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ABSTRACT

Aeroelasticity is concerned with the physical phenomena which involve 

significant mutual interaction among inertial, elastic, and aerodynamic forces. 

The study of aeroelasticity began in earnest in the early stages of the World 

War II when airplane speeds increased and aircraft designers encountered a 

wide variety of problems classified later as aeroelastic problems. The classic 

works on aeroelasticity are based on linear dynamics, linear aerodynamics, and 

linear structures. However, nonlinear structures arise from various sources, and 

an understanding of the nonlinear behavior of the system is crucial to the effi­

cient and safe design of aircraft wings and control surfaces. In this thesis, we 

consider a two-dimensional airfoil oscillating in pitch and plunge with subsonic 

aerodynamics and with cubic, freeplay, and hysteresis structural nonlinearities. 

Some analytical techniques—center manifold theory, the principle of normal 

form, the perturbation method, and the point transformation method—were 

used to investigate the effects of the structural nonlinearities on flutter. For 

a self-excited aeroelastic system with cubic hard springs, the amplitudes and 

frequencies of limit cycle oscillations in the post-Hopf bifurcation can be pre­

dicted analytically. An excellent agreement was found between the results 

of numerical simulations and analytical predictions. For an aeroelastic sys­

tem with freeplay and hysteresis models, convergent motions, period-one and
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period-two stable limit cycle oscillations, and chaotic motions are detected and 

the amplitudes and frequencies of limit cycle oscillations are predicted for the 

velocity below the Unear flutter speed. Although time-integration numerical 

methods have often been used to study the response of an aeroelastic sys­

tem with structural nonlinearities, the importance and necessity of analytical 

techniques are addressed through a detailed study of the numerical errors re­

sulting from the Runge-Kutta method. The analytical techniques developed 

in this thesis are suitable for many other non-aeroelastic systems: the center 

manifold theory and the principle of normal form can be generaUzed for nonUn- 

ear systems of ordinary differential equations with polynomial nonlinearities; 

the point transformation method can be extended for general piecewise linear 

systems.
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Chapter 1

Introduction

1.1 Background

Problems in aeroelasticity were first intuitively visualized by means of a trian­
gle of forces by Collar[13] in 1946. As shown in Fig. 1.1., three types of

Inertial Forces
(dynamics)

Aerodynamic Forces Elastic Forces
(fluid mechanics) (solid mechanics)

Figure 1.1: A triangle of forces for problems in aeroelasticity.

1
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forces involved in aeroelasticity, namely, aerodynamic, elastic and inertial 
forces, are placed at the vertices of the triangle. Each aeroelastic phenomenon 

can be located on the diagram according to its relation to the three vertices. 

For example, while dynamic aeroelastic phenomena such as flutter involve all 

three types of forces, static aeroelastic phenomena such as wing divergence 
involve only aerodynamic and elastic forces.

Collar’s idea was further employed and developed by Dowell et al.[19]. 
Aeroelasticity was then defined as a multi-disciplinary field concerned with 

those physical phenomena which involve significant mutual interaction among 

inertial, elastic and aerodynamic forces. Also, by pairing the vertices of the 

triangle, we can identify some other important technical fields: flight mechan­

ics (i.e. stability and control) concerns dynamics and aerodynamics; structural 

vibration is related to dynamics and solid mechanics; static aeroelasticity in­
volves fluid mechanics and solid mechanics. Each of these technical fields may 

be thought of as a special aspect of aeroelasticity.

Aeroelastic phenomena are not uncommon. They occur in everyday life: 

trees sway in the wind; flags and sails flap; suspension bridges and airplane 

wings flutter. However, attempts to develop a theory to understand them were 

made essentially by aeronautical engineers. Problems in aeroelasticity started 
did not attain the prominent role that they now play until the early stages 
of World War II. Prior to that time, airplane speeds were relatively low and 

the load requirements placed on aircraft structures by design criteria speci­

fications produced a structure sufficiently rigid to preclude most aeroelastic 

phenomena. As speeds increased, however, with little or no increase in load 

requirements, and in the absence of rational stiffness criteria for design, air­
craft designers encountered a wide variety of problems which we now classify 

as aeroelastic problems. A historical discussion of aeroelasticity, including its 

impact on aerospace vehicle design, can be found in Chapter I of Bisplinghoff 

and Ashley [7] and AGARD[64).

Although in the past, aeronautical problems were the focus in the field of 

aeroelasticity, applications are appearing at an increasing rate in other fields

2
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such as flows about bridges in civil engineering and fluid flows in flexible pipes 

in mechanical engineering. More details about the applications in several non­
airfoil fields such as plates and shells, turbomachinery and helicopters (ro­

tor systems) are presented in Dowell[18], Dowell et al.[19] and Dowell and 

Ilgamov[20].

1.2 Nonlinear Aeroelasticity

Dowell and Ilgamov[20] categorized aeroelastic models into three classes: fully 
linear models in which both the static equilibrium problem and the dynamic 

motion problem are treated by linear models, dynamically linear models in 

which the nonlinear static model and the dynamically linear model are used, 
and fully nonlinear models in which both the static and dynamic problems are 

nonlinear.

In the fully linear models, the deformed structure does not significantly 
influence its dynamic response and the steady flow field deviation does not 
appreciably change the unsteady, time-dependent aerodynamic forces. More­

over, the dynamic motions are sufficiently small that there are no significant 

nonlinear effects. As the models can be reduced to a  set of linear equations, 

the fully linear models are widely used in most classic approaches on aeroe­

lasticity. Within the classic works, theoretical work relies heavily on linear 

mathematical concepts, and experimental results are commonly interpreted 
by assuming that the physical model behaves in a linear manner.

For many years, fully linear models, both theoretically and experimentally, 

have been successful in providing approximate estimates to aeroelasticians. 

By studying such models, researchers established much of their understanding 

of aeroelastic phenomena such as divergence, flutter, control surface reversal, 

and gust response. These models are well presented in the now classic texts by 
Scanlan and Rosenbaum[73], Fung[23], Bisplinghoff et al.[8], and more recently 
by Forsching[22] and Dowell et al.[19].

If the deformed structure and/or the steady flow field do influence the 

subsequent dynamic response, a dynamically linear model has to be used. For

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



example[18j, if a plate is buckled from its initial flat configuration, its dynamic 
response may be significantly changed from that for the initially flat plate. An­

other example[33] is the dynamic aeroelastic behavior of a rotor blade which is 

often significantly modified by its deformed structure. Nonlinear static aeroe­

lasticity involves nonlinear aerodynamics and nonlinear structures. Nonlinear 
aerodynamics has to be considered when airspeed increases to high subsonic 

or transonic Mach numbers. Also, flow separation and shock oscillations can 

introduce phenomena such as limit cycle oscillations (LCOs) which classical 

aeroelasticity is unable to handle. Structural nonlinearities in airfoils arise 

from worn hinges of control surfaces, loose control linkages, and various other 

sources. Aging aircraft and combat aircraft that carry heavy external stores 

are more likely to be influenced by effects associated with nonlinear structures. 
Aircraft structures often exhibit nonlinearities that affect not only the flutter 
speed but also the characteristic of the motion itself.

For the phenomena involving small dynamic motions, the dynamically lin­

ear models are adequate. However, a fully nonlinear model will be more ap­

propriate if the dynamic motions are significantly large. Several examples of 
these models are given in Dowell and Ilgamov[20].

In this thesis, the emphasis is placed on the flutter analysis of aeroelas­

tic systems with structural nonlinearities. In order to limit the complexity of 

the aeroelastic system with structural nonlinearities, we consider a dynami­

cally linear model with Unear aerodynamics but nonUnear structures, i.e., a 

two-dimensional airfoil oscillating in pitch and plunge using subsonic aerody­

namics where approximate expressions for the force and moment are available. 

Extending the analysis to  more than two modes is straightforward, but the al­

gebra is considerably more complex. A detailed description of the physical 
and mathematical models and the structural nonUnearities is presented in the 

foUowing chapter. The subsequent section gives a literature review of the work 
that has been done on aeroelastic systems with nonUnear structures.

4
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1.3 A Review of Flutter Analysis on

Aeroelastic System s with Structural 

Nonlinearities

Although flutter is a dangerous phenomenon that may cause structural failure, 

it is possible for a system to approach instability without destructive results. 

Under the assumption of a linear model, the system will become unstable and 

its motion will grow exponentially with time as the magnitude of dynamic 
pressure or flight velocity passes a certain critical value. However, the extent 
to which the amplitude of oscillation grows actually depends on the nature 

of the stiffness characteristics of the system. If the system is nonlinear, as 

the stiffness characteristics change with amplitude of motion, oscillations may 

increase to some amplitude at which the system experiences a stable limit 

cycle oscillation (LCO). Thus, the efficiency of the design of aircraft wings and 
control surfaces may be increased by a flutter analysis technique accounting 
for these nonlinearities and by an understanding of their potential influence 

on the flutter mechanism.
An excellent review of some possible structural nonlinearities and their ef­

fects on aeroelastically induced vibration has been provided by Breitbach[9, 

10]. In general, structural nonlinearities may be classified as being either 

distributed or concentrated. Usually, distributed structural nonlinearities are 

governed by elastodynamic deformations that affect the whole structure. Con­

centrated structural nonlinearities, on the other hand, act locally and are com­
monly found in control mechanisms or in the connecting parts between wings, 

pylons, engines or external stores. The first attempt to study the effects of 

these structural nonlinearities was carried out by Woolston et al.[89, 90]. For 

general nonlinear dynamics, some subjects such as stability, bifurcation and 

chaos are commonly encountered[5, 26, 66, 67, 68, 74]. These subjects are re­
viewed by Lee et al. [52] particularly for nonlinear aeroelasticity. In this thesis, 
we consider only concentrated structural nonUnearities and investigate their 

effects on the aeroelastic behavior of aerosurfaces. As the concentrated struc-

5
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tural nonlinearities can be classified into three types, namely, cubic, freeplay 
and hysteresis, a review of each type will be given in the following subsections.

1.3.1 Cubic Springs

The effect of cubic nonlinearity in aeroelasticity was first investigated by Wool- 

ston et al.[89, 90] for a two-dimensional airfoil oscillating in pitch and plunge 

using an analog computer. A 2-DOF system was analyzed for hard and soft 

springs in the pitch degree of freedom, where the spring stiffness was repre­

sented by the sum of a  linear and a cubic term. Results were given in the 

form of plots of initial angular displacement versus flutter velocity. For a hard 

spring, the flutter boundary is a straight line at the flutter speed of the lin­

ear system. The flutter amplitude, a function of velocity, is self-limited and 

increases as velocity is increased beyond the flutter boundary. For the soft 
spring, on the other hand, the flutter is divergent at any velocity above the 
linear flutter speed and can be induced below the linear flutter speed by making 
the initial displacement sufficiently large as the soft spring has a destabilizing 

effect.

An alternate approach was suggested by Shen[75, 76] using the well-known 

Kryloff and Bogoliuboff[41] method in nonlinear vibration theory. The first 

approximation of Kryloff and Bogoliuboff[41], also known as the describing 
function method or harmonic balance method, is a method of obtaining an 

equivalent linear system so that traditional linear aeroelastic methods of anal­

ysis can be employed. The method assumes the existence of a periodic solution 

dominated by the fundamental harmonic. The amplitude of oscillation in the 

degree of freedom which contains the nonlinearity is prescribed and the critical 

velocity at which the specified oscillation will be sustained is then determined. 
However, Shen[75, 76] did not consider the effects of initial conditions on the 

flutter boundary.
Further investigation was conducted by Lee and LeBlanc[51] on the ef­

fects of initial pitch displacement on the flutter boundaries, as well as the 

amplitudes of pitch and plunge motion of LCO for various system parameters.

6
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Houbolt’s[34] implicit finite-difference scheme was employed throughout their 

study. By using incompressible aerodynamics, the aeroelastic equations for a 

two-dimensional airfoil oscillating in pitch and plunge are written as a pair 

of simultaneous finite difference equations. The effect of initial conditions on 

nonlinear flutter was studied numerically by varying the displacement from 
equilibrium of the pitch angle at the start of airfoil motion. Their conclu­

sions agreed with the limited results given by Woolston et al.[89, 90] on the 
behavior of the flutter boundaries for both soft and hard springs. Lee and 

LeBlanc[51] also investigated the effects of the airfoil/air-mass ratio, the un­

damped plunge/pitch natural frequency ratio, the distance between elastic axis 

and the center of mass of the airfoil, and various stiffnesses of the nonlinear 
spring on the airfoil response.

Some experiments on the existence of LCO for the 2-DOF model with 
cubic soft springs were performed by O’Neil et al.[70]. By comparing their 
results with those given by Lee and LeBlanc[51], they found that the stability 
boundary is sensitive to initial conditions, and the amplitude and frequency 

of the airfoil response depend primarily on the free-stream velocity.

Zhao and Yang[94] studied the chaotic behavior of a self-excited aero­

dynamic system with a  cubic nonlinearity using the equivalent linearization 

(describing function) method and a time marching method which employed 
Runge-Kutta numerical integration. By using quasi-static aerodynamics in 

which the lift and pitching moment depend on the instantaneous pitch angle, 

they found that chaos would occur for velocities above the linear flutter speed.

The same techniques were used by Price et al. [72] on a similar model with 

aerodynamic forces obtained from a complete unsteady analysis using Wag­
ner’s function. They noticed that the difference in aerodynamics had a con­

siderable effect on the dynamic response of the airfoil. Chaos resulting from 

certain system parameters was further investigated by using techniques such 
as power spectral analysis, phase-space plots, Poincare maps, and Lyapunov 

exponents. Furthermore, LCO regions were detected for velocities well below 

the divergent flutter boundary.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



While different numerical and analytical techniques have been employed to 
investigate cubic nonlinearity, a series of approaches based on Duffing’s equa­

tion were also developed. Cubic nonlinearities in 1-DOF mechanical and elec­
trical systems can often by represented by Duffing’s equation, which has been 

the subject of investigation for many years. Some classical techniques and re­

sults related to Duffing’s equation can be found in Stoker[78] and Hayashi[31], 

and more recent studies dealing with chaotic characteristics of this equation 

are given by Ueda[83] and Thompson and Stewart[81].

Some numerical simulations were carried out by Jones and Lee[38] to 

demonstrate the sensitivity to initial conditions in the jump phenomenon in 
Duffing’s equation, a 1-DOF system with a cubic nonlinearity. The dynamic 

response of coupled Duffing’s equations, a 2-DOF system with cubic non- 

linearities, was investigated analytically and numerically by Wong et al.[87]. 

Their results suggest that the amplitude-frequency curve has a much more 
complex structure compared to that of a 1-DOF system. The coupled Duff­

ing’s equations were further investigated by Gong et al.[25], who showed that 
harmonic, quasi-periodic, and chaotic motions can exist for system parame­
ters corresponding to those commonly used to analyze aeroelastic behavior of 

aircraft structures. The equations studied by Wong et al.[87] and Gong et 

al.[25] were derived for an airfoil oscillating in pitch and plunge without aero­

dynamic terms to explore the dynamics of coupled Duffing’s equations before 

introducing further complexities when aerodynamics forces are included.

For a two-dimensional airfoil with cubic nonlinearity placed in an incom­

pressible flow, by introducing four new variables, Lee et al.[46] reformulated 

the aeroelastic equations to a set of eight first-order ordinary differential equa­

tions. This approach allows existing methods suitable for the study of ordinary 

differential equations[U, 12, 21, 24, 27, 85] to be used in the analysis. In their 

studies, only the harmonic solutions were considered, and the method of slowly 
varying amplitude was used to investigate the dynamic response of the system 
with an external excitation. The equilibrium points were computed, and a 
linear analysis was carried out to determine their stability. The results were

8
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subject to the assumptions that higher harmonics in the response are small and 
the amplitudes are slowly varying functions of time such that the second-order 

derivatives can be neglected. They also found that the amplitude-frequency 

response curve of a 2-DOF system has a much more complex structure com­

pared to that of a 1-DOF system. It is worth noting that harmonic solutions 
may not exist for certain values of system parameters for a  2-DOF system. 

However, in those cases in which harmonic solutions are found, there is a good 
agreement between the theoretical results and numerical simulations. More 

examples and discussions are given in Lee et al.[47, 48] and it turns out that 

the technique developed in [46, 47, 48] to determine the amplitude-frequency 

relationship and to analyze the stability of the equilibrium points can be used 
for more general cases.

The method developed by Wong et al.[87] and Gong et al.[25] for coupled 

nonlinear mechanical systems was later extended by Lee et al.[49, 50] to an­

alyze aeroelastic systems with cubic nonlinearity for soft and hard springs. 

For a soft spring, the divergence flutter boundary varies with initial condi­

tions. For a hard spring, on the other hand, the nonlinear flutter boundary is 

independent of initial conditions and divergent flutter is not encountered; in­
stead, limit-cycle oscillation occurs for velocities greater than the flutter speed. 

Also, a Hopf-bifurcation was observed for the hard spring. Investigation of pre- 
and post-Hopf-bifurcation is carried out using methods developed for study­
ing stability near equilibrium points of nonlinear oscillating systems[6, 42, 84]. 

Furthermore, the amplitudes of pitch and plunge motions of LCO in post- 

Hopf-bifurcation are predicted using an asymptotic theory, and the frequency 

is estimated using several approximate methods. Their results are compared 

with numerical simulations using the fourth-order Runge-Kutta scheme.

1.3.2 Freeplay Springs

Bilinear or freeplay springs, another type of concentrated structural nonlin­

earity, have also received considerable attention in the literature. It was first 

considered by Woolston et al.[89, 90], who showed numerically and experimen-

9
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tally that, depending on the initial pitch displacement, an LCO may occur for 

velocities well below the linear flutter velocity. They also showed that even at 

a fixed airspeed, the magnitude of LCO could change dramatically as the ini­

tial pitch displacement changes. The same result was obtained by Shen[75, 76] 

using the harmonic balance or describing function method. Moreover, Shen 
discovered the significant influence of the amount of the preload on the stability 

boundaries.

The freeplay nonlinearity was hardly touched in the next twenty years 

or so until the dynamics of a  missile control surface containing structural 

freeplay nonlinearities was investigated by Laurenson and Tm[43] in 1980. 
In their study, the missile control surface was exposed to a subsonic flow 
represented by a simplified aerodynamics. By using the describing function 

method, they concluded that the presence of a freeplay nonlinearity tends 

to cause the effective system stiffness to be less than tha t of a  linear system. 
They also observed some stable LCOs with small amplitudes beyond the linear 

flutter speed.
One year later, McIntosh et al.[62] analyzed a 2-DOF airfoil with freeplay 

structural nonlinearity in both pitch and heave directions and with the aero­

dynamic forces being predicted from an approximation to Wagner’s function. 

Theoretical results agree well with those from experiments in terms of both 

the airspeed and frequency at the stability boundaries. In addition, they con­

cluded that the behavior of the airfoil depends on the initial pitch displacement 

by showing one case in which an LCO was obtained for small displacements 

while a divergent flutter occurred for larger displacements.
Similar to the approach used by Lee and LeBlanc[51] for the aeroelastic 

equations for a two-dimensional airfoil oscillating in pitch and plunge with 

a cubic spring, the same system with freeplay was written in finite difference 

form by Lee and Desrochers[44]. For freeplay with nonzero preload, three types 

of oscillations, namely damped motions, LCOs, and divergent motions were 
observed. The location of the LCO flutter boundary depends on the airfoil 

parameters in addition to  the values of the spring preload and freeplay. Also,

10
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for some combinations of preload and freeplay, there are pockets of LCO in 
the damped oscillation regions. For freeplay with zero preload, however, only 
LCOs and divergent motions were found, and the divergent flutter boundary 

occurred very close to that for the linear flutter case.

The same model, but with the aerodynamics obtained using Theodorsen’s 
function, which is strictly correct only for harmonic motion, was considered by 

Yang and Zhao[93]. Theoretical results were obtained using both numerical 

simulation in the Laplace domain and harmonic balance methods. Experimen­

tally and theoretically, they found that with a freeplay in the pitch direction, 

LCOs were obtained for airspeeds below the linear flutter speed. Furthermore, 

from experiments, two stable LCOs of different amplitudes were detected for 

certain airspeeds: one is dominated by pitch motion, the other by heave mo­

tion with a higher frequency and a larger amplitude. However, Yang and Zhao 

did not distinguish the velocity regions where one or two LCOs occurred or 
the difference in initial conditions which led to the different LCOs.

Some interesting studies on the flutter characteristics of the CF-18 aircraft 
were carried out by Lee and TVon[45] using the describing function method. 

Different nonlinearities located at the CF-18 wing-fold hinge, the outboard 

leading-edge flap, and the outboard leading-edge-flap hinge were investigated 
by treating them as bilinear springs or freeplays based on ground test data. 
Conditions in which divergent motion or LCO occurs and the effects of struc­

tural nonlinearities on flutter characteristics were well studied.

Hauenstein et al.[29, 30] investigated experimentally and theoretically a 

rigid wing flexibly mounted at its root with freeplay nonlinearities in both the 

pitch and heave directions. In the theoretical analysis, the aerodynamic forces 

were approximated using an unsteady subsonic doublet lattice technique, and 

the resulting equations were integrated numerically. Experimentally, time his­

tories of both the pitch and heave displacements were measured. Theoretical 
results agreed very well with those from experiments for one specific case, in 
terms of time histories, and their spectral and phase-plane plots. They con­

cluded that chaotic motion is not obtainable with a  single root nonlinearity

II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and that the range of chaotic motion is deeply dependent on the magnitude 
of the freeplay region.

Tang and Dowell[79] studied the flutter instability and forced response of 

a nonrotating helicopter blade with a NACA-0012 airfoil and a freeplay struc­

tural nonlinearity in pitch. They considered three typical combinations of 
linear/nonlinear structure with a linear/nonlinear (ONERA[82j) aerodynamic 

model. For the model with nonlinear structure and linear aerodynamics, LCOs 
were obtained for velocities below the linear flutter boundary. Furthermore, 

the harmonic balance method that they used detected two LCOs with different 

amplitudes for velocities within a narrow range. In this range, chaos was also 

found numerically. For the model with a linear structure and nonlinear aerody­

namics and with external forces, chaos was observed as well. Considering the 

forced oscillation of a model with both nonlinear aerodynamics and freeplay, 

the response could be either periodic, chaotic, or divergent, depending on the 
initial conditions, especially on the flapping motion initials.

A similar helicopter blade model was also considered by Tang and Dowell[80] 
for a freeplay torsional stiffness nonlinearity. For the aerodynamics, the two- 

dimensional incompressible Theordorsen aerodynamic model, or Roger’s trans­

fer function were used. An experiment carried out at Duke University’s low 

speed wind tunnel showed good agreement between theory (via numerical sim­
ulations) and experimental result for periodic, limit cycle and chaotic motions 

and forced response behavior and for the effects of an initial disturbance on 
nonlinear flutter instability.

Using a 2-DOF typical section model coupled to an unsteady Euler equa­

tions solver, Kousen and Bendiksen[40] observed limit cycle behavior in past 

transonic flutter calculations. The freeplay structural nonlinearity was added 
to the typical section model, and its effects on the dynamic stability problem 

were accessed. In addition, Umit cycle behavior in the swept-wing model of 
Isogai[36] was demonstrated and related to the observed presence of multiple 
flutter points in the transonic dip region. By presenting preliminary results, 

they showed the effects of freeplay on the observed Umit cycle behavior in the

12
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transonic regime, where strong aerodynamic nonlinearities were present.

Price et al.[72] investigated a two-dimensional airfoil subject to incom­
pressible flow with a freeplay structural nonlinearity in pitch. The resulting 

equations were analyzed using a finite difference technique with the particular 

aim of examining the sensitivity of the airfoil aeroelastic response to its initial 

conditions. They found that chaotic motion could exist for a  single structural 
nonlinearity in the pitch motion as opposed to the results in[30]. However, 
chaos was detected only for specific airfoil parameters and was confined to 

small regions in the stability boundary diagram.

A significantly different approach was developed by Alighanbari and Price[l], 

who performed a bifurcation analysis for the same model. First, the freeplay 
model was approximated by a third-order rational polynomial curve, and then 

the integral terms resulting from the aerodynamics were removed by twice 

differentiating the original equations. The nonlinear equations of motion were 

either integrated numerically using a fourth-order Runge-Kutta method or an­
alyzed using the AUTO [17] software package. By using both methods, regions 

of period-one LCOs were detected for velocities well below the linear flutter 
boundary and regions of period-two and period-four LCOs were observed for 
the velocities below the main region of period-one LCOs. Bifurcation diagrams 

showing both stable and unstable periodic solutions were calculated with the 

help of AUTO, and the types of bifurcations were assessed by evaluating the 
Floquet multipliers.

As the freeplay model consists of three branches of linear functions, the 

system can be regarded as a combination of three linear subsystems. Corre­

spondingly, the state-space of the system can be divided into three distinctive 

regions. The points where the motion flow passes from one region to the other 

are referred to as switching points. The location of the switching points is 

crucial to the dynamic response as addressed by Lin and Cheng[55]. Sev­

eral numerical approaches, such as Unear interpolation or bisection in Lin and 
Cheng[55] and the adaptive time steps in Bayly and Virgin [3], have been de­

veloped to locate the switching points.

13
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Noticing the importance of the switching points, Conner et al.[16] investi­
gated a 3-DOF aeroelastic typical section with control surface freeplay. The 

effect of the freeplay on the system response was examined numerically and 

experimentally. The numerical method used is a standard Runge-Kutta algo­
rithm in conjunction with Henon’s method[32). The details of the numerical 

integration accounting for the abrupt stiffness change were given by Conner 
et al.[15].

1.3.3 Hysteresis Nonlinearities

Much less literature has been found on the study of hysteresis nonlinearities. 
The first attempt to study such effects in aerolasticity was carried out by 
Woolston et al.[90, 89], who numerically determined the flutter boundaries for 

a two-dimensional airfoil placed in an incompressible flow. Some examples 

were re-examined by Shen and Hsu[77] and Shen[75, 76] using the describing 

function method. This method was also used by Breitbach[9, 10] to analyze 
aircraft structures with hysteresis.

A numerical simulation using the fourth-order Runge-Kutta time-integration 
scheme was carried out in a recent study by Chan[14]. Only a hysteresis non- 

linearity in the pitch degree of freedom was considered, and 19 cases were 

carefully studied for various system parameters and freeplay constants.

The flutter boundary diagram obtained by Chan[14] is similar to that in 

Woolston et al.[90], but the numerical simulations give more details on the 
boundary curves and the existence of isolated pockets of LCOs inside the 

main flutter boundary. The flutter boundary shows that the oscillations be­
come divergent for a velocity ratio larger than 1. In the LCO region, the 

motion seems to be a sinusoid with a dominant fundamental and possible very 

weak higher harmonics for some values of the velocity ratio approaching the 

convergent region of the flutter boundary. This shows that the assumption of a 

dominant frequency in the harmonic balance or describing function technique 
is reasonable for the motions in this LCO region. However, inside one of the 

LCO pockets, the characteristics of the LCO are different from those in the

14
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main LCO region. The amplitudes are smaller and the oscillation is periodic 
but the presence of higher harmonics is clearly noticeable, which suggests that 
the assumption in Shen’s[75] harmonic balance analysis is not applicable and 

higher approximations such as the sinusoidal method described by Johnson[37] 
may be used.

Chan[14] then discussed the relationships between the pitch amplitude/ 

frequency and the velocity ratio for some specific system parameters. She 

concluded that the pitch amplitude and frequency are independent of the initial 

conditions, which is not true as we will show in Chapter 5. Chan[14] also 

studied the effect of preload on convergent motions, LCOs, and chaos. The 

study shows that a hysteresis nonlinearity with small ratios of preload over 

freeplay for a certain set of airfoil parameters enlarges the regions of chaotic 

motion beyond those for the freeplay studied by Price et al.[71j. Finally, the 

effects of airfoil parameters (freeplay region, natural frequency ratio, preload 
and airfoil/air mass ratio) on flutter boundaries were discussed in great detail.

1.4 M ain Contributions

In this thesis, we mainly focus on analytical techniques for the flutter analysis 

of a self-excited 2-DOF aeroelastic system with all three types of structural 

nonlinearities. Numerical simulations have also been given to compare the 

results with those obtained from analytical methods.
The physical model of a 2-DOF airfoil motion used in this thesis is pre­

sented in Chapter 2. The mathematical model and its non-dimensional form 

for the airfoil subject to a subsonic flow are then formulated. By introducing 
four new variables, we then transform the two-dimensional integro-differential 

equations into a set of eight first-order ordinary differential equations. In the 
last section of Chapter 2, the descriptions and the mathematical models for 

three classical types of concentrated structural nonlinearities are presented.

Our first contribution concerns the prediction of the amplitude and fre­
quency of the LCO in post-Hopf bifurcation for an aeroelastic system with a 
cubic hard spring and without any external forcing term. As reported in Lee et
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al.[49, 50], for a cubic hard spring, a supercritical Hopf-bifurcation is detected 

and the bifurcation parameter is the velocity with the linear flutter speed 

as the bifurcation value. For a self-excited system, Lee et al.[50] derived an 
amplitude-frequency relationship by using a  slowly varying amplitude method. 

However, the prediction of the amplitude depends on the frequency of the LCO 

and for a self-excited system, there is no reference frequency. Several approx­

imation methods have been tried for the prediction of the frequency, but the 

results were not satisfactory except in the region close to the Hopf point. Con­

tinuing their study to overcome this limitation, we apply the center manifold 

theory and the principle of normal form. Consequently, a  frequency prediction 
formula for the self-excited system is derived. The numerical simulation has 

been carried out by using the fourth-order Runge-Kutta method, and an ex­

cellent agreement between the numerical result and the analytical prediction 

is achieved. The analysis and result are summarized in Liu et al.[56, 57] and 

Wong et al.[88]. Details of the center manifold technique and discussions of 

the results are presented in Chapter 3.
Our second contribution concerns the effects of freeplay nonlinearities. As 

discovered by McIntosh et al.[62], Yang and Zhao[93], Lee and TVon[45], Tang 

and Dowell[79], Price et al.[71] and Conner et al.[16], the limited amplitude 

flutter is strongly dependent on the initial conditions of the airfoil. The classi­
cal analytical technique, describing function or harmonic balance (Shen[75,76], 

Breitbach[9, 10], Laurenson and ,Ifri[43], Yang and Zhao[93], Hauenstein et 

al.[30], Tang and Dowell[79] and Price et al.[72]) does not permit a full explo­

ration of this effect. The time marching integration (Lee and Desrochers[44], 
Yang and Zhao[93], Kousen and Bendiksen[40], and Price et al.[71, 72]) takes 

into account the initial conditions, but does not consider the importance of 

switching points. Some alternative integration schemes have been used by Lin 

and Cheng[55] and Conner et al.[16] to locate the switching point numerically. 

We develop, in Chapter 4, a  technique which can be used to both locate the 
switching point analytically and take into account the initial conditions. Two 

procedures using the point transformation method are presented in section

16
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§4.3 for the aeroelastic system with a freeplay model. The results and discus­
sions are presented in section §4.4. This study has also been summarized in 

Liu et al.[58, 59] and Wong et al.[88].
Our third contribution is related to the effects of hysteresis nonlinearity on 

flutter analysis. In a hysteresis model, the location of switching points and 

the initial conditions are as important as they are in a freeplay model. Since 

the hysteresis nonlinearity can be represented by the superposition of two- 
freeplays, two procedures are also developed for this model by extending our 

work on the freeplay model. Details of this work are presented in Chapter 5 

and are also summarized in Liu et al.[60].

While time integration methods have often been used to study the re­
sponse of an aeroelastic system, the importance and necessity of analytical 

techniques are presented in Chapter 6 in which a  detailed study of the numer­

ical error resulting from the Runge-Kutta method are reported. For a cubic 
model, through some standard theoretical analysis, the numerical scheme is 
stable, and the numerical error can be controlled within a certain accuracy 

for sufficiently small time steps. For a freeplay model, however, the standard 

analysis cannot be used to  prove the stability of the numerical scheme and 

the numerical error cannot be estimated analytically. Furthermore, the stan­

dard time-integration scheme cannot precisely locate the switching point. A 

detailed study of an example of a freeplay model shows some qualitative dif­
ferences between the numerical results and the analytical results obtained by 

using the point transformation method. Details of this examination are also 

presented in Chapter 6 and have been summarized in Liu et al.[61]. This forms 

our fourth contribution.

Finally, some conclusions and remarks are made in Chapter 7. Explana­

tions of the symbols used in this thesis are given in Appendix A. The main 
result of the center m a n i f o l d  theory related to our application in cubic model 

is outlined in Appendix B.

17
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Chapter 2

Equations for Airfoils w ith  
Structural Nonlinearities 

and Subsonic Aerodynamics

2.1 Introduction

An instability mechanism known as flutter is one of the most interesting aeroe­
lastic phenomena among the potential sources of instability and vibration 
problems for aircraft wings. Prom an analytic point of view, the mutual in­

teraction of structural motion and aerodynamic forces may lead to energy 

extracted by the structure from the air-flow. Once this energy is greater than 

that which can be dissipated via various sources of damping, flutter, which 
typically involves a combined bending and torsional response of the wing, will 
occur.

The classical approach to this phenomenon assumes linear aerodynamics 

and structures which reduce the problem to a solution of a  set of linear equa­

tions. Although the flutter boundaries are often well predicted, linear aerody­
namics usually give insufficiently accurate results when airspeed increases to 
high subsonic or transonic Mach numbers. Also, effects associated with non­
linear structures may arise from worn hinges of control surfaces, loose control 
linkages, material behavior, and various other sources. Usually, these types

18
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of structural nonlinearities can be approximated by one of the three classical 
structural nonlinearities: cubic, freeplay and hysteresis.

In this thesis, a two-dimensional airfoil oscillating in pitch and plunge sub­

jected to subsonic aerodynamics but with structural nonlinearities is investi­

gated. Extending the analysis to a three dimensional model is straightforward, 
but the algebra is considerably more complex.

The formulation of the coupled equations for a two-dimensional airfoil mo­
tion is given in § 2.2. It turns out to be a system of integro-differential equa­

tions with two variables. In § 2.3, a reformulation of the original system of 

equations is performed, so that the rich theoretical result for systems of or­
dinary differential equations can be applied. Finally, three classical types of 

concentrated structural nonlinearities, which will be further investigated in the 

next three chapters, are introduced in § 2.4.

2.2 A Two-degree-of-freedom Airfoil M otion

For the physical model of a two-dimensional airfoil, we choose the two-degree- 

of-freedom airfoil motion oscillating in pitch and plunge, which has been em­

ployed by many authors. The symbols used in this model are given in Fig. 2.1. 
The pitch angle about the elastic axis is denoted by a, positive with the nose 
up; the plunge deflection is denoted by h, positive in the downward direction. 

The elastic axis is located a t a distance a^b from the mid-chord, while the 
mass center is located at a distance xab from the elastic axis. Both distances 

are positive when measured towards the trailing edge of the airfoil.

The aeroelastic equations of motion for linear springs have been derived 

by Fung[23]. For nonlinear restoring forces with subsonic aerodynamics, the 

coupled equations for the airfoil in non-dimensional form can be written as 
follows:

r  +  *««" +  2 0 ^  +  ( ^ ) 2G (0  =  -  ± C l(t ) +  ^  
(2.1)
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mean position

mid-chord /  
elastic axis

centre of mass

Figure 2.1: Two-degree-of-freedom airfoil motion

where £ = h/b is the non-dimensional displacement and th e ' denotes differen­

tiation with respect to the non-dimensional time r  defined as

Ut 
T ~ b

U* is a non-dimensional velocity defined as

u ' = k

and d> is given by
-u  =  —

where u>̂ and u/a are the natural frequencies of the uncoupled plunging and 

pitching modes respectively. Q  and (a are the damping ratios, and ra is the 

radius of gyration about the elastic axis. G(£) and M (a)  are the nonlinear 
plunge and pitch stiffness terms respectively. P(r) and Q(r) are the external 

applied force and moment, m  is the airfoil mass per unit length and n is the 
airfoil-air mass ratio. C l ( t )  and C m (t ) are the lift and pitching moment 

coefficients respectively. For an incompressible flow, the expressions for Cx(r)
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and C m (t ) are given by [23]:

CUt ) = * « "  -  aha" + a ') +  2*{<*(0) +  f  (0) +  ( i  -  a»)a'(0)}«(r)

+ 2n I  ^(T _  <r)(a '(<T) + f " M  +  ( 5  -  “I.)“ "(<'))*'

Cu (t ) = » ( i  +  a » ) { « ( 0 )  +  { * ( 0 )  +  ( i  -  « J a ' ( » ) W r )  ( 2 . 2 )

+  ir(^ + “*) ^ ( t  -  <*){<*'(») +  ? V )  + ( 5  “  a»)a"(ff)}dff

where the Wagner function 0(r) is given by

f a r )  — 1  — 1{}\e~eiT — fa e ~ £2T

and the constants fa = 0.165, fa  =  0.335, £\ =  0.0455, and e% =  0.3 are 
obtained from Jones[39].

2.3 Model Reformulation

Due to the existence of the integral terms in (2.2), which turn the original 

system Eq.(2.1) into a system of integro-differential equations, it is difficult to 

study the dynamic behavior of the system analytically. In order to eliminate 
the integral terms, Lee et al.[46, 47] introduced four new variables:

w \  =  f  e - e i *T-<r) a ( a ) d < 7, W2 =  f  e ~ e2 T̂~ ^ a ( a ) d a ,
Jo Jo

w3 =  f  e~ei T̂~a^(a)d<T, u/4 =  f  e~€2̂T~â ((r)da.
Jo Jo
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Then, the system Eq.(2.1) can be rewritten in a general form containing only 
differential operators as:

d>
C o £ "  +  cxa" +  (c2 +  2Q— )g  +  c3a ' +  c4f

+  csa +  CeWi 4- c7w2 +  c8u/3 +  cgu/4 +  (^ - )2G(^) =  / ( r )
U (2-1)

dot," +  did" + d2£  +  (d3 +  2 £a— )oi' +  d4f

+ dsa  + deWi + d7w2 +  d8w3 +  dgwA + ( ^ ) 2A/(a) =  g(r)

The coefficients Co, cx, e g ,  do, d\ , ..., dg are given as follows:

1 ah 2 . ,  , , xCo =1 + - ,  c i = x a  , c2 =  - (1  - i p i -  2 ),H n n

1 2 
C3  = - ( 1  +  ( 1  -  2ah)(l  -  V'l -  ^ 2 )), c4 =  +  €2 ^ 2 ),

2 1 2 1
C5 = - ( 1  - i p i - i p 2 +  ( - ~  ah)(€XiJ) 1 +  £2^2)), Co =  -£1^ 1(1  -  £ i ( -  -  ah)),

f t  4* f t

2 1 2 2
C7 = -e 2ip2( 1 -  e2( -  -  O h )), c8 =  — efy 1, eg =  £2^2 ,

f t  & f t  f t

, xa o.h , 1 l + 8 a£ l +  2 a/,. .
Co = - 7 ------2 ’ di =  l + a 2  ’ d 2  = ------------ ( 1  — 0 ! - ^ 2),a 8 /X7 -2

j  l - 2 ah (l +  2 ah) ( l - 2 afc) ( l - V ' i  -  ^ 2 ) j  l + 2 afc, # t
03 = - r — 5----------------------------- ^— 5---------------------- . d 4 = ---------- 5— (fiV 'i +  * 2 W ,

2 /ir2  2 /xr* fjirl

d5 = -  l .+  f o fl _  ^  _  ^ 2) _  ( 1  +  2 fl*)(l ~  2 ah ) ( ^ 1 £ 1 -  ip2e2)
2 /if2

. _  (l +  2 afc)V’lelr  . 1  (l +  2 afc)^ 2 e2  . 1

 ^ 2  (x -  €H2 “  afc" ’ -------- ^ 2 ------ I1 “  ' 2  _

j  _ ( l + 2 afc)^ i € 2  j  ( 1  +  2ai,)ip2$
® 2  > 0fir*

f { r )  and g(r) are functions depending on initial conditions, Wagner’s function, 
and the forcing terms, namely,
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/ ( T) = ~ ( ^  ~~ +  £(0)M lele C1T +  ^2£2e C2T) +

, ( r ) =  _ ( l ^ ) / ( r ) +  W
2r2 ' w  mU2r l  '

By introducing a variable vector X  =  (xj, x2, ..., xg)T with Xi =  a, x2 = a', 
X3 =  £ ,  x4 =  X 5  =  u / i ,  Xg =  i t / 2 , X 7  =  1 1 /3 ,  and x8 =  u/4, the coupled 

equations given in Eq.(2.1) can be written as a set of eight first-order ordinary 

differential equations written in vector form:

A" =  /(X ,r ) .

This approach allows existing methods suitable for the study of ordinary dif­

ferential equations to be used in the analysis. In this study, we assume that 
there is no external forcing, i.e. Q ( t ) =  P ( t ) =  0 in Eq.(2.1). For large val­

ues of r  when transients are damped out and steady solutions are obtained, 

/ ( r )  =  0 and g(r) =  0. Thus, the system can be expressed as X '  =  f (X ) .  In 

terms of vector components, Eq.(2.1) can be expressed as

X| =  x2

4  =  a2iXi -I- (a2 2  — 2 jcoC ,^)x 2  +  0 :2 3X3

+(<*24  +  2 jd o Q jfz ) x 4 +  <*25^5  +  <*26^6  +  0 .27x 7

+UMX8 + j(do(fc)2G(x3) -  c o (^ )2Af(x1)) 

* 3  =  X4

4  =  041X1 +  (fl42 +  2jCi(ajj;)x2 +  043X3

+(<*44  ~  2 j < f l C j ^ v ) X 4  +  0 4 5 X 5  +  0 4 6 X 6  +  0 4 7 X 7

+o48x8 +  j{cx{ ± ) 2M (xx) -  d i ( ^ ) 2G(x3))

4  =  X! -  eix5 

Xg =  xi -  e2x6

X7 =  x3 -  eix7 

x'b =  x3 -  e2x8 .

(2 .2)
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The expressions for j ,  a n , ..., 0 2 8 , «4 i> —, <*48 are given by

j  — (c o d i — c i d o ) ~ l , 021 =  j ( —dsC o +  c 5d o )  , 022 =  j ( —dsCo  +  c 3d o )  ,

«23 =  j ( ~ d 4Co +  C4d o )  , O24 =  j { —d2CQ +  0 2 ^ 0 ) , 025 =  j(~d% C Q  +  C gdo) ,

026 =  j ( - d 7Co +  C jd o )  , 027 =  j ( —dgCo +  Cgdo) , 028 =  j ( —dgCo +  C gdo) ,

041 =  j ( d s C i  — c $ d i )  , 042 =  j ( d 3C \ — c 3d 4) , a 43 =  j ( d 4Ci — c 4d i )  ,

044 =  j  {d ifix  — c * d \ )  , 045 =  j{ d g C \  — c g d i )  , a 46 =  j ( d 7Ci — c 7d { )  ,

047 =  j{d g C \ — c% d\) , a 48 =  j ( d g C i  — c g d i )  .

2.4 Structural Nonlinearities

In this thesis, we consider only concentrated nonlinearities, which can be clas­
sified roughly into three types: cubic spring, freeplay and hysteresis. The 

structural nonlinearities are represented by the nonlinear functions G(:r3) and 

M (x  1 ) in system Eq.(2.2).

Force

Displacement

Force

Displacement

Figure 2.2: General sketch of a cubic spring: (a), cubic hard spring; (b). cubic 

soft spring.

2.4.1 Cubic Springs

A thin wing or propeller blade which is being twisted will most likely behave 
as a cubic spring. Depending on the temperature and initial conditions, the 
nonlinearity can be a hard or soft spring type. Sketches for both types of cubic
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nonlinearities are shown in Fig. 2.2. For a cubic spring, M{x\) is given by

where 0a and 0a3 are constants. When 0d» >  0, M{x{) represents a cubic 

hard spring as shown in Fig. 2.2(a), while it represents a cubic soft spring 
(Fig. 2.2(b)) when < 0.

Figure 2.3: General sketch of a freeplay spring: (a), without any preload; (b). 
with a preload.

2.4.2 Freeplay Springs

If the main cause of nonlinearity is backlash in loose or worn control surface 

hinges, such as in power-operated control systems and spring-tab systems, the 

nonlinearity exhibits a freeplay with or without preload characteristic as shown 

in Fig. 2.3. For a freeplay model, M{x\) is given by

Mf  -  1) x i >  a /  +  S 

where the preload Mq, the freeplay S, the beginning of the freeplay a / ,  and 
M f  are constants.

2.4.3 Hysteresis Nonlinearities

If both friction and backlash have to be considered, for example, for sweepable 
wings and sweepable wing-mounted stores such as on the F- l l l  aircraft, we

(2.1)

Displacement

x i < a f
< * / <  <  < * / +  <5 (2.2)
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Displacement

/ I

Figure 2.4: General sketch of a hysteresis spring.

have a hysteresis nonlinearity as shown in Fig. 2.4. In the mathematical model, 
for a hysteresis nonlinearity, M (x  i) is given by

direction. The preload Mo, the beginning of the freeplay a / ,  and the freeplay 
6 are constants.

Here, we give the expressions for M(x\) in the pitch degree-of-freedom. 
Similar expressions for G(xz) in the plunge motion can be written by replacing 
xi with 1 3 .

The principal interest for the aeroelastician is the amplitude and frequency 

of the limit cycle oscillations. The next three chapters, Chapters 3, 4 and 5, 
include the details of the mathematical analysis to predict the amplitude and 

frequency of LCOs for the above three types of structural nonlinearities.

xi  — atf +  M0 

X\ +  otf — Mo

*1  <  OLf T

Xi > - a f  |

-M o

X\ — a /  — S + Mo xi > atf + 8 |

X i + a f + 8  — Mo x i < —a f  — 5 l

where t  or j  denotes that the motion is increasing or decreasing in the x\-
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Chapter 3 

Cubic Springs

3.1 Introduction

In this chapter, we concentrate on the LCOs of a 2-DOF aeroelastic system 
with structural nonlinearity represented by the following cubic hard spring 
forces:

M (xi) = paxi  + /3a3x\, G(x3) = fcx3 +  /%»x\. (3.1)

When the system is subject to an external forcing term with a driving fre­

quency u), Lee et al.[46] derived analytical formulas that provide amplitude- 

frequency relationships for the pitch and plunge motion respectively. However, 

for a self-excited system (i.e. in the absence of external forcing term), the ref­

erence frequency a/ is not known, and thus the motion cannot be determined 
from the amplitude-frequency relationships they derived. In [46], the frequency 

u  of the motion for the self-excited system was approximated by the linear fre­

quency at the Hopf point U*/Ul =  1, by the local frequency at a given U*/Ul 
or by the frequency from the Jacobian matrix, but the results are not satisfac­

tory except when the velocity U* is very close to the linear flutter speed I/£. 
To overcome this limitation, we apply the center manifold theory of Carr[12] 

and the principle of normal form[85] to derive a frequency relation for the self­
excited motion of a two DOF nonlinear system. Using the frequency relation 
together with the amplitude-frequency relationships, LCOs for the self-excited 

system can be predicted analytically. Numerical simulations are carried out
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to compare the results with those obtained from the analytical predictions.
A general procedure is discussed in § 3.2 and § 3.3 to  derive the reduced 

system on the center manifold and the normal form for the aeroelastic system 

respectively. In § 3.4, the result of the amplitude-frequency relationships for 

the aeroelastic system is presented. The simulations for several test examples 
are then discussed in § 3.5, showing that the analytical prediction is in excellent 
agreement with the numerical result. Finally, some concluding remarks are 

presented in § 3.6.

3.2 The Reduced System  on A Center Mani­

fold

Following the analysis presented by Lee et al.[46], the bifurcation parameter 

is associated with U*, and the bifurcation value is (/£, which is the value of 

the linear flutter speed. To study the dynamic response of the system, we 
introduce a perturbation parameter 8 such that

IF =
When this expression is substituted into Eq.(2.2), an autonomous system with 
the perturbation parameter is obtained, i.e, X '  =  f ( X , 5). The equilibrium 

points are then evaluated from / ( X , 8) = 0. Without loss of generality, we 

assume the origin to be the equilibrium point. The original system Eq.(2.2) 

can now be rewritten as:

{
X ’ = A  • X  + B(8) ■ X  + (1 -  8)2F (X ) ^

8' =  0

The matrix A  is an 8 x 8 Jacobian matrix evaluated at the equilibrium point 

and at the bifurcation value 8 = 0. The second and the third terms of equation 

Eq.(3.1) are nonlinear in X  and 6. The expressions for A, B(8) and F  are given 
as follows:

a = ( A h  ' M  B = ( Bli ' M ,
V ^21 A2 2  /  \  A2 1  A<1\ )
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with

A n  =

1 0 0 0  ^ f 0 0 0 0  >

<*21 — &21 <*22 — b22 <*23 +  bn <*24 +  &24
, A21 =

0 0 0 0

0 0 0 1 0 0 0 0

 ̂ <*41 +  641 <*42 +  b42 <*43 — 643 <*44—&44 j 1 ° 0 0 ° /

A n  =

0 0 0 0

<*25 <*26 <*27 <*28
0 0 0 0

B n =

and

 ̂ <*45 <*46 <*47 <*48

(  0 0 

- 6 2 1  (S2 -  28) b v8

A22 =

V

-c i
0
0
0

0

-C2
0
0

0

0

- c i
0

0  

0 
0

- c 2 /

0 0

bniS2 -  28) - 6 2 4*

0 0 0 0
 ̂ 64 1 (<52 — 28) - b n 8  - b 43(S2 -  28) b448 )

' - ( I ) -

Fi =

( 0 \

+ b23tp7X3
0

l P„3 _3 l @e3 
41 Pa * 43 P( '■

33 /

' o '
0

0

V 0 /

Here, <*2 1 , <*221 •• •, and a4s are identical to those presented in Chapter 2 following 
the aeroelastic system Eq.(2 .2 ), and the 6 2 1 , 6 2 2 ,..., and 64 4  are given as follows:

1 \ 2 /3  j. _•„ / 1 \2/b2i= jco(— r 0 a, b7a= jc Q(— )Xa, bn = jdo{jj;) 0t, bn =  j M j p )  

bn = j c i ( - ^ )20a , 642 = j c 1( ^ - ) 2Ca, 643 = M ( ^ - ) 2̂ ,  644 =  j d i ( ^ ) 2Q.

L U L U L WL

' L  U L v L

The matrix A  has one pair of purely imaginary eigenvalues A| =  iwo, 

Aj =  —iw0 , one pair of complex eigenvalues with negative real parts, A2 =  6 +ic, 
\ 2 =  b -  ic , and four negative real eigenvalues A 3 ,  A4, A 5 ,  Ag. Prom the center 

manifold theory, it is possible to reduce the dimensionality of the system. Tp 

obtain the center manifold, we first transform system Eq.(3.1) to a standard 

form. A transformation matrix P  is obtained from the eigenvectors of A, such
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that P~l • A  • P  =  7, where 7  is the Jordan canonical form of A  containing all 

the eigenvalues of A:

f 0 Uio 0 0 0 0 0 0 ^

—Ci/O 0 0 0 0 0 0 0

0 0 6 c 0 0 0 0

0 0 —c 6 0 0 0 0
J  = .

0 0 0 0 A3 0 0 0

0 0 0 0 0 a4 0 0

0 0 0 0 0 0 A5 0

0 0 0 0 0 0 0 As J

a new variable, Y  = p - 1 ■X = (w i, 3/2 ,. ..,2/8)t , system Eq.(3.1)

{:
(3.2)

becomes:

Y ' = J Y - P " l • B(5) - P - Y  + { 1 -  S f P ' 1 • F (P  • Y)

&' = 0

The dynamic response of system Eq.(3.2), which is nine-dimensional, can be 

investigated through an invariant two-dimensional system. Defining

0 t̂ o 0
Ja =

0 bio 0

—uio 0 0
0 0 0

J b =

6
—c

0

0

0

c 0 0
6 0 0

0 A3 0

0

0

0

0

0
0

0

0

0  0  A4  0

0  0  0  As

, 0 0 0 0 0 As /

Ya = (yu y2, 8)T, Yb  = ( y 3 , 3/4, 3/5, 3/6 , 3/7, Vaf ,  system Eq.(3.2) can be 
rewritten as

' yx  = j a - ya + f a(y a , y b)

Y^ = Jb -Yb + Fb(Ya ,Yb ){;
(3.3)
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where FA and Fb are nonlinear functions of YA and Yb - Here, we start from 

the second order terms since the first order terms have already been included in 
the first part associated with YA and Yb- Ja has one pair of purely imaginary 

eigenvalues and one zero eigenvalue. All eigenvalues of J#  have negative real 

parts. From the center manifold theorem given by Carr[12], a  center manifold 

H  exists for Eq.(3.3), i.e. Yb =  H(YA) such that the flow of Eq.(3.3) near the 

equilibrium point is governed by Y'A =  JA • YA +  FA(YA, H(YA)), which is a 

3-dimensional system. Theoretically, the function H  can be solved from the 

following functional equation

^ - H ( Y A)(JA ■ Ya +  Fa(Ya , H(Ya)) =  JB ■ H(Ya) +  Fb (Ya , H(Ya)) . (3.4)

However, the solution for the above equation with the exact expression of the 

function H is as difficult to obtain as the solution for the original system. 

Following another important result given by Carr[12], the center manifold 
H  can be approximated to any desired degree of accuracy. The polynomial 
approximation of the center manifold H  is assumed, and is denoted by $  =  (<fo, 

0 4 , <t>5 , 06, 0 7 , 0s)T, in which:

0i(j/i, 2/2 , s) =  hiiyiS +  hi2yi5 + hi3y1 + hiAy l  +  hiS62 +  hi6yiy2 (3.5)

t =  3,4,5,6,7,8

where hn, h22, ..., h x ,  ^4 i, •••, —, and hge are constants to be determined 
from using the center manifold theory. Substituting (3.5) into Eq.(3.4) and 

replacing H(YA) by its polynomial approximation $(V/i), we obtain

^ t M Ya ) ■ ( Ja Ya +  Fa (Ya, *(Kt)) =  Jb • *(Ya) +  Fb (Ya , <P(Ya)) .

Equating the coefficients associated with yiS, y2S, yj, y%, S2, and yiy2, we 

obtain a system of 36 algebraic equations with /1 3 1 , h32, ..., and has as vari­
ables. These equations can be solved by a standard computer program such as 
Maple[35] and Mathematica[86]. Extension to a higher order approximation 

of center manifold is straightforward, but the algebra becomes considerably 
more complex.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3 The Principle of Norm al Form

Once the expression of the center manifold is obtained, the original system 

is reduced to a three dimensional system on the center manifold. Since the 

solution of the reduced system is not exactly identical to Y a , we denote the 

corresponding solutions for y\ and y2 by 1*1 and U2  respectively. Regarding 8 

as a parameter, the system is reduced to  two dimensions:

{
u'l =  U0U2 +  0 i(t*i, 1*2 , S)

(3.1)
tl£ =  -UJqUi +  020*1 > «2, S)

where 0 1  and g2 contain the nonlinear terms as functions of u \ ,u 2 and 8. An 
important result in the application of the center manifold theorem is that 

the asymptotic behavior of the solutions near the equilibrium point and the 

bifurcation value of the original eight dimensional system can be studied by 
analyzing the reduced two dimensional system given in Eq.(3.1).

To simplify Eq.(3.1) for symbolic computations, we rewrite the system as:

U' = B U  + F(U) (3.2)

with

B _  ( &u(£) 6i2(<y) \  f (u ) = (  f i (UuU2’^  ^
\  2̂1W  &22(̂ ) /  \  /hO*!, 1*2, <5) /

where U = (u i , u 2)t . The first term B - U  is the linear part for t*i, 1*2 , and the 

second term F(U) is the nonlinear part for vi,t*2 >

Now the transformation matrices are defined as:

N P  =  1 (  ° 6 1 2  )
\A i2 +  02 +  (a — &1 1 ) 2  \  6 a  -  6n /

and
N p - 1 y/fria +  fl2 +  (a -  6 n p  (  - a  +  bn bl2 

bnd
( —a + 6 u 6 1 2  \

e 0 )
where a  =  |(6n  +  fei2) and 9 =  V&1 1 & 2 2  — &1 2 & 2 1 — a 2- By introducing a new 
variable vector Y  = N P ~ l - U =  (yi,y2)T, we transform system Eq.(3.2) into
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the standard form:

Y  =  J  - Y  + N P ~ l ■ F (N P  • Y)  with J  =

i.e.
y[ = <xyi+ 0y2 +  Fi(yt , y2, 5)

{
(3.3)

y2 = -9yi + ai/2 + F2(yu y2,6) 
where F\ and F2 are nonlinear terms of yi and y2 , and a  and 0 are related to 

the parameter S.
The complex form of system Eq.(3.3) can be written as:

Z' = \ Z  + h(Z,Z),

where X(S) = a(<5) + i0(6), and Z = yi + iy2. h(Z, Z) includes nonlinearities 
of Z  and Z.

By the principle of normal form, the near identity transformation is intro­
duced:

Z  = V + g(V, V)

where V is a new variable and g includes the second and third order nonlin­
earities of V and V. The normal form of the system Eq.(3.3) can be expressed 
as:

Y  = XV + F2lV2V

where F2i is a complex number whose value is related to S.
Taking a(S) = Re{F2\) and b(S) = Im(F2x), we express V  =  r ( r )  * .

The normal form in polar coordinates can be expressed as:

{
r* =  a r +  ar3

(3.4)
(J =  Q +  ftr2

After the coefficients a , 9, a  and b are Taylor expanded at 6 =  0, the above 
system becomes:

{
r* =  a(0)<5r +  a(0)r3 =  r(d(0)<5 +  a(0)r2)

J  =  0(0) +  0(0)6 +  6(0)r2 =  (0(0) +  0(0)6) +  b(0)r2
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Note that the prime denotes derivatives with respect to r  and the dot denotes 
derivatives with respect to S. The stability of the fixed point and the periodic 

orbit can now be analyzed. Furthermore, the frequency of the limit cycle 

oscillations can be predicted from a frequency relation given by:

«  =  <* +  (0(0) -  • (3.6)

The amplitude of the motion of the original system can also be predicted from 
the reduced system on the center manifold. However, due to errors introduced 

in approximating the center manifold, the predicted amplitude value may not 
be sufficiently accurate.

3.4 Amplitudes o f Limit Cycle Oscillations

To determine the amplitudes of limit cycle oscillations associated with the 
pitch and plunge motions, we assume

I:
£(t) = o. \ ( t ) c o s {(jJ t ) + b i ( T ) s in ( u iT ) ,

a ( r )  = o , 2 ( t ) c o s ( ( j t )  + b 2 (T ) s in (u iT ) , (3.1)

Wj(r)  =  Oi+2(T)cos((JT) +  bi+2sin(uT) ,  i  =  1, 2, 3,4

where a,(r) and 6,(r), i  = 1,2, • • • , 6 are slowly varying functions of r ,  and u  

is the angular frequency of the LCO. Let r  and R  denote the amplitude of £ 

and a  respectively, where r  =  y/a\ +6f and R = y/a\ -f b$.

Substituting Eq.(3.1) into Eq.(2.2) and matching the coefficients of c o s (u > t)  

and s i n { u r )  leads to a  system of 12 first-order nonlinear differential equations 

in Oj and 6*, i  = 1,2, • • • , 6. After considerable algebraic manipulations, the 

following amplitude equations are obtained:

1
A  =

2 _

fr»i+»i)
mj+(pi+9ira)2

where mi, ni,

A R 2 (3.2)

R 2 = ~ (  S2  ±  \/(P2 + ml)A -  nl) 

are functions of the system parameters and the frequency
u .  The expressions of mi, n i, in terms of system parameters and the
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frequency u> are given as follows:

/ . Q \ W  ctu
m \ — ( C2 +  2 Q — )(J  s— 2 ------2 i 2  n l =  C3U  2 i 2 -------r ; ----2(7* ej +  u/2 €5 +  w2 ef +  u r  ej 4- or

Cstl , C9C2 , , a  r & \ 2 2 ^  a  f & \ 2
p , = J H ^  +  3 + ^ + C 4+ /% :)  -< » "

ef + ur £2 +w ei +w c2 +w

/ 1 . 0 ,  I n  <̂6 ^  dyed dgw dgu;
n 2  ( “ 3 +  2 <;q  — J u / -------— .------- 2 --------- 2 " ! ----- 2  m 2  =  “ 2 ^ -2 ~ i  5 ---------------2 ~ ;--------- J

[ /*  e f  +  W2 62 + w  C1 +  w  C2 + u

q2= \Mh )2 *2 =  + A ,((^ )2 -  d̂ 2 + +  T̂~2
The detailed derivation can be found in Lee et al.[46]. Now, using the

amplitude-frequency relationships given in (3.2) and the frequency relation
(3.6) derived in the previous section, the solutions of limit cycle oscillations 
can be predicted analytically.

3.5 Case Studies and Discussion

In order to demonstrate the accuracy of the analytical formulas given in (3.6) 

and (3.2) in predicting the frequency and amplitude of LCOs, we consider 

the following examples in which the aeroelastic system given in Eq.(2.1) con­

tains cubic restoring forces. In all cases, analytical prediction are compared 
with solutions obtained numerically using a fourth-order Runge-Kutta time- 

integration scheme applied to system Eq.(2 .2 ).
The following parameters:

p =  100, ah = - 1/2, xa =  1/4, Cc =  C a=0, rQ =  0.5 , (3.1)

are used in all case studies. These system parameters are chosen from [71]. 

The procedure discussed in the previous section does not depend on the choice 
of the parameters. The nonlinear restoring forces M (a) and G(£) are defined 
in (3.1). Now, by varying the value of u> and the coefficients 0a, f o ,  /%, 

we consider the following four cases shown in Table 3.1.
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Case Pa (3q3 fa

1 1 3 1 0

2 1 4 1 1

3 1 40 1 0 . 1

4 0 . 1 40 1 0

Table 3.1: Case studies for the aeroelastic system Eq.(2.2) with cubic springs

For Cases 1  and 4, structural nonlinearity is applied only in the pitch degree 

of freedom. In Cases 2 and 3, cubic restoring forces are applied in both the 

pitch and plunge degrees of freedom.

In Case 1 , for Q = 0 .2 , the approximate center manifold is given by:
*

03 =  -2.278662600yi<5 -  2.932984813y2$

04  =  5.389063673^$ -  3.395569702y2$

05 =  —2.576198739yi$ +  0.5470484684y2$
< (3*2)

06 =  -0.03759292923t/x$ +  0.05243761634y2$

07 =  0.01137223245^$ -  0.01813461435y2$

08 =  —7.328109745yi$ +  0.4092693894y2$

Substituting y3  =  03, y4  =  04, y5  =  05, y6  =  06, y7  =  07, Vs =  0s into the 

first equation of Eq.(3.3), a governing system of equations for t/i and 2 /2  is 
obtained. Note that by replacing 2/» using the above expressions given in 0,-, 

for i =  3 ,4 ,5 ,6 ,7 , 8 , the solution for system Eq.(3.3) can be approximated by 

explicit functions in terms of yi, y2  and $. However, yi and y2  are no longer 

exactly identical to those defined in the original system Eq.(3.2); hence, we

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



denote yi and r/ 2  by «i and u2. Therefore,
f
u[ =  —.08404421373«2 -  .0050021860456u! + .0229801526l6u2

+.000001060912229u? -  .0000107849671\u\u2 +  .077083838426V 

+.00003654575512u1ii  ̂-  .00004127944026^ -  .065084660626V 

viz =  .08404421392^1 -  .10345537026tq +  ,32103453636u2

+.00002847473453«i -  .0002894669955u?u2 +  .32237898456V 

+.0009808829109ui«2 ~  001107934352^ -  1.2814739506V
(3-3)

Transforming this reduced system into a standard form and rewriting the 

standard form in complex form, we obtain the normal form after introducing 
the near identity transformation. After the Taylor expansions are applied 

to the coefficients of the normal form expressions in polar coordinates, the 
coefficients in Eq.(3.5) are given by:

w(0) =  w0  =  0.08404421382 

w(0) =  -0.06321776140 

- d(0) =  0.1580161751 (3.4)

a(0) =  -0.0002233463476 

6(0) =  0.00007505815011

By analyzing system Eq.(3.5) with these results, we can verify that when S < 0, 
the equilibrium point is asymptotically stable, which means that for U* < Ul 
all motions will decay to zero amplitude. For 5 > 0, the equilibrium point 

becomes unstable. However, there is a stable periodic orbit with a frequency 
w =  0.0840 — 0.01016 when w =  0.2.

For different values of u>, and using the same procedure, we derived the 

corresponding frequency relation which depends on the bifurcation parameter 
6  (or the ratio 7  =  U*/Ul) as shown in Table 3.2.

Numerical simulations using the Runge-Kutta scheme were carried out 
to compare their results with those obtained from the analytical predictions. 
Fig.3.1 displays the frequency and the amplitudes for pitch and plunge motions
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UJ e II u  =  cj( 7  ) U'L

0 . 2 0.0840 -  0.0101 * <5 0.0739 +  O.OIOI/7 2 6.28509
0.4 0.1192 -  0.0333 * <5 0.0859 -1- 0.0333/t2 5.23376
0 . 6 0.1730 -  0.0616 * <5 0.1114+  O.O6 I 6 / 7 2 4.40100
0 . 8 0.2244 -  0.0823 * <5 0.1421 +  0.0823/t2 4.11454
1 . 0 0.2522 -  0.0702 * <5 0.1820 +  0.0702/t2 4.33559

Table 3.2: The frequency relationship with the bifurcation parameter 7  =  
U'/Ui for Case 1.

£ u) =  w(<5) U! =  ^ ( 7 ) Ui

0 . 2 0.0840 +  0.0082 * <5 0.0922 -  0.0082/72 6.28509
0.4 0.1192-0.0158 *<5 0.1034 +  0.0158/72 5.23376
0 . 6 0.1730 -  0.0554 * <5 0.1176 +  0.0554/72 4.40100
0 . 8 0.2244 -  0.0812 * <5 0.1432 +  0.0812/72 4.11454
1 . 0 0.2522 -  0.0683 * <5 0.1839 +  0.0683/72 4.33559

Table 3.3: The frequency relationship with the bifurcation parameter 7  = 
U*/U'L for Case 2.

that are predicted using the analytical formulas (3.6) and (3.2) with £=0.2. 

This figure shows that excellent agreement in both frequencies and amplitudes 
of the limit cycle oscillations is obtained.

In Case 2, we consider an aeroelastic system with cubic structural nonlin­

earities in both pitch and plunge degrees of freedom.

For different £ ’s, with the corresponding bifurcation value {/£, the fre­

quency relations with the bifurcation parameter <5 =  1  — (£/£/C/ * ) 2  are shown 
in Table 3.3.

Furthermore, in Fig. 3.2, we display the frequencies and the amplitudes 
for pitch motions that are predicted using the analytical formulas (3.6) and

(3.2) when £=0.2. These results are compared with those from the numer­

ical simulations, and it is shown that excellent agreement in both frequency
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Figure 3.1: Dynamic response for Case 1 . (a), frequency; (b). amplitude of 
pitch motion; (c). amplitude of plunge motion.

and amplitude is obtained. We see some variations in the frequencies and 

the amplitudes when the ratio U*/Ul increases from the bifurcation point 

(U*/Ul =  1 ). This is expected due to the limitations of the center manifold 
theory.

In Case 3, we investigate the aeroelastic system with a stronger nonlinear 
term in M(a) such that 0 a 3 / /3a =  40. At ui = 0.2, the frequency equation is 

given by u  =  0.0840 -  0.0101(1 — (Ul/U*)2). The variation of frequency u> 

with U*/Ul is plotted in Fig. 3.3(a). Notice that the results in Fig. 3.3(a) are 

almost identical to those displayed in Fig. 3.1(a) for Case 1. Recall that the 
linear coefficients equal to one for both Cases 3 and 1 , but the nonlinear 
coefficients (3^ equal to 40 and 3 for Cases 3 and 1  respectively. Although
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Figure 3.2: Dynamic response for Case 2 . (a), frequency; (b). amplitude of 
pitch motion.

it may seem rather surprising to observe that the frequency relation is not 

sensitive to the nonlinear coefficient, a satisfactory explanation will be provided 
shortly. The corresponding amplitudes of pitch and plunge motions when 

u  = 0.2, as shown in Figs. 3.3(b) and (c), are not the same, however, as those 
reported in Case 1 (see Figs. 3.1(b) and (c)).

In Case 4, we consider a  very strong nonlinear case in the pitch degree 

of freedom where 0a3/Pa =  400. Our proposed procedure is applied. The 
frequency equation at u> =  0.2 is given by a/ =  0.1822 — 0.0659(1 — ((/£/I/*)2), 
where U*L = 1.36468. Comparisons with numerical simulations are shown in 
Fig.3.4.

From the results reported here, it is evident that our analytical analysis 

gives an accurate prediction of the frequency and amplitudes of the pitch and 

plunge motions of LCOs. Moreover, while numerical simulations show that 

the frequency variation with U*/Ul is almost the same for Cases 1  and 3, 

an explanation is provided by using the analytical analysis. Since both linear 

coefficients 0a and 0% are identical for Cases 1  and 3, the linear flutter speed, 

U* =  6.28509, is identical a t Q =  0.2 for both cases. Now, by applying the 
center manifold theory and normal form method to system Eq.(2 .2 ), we obtain
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Figure 3.3: Dynamic response for Case 3. (a), frequency; (b). amplitude of 
pitch motion; (c). amplitude of plunge motion.

coefficients of formula (3.6) in terms of f a  and fa»:

u>o =  0.08404421382 

0 (0 ) =  -0.06321776140

d(0) =  0.1580161751 (3.5)

a(0) =  -0.00007444878252/?a3 +  0.00006278101583/?C3 

6(0) =  0.00002501938337/?q3 + 0.000006148895571/3^3

Notice that the nonlinear coefficients f a  and f a  affect only the coefficients
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Figure 3.4: Dynamic response for Case 4. (a), frequency; (b). amplitude of 
pitch motion.

a(0) and 6(0). The frequency relation in terms of 0 ^  and 0 p  is given by

u> =0.08404421382 +  (-0.06321776140
B i e M i e i ( „ 1 0.00002501938337^ +  0.000006148895571&3, .  (3-6) 

— 0.158Qlol751 "  -  i - id
—0.00007444878252/?Q3 +  0.00006278101583/3?3J

From the above formula, it is clear that when either 0a 3 or 0p  is zero, the 
other nonlinear coefficient 0 (3 or 0a3 will not affect the resulting frequency. 

Hence, the frequency u> depends only on S and is independent of 0^3 or (3a3 . 

In Case 1 , 0 p  =  0 , and the frequency relation is independent of the value of 

0afl. When both coefficients are present but with 0 a 3 »  0p  as in Case 3, 

it is easy to verify that the effect due to the nonlinear coefficient 0 p  can be 

neglected. Therefore, Case 3 can be considered to be similar to Case 1.

Unlike the frequency relation, the amplitude equations given in Eq.(3.2) 

indicate that the amplitude of LCOs is more sensitive to the variation in the 

nonlinear coefficients 0 a 3 and 0 ^ .  This observation is indeed confirmed by the 
results reported in Figs.3.2 and 3.4.

3.6 Concluding Remarks

In this chapter, we derived a frequency relation for a self-excited two-degree-of- 

freedom aeroelastic system with structural nonlinearities represented by cubic
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springs. Together with the amplitude-frequency relationships derived in [46], 
the limit cycle oscillations (LCOs) for the self-excited system can be predicted 
analytically. Our study shows that the frequency and amplitude of LCOs do 

not depend on the choice of initial conditions. Moreover, it has been shown 

that when the structural nonlinearity is applied only in one degree of freedom, 
or when nonlinearities appear in both pitch and plunge degrees of freedom but 
with one of the nonlinear coefficients much greater than the other nonlinear 

term, then the frequency relation is not affected by the nonlinear coefficients 

Pafl or Pp. However, the corresponding amplitude of the LCO is sensitive to 

the variation in /?q3 and Pp. The mathematical approach presented here not 
only provides an accurate agreement with the numerical results obtained by 
using a fourth-order Runge-Kutta time-integration scheme but also leads to 

a  better understanding of nonlinear aeroelasticity, especially near the bifurca­
tion points. In the present work, we focus on the study of LCOs through a 
Hopf-bifurcation. The period doubling phenomenon in which an LCO subse­

quently gives rise to a two-period orbit by means of a flip-bifurcation has been 

detected in aeroelastic systems with cubic structural nonlinearities[52]. The 
phenomenon is interesting and important since it may provide a way to investi­

gate period-two and chaotic motions. However, since the bifurcation analysis 
will now depend upon periodically varying parameters instead of the fixed 
points in a Hopf-bifurcation, a general procedure based on time-dependent 

center manifold theory and time-dependent normal form will be required.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

Freeplay M odels

4.1 Introduction

In the previous chapter, we studied a self-excited two degree-of-freedom aeroe- 

lastic system with cubic restoring forces. Through the application of the center 
manifold theory and the principle of normal form, analytical formulas are de­
rived which are capable of accurately predicting the frequencies and amplitudes 

of limit cycle oscillations. This chapter is to continue our study to develop a 
mathematical technique for a freeplay model.

Although it seems that the technique discussed in the previous chapter 

based on the center manifold theory can still be applied if we replace the 

freeplay model by polynomial or rational polynomial approximation, a de­

tailed investigation carried out in § 4.2 leads to the conclusion that such an 

approach should not be used. The previous studies on the aeroelastic response 

of the freeplay model applied the describing function method or the harmonic 

balance method. However, the dynamic response of the system canno t  be fully 

exploited since the analytical techniques do not take into account any initial 

conditions.

Time integration methods have often been used to study the response of an 
aeroelastic system with freeplay. It should be noted that, for a  piecewise linear 

system such as a freeplay model, it is not straightforward to analyze the sta­
bility of the numerical schemes, because some of the eigenvalues corresponding
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to one of the linear sub-systems may have positive real parts. FVirthermore, 

the standard time-integration scheme with uniform time step cannot precisely 
locate the switching point where the change in linear regions occurs. The im­

portance of capturing switching points was noted by Lin and Cheng[55] and 

Conner et al.[16j. Lin and Cheng[55] reported an example showing that an 
entirely incorrect asymptotic behavior for nonlinear flutter can be predicted 
due to the error in capturing the switching point in the Runge-Kutta numer­

ical scheme. More analysis of the errors introduced by numerical schemes for 

aeroelastic systems with structural nonlinearities will be presented in Chap­

ter 6 , which shows that significant differences between the exact motion and 

the numerical prediction may be observed for some cases. However, for cases 
discussed in this chapter, the numerical solution is considered to be accurate 

since a sufficiently small time step is used to  integrate the aeroelastic system.

In this chapter, we introduce a  mathematical technique based on the point 
transformation method[2]. Two formulations are developed to investigate the 

nonlinear aeroelastic model with a freeplay nonlinearity. One attractive feature 

of the present approach compared to a numerical time-integration scheme is 

that the formulations track the system behavior to the exact point where the 

change in linear sub-domains occurs. Moreover, the solution corresponding to 
each linear region is determined analytically. It will be demonstrated that the 
formulations developed are efficient and effective. Not only can they accurately 

predict the amplitude and frequency of the LCOs, but also they are capable 

of detecting complex nonlinear aeroelastic behavior such as periodic motion 
with harmonics, period doubling, chaotic motion and the coexistence of stable 

LCOs.
Some investigation is first carried out in § 4.2 to compare the original sys­

tem with the systems associated with the rational polynomial approximations 

for the freeplay stiffness. Then, the idea of the point transformation technique 

and two formulations for the aeroelastic system with the freeplay model are 

developed in § 4.3. By using this point transformation technique, several ex­

amples are then investigated and the results are presented in § 4.4. Finally,
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the advantages and disadvantages of these two formulations are addressed in 
section § 4.5.

4.2 Rational Polynomial Approximations 

for Freeplay Springs

The freeplay model, which is defined by a  piecewise linear function given in

(2 .2 ), is continuous but not differentiable. Since the existence of the center 

manifold requires the nonlinear function to be at least C2 continuous, i.e. the 
second derivative exists and is continuous, the center manifold theory does 
not apply for the aeroelastic system with a freeplay model. Consequently, the 

procedure developed in Chapter 3 cannot be used to investigate the freeplay 

model.

Motivated by using an approximation for the nonlinear function as sug­
gested in [1], we replaced the piecewise Unear function by a  third-order rational 
polynomial, which is C°° continuous on the interval [—15°, 15°]. Although it 

seems that the center manifold method can now be appUed to system Eq.(2.2) 
with M (x i) being replaced by the rational polynomial approximation, this 

approach should not be used for the foUowing two reasons.

First, it is important to note that one feature of the freeplay nonlinearity 

is the existence of switching points where changes in linear sub-domains oc­

cur. Since a sUght change in the system parameters could affect the nonlinear 
aeroelastic behavior considerably, replacing a freeplay by a  numerical approxi­

mation, which eUminates the switching points, would cause the location of the 
bifurcation point to be no longer exact.

For example, consider system Eq.(2.2) with the system parameters given 

by fi = 100, ah = -1 /2 , xa =  1/4, rQ =  0.5, Q = — 0, and with G(x3) =  x3,
the freeplay stiffness M (x\)  given by (2.2), where a t/ =  M0 = 0.25°, M/ =  0, 

and S = 0.5°. Two rational polynomials Ri(xi)  and /^ (z i)  are constructed to
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approximate the piecewise linear function,

n  f .  N C1 +  x i ( c 2 +  * i (c3 +  C 4X O ) +  a 2X i +  a 3x ?

l  +  X^Cs +  X ^ + C T X !)) ’ 1 + M i +62x? ’

where Ci =  0.0021, c2  =  0.9277, c3  =  —134.7957, C4  =  5954.619, C5  =  

-121.2787, cs =  6414.885, c7  =  1064.4611 for Rt(x), and <n =  0.948815, 

02  =  -129.93, a3 =  5462.32, bx =  -112.41, =  5732.43 for # 2 (x). FVom

M
I

I

l«"

s

I

Figure 4.1: The original freeplay model and its approximations, (a), with 

Ri(xi)\ (b). with i?2(x 1 ). Solid line: M(x 1 ); open circle: approximated values 

of / 2 i(xi) or rt2 (xi).

Fig. 4.1, where the solid line denotes the original model and the open cir­
cle denotes the approximated value, both / 2 i(xi) and i?2(x 1 ) seem to pro­

vide a good approximation to the original piecewise linear function M(x 1 ) 

for xi € [—10°, 10°]. However, different qualitative dynamical response are 

resulted when the nonlinear term is represented by R i(xi) or i?2(x 1 ). For in­

stance, when U*/Ul =  0.96, xi(0) =  0.13, and with other initial conditions set 
to zeroes, the system with R i(xi)  leads to a divergent motion in Fig. 4.2(a), 

while the dynamic response of the system with A2 (xi) gives a periodic motion 
in Fig. 4.2(b).

Second, since initial conditions play an important role in the dynamic re­
sponse of aeroelastic systems with freeplay for some range of airfoil parameters, 

the center manifold method, which does not take into account any informa­
tion due to initial conditions, would not be expected to provide a good predic-
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Figure 4.2: The system response when the freeplay model is replaced by 

Ri(xi): divergent motion (a), and by /^(xi): periodic motion (b).

tion for a freeplay a model. Examples of different nonlinear system behaviors 

yielded by the same system parameters but with different initial conditions 

can be found in § 4.4. Hence, the center manifold method should not be used 

in the present study.

4.3 The Point Transformation M ethod

Consider the eight dimensional system given in Eq.(2.2) for a freeplay stiffness 
in pitch and a linear spring in plunge, where M{x i) is given by (2.2) and 

G(x3 ) =  0 X3 . According to the three linear branches of the piecewise linear 

function for a freeplay model, the phase space X  € can be divided into 

three regions, Ri(i =  1 , 2 ,3), each of which corresponds to a linear system:

X* = A X  +  Fi in Ri =  {X  € R?\xt < a ,}

X '  =  B X  +  i *2 in R2 =  {X  €  BP\otf <  i i  <  otf +  <5}

X ' = A X  + F3 in ff3  =  {A’ € /e 8 |x 1 > a /  +  <5}

Here A  and B  are 8  by 8  constant matrices, and F\, F2 and F3 are 8  by 1  

constant vectors. The elements of A, B  and Fi(i = 1 ,2 ,3 ,4 ) are determined 

by the system parameters of the coupled aeroelastic equations, and they are
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given by

a = ( a ' M ,  
\ a 3 A ,  J

and F\ — {Mq—oif)F, F2 =  (Aio— M/otf)F and Fz=(Mo— ci/+(5o(A^/-l))F. 
The elements of the 4 by 4 block matrices, At(i =  1 ,2 ,3,4), B\ and the vector 
F  are defined as:

At =

0 1 0  0

021 - j c o ( j p ) 2 022 023 + jdoPijp ) 2 a24 
0 0 0 1 

 ̂ a4i + j c i ( j j ; ) 2 o42 a43 - j d i p ( ^ ) 2 a44 ^

Ao —

A* =

A4 —

Bi =

0

/  0  0  0  0  

025 O26 O27 «28 

0 0 0 0 

 ̂ 0 4 5  a4 6  a4 7  a 4 8  y

/  1  0  0  0  \
1 0  0 0 

0  0  1 0  

^ 0 0 1 0 )

-C! 0  0  0

0 - e 2 0 0

0  0  - d  0

0 0  0  — € 2  y

1  0 0

021 -  JC oM fi^ )2 022 023 +  j d o P { £ ) 2 a 24

0 0 0

 ̂ a4i + jc i M f ( j j z ) 2 a42 a43 - M / ? ( ^ ) 2 o-m y
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V 0  J
Now we consider a  freeplay model shown in Fig. 4.3. Let the Z  -  Y  

plane represent the eight dimensional phase space, where Z  — {xi} and Y  = 

{X2 ,X3 ,X4 ,X5,X6 ,X7 ,X8}. The Z  — Y  phase space is now divided into three 
regions Ri, Rz and R 3 according to the sub-spaces Z  — a j  and Z  = a /  + 8  as 
shown in Fig. 4.4(a). The system response can then be predicted by following 
a general phase path.

Moment M(oc)
M_+cx-ot 1)

M 0 + M r(oc-o t-)
M,

Displacement a

a,f

Figure 4.3: General sketch of a freeplay model.

Assuming that a motion initially starts at a point X 0 as shown in Fig.4.4(a), 

the trajectory begins in Ri  and passes through R z  into R 3 .  Then it returns 

through Rz back into R\. Let X \  and Xz be the points through which the 

trajectory enters R z  and R 3  respectively. Let X 3  and X4 be the points through
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Figure 4.4: General trajectory of system (2.2) with a freeplay stiffness in pitch.

which the trajectory leaves R3  and Ri respectively. These points ( X \ ,  X 2, X 3  
and X 4 )  are called switching points, since they locate the places where the 

linear systems change. Let £ 1  be the travelling time of the trajectory (from 

X \  to X 2 )  in region /22. Similarly, let £2 . £ 3  and £ 4  be the travelling times of 
the trajectory in regions R3, R2  and R i  respectively. The above process of the 
point transformation is then repeated. When a steady-state is reached, the 

trajectory may consist of only four switching points X \ ,  X 2 , X 3 ,  X 4 and four 
travelling times £1 , £2 , £ 3  and £ 4  as illustrated in Fig.4.4(b).

It should be noted that the system of equations in each region is strictly 

linear. Hence the exact solutions in R \ ,  R 2  and R3  can be expressed analyt­

ically. Using the analytical solutions in different regions, we can determine 

the maximum and minimum values of a  corresponding to a' =  0. Moreover, 

based on the information provided by the switching points, travelling times 
and the maximum and minimum amplitudes for or, we can predict the type of 

steady-state motion for the aeroelastic system. For instance, when the tran­
sients have diminished, we may observe a  repetition of the switching points 

X i, X 2, X 3 ,  X 4 and the corresponding travelling times £ 1 ,  £2, £ 3 ,  £ 4  covering 

the entire region as shown in Fig. 4.4(b). Then the steady-state motion is clas­
sified as a limit cycle oscillation (LCO) with one frequency. The existence of 
one frequency component is further confirmed by only one maximum and one 
minimum value for a. The frequency can be determined by /  =  1 /T , where T
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denotes the period which is the sum of the travelling times (i.e., T  =  J3i=i **)• 
The resulting LCO is of period-one, and the trajectory illustrated in Fig. 4.4(b) 

has one complete loop covering the three regions Rit R2 and R 3.

Y

z

Y

Z

Figure 4.5: Trajectories for system Eq.(2.2) with a freeplay stiffness in pitch: 

period-one with harmonics where (a) the smaller loop covers Ri  and R 2; (b) 
the smaller loop covers R2 and R3.

The point transformation method is capable of predicting more general 

periodic motions. Note that it is not necessary that the switching points 

appear in the sequence as shown in Fig. 4.4(b). For example, the steady-state 

trajectory displayed in Fig. 4.5(a) which contains six switching points. The 
additional two points X}  and X j  are introduced after completing the sequence 

discussed previously. In this case, a complete loop consists of sue points, X \,  
X 2, X 3, X 4, X}, X j ,  and six corresponding travelling times, £ 1 ,  t2, £ 3 ,  £ 4 ,  £ } ,  

t\. Unlike the trajectory shown in Fig. 4.4(b), the complete loop covering 

the entire region also contains a smaller loop covering two regions R\ and 

R2. The smaller loop is defined as the one covering only one or two regions. 

The resulting LCO is of period-one, since we observe only one complete loop 

covering the entire region. However, the presence of a  smaller loop indicates 
that the LCO has a harmonic component. Since the LCO is of period-one, the 

frequency is estimated by /  =  \ / T  where T  =  U +  Hli=i The typical 
feature of an LCO with harmonics can be verified by four values for a  when 
a ' =  0 . Recall that for a  period-one LCO with one frequency, only two values
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of a  corresponding to ol =  0 exist. Fig. 4.5(b) illustrates a similar situation, 

but with the two extra switching points X \  and X j due to the presence of a 

smaller loop covering regions R2 and R3 .

Y

Z

Y

Z

Figure 4.6: Trajectories for system Eq.(2.2) with a freeplay stiffness in pitch: 

period-two LCO (a) without harmonics and (b) with harmonics where two 

smaller loops cover R\ and R 2 .

The predicted limit cycle oscillations discussed in Fig. 4.4 and 4.5 are of 

period-one, since the point transformation confirms the presence of only one 

complete loop covering the entire region. If however, a  complete loop covers 
the entire region n times, the LCO is classified as a period-n LCO, and the 

frequency is given by /  =  1 /T  where the period T  is the sum of the travelling 

times. For example, Figs. 4.6(a) and (b) display period-two LCOs. Fig. 4.6(a) 
corresponds to a simple period-two LCO, and the trajectory contains 8  switch­

ing points and 8  travelling times in a complete loop. In Fig. 4.6(b), a complete 
loop contains two smaller loops, indicating that the period-two LCO has har­
monic components. If the sequence of switching points does not repeat after 

a sufficiently long time, the motion may be classified as chaos.

In summary, the point transformation method can be used to detect a 

general period-n limit cycle oscillation for an aeroelastic system with freeplay. 

Moreover, it can predict the presence of harmonic components and is also capa­

ble of determining the frequency and the maximum and minimum amplitudes 
of an LCO.
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In the following sections, we present two formulations based on the above 

discussion. Then the formulations developed will be applied to predict the 

nonlinear aeroelastic behavior for a freeplay model.

4 .3 .1  F o r m u l a t i o n  1

This formulation begins with a given set of initial conditions X q. First, the 

travelling times are determined by solving a nonlinear equation. Then, the 
switching points are calculated by the multiplication of a known matrix by 

a known vector, which will be further explained after the formulation is pre­

sented. If the round-off error can be neglected, the formulation will produce 

the exact solution for the aeroelastic system. The detailed procedure is given 

as following.

Step 0 . Set the initial vector Xq =  (xoi, x0 2 > x0 3 i •••> ̂ os)T- Let i = 1  

for a /  < xqi < a /  + S and X0 2  > 0 , i =  2  for x<n > at/ + 6, i = 3 for 

a /  < xoi < o.f +  S and X0 2  < 0, and i = 4 for x<n < «/• Set X, =  Xo, and go
to step i.

Step 1 . Solve the nonlinear equations atf + 5 = {eBtX \  -I- B(t)F2}\(i) and 

qj = {eBtX i + S(t)i*2 }|(i) separately for £. Here, {V}|(„) denotes the nth 

element of the vector V. Let the smallest positive solutions corresponding to 

the first and second equations be t* and £** respectively. If t* < £**, let t\ =  £*, 
compute X i  by X i  =  eBtlX i  + B(ti)Fi, and go to step 2. If t** < t*, let 

t 3  = £**, compute X 4 by X 4 =  eBt*Xi + #(£3 )^ 2 , and go to step 4.

Step 2. First, solve {eAtX i  +  .4 (£)F3 }|(2 ) =  0 for £, assign the small­

est positive value to £u, and compute the maximum amplitude by ocmax = 
{e'4 t“X 2 +> 4 (£u)i;3 }|(i). Then, solve af +5 = (extX 2 + . 4 (£).F3 }|(i) for £, assign 

the smallest positive value to £2 , and compute X 3 by X 3 = eAt2X i  +  A (t2)F3. 

Go to step 3.
Step 3. Similar to Step 1, solve the nonlinear equations a /  =  {eBtX 3 + 

B(£)F2 }|(i) and a j + 6  =  {eBtX 3 +B(t)F2}\(i) separately for £. Let the smallest 
positive solutions corresponding to the first and second nonlinear equations 
be t* and £** respectively. If £* < £**, let £ 3  =  £*, compute X 4 by X 4 =
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eBt*Xz +  B(t3)Fi, and go to  step 4. If £** < t*, let t\ =  t**, compute X i  by 

X i  =  eBtlX 3 +  B(ti)Fi, and go to step 2.

S tep  4. Similar to Step 2, first solve {eAtX A+A(t)F \ } \ ( 2 > =  0 for t, assign 

the smallest positive value to ti, and compute the m i n i m u m  amplitude by 

<*min =  {eAllX i +.A(t/)Fi}|(1). Then, solve a f  =  {eAtX A + .4(t)Fi}|(i) for t, 
assign the smallest positive value to tA, and compute X \  by X \  =  eAt*XA +  
A (tA)F\. Go to step 1 .

The matrices A(t) and B(t) are given by A{t) = f* eÂ t~T̂ d.T and B(t) =  

/ J  eB^~T̂ dT. Jordan Canonical forms of A  and B  are introduced to help com­

puting the matrices eAt, eBi, eA(-l~T̂  and eB^~rK Let the matrices A  and B  be 

decomposed such that A  =  P J aP ~ 1 and B  =  QJbQ~1, where Ja and Jb are 
the Jordan Canonical forms of A  and B:

\

J a  =

and

Jb =

a b 0 0 0 0 0 0

- b a 0 0 0 0 0 0

0 0 c d 0 0 0 0

0 0 - d c 0 0 0 0

0 0 0 0 Aai 0 0 0

0 0 0 0 0 Aaj 0 0

0 0 0 0 0 0 Aaj 0

0 0 0 0 0 0 0 An,

e / 0 0 0 0 0 0

- / e 0 0 0 0 0 0

0 0 A ft, 0 0 0 0 0

0 0 0 A 63 0 0 0 0

0 0 0 0 Aba, 0 0 0

0 0 0 0 0 Ab4 0 0

0 0 0 0 0 0 Ais 0

0 0 0 0 0 0 0 a*

>ai i \ iji 'Aaj j A and { e ± /t ,  A6l, Abj
are eigenvalues of A  and B, respectively. Thus, eAt and eBt can be computed
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eAt = PJAP _ 1  and eBt =  P J bP  l , where JA is

eatcos(bt) eatsin(bt) 0  0 0 0 0 0

—e^sinfa) e^cosijbt) 0  0 0 0 0 0

0 0 ecicos(dt) edsin(dt) 0 0 0 0

0 0 —ectsin(dt) eacos(dt) 0 0 0 0

0 0 0  0 0 0 0

0 0 0  0 0 gAo2t 0 0

0 0 0  0 0 0
gAajt 0

0 0 0  0 0 0 0 eAa«‘

and J b is 

/ eetcos(/t) eets in ( f t) 0 0 0 0 0 0

—eetsin(ft) eetcos(ft) 0 0 0 0 0 0

0 0 e*6i‘ 0 0 0 0 0

0 0 0 eA&2 ‘ 0 0 0 0

0 0 0 0 eA*s‘ 0 0 0

0 0 0 0 0 eAfc«‘ 0 0

0 0 0 0 0 0 eAts* 0

0 0 0 0 0 0 0 eA‘«‘

The matrix A(t) can be computed by .A(t) = P A P  

/

- l where A  is

i/(a, b,t) s(a, b, t) 0 0 0 0 0 0

-s(a,b, t) v(a,b, t ) 0 0 0 0 0 0

0 0 v(c, d, t) s(c, d, t) 0 0 0 0

0 0 -s (c , d, t) v{c, d, t) 0 0 0 0

0 0 0 0 /(Aai,t) 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 /(Ao„ 0 0

0 0 0 0 0 0 0 J(A*.
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and the matrix Bit) can be computed by B{t) =  QBQ  l , where B  is

^ i/(e, / ,  t) s(e, / ,  £) 0  0  0  0  0  0  \

-s(e, / ,  t) v(e, f , t )  0  0  0  0  0  0

0 0 /(A6,,£) 0 0 0 0 0
0  0  0  t) 0  0  0  0

0  0  0  0  /(Afca,«) 0  0  0

0  0  0  0  0  i ( h 4,t)  0  0

0  0  0  0  0  0  /(A*,*) 0

0 0 0 0 0 0 0 /(Afe,*)

where the functions v : R? —► R, s : R3 —» R, and I : R 2 —> R  are given by

u(a, b, t) = f  
Jo

s(a, b,t) = I  
Jo

a ( t - r )  ruu u j  - a  + aeatcos(bt)+be<usin(bt)eay }cos{b[t -  T ) ) d r  = ----------------------- -------------------------------
a*  - h e r

-  T ) )d T  =  < > - l K « c o ° M  +  « r s i " W
a  +  t r

l ( K t ) = [ ‘eH ~ U r J ^
Jo [ f  A =  0 .

In the formulation, the travelling time t is first determined by solving 
a nonlinear equation /(£) =  0 , where /(£) involves either eatcos(bt -f 
e^cosidt +  0 2 ), eAa>', e^* , eA°3 ‘ and e ^ ' ,  or eetcos(ft +  0 ), eAti‘, eA6a‘, e ^ ',  
eA»4t e*bst an(j eA»s‘. By analyzing the monotone intervals of the terms as­

sociated with eaicos(bt +  0 1 ), erfcos(d£ +  0 2) and eetcos(ft  4 - 0 ), it is easy 

to find the smallest positive solution to the equation /(£) =  0. Then, the 

new state X,(i =  1,2,3,4) are computed from a known matrix by a known 

vector multiplications. For example, in Step 1 , once the travelling time ti is 

determined, the new state vector Xi  can be updated from X \  according to 

AT2  = eBtlX i  + B(ti)F2 - Recall that X\ and F2  are vectors, eBtl and B{t{) can 
be computed by the above procedures. Hence, X2  is determined by performing 

linear algebraic operations. If no positive solution for /( f )  =  0 can be found 

in any of the steps discussed above, the motion either diverges if the linear 

system has at least one eigenvalue with a positive real part, or it converges to 
the equilibrium in that region if the real parts of all eigenvalues of the linear
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system are negative. If the values of the switching points or the amplitudes of 

a  become unbounded, then the motion is divergent.

4.3.2 Formulation 2

■(::) M r )  M r )  M : )

If only the steady-state solution of an aeroelastic model is of interest, the 

following alternative formulation is proposed so that the travelling times and 

the switching points of an LCO can be determined directly without going 

through the transient state. However, we must first assume the specified type 
of the investigated motion. For example, for a period-one LCO, let the four 

switching points be

a /  +  <J^ v  (  a f  + 6

s 2 /  \  *3

where si, s2, s3  and S4  are seven-dimensional variable vectors representing the

switching points in the subspace {X  €  =  a /}  or {X  G =  a / +  5}.
Let ti(i = 1,2,3,4) denote the corresponding travelling times. Then £, and 
Si(i =  1 , 2 ,3,4) can be determined by solving the following system of nonlinear 

equations

' x i  = eBt' X l l -B{tx)F2 

X 3 = eAt' X 2 + A (t2)F3 

X 4 =  eBt>X3 +  B(t3)F2 

X l = eM*X4 + A(t4)Fl .

Note that Eq.(4.1) is thirty-two dimensional since X t(i = 1,2,3,4) are eight­

dimensional vectors. The period of this period-one LCO is given by the sum 
of the total travelling time T  = U, and the frequency /  is calculated by 

/  =  1 /T .  The amplitudes a w r  and a mm are given by

(4.1)

solve {eAtuX 2 +  ^4(tu)F3}|(2) =  0 for tu 

Set Olmax =  {eAtuX 2 +  ^(t«)F 3 }|(i) 

solve {eAtt X 4 + -4(t/)Fi}|(2) =  0 for U 

set a min = {6 ^ X 4  +  >l(tj)Fi}|(i) ,

(4.2)
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where X 2 and X 4 are solutions to Eq.(4.1).

To determine the frequency of an LCO, only the values of U(i =  1,2,3,4) 
are of interest. With some algebra, the thirty-two dimensional system Eq.(4.1) 

can be further reduced to a four-dimensional system with variables £<(z = 
1,2,3,4)

r

a t f + 8 =  {H2(ti,t2,t3,t4)G2(ti,t2,t2,t4)}\d)
< (4.3)

OCf +  S  =  { / / 3 ( t l ,  t 2 , t 3 , t 4 ) G 3 ( t i ,  <2, |(1 )

a f  =  {H4(ti, t2, <3 , U)G4(ti, <2 , t3, £4 ) } |(1) ,

Here Hi(i — 1,2,3,4) are the 8 by 8 matrix functions of t,(i =  1,2,3,4), and 

the expressions are given as:

H i(h ,  t2, *3 , t4) = ( /  -  eAt*eBt3eAt2eBtl)~l 

H2( tu t2, t3, tA) = ( /  -  eBtleAt*eBt3eAt*)~l 

H3{tu t2, t3 , t4) = ( /  -  eAtleBtleAt*eBt3)" 1 

H4{tu t2, t3, t4) = ( /  -  eBtieAt2eBtleAt4)~l

where I  denotes the identity 8 by 8 matrix, and G,(z =  1,2,3,4) are 8 by 1 

vector functions of £,(z" =  1,2,3,4), and the expressions are given as:

Gi(*i, t2, t3, t4) =eAt*eBt3eAt*B(tl)F2 +  eAt*eBt3A (t2)F3 

+ eAt'B (t3)F2 + A(t4)Fl 

G2(t\, t2, t3, *4) =eBt 1 eAt* eBt3A(t2) F3 +  eB“ e ^ S ( t 3 )F 2  

+ eBtlA (t4)F1 + B(tl )F2 

G3( t i , t2 , t3, t4) =eAt'em 'eAuB(t3)F2 + e ^ e B‘M (t4)Fi 

+ eM>B(tl )F2 + A (t2)F3 

<?4 («i, *2 , *3 , h)  =eBt3eMieBi'A(t4)Fl + eBt3eM'B (tY)F2 

+ eBt3A (t2)F3 + B(t3)F2 .

The frequency of the period-one LCO motion can then be determined by 

/  =  1/ and the four switching points are given by Xi = Hi(tu h ,  <3 , <4 )
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Gi(ti, t2, £3 , £4 ) with i =  1 , 2 ,3,4. The amplitudes o w r  and a mtn are given by

For a period-one LCO with harmonics, assuming that the small loop in the 

state space covers regions Ri  and R2, there exist six switching points instead 

of four as in the simple period-one motion. By adding two more switching 

points

where s5 and S6 are seven-dimensional vectors representing the switching 

points in the subspace {X  €  =  a /} , Eq.(4.1) is then rewritten as

tains four values of amplitude exist for a  when a ' =  0 , the following additional 

formulas

are included to Eq.(4.2) to compute the LCO amplitudes.
Generally speaking, for a  period-n LCO or a period-n LCO with harmonics, 

Eqs.(4.1) and (4.2) or Eqs.(4.4) and (4.5) have to be modified to determine 

the corresponding travelling times and the amplitudes.

Although Formulation 1 starts with a given set of initial conditions, it is 

not a time-integration scheme since the solution to each linear subsystem is

Eq.(4.2).

X 2 = eBt'X l + B (tl)F2 

X 3 = eAt2X 2 + A(t2)F3 

X 4 =  eBt*X3 +  B(t3)F2 

X 5 = eAt*X4 + A(U)Fl 

X 6 = eBt*Xs + B(t5)F2 

X 1 = e ^ A 6  +  A(£6 )F 1 .

(4.4)

Consequently, the frequency is given by /  =  1 /  5Zi=i **• Since the motion con-

V

solve {eAtmX$ + B(tm)F2}|(2) =  0 for £, 

«max =  {e>U"X 51 +B(£m)F2 }|(l) 

solve (e^ X e 1 + A(£„)Fi}|(2) =  0 for £„ 

<xm in = {eAt' X 16 + A (tn)Fl}\(1)

(4.5)

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



determined analytically. The formulation given in §3.1 is capable of detect­

ing any type of steady-state motion including convergent, divergent, period-n, 
period-n with harmonics, and chaotic motions. Under the same system param­

eters, starting from different initial conditions, the trajectory may converge to 

different LCOs, which indicates the coexistence of the LCOs of the original 
system Eq.(2.2).

When Formulation 2 is applied, only the steady-state behavior is detected 

since no information with respect to the transients is used. This is very efficient 

if only the steady-state solution is of interest. However, the formulations given 

in Eqs.(4.1) and (4.2) (or Eqs.(4.4) and (4.5)) are valid only for detecting a 
period-one LCO (or a period-one LCO with harmonics). For other types of 
motion, the formulation has to be modified correspondingly. Note that only 

the positive solutions of t,(i =  1,2,3,4) to Eq.(4.1) (or Eq.(4.4) are valid 

since the variables £,(i =  1,2,3,4) represent the travelling times. Also note 

that one valid solution of Eq.(4.1) (or Eq.(4.4) corresponds to one period-one 
LCO (or one period-one LCO with harmonics) of the original system Eq.(2.2). 
However, there may be other valid solutions to Eq.(4.1) (or Eq.(4.4), indicating 
the coexistence of period-one LCOs (or of period-one LCOs with harmonics). 

Furthermore, under the same system parameters, we may have valid solutions 

to Eq.(4.1) (or Eq.(4.4) and to some other similar nonlinear equation systems 

corresponding to other types of LCOs. However, Formulation 2 cannot be 

used to predict convergent, divergent or chaotic motions.

4.4 R esults and Discussions

In this section, we present the applications of the point transformation formu­

lations developed in this paper.

To demonstrate the effectiveness of the point transformation method, For­

mulations 1 and 2 are applied to a freeplay model. The system parameters un­
der consideration are the same as those given in (3.1). The nonlinear restoring 

force M(xi) is given by (2.2) with M0 =  0, S =  0.5°, Mf  =  0, and a /  = 0.25°, 
and the plunge is Unear with G(x3) =  x3.
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The linear flutter speed Ul = 6.2851 is determined by solving the aeroe- 

lastic system for Mo = 6  =  « / =  0. For U* > Ul, some of the eigenvalues in 
regions R\, R2 and R$ have positive real parts. Thus, the solution is diver­
gent. As U* decreases below Ul, the real parts of all eigenvalues of systems in 
Ri and R2 are negative, but some eigenvalues of the system in R2 may have 
positive real parts. Hence, for U* < U l,  the aeroelastic system admits various 

nonlinear behaviors. When all eigenvalues of the system in region R2 have 

negative real parts, a  damped oscillation results, and the solution converges 

to its equilibrium point after the transients die out. However, when some of 

the eigenvalues of the system in R2 have positive real parts, the solution could 
become a fixed point, a limit cycle oscillation or a chaotic motion.

2.51---------------------■----------------------.----------------------.----------------------.----------

- 1  -

5 1----------------- 1----------------- ------------------ 1------------------1--------;
’ o 0.2 0.4 . . 0.6 0.8

u / u L

Figure 4.7: Bifurcation diagram for a(0) =  3° and a'(0) =  £(0) =  £'(0) = 0.

Numerous simulations over a wide range of velocities 0 < U*/Ul < 1 

have been performed using Formulation 1. Note that the nonlinear aeroelastic 

response for the freeplay model depends strongly on the initial conditions. In 

this study, the value of a(0) is selected to be in the range of ±5° so that 
the steady-state solution for pitch and plunge are small enough for linear 
aerodynamics to be valid. For the results presented in this section, we report 
those using a non-zero value for zi(0) (i.e., a(0)), and other values £t(0) for
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Figure 4.8: Period diagram for a(0) =  3° and a '(0) =  £(0) = £'(0) =  0.

i = 2,3,..., 8 are set to zero. To illustrate the complex nonlinear system 

behaviors, we display a bifurcation diagram and a  period diagram in Figs. 4.7 

and 4.8. The results reported are obtained using Formulation 1, and they 
correspond to the choice of o(0) =  3°. In these two figures, the horizontal axis 
is the bifurcation parameter t/*/C/£. The vertical axis is the maximum and 

minimum values of the pitch angle when a ' =  0 in Fig. 4.7. In Fig. 4.8, we 

present the values of the LCO’s period, and the classification of the steady- 
state solution is also described where p-n denotes a period-n LCO and p-n-h 
denotes a period-n LCO with harmonics.

For 0 < U*/Ul <  0.13, a single point is shown in the bifurcation diagram, 

which indicates that the solution converges to an equilibrium point. Since zero 

travelling time is determined by Formulation 1, this corresponds to a zero value 
for the period shown in Fig. 4.8. For example, when U* — 0.07Ul, no positive 
solution for the travelling time can be found in Step 3 of Formulation 1. The 

zero time implies that the solution will not pass through the regions Ry and 

R3 . Since the real parts of all eigenvalues of the system in R2 are negative, the 

solution converges to the equilibrium point in R2. For 0.14 < C/*/f/£ < 0.215, 

two amplitudes of a  corresponding to the maximum and minimum of pitch
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Figure 4.9: Frequency diagram for a(0) =  3° and a'(0) =  £(0) =  f'(0) =  0.

when a ' =  0 are shown in Fig. 4.7. This indicates that the solution is an 
LCO with period-one. It has one frequency with the period given in Fig. 4.8. 
For 0.216 < U*/Ul < 0.245, four amplitudes of a  when a' =  0 are shown in 
Fig. 4.7, and four switching points are detected by both formulations. Thus, 
the solution is a period-one LCO with harmonics, and the period, which is 

the same amount as the total travelling time, is shown in the corresponding 

period diagram. Note that there exists a small jump in the value of the LCO 

period when the solutions change from simple period-one to period-one with 

harmonics. Increasing U* slightly to U* = 0.25Ul, we observe a large jump in 
the period and eight values of a  when c l — 0 for the steady-state. Note that 
the period is almost double, indicating the appearance of a period doubling 

phenomenon. The solution becomes a period-two LCO with harmonics. The 

type of motion remains unchanged for 0.25 < U*/Ul < 0.529 except for two 

intervals when 0.252 <  U*/Ul < 0.325 and 0.466 <  U*/Ul < 0.488, where the 
solution becomes chaotic as shown in Fig. 4.7. A large number of amplitudes 
of a  when a ' =  0 are detected in the chaotic regions, and they appear to lie 
along a vertical line in the bifurcation diagram. As U* increases to 0.53Ul, a 
large drop with a  factor of two in the period occurs, and the solutions change
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Case r / u i Type of Motion T ®nioi ®min

1 0.20 P-l 33.4464 0.8311 0.1689

2 0.22 p-l-h 37.9893 0.8872 0.1653

3 0.2510 p-2-h 83.5829 0.9063 0.1567

4 0.3 chaotic

Table 4.1: Cases studies for the freeplay model

from period-two with harmonics to  period-one with harmonics. A further 

small reduction in amplitude for pitch appears when U*/Ul =  0.732, and the 

solution becomes a simple period-one LCO.

In order to illustrate the equivalence of both Formulations 1 and 2, four 

typical cases are selected for a more detailed examination. The results corre­
sponding to the choice of initial condition a(0) =  3° are presented in Table 4.1 

and in Figs. 4.10-4.13. In Table 4.1, T  represents the period, and ocmax and 
otfnin denote the absolute maximum and minimum values of pitch. The solu­
tions obtained from both formulations are essentially identical, and they are 

in good agreement with the numerical solution obtained by the Runge-Kutta 
time-integration scheme. The results obtained from the point transformation 

method are denoted by filled circles in the figures, and the numerical solu­
tions from the time-integration scheme are illustrated by solid lines. It should 

be noted that the time-step is usually chosen so that the time-integration 
method provides a stable numerical solution. Since for an aeroelastic system 

with freeplay, some of the eigenvalues of the system in region f? 2  may have 

positive real parts, it is difficult to perform the standard stability analysis. In 

numerical simulations, the time-step A t is chosen to be sufficiently small in 

order to ensure that a  good accuracy is achieved. Here, At can only be selected 
numerically when the solution computed by At is essentially the same as those 
obtained using At/2. We found th a t the choice of At depends strongly on the 

bifurcation parameter. For the freeplay model presented in Table 4.1, the result 

by using At =  0.3 is found to be a  good numerical solution for U* =  0.21/£.
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As U* increases to 0.25C/£, a much smaller time-step A t =  0.0125 must be 

used to obtain an accurate solution. The choice of A t  becomes more critical 

as the solution approaches chaos. Hence, solving an aeroelastic system using 

a numerical method becomes very time-consuming because a  large number of 

computing steps per cycle is required especially when U* nears the chaotic re­

gions. Moreover, the appropriate value for A t  can be determined only through 
a sequence of numerical computations using At, At/2, A t / 4, ..., etc..
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-50

-6 0 ;

-1? 0.05
Doo-diiQensanii frequency (1 (VU)
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i
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«•&

9000nso

Figure 4.10: The time history (a) and power spectral density (b) of pitch 

motion for Case 1 in Table 4.1. Solid line: Runge-Kutta time-integration 
result; filled circle: point transformation result.

For Case 1, using Formulation 1 starting with a(0) =  3°, an LCO is de­

tected after eight cycles. Four switching points and four travelling times are 

recorded, and they are similar to those displayed in Fig. 4.4(b). Since two am­

plitudes of a  corresponding to a' =  0 are determined(Fig.4.10), we conclude 
that the LCO is period-one with the frequency given by the nondimensional 
/  =  1/T =  0.0299. The predicted frequency is in excellent agreement with 

that determined from the power spectral density (PSD) plot based on the time 

history of the numerical solution (Fig. 4.10(b)). When Formulation 2 is ap­

plied, the same amplitudes and frequency are obtained directly without the 
transient stage. As U* increases to 0.22C/£, six switching points and travelling 

times are recorded, and they are similar to those shown in Fig. 4.5(a). The 
existence of a  smaller loop covering regions Ry and R? indicates that the LCO
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has harmonics. Four amplitudes of a  when a ' =  0 are detected, and they are 

in good agreement with the numerical solution (Fig. 4.11(a)). The frequency
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Figure 4.11: The time history (a) and power spectral density (b) of pitch 

motion for Case 2 in Table 4.1. Solid line: Runge-Kutta time-integration 

result; filled circle: point transformation result.

/  =  1/T =  0.0263 agrees well with the first dominant frequency reported from 

the PSD plot shown in Fig. 4.11(b). The point transformation method con­
firms the existence of the harmonic components, but it is unable to predict 

the value of the harmonics which appears at 2 / =  0.0526 as shown in the PSD 
plot.

For Case 3, the period T  =  83.58, which is almost double the period T  = 

37.98 reported for Case 2. Both formulations 1 and 2 indicate twelve switching 

points and eight amplitudes of a  when a' = 0. Moreover, the switching points 

displayed in the phase plane are similar to those shown in Fig. 4.6(b), where the 

complete loop covers the entire region twice, and it also contains two smaller 
loops covering regions R\  and R^. Hence, the resulting LCO is of period-two 
with harmonics. Fig. 4.12 shows the pitch amplitudes corresponding to a ' =  0 

and the predicted frequency of the LCO.

When U* =  0.3Ul, the values of switching points, travelling times, and the 

amplitudes of a  obtained using Formulation 1 do not settle down to a repeated 
sequence even after a sufficiently long time when r  > 15,000. The switching 
points appear to be on a  vertical fine in the phase space of a  — c! as shown in
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Figure 4.12: The time history (a) and power spectral density (b) of pitch 

motion for Case 3 in Table 4.1. Solid line: Runge-Kutta time-integration 

result; filled circle: point transformation result.

Fig. 4.13(a). The amplitudes of a  when a ' =  0 also lie on a vertical line in the 

bifurcation diagram shown in Fig. 4.7. This suggests that the motion is chaotic. 

The chaos is confirmed from the phase trajectory of or — a'(Fig. 4.13(b)) re­

sulting from the numerical time-integration scheme, and a typical “two-well 
potential” trajectory is observed. It is also worthwhile to note that the loca­
tions of the two inner loops are near the subspaces corresponding to a  = 0.25° 

and a = 0.75°. The PSD spectrum (Fig. 4.13(c)) from the numerical solution 

also confirms the existence of broadband frequency components, an indication 
of chaos. The particular case was also investigated by Price et al.[71], and 

they concluded that the motion is indeed chaotic.
One of the important features of the freeplay model is that the aeroelastic 

system admits the coexistence of stable LCOs. Table 4.2 reports the cases 

with the speed ratio U*/Ul =  0.2161,0.22 and 0.7. Starting with various 
initial conditions for a(0), different LCOs are predicted by Formulation 1. 

For example, for U* =  0.2161I/£ and a(0) =  0.3°, the LCO converges to a 

period-one LCO with harmonics, where the frequency is given by /  =  0.0266. 

Changing the initial condition to a(0) =  3°, the solution becomes a simple 
period-one LCO, and the frequency is given by /  =  0.0281. For U* = 0.22Ul, 
the solutions corresponding to the initials a(0) =  ±3° are of the same type,
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Case W /U i *i(0) Motion Type T &max ®min

1 0.2161 0.3 p-l-h 37.5344 0.8341 0.1149
2 0.2161 3 P-l 35.6384 0.8403 0.1597

3 0.22 -3 p-l-h 37.9893 0.8347 0.1128

4 0.22 3 p-l-h 37.9893 0.8872 0.1653
5 0.7 -0.5 p-l-h 81.9875 1.5179 0.2451

6 0.7 -5 P-l 72.05 1.2973 -0.2973

Table 4.2: Coexistence of limit cycle oscillations for the freeplay model

h *3 t\

initial guess 10 30 10 30

final solution 8.85644138 20.57834338 7.86033041 44.68989101
initial guess 5 20 10 20
final solution 20.18151269 21.03447205 10.70421369 22.42792629

Table 4.3: Results of Formulation 2 for Cases 5 and 6 in Table 4.2

namely period-one LCO with harmonics. Although the periods are identical, 

the amplitudes of a  for a' =  0 are different. The point transformation method 

confirms that the locations of the six switching points are actually different, 

and they are similar to those shown in Fig. 4.5(a) and (b). Note that the 
smaller loop covers regions R\ and /?2 for Case 3 and regions /Z2 and Rz 
for Case 4. For U* =  0.7C/£, four switching points are found by the point 

transformation method when a(0) =  -0.5° and —5.0°.
However, the number of amplitudes of a  when a ' =  0 are found to be four 

and two as shown in Fig.4.14(a) and (c), corresponding to the above initial con­
ditions. This gives an indication of the existence of harmonic components for 
Case 5. The phase trajectory constructed from the numerical time-integration 
solution confirms the existence of a smaller loop as shown in Figs. 4.14(b) and 

(d). However, since the smaller loop exists only in the region Ri, no extra 

switching point is found in the point transformation method.
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Although no explicit information concerning the initial condition is re­

quired in Formulation 2, the coexistence of stable LCOs can be determined by 
solving different sets of nonlinear equations or by changing the initial guess 

values to  solve the same set of nonlinear equations. For U*/Ul =  0.2161, 
solving Eq. (4.1) or (4.3) gives the LCO in Case 2, and the solution of Eq.

005
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Figure 4.13: Chaotic motion of Case 4 in Table 4.1: (a) the switching points by 

using point transformation method; (b) the phase path by using Runge-Kutta 

time-integration; (c) the PSD plot.

(4.4) leads to the LCO in Case 1. Similarly, when U*/Ul =  0.22, solving Eq.

(4.4) gives the LCO in Case 3. In order to determine the motion type for 
Case 4, a  different set of nonlinear equations has to be developed, since the 
switching points are now in a different sequence. Cases 5 and 6 correspond to 

two different types of LCOs, but both have four switching points, X i,  X 2, X 3
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and X4.  The switching points and travelling times are determined by solving 

the same nonlinear equations Eq. (4.1) in Formulation 2 but with different 
initial guess values. Table 4.3 reports the values of the initial guess which are

-0.1

1310

I
0
!
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noo-dmasMoal time t  pikha(deg)

Figure 4.14: The time history (a) and phase path (b) for Case 5 in Table 4.2. 

Solid line: Runge-Kutta time-integration result; filled circle: point transfor­
mation result.

used for solving Eq. (4.1) in which other initial starting values Si(i =  1,2,3,4) 

are set to zero. The corresponding solution for t\, t2, £ 3  and £ 4  are presented in 

Table 4.3. These results confirm the coexistence of two stable LCOs with two 

different periods, namely T  =  82 and T  = 72 for Cases 5 and 6  respectively.

4.5 Concluding Remarks

A mathematical technique based on the point transformation method has 

been developed to investigate the dynamic response of a self-excited two- 

degree-of-freedom aeroelastic system with structural nonlinearity represented 

by a freeplay stiffness. The method provides an accurate prediction since the 

switching points where the changes in Unear sub-domains occur are located 
exactly, and the solution in each sub-domain is determined analytically. Two 

formulations are developed, and they have been appUed to  investigate the 

nonlinear aeroelastic behavior of a freeplay model. The results of the present 

study show that both formulations can accurately predict the frequency and
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amplitude of LCOs. Moreover, the formulations are also capable of detecting 
complex nonlinear behavior such as periodic motions with harmonics, period 

doubling, chaotic motions and the coexistence of stable limit cycles. Formula­

tion 2 is particularly attractive since it can detect the presence of a particular 

type of LCO directly without considering the transients. From the illustra­
tive examples presented in this paper, it is clearly demonstrated that analytic 

predictions are in excellent agreement with those resulting from a numerical 

time-integration scheme. The point transformation formulations are developed 

for an aeroelastic system with a structural nonlinearity in the pitch degree of 

freedom. However, the analysis can readily be extended to include nonlinear­

ities in both degrees of freedom.
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Chapter 5 

Hysteresis Nonlinearities

5.1 Introduction

This chapter extends the point transformation technique developed in the pre­
vious chapter for freeplay models to investigate the dynamic response of the 
aeroelastic system with a hysteresis model. Since a hysteresis nonlinearity can 
be represented by a superposition of two freeplays, the location of switching 

points and the initial conditions are as important as they are in a freeplay 
model. As a piecewise linear system, a hysteresis model can also be ana­

lyzed by the point transformation method. Unlike a freeplay model with only 

three linear subsystems, a hysteresis model consists of six linear subsystems 

governing six regions in its state space. However, because of the special char­

acteristics of a symmetric hysteresis model, at most four switching points are 

actually needed. Two formulations of the point transformation method are 

now developed for a hysteresis model by extending the formulations given in 

Chapter 4 for a freeplay model. Applications of these formulations to sev­

eral examples are carried out to study the nonlinear behavior of the model, 

whose results confirm most of Chan’s[14] numerical solutions. Furthermore, 

the point transformation technique not only detects the existence of the period- 
one, period-two, and period-four LCOs with harmonics components, but it is 
also capable to predict the amplitudes and frequencies of these motions. This 

point transformation method with the attractive features such as taking into
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account the initial conditions and locating the switching points exactly is the 
most suitable analytical method for investigating the aeroelastic response of 

systems containing piecewise linear restoring forces.

Similar to a numerical scheme for a freeplay model, the time-integration 

scheme for the hysteresis model cannot be proven stable since some of the 

eigenvalues corresponding to the linear subsystems may have positive real 
parts. Furthermore, the scheme in general cannot precisely locate the switch­
ing points where the change in linear regions occurs. However, for the cases 

reported in this paper, the numerical solutions obtained by using Runge-Kutta 
method are sufficiently accurate since the time steps are chosen to be suffi­

ciently small. Thus, in the result and discussion section, the numerical results 

are used to cross check the predictions obtained by the point transformation 

method.

This chapter is organized as follows. First, the general implementation 
and two formulations of the point transformation method are developed for a 
hysteresis model in § 5.2. Then, these two formulations are applied to several 

examples of a hysteresis model and the corresponding discussion of the results 

are carried out in § 5.3. Finally, some concluding remarks are given in § 5.4.

5.2 The Point Transformation M ethod

A hysteresis model is a  piecewise linear system whose state space consists of 

six linear regions, each of which is governed by a linear subsystem. The point 
transformation method, which is suitable for all piecewise linear systems, can 

be applied to this model.
Consider a hysteresis model given by (2.3). As xi  increases, the system 

follows the upper branch of the hysteresis:

I xi -  a /  + Mo x\ < a f

Mo aj  < x \ < a j  + 8

x i - a f - 5  +  Mo x i > a f + 6 .
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On the other hand, as x\  decreases, the system follows the lower branch of the 

hysteresis:

I
x i + a i f + 6  — Mo X\  < —a / — 6 

—Mo —a /  — 8 < x i  <  —a f

X i + a f  — Mo Xi > —af  .

Thus, a  hysteresis can be treated as two freeplays following specified direc­

tions. For the symmetric hysteresis nonlinearity as shown in Fig. 2.4, we have 

Xi -  a f  +  Mo =  x i  +  a /  +  8 — Mo and x x — a f  — 8 + Mo = x i + a f  — M0. For 
this hysteresis model, as xi  increases, the state space consists of three linear 
regions IRi(i  = 1,2,3), each of which corresponds to a linear subsystem:

IR i  = { X z B ? \ x i <  af } : X '  =  A X  +  Fx

I R 2 = { X  e l ?  \ a f < x i < a f  + 6}: X '  = C X  +  F4

I R 3 = { X  e  R8 \ xi  > af + 8}  : X '  = A X - F i  .

Similarly, as x x decreases, the three linear regions DRi(i  =  1,2,3) of the state

space are given by

DRi = { X  e R ?  \ x i <  - a f -  8} : X '  — A X  +

DR2 =  { X  e  I ?  | - a f  -  8 < xi < - a , }  : X '  = C X - F A

DR3 =  { X  €  I ?  | Xi > - a / }  : X '  =  A X  -  Fx .

Here A  and C  are 8 by 8 constant matrices, and Fx and F4 are 8 by 1 constant 

vectors. The elements of A, C  and Fi, i = 1,4 are determined from the system 

parameters of the coupled aeroelastic equations, and they are given by

A = ( A , A 2 ) ,  C = ( C' M \ ,
\ M  A i )  \ A ,  A ,J

and Fi = (Mo — oif)F, F4 =  AfoF, where the elements of the 4 by 4 block 

matrices for A x, A 2, A3, A4 and the 8 by 1 vector F  are defined in Chapter 4,
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and Ci is given as follows

f  0  1 0  0  >

«21 a 22 +  j d o P ( j f z ) 2 024
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Figure 5.1: General sketch of a freeplay spring.

Y

Z

Y

DR,

Figure 5.2: General trajectory (a) and a period-one LCO (b) of the aeroelastic 

system Eq.(2) with hysteresis structure. Filled circles: switching points.

Let the Z  — Y  plane represent the eight dimensional state space with 

Z  =  {zi} and Y  =  {£2 , £3 , x4, x5, x6, x7, xg}- Then the Z  — Y  plane is di-

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vided by the sub-spaces Z  =  —at/, Z  =  —a /  — 6, Z  =  a /  and Z  = a / + 5 into 
six regions IR X, IR 2, IR 3 , D R X, DR2, and DR3 as shown in Fig. 5.1. From 
the general idea of the point transformation method, similar to the discussion 

for a freeplay model presented in Chapter 4, six switching points should be 

identified since there are six regions. However, from the following discussion 

for a general trajectory as illustrated in Fig. 5.2(a), in fact only four of them 

are important and needed to  be identified. When the system follows the upper 

branch of the hysteresis, its trajectory begins in IR \  and passes through IR 2 

into IR 3. As the value of x x changes from increasing to decreasing, the trajec­

tory enters DR3 . The system then follows the lower branch of the hysteresis, 

correspondingly its trajectory returns through DR2 into DR\. Now, as the 

value of xi changes from decreasing to increasing, the trajectory re-enters IRy. 
Let X \  and X 2 be the points through which the trajectory enters I R 2 and IR 3 

respectively. Let X 3 and X 4 be the points through which the trajectory leaves 
DR3 and DR2 respectively. These points (Xi, X 2j X 3 and X4) are the switch­
ing points that needed to be identified, since they locate the places where the 
linear systems change. Notice that there is no need to locate the point where 

the trajectory passes from I R 3 to DR3, since the linear systems in these two 

regions are the same. For the same reason, there is no need to identify the 

point where the trajectory passes from DRy to IRy. Let ty be the travelling 

time of the trajectory (from Xy to X 2) in region IR 2. Similarly, let t2, £ 3  and 

< 4  be the travelling times of the trajectory in regions /^ (D /Z a), DR 2 and 
DRy (IRy) respectively. The above procedure is then repeated, resulting in a 

set of new switching points X}, X 2, X j, X \  and new values for the corre­

sponding travelling times t}, t\, t\, t\. When the transients have diminished, 

we may observe a repetition of the switching points X i ,  X 2, X 3 ,  X 4  and the 

corresponding travelling times <1 , t2, <3 ,  t4 covering the entire region as shown 

in Fig. 5.2(b). Then the steady-state motion is classified as a period-one limit 
cycle oscillation (LCO). The frequency for this LCO can be determined by 
/  =  1 /T , where the period T  is estimated by the sum of the travelling times 

(i.e., T  = ty + 12 +  £ 3  + 14).
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Figure 5.3: General trajectories for period-one with harmonics: (a) the smaller 

loop covers IR \  and I R 2; (b) the smaller loop covers DR\ and D R Filled 

circles: switching points.

It is not necessary that the switching points and travelling times appear 

in the sequence as shown in Fig. 5.2(b). For example, the steady-state phase 

plane displayed in Fig. 5.3(a) contains six switching points. The additional two 
points X* and X \  are introduced after completing the sequence as discussed 

in the previous paragraph. In this case, a complete loop in the phase-plane 
consists of six points X \, X 2 , X 3 ,  X4, X |, X j and six corresponding travelling 
times t\, £ 2 ,  £ 3 ,  £ 4 ,  £}, t\. Unlike the trajectory shown in Fig. 5.2(b), a complete 

loop covering the entire region for this case also contains a smaller loop covering 

the two regions IR \  and //? 2 - The smaller loop is defined as the one that 

covers only one or two regions. The resulting LCO is of period-one, since 

we observe only one complete loop covering the entire region. However, the 

presence of a smaller loop indicates that the LCO has a harmonic component. 
Since the LCO is of period-one, the frequency is estimated by /  =  1/T with 

T  =  £ 1 +  £ 2  +  £ 3  +  £ 4  +  £} +  £2 . The typical feature of LCO with harmonics can 
be verified by the appearance of four values for a  when ol =  0. Fig. 5.3(b) 

shows a trajectory of period-one with harmonics, in which the smaller loop 

covers DR2 and D R 3 .

The point transformation method can be generalized in a straightforward 

manner to predict a  period-n LCO or period-n LCO with harmonics(e.g. a
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Figure 5.4: Trajectories for a period-two with harmonics (a) and a period-four 

with harmonics (b) LCOs. Filled circles: switching points.

period-two LCO with harmonics as shown in Fig. 5.4(a) and a period-four 

LCO with harmonics as shown in Fig. 5.4(b)), and the values of the frequency 
and maximum and minimum amplitudes can be estimated as well. If however, 
after a sufficiently long time, the sequence of switching points still does not 

repeat, it may indicate that the motion is chaotic.
Based on the above discussion of applying the point transformation to the 

aeroelastic system with the hysteresis stiffness, we present two approaches in 

the following subsections.

5.2.1 Formulation 1

Starting from the initial point of a  trajectory, this formulation is developed to 

determine the travelling times and the switching points in each region. First, 
the travelling times are determined by solving a nonlinear equation. Then the 

switching points are calculated by the multiplication of a known matrix by 
a known vector. If the round-off error can be neglected, the formulation will 
produce the exact solution for the aeroelastic system. The detailed procedure 

is given as follows.

S tep  0. Set the initial point X q =  (x0i,xo2 ,io 3 , -,x<s&)T- If X0 2  > 0, set 
i =  l  for ay < xoi <  ay +  8, i =  2 for Xoi > ot/ + 8 and i =  4 for xoi < ay; 
otherwise set i =  2 for xoi > — ay, t =  3 for —ay — 8 <  xoi <  —ay and i =  4
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for Xoi < —a /  — S. Set X i = Xo, and go to step *.
Step 1. Solve nonlinear equations a /  +  S = {eCtX i  +  C(t)F 2 }|(i) and 

a /  = {eCtX i  +C (t)F 2 }|(ij separately for £. Here, {V}|(„) denotes the nth 
element of the vector V. Let the smallest positive solutions corresponding to 

the first and second equations be £* and £** respectively. If £* < £**, let t\ =  £*, 

compute X 2 by X 2 = eCtlX \  +  C(£|)F2 , and go to step 2. If £** < £*, let 

£ 3  =  £**, compute X 4 by X 4 = eCt3X i  +  C(£3 )F2 , and go to step 4.
Step 2. First solve the nonlinear equation {eAtX 2 — -4(£)Fi}|(2) =  0 for 

£, assign the smallest positive solution to £u, and compute the maximum am­

plitude by amax =  {eAt*X 2 — w4(£„)Fi}|(i). Then solve the nonlinear equation 
—a /  = {eAtX 2 — w<4(£)Fi }|(i) for £, assign the smallest positive solution to £2 , 

and compute X 3 by X 3 = eAt2X 2 — A (t2)Fi. Go to step 3.

Step 3. Similar to Step 1 , solve at/ =  {eCtX 3 +  C(£)F2 }|(ij and a /  + S — 

{eCtX 3 +C(£)F2 }|(i) separately for £. Let the smallest positive solutions corre­

sponding to the first and second nonlinear equations be £* and £** respectively. 
If £* < £**, let £ 3  =  £*, compute X 4 by X 4 — eCt3X 3 +  C(£3 )F 2 , amd go to step 

4. If £** < £*, let £ 1  =  £**, compute X 2 by X 2 = eCtlX 3 + C(t\)F2 , and go to 
step 2 .

Step 4. Similarly to Step 2, first solve the nonlinear equation {eAtX 4 + 
.4(t)Fi}|(2) =  0 for £, assign the smallest positive solution to £*, and compute 

the minimum amplitude by a min =  {eAt,X 4 +  -4(£<)^i}|(i)- Then solve the 
nonlinear equation = {e"4tX4+>l(£)Fi}|(1) for £, assign the smallest positive 

solution to £ 4 , and compute X \  by X \  =  eAt*X4 + A(t4)Fi- Go to  step 1.

The computations of eAt and A(t)  can be found in Chapter 4. C(t) is 

defined as C(£) =  fg ec^~T̂ dr. For various U 't the matrix C  may have one 

pair of complex and six distinct real eigenvalues, or two pairs of complex and 

four real eigenvalues. For the former case, the computations of eCt and C(t) 

are similar to those for eAt and A(t), while for the latter case, they are similar 
to those for eBt and B{t) discussed in Chapter 4. In fact, there are a number of 

ways to evaluate an exponential of a matrix, and nineteen different methods 

are discussed by Moler and Van Loan[65]. Using the closed form for these
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computations yields an analytical formulation.

If no positive solution for the nonlinear equation can be found, the motion 

either diverges if the linear system has at least one positive real part eigenvalue, 
or converges to the equilibrium if the real parts of all the eigenvalues of the 

linear system are negative. When all transients are diminished and a repetition 
in the values of the switching points is observed, the correspond motion is an 

LCO. The amplitude and the period of the LCO can be predicted analytically. 
If after a sufficiently long time the repetition of the switching points can not 

be found and the values of the switching points remain bounded, the motion 
may be classified as chaotic.

5.2.2 Formulation 2

This formulation applies only after transients die out and LCO appears. For 

example, for a period-one LCO, the four switching points can be written as 
(notice that the switching points are different from those corresponding to a  
freeplay model):

* -(::)  M t ‘)
where Si, S2 , S3 and S4 are seven dimensional variable vectors representing the 

switching points in the subspace {X  €  i^ lx i =  or/}, {X  €  =  a /  +  5},
{X  €  #* 1 * 1  = -a t/}  and { X  € /2®|xi =  —a /  — <£}. Let f,(i =  1,2,3,4) 

denote the corresponding travelling times. Then, U and Si(* =  1,2,3,4) can 
be determined directly by solving the following system of nonlinear equations

t

X 2 = eCt'X l +C(tl)F4 

X 3 =  eAt'X 2 -  A i tJ F t
(5.1)

X4 =  eCtiX 3 -  C(t3)F4 

X l = e M*XA + A (ti )Fl .
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Similar to a freeplay model, Eq.(5.1) can be reduced to  a  four dimensional 

system with only the travelling times ti, 1z, £3 and £ 4  as variables:

Ctj = t2,t3,t4)Gi(ti,t2,t3,ti)}\(i)

aif +  6 =  {H z{ t \ ,  £2, tz ,  <2. tz,  ^4)}|(i)
(5.2)

-or/ =  {Hz(tu tz, tz, t4)Gz(ti, tz, tz, ^)}|(l)

- a /  — 5 =  {H t( t i , t z , tz , t^G ^ t i , t z , t z ,*4)}|(i) >

where H, (i =  1,2,3,4) are 8  by 8  matrix functions of <1 , tz, tz and £4 , Gi 
(i =  1,2,3,4) are 8  by 1 vector functions of £1 , tz, tz and £4 . However, the 
expressions for Hi and G, are different from those for a  freeplay model and 

they are defined as

h, h . t , )  = ( /  -  eM*ectleM2ect')~ l 

= ( /  -  e ^ e ^ e ^ e * ’) - '  

t3, (,) = ( /  -  eM‘ec,'eM‘ea ’ ) - '

« . ( < ! ,  <2, (3 ,(4) = ( /  -  e ^ e ^ e ^ e * * ) - 1

where I  denotes the identity 8  by 8  matrix.

Gi((i, <2 , h , U) =eA,'ec,'e M'C(tt )F, -  eM'ec " A ( t 3)Fy 

- e ^ C M f t + A M F ,

G i(ih t3l (3, (4 ) =  — eAC* A(t,) F\ — e(̂ tleAt4C(t3)F3

+ ec“A (ti )F1+C(tl)F,

G3(f 1 ,  t2, ( 3 ,  (,) = -  eM*ec‘‘eAUC(t3)F, + e ^ e ^ ' A ^ F ,

+ e*i’C(t,)Fi -A ( t , )F ,

C4(f,, t2, (3, (4) =e°heAt3ectlA ( t i )Fi + e ^ e ^ C ^ F ,

- c ° 'M ( ( 2 )F, -C (t,)F ,  .

The period is then given by T  = t\ + £ 2 +£3+£3 and the frequency /  =  1/T.
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The amplitudes oimax and a mi„ of this period-one motion are given by
t

solve {eAtuX 2 -  -4(£u)Fi}|(2) =  0 for tu

Of m ax  = -  A { Q F  }|(l)
(5.3)

solve {eAt'X 4 +  -4(li)fi}|(2) =  0 for fi

O m in  =  {eAt‘X4 +  - 4 ( i |) F i } |( j )  ,

where X 2 =  H2(t\, t2, £3 , U)G2 (ti, t2, £3 , £4 ) and X 4 =  t 2, t$, £4 )G4 (£i, t2, £3 ,
Similar formulations can be derived for other types of LCOs,

Formulation 1 requires initial conditions to compute the switching points. 

It should be noted that this formulation is not a time-integration numerical 

scheme and the solution of each linear subsystem is determined analytically. 

The general formulation given in §3.1 can be used to detect any type of motion 

including period-n, period-n with harmonics, and chaotic motions. Under 
the same system parameters, starting from different initial conditions, the 

trajectory may converge to different LCOs, which indicates the coexistence of 

the LCOs of the original system Eq.(2.2).
When Formulation 2 is applied, only the steady-state behavior is detected 

since no information with respect to the transient is recorded. This approach 
is more efficient if only the steady-state solution is of interest. However, the 

formulations given in Eqs.(5.2) and (5.3) are valid only for detecting a period- 

one motion. In order to  detect other types of system motions, the formulation 
must be modified accordingly. Note that only the positive solutions (i.e. U > 0, 

i = 1,2,3,4) to Eq.(5.2) are valid since the variables represent the travelling 

times. Also notice that one valid solution of Eq.(5.2) only implies that the 

original aeroelastic system Eq.(2.2) exhibits a period-one LCO. However, there 
may be more than one valid solutions to Eq.(5.2), indicating the coexistence 
of stable LCOs. Formulation 2 is not able to predict chaotic motion.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.3 Case Studies and Discussions

Applications of Formulations 1  and 2  are made to system Eq.(2.2) with the 

system parameters: ft = 1 0 0 , =  - 1 / 2 , xa = 1/4, Q =  Ca =  0 , ra =  0.5,

and ui =  0.2. The pitch angle is hysteresis with A/(xt ) defined in (2.3) in 
which Mo =  0.5° or 0.02°, 5 =  1.0°, and a /  = M0 -  0.5<5. The plunge is linear 

with G(x3 ) =  X3 . The formulations presented in the previous section do not 
depend on the choice of parameters. The system parameters and the hysteresis 

constants discussed in this section are chosen so that the point transformation 

results can be compared with the numerical time-integration solutions reported 

by Chan[14].

20

0 0

•8
o
cf

-5

1.05
u  /u,L

Figure 5.5: The flutter boundary diagram of an aeroelastic system with a hys­

teresis model. Filled dot: damped motion, star: LCO, open circle: divergent 

motion.

The flutter boundary diagram shown in Fig. 5.5 indicates several isolated 
pockets of LCOs inside the main flutter boundary, and this observation is 
similar to that reported by Chan[14]. For velocity ratios (C/*/C/£) greater 

than 1 , since the linear subsystems in all six regions have positive real parts,
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Case tr/ui Mo xi(0) Motion Type T ®ma*

1 0.80 0.5° 1° p-l-h 98.6429 2.6826° -2.4182°

2 0.8097 0.5° 1° p-l-h 99.0333 2.8342° -2.4640°

3 0.8098 0.5° 1° p-2-h 200.6 2.8614° -2.2844°

4 0.81085 0.5° 1° p-4-h 386.35 2.8646° -2.4241°

5 0.2 0.02° 3° chaotic

Table 5.1: Case studies for a hysteresis model.

the system motions are divergent. As U* decreases below £/£, the real parts 

of all eigenvalues of systems in I R X, IR 3, DRX, and DR3 are negative, but 
some eigenvalues of the systems in IR 2 and DR2 may have positive real parts, 

which results in various nonlinear behavior: damped motion, LCO or chaotic 
motion. In the main LCO region, the point transformation method detects 

a pattern of four distinct switching points and two values of maximum and 

minimum values of a  when a ' =  0 for the steady-state, indicating a simple 

sinusoidal motion with a  dominant frequency. For the motions on the inside 

LCO pockets, the harmonic components are detected and period-one, period- 
two and period-four LCOs are detected for various velocity ratios and initial 
conditions.

Several cases are selected for detailed discussion with results shown in 

Tables 5.1 and 5.2. Table 5.1 includes cases of various LCOs and the period 
doubling phenomena leading to a chaotic motion, while Table 5.2 shows the 

coexistence of two distinct LCOs under the same system parameters but with 

different initial conditions. The initial values other than xj(0) are set to zero 
for cases reported in Tables 5.1 and 5.2, and Mq = 0.5° for cases in Table 5.2. 

Notice that in Tables 5.1 and 5.2, “p-n” denotes “period-n motion”, “p-n-h” 
denotes “period-n with harmonics motion”, T  represents the period, and amax 

and amin denote the absolute maximum and minimum values of the pitch 

angle. The results obtained by using Formulation 1 presented in § 2.1 agree 

with those obtained by using Formulation 2, except for Case 5 in Table 5.1 since
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Case U '/U i xi(0) Motion Type T ® m a i OJfntn

1 0.80 1° p-l-h 98.6429 2.6826° -2.4182°
2 0.80 5° p-l-h 98.6429 2.4182° -2.6826°

Table 5.2: Coexistence of limit cycle cscillations for a hysteresis model.

Formulation 2 cannot be used to predict chaos. Besides the tables, the results 

are also shown in Figs. 5.3-5.9. Similar to the figures for a freeplay model 

reported in Chapter 4, the filled circles denote the predicted results obtained 

by using the formulations, and the solid lines represent the numerical solutions 
obtained by using the fourth-order Runge-Kutta time-integration scheme.

For Case 1 in Table 5.1, starting with a(0) = 1° and using Formulation 
1, an LCO is detected after seven cycles. Four different switching points and 

the corresponding four travelling times are detected. From our discussion pre­

sented in section § 2, this LCO is of period-one. However, four different values

0
I
*3.
§
■61

7^00 7300 7400 7500 7600 7700 7800 7900 8000 

pon-dim nuionl tim et

0.13

0.05

-0.03
- 0.1

-0.15
-0.2

-025 ■ -3

Figure 5.6: Case 1 in Table 5.1: (a) time history; (b) trajectory of a-a'. Solid 

line: numerical result, filled circles: point transformation method.

of a  when a1 = 0 are detected. These maximum and minimum amplitudes of 

a  are in good agreement with the time history obtained by using the fourth- 
order Runge-Kutta scheme as shown in Fig.5.6(a). These four values of a  
when a1 = 0 indicate the existence of a harmonic component. The trajectory 
of a  - ol and the switching points are displayed in Fig.5.6(b). From the tra-
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jectory, we know that the complete loop covers the entire region once, and 
there is a smaller loop in region IRy, indicating the existence of an harmonic 

component. Hence, the LCO of Case 1 is of period-one with harmonics. The 

frequency estimated by /  = 1/T =  1/98.6433 =  0.0101 can be verified by the 

power spectral density (PSD) plot from the time history.
In Case 2, six switching points, six travelling times and four different values 

of a  when a' = 0 are recorded after the transients diminished. The location 

of the switching points and the trajectory of a-a' are similar to those shown 

in Fig.5.3(a). As discussed in § 2, this LCO is classified as period-one with

$
8

1
§

3 -
1 : 1 ; i i ' (1)

2

1 ■ -1-

0 k k k k k Ifl- k I / i

.... i ....i
I 1 1 II II 1 i 11

1300 M 00 !500 8600 8700 BOO !900 9000 
noo-dimemionii time t

20
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I
1a
I

-10

-40

-so;
0.05 0.1  0.15
nan-dunensionil frequency (f h/U)

0.2

Figure 5.7: Case 2 in Table 5.1: (a) time history, (b) PSD plot. Solid line: 
numerical result, filled circles: point transformation method.

harmonics. The frequency /  =  1/T =  1/99.0333 =  0.0101 agrees well with 

the dominant frequency reported from the PSD plot shown in Fig.5.7(b). The 

numerical solution and the maximum and minimum amplitudes of a  when 

ol — 0 are displayed in Fig.5.7(a).

The total travelling time, T  =  200.6, in Case 3, is almost double the 

value T  =  99.0333 reported for Case 2. Both Formulations 1 and 2 indicate 
ten switching points and eight amplitudes of a  when a ' =  0. Moreover, the 

switching points displayed in the trajectory are similar to those shown in 

Fig.5.4(a), where the complete loop covers the entire region twice, and it also 
contains smaller loops covering regions DR\ and DR 2 . Hence, the resulting 

LCO is of period-two with harmonics. When the value of U* increases to
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Figure 5.8: Time histories for Cases 3 and 4 in Table 5.1: (a) Case 3; (b) Case 

4. Solid line: numerical result, filled circles: point transformation method.

0.81085Ul, a period-four with harmonic motion is found. Eighteen switching 

points and fourteen amplitudes of a  when a' = 0 are found by using both 

formulations. The location of the switching points and the trajectory of a  — a' 
are similar to Fig.5.4(b). Figs.5.8(a) and (b) present the pitch amplitudes 
corresponding to a ' =  0 for Cases 3 and 4, respectively.

02

■0&
8
■3
>

■s1 -0.1

-0 2

-03
- 0.2

pitch a pitcha(<fc()

Figure 5.9: Case 5 in Table 5.1: (a) switching points; (b) phase projection of 
a-a

By decreasing the value of Mb, a chaotic motion(Case 5) is detected. For 
this case, the values of switching points, travelling times and the amplitudes of 

a  obtained using Formulation 1 do not settle down to a repeated sequence even 

after a  very long time r  > 15,000. The values of the switching points appear
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to be on four vertical lines in the state space as shown in Fig. 5.9(a). Notice 
that there are only two vertical lines corresponding to a  chaotic motion in a 

typical freeplay model. This suggests that the motion is chaotic. The chaos 

is confirmed from the trajectory of a-a! (Fig. 5.9(b)). The trajectory results 
from the numerical scheme, and a typical “two-well potential” trajectory is 

observed. The PSD plot from the numerical solution is similar to Fig. 4.13(c) in 

Chapter 4 and also confirms the existence of broadband frequency components, 

an indication of chaos. This case has been carefully studied in [14].

Table 5.2 demonstrates the coexistence of stable limit cycles which corre­
spond to U*/Ul =  0.80. Using Formulation 1 , starting from a(0) =  1° and 
5°, the motions converge to two different period-one LCO with harmonics. 

The trajectories of a-a' and the switching points for Case 1 are displayed in 

Fig.5.6(b). For Case 2 , the trajectory of a-a ' and the switching points are sim­

ilar to Fig.5.6(b) with a smaller loop in region D R 3 .  There are two sets of valid 
solutions to Eq.(5.2), namely (ti = 6.31, 12 =  55.54, < 3  =  10.96, 14  =  25.84} 

and (ti =  10.96, < 2  =  25.84, t$ =  6.31, < 4  =  55.54}, which correspond to Cases 
1  and 2  respectively.

5.4 Concluding Remarks

A mathematical technique based on the point transformation method is intro­

duced to investigate the dynamical response for a self-excited two-degree-of- 
freedom aeroelastic system with structural nonlinearity represented by a hys­
teresis stiffness. The method provides an accurate result since the solutions 

for the corresponding linear subsystems are determined accurately by using 

analytical techniques and the switching points where the change in linear re­

gions occur are located exactly. Two formulations are developed, and they 

can be applied to predict the frequency and amplitude of LCOs. Moreover, 

the formulations are also capable of detecting complex aeroelastic behaviors 

such as the periodic motion with harmonics, period doubling, chaotic motions 
and the coexistence of stable limit cycles. The effectiveness of the proposed 

method has been demonstrated by verifying that the formulations can be used
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to predict the complex nonlinear behaviors of an aeroelastic system with hys­
teresis nonlinearity. The point transformation technique can also be extended 
for hysteresis stiffnesses in both degree of freedom.
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Chapter 6

Error Analysis of RK ’s 

Discretizations of 
Aeroelastic Systems

6.1 Introduction

In the previous three chapters, analytical techniques were developed and ap­
plied to aeroelastic systems with structural nonlinearities. However, the so­

lution of system Eq.(2.2) can also be obtained by numerical time-integration 

methods since the aeroelastic system has been reformulated into an initial 

value ODE problem in Chapter 2. Naturally, a question arises: why do we 
need the theoretical prediction when the numerical result can be obtained? 

Answering this question is the task of this chapter.

Some reasons are obvious. For example, for the aeroelastic system with 
cubic springs investigated in Chapter 3, the amplitudes and frequencies of 

the LCOs can be deduced directly from the analytical prediction formulas 

(3.6) and (3.2). When using a numerical method, we have to plug in the 
system parameters and the initial conditions first to obtain a time history and 

then apply Fourier Transforms or similar techniques to analyze the numerical 
solutions. Moreover, while the effects on the amplitudes and frequencies due 
to the change in the system parameters can be easily determined from the
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prediction formulas, such information cannot be achieved from a numerical 
approach. On the other hand, some other reasons need more efforts to reveal. 
For example, as we will show shortly, errors of the numerical schemes for some 

systems may be quite large and in some cases the behaviors of the numerical 

results and the analytical solutions may completely contradict to each other.

It was pointed out as early as in 1860 by George Boole that, for nonlinear 

differential equations, a  surprisingly big difference exists between Differential 
Calculus and Difference Calculus. Yamaguti and Matano[92], Maeda[63] and 

Yamaguti and Maeda[91] showed that under certain conditions, while the orbit 

of the differential equation =  f(y )  is asymptotically stable, its Euler’s 

discretization produces, for some time step h, a dynamical system which is 
chaotic in the sense of Li and Yorke[54]. Yamaguti and Matano’s work[92] was 

generalized by Hata[28] to systems of differential equations. They all revealed 

that a stable equilibrium point in the original autonomous ordinary differential 
equation(s) could turn into a source of chaos in the corresponding difference 
equation(s).

This chapter mainly concentrates on errors of the fourth-order Runge- 

Kutta method (RK-method) since the method is commonly used to solve most 

engineering problems. Before we carry out the accuracy analysis, we have to 

analyze the stability, which is the most important step for the analysis of a 
numerical scheme. The definition for the stability we used is the A-stability, 

the most often referred in numerical analysis literature(e.g.[21]). Simply put, 

a method is stable if it produces a  bounded solution when the solution of the 

differential equation is bounded; otherwise, it is unstable. A method that is 

stable for some, but not all, values of the parameter is conditionally stable; 

one that is stable for all values of the parameter is said to be unconditionally 

stable; one that is not stable for any value of the parameter is called uncon­

ditionally unstable. The error we discussed in this chapter is the global error. 
We calculate the error by either estimating the difference of the solutions to the 

consistent equation with that to the original equation, or comparing directly 

the numerical result with the exact solution to the original equation.
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In § 6.2, the errors of the RK-schemes are analytically estimated for a 

simple sinusoidal motion. It shows that, although the scheme is conditionally 

stable for this equation, it introduces amplitude decaying and period elonga­

tion errors. For the more complicated aeroelastic system with cubic springs, 
the scheme is conditionally stable and introduces the amplitude and period 
errors as well. The stability of the numerical scheme for a  rapidly time-variant 
system is analyzed in § 6.3 and significant differences between numerical and 

analytical results are observed. In a case when the scheme changes from being 

stable to being unstable, the numerical solution becomes divergent for any 

given time step, while the exact solution is convergent. For piecewise linear 

systems, such as freeplay and hysteresis models, the numerical results from 
RK-scheme are compared against the analytical solutions obtained from the 

PT-method in § 6.4. We find that the numerical scheme may lead to chaos, 

while the analytical solution is actually a fixed point and vice versa. Finally, 
some concluding remarks are given in § 6.5.

6.2 A  Sim ple Sinusoidal M otion and Aero­

elastic Systems with Cubic Springs

A simple sinusoidal motion is the simplest oscillation problem with a known 

frequency and analytical solution. It is interesting to see that the fourth-order 

RK-scheme may cause stability and accuracy concerns for this problem. In 

this section, we provide theoretical analyses for both the stability and accu­

racy of the scheme. The analytical technique derived in this section can be 

used to estimate the numerical error for a simple sinusoidal motion, and can 

be extended to high-dimensional systems such as the system of dynamic equi­
librium equations discussed by Bathe and Wilson[4]. Although the sinusoidal 

motion has also been studied in [4], their study concentrated on the central dif­

ference method, the Houbolt method, the Wilson 0 method and the Newmark 
integration procedure and the accuracy analysis was only based on numerical 

observations. In this section, more subtle and more detailed analysis for errors
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is carried out for the fourth-order RK-scheme. This section also reveals the 

fact that the accuracy of numerical results rely heavily on the ratio h /T ,  where 
T  is the period of the motion.

The equation for a simple sinusoidal motion is given by

y " (t)+ u 2y(t) = 0  , (6.1)

which can be rewritten in a form of the first-order ODE system
t
y'l = 1/2

y 2 =  -u /V  ,

with y i= y  and y2 =  Then, the fourth-order RK’s discretization of Eq.(6.2)

(6.2)

is

I

and

y?+I = y" + hy* -  \h2u2vt -  \h3u2y% +
(6.3)

y?+l =  y? -  ^ hV\ -  \h 2u}2yZ +  A/iVy? +  ^ h W y ?  ,

where h is the time step, and yjl+1 and y%+l denote the numerical values of yi 
and y2 at t = (n +  1 )h. The matrix form of the above scheme is

Yn+l =  RYn , (6.4)

where Yn+1 , Yn and R  are given by

’■-'-(IP)' ( S ) ■
_  /  1 — \uj2h2 +  ^ / i4w4 h — \h 3u 2 \

\  —u 2h +  j-h3u)4 1 — \uj2b? -I- i / i 4ar4 )

Thus, the stability of the scheme (6.3) can be determined by the norms of the 

eigenvalues of R. More specifically, if at least one of them is greater than 1, 

the scheme is unstable; otherwise, it is stable. For this case, the eigenvalues 
of R are

Ai,2 =  (1 ~  \*>2h2 +  ’

with the norm

IIA ull =  1 -  ^ ( 2 x ) V  +  5 ^ ( 2 * ) V  , r  =  £  ,
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less than 1 if £ <  Hence, the scheme Eq.(6.3) is conditionally stable and 
is stable provided h /T  < 0.4501.

In order to analytically estimate the errors of the numerical results, we 
derive a consistent equation which includes only the leading terms of errors in 

the damping and frequency terms of the discretization Eq.(6.3). Using Taylor 

expansion theory, we obtain the desired consistent equation:

y"(t) +  + (w2 -  jjjju6k4)w(t) =  o , (6.5)

where is the leading term for amplitude (damping) error and - ^ u 6h4

is the leading term for frequency (period) error.

Now, given the initial conditions y(0) =  and y'(O) =  the exact 
solution to the original equation Eq.(6.1) is

y(t) =  Asin(uit + <t>) > 

with the amplitude A , period T  and phase shift <f> given by

a  =  i / w r +

(6.6)

rp  __  2 n
w

4  = tan-‘(j|ij) .

(6.7)

On the other hand, the numerical solution to Eq.(6.1), i.e. the solution to the 

consistent equation Eq.(6.5) can be written as

y(t) =  ANsin(0t +  <f>N) , (6.8)

where the amplitude AN , period TN, and phase shift <f)N are given by

1
(6.9)

with
a  =_  64*g .5

144 '

0 =  u}\h  -  ^slr4 -  1024irlV ^V  \  1 60 7 10368
(6.10)

r =  h  t  T
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FYom (6.9), we have the amplitude decaying error since a  is always negative, 
the amplitude A N  converges to zero as t  approaches to infinity. This also 
suggests that the RK-scheme may not lead to accurate solution for long time 

computations. Furthermore, the speed of the amplitude decaying depends on 

the value of a, which depends on the ratio h /T . The larger the ratio h /T  is, 

the faster the decaying speed is. For the period error, as the frequency (3 of the 
solution to the consistent equation is smaller than that of the original motion, 

the period obtained from the numerical scheme is enlarged, indicating period 

elongation error. Similarly, as 4>N is different from <j>, the phase shift error is 
also introduced. Therefore, the relative errors, AD  (amplitude), T D  (period) 

and <f>D (phase shift), of the scheme (6.3) for the sinusoidal motion with the 

initials y(0) =  y0 and y'(0) =  yx can be defined by

’ AD = Jd^fiQ

< TD  =  (6.11)

6 D = 1*^1  .V 9

In order to demonstrate the magnitude of errors of the RK-scheme for the 

simple sinusoidal motion, we consider a specific case with ui = 2 n, y x = 1 and 

3 /2 =  6- From (6.7), (6.9) and (6.11), the relative errors for amplitude (AD), 
period(TD) and phase shift (<t>D) can be computed by

AD =

TD  = I f - 1! (6.12)

<I>D = V 1
1

First, the amplitude decaying percentage (AD) versus the logarithm of time 

based on 10 (logl0 t) is plotted in Fig. 6.1 for different time steps. These results 
are obtained by using the formula (6.12) with the values of a  and /? given by
(6.10). FYom Fig. 6.1, when h /T  < 0.01, the amplitude from RK-scheme agrees 

well with that of the original solution for the time t up to t  = 105. As h /T  
increases, the time when the amplitude decaying error becomes unacceptable
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Figure 6.1: Analysis of the amplitude decaying percentage error of the fourth- 
order RK-scheme for a  simple sinusoidal motion.

decreases dramatically. When h /T  > 0.2, the numerical scheme leads to a 

totally different solution-a fixed point-as the amplitude dies out very quickly 
to zero at time t =  100.

Next, the period elongation percentage and the phase shift percentage er­
rors are plotted against the ratio h /T  in Fig. 6.2, since these errors are in­

dependent of time t. Compared to the amplitude error, these two types of 

errors are not so sensitive to the ratio. FVom Fig. 6.2(a), the period error 
can be neglected for h /T  < 0.02. Although the phase shift error as shown in 

Fig. 6.2(b), which has not been addressed by other researchers, is very small, 

it does come into effect when h /T  > 0.04.

The above analysis suggests that the ratio h /T  plays an important role 
in the stability and accuracy of the numerical scheme. The larger h /T  is, 

the larger the numerical errors (in amplitude, period and phase shift errors) 

are. On the other hand, the smaller h /T  we use, the more accurate numerical 
solution we have.

In fact, the stability and accuracy analyses carried out in the above are 

also suitable for other systems, such as a general system of equations MU(t) + 

CU(t) +  KU(t) =  R(t) with the matrices M, C  and K  and the vectors U and 
R  defined in [4].

For aeroelastic systems with cubic springs, which is in eight-dimension and
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Figure 6.2: Analysis of (a) the period elongation percentage error and (b) 
the phase shift percentage error of the fourth-order RK-scheme for a simple 

sinusoidal motion.

includes cubic nonlinear terms, the analyses for stability and accuracy of the 

scheme are more complicated.
The original system Eq.(2.2) with cubic stiffness can be written as

X' =  A X  ■+■ F X 3 , (6.13)

where A  and F  are coefficient matrices, X  = (xi,X 2 , —,x%)t  and X 3 = 

. . . , X g ) r . The fourth-order RK’s discretization of Eq.(6.13) can be sim­

ply expressed as
x„ +l = RX„ + /(A , F, h, x i ) . (6.14)

where Xn+1 and X n are the numerical values of the vector variable X  at time 

t =  (n +  l)h  and t =  nh  respectively, X 3 is the numerical value of X 3 at 

t = nh,

R  =  /  +  hA + ±jh2A2 +  ^ / i3A3 -I- ^ h AA4 .

and /  is a nonlinear function of A, F, h and X 3. The stability of the scheme 

Eq.(6.14) can then be determined by the norms of the eigenvalues of R. For 
example, in Case 1 with 6  =  0.01 reported in Chapter 3, the scheme is stable 
provided h /T  < 0.12, where T  =  74.8462. Compared to h /T  < 0.4501 for the 

sinusoidal motion, the stability condition of scheme (6.14) is much stronger.
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For the accuracy, the analytical error estimates similar to (6.11) cannot be 

obtained by using the above accuracy analysis derived for a sinusoidal motion. 

However, we expect similar errors for this system since it is a nonlinear dynamic 

system in eight-dimension. Taking Case 1 with S = 0.01 discussed in Chapter 3 
as an example, when h /T  =  0.05 the amplitude error is 0.9486%, 77 times less 
than that for the sinusoidal motion with the same value of h /T  and the same 
computation time t =  104, while the period error, 0.8675%, is 25 times larger 

than that for the sinusoidal motion with the same h /T . Similar to the scheme 

for the sinusoidal motion, it leads to more accurate numerical results when 

using smaller time steps. However, it should be pointed out that there is no 
reference frequency in the self-excited system and T  is unknown before the 

numerical computation is carried out.

6.3 A Rapidly Time-Variant System

For the simple sinusoidal motion and the aeroelastic system with cubic springs, 
when h /T  is sufficiently small, the numerical error will be acceptable for a finite 
time interval. However, there are some cases in which even with small value 
for h/T, the numerical result may not be reliable. A rapidly time-variant 

system investigated in this section provides such an example that, no matter 
how small the time step h is, the numerical solution always turns out to be 

divergent while the original motion is convergent.

The rapidly time-variant system is a linear time-variant system with expo­
nential variation in stiffness term:

**(«)+e‘* (t)=  0 . (6.1)

This system arises from many engineering problems such as flexible fink ma­

nipulators and tethered satellites[69].

The analytical solution to Eq.(6.1) can be obtained by the variable substi­
tution method. Similar to the discussion in Li[53], by a  substitution

r  =  2 V ?  , (6.2)
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Eq(6.1) is then transformed into Bessel’s equation of order 0:

r 2x"(r) +  tx'(t) +  (t2 -  02)x(r) =  0 . (6.3)

Thus, a general solution to  the original system Eq.(6.1) can be written as:

x(£) =  CiJ0(2y/e*) + c2Yo(2n/?) , (6.4)

where c\ and c2 are determined by the initial conditions and Jo and Yq are 
Bessel’s functions of the first and the second kind of order 0. As the limits 

of both J0(2\/e‘) and >o(2\/e*) are zero as time t approaches to infinity, for 
all nonzero initial conditions the motion converges to zero as t  approaches to 
infinity.

Fig. 6.3 shows a typical motion of this rapidly time-variant system with

the initial conditions x(0) =  0 and x'(O) =  0.1. The amplitude decays from

about 0.075 at the beginning to almost zero at time t  =  20, which confirms 
the theoretical assertion that the asymptotic behavior of the motion is zero. 

Furthermore, from the graph, we also observe that the period T  of the cycles 
decreases rapidly to zero as t  increases. Hence, for any given fixed time step 

h, h /T  increases rapidly as t increases. Therefore, the numerical scheme will 

not be able to catch sufficient points sooner or later for a cycle, which suggests 

the possible failure of the scheme. To demonstrate this point in detail, the 

fourth-order RK-scheme is then again derived and the stability of the scheme 
is theoretically analyzed.

To derive the RK-scheme, the original system Eq.(6.1) is written in a form 
of the first-order ODE system

X  =  A{t)X  (6.5)

with X  =  (x, x')T and

M i : ) -
Then, the fourth-order RK-scheme, similar to (6.4), can be written into a 
simple form:

X n+l= B (n ,h )X n , (6.6)
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Figure 6.3: The exact motion of a rapidly time-variant system Eq.(6.1) with 
x(0) = 0 and x'(O) = 0 .1 .

where X n+l and X n are the numerical values of X  a t time t =  (n +  1 )h and 
t = nh respectively, and B(n, h) is a time- and step-related matrix:

with a, 6, c and d are functions of n and h:

a =1 -  i / iV *  -  ^h.2enh+?h + i_h4e2n'*+5'*

6 =h -  l h 3enk+*k 
6

c =  -  \h e nH -  \h e nĤ H +  l - h 3e2nh+l2k -  -he nH+l1 +  — h3e2nH+
6 3 12 6 12

d =  1 -  - h 2enh+*h -  - h 2enH+h +  — h*e2nh+ .
3 6 24

Let

=  ^ (a + d) + ^ y/(a + d) 2 -  4(ad -  be)

and

* 2  =  +  d) -  ^ V ( a +  d) 2 -  4(ad -  be)

be the eigenvalues of B(n, h). Then, the stability of the scheme (6.6) is de­
termined by ||Ai|| and HA2 II, which depend on the computation time t =  nh. 
Fig. 6.4 displays ||Ai|| against the time t = nh for time steps h =  0.1,0.01, and 
0.001. The corresponding plots exhibit the same pattern as they all begin with

101

► -------- :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 then decrease to 0.5 and finally blow up rapidly to infinity. It seems that, 
no matter how small the time step h is, the norm of the eigenvalue Ai always 
becomes greater than 1 and then increases to infinity as time t increases. In 

fact, this assertion is strictly valid since

4-

3.5

3 3
>6 2.5
M
V

£
2

's 1.5

e 1

0.5

h = 0 .1

h = 0 .01

h = 0 .0 0 1

M M
10 

lim e  I
IS 20

Figure 6.4: The norm of the eigenvalues of the transition matrix of the scheme

> 1  i 1 1.4 2 n h + ± h  , 2 - h AP2nk+ l h  \ - h 2p nh+ h — h h 2 p n h + h  \ ~ h 2Pnh+tl
— 4 8  48 12 3 12

> 1  +  L h Ae2nh+^H -  \ h 2enH+h

>1 +  h4e2nh -  h 2e lnh

> ^ h 2e*nh{h2e*nH -  12) oo (n -» oo)

As ||Ai|| > ||A2||, the scheme (6.6) changes from being stable to being unstar 

ble as the computation time t increases, and therefore for large time t, the 

numerical results become meaningless.

In order to examine the significant differences between the exact and the 

numerical motions, we plot out the numerical solutions for the Eq.(6.6) with 
the initial condition =  0 and x“ =  0.1 and with the time steps h  =  0.1,0.01, 
and 0.001 in Fig. 6.5. Taking Fig. 6.5(b) as an example, although the first sev­
eral cycles of the graph agree well with the exact motion (Fig. 6.3), the graph 

decreases rapidly to zero (at t — 10) and becomes divergent finally (at t  = 12).
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Figure 6.5: Numerical results for time steps (a) h =  0.1, (b) h =  0.01, and (c) 
h =  0.001.

This phenomenon can be explained by the behavior of the corresponding curve 

of ||Ai |f for h =  0.01 in Fig. 6.4, which shows that the scheme is stable for t = 0 

to t =  11.5 and is unstable for t > 11.5. The other two graphs (Fig. 6.5(a) 

and (c)) behave similarly to that in Fig. 6.5(b). No matter how small the 

time step h is, the numerical result always becomes divergent, while the exact 

motion decreases and converges to zero gradually and smoothly as shown in 

Fig. 6.3. The error (difference between the numerical and exact solutions) of 

the scheme for h =  0.01 is displayed in Fig. 6.6, showing that the error grows 
rapidly to infinity as t  increases. Hence, the numerical result is not acceptable 

no matter how small the chosen time step is. In fact, the Eq.(6.5) can not be 
solved correctly by Runge-Kutta method with an uniform time step.
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Figure 6.6: The numerical error of the scheme for h =  0.01.

6.4 An Aeroelastic System with A  Piecewise 

Linear M odel

In the previous sections, theoretical analyses have been carried out for the 

RK-schemes for several types of systems. We showed that stable schemes with 

small time steps usually provide sufficiently accurate numerical results for a 

finite time interval, unstable schemes, on the other hand, may result in numer­
ical solutions qualitatively different from the exact motions. In this section, we 

focus on the error of the RK-scheme for an aeroelastic system with a freeplay 

model. This model, represented by a piecewise linear function, is not differen­

tiable at the switching points. Although generally speaking the RK-method 

can always be applied and the numerical result may be accurate for some cases, 

the numerical scheme has not been proven stable and the numerical error can­

not be estimated analytically. The stability cannot be analyzed easily since the 

eigenvalues of the system in the freeplay region may have positive real parts, 
which means that the RK-scheme could become unstable for the subsystem 

in that region. In the following discussion, the solutions resulting from the
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point transformation method are used as the exact solutions to compare with 

the numerical results. We will show that, based on several case studies, the 
fourth-order RK-scheme gives inconsistent numerical solutions when various 

time steps are used, confirming the problems of applying numerical schemes 

to piecewise continuous systems.

In order to concentrate on the numerical errors, without loss of generality, 

we consider a simplified version of the example in Chapter 4 by keeping only 
the first four variables, xi, X2 , X3  and x4. More specifically, by leaving the 

ratio r  =  (U l/U * )2 as a system parameter and evaluating all the others, this 
simplified system can be written as

with

D =

and

X ' = D X  + F(X) ,

0 1 0 0
0.016 -0.026 0.0029 +  0.0014r 0.013

0 0 0 1
-0.016 -0.013 -0.0029 -  0.0013r -0.013

Fi(X) for xi < o.f 

F { X ) = \ F 2{X) for ctf < xi < cif + 6  

Fs(X) for x\ > 8  ,

(6.1)

where

Fi(X) =

f 0 > f o \
—0.0334rxi +  0.00015r

. f t ( * )  =
0

0 0
, 0.0084rxi — 0.000037r , 1 0 ,

and

f t  (X) =

0
—0.0334rx! +0.00044r 

0
0.0084rxi -  0.0001l r

\

a /  =  0.0044, 5 =  0.0087.

/  
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Then, similar to the discussion in Chapter 4, the state space of the system 
Eq.(6.1) consists of three regions, each of which is governed by a strictly Unear 

subsystem:

Ri = {X  e  /f*| x t < 0.0044} 

R2 = { X €  R?\ 0.0044 < Xi < 0.0131} 

R3 = {X  e  R?\ x i  > 0.0131}

X ' = D X  + Fi(X)  , 

X 1 =  D X  +  F2{X)  , 

X ’ =  D X  + F3(X) .

Therefore the stability of the scheme can be analyzed by investigating the 

schemes for each subsystem. If there exists a time step h such that the schemes 

for all subsystems are stable, the scheme for the whole system may be stable. 

However, in the following we will show that for some cases such time step h 

cannot be found, and therefore the scheme may become unstable. Detailed 

discussions are given as follows.
The subsystem in Ri can be written as

where

A =

X ' =  A X  + F I  ,

0 1 0
0.016 -  0.0334r -0.026 0.0029 + 0.0014r

0 0 0

(6 .2)

0

0.013
1

-0.016 +  0.0084r -0.013 -0.0029 -  0.0013r -0.013

and

F 1 =

\0

0.00015r 
0

—0.000037r

The fourth-order RK-scheme for this subsystem written in a  simplified form is

X n+x = R X n + Q {h,A ,F  1),

where Q is a function of h, A  and F I, and

« r t  &  >.2 h3 h4 A,R  — I  + h A +  — A + — A  +  — AI  o 24

(6.3)

(6.4)
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As the stability is determined by the eigenvalues of R , the scheme for this 

subsystem is stable for 0.01 < U*/Ul < 1 provided h < 0.08 since the norms 

of the eigenvalues of R  are less than 1 when h < 0.08. Similar analysis can be 

carried out for the scheme for the subsystem in R3l and the same conclusion 
is reached as well.

On the other hand, the scheme for the subsystem in R 3 can be written in 
the form similar to Eq.(6.4) with

R = I +  hD + % D 2 + ^ -D 3 +  ^ -D 4 . (6.5)
2 o 24

The condition of h for the scheme to be stable in this region is complicated, 

depending on the value of the ratio U*/Ul. The following discussion of the 
numerical error concentrates on three cases for U*/Ul =  0.02, 0.12, and 0.4. 

Therefore, only the stability conditions for these three values of the ratio are 

reported. For U*/Ul =  0.02, the scheme is stable when 0.31 < h < 1; for 

U*/U£ = 0.12, it is stable when 5 <  h < 10; for U*/Ul =  0.4, the scheme is 

unconditionally unstable. For all three cases, the scheme for the subsystem in 
R-i either is unconditionally unstable or requires h > 0.08 to be stable, which 

is contradict to the stability condition of the schemes for the subsystems in R\ 
and R 3. Thus, for any given time step h, the stability condition of the scheme 

for the subsystems in R lt R 3 and R3 cannot be all satisfied.

The reason we choose these three cases lies in the fact that they are typ­

ical according to the bifurcation diagram as shown in Fig.6.7. Notice that r  
in Eq.(6.1) is the bifurcation parameter. This diagram, where the x-axis is 

the ratio of the velocities and the y-axis is the maximum and mini­

mum amplitudes for Xi, is computed for system Eq.(6.1) with the initial con­
dition i |(0 )  =  0.01170190, x2(0) =  0.00014569, x3(0) =  -0.00024094 and 

2 :4 (0 ) =  0.00001137 by Formulation 1 of the point transformation method de­

scribed in § 4.3.1. Notice that the unit for the amplitude has been transformed 

from radian to degree. From this diagram, when U*/Ul =  0.02, 0.03, 0.07, 

0.08, and 0.09, the motions may be classified as fixed points, while for the rest 
of U*/Ul €  (0,0.2), the graph indicates that the motions are chaotic. When 

U*/Ul €  (0.2,1), the motion is either period-one LCO or period-one with
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harmonics LCO. For all U*/Ul > 1, the motions are divergent. Although this 
bifurcation diagram is very different from that of the original eight-dimensional 
system as shown in Fig.4.7, it still captures the essential features of the non­

linear dynamic responses, such as the fixed point, period-one LCO, period-one 
with harmonics LCO and chaotic motion.

Notice that there may be three fixed points for the whole system since 

each linear subsystem has one fixed point. However, through the following 

theoretical analysis, the fixed point of the whole piecewise Unear system is 

unique.

The fixed point X q of the subsystem in R\, obtained by solving D X  +  
F i (X )= 0 ,is

w  ( n nnr3277 + M32r « „ 9040 +  121r \  T
0 ( '  3545 +  1583r' ’ ' 3454+1583r’ J  ‘

Similarly, the fixed points X$ and Xjj of the subsystems in R2 and R3 are

X<f = (0 ,0 ,0 ,0)T and X$ = (o . 5 5 - ^ - ^ —  ,0 , - 1 . i — 240 + T— ,0^
0 V 7 0 V 3545 +  1583r ’ 3545+1583r’ /

respectively. As the first component of X q is greater than 0.0045 for r > 0, 

X'o is in fact in R 2, which means that this fixed point can never be reached 
by any motion of the whole piecewise Unear system. Similarly, X q cannot be 

a fixed point of the whole system since it is in R \. With the first component 

greater than 0.0132 for r  > 0, X q is the only possible fixed point of the whole 
system since it is within its own subsystem’s domain, R3.

Next, the numerical solutions using the fourth-order RK-scheme with dif­
ferent time steps for three selected cases U*/Ul =  0.02, 0.12 and 0.4 are 

carefuUy examined. The results are reported in Table 6.1, where the initial 

conditions are *i(0) =  0.01170190, x2(0) =  0.00014569, x3(0) =  -0.00024094 
and X4(0) =  0.00001137 for Cases 1 and 2, and xi(0) =  0.01700663 and 

x2(0) =  x3(0) =  X4(0) = 0 for Case 3. The corresponding results ob­
tained by using PT-method are reported in Table 6.2. In these two tables, 
“t  =  70 —>fixed” means that “when t exceeds 70, the motion stays at the 

unique fixed point of the system”; “p-1” means “period-one motion”; “p-l-h”
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h Case 1 Case 2 Case 3

V / U l  =  0.02 W /U i  =  0.12 U*/Ui =  0.4

0.16 t = 70 —►fixed t =  5710 —►fixed P-l
0.08 chaotic chaotic p-l-h

0.04 t =  75 —►fixed t = 5530 —►fixed p-l

0.02 t =  135 —►fixed chaotic P-l
0.01 t =  200 —♦fixed chaotic P-l
0.005 t =  80 —►fixed f =  7620 —►fixed p-l-h

0.0025 t =  80 —►fixed chaotic p-l-h

0.00125 chaotic chaotic p-l-h

0.000625 t =  80 —►fixed t = 1020 —►fixed p-l-h

0.0003125 t =  80 —♦fixed chaotic
0.00015625 chaotic chaotic
0.000078125 t =  550 —►fixed chaotic
0.00005 t = 2625 —►fixed chaotic

0.000025 t =  255 —►fixed chaotic
0.00001

1TeII*4 chaotic

Table 6.1: Case studies using RK-method for a freeplay model

Case 1 Case 2 Case 3

U '/U l  =  0.02

CM1-HoII U '/U l  =  0.4

PT-method t =  284 —►fixed chaotic p-l-h

Table 6.2: Case studies using PT-method for a freeplay model
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Figure 6.7: Bifurcation diagram for the simplified four dimensional freeplay 
model.

means “period-one with harmonics motion” . The computing time for all the 

cases is £ =  9000. This table shows that the numerical scheme with different 
time steps gives qualitatively different solutions. The details of the motion 

behavior of the numerical solutions and results obtained by using PT-method 
are shown in Figs. 6.8-6.20, in which the radians are transformed to degrees.

For Case 1, while most of the time steps result in fixed points, three of them 

(h = 0.08, 0.00125 and 0.00015625) lead to chaotic motions. Furthermore, 

even for the same asymptotic behavior, the fixed point, the transient states 

are different. For example, Fig. 6.8 gives different time histories for time steps 
h = 0.02 and h =  0.005, although both motions approach to the unique fixed 

point Xq. For the time steps which lead to chaotic motions, the trajectories 

are not all the same. For example, the time histories of x\ for h = 0.08 and h =  
0.00125 are displayed in Figs. 6.9(a) and (b) respectively; the corresponding 

phase pathes of x<i versus x\ are given in Figs. 6.10(a) and (b). It is obvious 

that both time histories and phase paths are quite different. Also, the time 
histories for x3 and the phase paths of X3-X4 for these two time steps are
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Figure 6.8: The time histories of x\ for Case 1 with (a), h =  0.02 and (b). 
h =  0.005.
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Figure 6.9: The time histories of x\ for Case 1 with (a), h =  0.08 and (b). 

h =  0.00125.

different, as shown in Figs. 6.11 and 6.12. The chaotic motion resulting from 

the RK-method with h =  0.00015625 looks similar to that with h =  0.00125.
However, the PT-method gives only a fixed point with the transient time 

t = 284. The time history of Xi resulting from the PT-method is shown in 

Fig. 6.18. It turns out that none of the RK results are the same as the PT 

result. For a case in which the numerical results are as sensitive as this one to 
time step h, certainly the RK-method is not recommended.

For Case 2, while most of the results are chaotic motions, some of them 
(h =  0.16, 0.04, 0.005, and 0.00625) are fixed points. The profiles for the
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Figure 6.10: The phase paths of x\-x2 for Case 1  with (a), h =  0.08 and (b).
h = 0.00125.

tim et tim et

Figure 6.11: The time histories of x3 for Case 1 with (a), h =  0.08 and (b). 
h =  0.00125.

chaotic motions are more or less the same, while the transient states for the 

fixed points are very different. The time histories and phase pathes for the 

motions with h =  0.08, 0.02 and 0.005 are displayed in Figs. 6.13-6.17. On 
the other hand, the PT-method gives a  chaotic motion for this case. The 
time histories of x \  and x3 and the phase paths of x i- x 2 and X3-X4 for Case 

2 resulting from the PT-method are displayed in Figs. 6.19 and 6.20. Again, 

we reach the conclusion that the RK-scheme is not suitable here since with 

different time steps it gives inconsistent asymptotic results.

Even when the ratio is larger than 0.2, the RK-method with different time
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Figure 6 .1 2 : The phase paths of Z3 -X4  for Case 1  with (a), h = 0.08 and (b).
h =  0.00125.
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Figure 6.13: The time histories of xi for Case 2 with (a), h =  0.08 and (b). 
h =  0 .0 2 .

steps also gives different results. In Case 3, with h =  0.16,0.04,0.02,and 0.01, 

the motions resulting from the RK-method converge to period-one LCO; with 

h =  0.08,0.005,0.0025,0.00125,0.000625..., the motions converge to  period-one 

with harmonics LCO. When using PT-method, we obtain only the period-one 

with harmonics LCO, which is similar to the result from the RK-method with 

small time steps (smaller than 0.005).
The errors of the RK-scheme for the piecewise linear system consist of 

accumulated error and the switching points location error. Since the system is 
piecewise linear, although the analytical error estimation method presented in
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Figure 6.14: The time histories of (a). Xi and (b). X3  for Case 2  with h =  0.005.

- 0.06
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Figure 6.15: The phase paths of xi-x 2  for Case 2 with (a), h =  0.08 and (b). 
h = 0 .0 2 .

the previous sections of this chapter can be applied to each subsystem in each 

region, the numerical error for the entire system cannot be achieved. However, 

these two types of errors will be illustrated through Case 1 in the following 
discussion and Figs. 6.21-6.22. Similar results can be obtained for the other 
cases.

A ccum ulated E rro r: In Case 1, the numerical results deviate from the 
exact motion at an early time. Fig. 6.21 displays the time histories resulting 

from the RK-method with different time steps compared to that from the 
PT-method. The smaller the time step h is, the longer time it takes for the 
deviation to become evident. For example, when h =  0.08, the discrepancy
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Figure 6.16: The time histories of x$ for Case 2 with (a), h =  0.08 and (b). 
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Figure 6.17: The phase paths of x^-Xa for Case 2 with (a), h =  0.08 and (b). 
h =  0 .0 2 .

between the numerical result and the exact motion can be seen as early as 

t  =  56. Then, the error grows quickly, leading the motion from a fixed point 

to a qualitatively different solution: chaos. As h decreases to h  =  0.00125, the 

discrepancy becomes evident only after t  =  85.
Switching P o in t Location E rro r: The RK-method with an uniform 

time step cannot locate exactly the switching points, which is further confirmed 

in Fig. 6.22. This figure, with x \ versus time t, shows location error of the 
switching points at xi =  0.0044 for Case 1. Here, the location error is defined 
as the difference between 0.0044 with the value of xi of the closer point to
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Figure 6.18: Time history of X\ for Case 1  resulting from PT-method.
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Figure 6.19: Time histories of Xi and £ 3  for Case 2, result from PT-method.

{X  € R |xi =  0.0044} when the trajectory passes through the subspace. It 

can be seen that larger time step results in larger location error. When the 

location error is small for small time steps (which can be seen in Fig. 6.22), 

from Tables 6 . 1  and 6.2, the numerical solutions become consistent and have 

similar asymptotic behavior as that of the solutions obtained by using PT- 
method. Hence, we reach the conclusion that the location of switching points 
is very important. The graph for the location error of the switching points at 

x\ =  0.0131 for Case 1  is similar to Fig. 6 .2 2 .
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Figure 6.20: The phase paths of X1-X2  and of X3 -X4  for Case 2, result from 
PT-method.

6.5 Concluding Remarks

In this chapter, we emphasize the importance and necessity of analytical tech­

niques by investigating the errors of the fourth-order RK-schemes applied to 

a simple sinusoidal motion, aeroelastic systems with cubic springs, a rapidly 

time-variant system and an aeroelastic system with a freeplay model. First, 

for a simple sinusoidal motion, the numerical scheme is proven stable, and 

the analytical estimate (6.11) of the numerical error is obtained. For a finite 

time interval, we can always have sufficiently accurate numerical results by 
choosing small time steps such that the ratio h /T  is sufficiently small. Since 

T  is fixed for a motion and is known from the equation, it is easy to check 

the condition of h /T  before the numerical computation. However, no matter 

how small the time step h is, the amplitude of the numerical solution always 

approaches zero as the computation time increases to infinity. Therefore, the 
scheme must be used with careful choice of h /T  for long time computations. 

For a more complicated aeroelastic system with cubic springs, the stability 

and accuracy of the scheme rely heavily on the ratio h /T  as well. However, 

the period T  is unknown before the numerical computation, which makes it 

impossible to check the stability condition of the scheme in advance. Then, for 

a rapidly time-variant system, the scheme changes from being stable to being 

unstable. Even worse, since the period T  decreases to zero, for any chosen
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Figure 6.22: Switching point location errors in the RK-method for Case 1

time step h the ratio h /T  always increases to infinity as the computation time 

t increases. As expected, the numerical simulations show the divergent solu­

tions qualitatively different from the exact motion, which converges to zero. 
Finally, the scheme for the aeroelastic system with a freeplay model cannot be 

proven stable by using the standard analysis for the scheme. Particularly, for 

some cases, the schemes cannot be proven to be stable for all three regions with 

any chosen time step. Furthermore, from the error analysis of the scheme for 

the piecewise linear system, we conclude that the location error of switching 

points, as well as the normal accumulated error, plays an important role in the 
numerical results. By a careful examination of three cases, we observe that 

different time steps may result in inconsistent solutions and qualitatively dif­

ferent asymptotic behaviors such as the fixed point, the chaos, the period-one 

LCO and the period-one with harmonics LCO. Hence, analytical techniques 

proposed in this thesis not only provide predictions directly and fast but also 
for some cases are important and necessary, since numerical results may lead 

to inconsistent and wrong results especially when the scheme has not been 
proven stable.
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Chapter 7 

Conclusion

In this thesis, we consider a two-dimensional airfoil oscillating in pitch and 

plunge exposed to a subsonic flow with cubic, freeplay, and hysteresis struc­

tural nonlinearities. The mathematical model is a system of coupled integro- 

differential equations, which is reformulated to a set of eight first-order or­

dinary differential equations by the introducing of four new variables. Sev­
eral analytical techniques, the center manifold theory, the principle of normal 
form, the perturbation method, and the point transformation method, have 

been applied to investigate the dynamic response of the 2-DOF aeroelastic 
system. Numerical results obtained by using the fourth-order Runge-Kutta 

method have been presented to compare with those obtained from analytical 
predictions.

For a self-excited aeroelastic system with cubic hard springs, the center 
manifold theory is used to reduce the 8-dimensional system to a 2-dimensional 

system, which is then simplified by the principle of normal form. FVom the sim­

plified 2-dimensional system, the frequency prediction formula is first derived. 

The prediction of the amplitude is then obtained by using the perturbation 

method. Therefore, the amplitude and frequency of the LCO in the post- 
Hopf bifurcation are predicted analytically. Several test examples are given to 

show the excellent agreement between the numerical results and the analytical 
predictions. These examples include the aeroelastic system with weak/strong 
cubic nonlinearity in one/both DOF. Furthermore, in a straightforward man-
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ner, this center manifold technique can be extended to be suitable for general 

nonlinear system of ODEs with polynomial nonlinearities[88]. For the analyt­
ical predictions in the flutter response of cubic nonlinearity, several problems 

remain open and are listed below.

(a) The amplitudes and frequencies of period-two LCOs.

As mentioned at the end of Chapter 3, with some adjustment for the time 

dependent center manifold and time dependent normal form, the center man­

ifold technique developed in Chapter 3 may be extended to predict the ampli­

tudes and frequencies of period-two LCOs.
(b) The flutter response of a  soft spring.

As this response depends on the initial conditions, the center manifold tech­
nique, which does not take into account any initial conditions, is not applicable 

for this case.

(c) The dynamic response of an aeroelastic system subject to two external 
forces with two different frequencies.

The dynamic response of an aeroelastic system subject to one external 
force or two external forces with the same frequencies was investigated in 

Lee et al. [49]. However, their technique cannot be extended for two different 

frequencies. If the time dependent center manifold and time dependent normal 

form can be derived for the aeroelastic system, this technique may be extended 

to predict the dynamic response of the aeroelastic system with two external 

forces where the reference frequencies are distinct.

Based on the point transformation method, two formulations are developed 
for the self-excited aeroelastic system with freeplay and hysteresis structural 

nonlinearities. The observed nonlinear phenomena are convergent, period-one, 
period-one with harmonics, period-two, period-two with harmonics, chaotic 

and divergent motions. Formulation 1 in § 4.3.1 and § 5.2.1 takes into account 

the initial conditions, which is particularly necessary for these two types of 
nonlinearities. It can be used to detect all the nonlinear behavior of the system. 

Formulation 2 in § 4.3.2 and § 5.2.2 can be used to predict the amplitude and 
frequency of period-one, period-one with harmonics, period-two, and period-
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two with harmonics LCOs. Formulation 2 is more efficient than Formulation 
1 if only the LCO steady-state is of interest. Both formulations are capable 
of detecting the coexistence of stable LCOs. For the cases we considered, the 

numerical results obtained by using very small time-steps agree with those 

obtained by using the point transformation method. Furthermore, these two 
procedures can be generalized for the system subject to external forces and for 

the nonlinearities in both DOF. In fact, this techniques can be extended for 
general piecewise linear system. In this field, there are some related problems 

which need further investigation.

(d) The prediction of chaos.

As mentioned in Chapters 4 and 5, Formulation 2 in § 4.3.2 and § 5.2.2 

cannot be used directly to predict any chaotic motion. However, it may be pos­

sible to extend the formulation to detect the chaos specifically for the freeplay 

and hysteresis models.
(e) The prediction of the frequency of harmonics component.
Although we detect the harmonics component in the nonlinear behavior by

using both formulations, the frequency of the harmonics cannot be predicted 

from the formulations.

Finally, to emphasize the importance and necessity of analytical techniques, 

we carry out a detailed analysis of the errors resulting from the Runge-Kutta 
method for the aeroelastic system with cubic and freeplay nonlinearities. For 

the cubic model, the numerical scheme is stable for sufficiently small time steps, 

and the numerical error can be estimated analytically. For the freeplay model, 

on the other hand, the stability of the scheme cannot be theoretically analyzed 

in a straightforward manner and the numerical error cannot be estimated 

analytically. The error resulting from the fourth-order Runge-Kutta scheme 

for a simplified freeplay model is carefully studied, especially for the cases 

where the numerical results indicate qualitatively different system behavior. 
The result suggests that the analytical techniques such as those developed in 
Chapters 3, 4 and 5 are important and necessary since the numerical results 
are not always reliable, particularly for the aeroelastic system with freeplay
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and hysteresis models for which the numerical schemes have not been proven 
stable.

The present work assumes linear aerodynamics with nonlinear structures. 

As limit cycle behavior has been observed in the transonic regime, where 

strong aerodynamics nonlinearities are presented, our future work will take 
account the effect due to nonlinear aerodynamics as well as structural nonlin­
earities. Compared to  the flutter analysis of nonlinear structures, nonlinear 

aerodynamic effects are more difficult to analyze since the fluid motion is gov­

erned by equations where analytical solutions cannot be found. However, if 

the unsteady aerodynamics model can be approximated by a curve function, 
the center manifold (time-dependent) technique and the point transforma­

tion method can be extended to study the dynamics response of the two- or 

three-degree-of-freedom aeroelastic system with cubic, freeplay and hysteresis 
nonlinear structures and with nonlinear aerodynamics.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] H. Alighanbari and S. J. Price, The post-Hopf-bifurcation response 

of an airfoil in incompressible two-dimensional flow, Nonlinear Dynamics, 
10(1996), pp. 381-400.

[2] A. A. Andronov, A. A. V itt, and S. E. Khaikin, Theory of Oscil­

lators, Addison-Wesley Publishing Company Inc., 1966.

[3] P. V. Bayly and L. N. V irgin, Chaotic rattling of a piecewise non­
linear oscillator, ASME-91-WA-DSC-17, 1991.

[4] K. J. Bathe a n d  E. L. W ilson, Numerical Methods in Finite Element 
Analysis, Prentice Hall, Inc. New Jersey, 1976. pp.345-362.

[5] P. Berge, Y. P omeau and C. Vidal, Order Within Chaos, Wiley, 

New York, 1986.

[6] W. J. Beyn, Numerical Methods for Dynamical Systems, Advances in 

Numerical Analysis (editor, W. Light), Oxford Science Publication, Ox­
ford, 1991.

[7] R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity, John 

Wiley and Sons, Inc., New York, NY, 1962.

[8] R. L. Bisplinghoff, H. Ashley and R. L. Halfman, Aeroelasticity, 
Addison-Wesley Publishing, Cambridge, Mass, 1955.

[9] E. J. Breitbach, Effect of structural nonlinearities on aircraft vibration 
and flutter, Presented at the 45th Structures and Materials AGARD Panel 

Meeting, AGARD report 665. Voss, Norway, 1977.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[10] E. J. Breitbach, Flutter analysis of an airplane with multiple structural 
nonlinearities in the control system, NASA TP 1620, 1980.

[11] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equa­

tions: Runge-Kutta and General Linear Methods, John Wiley & Sons, 
1987.

[12] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New 
York, 1981.

[13] A. R. Collar, The expanding domain of aeroelasticity, Journal of the 

Royal Aeronautical Society, L(1946), pp. 613-636.

[14] Y. Chan, Numerical simulation of a two-dimensional airfoil with a hys­

teresis nonlinearity, National Research Council Canada, NRC summer 
student project report IAR-97-1, Sept. 1997.

[15] M. D. Conner, P. Donescu and L. N. Virgin, On the global con­
vergence characteristics of numerically evaluated jacobian matrices, Non­

linear Dynamics, 10(1996), pp. 165-174.

[16] M. D. Conner, D. M. Tang, E. H. Dowell and L. N. Virgin, Non­
linear Behavior o f a Typical Airfoil Section with Control Surface Freeplay: 
A Numerical and Experimental Study, J. Fluids and Structures, (11)1997, 
pp. 89-109.

[17] E. J. Doedel AND J . P. Kernevez, AUTO: software for continua­

tion and bifurcation problems in ordinary differential equations, Applied 

Mathematics Report, California Institute of Technology, 1986.

[18] E. H. Dowell, Aeroelasticity of Plates and Shells, Noordhoff Interna­
tional Publishing, 1974.

[19] E. H. Dowell, H. C. Jr. Curtiss, R. H. Scanlan and F. Sisto, A 
Modem Course in Aeroelasticity, Sijthoff and Noordhoff, the Netherlands, 

1978.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[20] E. H. Dowell AND M. Ilgamov, Studies in Nonlinear Aeroelasticity, 

Springer-Verlag New York Inc., 1988.

[21] J. H. FERZIGER, Numerical Methods for Engineering Application, John 

Wiley & Sons, 1998.

[22] H. W. FORSCHING, Fundamentals of Aeroelasticity, In German, 

Springer-Verlag, Berlin, 1974.

[23] Y. C. Fung, An Introduction to the Theory o f Aeroelasticity, Dover 

Publications Inc., New York, 1993.

[24] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential 
Equations, Prentice-Hall, Inc. 1971.

[25] L. Gong, Y. S. Wong and B. H. K. Lee, Dynamics of a Coupled 

System of Duffing’s Equations, Dynamics of Continuous, Discrete and 

Impulsive Systems, 4(1998), pp. 99-119.

[26] J. GUCKENHEIMER, AND P. HOLMES, Nonlinear Oscillations, Dynami­

cal Systems, and Bifurcation of Vector Fields, Springer-Verlag, 1993.

[27] P. Hartman, Ordinary Differential Equations, 2nd ed. Birkauser, 

Boston, 1982.

[28] M. Hata, Euler’s finite difference scheme and chaos in Rn, Proc. Japan 

Acad. 58A(1982), pp. 178-181.

[29] A. J. Hauenstein, R. M. Laurenson, W . Eversman, G. Galecki,

I. Qumei and A. K. A m o s ,Chaotic response o f aerosurfaces with struc­

tural nonlinearities, Proceedings of the AIAA/ASME/ASCE/AHS/ASC 

31st Structures, Structural Dynamics, and Materials Conference (Long 

Beach, CA), AIAA, Washington, DC, 1990, pp. 1530-1539.

[30] A. J. Hauenstein, J. A. Zara, W. Eversman and I. Qumei, 

Chaotic and nonlinear dynamic response o f aerosurfaces with structural 
nonlinearities, Proceedings of the AIAA/ASME/ASCE/AHS/ASC 33rd

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Structures, Structural Dynamics, and Materials Conference, Part 4 Struc­
tural Dynamics II (Dallas, TX), AIAA, Washington, DC, 1992, AIAA- 

92-2574-CP, pp. 2367-2375.

[31] C. Hayashi, Nonlinear Oscillations in Physical Systems, McGraw Hill, 

New York, 1964.

[32] M. Henon, On the numerical computation of Poincare maps, Physica 

5D, 1982, pp. 412-414.

[33] D. H. Hodges and R. A. Ormiston, Stability ofhingeless rotor blades 

in hover and pitch-link flexibility, AIAA J., 15(1977), pp. 476-482.

[34] J. C. HOUBOLT, A recurrence matrix solution for the dynamic response 

of elastic aircraft, J. Aeronaut. Sci., 17(1950), pp. 540-550.

[35] A. Heck, Introduction to Maple, Springer-Verlag, New York, 1993.

[36] K. Isogai, On the transonic-dip mechanism of flutter o f a sweptback 

wing, AIAA Journal, 17(7)(1979), pp. 793-795.

[37] E. C. JOHNSON, Sinusoidal analysis of feedback-control systems contain­

ing nonlinear elements, TVans. AIEE, 71(1952), pp. 169-181.

[38] D. J. Jones AND B. H. K. Lee, Time marching numerical solution of 
the dynamic response o f nonlinear systems, Aeronautical Note NAE-AN- 

25, NRC No. 24131, National Research Council Canada, 1985.

[39] R. T. Jones, The unsteady lift of a wing of finite aspect ratio, NACA 

Rept. 681, 1940.

[40] K. A. KOUSEN AND O. O. Bendiksen, Limit cycle phenomena in com­
putational transonic aeroelasticity, J. Aircraft, 31(1994), pp. 1257-1263.

[41] N. Krylov and N. Bogoliubov, Introduction to Nonlinear Mechanics, 
translation by Solomon Lifschitz, Princeton University Press, Princeton, 
1947.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[42] Y. A Kuznetsov, Elements of Applied Bifurcation Theory, Springer, 

Berlin, 1995.

[43] R. M. Laurenson and R. M. T rn, Flutter analysis o f missile control 
surfaces containing structural nonlinearities, AIAA J. 18(1980), pp. 1245- 
1251.

[44] B. H. K. Lee and J . Desrochers, Flutter analysis o f a two- 
dimensional airfoil containing structural nonlinearities, National Re­

search Council of Canada, Aeronautical Report, LR-618, NRC No. 27833, 

1987.

[45] B. H. K. Lee and A. T ron, Effects of structural nonlinearities on 
flutter characteristics of the CF-18 aircraft, J. Aircraft, 26(1989), pp. 781- 
786.

[46] B. H. K. Lee, L. Gong and Y. S. Wong, Analysis and computation 

of nonlinear dynamic response of a two-degree-of-freedom system and its 

application in aeroelasticity, AIAA-96-1248, AIAA Dynamics Specialists 
Conference, April 18-19, 1996, Salt Lake City, UT.

[47] B. H. K. Lee, L. Gong and Y. S. Wong, Effects of structural nonlin­
earities in aeroelasticity, Nonlinear Analysis, Theory, Methods and Appli­

cations, Proceedings of the Second World Congress of Nonlinear Analysts, 

30(1997), pp. 2699-2709.

[48] B. H. K. Lee, L. Gong and Y. S. Wong, Analysis and computation 
of nonlinear dynamic response of a two-degree-of-freedom system and its 

application in aeroelasticity, J. Fluids Structures, 11(1997), pp. 225-246.

[49] B. H. K. Lee, L. Y. J iang and Y. S. Wong, 1999 Flutter of an 

airfoil with a cubic nonlinear restoring force, AIAA Paper 98-1725, 39th 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 

Materials Conf. 20-23 April, Long Beach, CA, 1998.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[50] B. H. K. Lee, L. Y. J iang and Y. S. Wong, 1999 Flutter o f an airfoil 
with a cubic nonlinear restoring force, J. Fluids Structures, 13(1999), 
pp. 75-101.

[51] B. H. K. Lee and P. LeBlanc, 1986 Flutter analysis o f a two- 
dimensional airfoil with cubic nonlinear restoring force, National Research 

Council of Canada, Aeronautical Note, NAE-AN-36, NRC No. 25438, 

1986.

[52] B. H. K. Lee, S. J. Price, and Y. S. Wong, Nonlinear Aeroelas­

tic Analysis of Airfoils: Bifurcation and Chaos, Progress in Aerospace 
Sciences, 35(1999), pp. 205-334.

[53] Q. S. Li, A new exact approach for analyzing free vibration of SDOF 
systems with nonperiodically time varying parameters, J. Vibration and 
Acoustics, 122(2)(2000), pp. 175-179.

[54] T . Y. Li and J . A. Yorke, Period three implies chaos, Amer. Math., 

Monthly, 82(1975), pp. 985-992.

[55] W. B. Lin and W. H. Cheng, Nonlinear flutter of loaded lifting sur­
faces (I) and (II), Journal of the Chinese Society of Mechanical Engineers, 

14(1993), pp. 446-466.

[56] L. Liu, Y. S. Wong, and B. H. K. Lee, Application o f the centre 

manifold theory in nonlinear aeroelasticity, CEAS/ALAA/ICASE/NASA 
Langley International Forum on Aeroelasticity and Structural Dynamics 

1999, NASA/CP- 1999-209136/PT2, pp. 533-542.

[57] L. Liu, Y. S. Wong, and B. H. K. Lee, Application o f the centre 

manifold theory in nonlinear aeroelasticity, J. Sound and Vibration, 234- 
4(2000), pp. 641-659.

[58] L. Liu, Y. S. Wong, AND B. H. K. Lee, The point transformation 
method in nonlinear aeroelasticity, Proceedings of the Second Interna-

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tional Workshop on Scientific Computing and Applications, Kananaskis, 

Alberta, CA, May 28-June 1st, 2000.

[59] L. Liu, Y. S. Wong, and B. H. K. Lee, Nonlinear aeroelastic anal­

ysis using the point transformation method, Part I  and II, J. Sound and 

Vibration, submitted.

[60] L. Liu, B. H. K. Lee, and Y. S. Wong, Dynamical Analysis of Non­
linear Aeroelastic System with Hysteresis, Proceedings of International Fo­

rum on Aerodynamics and Structural Dynamics 2001, June 5-7, Madrid, 

Spain.

[61] L. Liu, Y. S. Wong and B.H.K. Lee, Error analysis of Runge-Kutta’s 
discretizations of aeroelastic systems, Applied Mathematics and Compu­

tations, submitted.

[62] Jr. S. C. McIntosh, J r. R. E Reed and W. P. Rodden, Exper­
imental and theoretical study of nonlinear flutter, J. Aircraft, 18(1981), 

pp. 1057-1063.

[63] Y. Maeda, Euler’s discretization revisited, Proc. Japan Acad., 

71A(1995), pp. 58-61.

[64] Many Authors, Aeroelastic effects from a flight mechanics standpoint, 

North Atlantic TVeaty Organization, Advisory Group for Aerospace Re­

search and Development, Flight Mechanics Panel, 1970.

[65] C. Moler and C. Van Loan, Nineteen dubious ways to compute the 

exponential of a matrix, SIAM Review 20(1978), pp. 801-836.

[66] F. C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists 

and Engineers, John Wiley & Sons, Inc. 1987.

[67] A. H. Nayfeh and D. T . Mook, Nonlinear Oscillations, John Wiley 
& Sons, New York, 1995.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[68] A. H. N a y f e h  a n d  B. B a l a c h a n d r a n ,  Applied Nonlinear Dynam­
ics: Analytical, Computational and Experimental Methods, John Wiley & 

Sons, Inc. 1995.

[69] A. N a t a r a j a n ,  R. K. K a p a n ia  a n d  D. J. In m a n , Near-exact ana­
lytical solutions to linear time-variant systems, Proceedings of the 42nd 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference and Exhibit, Seattle, WA, USA, 16-19 April, 2001.

[70] T. O’Neil, H. Gilllat and T. Strganac, Investigation of Aeroelastic 

Response fo r  a System with Continuous Structural Nonlinearities, AIAA 
Paper, 96-1390, 1996.

[71] S. J . P r i c e ,  H. A l ig h a n b a r i  a n d  B. H. K. L e e , The Aeroelastic 

Response o f a Two-Dimensional Airfoil with Bilinear and Cubic Structural 
Nonlinearities, Journal of Fluids and Structures, 9(1995), pp. 175-193.

[72] S. J . P r i c e ,  B. H. K. L e e , a n d  H. A l i g h a n b a r i ,  Post instability 
behavior o f a two-dimensional airfoil with a structural nonlinearity, J. 

Aircraft, 31(1994), pp. 1395-1401.

[73] R. H. S c a n l a n  a n d  R. R o se n b a u m , Introduction to the Study of Air­
craft Vibration and Flutter, The Macmillan Company, New York, NY, 
1951.

[74] R. S e y d e l ,  From Equilibrium to Chaos, Elsevier, New York, 1988.

[75] S. F. Shen, An approximate analysis of nonlinear flutter problems, J. 

Aerosp. Sci., 26(1959), pp. 25-32.

[76] S. F. SHEN, Author’s reply to: Remarks on analytical results of certain 
nonlinear flutter problems, J. Aerosp. Sci., 26(1952), pp. 52-53.

[77] S. F. S h e n  a n d  C. C. Hsu, Analytical results o f certain nonlinear flutter 
problems, J. Aeronaut. Sci., 25(1958), pp. 136-137.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[78] J . J. Stoker, Nonlinear vibrations in mechanical and electrical systems, 
Interscience Publishers, New York, 1950.

[79] D. M. T a n g  a n d  E. H. D o w e l l ,  Flutter and stall response o f a heli­
copter blade with structural nonlinearity, J. Aircraft, 29(1992), pp. 953- 
960.

[80] D. M. Tang and E. H. Dowell, Comparison of theory and experiment 
for nonlinear flutter and stall response of a helicopter blade, J. Sound Vib., 

165(1993), pp. 251-276.

[81] J. M. T . T h o m p s o n  a n d  H. B. S t e w a r t ,  Nonlinear Dynamics and 
Chaos, John Wiley & Sons Ltd. 1986.

[82] C. T . TRAN a n d  D. P e t o t ,  Semi-empirical model for the dynamic stall 
of airfoils in view of the application to the calculation o f responses of a 
helicopter blade in forward flight, Vertica, 5(1)1981, pp. 35-53.

[83] Y. UEDA, Steady motions exhibited by Duffing’s equation: a picture cook 

of regular and chaotic motions, New Approaches to Nonlinear Problems in 

Dynamics (editor, P. J. Holmes), SIAM, Philadelphia, 1980, pp. 311-322.

[84] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 
Springer, Berlin, 1990.

[85] S. WIGGINS, Introduction to Applied Nonlinear Dynamical Systems and 

Chaos, Springer-Verlag, New York, 1996.

[86] S. W o lf r a m ,  The Mathematica Book, Wolfram Media, Inc., 1996.

[87] Y. S. Wong, B. H. K. Lee and L. Gong, Dynamic response of a 
two-degree-of-freedom system with a cubic nonlinearity, 3rd Int. Conf. on 
Computational Physics, Chung Li, Taiwan, 1995.

[88] Y. S. Wong, L. Liu AND B. H. K. Lee, Frequency and ampli­
tude prediction o f limit cycle oscillations of an airfoil containing con­
centrated structural nonlinearities, 42nd AIAA/ASME/ASCE/AHS/ASC

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Structures, Structural Dynamics, and Materials Conference and Exhibit, 

Seattle, WA, USA, April 16-19, 2001, AIAA 2001-1293.

[89] D. S. W o o l s t o n ,  H. L. R u n y a n  a n d  R. E. A n d r e w s ,  An investi­
gation of effects of certain types of structural nonlinearities on wing and 
control surface flutter, J. Aeronaut. Sci., 24(1957), pp. 57-63.

[90] D. S. W o o l s t o n ,  H. L. R u n y a n  a n d  T . A. B y r d s o n g ,  Some effects 

of system nonlinearities in the problem of aircraft flutter, NACA TN 3539, 
1955.

[91] M. Y a m a g u t i  a n d  Y . M a e d a , On the discretization ofO.D.E., ZAMM. 
Z. angew. Math. Mech., 76(1996)S4, pp. 217-219.

[92] M. Y a m a g u t i  a n d  H. M a ta n o ,  Euler’s finite difference scheme and 

chaos, Proc. Japan Acad., 55A(1979), pp. 78-80.

[93] Z. C. Y a n g  a n d  L . C. Z h ao , Analysis of limit cycle flutter of an airfoil 
in incompressible flow, J. Sound Vib. 123(1988), pp. 1-13.

[94] L. C. Z h a o  a n d  Z. C. Y an g , Chaotic motions o f an airfoil with nonlin­
ear stiffness in incompressible flow, J. Sound Vib., 138(1990), pp. 245-254.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

Nomenclature

ah non-dimensional distance from airfoil mid-chord

to  elastic axis 

b airfoil semi-chord

c chord

h plunge displacement

m  airfoil mass

r  response amplitude of plunge motion

ra radius of gyration about elastic axis

t time

xa non-dimensional distance from elastic axis

to  centre of mass 

Cx(r) aerodynamic lift coefficients

Cm (t ) pitching moment coefficients

DOF  degree of freedom
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G(0
J

LCO

M(a)

P{r)

PSD

Q{r)

R

U

U’

Ul

Y

v, Z
s

a

ui

V

T

s

1f)u  f a  

€l» C2

nonlinear plunge stiffness term 

Jacobian matrix 

limit  cycle oscillation 

nonlinear pitch stiffness term 

externally applied force 

power spectral density 

externally applied moment 

response amplitude of pitch motion 

free stream velocity

non-dimensional velocity, U* =
buia

non-dimensional linear flutter speed 

system variable vectors 

complex variables
h

nondimensional plunge displacement, £ = —b
pitch angle of airfoil

frequency of the motion.

airfoil/air mass ratio, (i — — rzirper

■ , • u tnon-dimensional tune, r  =  —
o

perturbation parameter,

pitch angle for the central region of the freeplay stiffness 

constants in Wagner’s function 

constants in Wagner’s function
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0a, 0c? constants in nonlinear pitch stiffness term AT(ar)

0Z, 0(3 constants in nonlinear plunge stiffness term G(£)

Q, Ca viscous damping ratios in plunge and pitch
(J;

ui frequency ratio, u> =  —
wQ

ui(, u a natural frequencies in plunge and pitch

4>(r) Wagner’s function
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Appendix B  

Center Manifold Theory

This appendix includes only the result that is related to Chapter 3. More 

details and results can be found in the books[12, 85].

B . l  D e f i n i t i o n s  a n d  T h e o r e m s

We first define an invariant manifold for the equation:

x  =  N{x) (B.l)

where x € R n.
Definition 1. (invariant manifold) A set S  C R" is said to be local

invariant manifold for Eq.(B.l) if for xo € S, the solution x(£) of Eq.(B.l)

with x(0) =  xo is in S  for |t| < T  where T  > 0. If we can always choose 

T  = oo, then we say that S  is an invariant manifold.

We then consider the system:

| *  = At + /(*,y) (B2)

( y  = B y  + g(x1y)

where x € R n, y  € Rm and A  and B are constant matrices such that all 
the eigenvalues of A  have zero real parts while all the eigenvalues of B  have 

negative real parts. The functions /  and g are C2 (the second derivatives exist
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and are continuous) with / ( 0 , 0 ) =  0 , / ' ( 0 , 0 ) =  0 , g(0 , 0 ) =  0 , and ^ ( 0 , 0 ) =  0 . 
(Here, / '  is the Jacobian matrix of / . )

Definition 2. (center manifold) If y  =  h(x) is an invariant manifold 

for Eq.(B.2) and h is smooth, it is called a center manifold if h(0) =  0 and

h'{ 0) =  0.

We use the term center manifold in place of local center manifold if the 
meaning is clear.

Theorem  3. (existence of center manifolds) There exists a center manifold 

for Eq.(B.2), y  =  h(x), |x| < S, where h is C2. The flow on the center manifold 

is governed by the n-dimensional system

u =  A u  +  f(u , h(u)) . (B.3)

The next theorem tells us that Eq.(B.3) contains all the necessary infor­

mation needed to determine the asymptotic behavior of small solutions of 

Eq.(B.2).

Theorem  4. (reduction principle)

(a) If the zero solution of Eq.(B.3) is stable (asymptotically stable) (unsta­
ble), the zero solution of Eq.(B.2) is stable (asymptotically stable) (unstable).

(b) Suppose that the zero solution of Eq.(B.3) is stable. Let (x(t),y(t)) be 

a solution of Eq.(B.2) with (x(0),y(0)) sufficiently small. Then there exists a 
solution u(t) of Eq.(B.3) such that as t —► oo,

x(<) =  u(t) +  0(e~T*)
'  V '  (B.4)

y(t) = h(u(t))+0(e-T*)

where 7  > 0  is a constant.

The next result shows that in principle the center manifold can be approx­
imated to any degree of accuracy. For functions <f> : R n —► R m which are C l 
in a neighborhood of the origin define

(M0)(x) =  ^(x)(A x +  / (x ,  0(x))] -  -  g(x, <f>(x)). (B.5)

Theorem  5. (approximation of the center manifold) Let <f> be a C l map­
ping of a neighborhood of the origin in Rn into R m with 0(0) =  0 and
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<f>'(0) =  0. Ifasx  -♦ 0, (M<f>)(x) =  0(jx|^) where q > 1, |h(x)—0(x)| =  0(|x|*) 
as x  —> 0.

B.2 Properties of Center M anifolds

Several interesting and important properties of center manifolds are presented 

as follows. For the details and proofs, consult the books[12, 85].

(1) In general Eq.(B.2) does not have a unique center manifold. However, if 

h and hi are two center manifolds for Eq.(B.2), by Theorem 5, h (x )—hi(x) = 
0 ( |x |9) as x  —> 0 for all q > 1.

(2) If /  and g are Ck (k > 2), h is Ck. If /  and g are analytic, in general 

Eq.(B.2) does not have an analytic center manifold.

(3) Center manifold need not be unique, but there are some points which 

must always be on any center manifold. For example, suppose that (xo, yo) is 
a small equilibrium point of Eq.(B.2) and let y  =  h(x) be any center manifold 
for Eq.(B.2). Then we must have yo = h(xo). Similarly, if T is a small periodic 

orbit of Eq.(B.2), T must lie on all center manifolds.

(4) If (x(£), y (t)) is a  solution of Eq.(B.2) which remains in a neighborhood 

of the origin for all t > 0, there is a solution u(t) of Eq.(B.3) such that the 

representation Eq.(B.4) holds.

(5) In many problems the initial data is not arbitrary, for example, some 

of the components might always be nonnegative. If S  C R n+m with 0 € S  and 
if Eq.(B.2) defines a local dynamical system on S, Theorem 4 is valid when 

Eq.(B.2) is studied on S.
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