.

8.10 Simulation of Two-input System

A sample simulation of a two-input beam is performed using the parameters in Table 8.2.
The combined results are shown in Figure 8.9.
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Parameter Value
Gevrey parameter 7 1.4
Input location #1 a, 0.25
Input location #2 az 0.8

End height Y 1
End slope M 1
End time tf 3
# of time points 100
# of space points 50
Series order (kmaz) 15

Table 8.2: Simulation parameters for a two-input beam
w(x,!) beam displacement Beam harmonics

' ) 0.0t ' '

0.005

04 -

w(x,t)

A wix,T}

-0.0054 - -

-0.01 o

System input at a=0.25 System input at a=0.8
0.6 1
04
0.2 0.5
z 0 s
~- :N 0
2 02
-04 -05
-0.6
-08 -1
0 1 2 3 0 1 2 3

Figure 8.9: Simulation of 2-input beam

8.11 Discussion and Future Work

An interesting extension of the work in this chapter would be to design a closed-loop con-
troller using the technique in Chapter 4. Hardware implementation would require the ex-
pressions to be un-normalized. Stabilization is an important problem in magnetic bearing
systems, and the state-space model derived could be readily used to design a stabilizing
controller.

Note that in practice the rotor is not restricted to move in one plane. Since there is no
coupling between the motion in two orthogonal planes (assuming no shaft rotation), vertical
and horizontal stabilizing controllers could be designed independently.
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Chapter 9

Conclusions and Future Work

The flatness-based open and closed-loop tracking control of a flexible beam has been suc-
cessfully designed and implemented in simulation and experiment. The approach relies on a
series parametrization of the system state and input by a flat output function and its time
derivatives. This parametrization is analogous to that found in flatness of finite-dimensional
systems and allows the design of an open-loop control which achieves rest to rest motion.
The closed-loop design is based on a state-space LTI system approximation which follows
from truncating series parameterizations used in the open-loop control. Standard estimated
state feedback tracking control can be readily applied to these approximate systems. An
FEA model was derived in order simulate the closed-loop system and validate open-loop se-
ries results. Simulation and experimental results both indicate the proposed control design
achieves robust tracking.

Future work on closed-loop control and experimental testing could investigate generalized
beam models which include tip payloads, rotary inertia, and non-constant beam parameters
(e.g. volumetric mass density). For example, the introduction of rotary inertia changes the
nature of the parametrization of the system variables in terms of the flat output, and we
expect distributed delays/predictions to appear as operators. The multi-input levitated
beam discussed in Chapter 8 requires further study. In particular, non-uniform beams
could be considered. To date, such configurations have not been treated using flatness. The
levitated beam problems offers potentially interesting and industrially relevant experimental
work as it models a shaft supported by magnetic bearings.
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Appendix A

Electrical Drive Subsystem

The hub and ruler combination is driven by a DC motor through a gear train. We model the
system [51, pp. 148-149] to obtain the relationship between the input power supply voltage
u(t), and the output torque 7(t) acting on the hub.

R,
o(t b
Km, Ky S\) rl| ~
-/ ||J -/
T(t)
~
w) -
om(t)y Tm(t) 1{9
ia(0) ()
© E=ry
Figure A.1: Electric drive system diagram
A diagram of the system is shown in Figure A.1. The symbols used are:
R, Armature resistance
ia(t)  Armature current
u(t)  Input voltage
ep(t)  Motor back EMF
Kn Motor torque constant
K Back EMF constant
K, Gear ratio
O,n(t) Motor shaft angular velocity
Tm(t) Motor torque
b Total system viscous friction
o(t) Hub angular velocity
7(t)  Torque on hub
The motor-hub gear train multiplies torque but divides angular speed
T(t) = Ky T (t) (A1)
. 1 .
= — t .
6(t) X, Om(t) (A.2)
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The torque produced by the motor is proportional to the armature current
Tm(t) = K ia(t) (A.3)

The voltage drop across the motor is proportional to the motor shaft speed
ep(t) = K O (t) (A.4)
The viscous friction opposes the output torque and is proportional to the hub angular speed
T7(t) = —bo(t) (A.5)

Writing down the equation for the electrical part of the system using Kirchoff’s voltage law,
then using (A.4) and (A.2),

Raia(t) + ep(t) = u(t)
Raiq(t) + Ky 6im(t) = u(t)
Raia(t) + Kp K, 0(t) = u(t) (A.6)

For the mechanical part, we use a moment balance with (A.3) and (A.5), then substitute in
result (A.6):

7(t) = Kgmn(t) — bO(2)
= Ky Knia(t) - bé(l)

= K, K (———"‘(‘) - I,?Kg é(t)> —bé()

(1) + (——Kg 1};:.1(,, + b) 0(t) = (_1(721?,) u(t) (A7)
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Appendix B

Closed-loop Step Identification
Test

Two of the experimental plant parameters, the hub inertia Jp,, and the viscous friction b,
required a closed-loop step response test to be identified [37]. For these tests, the flexible
ruler was detached from the hub.

Writing down the equation of motion of the system without beam and then using input
expression (A.7), we get

Jhub 8(’*) = T(t)
2
0 = (K252 ) o) - (——K”K'"K” ¥ b) i)

Ry Rq
.. K2K I, b . K, K
0(t) + | =2 + 0(t) = (—Li\)r t
( ) ( Ra Jhub Jhub ( ) Ru Jhub t( )
N ., \_.\,_._/
I{l 1\2

where K1,/ are introduced for compactness. The open-loop transfer function of this system
is obtained by applying the Laplace transform to the equation above, giving

$20(s) + K, sO(s) = KoU(s)

Ofs) I
U(s) s2+Ks

The closed-loop control law u(t) = K (84 — 8(t)) is now added to the system, where K is a
proportional gain and 6 is the desired output angle. The closed-loop system is shown in
Figure B.1. From classical control theory, the transfer function of this system can be shown

to be
o) _ i
Ou4(s) 1+ L2 (B.1)
B KK,
s+ K5+ KK,
Following [52, Section 5.3], (B.1) is rewritten as

O(s) _ wa
@d(s) T os? + 2w, s + w%

(B.2)

where w, = V/KK3 is the natural frequency of the system, and ¢ = %L is the damping

ratio. A second-order system of the form (B.2), assuming it is underdamped (0 < ¢ < 1),
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ouls) *~ [, P o(s)
3 18

Figure B.1: Closed-loop setup for parameter identification

and subject to a step input, can be shown [52, p.232] to have the peak time

T
b (B.3)
and the percent overshoot
—.Cfr
PO = 100exp | ——= B4
P < e <2> (B.4)

The procedure to identify Juyb and b is summarized below

1.
2.

3.
4.
5.

Implement the closed-loop setup shown in Figure B.1 in hardware

Pick a step amplitude, then tune K to provide an underdamped system response
without saturating the input voltage u(t)

Using the step response data, identify the values of ¢, and PO
From equations (B.3) and (B.4), solve for w, and ¢

Use the definitions of K and K> to solve for Jyu, and b

The data obtained to identify our system parameters is plotted in Figure B.2. A step value
of 90° was used, with a gain of KX = 0.2. Note the input voltage remains below the 22V
saturation limit, and the system response is underdamped.

Using the first graph in Figure B.2, we estimated ¢, = 0.175s, PO = 4.2035%. The
parameter values were calculated to be Juu, = 3.6391 x 10~3 kg m?, b = 0.020939 Nms.
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Figure B.2: Input/Qutput data for system step response

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



