
Developing NMP Applications

T. Breitkreutz
S. Sutphen

T.A. Marsland

Computing Science Department
University of Alberta
Edmonton, Canada

Technical Report TR89-11
March 1989

- i -

Table of Contents

Table of Contents ... i

1. Introduction.. 1
1.1. WhatIs the Network Multiprocessor Package? ..1
1.2. Why use the NMP? ... 1
1.3. Terminology and Notation .. 1

2. TheBasic NMP Routines ... 1
2.1. NMPNodes ...2
2.2. ConfigurationFiles ..2
2.3. Compilation... 3
2.4. Errors... 4
2.5. BasicNMP Support Routines ... 4
2.6. Polling... 6
2.7. OtherNMP Routines ... 7
2.7.1. Interrupts.. 7
2.7.2. NMPUtilities ...9
2.7.3. NMPClock ..10
2.7.4. DynamicallyReconfiguring Your NMP System .. 10

3. TheNMP Tree ..11
3.1. NMPTree Nodes ... 11
3.2. Tree Configuration Files ... 11
3.3. BasicTree Routines .. 12
3.4. Tree Communication ... 12
3.5. Pollingin the Tree ...13
3.6. OtherTree Routines .. 13
3.6.1. Utilities... 13
3.6.2. DynamicallyReconfiguring the NMP Tree ...14

4. TheNMP Cube .. 15
4.1. NMPCube Nodes ... 15
4.2. NMPCube Configuration Files ... 15
4.3. BasicCube Routines ... 15
4.4. CubeCommunications ..16
4.5. CubeUtilities ..16

Acknowledgements ...17
References ...17

Appendix: PrimeNumber Generator Example Program ... 18
Index of Functions ...27

1. Intr oduction

This paper explains how to write Network Multiprocessor Package (NMP) applications. Thetechni-
cal reportNMP—A Network Multi-processor[MBS88] contains an overview of NMP, implementation
details, more advanced usage information, and instructions for installing the package.NMP replaces its
predecessor theVirtual Tree Machine(or VTM) [OlM85a] [OlM85b]. Section 1 of this paper introduces
the Network Multiprocessor, Section 2 describes the basic set of routines, Section 3 describes theNMP
Tree Package, and Section 4 theNMP N-cube routines. The Appendix contains a sampleNMP (prime
number generator) program. The Index of Functions contains the function types, parameters, and the
page number where each function is described in the report.

1.1. What Is the Network Multiprocessor Package?

The NMP is a software package intended to make distributed, concurrent applications in aBSD
UNIX† socket network easier to write [Sec86]. It sets up a multiprocessor like structure using processes
on aUNIX network. Thestructure of the interprocess communication paths is an arbitrarily interconnected
graph. Morelimited and specific structures may be built on the basicNMP software, as have already been
done with theNMP Tree andNMP Cube environments. TheTree routines and Cube routines each provide
self-contained sets of primitives built on top of the basicNMP primitives.

1.2. Why use theNMP?

For distributed applications of the client/server model, the Sun Remote Procedure Call package
[RPC86] provides a good interface to the socket level of BSD UNIX . RPC, howev er, is not well suited to
multiprocessor simulations or applications of a more concurrent nature.NMP provides procedure calls
that allow easy parallelisation of existing sequential algorithms, in which the potential parallelism fits eas-
ily into the sequential algorithm.

1.3. Terminology and Notation

In this paper, there are several terms that are used interchangeably for various parts of theNMP sys-
tem. TheacronymNMP can also refer to a single instance of aNetwork Multiprocessor. The computers
involved in theNMP are called machines, hosts, or processors.TheNMP processes running on the various
machines are called nodes or processes, and more specifically may be called children, parents, branches,
or theroot node, which is the single node of theNMP that the user executes and interacts with.Routine
names and definitions, example code, example files, and references thereto in the text are given in con-
stant width font. Host names are given in italics. References to the Unix Programmer’s Manual
[UPM86] are given in the formtopic(section), wheretopic is the manual page name, andsectionis its sec-
tion of the manual.

2. TheBasicNMP Routines

The lowest layer of theNMP is an underlying set of procedures (basicNMP), on which two other
layers are built (the Tree and Cube).They are the most general purpose procedures and can be used as a
self-contained interprocess communication (IPC) package. Thebasic procedures allow an arbitrary inter-
connection matrix between all nodes in the system.

2.1. NMP Nodes

The NMP works by starting up processes on various machines in a local area network. EachNMP
node is one process, and is identified by an integer (usually referred to asNodeId). Theroot process is
always node 0, and the nodes started later are numbered incrementally from 1.

† UNIX is a trademark of Bell Laboratories

-2-

2.2. ConfigurationFiles

Configuration files are the basis for initial structuring of eachNMP execution. Theinterconnection
structure and number of nodes in the system can be changed dynamically by the application, but an initial
structure must be defined by the start-up configuration file. An example configuration file is shown in
Figure 1.

#
5 processor configuration
#
vax1; 0
vax2; 0; vax/vprog; ; out1; err1;
sun1; 0; sun/sprog; ; out2; err2;
sun2; 0; sun/sprog; ; out3; err3;
mips; 0; mips/mprog; ; out4; err4;
0
1 0
1 0 0
1 1 0 0
0 1 0 1 0

Figure 1. Example Configuration File

Configuration files consist of data lines and comment lines (starting with the character#). Thedata
lines are split into two groups: node descriptions and a connection matrix. The first set of data lines con-
tain host and process image descriptions, one line for eachNMP node, with the following fields:

HostName; Bits; ExecFileName; Sin; Sout; Serr;

TheHostName parameter is the name of the physical processor on which the node should run.Bits is
a field containing a bit pattern. The right-most two bits are reserved for theNMP (the first for a debug
trace, and the second to indicate special hardware), but the others may be used by the application.This
field is known internally as the processinfo. The program for each child process to run is given in the
ExecFileName field. Thepathname is relative to the user’s home directory on the given processor, or
may begin at the root of the file system (/). Arguments to the program may be given within theExec-
FileName field, separated by white space.Finally, the standard input/output channels can be assigned
to files or devices. Thestandard input pathname is given in theSin field, the standard output inSout,
and the standard error inSerr. The pathnames given for these fields are assumed to be relative to the
directory containing theExecFileName, but they may be given with complete path names.

Note that the root node is included in the configuration file, as the first process description line.The
only field that is read from this line is theBits field. Thehost name is filled in with the actual invoking
host, but it is customary to include at least the host name field, which is ignored. The arguments and
input/output redirection are handled normally from the shell instead of with the configuration file.

Following the node description lines is a connection matrix indicating which nodes are connected to
which others. The matrix consists of1s (connected) and0s (unconnected), separated by spaces.NMP
only reads the lower left half of the matrix (since all connections are bi-directional), but the complete
matrix may be given if desired. Theprocess interconnection graph for the configuration file in Figure 1 is
shown by Figure 2.

-3-

vax1
(root)

vax2

sun1 sun2 mips

Figure 2. Example Process Configuration

NMP needs to have a path from the root to every node in the configuration, so it will connect the first
node in each disjoint part of the configuration to the root node, and provide a warning message to the user.
All other connections will be left exactly as indicated in the configuration file.

In NMP applications, nodes are referred to by theirnode id(an integer). Thenode id is simply the
cardinal number of the node description line in the configuration file, starting with the root as node 0.For
example,sun1in Figure 2 would be identified by the node id of2, andmipsthe node id of4.

Connection Limits

There is no hard limit on the number of nodes in an NMP configuration, but the interconnection
graph is limited by the system-defined limit on file and socket descriptors, usually at least 20 (getdtable-
size(2)will return the actual number for any particular system).

2.3. Compilation

Most NMP programs simply require that theNMP library be searched in the link edit step. This is
accomplished by adding-lnmp at the end of yourcc command, as follows:

% cc NmpProg.c -o NmpProg -lnmp

In addition to the regular library a profile library (-lnmpg) and a debug library (-lnmpd) are available.
The debug library reports the progress of theNMP startup, which is helpful for developing new applica-
tions, and also provides information for thedbx debugger (dbx(1)).

Some more complex applications may have to include the header file/usr/include/nmp.h.
The header file contains the following definitions:

int NodeType; /* Internal or Root (user interface) */
int SocketMask; /* Socket mask (for select) */
int MyId; /* My Node Id */
int *Channel; /* Virtual Communication lines */
int *Connect; /* Connection matrix */
int ConnectSize; /* Size of connection matrix */
int ConnectIndex; /* 2 ** (ConnectIndex) = ConnectSize */

struct NmpNode *NodeNames; /* Interconnection structure */
int NodeNameSize; /* Size of structure */
int NodeOffset; /* Offset from effective to real id */

Most of the information given by these globals is available through theNMP utility routines. The
NmpNode structure is defined as follows:

-4-

define M_NAME 80 /* Max node name len */
define M_HOST 20 /* Max host name length */
define M_FILE 12 /* Max stream name */
define M_USER 16 /* Max user name (server) */

struct NmpNode { /* NMP interconnect information */
char Host[M_HOST]; /* Host Name */
char User[M_USER]; /* User login name */
char Name[M_NAME]; /* Name of node */
char Sin[M_FILE]; /* Node’s stdin */
char Sout[M_FILE]; /* Node’s stdout */
char Serr[M_FILE]; /* Node’s stderr */
int SecPort; /* Secondary Port */
int ModTime; /* Last mod time */
int Info; /* Bits field */

};

and contains the information given in the configuration file.

2.4. Errors

Most NMP routines will return a negative number (or aNULL pointer for pointer functions) for an
error. An error message will also be printed on the standard error channel.

2.5. BasicNMP Support Routines

The four basicNMP support routines are:NodeInit, SendNode, RecvNode, andNodeClose.
These four routines form the core of the system and programs must use (some form) of these four rou-
tines.

All basicNMP programs begin concurrent processing by a call from the root node to:

int NodeInit(Type, ConfigurationFile)
char *ConfigurationFile;

The rootNodeInit causes all the concurrent processes to start. Child nodes also must callNodeInit
to synchronise and receive configuration information, but only the root node reads the configuration file.
TheType parameter is zero for the root process, and non-zero for child processes.(Often the application
source code is the same, and this parameter is itself a parameter to the program or a compilation flag.)

The second parameter, which is only needed for the root node, is the startup configuration file name
for the NMP application. Again, this can be a constant, or a parameter to the program. In child nodes,
this parameter is ignored because the children inherit their configuration information from theNMP sys-
tem.

The return value fromNodeInit is the number of connections to the current node that were estab-
lished. Ifsome nodes failed to start up (i.e. their hosts did not respond), then theNMP will continue with
the successfuly started subset of the connection graph, and the return values fromNodeInit will reflect
the actual number of connections.

All messages passed through theNMP are sent using:

int SendNode(NodeId, Message, Length)
char *Message;

The data in memory at the location pointed to byMessage are sent to the nodeNodeId (see Section
2.1). Thenumber of bytes to send is given by theLength parameter.SendNode returns the number of

-5-

bytes successfully sent.

It is important to note that information is always passed as a character array; any other data type
pointer may be incompatible across machine architectures (e.g.VAX integers are stored differently in
memory from most other machines).A solution to this problem is to use the network byte ordering
macros (seentohl(3N)) to store integer and short data for transmission.For example, code using thehost
to network shortmacro to send an array of short integers might look like:

short data[DATA_SIZE];

for (a = 0; a < DATA_SIZE; a++)
data[a] = htons(data[a]);

SendNode(dest, data, sizeof(data));

If the byte ordering on all the machines is the same, then the same segment could be simplified to:

SendNode(dest, data, sizeof(data));

Another, more general, mechanism for ensuring data portability is the eXternal Data Representation
(XDR) package developed at Sun Microsystems and publicly distributed [XDR86].

To receive information sent fromSendNode, use

int RecvNode(NodeId, Message, Length)
char *Message;

Length bytes are received from NodeId and stored at the memory location pointed to byMessage.
Returned is the number of bytes received, zero if the node is no longer connected, or negative for other
errors. RecvNode will only return with a partial message if the sender terminated before completing
transmission. Otherwise,RecvNode always blocks until the entire message is read.To check for
incoming messages without blocking, use the polling routines described below (Section 2.6).

The following code receives the integers as sent in the aboveSendNode example:

RecvNode(src, data, sizeof(data));
for (a = 0; a < DATA_SIZE; a++)

data[a] = ntohs(data[a]);

Concurrent processing with theNMP is terminated by

NodeClose()

Child processes are terminated by this call, but the root node can continue processing and may begin more
concurrent segments by callingNodeInit again.

Example: SimpleMessage Passing Application

It is possible to write anNMP application using only the routines listed so far. The following exam-
ple of anNMP program uses only the four basic routines to create a connected pair of processes and pass a
single message. The source code for the root and branch processes is in the same file, distinguished with
compiler conditionals.

-6-

include <stdio.h>

main() {
int neighbours;
char buf[16];

neighbours = NodeInit(TYPE, "config");
if TYPE == 0

if (SendNode(1, "Hello, there.", 13) < 13)
fprintf(stderr, "unable to send");

else
if (RecvNode(0, buf, 13) < 13)

fprintf(stderr, "unable to receive");
if (strcmp(buf, "Hello, there."))

fprintf(stderr, "received wrong message");
endif

NodeClose();
}

Figure 3. Example NMP Program

The corresponding configuration file,config, could be:

vax1;0
vax2;0;branch;;out1;err1;
0
1 0

The filebranch must reside in the user’s home directory onvax2. The two program images are com-
piled with:

% cc -DTYPE=0 -o root test.c -lnmp
% cc -DTYPE=1 -o branch test.c -lnmp

and invoked by

% root

The Appendix contains a more complete example that uses more of theNMP routines.

2.6. Polling

If your application needs to check for incoming messages without using the blockingRecvNode
routine, or if it is waiting for messages from more than one sender, the polling routines may be used.The
three polling related routines do not affect the data in the communication paths in any way.

To poll all the neighbouring nodes, use

int PollAll(Nodes, Block)
int Nodes[];

If any data are waiting to be read from nodes, the sender node ids are returned in the arrayNodes (which
should be large enough to contain all nodes which may have incoming messages).PollAll returns the
number of nodes with messages pending to be received. TheBlock parameter tellsPollAll whether
to wait for an incoming message if there are none when it is called.A zeroBlock parameter will cause
PollAll to check the neighbouring nodes only once, otherwise it waits until a message is pending.

-7-

To check an explicit node for pending messages, use

int PollNode(NodeId, Block)

A return value of zero indicates no messages are waiting to be received, non-zero indicates otherwise.
Block has the same meaning as forPollAll.

The following procedure allows you to look at an incoming message before receiving it.

int CheckNode(NodeId, Message, Length)
char *Message;

A copy of the byte stream fromNodeId’s incoming message queue is placed inBuffer without affect-
ing the status of the input queue.It attempts to read in up toLength bytes, and returns the number of
bytes copied.Unlike RecvNode, CheckNode does not wait until Length bytes arrive, it will copy a
smaller size message if it is available.

If you want to be more selective in your node polling, use

SetMask(NodeId)

and

ClearMask(NodeId)

These two procedures are used to manipulate the masks used to determine which nodes the polling opera-
tions listen to. If a particular node (NodeId) has been temporarily eliminated (viaClearMask), a
polling operation (PollAll or PollNode) will never indicate that there is any input waiting to be
received from that node.SetMask adds the given node back to the mask (seeselect(2)).

Detecting a Node Disconnection

If the polling routines detect a disconnected node, they will return as if there is a message waiting to
be received from the node.However, no information will be available fromRecvNode (or CheckN-
ode) which will return a length of zero bytes read. There is no way to detect immediately that a node is
no longer connected with the polling routines.

2.7. OtherNMP Routines

Most NMP applications only need the above routines. Seethe Appendix for an example of a prime
number generator that has been parallelised using the basic routines.The following sections describe
primitives provided for more complex applications and improved error handling.

2.7.1. Interrupts

An alternative to polling is to use interrupts. If a node wishes to be interrupted on receipt of a mes-
sage, it must establish aninterrupt handlerroutine. Interruptingmessages are received exactly the same
as normal messages. The only difference is that the receiver is notified of the message’s presence by a
call to its interrupt handler. NMP interrupts are actually SIGIO signals (seesigvec(2)) generated by sock-
ets with theirFASYNC flag set (seefcntl(2)).

To set up an interrupt handler on a node planning to receive interrupts, use

SetHandler(handler)
int (*handler)();

This routine alsoenablesinterrupts. Theargument is the name of your interrupt handling procedure The
signal handler routine will be called directly by the system, it is not intercepted by theNMP software

To hold incoming interrupts temporarily (for critical sections of code), use

-8-

HoldInt()

Held interrupts may be lost if they are not the first to arrive.

ReleaseInt()

releases any held interrupts. Note that the above two routines do not nest.

The following routines completely disable or re-enable the receipt of interrupts.

DisableInt()

EnableInt()

Interrupts are not queued when disabled; they are thrown away.

Interrupts are automatically beheldbefore entering, andreleasedon exit. Interruptsmay be lost if
more than one interrupt is received while the interrupt handler is executing. Generallyspeaking, a node
should not rely on being able to receive more than one interrupt without acknowledgement to its sender.

The SendNode and RecvNode routines may be considered atomic with respect to interrupts.
That is, their underlying system calls are restarted in the event that an interrupt occurs before they are
complete. Therefore,it is not necessary to disable interrupts before a call to any of the communication
routines, but other system calls may need protection from premature exit caused by incoming interrupts.

The interrupt mechanism used can cause multiple interrupts for a single message if the message is
larger than the internal buffers. Becauseof this programs receiving large messages should accumulate the
message as it arrives. Anexample interrupt handler that does this is shown here:

int NewWork = 0;
char buf[LargeSize], *bp = buf;

handler()
{

register int len, remain = &buf[LargeSize] - bp;

len = CheckNode(neighbour, bp, remain);
if (RecvNode(neighbour, bp, len) != len) {

/* handle error condition */
}
bp += len;
if (remain == len) {

NewWork++;
bp = buf;

}
}

-9-

main()
{

char workbuffer[LargeSize];
...
/* read in initial work */
if (RecvNode(neighbour, workbuffer, LargeSize) != LargeSize) {

/* handle error condition */
}
SetHandler(handler);

while (1) {
DoSomeWork();
if (NewWork) {

/* switch work loads */
HoldInt();
bcopy(buf, workbuffer, LargeSize);
NewWork--;
ReleaseInt();

}
}

}

This contrived example works on the old data (inworkbuffer) while the new work is assembled in
buf. It also blocks out interrupts in the critical section of shuffling buffers.

2.7.2. NMP Utilities

Although theNMP data structures are not strictly opaque, it is a good idea (and easier) to use the fol-
lowing routines to access the internal state of theNMP structures.

• A node can determine the name of the machine it’s running on withGetHost.

char *GetHost()

• To find out the host machine name of anotherNMP node, use

char *GetAnyHost(NodeId)

NodeId is the other node’s id number.

• To find out the total number of nodes in theNMP, use

int GetNodes()

• A node may determine its own node id by calling

int GetMyId()

• TheBits (info) configuration file field is obtained by calling

int GetInfo()

The basicSendNode andRecvNode routines do not check the connectivity of their destination
and source nodes. An attempt to send to or receive from a non-existent or non-connected node will return
an error code and produce a message on the standard error channel. The following routines are used to
determine the status of theNMP connection configuration.Nodes configured as connected may not be
connected because of an error in starting up theNMP or if one has already stopped.

-10-

• To find out if a node is connected to the current node, call

int IsConnected(NodeId)

• The configured connection between two other nodes may be determined by

int AreConnected(NodeId1, NodeId2)

A non-zero return indicates a connection, zero indicates no connection.

TheNMP assumes that if some of the machines in the configuration are unavailable you wish to con-
tinue with the remaining nodes.

• If you need to know if the entire configuration was successfully started, use:

int MadeConn()

It returns1 if theNMP setup was successful, zero if one or more nodes failed to start up.

• The current connection matrix can be printed with

PrintConnect(stream)
FILE *stream;

which will place it on the standardI/O outputstream.

• If you wish to use your own node numbering scheme,SetNodeOffset is provided to cause all
references to nodes to have Offset added (i.e. when the user refers to node1, the real id of the
node will be 1+ Offset). Theoffset is also subtracted before returning any node ids to the user.

SetNodeOffset(Offset)

2.7.3. NMP Clock

Tw o clock routines are provided for system-consistent timing of programs. They are

clock_start()

and

clock_stop(rt, ut, st, it)
int *rt, *ut, *st, *it;

These calls may be nested,clock_stop terminating the most recent instance ofclock_start. The
real time is returned inrt, the user time inut, the system time inst, and the idle timeit. All times are
in milliseconds. Real time is the elapsed time between the two system calls.User time and system time
are approximations of CPU time in the user’s program and in system calls. Idle time is calculated by
clock_stop as the difference between real time and combined user and system time.Seegettimeof-
day(2)andgetrusage(2) for more details about these units.

2.7.4. DynamicallyReconfiguring Your NMP System

If the application needs to change its configuration while running, it may add nodes and connec-
tions. Nodescan delete themselves by callingNodeClose. Connections cannot be deleted, but may be
ignored by using the select mask manipulation routines (Section 2.6). The following procedure creates a
new node to participate in theNMP and establishes a connection between it and the node issuing the call.

-11-

int AddNode(HostName, ExecFileName, Sin, Sout, Serr, Bits)
char *HostName;
char *ExecFileName;
char *Sin, *Sout, *Serr

HostName is the name of the physical machine on which the node is to run,ExecFileName is the
name of the node’s executable file,Sin, Sout, andSerr are the node’s standard I/O streams, andBits
is the user-definable information passed to the created node. The node id of the new node is returned.
The interconnection structures are updated appropriately, but only in the calling node and the newly cre-
ated node. The rest of the nodes are not informed; their calls toGetNodes or any other utility routines
will not show the existence of the new node. Thenew node is assigned a node id one higher than the
highest id that the current node is aware of. That is, the initial configuration information is distributed to
all nodes in the system, but only the nodes involved in any subsequent changes know about the new
changes. SeeSection 2.2 on Configuration Files for more details.

To create a new connection between existing nodes, use

int AddConnect(Type, NodeId)

There are two possibilities: Type=0 is the active part of the connection, andType=1 is the passive part.
The nodes involved must synchronise on the call toAddConnect and must know who is active and who
is passive. The connection matrix is updated only in the two nodes involved. Theother nodes know noth-
ing of this new connection. Atthe moment, the passive part of the connection does not verify which node
it is connecting to, so passive calls toAddConnect should be done carefully to avoid misconnection.

Warning

Nodes cannot distinguishAddConnect requests and their initial startup message. If a node is
waiting for its startup message and receives an AddConnect request instead, it will hang, expecting the
startup information as well. Therefore, applications must await the completion of theNMP startup before
attemptingAddConnects to nodes deep in the interconnection graph.

3. TheNMP Tr ee

The NMP Tree layer is an extension of theNMP designed specifically to simulate processor trees,
allowing a simpler configuration file and a more descriptive set of primitives to exchange messages.They
consist of a separate group of routines that are built on, but can be used independently of, the BasicNMP
Routines. TheTree routines are included in the regular-lnmp library, so compilation is identical with
that for basicNMP.

3.1. NMP Tr ee Nodes

Nodes in anNMP Tree are numbered relative to their parent. That is, nodes are identified by parents
with a number from1 to n, wheren is the number of children the processor has. Child number0 is the
node’s parent, if it has one. (The root node has no parent.)

3.2. Tree Configuration Files

The configuration files forNMP trees differ from those used by the basicNMP routines.

-12-

#
Tree File
#
sun1; 2; 0

sun2; 2; 0; Ihelper p1 p2; ; out1; err1;
sun3; 0; 0; Lhelper; ; out11; err11;
sun4; 0; 0; Lhelper; ; out12; err12;

sun5; 0; 0; Lhelper; ; out2; err2;

Figure 4. Sample Tree Configuration File

The indentation is not required but can be used to show the structure of theNMP tree. Here,sun1is the
root node, with two children,sun2andsun5: sun2also has two children,sun3andsun4. The configura-
tion file format is the same as for regular NMP’s except that there is no interconnection matrix, and each
line has an extra field for the node’s number of children. The fields are:

HostName; NChildren; Bits; ExecFileName; Sin; Sout; Serr;

Each node from the description lines is assigned to the last node encountered still waiting for children.

3.3. BasicTr ee Routines

Instead ofNodeInit, NMP Trees use

int TreeInit(Type, Config)
char *Config;

Again,Type is 0 for the root node, and1 for interior nodes of the tree.Config, required only for the
root node, is the name of the configuration file (described above). TreeInit returns the number of chil-
dren successfully started.

For interior or leaf nodes,TreeInit blocks, waiting for a request from its parent node to start.
Once such a request is received, it accepts the tree machine configuration from its parent and starts up its
own children (if it has any).

The basicNMP routineNodeClose is used to terminate a TreeNMP process.

3.4. Tree Communication

The following procedure sends a message to a child node.

int TreeSendChild(Child, Message, Length)
char *Message;

Length bytes of data pointed to byMessage are sent to child numberChild. TreeSendChild
returns the number of bytes successfully sent, or a negative return code on error.

To receive a message from a child,

int TreeRecvChild(Child, Message, Length)
char *Message;

waits for and receivesLength bytes from itsChild and stores the message inMessage. If the sender
has terminated without placing enough data in the stream, the partial message is read and its length
returned. Otherwise,success is indicated by a positive return value (actually the full length).

The following two routines are provided for clarity, and operate exactly as the above procedures
with aChild parameter of zero (Child zero is really the parent).

-13-

int TreeSendParent(Message, Length)
char *Message;

int TreeRecvParent(Message, Length)
char *Message;

The root node has no parent and will thus generate an error if it attempts to communicate using these two
routines.

3.5. Polling in the Tree

The following routines are used to check the status of the communication paths. None affect the
data on the send/receive queues in any way.

To check for any incoming messages, use

int TreePoll(ChildReady, Block)
int ChildReady[];

If data are queued, waiting to be read from a child node (or the parent), its index is returned inChil-
dReady. That is, if a childi (or the parent ifi = 0) has sent a message that has not yet been read,i is
entered into the arrayChildReady. This procedure returns the number of "ready" children.If Block
is true, the process waits until data arrives from at least one child or the parent.

For polling only the parent,

int TreePollParent(Block)

returns zero if no message outstanding, non-zero otherwise.

The following procedure checks a single child for pending messages:

int TreePollChild(Child, Block)

Zero is returned when no data are pending, non-zero otherwise.

To peek at incoming data without receiving it, use

int TreeLook(Child, Buffer, Length)
char *Buffer;

Up toLength bytes of data waiting to be read fromChild are copied intoMessage. The number of
bytes successfully copied is returned: the same bytes will be obtained on the next look or receive. To
examine a parent’s pending messages, set theChild parameter to zero.

As for the regular NMP, these polling routines will return successfully if a node is disconnected.
The next receive or look will return zero bytes, indicating the untimely demise of the sender.

3.6. OtherTr ee Routines

The following routines supplement those described in Section 2.7 for the basicNMP.

3.6.1. Utilities

The following routines allow access to the internal tree data structures.

• The current node’s depth (its distance from the root) in the processor tree is returned by

int TreeGetDepth()

• Thesibling numberof the current node is obtained with

-14-

int TreeGetNumber()

This is the number by which the parent of the current node knows it.

• The number of childrenconfiguredfor the current node is returned by

int TreeGetSlaves()

Note that this number need not be the same as the number of children really available.

• The maximum depth of the tree is reported by

int TreeGetMaxD()

• The following two routines report the number of nodes in the processor tree.

int TreeInodes()

returns the number of internal nodes in the subtree rooted at the current node, and

int TreeLnodes()

returns the number of leaf nodes.For the example tree configuration given in Figure 4,TreeGet-
MaxD would return 3,TreeInodes would return 2, andTreeLnodes would return 3.

• To print out a textual representation of the processor tree on the standard output, use

TreePrint(Index)

If only the subtree rooted at the current node is desired, useIndex=GetMyId(). If the entire tree
is to be printed, useIndex=0.

3.6.2. DynamicallyReconfiguring theNMP Tr ee

New nodes can be dynamically added to theNMP Tree configuration by using

int TreeAddChild(HostName, ExecFileName, Sin, Sout, Serr, Bits)
char *HostName;
char *ExecFileName;
char *Sin, *Sout, *Serr;

Each call connects a new child to the calling node. Only one child may be added at a time. (There is no
provision for adding a whole branch.)The caller must specify explicitly the same information as is found
in the configuration file for statically configured nodes, i.e. theHostName on which the node is to reside,
the ExecFileName of the NMP program, the names of the files to receive the nodes’ standard I/O
streamsSin, Sout, and Serr, and finally the user-defined parameterBits. TreeAddChild
returns the new number of children if successful, otherwise a negative number.

Note that the process of adding a new node can be time consuming. The node’s executable image
must be read from disk, and some processes may be swapped out to make room for it on the host
machine.

int TreeDelChild(ChildNo)

disconnects the specifiedChildNo from the current node.Note that this routine only updates the data
structures and closes the socket. It is the caller’s responsibility to handle the child’s exit gracefully and
make sure that no data are in the send/receive queues on either end.Note that the parent must initiate the
disconnection. Thechild simply callsNodeClose. The number of remaining children is returned.

-15-

4. TheNMP Cube

The NMP Cube layer is provided for applications desiring to view the execution environment as a
hyper-cube. They provide a slightly different interface as well as a simpler configuration file (like the
NMP Tree). Messagesmay be assigned different types and a separate message queue is maintained for
each type. Other differences are that messages are limited in length and the communication channels are
designed to support true messages (as opposed to byte streams).Routing within the cube is performed
automatically, but synchronous with calls to any of the cube support primitives. Thussome of the com-
munications bandwidth of any node may be taken up for routing messages between other nodes.These
routines are designed to provide compatibility with the programmer’s interface to the Intel iPSCand the
CALTEC Cosmic Cube environments [Sei85].

4.1. NMP Cube Nodes

In the hyper-cube environment, nodes are numbered from0 to 2n −1 wheren is the dimension of the
cube. Theuser, as in the regularNMP, interacts with node 0.

#
Example of a 3-cube
#
3
sun1; 0;
sun2; 0; cube; ; out1; err1;
sun3; 0; cube; ; out2; err2;
sun4; 0; cube; ; out3; err3;
vax1; 0; vcube; ; out4; err4;
sun5; 0; cube; ; out5; err5;
sun6; 0; cube; ; out6; err6;
sun7; 0; cube; ; out7; err7;

Figure 5. Example Cube Configuration

4.2. NMP Cube Configuration Files

The configuration for the cube is described by the cube dimension followed by the names of
machine/process instances, one per line in the file.The format is identical to the basic configuration file,
but with the dimension of the cube at the start and without the connection matrix. Each line in the config-
uration file represents a node in the cube and contains the same information as the general configuration
entries.

4.3. BasicCube Routines

TheNMP Cube initialisation routine

int CubeInit(Type, Config)
char *Config;

starts the processes running and establishes the hyper-cube interconnection.CubeInit must be called
from every process involved in the cube andType distinguishes between a call from the root node
(Type=0) whereConfig is the name of the configuration file, and the other nodes (Type=1) where
Config is ignored.

To exit anNMP cube node, call

CubeClose()

-16-

4.4. CubeCommunications

Internode messages in the cube environment may be assigned different types: thus a node can
receive messages in an order different from the order in which the messages were sent. Since routing is
done in the user process, all calls to the message primitives result in the interrogation of all message chan-
nels and forwarding of messages that are destined for nodes other than the one issuing the call.Notice
also that no routing takes place unless a call is made to a message primitive. (See the discussion on
CubeProbe below.)

int CubeSend(Node, Type, Message, Length)
char *Message;

sendsMessage of a specifiedType to the given Node. The size is given as Length and is currently
limited to 256 bytes. Noticethat the message may have to pass through as many as n −1 intermediary
nodes (wheren is the cube’s dimension) to reach its destination.SendNode returns the number of bytes
successfully sent or negative on error.

int CubeRecv(Node, Type, Message, Length)
int *Node;
char *Message;

receives the oldest queuedMessage of a specifiedType. The originatingNode is returned in place and
the size of the message is returned.CubeRecv will block until Length bytes are received.

To send a message to all the nodes in the cube, use

int CubeRingSend(Direction, Type, Message, Length)
char *Message;

CubeRingSend is likeCubeSend except that the message is always sent to the next/previous node in a
fixed ring embedded in the cube.If Direction is 0, the message is sent to thenextnode in the ring,
and if it is1 the message is sent to thepreviousnode in the ring. The ordering in this context is on numer-
ical node ids.

int CubeProbe(Node, Type, Length)
int *Node;
int *Length;

checks for a message of the specifiedType. If a message is waiting to be received (either on the queue or
on the network) CubeProbe returns 1 and returns the sendingNode and the messageLength in place.
If nothing is pending, zero is returned.

This routine should be called frequently even if no message is expected at this node, since it may be
involved in routing messages between other nodes in the cube.

Error Values

The above routines return specific error codes:

HEADER_ERROR -100 Error receiving message header
BODY_ERROR -101 Error receiving message body
ROUTE_ERROR -102 Error in routing message
QUEUE_ERROR -103 Message Queue Overflow

4.5. CubeUtilities

Here are the utilities specific to the cube environment:

-17-

• The dimension of the cube is obtained with

int CubeDim()

• The number of messages waiting to be read from a node’s input queue is returned by

int CubeQsize()

• For a graceful error exit, call

CubeExit(Code, fmt, a1, a2,)
char *fmt;

TheCode specifies whether to exit without trying to clear up messages in transit (Code=1) or wait
for ten seconds while trying to route messages to their destinations (Code=0). A terminating mes-
sage is printed on the standard error channel as specified inprintf(2) form.

Acknowledgements

This report was inspired by theVTM manual pages written by Marius Olafsson, who also suggested
some of the examples and wrote theVTM package. Numerousstudents at the University of Alberta made
helpful suggestions.

References

[RPC86] RemoteProcedure Call Programming Guide, Sun Microsystems, Inc., Mountain View, Feb.
1986.

[UPM86] 4.3BSDUNIX Programmer’s Manual, Univ. of California, Berkeley, April 1986.

[XDR86] ExternalData Representation Protocol Specification, Sun Microsystems, Inc., Mountain View,
Feb. 1986.

[JLS87] J.Joyce, G. Lomow, K. Slind and B. Unger, ‘‘Monitoring Distributed Systems,’’ ACM Trans.
on Computer Systems5(2), 121-150 (May 1987).

[MBS88] T. A. Marsland, T. Breitkreutz and S. Sutphen, NMP—A Network Multi-processor, TR88-22,
Computing Science Dept., Univ. of A lberta, Dec. 1988.

[OlM85a] M. Olafsson and T. A. Marsland, Implementation of Virtual Tree Machines, TR85-9, Comput-
ing Science Dept. Univ. of A lberta, Edmonton, May 1985.

[OlM85b]
M. Olafsson and T. A. Marsland, "A UNIX Based Virtual Tree Machine,"Proc. of the 1985
CIPS/ACI Congress, Montreal, June 1985, 176-181.

[Sec86] S.Sechrest, An Introductory 4.3BSD Interprocess Communication Tutorial, Computer Science
Research Group, Univ. of California, Berkeley, April 1986.

[Sei85] C.L. Seitz, ‘‘The Cosmic Cube,’’ Comm. of the ACM28(1), 22-33 (Jan. 1985).

-18-

Appendix: Prime Number Generator Example Program

The following program demonstrates the use of the following routines in a distributed prime number
generator:NodeInit, GetNodes, NodeClose, IsConnected, SendNode, RecvNode,
PollAll, andClearMask. First, the sequential version is given:

/*
* Prime number generator
*
* Usage: prime start finish
* where start and finish are natural numbers.
*/

include <stdio.h>
include <math.h>

/* function prime: returns 1 if n is prime,
0 otherwise */

static int
prime(n)

int n;
{

int a, sn;
double sq;
extern double sqrt();

if (n < 1)
return 0;

if (n < 4) /* 1, 2, and 3 are prime */
return 1;

sq = sqrt((double) n);
sn = (int) sq;
if (((double) sn) == sq) /* not prime if there is a perfect SQRT */

return 0;
for (a = 2; a <= sn; a++)

if ((n % a) == 0)
return 0;

return 1;
}

int
main(argc, argv)

int argc;
char **argv;

{
int start, finish, a, n, cols;
char fmt[8];

/* Check arguments. */

-19-

if (argc != 3) {
fprintf(stderr, "Usage: prime start end\n");
return -1;

}
if (((start = atoi(argv[1])) < 0) || ((finish = atoi(argv[2])) < 1)) {

fprintf(stderr, "Illegal start or end parameters\n");
return -1;

}

/* Set up output format. */

a = 2 + (int) log10((double) finish);
sprintf(fmt, "%%%dd", a);
cols = (79-a)/a;

printf("Prime numbers from %d to %d:\n", start, finish);

/* Loop through range. */

for (n = 0, a = start; a <= finish; a++) {
if (prime(a)) {

printf(fmt, a);
if (n++ >= cols) {

printf("\n");
n = 0;

}
}

}
if (n)

printf("\n");
exit(0);

}

Figure A-1. Prime Number Generator: Uniprocessor Version

The prime function simply checks for a prime number. main checks its range arguments, and
simply loops through the range given checking for primes.

-20-

To write theNMP version, it is split into two programs, theroot and thehelper:

/*
* NMPrime: Root part
* Sends start and finish parameters and collects results from helpers.
* Each helper must be connected to the root in the configuration file.
*/
include <stdio.h>
include <math.h>

int
main(argc, argv)

int argc;
char **argv;

{
int start, finish, a, b, n, nodes, cols;
char fmt[8];
int chunksize, msg[2];
int pollr, Helpers[16];

/* Check arguments. */

if (argc != 4) {
fprintf(stderr, "Usage: prime config start end\n");
exit(-1);

}

if (((start = atoi(argv[2])) < 0) || ((finish = atoi(argv[3])) < 1)) {
fprintf(stderr, "Illegal start and end parameters\n");
exit(-1);

}

/* Start the NMP. */

if ((nodes = NodeInit(0, argv[1])) < 0) {
fprintf(stderr, "unsuccessful return from NodeInit!\n");
exit(-1);

}

/* Send out node parameters. */

chunksize = (finish-start) / (nodes-1);

for (a = 1; a < nodes; a++) {
if (!IsConnected(a)) {

fprintf(stderr, "Root must be connected to all nodes.\n");
NodeClose();
exit(-1);

}

-21-

printf("Node %d (%s) does %d to %d.\n", a, GetAnyHost(a),
start+(a-1)*chunksize,
(a == nodes-1) ? finish: start+a*chunksize-1);

/* Send the range for each node to do. */

msg[0] = htonl(start+(a-1)*chunksize);
msg[1] = (a == nodes-1) ? htonl(finish) : htonl(start+(a)*chunksize-1);
if (SendNode(a, (char *)msg, sizeof(msg)) != sizeof(msg)) {

fprintf(stderr, "Unable to send.\n");
NodeClose();
exit(-1);

}
}

/* Set up output format */

a = 2 + (int) log10((double) finish);
sprintf(fmt, "%%%dd", a);
cols = (79-a) / a;

printf("Prime numbers from %d to %d:\n", start, finish);

/* Poll for results. */

ClearMask(0); /* Exclude polling of root */

n = 0;
while (nodes > 1 && pollr = PollAll(Helpers, 1)) {

for (a = 0; a < pollr; a++) {

/* Receive pending messages. */

if (RecvNode(Helpers[a], (char *)msg, sizeof(int)) != sizeof(int)) {
fprintf(stderr, "Unable to receive from %d.\n", Helpers[a]);
NodeClose();
exit(-1);

}

b = ntohl(msg[0]);
if (b == -1) {

/* The node is done. */

nodes--;
ClearMask(Helpers[a]);

/* Acknowledge */

-22-

if (SendNode(Helpers[a], msg, 1) != 1) {
fprintf(stderr, "Unable to send.\n");
NodeClose();
exit(-1);

}
}
else {

/* Print out the prime. */
printf(fmt, b);
if (n++ >= cols) {

printf("\n");
n = 0;

}
}

}
}
if (n)

printf("\n");

/* Terminate the NMP session. */

NodeClose();
exit(0);

}

Figure A-2. Distributed Prime Number Generator: Root

The root node does not check for any primes itself, but it initiates theNMP with a call to
NodeInit, it divides the range of numbers to check into equal sized chunks, and it distributes them.
The last helper node is a special case and gets whatever sized chunk is remaining.Then, after the output
formatting is set up, the root simply waits for results to come in from the helpers, usingPollNode.
Completed nodes are detected by a negative number received, and are eliminated from polling by a call to
ClearMask. A single byte acknowledgement is sent to finished helpers to ensure the communication
paths are flushed before any helpers exit. The prime numbers are printed out one at a time as they are
received from the helpers.

-23-

/*
* NMPrime: Helper part
* Receives start and finish parameters, calculates primes, and sends prime
* values back to root. Each helper must be connected to the root in the
* configuration file.
*/
include <stdio.h>
include <math.h>

/* Prime number checker. */

static int
prime(n)

int n;
{

int a, sn;
double sq;
extern double sqrt();

if (n < 1)
return 0;

if (n < 4) /* 1, 2, and 3 are prime */
return 1;

sq = sqrt((double) n);
sn = (int) sq;
if (((double) sn) == sq) /* not prime if it has perfect SQRT */

return 0;
for (a = 2; a <= sn; a++)

if ((n % a) == 0)
return 0;

return 1;
}

int
main(argc, argv)

int argc;
char **argv;

{
int start, finish, a, n, cols, msg[2];

/* Initialise NMP Node. */

if (NodeInit(1, "") < 0) {
fprintf(stderr, "unsuccessful return from NodeInit!\n");
exit(-1);

}

/* Make sure we are connected to the root node. */

if (!IsConnected(0)) {

-24-

fprintf(stderr, "Not connected to root.\n");
NodeClose();
exit(-1);

}

/* Get our startup parameters. */

if (RecvNode(0, (char *)msg, sizeof(msg)) != sizeof(msg)) {
fprintf(stderr, "unsuccessful return from RecvNode!\n");
NodeClose();
exit(-1);

}
start = ntohl(msg[0]);
finish = ntohl(msg[1]);

/* Loop through our assigned range. */

n = 0;
for (a = start; a <= finish; a++)

if (prime(a)) {

/* Put in network format, send to root. */

msg[0] = htonl(a);
if (SendNode(0, (char *)msg, sizeof(int)) != sizeof(int)) {

fprintf(stderr, "Unable to send.\n");
NodeClose();
exit(-1);

}
}

/* Tell Root we are done. */

msg[0] = htonl(-1);
if (SendNode(0, (char *)msg, sizeof(int)) != sizeof(int)) {

fprintf(stderr, "Unable to send.\n");
NodeClose();
exit(-1);

}

if (RecvNode(0, (char *)msg, 1) != 1) {
fprintf(stderr, "Unable to receive acknowledgement.\n");
NodeClose();
exit(-1);

}

/* Terminate this node. */

NodeClose();
exit(0);

-25-

}

Figure A-3. Distributed Prime Number Generator: Helper

The helperprime function is exactly the same as the sequential program’s. Thehelper begins with
a NodeInit to receive its startup information and the interconnection matrix. It then makes sure it is
connected to the root node, in case the user has given a bad configuration file. It receives its startup
parameters from the root, and loops through its range checking for primes. When it detects a prime num-
ber, it sends it to the root, one prime per message. When finished, it sends a negative number to the root,
then waits for the single byte acknowledgement, and finally terminates.

-26-

Index of Functions

Synopsis Page

int AddConnect(Type, NodeId) ... 11

int AddNode(HostName, ExecFileName, Sin, Sout, Serr, Bits) 10
char *HostName;
char *ExecFileName;
char *Sin, *Sout, *Serr

int AreConnected(NodeId1, NodeId2) ... 10

int CheckNode(NodeId, Message, Length) ... 7
char *Message;

ClearMask(NodeId) .. 7

CubeClose() .. 15

int CubeDim() ... 17

CubeExit(Code, fmt, a1, a2,) ... 17
char *fmt;

int CubeInit(Type, Config) .. 15
char *Config;

int CubeProbe(Node, Type, Length) ... 16
int *Node;
int *Length;

int CubeQsize() ... 17

int CubeRecv(Node, Type, Message, Length) .. 16
int *Node;
char *Message;

int CubeRingSend(Direction, Type, Message, Length) ... 16
char *Message;

int CubeSend(Node, Type, Message, Length) .. 16
char *Message;

DisableInt() .. 8

EnableInt() .. 8

char *GetAnyHost(NodeId) ... 9

char *GetHost() ... 9

int GetInfo() ... 9

int GetMyId() ... 9

int GetNodes() ... 9

HoldInt() ... 7

int IsConnected(NodeId) ... 10

int MadeConn() ... 10

-27-

NodeClose() .. 5

int NodeInit(Type, ConfigurationFile) .. 4
char *ConfigurationFile;

int PollAll(Nodes, Block) ... 6
int Nodes[];

int PollNode(NodeId, Block) .. 7

PrintConnect(stream) ... 10
FILE *stream;

int RecvNode(NodeId, Message, Length) .. 5
char *Message;

ReleaseInt() .. 8

int SendNode(NodeId, Message, Length) .. 4
char *Message;

SetHandler(handler) ... 7
int (*handler)();

SetMask(NodeId) ... 7

SetNodeOffset(Offset) .. 10

int TreeAddChild(HostName, ExecFileName, Sin, Sout, Serr, Bits) 14
char *HostName;
char *ExecFileName;
char *Sin, *Sout, *Serr;

int TreeDelChild(ChildNo) ... 14

int TreeGetDepth() ... 13

int TreeGetMaxD() .. 14

int TreeGetNumber() ... 13

int TreeGetSlaves() ... 14

int TreeInit(Type, Config) .. 12
char *Config;

int TreeInodes() .. 14

int TreeLnodes() .. 14

int TreeLook(Child, Buffer, Length) ... 13
char *Buffer;

int TreePoll(ChildReady, Block) .. 13
int ChildReady[];

int TreePollChild(Child, Block) .. 13

int TreePollParent(Block) ... 13

TreePrint(Index) .. 14

int TreeRecvChild(Child, Message, Length) .. 12
char *Message;

-28-

int TreeRecvParent(Message, Length) ... 12
char *Message;

int TreeSendChild(Child, Message, Length) .. 12
char *Message;

int TreeSendParent(Message, Length) ... 12
char *Message;

clock_start() ... 10

clock_stop(rt, ut, st, it) .. 10
int *rt, *ut, *st, *it;

