Developing NMP Applications

T. Breitkreutz
S. Sutphen
T.A. Marsland

Computing Science Department
University of Alberta
Edmonton, Canada

Technical Report TR89-11
March 1989

Table of Contents

K=o (3o 0] o1 (T o £ PRSPPI '
I 11 o o [Tod 1 o] o RSP REER 1
1.1. Whatls the Network MultiproCeSSOraBKAgE?ccceeiiiiiiiiiiiieieee it 1.

1.2, WHY USE The NIMP 2 ittt ettt e e oo ettt et e e e e e e bbbttt e e e e e e e nsbb b e e e e e e e e e e annnnenes 1
1.3. Terminology and NOTALIONccooiiiiiiii e annannne 1
2. TheBaSiC NMP ROULINES ... eaee bbbt eabe bbb e bneeenees 1
200 I NN 1Y N o o 1= SRR 2
2.2, CONFIQUIALIOIFIIES ...t e e e e e e e e e e e e e e e e nnnnees 2

P T O] 101 o] F= Ui [0] o PO P TSP OPPPPPPPPPP 3
A = 4 (o] £ TR TTTTRTTRPRTPORE 4
2.5. BasidNMP SUPPOIt ROULINESocooviiiiiiiie e, 4
22 T o 11T T PPN 6
2.7. OtNEINMP ROULINESeiiiiiiiiieiiieiiietieattee ettt ee ettt e ettt e et e e ee e s e e e s e e s e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 7
N O [01 (T 4 (U] o PR 7
2.7.2. NMPULIITIES oieeieeei e nnnnnennne 9.

P 8 T N1V = [Tox TP PRPPR TP 10.........
2.7.4. DynamicallfReconfiguring Your NMP SYSEMcccooiiiiiiiiii i 10
3. TRENMP T . 11.........

G TNt O N 1Y I =TS N (o o 1= PP 11
3.2. Tree CoNfIQUIAtION FIlESuiiiiiiieiii e e et e e e e e e s bbb e e e e e e e e s bbb e e e e aaeeas 11
3.3, BASICTTEE ROULINES ...oiiiiiiiiiiie ittt e ettt e e e e e e s bbbttt e e e e e e e bbbt et et e e e e e s nanbbreeeaeeas 12
3.4, Tre@ COMMIUNICALION ...iiiiiiiiiie e e e ettt e e e e ettt e e e e e sttt e e e e e s s e b bbbt et e e e e e e asnbbbseeeeeeessannsbnneeeeeeeeaannnes 12
G TR T o] {11 T T 1 TN == 13........
BT @ 1 =T I =T L0 U] =2 13
G0 O 1111 USRS 13
3.6.2. DynamicallyReconfiguring the NMP Bc.uuviiiiiiiiiiiiiieeee e 14.....

B I 1= N Y O o= P ETRUTPPPRR 15
o O N1/ @ o TN N [0 T (=P 15
4.2. NMPCube Configuration FilESooiiiiiiiiiiiiiiii e, 15
4.3. BaSIOCUDE ROULINES ...ooiiiiiiiiiiee e 15
VN S @0 o 1< Oo T2 0 01U T] o= 1) o 1P 16..........
T OA ¥ o 1= U 1] 11 1= PO PRSPTR PP 16.........
Y03 L0 11 U=To [o =T . =T o1 RSP 7.
] 1] €= 0] 17,
Appendix: PrimeNumber Generator Example Programccccueeeiiiooiiiiiiiiecceeeeiieeee e 18

L0 (= Qo) il U T Tex 1] 0 F- TR 27 .

1. Introduction

This paper explains moto write Network Multiprocessor PackageNP) applications. Theechni-
cal reportNMP—A Network Multi-pycessorfMBS88] contains an \@rview of NMP, implementation
details, more adnced usage information, and instructions for installing the packeig®. replaces its
predecessor theirtual Tree Machine(or VTM) [OIM85a] [OIM85b]. Section 1 of this paper introduces
the Network MultiprocesspiSection 2 describes the basic set of routines, Section 3 describesehe
Tree Package, and Section 4 tdP N-cube routines. The Appendix contains a sanNN&° (prime
number generator) program. The Imdef Functions contains the function types, parameters, and the
page number where each function is described in the report.

1.1. Whatls the Network Multiprocessor Package?

The NMP is a software package intended to ealstributed, concurrent applications inBsD
UNIXT socket network easier to write [Sec86]. It sets up a multiprocesselidcture using processes
on auNix network. Thestructure of the interprocess communication paths is an arbitrarily interconnected
graph. Mordimited and specific structures may hglbon the basicNMP software, as hee dready been
done with theNMP Tree andNMP Cube emironments. Thdree routines and Cube routines eachvigl®
self-contained sets of primis kuilt on top of the basitiIMP primitives.

1.2. Why use theNMP?

For distributed applications of the client/servmodel, the Sun Remote Procedure Call package
[RPC86] provides a good intade to the socket\e of BSD UNIX. RPC howeva, is not well suited to
multiprocessor simulations or applications of a more concurrent nalM®. provides procedure calls
that allav easy parallelisation ofxésting sequential algorithms, in which the potential parallelism fits eas-
ily into the sequential algorithm.

1.3. Terminology and Notation

In this paperthere are seeral terms that are used interchangeably fmious parts of th&IMP sys-
tem. TheacronymNMP can also refer to a single instance dfietwork Multippcessor The computers
involved in theNMP are called machines, hosts, or process®@tse NMP processes running on thanous
machines are called nodes or processes, and more specifically may be called children, parents, branches,
or theroot node, which is the single node of th&IP that the userecutes and interacts withRoutine
names and definitions, example code, example files, and references theretoxnaredeen in con-
stant wi dth font. Host names are g in italics. References to the Unix ProgramnseManual
[UPMB86] are gven in the formtopic(section)wheretopicis the manual page name, a@ttionis its sec-
tion of the manual.

2. TheBasicNMP Routines

The lowest layer of th&lMP is an underlying set of procedures (bashP), on which tvo cther
layers are built (the Tree and Cub&hey are the most general purpose procedures and can be used as a
self-contained interprocess communicatithCj package. Thdasic procedures alloan abitrary inter
connection matrix between all nodes in the system.

2.1. NMP Nodes

The NMP works by starting up processes on various machines in a local arearineachNMP
node is one process, and is identified by argantéusually referred to ddodel d). Theroot process is
always node 0, and the nodes started later are numbered incrementally from 1.

T uNiIx is a trademark of Bell Laboratories

2.2. ConfigurationFiles

Configuration files are the basis for initial structuring of ebiP execution. Theinterconnection
structure and number of nodes in the system can be changed dynamically by the applitatiomitial
structure must be defined by the start-up configuration file. An example configuration filevis isho
Figure 1.

#

5 processor configuration

#

vaxl; O

vax2; 0; vax/vprog; ; outl; errl
sunl; 0; sun/sprog; ; out2; err2;
sun2; 0; sun/sprog; ; out3; err3;
mps; 0; mps/nprog; ; out4d; errd4;
0

10

100

1100

01010

Figure 1 Example Configuration File

Configuration files consist of data lines and comment lines (starting with the ch#jactéredata
lines are split into tw groups: node descriptions and a connection matrix. The first set of data lines con-
tain host and process image descriptions, one line for@emode, with the following fields:

Host Nane; Bits; ExecFil eNane; Sin; Sout; Serr;

The Host Name parameter is the name of theypltal processor on which the node should rBnt s is

a field containing a bit pattern. The right-mosiothits are reserved for theMP (the first for a delg
trace, and the second to indicate special hardyy but the others may be used by the applicafldns

field is known internally as the proceis$éo. The program for each child process to run iggiin the
ExecFi | eNane field. Thepathname is relaté o the useis home directory on the gén processaror

may begin at the root of the file systeh).(Arguments to the program may beeaj within the Exec-

Fi | eNane field, separated by white spacEinally, the standard input/output channels can be assigned
to files or degices. Thestandard input pathname is/gi in the Si n field, the standard output Bout ,

and the standard error Berr. The pathnames \gn for these fields are assumed to be netath the
directory containing th&xecFi | eNane, but they may be gien with complete path names.

Note that the root node is included in the configuration file, as the first process descriptidinéine.
only field that is read from this line is tlBe t s field. Thehost name is filled in with the actual/oking
host, lut it is customary to include at least the host name field, which is ignored. The arguments and
input/output redirection are handled normally from the shell instead of with the configuration file.

Fdlowing the node description lines is a connection matrix indicating which nodes are connected to
which others. The matrix consists b§ (connected) an@s (Unconnected), separated by spadddiP
only reads the lower left half of the matrix (since all connections are bi-directional), but the complete
matrix may be gien if desired. Theprocess interconnection graph for the configuration file in Figure 1 is
shown by Figure 2.

vaxl
(root)

vax?2

sunl sun2 mips

Figure 2 Example Process Configuration

NMP needs to hae a @mth from the root tovery node in the configuration, so it will connect the first
node in each disjoint part of the configuration to the root node, and provide a warning message to the user
All other connections will be left exactly as indicated in the configuration file.

In NMP applications, nodes are referred to by thmide id(an intgjer). Thenode id is simply the
cardinal number of the node description line in the configuration file, starting with the root as riaie 0.
example,sunlin Figure 2 would be identified by the node idl2ond mipsthe node id o#.

Connection Limits

There is no hard limit on the number of nodes in an NMP configuratigrthb interconnection
graph is limited by the system-defined limit on file and sbdescriptors, usually at least 2f&(table-
size(2)will return the actual number for gparticular system).

2.3. Compilation
Most NMP programs simply require that thNMP library be searched in the link edit step. This is
accomplished by addind nnp at the end of youtc command, as follows:
% cc NnpProg.c -o NnpProg -1 nnp

In addition to the regular library a profile libraryl(nnpg) and a debug library-(nnpd) are available.
The delng library reports the progress of tRP startup, which is helpful for deloping nev applica-
tions, and also provides information for tthex debuggerdbx(1).

Some more compkeapplications may hae © include the header fileusr /i ncl ude/ nnp. h.
The header file contains the following definitions:

int NodeType; /* Internal or Root (user interface) */
int Socket Mask; /* Socket mask (for select) */

int MWld, /* My Node Id */

i nt *Channel ; /* Virtual Communication |ines */

i nt *Connect ; /* Connection matrix */

int ConnectSize; /* Size of connection matrix */

i

nt Connectlndex; /[/* 2 ** (Connectlndex) = ConnectSize */

struct NnpNode *NodeNanes; /* Interconnection structure */
i nt NodeNaneSi ze; /* Size of structure */
i nt NodeOr f set ; /* OOfset fromeffective to real id */

Most of the information gen by these globals isvailable through theNMP utility routines. The
NmpNode structure is defined as follows:

defi ne M_NAMVE 80 /* Max node name |len */
define M HOST 20 /* Max host nane length */
define MFILE 12 /* Max stream nanme */
define M USER 16 /* Max user nane (server) */
struct NnpNode { /* NWVP interconnect information */
char Host[M HOST]; /* Host Nane */
char User[M _USER]; /* User |ogin name */
char Nanme[M_NAME] ; /* Nane of node */
char Sin[MFILE]; /* Node’'s stdin */

char Sout[M FI LE]; /* Node’s stdout */
char Serr[MFI LE]; /* Node’'s stderr */

i nt SecPort; /* Secondary Port */
i nt ModTi ne; /* Last nmod tinme */
int Info; /* Bits field */

i
and contains the informationvgh in the configuration file.

2.4. Errors

Most NMP routines will return a rgetive rumber (or aNULL pointer for pointer functions) for an
error. An eror message will also be printed on the standard error channel.

2.5. BasicNMP Support Routines

The four basicNMP support routines aréNodel ni t , SendNode, RecvNode, and NodeCl ose.
These four routines form the core of the system and programs must use (some form) of these four rou-
tines.

All basic NMP programs begin concurrent processing by a call from the root node to:

i nt Nodel nit(Type, ConfigurationFile)
char *ConfigurationFile;

The rootNodel ni t causes all the concurrent processes to start. Child nodes also misstdedlni t

to synchronise and reeei wnfiguration information, but only the root node reads the configuration file.
TheType parameter is zero for the root process, and non-zero for child procé&des the application
source code is the same, and this parameter is itself a parameter to the program or a compilation flag.)

The second parametavhich is only needed for the root node, is the startup configuration file name
for the NMP application. Agin, this can be a constant, or a parameter to the program. In child nodes,
this parameter is ignored because the children inherit their configuration information frovePheys-
tem.

The return alue fromNodel ni t is the number of connections to the current node that were estab-
lished. Ifsome nodesafled to start up (i.e. their hosts did not respond), themsitre will continue with
the successfuly started subset of the connection graph, and the return valussdedmi t will reflect
the actual number of connections.

All messages passed through KP are sent using:

i nt SendNode(Nodel d, Message, Length)
char *Message;

The data in memory at the location pointed toM®gsage are sent to the noddodel d (see Section
2.1). Thenumber of bytes to send isvgn by theLengt h parameter.SendNode returns the number of

bytes successfully sent.

It is important to note that information iswalys passed as a character array atiher data type
pointer may be incompatible across machine architectures\g&Xy.integers are stored differently in
memory from most other machinesh solution to this problem is to use the network byte ordering
macros (seatohl(3N) to gore integer and short data for transmissiér example, code using tHeost
to network shortmacro to send an array of short integers might look like:

short dat a[DATA_SI ZE] ;

for (a = 0; a < DATA SIZE, a++)
data[a] = htons(datala]);
SendNode(dest, data, sizeof(data));
If the byte ordering on all the machines is the same, then the same segment could be simplified to:

SendNode(dest, data, sizeof(data));

Another more general, mechanism for ensuring data portability is the eXternal Data Representation
(XDR) package desloped at Sun Microsystems and publicly distributed [XDR86].

To receve information sent fronsendNode, use

i nt RecvNode(Nodel d, Message, Length)
char *Message,;

Lengt h bytes are receed from Nodel d and stored at the memory location pointed tavegsage.
Returned is the number of bytes reedj zero if the node is no longer connected, ayaiiee for other
errors. RecvNode will only return with a partial message if the sender terminated before completing
transmission. OtherwiseRecvNode always blocks until the entire message is redw check for
incoming messages without blocking, use the polling routines described ($zlotion 2.6).

The following code recees the integers as sent in the ab&endNode example:
RecvNode(src, data, sizeof(data));

for (a = 0; a < DATA_SIZE; a++)
data[a] = ntohs(data[a]);

Concurrent processing with tiamP is terminated by
Noded ose()

Child processes are terminated by this cait,the root node can continue processing and may begin more
concurrent segments by callibgdel ni t again.

Example: SimpleMessage Passing Application

It is possible to write aNMP application using only the routines listed an fThe following e&xam-
ple of anNMP program uses only the four basic routines to create a connected pair of processes and pass a
single message. The source code for the root and branch processes is in the same file, distinguished with
compiler conditionals.

include <stdio. h>

mai n() {
i nt nei ghbour s;
char buf [16];

nei ghbours = Nodelnit(TYPE, "config");
#if TYPE ==
if (SendNode(1l, "Hello, there.", 13) < 13)
fprintf(stderr, "unable to send");
el se
i f (RecvNode(O0, buf, 13) < 13)
fprintf(stderr, "unable to receive");
if (strcnp(buf, "Hello, there."))
fprintf(stderr, "received wong nessage");
endi f
Noded ose();
}

Figure 3 Example NMP Program
The corresponding configuration fikeonf i g, could be:
vax1l; 0
vax2; 0; branch; ;outl1;erri;
0
10

The filebr anch must reside in the userhome directory orvax2. The two program images are com-
piled with:

% cc -DTYPE=0 -0 root test.c -lnnp
% cc -DTYPE=1 -0 branch test.c -l nnp

and irvoked by
% r oot

The Appendix contains a more complete example that uses moreN Eheutines.

2.6. Polling

If your application needs to check for incoming messages without using the bl&&dniNode
routine, or if it is waiting for messages from more than one setigepolling routines may be usedhe
three polling related routines do not affect the data in the communication patgsaayan

To poll all the neighbouring nodes, use

int PollAll (Nodes, Bl ock)
i nt Nodes|[];

If any data are waiting to be read from nodes, the sender node ids are returned in thiedesywhich
should be large enough to contain all nodes which mag haoming messagespol | Al | returns the
number of nodes with messages pending to beueeteiTheBl ock parameter tell$ol | Al | whether
to wait for an incoming message if there are none when it is caexro Bl ock parameter will cause
Pol | Al'l to check the neighbouring nodes only once, otherwise it waits until a message is pending.

-7-

To check an explicit node for pending messages, use
i nt Pol | Node(Nodel d, Bl ock)
A return \alue of zero indicates no messages are waiting to bevedc@ion-zero indicates otherwise.
Bl ock has the same meaning asfad | Al | .
The following procedure allows you to look at an incoming message before receiving it.

i nt CheckNode(Nodel d, Message, Length)
char *Message;

A copy of the byte stream frolodel d’s incoming message queue is place8ur f er without afect-
ing the status of the input queuk.attempts to read in up foengt h bytes, and returns the number of
bytes copied.Unlike RecvNode, CheckNode does not wit until Lengt h bytes arne, it will copy a
smaller size message if it igadable.

If you want to be more seleeé in your node polling, use
Set Mask(Nodel d)
and
C ear Mask(Nodel d)

These tw procedures are used to manipulate the masks used to determine which nodes the polling opera-
tions listen to. If a particular noddNgdel d) has been temporarily eliminated (V@ ear Mask), a

polling operation Pol | Al l or Pol | Node) will never indicate that there is grinput waiting to be

receved from that node.Set Mask adds the gien node back to the mask (sselect(2).

Detecting a Node Disconnection

If the polling routines detect a disconnected nodsy, Wik return as if there is a messagaiting to
be recered from the node.However, no information will be &ailable from RecvNode (or CheckN-
ode) which will return a length of zero bytes read. There is no way to detect immediately that a node is
no longer connected with the polling routines.

2.7. OtherNMP Routines

Most NMP applications only need the almroutines. Se¢he Appendix for an example of a prime
number generator that has been parallelised using the basic roufimedollowing sections describe
primitives provided for more compleapplications and impneed error handling.

2.7.1. Interrupts

An alternatve © polling is to use interrupts. If a node wishes to be interrupted on receipt of a mes-
sage, it must establish amerrupt handlerroutine. Interruptingnessages are reved exactly the same
as normal messages. The only difference is that theveedsinotified of the messagefresence by a
call to its interrupt handlerNMP interrupts are actually SIGIO signals (stgvec(2) generated by sock-
ets with theilFASYNC flag set (se&ntl(2)).

To st up an interrupt handler on a node planning to vedeterrupts, use

Set Handl er (handl er)
i nt (*handl er) ();

This routine alse@nablesnterrupts. Theargument is the name of your interrupt handling procedure The
signal handler routine will be called directly by the system, it is not intercepted Nyheoftware

To hold incoming interrupts temporarily (for critical sections of code), use

Hol dI nt ()
Held interrupts may be lost if tii@re not the first to ave.
Rel easel nt ()

releases gnheld interrupts. Note that the al@tvo routines do not nest.
The following routines completely disable or re-enable the receipt of interrupts.

Di sabl el nt ()

Enabl el nt ()

Interrupts are not queued when disabledy #re thrown avay.

Interrupts are automatically teeld before entering, ancbleasedon «it. Interruptsmay be lost if
more than one interrupt is reeed while the interrupt handler isxecuting. Generallyspeaking, a node
should not rely on being able to reeeimore than one interrupt without acknowledgement to its sender.

The SendNode and RecvNode routines may be considered atomic with respect to interrupts.
That is, their underlying system calls are restarted in Wleatehat an interrupt occurs before yhare
complete. Therefordt is not necessary to disable interrupts before a call yoofithe communication
routines, but other system calls may need protection from premature exit caused by incoming interrupts.

The interrupt mechanism used can cause multiple interrupts for a single message if the message is
larger than the internaluffers. Becausef this programs receiving large messages should accumulate the
message as it aves. Anexample interrupt handler that does this is shown here:

i nt Nework = 0;
char buf[LargeSi ze], *bp = buf;

handl er ()
{

register int len, remain = &uf[LargeSize] - bp;

| en = CheckNode(nei ghbour, bp, remain);

i f (RecvNode(nei ghbour, bp, len) !'=1len) {
/* handl e error condition */

}

bp += len;

if (remain == len) {
NewMor K++;
bp = buf;

mai n()

{

char wor kbuf fer[LargeSi ze];

/* read in initial work */
i f (RecvNode(nei ghbour, workbuffer, LargeSize) != LargeSize) {
/* handl e error condition */

}

Set Handl er (handl er);

while (1) {
DoSonmeWor k() ;

i f (Nework) {
/* switch work | oads */
Hol dI nt () ;
bcopy(buf, workbuffer, LargeSize);
NewWbr k- - ;
Rel easel nt () ;

}

This contrived example works on the old data (wor kbuf f er) while the nev work is assembled in
buf . It also blocks out interrupts in the critical section of shuffling buffers.

2.7.2. NMP Utilities

Although theNMP data structures are not strictly opaque, it is a good idea (and easier) to use the fol-
lowing routines to access the internal state oNKi® structures.

. A node can determine the name of the machigauitining on withGet Host .
char *Get Host ()

. To find out the host machine name of anotiP node, use
char *Get AnyHost (Nodel d)
Nodel d is the other node’id number.
. To find out the total number of nodes in ti&P, use
i nt Get Nodes()

. A node may determine its own node id by calling
int GetMld()

. TheBi t s (info) configuration file field is obtained by calling
int Getlnfo()

The basicSendNode andRecvNode routines do not check the connectivity of their destination
and source nodes. An attempt to send to or vededm a non-existent or non-connected node will return
an error code and produce a message on the standard error channel. The following routines are used to
determine the status of tthNMP connection configurationNodes configured as connected may not be
connected because of an error in starting upNt¥ie or if one has already stopped.

-10-

. To find out if a node is connected to the current node, call
i nt 1sConnect ed(Nodel d)

. The configured connection betweerotather nodes may be determined by
i nt AreConnect ed(Nodel d1, Nodel d2)

A non-zero return indicates a connection, zero indicates no connection.

TheNMP assumes that if some of the machines in the configuration aralahk you wish to con-
tinue with the remaining nodes.

. If you need to knw if the entire configuration was successfully started, use:
i nt MadeConn()

It returnsl if the NMP setup was successful, zero if one or more nodes failed to start up.
. The current connection matrix can be printed with
Pri nt Connect (stream
FI LE *stream
which will place it on the standat outputst r eam

. If you wish to use yourvan node numbering schemget NodeO f set is provided to cause all
references to nodes toueaf f set added (i.e. when the user refers to nbdéhe real id of the
node will be 1+ O f set). Theoffset is also subtracted before returning aade ids to the user.

Set NodeOf f set (OF f set)

2.7.3. NMP Clock
Two clock routines are provided for system-consistent timing of programsy &ée

clock _start()
and

clock_stop(rt, ut, st, it)
i nt *rt, *ut, *st, *it;

These calls may be nested,ock_st op terminating the most recent instancecbfock _start. The
real time is returned int , the user time imt , the system time ist , and the idle time t . All times are

in milliseconds. Real time is the elapsed time between thestgsiem calls.User time and system time
are approximations of CPU time in the usgwogram and in system calls. Idle time is calculated by
cl ock_st op as the difference between real time and combined user and systenSeegstimeof-
day(2)andgetrusage(2) for more details about these units.

2.7.4. DynamicallyReconfiguring Your NMP System

If the application needs to change its configuration while running, it may add nodes and connec-
tions. Nodesan delete themselves by calliNgdeC ose. Connections cannot be deleted, but may be
ignored by using the select mask manipulation routines (Section 2.6). The following procedure creates a
new node to participate in theMP and establishes a connection between it and the node issuing the call.

-11-

i nt AddNode(Host Name, ExecFil eNane, Sin, Sout, Serr, Bits)
char *Host Nane;

char *ExecFi | eNane;

char *Sin, *Sout, *Serr

Host Narre is the name of the physical machine on which the node is tcEretGFi | eNane is the
name of the nods’executable file,Si n, Sout , and Ser r are the node'sandard 1/O streams, afi t s

is the usedefinable information passed to the created node. The node id ofwheode is returned.
The interconnection structures are updated appropridagyonly in the calling node and thewlg cre-
ated node. The rest of the nodes are not informed; their calisttblodes or ary other utility routines

will not shav the existence of the menode. Thenew node is assigned a node id one higher than the
highest id that the current node isape of. That is, the initial configuration information is distried to

all nodes in the systemubonly the nodes wlved in aly subsequent changes kmabout the ne
changes. Se®ection 2.2 on Configuration Files for more details.

To aeate a n@ connection between existing nodes, use
i nt AddConnect (Type, Nodel d)

There are tw possibilities: Type=0 is the actre part of the connection, anlype=1 is the passie part.
The nodes wolved must synchronise on the callAddConnect and must kne who is actve and who

is passre. The connection matrix is updated only in th@ twodes iwolved. Theother nodes kne noth-

ing of this n&v connection. Athe moment, the passi part of the connection does not verify which node
it is connecting to, so passialls toAddConnect should be done carefully tv@d misconnection.

Warning

Nodes cannot distinguisAddConnect requests and their initial startup message. If a node is
waiting for its startup message and reeesian AddConnect request instead, it will hang, expecting the
startup information as well. Therefore, applications musitahe completion of th&iMP startup before
attemptingAddConnect s to nodes deep in the interconnection graph.

3. TheNMP Tree

The NMP Tree layer is an extension of theP designed specifically to simulate processor trees,
allowing a simpler configuration file and a more desaor@tet of primitives to xchange messageshey
consist of a separate group of routines that are builtwncdn be used independently of, the BagitP
Routines. Thélree routines are included in thegudar - | nnp library, so ompilation is identical with
that for basicNMP.

3.1. NMP Tree Nodes

Nodes in arNMP Tree are numbered refati © their parent. That is, nodes are identified by parents
with a number fromi to n, wheren is the number of children the processor has. Child nu@beithe
nodes parent, if it has one. (The root node has no parent.)

3.2. Tree Configuration Files
The configuration files falMP trees differ from those used by the basidP routines.

-12-

#
Tree File
#
sunl; 2; O
sun2; 2; 0; lhelper pl p2; ; outl; errl;
sun3; 0; O0; Lhelper; ; outll; errli;
sun4; 0; O; Lhelper; ; outl2; errl2;
sun5; 0; 0; Lhelper; ; out2; err2;

Figure 4 Sample Tree Configuration File

The indentation is not requireditbocan be used to shahe structure of th&lMP tree. Heresunlis the
root node, with tw children, sun2andsun5 sun2also has tw children,sun3andsun4 The configura-
tion file format is the same as forgdar NMP’s except that there is no interconnection matrix, and each
line has an extra field for the nodeumber of children. The fields are:

Host Nanme; NChildren; Bits; ExecFil eNane; Sin; Sout; Serr;

Each node from the description lines is assigned to the last node encountered still waiting for children.

3.3. BasicTree Routines
Instead ofNodel ni t , NMP Trees use

int Treelnit(Type, Config)
char *Confi g;

Again, Type is 0 for the root node, andl for interior nodes of the treeConf i g, required only for the
root node, is the name of the configuration file (describedepbdr eel ni t returns the number of chil-
dren successfully started.

For interior or leaf nodesJr eel ni t blocks, waiting for a request from its parent node to start.
Once such a request is reasl, it accepts the tree machine configuration from its parent and starts up its
own children (if it has any).

The basidNMP routineNodeCl ose is used to terminate a Tr&#P process.

3.4. Tree Communication
The following procedure sends a message to a child node.

int TreeSendChild(Child, Message, Length)
char *Message;

Lengt h bytes of data pointed to byessage are sent to child numbeghi | d. Tr eeSendChi | d
returns the number of bytes successfully sent, ogaine return code on error.
To receve a nessage from a child,

int TreeRecvChild(Child, Message, Length)
char *Message;

waits for and receies Lengt h bytes from itsChi | d and stores the messageMassage. If the sender
has terminated without placing enough data in the stream, the partial message is read and its length
returned. Otherwisesuccess is indicated by a positieturn value (actually the full length).

The following two routines are provided for claritgnd operate exactly as the abopocedures
with aChi | d parameter of zerddhi | d zero is really the parent).

13-

i nt TreeSendParent (Message, Length)
char *Message;

i nt TreeRecvParent (Message, Length)
char *Message;

The root node has no parent and will thus generate an error if it attempts to communicate using these tw
routines.

3.5. Rolling in the Tree

The following routines are used to check the status of the communication paths. None affect the
data on the send/regeiqueues in anway.

To check for ag incoming messages, use

int TreePol | (Chil dReady, BI ock)
i nt Chi | dReady[];

If data are queued, waiting to be read from a child node (or the parent), kssmeéurned inChi | -
dReady. That is, if a childi (or the parent if =0) has sent a message that has not yet beenirisad,
entered into the arra@hi | dReady. This procedure returns the number of "ready" childrrBl ock

is true, the process waits until dataasifrom at least one child or the parent.

For polling only the parent,
i nt TreePol | Par ent (Bl ock)
returns zero if no message outstanding, non-zero otherwise.
The following procedure checks a single child for pending messages:
int TreePol | Child(Child, BIock)

Zero is returned when no data are pending, non-zero otherwise.
To peek at incoming data without receiving it, use

int TreeLook(Child, Buffer, Length)
char *Buf fer;

Up toLengt h bytes of data waiting to be read frathi | d are copied intdvessage. The number of
bytes successfully copied is returned: the same bytes will be obtained on the next lookver fecei
examine a parerd’pending messages, set e | d parameter to zero.

As for the rgular NMP, these polling routines will return successfully if a node is disconnected.
The next receie a look will return zero bytes, indicating the untimely demise of the sender.

3.6. OtherTree Routines
The following routines supplement those described in Section 2.7 for theNibaic

3.6.1. Utilities
The following routines ally access to the internal tree data structures.
. The current node’depth (its distance from the root) in the processor tree is returned by

i nt TreeGet Dept h()

. Thesibling numbeof the current node is obtained with

-14-

i nt TreeGet Number ()

This is the number by which the parent of the current node knows it.
. The number of childrenonfiguredfor the current node is returned by

int TreeGet Sl aves()

Note that this number need not be the same as the number of childrenvazblea
. The maximum depth of the tree is reported by

int TreeGet MaxD()

. The following two routines report the number of nodes in the processor tree.
i nt Treel nodes()
returns the number of internal nodes in the subtree rooted at the current node, and
i nt TreeLnodes()
returns the number of leaf nodeSor the example tree configuratiorvgn in Fgure 4,Tr eeCet -
MaxDwould return 3,Tr eel nodes would return 2, andr eeLnodes would return 3.
. To print out a textual representation of the processor tree on the standard output, use

TreePrint (1 ndex)

If only the subtree rooted at the current node is desired,ndex=Get Myl d() . If the entire tree
is to be printed, usendex=0.

3.6.2. DynamicallyReconfiguring theNMP Tree
New nodes can be dynamically added to P Tree configuration by using

i nt TreeAddChi | d(Host Nane, ExecFil eNanme, Sin, Sout, Serr, Bits)
char * Host Nane;

char *ExecFi | eNane;

char *Sin, *Sout, *Serr;

Each call connects awechild to the calling node. Only one child may be added at a time. (There is no
provision for adding a whole branchThe caller must specify explicitly the same information as is found
in the configuration file for statically configured nodes, i.e Hbgt Nanme on which the node is to reside,
the ExecFi | eNane of the NMP program, the names of the files to reeethe nodes’ standard 1/O
streamsSi n, Sout, and Serr, and finally the user-defined parametgrts. TreeAddChil d
returns the n@ number of children if successful, otherwise gaive rumber.

Note that the process of adding avmeode can be time consuming. The nadeecutable image
must be read from disk, and some processes may be swapped outetooorakfor it on the host
machine.

int TreeDel Chil d(Chil dNo)

disconnects the specifi€thi | dNo from the current nodeNote that this routine only updates the data
structures and closes the setkltis the callers responsibility to handle the chiklexit gracefully and
malke wre that no data are in the send/reeejueues on either endNote that the parent must initiate the
disconnection. Thehild simply callsNodeC ose. The number of remaining children is returned.

-15-

4. TheNMP Cube

The NMP Cube layer is provided for applications desiring towibe eecution ewironment as a
hypercube. Thg provide a slightly different interface as well as a simpler configuration file ik
NMP Tree). Messagemay be assigned fifrent types and a separate message queue is maintained for
each type. Other differences are that messages are limited in length and the communication channels are
designed to support true messages (as opposed to byte str&uousihg within the cube is performed
automatically but synchronous with calls to yamof the cube support primites. Thussome of the com-
munications bandwidth of gmode may be taken up for routing messages between other ribltese
routines are designed to pide compatibility with the programmaerinterface to the IntelASCand the
CALTEC Cosmic Cube environments [Sei85].

4.1. NMP Cube Nodes

In the typercube environment, nodes are numbered f@am2" —1 wheren is the dimension of the
cube. Thauser as in he regulaNMP, interacts with node O.

#

Exanpl e of a 3-cube

#

3

sunl; O;

sun2; 0; cube; ; outl; errl
sun3; 0; cube; ; out2; err2;
sun4; 0; cube; ; out3; err3;
vaxl; 0; vcube; ; out4d; err4;
sun5; 0; cube; ; outh; errb5;
sun6; 0; cube; ; out6; erré6;
sun7; 0; cube; ; out7; err7;

Figure 5 Example Cube Configuration

4.2. NMP Cube Configuration Files

The configuration for the cube is described by the cube dimension followed by the names of
machine/process instances, one per line in the Tike format is identical to the basic configuration file,
but with the dimension of the cube at the start and without the connection matrix. Each line in the config-
uration file represents a node in the cube and contains the same information as the general configuration
entries.

4.3. BasicCube Routines
TheNMP Cube initialisation routine

i nt Cubelnit(Type, Config)
char *Confi g;

starts the processes running and establishesytier-tube interconnectionCubel ni t must be called
from every process imolved in the cube andype distinguishes between a call from the root node
(Type=0) whereConf i g is the name of the configuration file, and the other nofigpd=1) where
Confi g is ignored.

To it anNMP cube node, call
Cubed ose()

-16-

4.4. CubeCommunications

Internode messages in the cube environment may be assigned different types: thus a node can
receve messages in an order different from the order in which the messages were sent. Since routing is
done in the user process, all calls to the message pesigisult in the interrogation of all message chan-
nels and fonarding of messages that are destined for nodes other than the one issuing tNetical.
also that no routing takes place unless a call is made to a message/@ri(Bie the discussion on
CubePr obe below.)

i nt CubeSend(Node, Type, Message, Length)
char *Message;

sendsvessage of a specifiedlype to the gven Node. The size is gien as Lengt h and is currently
limited to 256 bytes. Noticethat the message mayveato pass through as mgras n—1 intermediary
nodes (where is the cubes dmension) to reach its destinatioBendNode returns the number of bytes
successfully sent or getive an eror.

i nt CubeRecv(Node, Type, Message, Length)
i nt *Node;
char *Message;

receves the oldest queuellessage of a specifiedype. The originatingNode is returned in place and
the size of the message is return@beRecv will block until Lengt h bytes are receed.

To £nd a message to all the nodes in the cube, use

i nt CubeRi ngSend(Direction, Type, Message, Length)
char *Message;

CubeRi ngSend is like CubeSend except that the message isvays sent to the m@/previous node in a
fixed ring embedded in the cubH.Di r ecti on is 0,the message is sent to thextnode in the ring,
and if it is1 the message is sent to fhreviousnode in the ring. The ordering in this caxttes on numer

ical node ids.

i nt CubeProbe(Node, Type, Length)
i nt *Node;
i nt *Lengt h;
checks for a message of the specifiggpe. If a message is waiting to be reeed (either on the queue or

on the netwrk) CubePr obe returns 1 and returns the sendMgde and the messadeengt h in place.
If nothing is pending, zero is returned.

This routine should be called frequentlyee if no message is expected at this node, since it may be
involved in routing messages between other nodes in the cube.

Error Values
The abwe routines return specific error codes:

HEADER ERROR -100 Error receiving nessage header
BODY_ERROR -101 Error receiving nmessage body
ROUTE_ERROR -102 Error in routing nessage
QUEUE_ERROR -103 Message Queue Overfl ow

4.5. CubeUtilities
Here are the utilities specific to the cube environment:

-17-

. The dimension of the cube is obtained with
i nt CubeDi m()

. The number of messages waiting to be read from a siogrit queue is returned by
i nt CubeQsize()

. For a graceful error exit, call

CubeExit (Code, fnt, al, a2,)
char *fnt;

The Code specifies whether to exit without trying to clear up messages in tr@osie€1) or wait
for ten seconds while trying to route messages to their destina@ode£0). A terminating mes-
sage is printed on the standard error channel as specifieihtft2) form.

Acknowledgements

This report was inspired by th&fM manual pages written by Marius Olafsson, who also suggested
some of the examples and wrote YheM package. Numerougtudents at the Uwérsity of Alberta made
helpful suggestions.

References

[RPC86] RemoteéProcedure Call Programming Gujdsun Microsystems, Inc., Mountainiéf, Feb.
1986.

[UPM86] 4.3BSDUNIX Programmers Manual Univ. of California, Berkelg, April 1986.

[XDR86] ExternalData Representation Protocol Specificati®imn Microsystems, Inc., Mountainié,
Feh 1986.

[JLS87] J.Joyce, G. Lomwy, K. Sind and B. Unger*“Monitoring Distributed System’s,ACM Trans.
on Computer Systerbg2), 121-150 (May 1987).

[MBS88] T. A. Marsland, TBreitkreutz and S. Sutphen, NMP—A Network Multi-proces3&t88-22,
Computing Science Dept., Uniof Alberta, Dec. 1988.

[OIM85a] M. Olafsson and TA. Marsland, Implementation of Virtual Tree Machines, TR85-9, Comput-
ing Science Dept. Uni of Alberta, Edmonton, May 1985.

[OIM85b]
M. Olafsson and .TA. Marsland, "A UNIX Based Virtual Tree Machine?toc. of the 1985
CIPS/ACI Congressviontreal, June 1985, 176-181.

[Sec86] SSechrest, An Introductory 4.3BSD Interprocess Communicatiborial, Computer Science
Research Group, Uniof California, Berkeley, April 1986.

[Sei85] C.L. Seitz, “The Cosmic Cub®e,Comm. of the ACM8(1) 22-33 (Jan. 1985).

-18-

Appendix: Prime Number Generator Example Program

The following program demonstrates the use of the following routines in a distributed prime number
generatorNodel nit, Get Nodes, Noded ose, |sConnected, SendNode, RecvNode,
Pol | Al l , andCl ear Mask. First, the sequential version isvgn:

/*
* Prime nunmber generator
*
* Usage: prinme start finish
* where start and finish are natural nunbers.
*/

include <stdio. h>
i nclude <math. h>

/* function prime: returns 1 if nis prine,
0 ot herwi se */
static int

prime(n)
int n;

{
int a, sn;
doubl e sq;

extern double sqgrt();

if (n<1)
return O,
if (n < 4) [* 1, 2, and 3 are prine */
return 1;
sq = sqrt((double) n);
sn = (int) sq;
if (((double) sn) == sq) /* not prine if there is a perfect SQRT */
return O,
for (a = 2; a <= sn; at+)
if ((n %a) == 0)

return O;
return 1;
}
i nt
mai n(argc, argv)
int argc;
char **argv;
{

int start, finish, a, n, cols;
char fnt[8];

/* Check argunents. */

-109-

if (argc '= 3) {
fprintf(stderr, "Usage: prine start end\n");

return -1,

}

if (((start = atoi(argv[1l])) <0) || ((finish = atoi(argv[2])) < 1)) {
fprintf(stderr, "lllegal start or end paranmeters\n");
return -1;

}

/* Set up output format. */

a =2+ (int) 10ogl0((double) finish);
sprintf(fnt, "%8dd", a);
cols = (79-a)/aq;

printf("Prinme nunbers from% to %:\n", start, finish);
/* Loop through range. */
for (n =0, a =start; a <= finish; a++) {

if (prine(a)) {

printf(fnt, a);
if (n++ >= cols) {

printf("\n");
n = 0;
}
}
}
if (n)
printf("\n");
exit(0);

Figure A-1. Prime Number Generator: Uniprocessor Version

The pri ne function simply checks for a prime numberai n checks its range arguments, and
simply loops through the rangevgn checking for primes.

-20-

To write theNMP version, it is split into tw programs, theoot and thehelper.

/*
* NWVPri me:

Root part

* Sends start and finish paraneters and collects results from hel pers.

* Each hel
*/

per must be connected to the root in the configuration file.

include <stdio. h>
i nclude <math. h>

i nt
mai n(argc, argv)
int argc;
char **argv;
{

int start, finish, a, b, n, nodes, cols;

char

ft[8];

i nt chunksize, nsg[2];

int pol

[r, Hel pers[16];

/* Check argunents. */

if (argc !'=4) {
fprintf(stderr, "Usage: prine config start end\n");

exit(-1);

}

if (((start = atoi(argv[2])) <0) || ((finish = atoi(argv[3])) < 1)) {
fprintf(stderr, "lllegal start and end paraneters\n");
exit(-1);

}

/* Start the NWP. */

if ((nodes = Nodelnit(0, argv[1])) < 0) {
fprintf(stderr, "unsuccessful return from Nodelnit!\n");

ex

}

t(-1);

/* Send out node paraneters. */

chunksi

for (a
i f

ze = (finish-start) / (nodes-1);

= 1; a < nodes; a++) {

(!'I'sConnected(a)) {

fprintf(stderr, "Root nust be connected to all nodes.\n");
Noded ose();

exit(-1);

-21-

printf("Node % (%) does % to %l.\n", a, CetAnyHost(a),
start +(a- 1) *chunksi ze,
(a == nodes-1) ? finish: start+a*chunksize-1);

/* Send the range for each node to do. */

msg[0] = htonl (start+(a-1)*chunksize);
nmsg[1] = (a == nodes-1) ? htonl (finish) : htonl(start+(a)*chunksize-1);
i f (SendNode(a, (char *)nsg, sizeof(nsg)) != sizeof(nsg)) {
fprintf(stderr, "Unable to send.\n");
Noded ose();
exit(-1);

}

/* Set up output format */

a =2+ (int) |10ogl0((double) finish);
sprintf(fnt, "%8dd", a);

cols = (79-a) / a;

printf("Prinme nunbers from% to %:\n", start, finish);

/* Poll for results. */
C ear Mask(0); /* Exclude polling of root */
n = 0;
while (nodes > 1 && pollr = Poll All (Hel pers, 1)) {
for (a =0; a < pollr; a++) {
/* Receive pendi ng nessages. */
if (RecvNode(Hel pers[a], (char *)nsg, sizeof(int)) !'= sizeof(int)) {
fprintf(stderr, "Unable to receive from%d.\n", Hel pers[a]);

Noded ose();
exit(-1);

b = ntohl (nsg[0]);
if (b==-1) {

/* The node is done. */

nodes- - ;
Cl ear Mask(Hel pers[a]);

/* Acknow edge */

-22-

if (SendNode(Hel pers[a], msg, 1) != 1) {
fprintf(stderr, "Unable to send.\n");
Noded ose();
exit(-1);
}
}

el se {

/* Print out the prine. */
printf(fnt, b);
if (n++ >= cols) {
printf("\n");
n = 0;

}

}

if (n)
printf("\n");

/* Term nate the NMP session. */

Noded ose();
exit(0);

Figure A-2. Distributed Prime Number Generator: Root

The root node does not check foryaprimes itself, lot it initiates theNMP with a call to
Nodel ni t, it divides the range of numbers to check into equal sized chunks, and it distributes them.
The last helper node is a special case and getswehaimed chunk is remainingThen, after the output
formatting is set up, the root simplyaits for results to come in from the helpers, udiuod | Node.
Completed nodes are detected by gatiee rumber receied, and are eliminated from polling by a call to
d ear Mask. A single byte acknowledgement is sent to finished helpers to ensure the communication
paths are flushed beforeyahelpers &it. The prime numbers are printed out one at a time ag ahe
receved from the helpers.

-23-

* NWPrinme: Hel per part
* Receives start and finish paraneters, calculates prinmes, and sends prine
* val ues back to root. Each hel per nust be connected to the root in the
* configuration file.
*/
include <stdio. h>
include <math. h>

/* Prinme nunber checker. */

static int

prime(n)
int n;
{
i nt a, sn;

doubl e sq
extern double sqrt();

if (n<1)
return O;
if (n < 4) /[* 1, 2, and 3 are prine */
return 1,
sq = sqrt((double) n);
sn = (int) sq;
if (((double) sn) == sq) /* not prinme if it has perfect SQRT */
return O;
for (a = 2; a <= sn; at+)
if ((n %a) == 0)

return O;
return 1;
}
i nt
mai n(argc, argv)
int argc;
char **argv;
{

int start, finish, a, n, cols, nsg[2];
/* Initialise NW Node. */

if (Nodelnit(1, "") < 0) {
fprintf(stderr, "unsuccessful return from Nodelnit!\n");
exit(-1);

}

/* Make sure we are connected to the root node. */

if (!lsConnected(0)) {

-24-

fprintf(stderr, "Not connected to root.\n");
Noded ose();
exit(-1);

}

/* Get our startup parameters. */

if (RecvNode(0, (char *)msg, sizeof(nsg)) != sizeof(nsg)) {
fprintf(stderr, "unsuccessful return from RecvNode!\n");
Noded ose();
exit(-1);

}

start = ntohl (nsg[0]);

finish = ntohl (nmsg[1]);

/* Loop through our assigned range. */

n = 0;
for (a = start; a <= finish; a++)
if (prine(a)) {

/* Put in network fornmat, send to root. */

msg[0] = htonl (a);

i f (SendNode(0, (char *)meg, sizeof(int)) != sizeof(int)) {
fprintf(stderr, "Unable to send.\n");
Noded ose();
exit(-1);

}

/* Tell Root we are done. */

nsg[0] = htonl (-1);

if (SendNode(0, (char *)msg, sizeof(int)) != sizeof(int)) {
fprintf(stderr, "Unable to send.\n");
Noded ose();
exit(-1);

}

if (RecvNode(O, (char *)msg, 1) !'=1) {
fprintf(stderr, "Unable to receive acknow edgenment.\n");
Noded ose();
exit(-1);

}

/* Term nate this node. */

Noded ose();
exit(0);

-25-

Figure A-3. Distributed Prime Number Generator: Helper

The helpepr i me function is exactly the same as the sequential prograiifiehelper begins with
aNodel ni t to receve its startup information and the interconnection matrix. It then makes sure it is
connected to the root node, in case the user haa gi kad configuration file. It recees its startup
parameters from the root, and loops through its range checking for primes. When it detects a prime num-
ber, it sends it to the root, one prime per message. When finished, it sengdigensumber to the root,
then waits for the single byte acknowledgement, and finally terminates.

-26-

Index of Functions

Synopsis Rge
i nt AddConnect(Type, Nodel d) ... 11
i nt AddNode(Host Nane, ExecFil eNanme, Sin, Sout, Serr, BitS) .iiiiiiiinnnn. 10

char * Host Nane;
char *ExecFi | eNane;
char *Sin, *Sout, *Serr

i nt AreConnect ed Nodel d1, NOAEI d2) ..o e 10

i nt CheckNode(Nodel d, Message, Length) ... 7
char *Message;

(O T Y XS] (N oo L= o PP 7
L@] 0 1= 0 1= = PP 15
F T CUDEDE M) et e ettt e e e e e s e e e e e e e e bbb n e e e e e e e e raaeeeas 17

CubeEXi t(Code, TMt, AL, 82,) i e e e e e e s e e e e e 17
char *fnt;

i Nt Cubel Ni t(TYPE, CONT I G) oriiiiiiiii e e e e 15
char *Confi g;

i nt CubeProbe(Node, Type, Length) . 16
i nt *Node;
i nt *Lengt h;

[S O U o110] 4 = () OO PP PPRPP R TPPPP 17

i nt CubeRecv(Node, Type, Message, Length) . 16
i nt *Node;
char *Message;

i nt CubeRi ngSend Di rection, Type, Message, Length) ... 16
char *Message;

i nt CubeSend Node, Type, Message, Length) . 16
char *Message;

D IEST- Lo I N o | () TP PPPPPPPPPPPPN 8
g E=Y o] =T I o1 () TP TSP PPPPPPPPP PO 8
char *Get ANYHOSt(NOAEI d) oo 9

(od = Ll € = A o 1= o () 9
[B =T A) o () TSP UPPURSRP PR 9
[LA =Y 1V VA o TP PP PP TP PPRPPUPRPPPPTRITON 9
L €] Ao T 1= PO P PP PPPPPPPPP 9
(o] o | o A T PSPPSR OPPRT 7
int 1sConnect @d NOAEI d) oo 10

I o A\ > Yo =T o oY o T 10

-27-

N oLo [=T® I e 11 = () PP O PP PPPPPPRPIN 5

i nt Nodel nit(Type, Configurati OnNFile) ... 4
char *ConfigurationFile;

int Pol T Al T(NOAES, Bl OCK) oo 6
i nt Nodes|[];

i nt Pol I Node(Nodel d, Bl OCK) oo 7

e S o A o oY g L=l (=T A == 1 o TR 10
FI LE *stream

i nt RecvNode(Nodel d, Message, Length) . e 5
char *Message,;

e S == XY= I 1 () U 8

i nt SendNode(Nodel d, Message, Length) .. 4
char *Message;

LY =T Lo L =T o = U Vo | = PP 7
i nt (*handl er) ();

S Y A 2] (Ao Lo [e) TP 7
S Y AN oo =T @ i BT =T (O == PP 10

i nt TreeAddChil d Host Nane, ExecFil eNanme, Sin, Sout, Serr, Bits) 14
char *Host Nane;
char *ExecFi | eNane;

char *Sin, *Sout, *Serr;

int TreeDel Chi | d Chi I ANO) ..uveeeeiiiiiiiiii et e e e e e s r e e e e e e e ennreeees 14
I I =T= T =T A =Y o) o (PP 13
[L =T=T =Y 1Y = D 1 I TP PP P PP PPPPPP PP 14
[L N g =T=T € =Y N U1 o 1= () PP PPPPPT S PPPPPN 13
I I oY= = A - Y = (R 14
iNt Treel Ni t(TYPE, CONTI) iiiiiiiii e e e e e e e e e et e e e e e e e e eeaernan s 12
char *Confi g;

) S I == I o o L= (O 14
I I =T =T I g o Yo 1= (PP 14
int TreeLook(Child, Buffer, Length) . eee—————————. 13
char *Buf fer;

int TreePol I(Chil dReady, Bl OCK) i, 13

i nt Chi | dReady[];

int TreePol I Chil dChild, Bl OCK) ., 13

i Nt TreePol | PAr @Nt(Bl OCK) oottt e e e e e s eeeeeeas 13
LI S A LA G I 10 [PP PT TP P PPPPPPPPPPN 14
int TreeRecvChil d Child, Message, Length) .. 12

char *Message;

-28-

int TreeRecvParent(Message, Lengt) ... 12
char *Message;

int TreeSendChil d Child, Message, Length) . 12
char *Message;

int TreeSendPar ent(Message, Lengt) ... 12
char *Message;

(o] I e Yo [S o 1 o () TP PP PP PPPPPRTPPPP 10
(o o Tod Q= Ao« (N S U R T A R 10

i nt *rt, *ut, *st, *it;

