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A bstract

O pponent modelling is an  im portan t issue in gam es program m ing today. P rogram s which 

do not perform  opponent modelling are unlikely to  take full advantage of the  m istakes 

m ade by an opponent. Additionally, program s w hich do not adap t over tim e become less 

of a challenge to  players, causing these players to  lose interest. W hile opponent modelling 

can be a difficult challenge in perfect inform ation games, where the full s ta te  of th e  game 

is known to  all players a t all times, it becomes an  even more difficult task  in games of 

im perfect inform ation, where players are not always able to  observe the  actual s ta te  of 

the game. T his thesis studies the problem  of opponent modelling in K uhn Poker, a small 

im perfect inform ation game th a t contains several properties th a t make real-world poker 

games interesting. Two basic types of opponent modelling are studied, explicit modelling 

and im plicit modelling, and the effectiveness is com pared.
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Chapter 1

Introduction

1.1 P rob lem  D efin itio n

O pponent modelling is curren tly  a m ajor issue in games program m ing. M any games lose 

their appeal to  players as the  players find weaknesses in the  game AI and the game becomes 

less of a challenge. Game program s which do opponent modelling can tailor the  play of the 

game to  make it harder for the  user, which gives the program  more of a lasting appeal as 

it continues to  challenge th e  user. However, the  problem of perform ing effective opponent 

modelling, in term s of quickly generating a m odel th a t accurately  predicts w hat the  opponent 

will do, is extrem ely difficult in m ost applications. This problem  can be challenging in 

games of perfect inform ation, w here th e  full s ta te  of the game is known to  all players a t all 

times. This problem becomes even more difficult when the  dom ain is a gam e of imperfect 

inform ation, where players make decisions w ithout knowing the  precise s ta te  of the  game. 

For example, poker is an im perfect inform ation game, where players are no t informed of 

w hat the ir opponents’ private cards are.

Poker presents a very in teresting  challenge in artificial intelligence research. While world- 

class com puter players have been developed for perfect-inform ation gam es such as check­

ers and chess, com puter program s for poker have not been as successful. Some of the 

strongest current poker-playing program s are based on gam e-theoretic techniques; unfor­

tunately, gam e-theoretic approaches are quickly reaching their com putational bounds, as 

full-scale poker games such as Texas H old’em are simply too big to  solve a t th is time. In 

addition, gam e-theoretic solutions have a  tendency to  lim it the winnings as well as the losses 

of the  player using them . Since the  goal is to  defeat opponents and not ju s t break even, 

being adaptable to  different opponents is a  key com ponent of current poker program s in 

development.

In poker, hands often end w ithout the  players’ private cards revealed, which is one of

1
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the  m ajor issues th a t makes opponent modelling in th is setting  difficult . W hen a hand ends 

w ith one player folding, the  modeller is left to wonder which of the large num ber of potential 

hands his opponent held and based his decisions on. There is also a great deal of variance in 

the  game, stem m ing from the size of the  deck and from players using stochastic strategies. 

A nother challenge is th a t  against hum an opponents it is likely th a t m ost m atches will only 

last a short tim e (m aybe only 50 or 100 hands), m eaning there is very little  tim e to  learn an 

opponent model. To top  it off, if all of these challenges are overcome and a good opponent 

model is developed, an opponent m ay change his strategy, m aking the  current model useless 

or even harmful.

T he research in th is  thesis studies the effectiveness of different modelling techniques in 

an ideal setting; the  context is the small two-player game of K uhn Poker, and the oppo­

nent being modelled plays a fixed strategy. Two diam etrically opposite types of opponent 

m odelling are com pared: explicit modelling and im plicit modelling. Explicit modelling in­

volves identifying th e  opponen t’s s tra tegy  in order to  discover weaknesses, and using this 

model to  develop an effective counter-strategy. Im plicit modelling involves using different 

counter-strategies against the  opponent and finding one which is effective, w ithout worrying 

abou t the exact n a tu re  of the  opponen t’s weaknesses. T he problem  has been reduced from 

a real-world game to  a sim pler setting  to  prevent the  results from  being obscured by the 

variance in the  game, as well as the  sparseness of data .

O pponents are restric ted  to  fixed strategies because the  techniques are being evaluated 

on how quickly the opponent model m atches the opponent; evaluation becomes much trickier 

when bo th  the model and the  ta rg e t are sim ultaneously changing. Being able to  quickly and 

effectively model a sta tio n ary  opponent is a logical first step  tow ards being able to  model a 

dynam ic opponent.

If the u ltim ate goal is to  be able to  do effective m odelling in a real-world game, then  

the  ability  to  first do effective modelling in an ideal setting  is a necessity. One of the  key 

insights of this research is th a t  even in the ideal situation , opponent modelling is quite 

difficult. In the  small game being studied, the best coun ter-stra tegy  to  the  opponent is 

often not discovered. However, the  fact th a t the  problem  has been significantly simplified 

here allows for extensive analysis of precisely where the  difficulties lie, and  how they  may 

be addressed. Difficulties in opponent modelling found in th is ideal setting  will surely be 

present in a full-scale poker game.

2
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1.2 A pproach  to  th e  P rob lem

The technique of explicit modelling discussed in this thesis assumes th a t the opponent is 

playing a fixed stochastic  strategy. Such strategies are defined by a set of param eters, w ith 

each param eter specifying the probability of taking a particu lar action when faced w ith a 

certain situation . The goal of explicit modelling is to  estim ate the opponen t’s param eters; 

once the param eters have been estim ated, a suitable counter-stra tegy  can be computed.

T he technique of im plicit modelling is given several counter-strategies to  use against 

the opponent. T he m odeller samples from th is set of strategies as he plays against the 

opponent, a ttem pting  to  determ ine which is the  best counter-strategy. T he sampling of 

strategies is done in accordance w ith the Exp3 algorithm  [2], which has excellent long­

term  perform ance guarantees. However, since this thesis is concerned w ith winning in short 

m atches, m odifications are m ade to  improve the  short-term  perform ance while not dam aging 

the long-term  guarantees.

T he opponent m odelling techniques are evaluated w ith  two prim ary measures. B oth 

m easures involve the  m odeller collecting d a ta  about the  opponent from hand  1 until hand t, 

deciding which counter-stra tegy  appears to  be the  best against the  opponent a t th a t tim e, 

and th en  playing th is  counter-strategy for the rem ainder of the  m atch. The set of hands 

from 1 to  t is called the  exploration phase, while the  set of hands from t  +  1 and onwards 

is called the exploitation phase. Hand t is known as the  switching hand as th is accurately 

describes the m odeller’s com plete shift from exploration to  exploitation a t th a t  hand. The 

first m easure for evaluating the opponent modelling techniques is the winning ra te  of the 

counter-strategy suggested by the model a t the  switching hand. P lo tting  this m etric for 

each possible sw itching hand  generates payoff-rate graphs, which trace the progress of the 

model over th e  course of the  m atch. Figure 1.1 is an exam ple of a payoff-rate plot.

T he second m easure is the  expected to ta l winnings of the  model, which is calculated as 

the sum of the  w innings achieved during the  exploration phase plus the expected winnings of 

the exploitation phase, assum ing a specific to ta l num ber of hands is to  be played. P lo tting  

this m easure over each possible switching hand results in to ta l winnings graphs, such as the  

example shown in F igure 1.2.

B oth  of these m easures are im portan t, as the  first m easure indicates how quickly the 

model is converging to  the  correct one, while the  second m easure indicates w hether opponent 

modelling is w orth th e  cost required to  develop the  model.

3
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1.3 C on trib u tion s o f  th is  R esearch

The first m ajor contribution of this thesis is the developm ent of param eter estim ation m eth­

ods in im perfect inform ation games, a problem  which has not previously received much 

a tten tion . M any different types of situations are identified, where different types of infor­

m ation  are available; m ethods to  make use of the  available d a ta  are described for each of 

these settings.

A second m ajor contribution is the  ad ap ta tio n  of the well-known Exp3 algorithm  for 

use in a m ulti-action game, as it is designed for a  slightly different problem . Additionally, 

several enhancem ents are m ade to  improve short-term  perform ance of the  algorithm  w ithout 

hurting  the  long-term  guarantees.

T his thesis provides insight into m any of th e  problem s faced by researchers doing m od­

elling in larger system s, which m ay no t be as easy to  observe in the  large systems. F irs t 

and forem ost, th is  thesis shows th a t  even in a highly idealized setting, opponent modelling 

is a difficult problem . This suggests th a t  the  issues of partia l observability and variance in 

the  gam e are m ajor contributors to  opponent m odelling difficulties; no t all of the  difficulties 

encountered by opponent modelling system s in larger settings are due to  huge models and 

sparse data . A nother insight, which has been known to  game theorists for years bu t m ay not 

be commonly known among AI researchers, is th a t  when a game player uses an equilibrium  

stra tegy  (a gam e-theoretic solution to  the  gam e), the  player often lim its his own winnings 

as well as the winnings of his opponent. Developing program s th a t will win requires taking 

advantage of an  opponent, which m eans stray ing  from equilibrium  solutions and risking 

defeat. Effective opponent modelling m ethods m ust be developed to  guide the departu re  

from equilibrium  strategies and minimize th e  risk of losing.

T he experim ents shown in th is thesis dem onstrate  m any interesting conclusions. W hile it 

is no t possible to  always find the best coun ter-stra tegy  in a short m atch, im proving upon the  

equilibrium  ra te  is alm ost always possible. In  th is  small game where d a ta  is readily available, 

the  im pact of bad initial param eter estim ates is quickly elim inated. A nother interesting 

resu lt is th a t the  interval of tim e for which switching from exploration to  exploitation  makes 

big gains seems to  be relatively insensitive to  th e  type of opponent being played and to  

th e  length  of the m atch. A very interesting  resu lt is the  fact th a t strategies which are 

identically valued under one stan d ard  m easure (worst-case winning ra te) can have very 

different exploration values. Finally, in th is sm all gam e explicit modelling is superior to  

im plicit modelling; however, this does not m ean th a t  im plicit modelling research should be 

abandoned, as there  are indications th a t  im plicit modelling m ight be a b e tte r  choice for

5
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large games.

1.4 O utline

The thesis proceeds as follows. C hap ter 2 is focused on providing background m aterial, 

which includes defining term inology essential to  the thesis. This chapter also describes the 

gam e which is the testbed  of the  m ethods described, Kuhn Poker, and some of the  properties 

which make this game interesting.

C hap ter 3 describes how an explicit m odel of an opponent can be created, and C hapter 4 

dem onstrates the effectiveness of the  explicit modelling techniques w ith different m ethods 

of collecting d a ta  about the  opponent. C hap ter 5 examines the technique of im plicitly 

m odelling an opponent, and shows how existing algorithm s can be adap ted  and  improved.

C hap ter 6 describes o ther research activities which are strongly rela ted  to  the research 

described here. This includes o ther studies done on poker and other im perfect inform ation 

games, opponent modelling in a variety  of settings, and other related  work.

C hap ter 7 concludes the thesis, sum m arizing the findings and possible fu tu re  directions 

of th is research.

6
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Chapter 2

Essential Background

2.1 G am e T h eory  D efin ition s

T he purpose of this thesis is to  investigate the usefulness of different opponent modelling 

m ethods. One m ay wonder why opponent modelling is useful a t all if gam e theoretic solu­

tions exist for the games under consideration (ie. w h a t’s left to  do after solving the game?). 

T he fundam entals of game theory  determ ined th a t game theoretic  solutions will achieve the 

highest expected payoff ra te  that can be guaranteed [40]; w hat is no t as well known is the 

fact th a t if a player uses gam e theoretic  solutions then  often he will not exploit mistakes 

m ade by his opponent, and will lim it his potential winnings as well as his losses.

Before going into how the  concepts of game theory  are very useful in th is research, a 

few key term s m ust be defined. F irs t of all, a game is a process which involves two or 

m ore participan ts (called players) who make decisions based on the inform ation available 

to  them , and these decisions affect th e  outcom e of the  game. Chance m ay be a factor both  

in determ ining w hat decisions players face, and in determ ining th e  outcom e of the  game. 

W hen a game ends, each player receives a reward (which could be positive or negative), 

depending on the outcome; generally it is assum ed th a t  each player w ants to  maximize his 

reward.

This research is prim arily  concentrated  on two-person zero-sum games. Zero-sum games 

are games in which the  sum  of th e  rew ards given to  the  players a t th e  end of the game is 

zero. Since the rewards sum  to  zero, one player’s loss is an o th er’s gain, and the players 

m ust compete against each o ther to  get higher rewards. In games th a t  a ren ’t  zero-sum, 

a player may be indifferent to  w hat rewards his opponents are achieving as long as he is 

satisfied w ith his reward. The reason the  research is restric ted  to  two-player games is th a t 

as more players are added there  is an  exponential increase in the  num ber of situations th a t 

can occur, as well as the fact th a t  m ore complex opponent m odels are needed to  describe

7
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some players cooperating ra ther th an  ju st com peting against each other. W hen describing 

two-player games the players will be denoted as P I  and P2.

A key feature of m any of the games studied here is th a t  each player will have private 

inform ation (like hole cards in Texas H old’em) th a t  is not available to  the  other player 

during gameplay. T he games may also have public inform ation (like the  b e tting  sequence or 

com m unity cards in Texas H old’em) th a t is available to  all players. T his leads to  the concept 

of inform ation sets: an  information set for P I  [P2] is the  set of all possible P I  [P2] decision 

nodes for which P I  [P2] receives the same inform ation (both  public and private), bu t P 2 ’s 

[P i ’s] private inform ation is different. P I  [P2] cannot distinguish different elements of an 

inform ation set during gameplay, and m ust use the same s tra teg y  for each distinct element 

of the  set. Term inal nodes of a game tree for which a player has identical inform ation are 

also of interest and will be said to  be in an information leaf-set. Inform ation sets will be 

denoted { H i ,H 2 : D),  w here Hi is the hand  held by the  i th  player and  D  is the public 

inform ation for the game. If a quan tity  is unknown (m ost of the  tim e a player knows only 

his hand  and not his opponen t’s hand) then  it will be replaced by a question m ark, while 

the em pty  sequence (which is usually the  situation  im m ediately after the  deal before either 

player has acted) will be represented by f .  The term s inform ation set and  situation will be 

used interchangeably in th is thesis.

A strategy for a  player is a com plete description of how to  play a game; it describes 

how to  choose actions in every inform ation set th a t  could possibly arise. A pure strategy 

is a s tra tegy  in which all of the choices are determ inistic; every tim e a  specific situation  is 

reached, the action taken  is always the  same. A mixed strategy is a  s tra teg y  th a t is a m ixture 

of one or more pure strategies, each played w ith some nonzero probability. For example, the 

s tra tegy  of playing pure s tra tegy  S a  50% of the  tim e, playing pure s tra tegy  S b  30% of the  

tim e and playing pure stra tegy  S c  20% of the  tim e is a mixed strategy. The use of mixed 

strategies allows different decisions to  be m ade when a s itua tion  is reached repeatedly. The 

support of a mixed s tra teg y  S m is the set of pure strategies which are chosen from w ith 

nonzero probability when S m is used [31].

T he expected value or expected payoff-rate of a s tra tegy  S p  used by P  against an opponent 

O using strategy S o  is the  average rew ard P  can expect to  receive, averaged over the possible 

outcom es of the  gam e given the  two player’s strategies and  the  chance elem ents of the  game. 

If Z  is the  set of possible game outcom es and x (z )  is the  rew ard given to  P  if the outcom e 

of the game is z, th en  the  expected rew ard can be explicitly s ta ted  as

E V [ x \S P , S o } = J 2 P (Z\ S p ,S o ) x ( z ) .
Z^zZ
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If S p  is a mixed stra tegy  w ith the pure strategies S \ ,  S 2 , ■ ■ •, Sn being played with 

probabilities p i , p 2 ,  ■ ■ ■ , p n , then

71
E V [ x \Sp , S o ] = ^ P r E V l x l S ^ S o } .

1 = 1

A stra tegy  S p  is said to  be a best-response strategy to  the  stra tegy  So  if

EV[x\S*P ,So] = m a x E V [ x \S ,S o ]

where the m axim ization is over the  set of all possible stra teg ies th a t P could use. The 

expected value achieved by a best-response s tra tegy  is defined to  be the exploitability of So- 

Suppose th a t  S o  has an exploitability of Vo and a best-response strategy S p  is a mixed 

stra tegy  w ith th e  pure strategies being played w ith  probabilities p \ , p \ , . . . ,  p*n . Then

n

EV[x\S*P ,So] =  5 > * £ V [ x |S i ; So]
l - l

n

<  "̂ >2p*Vo (Vo is the  m axim um  payoff-rate against S o )
i =  1

=  Vo (probabilities sum  to  1).

In order for equality to  hold in the second line it m ust be the  case th a t each pure stra tegy  

in the support of S p  achieves the payoff-rate of Vo against S o  ■ Equality  m ust hold since S p  

is a best-response strategy. Thus each of the supporting  pure strategies are best-response 

strategies to  S o  themselves. A consequence of th is resu lt is th a t  to  find the exploitability of 

a stra tegy  S o  and a corresponding best-response strategy, it is sufficient to  determ ine the 

payoff-rate of each of P ’s pure strategies.

A s tra tegy  S i is dominated  by another stra tegy  S 2 , if th e  expected payoff ra te  of S 2 is at 

least as high as the  expected payoff ra te  of S 1 for every possible s tra tegy  the opponent could 

use, and is higher for some opponent strategies. I t is said th a t  S 2 strongly dom inates Si 

if S2 has a s tric tly  g reater expected payoff against every opponent strategy, and  S2 weakly 

dom inates S i if there  are opponent strategies against which b o th  have the same expected 

payoff. One of the  first simplifying steps generally m ade when analyzing games is to  assume 

th a t neither player will play any easily identified dom inated  strategies (since the dom inating 

stra tegy  has a  higher expected payoff, the dom inating  s tra teg y  should always be substitu ted  

in place of the  dom inated strategy); thus, one of th e  first steps when analyzing a  game is to 

identify dom inated strategies and remove them  from consideration. This process of removing 

dom inated strategies is iterative: when player P  considers his opponen t’s complete stra tegy  

space, P ’s stra tegy  S a  m ay no t be b etter th a n  ano ther stra tegy  S p  against all opponent 

strategies, bu t when P  elim inates his opponent’s dom inated  strategies Sa  may dom inate S p

9
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over th is  sm aller set of opponent strategies. Similarly, after P removes dom inated strategies 

from his set of possible strategies, P ’s opponent may find some strategies are dom inated 

against P ’s reduced set of strategies.

One of th e  fundam ental contributions to  gam e theory  is the M inimax Theorem, in tro ­

duced by John von N eum ann [39, 40]. The theorem  sta tes th a t for each two-player zero-sum 

gam e there  exists a value V  (known as the value of the game, which is unique) and strategies 

S i  and S 2 (which m ay not be unique) such th a t if P I  plays the s tra tegy  S i  then  no m atte r 

w hat s tra tegy  P2 plays, P i ’s expected reward is a t least V ; conversely, if P2 plays the  s tra t­

egy S 2, then  no m a tte r w hat s tra tegy  P I  employs, P i ’s expected reward is no more th an  

V .  T he strategies S 1 and S 2 are often referred to  as optimal strategies in the  literatu re . 

However, in order to  reduce the confusion th a t  th is  te rm  may cause, these strategies will 

be referred to  henceforth as equilibrium strategies. In  zero-sum games the value V  is often 

nonzero, as is the  case in the game which will be introduced la ter in th is  chapter, K uhn 

Poker, whose value is -1/18. This m eans th a t in K uhn Poker P2 has an advantage and  th a t 

by playing an equilibrium  stra tegy  he will win in the  long run. To negate th is advantage in 

repeated  games, players a lternate  positions which m eans each player plays half of the  games 

w ith  an advantage and half of the games a t a disadvantage.

I t should be noted  th a t in two-player gam es th a t  are not zero-sum, equilibrium  points 

are defined by a pair of strategies (one for each player) and not all equilibrium  points neces­

sarily achieve the  same rewards for bo th  players. Furtherm ore, if ( S / , ^ )  and (S'1,S'2) are 

two equilibrium  points, (S i,  S'2) and (F], S 2 ) m ay  no t be equilibrium  points. In  contrast, if 

(S i, S 2) and (S[, S 2) are any two equilibrium  points in a zero-sum game, then  (S i, S 2) and 

(S'i, S2) m ust also be equilibrium  points; th is characteristic  of zero-sum  games allows equi­

librium  strategies for each player to  be identified independently  of the  opponent’s strategy, 

ra th e r th an  as a com ponent of a specific equilibrium  point.

If a player uses a s tra tegy  th a t  is not an  equilibrium  strategy, it is said th a t  he is 

exploitable or th a t  he is playing suboptimally. As s ta ted  above, players in repeated  games 

usually a lternate  positions so th a t  neither player is always a t an advantage brought on by his 

seat position. This research trea ts  the  situations w here a player is in P I  position as being 

independent of the  situations where the player is in  P2 position, as the opponent being 

modelled may play very differently when in P2 position th an  when he is in P I  position. The 

objective of a player P  is to  take advantage of his opponent O ’s m istakes for one or bo th  of 

the  following subproblem s: (i) when O is in P I  position, and (ii) when O is in P2 position.

All pure strategies can be partitioned  into two categories: essential strategies (strategies 

which are in the  support of a t least one equilibrium  strategy) and superfluous strategies
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(strategies which are not in the support of any equilibrium  strategy) [19]. Dom inated 

stra teg ies make up a subset of the set of superfluous strategies. An im portan t result from 

the pioneering game theory  research done by von N eum ann and M orgenstern [40] is th a t 

in any two-player zero-sum game, if one player plays an equilibrium  stra tegy  and the  other 

player plays any essential s tra tegy  (or any m ix ture of essential strategies), th en  the expected 

rew ard for P I  is V ,  the  value of the  game. T his interesting result can be seen in the simple 

zero-sum  game of Rosham bo, where two players sim ultaneously choose one of three actions: 

Rock, P ap er or Scissors. If the  two players choose the  same action they tie (and bo th  receive 

a rew ard of 0). O therwise Rock defeats Scissors, P aper defeats Rock, and Scissors defeats 

P aper, and the  player choosing the w inning action receives a payoff of 1. The value of this 

game is zero, and bo th  players have the  sam e equilibrium  strategy, which is to  choose each 

of the th ree actions 1 /3  of the  time. Each of the  th ree pure strategies (always-Rock, always- 

P aper, always-Scissors) are essential s tra teg ies as all are com ponents of the  equilibrium  

strategy. Consider w hat happens when P I  plays the equilibrium  strategy  and P2 plays the 

always-Rock pure strategy: 1 /3  of the  tim e th e  players tie (both  choose Rock), 1 /3  of the 

tim e P I  defeats P2 (P I chooses P aper and  P2 chooses Rock), and 1 /3  of the  tim e P2 defeats 

P I  (P I chooses Scissors and P2 chooses Rock), resulting in an expected winnings of zero for 

b o th  players. Thus when one player plays the  equilibrium  strategy  in Rosham bo, th e  o ther 

player can play any essential s tra tegy  w ithou t reducing his expected winnings in the  game.

Exam ples of the  different types of stra teg ies can be found in the  simple m atrix  game 

shown below; M ax, who chooses a row, w ants to  maximize his payoff, while Min, who chooses 

a column, w ants to  minimize the  payoff received by Max. B oth  players choose the ir actions 

(which row and which column to play) sim ultaneously (thus they bo th  m ake the ir decision 

before knowing the o th e r’s), and M ax receives the  corresponding payoff listed in the m atrix .

M in
Cl C2 C3 C4

M ax 7*1 2 0 2 4
r 2 1 4 2 0

M in’s pure stra tegy  of playing C3 is dom inated  by the  pure stra tegy  of playing c i , so C3 is 

identified as a dom inated column and can be elim inated from consideration. Because M ax 

only has two options, his equilibrium  stra teg y  can easily be found graphically. Any stra tegy  

for M ax can be sum m arized by one param eter, p, the  probability  th a t  M ax plays row r  1, 

as he m ust then  play r 2 w ith probability  1 — p. Figure 2.1 shows how M in’s pure strategies 

perform  against M ax for every value of p, as well as the m inim um  expected payoff th a t  Min 

can force upon M ax if Min knows M ax’s strategy.

M ax wants to  obtain the  highest expected payoff th a t he can guarantee; ie. even if Min

11
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Figure 2.1: E xpected Value of Each of M in’s P ure Strategies vs. M ax’s M ixed S trategy  with 
P aram eter p

knows M ax’s strategy, Min cannot reduce the payoff th a t M ax expects. T his occurs a t the 

point p =  0.6 where the “M inim um ” plot peaks a t 1.6. Thus M ax’s equilibrium  stra tegy  is 

to  play row n  60% of the tim e and r 2 40% of the  tim e and the value of the  gam e is 1.6. By 

the  M inim ax Theorem , any equilibrium  stra tegy  for Min will hold M ax to  th e  value of 1.6. 

N ote th a t  if M in plays a m ixed stra tegy  w ith  a nonzero probability  y  of playing C4, then 

M ax’s equilibrium  stra tegy  of playing r \  60% will achieve an expected payoff of 1.6 +  0.8y 

which is higher th an  the value of the  game. Therefore, the s tra tegy  of playing C4 , which is 

no t a dom inated stra tegy  because it  is the  best counter-strategy for all of M ax’s strategies 

on the interval p  <  1 /3, m ust be superfluous and  can be elim inated from consideration when 

attem pting  to  find M in’s equilibrium  strategy.

Now th a t there are only two pure strategies to  consider in finding M in’s equilibrium  

strategy, it can also be found graphically. Let q be the probability  th a t  M in plays column C\ 

and 1 — q be the  probability  th a t  M in plays C2. Figure 2.2 shows how M ax’s pure strategies 

perform  against Min for every value of q, as well as the m axim um  expected payoff th a t  Max 

can a tta in  if M ax knows M in’s strategy.

Min w ants to  lim it M ax to  the  lowest expected payoff th a t  he can guarantee, which 

occurs a t the point q =  0.8, w here the “M axim um ” plot is a t i t ’s lowest point. Thus there 

is a unique equilibrium  stra tegy  for M in in th is  game and it is to  pick ci 80% of the  time

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R2
M axim um

3.5

X
CD

2.5
o
o>
CD
Q.
73OooQ.
XLU

0.5

0.4 0.6 0.8 10.20
q

Figure 2.2: Expected Value of Each of M ax’s Pure  S trategies vs. M in’s M ixed Strategy w ith 
P aram eter q

and pick C2 20% of the  tim e, resulting in a mixed stra tegy  w ith  an  expected payoff ra te  

for M ax of 1.6 against bo th  of M ax’s pure strategies. This exam ple game displays each of 

the  different categories of pure strategies th a t have been described: th e  two pure strategies 

of ju s t playing c\ and ju s t playing C2 are essential strategies for M in, while playing C3 is a 

dom inated  strategy, and playing C4 is a superfluous s tra tegy  th a t  is no t dom inated .

Given these term s, it can now succinctly be described how a player can be exploitable. 

T here are three cases in which a player can play exploitably: (i) th e  player could use a 

dom inated strategy; (ii) the  player could use a non-dom inated superfluous strategy; or (iii) 

the  player could play only essential strategies, bu t in a m ix ture which does not make up 

an equilibrium strategy. If player P  (in P I  position for the  following) uses an equilibrium 

s tra tegy  against a type (i) player 0 \ , P  would expect th a t  0 \  ’s dom inated  errors will usually 

allow P  to  gain a payoff ra te  higher th an  V ; however, it is also possible th a t  P ’s equilibrium 

s tra tegy  will never guide O i into a situation  where he makes dom inated  errors. Similarly, if 

P  uses an equilibrium  stra tegy  against a type (ii) player O2, P  m ay or m ay not exploit O2’s 

errors. Finally, if P  uses an equilibrium  strategy against a type  (iii) player O3, P  will be 

guaranteed not to  exploit CVs errors and will be assured of receiving the expected payoff 

of V  because of the  fact th a t  each essential s tra tegy  achieves th e  expected value V  against 

an equilibrium  player; thus any mix of essential strategies achieves the  value V  against an
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equilibrium  player. Exploitable players can fall into more th a n  one of the above categories.

2.2 S o lv in g  Sm all G am es

For com pleteness, a brief discussion of how basic two-player zero-sum games can be solved 

is presented here (not all games reduce to  two pure strategies for each player and can be 

solved graphically). F irst note th a t a game can be represented by an m  x n  payoff m atrix  

A, where m  (n ) is the num ber of P i ’s (P 2 ’s) pure strategies, and  m atrix  en try  is P i ’s 

expected rew ard when he uses his *th pure stra tegy  and P2 uses his j t h  pure strategy. A 

s tra tegy  for P I  can now be represented as a  probability  vector x  w ith  m  non-negative entries 

th a t sum to 1 (the ith  en try  corresponds to  the  probability  of playing the ith  pure s tra teg y ); 

similarly, a stra tegy  for P2 can be represented as a probability  vector y w ith n  non-negative 

entries th a t sum  to  1. Let X  be the  set of all possible P I  stra tegy  vectors and Y  be the 

set of all possible P2 stra tegy  vectors. The expected rew ard for P I  using stra tegy  x  £ X  

against P 2 using stra tegy  y  G Y  is:

E[r\x, y\ = x T Ay.

where the  T  represents the transpose operation and m atrix  m ultiplication is performed. 

For P I  to  guarantee himself as high an expected rew ard as possible, he needs to  find a 

stra tegy  which gives him  the m axim um  expected rew ard even if P2 was told P i ’s strategy 

in advance (and plays a good counter-strategy). This corresponds to  finding a stra tegy  x* 

th a t maximizes

m in (x*)T Ay.

Similarly, an equilibrium  stra tegy  y* for P2 is one th a t  minimizes

m ax x T A y * .
s e x

Since each of P 2 ’s ( P i ’s) essential pure strategies lim it P I  to  V  when P I  (P2) plays an 

equilibrium  strategy, the  problem s simplify so th a t x* m axim izes

min (x*)T Ay.),
l < j < n

where ijj is the  vector corresponding to  the pure s tra tegy  of P 2  playing the j t h  column; y* 

minimizes

m ax x j  Ay,
1 < i < m

where Xi is the  vector corresponding to  the pure s tra tegy  of P I  playing the i th  row.

For sufficiently small games, these m axim ization /m in im ization  problems can be solved 

w ith linear program m ing techniques, as discussed in [12].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3  R egret

T he concept of regret is used to  m easure how well an adaptive playing algorithm  A  is 

perform ing against an opponent O, w ith respect to  some set of alternative playing strategies. 

In con trast to  the goal of maximizing the expected payoff against all opponents, which is the 

goal when solving a game, regret pertains to  the  particu lar opponent th a t is being played 

against. The term  regret used in everyday language refers to  a sense of loss th a t occurs 

w hen one takes an action and wishes an a lternative action leading to  a different outcom e 

had  been taken instead. In the context of m easuring adaptive algorithm s, two types of 

regret are usually discussed: external and in ternal regret [2, 18, 20].

E x ternal regret describes the  m axim um  am ount of rew ard th a t  has been lost by playing 

th e  adaptive algorithm  ra ther th an  the a lternative of playing a fixed pure strategy. Suppose 

an  adaptive algorithm  A  is used in T  consecutive games against O, and the  rew ard x A (t) 

is received after game t, for t = 1 , . . . ,  T.  E x ternal regret a t tim e T , E R t , is defined as the 

to ta l of the  rew ards obtained by A  sub trac ted  from the  to ta l of the rewards obtained by 

playing a best-response pure stra tegy  to  O:

E R t {A , O) =  m ax ( £ * • ( < > ) - ( £  x A (t)

where S  is the  set of pure strategies for the gam e being played, and x s (t) is the  rew ard th a t 

would have been obtained if the pure stra tegy  s had been played a t tim e t.

In ternal regret considers the  alternative of playing a learning algorithm  A! which acts 

identically to  A  except w ith regard to  some pair of pure strategies, s and s'. W henever A  

chooses the  pure s tra tegy  s, A! instead chooses th e  pure s tra tegy  s'; w hatever probability  

th a t  A  chooses to  play s is shifted to  s' for th e  algorithm  A ' . In ternal regret a t tim e T ,  

I R t , is defined as the  to ta l of the rewards ob tained  by A  sub trac ted  from the  to ta l of the 

rew ards obtained by playing the  best a lternative algorithm  A':

I R t ( A , 0 )  =  m ax 1

where the m axim ization is over all possible pairs of pure strategies s and s'.

This thesis will prim arily  be concerned w ith  ex ternal regret, as test opponents will be 

using fixed strategies, which m eans th a t  for each opponent there  exists a pure s tra tegy  

th a t  is a best-response strategy. If an opponent does no t use a sta tionary  strategy, th en  the 

best-response s tra tegy  can change, and minimizing in ternal regret could be more im portan t.

An algorithm ’s average regret is defined as

A verageR r(A ) — —R r ( A ).
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A property  th a t is desired for m ost adaptive algorithm s is th a t the  average regret con­

verges to  zero [9],

lira ~ R t (A) =  0 .
T  -+oo 1

If an  algorithm ’s average external regret converges to zero, then  it m ust be the case th a t 

in the  long term , the  algorithm  is alm ost always playing a best-response stra tegy  to  the 

opponent.

2.4 K u hn  Poker

The tes tb ed  used for the  m ajority  of th is  research is the tiny  game of K uhn Poker [26], as it 

is easily analyzed and is small enough th a t  the  effects of the opponent modelling m ethods 

being used are not b lurred  by the sheer size of the  game. A discussion of how the m ethods

can be applied to  larger games is given in C hap ter 7.

K uhn  Poker is a simple two-player poker game in troduced and solved by H.W . K uhn in 

1950 [26]. The game is played w ith a th ree-card  deck w ith the cards (in order from lowest to  

highest rank) Jack, Queen, and King. T he s truc tu re  of the  game (also shown in Figure 2.3) 

is as follows:

•  E ach player pays an ante of $1.

• E ach player is dealt a card and the  rem aining card  is unseen by either player.

•  P I  is now given the  opportun ity  to  b e t $1 or pass.

— If P I  passes in Round One, th en  in R ound Two P2 can:

* pass, in which case the  gam e ends im m ediately in a showdown; or

* bet, in which case there is a th ird  round where P I  is given the  option to  bet

and take  the  game to  a  showdown, or pass and forfeit the  pot.

— If P I  bets in R ound One, th en  in R ound Two P2 can:

* pass (folding), in which case P I  wins the  po t uncontested; or

* bet (calling P i ’s bet) in which case the  game ends im m ediately in a show­

down.

In the event of a showdown, bo th  players reveal their cards and the player w ith  the highest 

card wins the pot. In th is thesis the  original no ta tion  presented by K uhn will be followed 

in all figures and bet sequences perta in ing  to  K uhn Poker. Thus a t every decision node 

the available actions will be to  bet or pass. However, when discussing exam ples from K uhn
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Poker and other games, conventional poker term s will be used; a bet th a t m atches a previous 

bet will be referred to  as a call and a pass when facing a bet will be referred to  as a fold.

Round One

Round Two

Round Three

Chance

betpass

bet betpass pass

betpass

SD(2)

SD(2)

SD(1)

Player 1 Choice Node Player 2 Choice Node Terminal Node

Figure 2.3: Game S tructu re  of K uhn Poker (SD(x) =  Showdown, player w ith  highest card 
wins x )

The com plete P I  s tra tegy  space is defined by three possible pure strategies for each card: 

bet in Round One, pass in R ound One and  fold if P2 bets, or pass in R ound One and call if 

P2 bets. This gives rise to  3 x 3 x 3 =  27 pure strategies for P I .  For P2, there  are four pure 

strategies for each card (two possible actions for each of the  two inform ation sets means 

there are four possible com binations of actions), creating 4 x 4 x 4 =  64 pure strategies in 

total. This is a large num ber of strategies for such a simple game, bu t fo rtunately  there are 

several dom inated strategies th a t  can be removed. F irst of all, neither player should ever 

call a bet when holding the  Jack, as they  are sure to  lose; conversely, b o th  players should 

always call bets when holding the  King, as they  are sure to  win. The P2 s tra teg y  of passing 

when holding the  Queen and faced w ith a P I  pass weakly dom inates the s tra teg y  of betting
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in the  same scenario. Similarly, the  P I  stra tegy  of betting  in the first round when holding 

the Queen is weakly dom inated by the stra tegy  to  pass and call a P2 bet (if such a bet is 

m ade).

Once all dom inated strategies are removed, P i ’s stra tegy  can be sum m arized by three 

param eters, a, p,  and  7 , while P 2 ’s stra tegy  can be sum m arized by the  param eters rj and 

0

a  =  probability  th a t P I  bets in Round One when holding th e  J

P  =  probability  th a t P I  bets (calls) in R ound Three when holding the Q

7 =  probability  th a t P I  bets in Round One when holding th e  K

r) =  probability  th a t  P2 bets  (bluffing) in R ound Two when holding the J

and P I  passed in R ound One

£ =  probability  th a t P2 bets  (calls) after a P I  bet, when P2 holds the Q

Figure 2.4 shows th e  game tree for the  game w ith dom inated stra teg ies removed; P i ’s 

nontriv ial inform ation sets (sets th a t  have more th an  one element) and  inform ation leaf-sets 

are m arked w ith the  le tte rs A to  F , while P 2 ’s nontrivial inform ation sets and leaf-sets are 

m arked w ith the le tte rs R  to  W.

In la te r chapters, inform ation sets in K uhn Poker will be referred to  by the  card(s) known 

and the  betting  sequence. For exam ple, the  P I  inform ation set labelled A in Figure 2.4 will 

be known as (J, ? : p) while the  P I  inform ation set F  will be n o ta ted  {K,  ? '.bp), and the P 2 

inform ation set V (which should no t be confused w ith P i ’s set F) will be no ta ted  (?, Q : bp).

Assuming neither player plays dom inated strategies, the  expected payoff ra te  (in $ /hand) 

for P I  is

E V  =  i [ r ? ( - 3 a  +  7 ) +  £ ( -1  + 3 / 3 - 7 ) + a - 0 \  (2.1)
o

K uhn determ ined th a t  equilibrium  strategies for P I  are of the form  (a, P,  7 ) =  (7 / 3, (1 +  

7 ) / 3 , 7 ) for 0 <  7  <  1. There is one equilibrium  stra tegy  for P2: (77, £) =  (1 /3 ,1 /3 ) . The 

value of the game is —1/18 (the gam e is a loss for P I) . One of th e  m ain  reasons why K uhn 

Poker is studied is th a t  the  equilibrium  strategies contain  b o th  bluffing (betting  a hand as if 

it is strong when it is actually  weak) and underbidding (not b e tting  a strong  hand in order 

to  possibly induce a be t from the o ther player), which are two in teresting  com ponents of 

larger poker games.

E ight pure strategies can be generated  from P i ’s th ree p aram eters (the corresponding
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payoff functions are also listed here):

1
6 
1
6 
1 
6 
1 
6 
1 
6 
1
6 1

- ( —37? +  2£)

|(-2 7 7  + 0

The strategy-space for P2 can be partitioned  into 6 regions, as seen in Figure 2.5, w ithin 

each of which a single P I  pure stra tegy  is m axim al (on the  points which divide the regions, 

all bordering m axim al strategies achieve the sam e value)1.

So =  (0 , 0 . 0) : E V 0

Si  =  (0 , 0 . 1) : E V i

S 2 = (0 , 1, 0) : e v 2

5 3 =  (0 ,1 ,1 ) : E V :3

5 4 =  (1, 0 , 0) : E V a

Si> =  (1, 0 , 1) : e v 5

s6 =  (1, 1, 0) : e v 6

Sr =  (1 ,1 ,1 ) : e v 7

- 1  +  £ +  7?)

- 2 t? - 2£ +  1 )

1/3

Figure 2.5: P artitio n  of P2 Strategy-space by M axim al P I  Strategies

An example of how th is analysis is perform ed is as follows. F irst, note th a t if 77 >  £, 

then  clearly 4?? >  4£; subtracting  2£ +  37? from b o th  sides of th is  inequality, one obtains

2£ T  7? >  37? -}- 25,

xT h e  author would like to  th an k  Valeriy Bulitko for his in itial analysis of th e  gam e which provided th is 
partitioning.
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which shows th a t E V \  >  E V q whenever r/ >  / .  Similarly, it can be shown over the same 

region th a t E V 3 > E V 2 ,  E V 5 >  E \ 4 and E V \  >  EVq > E V j .  Thus the only three strategies 

th a t can possibly be best-response strategies in the region where 77 >  £ are S i, S3 and  S 5. 

If £ <  1 /3  then

- 2 ^  +  77 >  -  |  +77

> ( - 1 + £ ) + » ? ■

Therefore E V \ > E V 3 whenever £ <  1/3. If rj >  1 /3, then

- 2£ +  7 7 > - 2 £  +  i

> -  2£ + (1 -  277).

Therefore EVf >  EV$ whenever r j>  1 /3; pu ttin g  all of th is inform ation together, Si m ust be 

the best counter-strategy for P2 strategies in the  region where 1 /3  <  rj < 1 and 0 < £ <  1/3. 

Similar reasoning can be applied to  show th a t  the  strategies given in Figure 2.5 achieve the 

highest expected payoff ra tes w ithin the ir regions.

N ote th a t there  are no non-dom inated superfluous strategies in th is  game; if player P 

assumes th a t his opponent O will not play dom inated  strategies (which are relatively easy 

to  identify and avoid), then  the only exploitable category O can fall into is the  T ype (iii) 

category (players in th is category use essential strategies in a non-equilibrium  m ixture). 

Recall th a t playing an equilibrium  stra tegy  against a type (iii) player achieves only the 

value of the game, which means th a t  P  can only hope to  exploit O ’s play if P  deviates from 

playing equilibrium  strategies.

In the next chapter, the  standard  param etriza tion  of K uhn Poker will be used for an 

opponent model and different ways of estim ating the  param eters will be a ttem pted .
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Chapter 3

Explicit M odelling in Kuhn  
Poker

3.1 In trod u ction

There are two basic types of opponent modelling th a t  are studied in th is  thesis: explicit 

modelling and im plicit modelling. The first, explicit modelling, is the  situ a tio n  where the 

modeller tries to  infer his opponent’s strategy, by observing the opponen t’s actions in dif­

ferent situations, and then  com putes a suitable counterstrategy. The second, im plicit m od­

elling, is the situation  where the modeller simply tries to  find a good coun terstra tegy  against 

his opponent, w ithout try ing  to  identify the  opponent’s strategy. Explicit m odelling is the  

focus of this chapter and  the  next chapter, while im plicit modelling is s tud ied  in  C hapter 5.

Two m ajor issues th a t  arise in explicit modelling are deciding how to  g a th e r observations 

about an opponent and deciding how to  make use of observations when generating a model. 

This chapter deals w ith th e  second issue, exploring the  problem  of converting observations 

of an opponent’s actions into estim ates of th a t  opponent’s strategy-defining param eters; the  

next chapter discusses how these observations m ay be gathered and shows th e  effectiveness 

of different data-gathering  m ethods.

For th is thesis, the  s tra tegy  used by th e  player being modelled will be s ta tio n ary  th rough­

out each m atch. In th is  chapter explicit models will make single-point estim ates of each of 

the param eters being estim ated. A nother approach which has been used by others is to  

m aintain a probability  d istribu tion  for each param eter which identifies th e  probability  of 

each possible value of the  param eter given the  observed d a ta  [36].

The next section of th is chapter will describe how a player can decompose th e  param eter 

estim ation problem  and generate param eter estim ates given a set of gam e observations. 

The th ird  section describes how to  combine solutions of the subproblem s to  form more
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reliable estim ates. The fourth section of the chapter will show an exam ple of how estim ates 

are com puted in K uhn Poker, and the final section summarizes the  param eter estim ation 

m ethod and its lim itations.

3.2 G en eration  o f  P aram eter E stim ates

In the preceding chapter, the term  stra tegy  was introduced, as a com plete description of how 

to choose actions in every possible inform ation set of the  game in question. The param eter 

model assumes th a t there  is a param eter for each action of each inform ation set, where each 

param eter represents the  probability  of choosing the corresponding action when in th a t 

inform ation set. The m ain idea of determ ining a param eter model for an opponent is to 

find the m ost likely set of param eters th a t would generate the decisions th a t the modeller 

has been able to  observe.

The problem  is defined as follows. P layer P  w ants to  estim ate the  param eters defining 

his opponent O ’s s tra tegy  after P  has been able to  observe several of O ’s decisions in several 

different situations. A lthough P  m ay not know O ’s private inform ation in all cases, P  should 

be able to  draw  conclusions based on the inform ation he can observe. The approach for 

estim ation will be to  simplify the  problem  as much as possible, by considering one opponent 

param eter a t a tim e (single-param eter problem s), and also to  consider the  occurrences of 

th is param eter when the  m odeller’s hand is different as separate problem s. For example, the 

problem  of modelling P2 in K uhn Poker will be divided into two problem s, estim ating 77 and 

estim ating £; th e  problem  of estim ating 77 is further divided into the  problem s of estim ating 77 

when P I  holds the  Jack and estim ating 77 when P I  holds the King (the problem  of estim ating 

£ is sim ilarly divided). The modeller will create single-holding p aram eter estim ates in these 

simpler problem s, and then  combine these estim ates in hopes of form ing a b e tte r combined- 

holding estim ate for each param eter. Once each param eter has been estim ated, the  modeller 

can com pute an appropria te  counter-strategy to  use against the  opponent.

I t is assum ed th a t the  player doing the  modelling has a perfect m em ory of everything 

th a t has occurred in his m atch against his opponent. This is the concept of perfect recall, as 

defined by K uhn: “each player is allowed by the rules of the  gam e to  rem em ber everything 

he knew at previous moves and all of his choices a t those moves” [25]. Thus th is research 

assumes th a t the  modeller is able to  use all of the  inform ation from  his m atch w ith his 

opponent, w ithout forgetting any of the  decisions he has been able to  observe.

Before further discussion of how explicit modelling is perform ed can proceed, some details 

of the game m ust be clarified. For simplicity, assume th a t each player has two possible 

options a t each decision node V,  which will be denoted L p  and R p \  any game G  can be
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converted to another game G '  w ith th is binary  property, as a decision in G  where there are 

n  >  2 possible actions ( a i , . . .  ,a n ) can be represented by a sequence of n  — 1 decisions in 

G ':  for j  < 11 — 1, the options for the j t h  decision are to  (i) use action aj,  or (ii) proceed 

to  decision j  +  1. The options for the  last decision are to  (i) use action o,„_ i, or (ii) use 

action an . Since there are only two options a t each decision, only one param eter needs to  

be estim ated  as the second param eter can be com puted from the fact th a t  param eters a t 

each decision m ust sum  to  one.

A lthough O ’s param eters may be interdependent, P  can estim ate each of O ’s param eters 

individually; thus the problem  discussed here will be how P  can estim ate a single param eter, 

a i 0 , D , which denotes the  probability  th a t  O  will take action L  when holding hand Hi o and the 

sequence preceding the  decision is D.  For th is research, Hj o will represent all inform ation 

in  the gam e th a t is private to  O, while D  represents the  inform ation public to both  P 

and O, consisting of L  and  R  actions possibly interspersed w ith chance events. Suppose 

also th a t  before P  takes his observations into consideration, P  has an  initial estim ate of 

a i „ , D  = bi0'D £ [0,1]. The streng th  of th is estim ate (which will determ ine how much 

influence th is initial estim ate has on la te r estim ates of oh0 ,d)  will be denoted Wi0tu  >  0 . 

This stren g th  is essentially the  am ount of fictitious d a ta  th a t is incorporated  into the  final 

p aram eter estim ate (eg. an initial estim ate  of 0.5 w ith a weight of 2 will have the effect of 

p retending th a t  the  modeller observed his opponent in the  situation  two ex tra  tim es and 

th a t  in one of those tim es the  opponent took the L  action).

Let N  denote the num ber of tim es th a t  O is in the  inform ation set (?, H io : D).  In the 

long run, it is expected th a t  the  num ber of tim es th a t  O takes action L in th is situation , 

N l , will be approxim ately N  * c t i 0 ,D ' i  thu s a good approxim ation of ayoi£> is N i / N . If P  

could identify O ’s hand every tim e th a t  O holds the  hand  Hi o and th e  sequence D  occurs, 

then  P ’s estim ate of a i otD, incorporating in the initial estim ate, would be

N l  +  bio,DWio!D 
a io,D =   ry—--------------

N  +  Wio,D

W h at makes the problem  difficult is th a t  P  often does not know w hat O holds (for 

exam ple, in poker one of the  two players could fold, which m eans th ey  do not get to  see 

each o th ers’ hands). A nother issue th a t  should be considered is th a t the  hand held by P  may 

affect his observations, as he may play differently, m aking the sequence D  and showdowns 

after O ’s action more or less likely. In addition, P  knows th a t  O does no t hold the cards in 

P ’s hand. To address th is issue, P  can separately  estim ate  a*0)D for each possible hand Hj  

th a t P  can hold (suppose there  are J  such hands), and combine these estim ates to  form a 

more accurate estim ate afterw ards. These single-holding estim ators, which will be denoted
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n \ l \  a \ 2), . . . ,  (the preceding sequence D  will be assum ed a constant for the remainder 

of this chapter) will fall into one of two categories: complete-information estimators or 

pa/rtial-inform.ation estimators.

In the  following paragraphs, the no ta tion  C O U N T (H j, Hi : D \ )  will represent the actual 

num ber of tim es th a t th is situation  has occurred in the m atch betw een P  and O, although this 

quan tity  may be unknown to  one or bo th  players. T he quan tity  C O U N T (Hj ,  Hi : D i) is an 

estim ate by the  modeller of the  actual num ber. Finally, the quan tity  c o u n t( i/j , Hi  : D\)  will 

represent the num ber of tim es the  modeller has observed the  occurrence of the inform ation 

set. In the  event th a t the modeller is able to  observe the  inform ation set every tim e it occurs, 

the upper-case no tation  will be used. W henever these quantities are used in formulas in this 

chapter, the quantities are to  be com puted from the  m odeller’s observations.

3.2 .1  C om p lete-in form ation  E stim ators

*(i )A com plete inform ation estim ator, d) , is an estim ator derived from an inform ation set 

(Hj p , ? : D),  where P finds ou t O ’s hand  every tim e th a t  O holds the  hand H in (no m atter 

w hat the  ensuing bet sequence is). In th is case, the  single-hand estim ate d ^ p’) is

. a . )  C O U N T  (H io, Hi  • D L )  + bio Wi n D / J  , ,
“  C O U N T (Hjp, H io : DL)  +  C O U N T (ffjp , H io : D R )  +  w lo,D/ J  ^

The no tation  Da  (where a is either L  or R)  represents the  sequence D  followed by the action 

a. The strength  of the  initial estim ate in each single-holding estim ate  has been scaled down 

(divided by J )  so th a t when the  single-holding estim ates are combined, the initial estim ate 

will have the proper im pact on the com bined-holding estim ates, as will be seen in Section 3.3.

An example of a com plete-inform ation estim ator in  K uhn Poker occurs in the case when 

P I  estim ates P 2 ’s 77 param eter when P I  holds the  Jack. Figure 3.1 shows the portion of the 

K uhn Poker game tree where P I  holds the  Jack and  bets in R ound One. Term inal nodes are 

shaded to  represent how tran sp aren t they  are to  th e  two players; term inal nodes th a t  are 

unshaded on the left side are transparen t to  P I  (P I knows w hat card  P2 held), and those 

transparen t on the right side are tran sp aren t to  P2 (P2 knows w hat card P I  held). In this 

case each term inal node is tran sp aren t to  P I  because if P I  be ts  in R ound One w ith the Jack 

and P2 calls, then  P I  will get to  see P 2 ’s card  (which m ay be th e  Queen or the King) in 

th e  showdown; if P2 folds after P I  bets, then  P I  can deduce th a t  P2 held the Queen since 

it is a dom inated action to  fold the  King. Since each of the  term inal nodes is transparen t 

to  P I ,  he has complete inform ation in th is case.
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Chance

1/6

bet bet

bet betpass

Figure 3.1: K uhn Poker - P I  Holds the  Jack  and Bets in R ound One

3.2.2 Partial-In form ation  E stim ators

In m ost poker games, m any hands end w ith a fold, and  a player is often not able to conclude 

w hat hand the o ther held. In K uhn Poker, if P I  uses the  equilibrium  stra tegy  corresponding 

to  7 =  0.5 and P2 uses his equilibrium  strategy, th en  the  proportion  of hands th a t  end 

w ith a fold is 11/27 =  0.4074. D espite the lack of com plete inform ation, a player should 

be able to  use the  available inform ation (from hands th a t  do have showdowns and  from 

actions observed in o ther hands) to  create useful param eter estim ates. The general idea is 

to  estim ate the unknown quantities and then  apply E quation  3.1. In the  cases discussed 

below, it is often assum ed th a t  showdown inform ation is known abou t the  L  action b u t not 

the  R  action; however, all of the  m ethods can also be applied in the  reverse cases, where 

showdown inform ation is known abou t the R  action  and not the  L  action.

One of the assum ptions th a t is common to  several of the following cases is th a t  P  has 

an estim ate of the  probability  th a t  O holds Hio given th a t the preceding sequence is D  and 

P  holds the hand Hj o. P  can com pute th is p robability  estim ate using a previous m odel of 

O ’s strategy, assum ing P  also knows the probabilities of all of the  chance events involved. 

The com putation is formed by expanding conditional probabilities, following the  definition
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where P r(A jB ) is the  probability  th a t A  is true  given th a t  B  is true, and ~Pi(A,B) is the 

probability  th a t bo th  A and B are true. This substitu tion  is applied repeatedly  in the 

following derivation:

Note th a t  in the num erator and the denom inator in the  last line above the  quantities on the 

left-hand side are probabilities of sequences given the players hands and the  quantities on 

the righ t-hand  side are probabilities of chance events. A m ethod to  com pute the  left-hand 

quantities will be discussed in the  following paragraphs, while the  righ t-hand  quantities can 

be com puted based on the  rules of the  game.

Let ae represent an  action chosen by P, be represent an  action chosen by O, and q  repre­

sent a chance event. T hen  the  probability  of the  sequence D  — a\b\C\a2 b2 C2 • ■ ■ dkbkCk given 

th a t the  two players’ hands are Hj  and Hi  is the product of the  conditional probabilities of 

each event in the  sequence:

where De — a\b\Ci ■ ■ ■ aebeCe. Each of the  quantities on th e  right-hand side above are either 

known (P should know his own action probabilities, as well as the  probability  of chance

events), or can be estim ated  by P  from a  previous model of O.

To simplify the  no tation , there will be no null events shown in the  sequences in the  case 

when there  is no chance event after a pair of player actions or in the  event th a t  one player 

gets fewer actions th a n  the  other. For example, in K uhn Poker the  sequence of a P I  pass

followed by a P2 be t and a P I  calling bet will be represented by pbb.

A nother estim ate th a t  is needed for some of the following cases is the  probability  of P  

eventually identifying O ’s hand  when O holds H io and P  holds Hj p and  th e  bet sequence is 

Da.  This estim ate depends on the term inal nodes following Da  where P  can identify th a t  O 

holds Hio and the  probability  of reaching these term inal nodes given the  two players’ hands 

and strategies. Let Zr>a be the  set of term inal nodes following Da  where P  can identify th a t

P r ( 0  holds H io\D,
P r (£>, O holds H lo, P holds Hjp)

P r(D , O holds Hi a, P holds Hj p)

£ f =1 Pr(£>, O holds H i: P holds H jp)

Pr(L>| O holds H io, P  holds H jp) P r ( 0  holds H ln, P  holds H jp)

Ef=i Pr(L>| O holds H u P holds H jp) P r ( 0  holds H u  P  holds H jp)

P r(D | O holds H u  P  holds Hj)
k

(P r (P  takes action ae\De~i ,  P holds Hj)
(3.2)

x P r ( 0  takes action be\De~\ae, O holds Hi)  

x Pr(ce\De-iaebe,  P  holds Hj ,  O holds H i) )>)
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O holds Hi n, and for each term inal node z G Z o a let D z be the sequence th a t  reaches z. 

Note th a t  Da  will be a subsequence of D z for every z e Zo<,- since Z o a is a set of term inal 

nodes which descend from the sequence Da.  The estim ate in question is 

P r(P  observes O holds H lo \ O holds H io,P holds H Jp, Da.)

where these probabilities can be com puted using E quation  (3.2). The second equality  holds 

because

Here the  first equality  follows from the fact th a t  the  presence of the  sequence D z implies th a t 

the  subsequence D a  m ust have occurred, and the  second equality follows from  conditional 

probability  definition.

The following paragraphs discuss how to  use the  available inform ation in  several different 

partial-inform ation situations.

C o m p le te  In fo rm a tio n  on  O n e A ctio n , N o  In fo rm a tio n  o n  A lte r n a tiv e

This case assumes th a t  P  (holding H j p) can identify O ’s hand every tim e th a t  O takes 

action L  after the  sequence D , bu t P  cannot identify O ’s hand when O takes action R  when 

holding Hio. However, P  m ay be able to  observe or infer th a t O has a hand  other th an  

H Zo some of th e  tim es th a t O takes action R  w ith a different holding. Using the  m ethod 

ju st described, P  can com pute an estim ate of the  probability  th a t  O holds H Zo given the 

preceding sequence is D  and th a t  P ’s hand is H j p.

Suppose P  has been in the  inform ation set {Hjp, l  : D)  a  to ta l of C O U N T (Hjp,7 : D)  

times, and has observed O take action R  a to ta l of C O U N T (Hjp, ? : D R )  >  0 times. P  has 

also been able to  identify th a t  O did not hold H io when taking action R  a certa in  num ber of 

times which will be denoted co\mt (Hjp, ^ H io : DR) .  P  estim ates th a t  the  num ber of tim es 

O has held H io in  the  set (Hjp ,? :£ > )  as

C O U N T (Hjp , H io : D) =  C O U N T (Hjp,? : D)  x P r ( 0  holds E io | P  holds H j p, D).  (3.3)

P knows C O U N T (Hj  , H i a : DL )  (this is no t an estim ate), since P  can identify th a t O 

holds Hia every tim e th a t  O takes action L  w ith  th a t  hand. P  then  com putes

Y  P r (£ b | O holds H tpl P holds H jp, Da)
z € . Z  D a

^  P r(D z| 0  holds i / , o, P  holds H j p) 
^  Pr(L>a| O holds H lo, P  holds H jp)'

P r(D z | O holdsH lo, P holds Hj p) — P r ( Dz , Da\  O holds H io, P holds H j p)

=  P r (D z | O holds H io, P  holds Hj p , Da)  

x P r(D a | O holds H io, P  holds H j p).

c =  C O U N T (Hjp, H lo : D)  -  C O U N T(H Jp, H io : DL) (3.4)
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and

u = C O U N T ^ , , ?  : D R )  -  count.{HJp^ H , ri : D R )  (3.5)

The quan tity  c is a candidate answer and u is an upper-bound for the  final quantity  

needed for the param eter estim ate, C O U N T (Hjp, H i o : DR) .  P  sets

f 0 if c <  0
C O U N T (F Jp, H lo : D R )  =  /  c if 0 <  c <  u (3.6)

y u  if c >  u

Now P can com pute an estim ate as in the com plete-inform ation case (Equa­

tion  (3.1))

d (jp) = ___________C O U N T (Hj p , H io : DL )  +  bio,D w ioiD/ J ___________

C O U N T (Hjp, H io : D L )  + C O U N T {H]p, H to : D R )  +  w ia,D/ J

Chance

1/6

K|Q

bet bet

betpass pass

1-ri

Figure 3.2: K uhn Poker - P I  Holds the King and Bets in R ound One

An example of th is situation in K uhn Poker occurs in the  case when P I  estim ates P 2 ’s 

Tj param eter when P I  holds the King; the  relevant portion  of the  game tree  is shown in 

Figure 3.2. If P I  bets in R ound One w ith  the King and P2 calls, then  P I  will get to  see P 2 ’s 

card in the  showdown. If P2 folds after P I  bets, then  P I  does not know w hether P2 held 

the Queen or the  Jack. However, P I  knows th a t it was equally likely th a t  P2 could have 

held the  Queen or the  Jack after the  deal and P i ’s be t in R ound One does not change the
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probabilities. P  I can use this inform ation to  estim ate the num ber of tim es th a t  P2 held the 

Queen and then  estim ate the  num ber of tim es P I  passed w ith the Queen in Round Two.

Since it is not obvious th a t  the  candidate answer c could be negative or larger than  

the upper-bound  a. examples are presented here showing these possibilities. Consider the 

situation  listed above, P I  estim ating P 2 ’s rj param eter when P I  holds the King, and suppose 

P I  has m ade the following observations:

CO U N T(K ,?: b) =  4

C O U N T(K ,Q : bb) =  3

CO U N T(K ,?: bp) =  1.

T hen

CO U N T(K ,Q : b) =  CO U N T(K ,?: b) x P r(P 2  holds Q | P I  holds K, D  = b)

=  4 x 0.5 =  2 

and P I  com putes a negative c:

c =  C O U N T(K ,Q : b) -  COUNT<K,Q: bb)

=  2 -  3 =  - 1 .

A nother exam ple in K uhn Poker where the  modeller has com plete inform ation on one 

action and  no inform ation on the a lternative occurs when P2 is estim ating P i ’s cc param eter 

when P2 is holding the King. In th is  s itua tion  P2 has com plete inform ation when P I  bets 

in the first round as P2 will always call w ith  the  King, bu t P2 gains no inform ation if P I  

passes in Round One and folds in R ound T hree after P2 bets. Suppose P2 has m ade the 

following observations:

C O U N T(?,K : <f>) =  6 

CO U N T(?,K : b) =  0 

CO U N T(?,K : p) =  6 

coun t{-J,K : p) =  CO U N T(Q ,K : pbb) =  4

Then

C O U N T (J, K: <p) =  C O U N T(?,K : 0) x P r (P l  holds J  | P2 holds K, D  =  <f>)

= 6 x 0.5 =  3
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and P finds th a t c is larger th an  the  upper-bound u:

c =  C O U N T (J,K : 4>) -  C O U N T(J, K: b)

=  3 - 0  = 3

u =  C O U N T(?,K : p) -  count{=J, K: p)

=  6 -  4 = 2 .

P a rtia l In fo rm a tio n  on  O n e A c tio n , N o  In fo rm a tio n  o n  A lte r n a tiv e

T his case assumes th a t  P  (holding H j p) can identify O ’s hand some of the  times th a t O 

takes action L  after the sequence D,  bu t P  can never identify O ’s hand  when 0  takes action 

R.  P  also has an estim ate of the  probability  th a t  O holds Hia given the  preceding sequence 

is D  and P ’s hand is H j  , and P  has an estim ate of the  probability  th a t  he gets to  observe 

th a t  O holds Hia when O takes action L.

Given th a t P  has been able to  observe th a t  O held the  hand  H io and took action L  a 

to ta l of count {Hj , Hio : D L )  tim es, P  estim ates the  actual num ber of tim es th a t O held 

Hi  and took action L  as:t o

POTTNT/ff H ■ n r \  =  _______ count(-Hjp, H io : DL) __________________
' Jp: '  P r (P  observes O holds H io | P  holds H jp, D L ) '   ̂ ' ’

P com putes the estim ates C O U N T (Hjp, H i o : D) ,  C O U N T  (Hjp, H io : D R )  and finally 

as was done for the previous case (com plete inform ation on one action, no inform ation 

on alternative) w ith the above estim ate  replacing COUNT(if,- , U j0 : D L )  in all of the 

relevant formulas. There are no exam ples of th is case in K uhn Poker.

P a r t ia l/C o m p le te  In fo rm a tio n  o n  O n e A c tio n , P a r tia l In fo rm a tio n  on  th e  A l­
tern a tiv e

This case assumes th a t  P  (holding H j  ) can identify O ’s hand some or all of the tim es th a t 

O takes action L  and some of the  tim es th a t  O takes action R  after th e  sequence D.  P  also 

has an estim ate of the  probability  th a t  O holds H io given the preceding sequence is D  and 

P ’s hand is Hj , and P  has estim ates of the  probabilities th a t he gets to  observe th a t  O 

holds Hia when O takes action L  and  when O takes action R.

There are two m ethods to  deal w ith  th is case; the  first m ethod  is to  estim ate bo th  

quantities, C O U N T ( H j p, Hia : D L )  and C O U N T (Hjp, H i o : D R )  using Equation (3.7). 

T his m ethod should be used if the  probability  of observing O ’s hand  is high for bo th  of his 

possible actions.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The second m ethod is to  estim ate one of the  quantities, COUNT (Hj  , H i a : DL)  or 

C O U N T (H ?- , Hin : DR) ,  using E quation  (3.7) and estim ate the other using Equations (3.3), 

(3.4), (3.5), and (3.6). This m ethod should be used if the probability  of observing O ’s hand 

is low for one or bo th  of his possible actions. I t is possible to  switch between these two 

m ethods of estim ating the quantities if P  finds th a t the  probability  of observing O ’s hand 

is very different from w hat he initially anticipated.

Chance

1/6 1/6

K|Q

bet betpass pass

1-Y

bet betpass pass pass pass

Figure 3.3: K uhn Poker - P2 Holds the  Queen

An example of th is case in K uhn Poker occurs when P2 estim ates P i ’s a  param eter when 

P2 holds the Queen, illu stra ted  by Figure 3.3. If P I  passes in R ound One, th en  P2 will also 

pass and see P i ’s card in the  showdown. If P I  bets in R ound One w ith  the  Jack, then  P2 

may observe it if he chooses to  call (the safest s tra tegy  is to  call 1 /3  of th e  tim e), b u t will 

not observe it if he chooses to  fold. Thus if P2 calls w ith  frequency r), then  P2 will estim ate 

th a t the  number of tim es P I  has actually  bluffed w ith the  Jack when P2 holds the  Queen 

is I /77 tim es the num ber of tim es P2 has called the be t and observed the  Jack. So in this 

case P2 has complete inform ation on one of P i ’s actions (passing) and partia l inform ation 

on the other (betting).
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N o  I n f o r m a t io n  o n  E i th e r  A c tio n

This case assum es th a t P  (holding Hj ) can never identify O ’s hand when O takes either 

action L  or action R  after the  sequence D; P  can only observe the num ber of tim es th a t 

0  takes each action. P  does have an estim ate of the probability  th a t O holds Hi  for each 

possible i, given the  preceding sequence is D  and P ’s hand is H j .

One possible way of dealing w ith the lack of inform ation is to  split the  observed actions 

between each possible hand, proportional to  the  probabilities of O holding each hand; in 

th is situation,

C O U N T (HJp, H io : DL)  =  C O U N T (Hjp,7 : DL )  x P r ( 0  holds H io \ P  holds H jp, D)  

C O U N T (Hhi , H lo : D R )  =  C O U N T (Hjp,? : D R )  x P r ( 0  holds H io \ P  holds H jp, D).  

For example, if the  inform ation set (Hj  , ? : DL )  has been observed 30 tim es, the  inform ation 

set (Hj  ,1 : D R )  has been observed 20 tim es and the probability  th a t  O holds H \  is 0.2, 

then  P  will estim ate  th a t  O has taken action L  w ith H i  a to ta l of 30 * 0.2 =  6 tim es and 

taken action R  w ith  H \  a  to ta l of 20 * 0.2 =  4 tim es. If the weight of the  in itia l estim ate is 

low, then  P ’s estim ate  a <f p'> will be close to  6 /10 =  3 /5 . Suppose fu rther th a t  the  probability  

th a t O holds H 2 in  the  same inform ation set is 0.8; then  P  will estim ate th a t  O has held
( j  )

H 2 and taken action  L  24 tim es and taken action R  16 times, giving an estim ate  d), close 

to  24/40 =  3 /5 .

This exam ple illustra tes the  property  of th is  m ethod th a t  each single-hand estim ator 

o t f ^  converges to  the  same value for every i (as the effect of th e  in itial estim ates decrease 

as more observations are made):

&U,) _ ____________ C O U N T (Hj p, 7 : D L ) ____________
i C O U N T (Hjp , ? : D L )  +  C O U N T (.H ^, ? : D R )

This is problem atic, because P  expects th a t  O plays strong hands differently from weak 

hands, bu t th is m ethod  re tu rns the same estim ate for b o th  types of hands. To coun teract this
( j  \

problem  of each of the  estim ates a)  having the  same value, P  can use m ore sophisticated 

reasoning in sp litting  the observed actions betw een the  various possible cards th a t  O  could 

have held. One such way is to  assume th a t certain  properties th a t  hold in P ’s initial estim ates 

about O ’s stra tegy  also hold in the actual s tra tegy  th a t  O is using; for exam ple if P ’s initial 

estim ate of is five tim es larger th an  his initial estim ate of cty2, th en  P  could split the  

d a ta  in such a way th a t  a ^ / a ^  = 5, preserving the  ra tio  which the  initial estim ates satisfy.

Suppose O can hold one of the  hands H i, H 2, . . . ,  H j;  the  first step is to  com pute ratios 

ri such th a t P  believes th a t  a. i ja \  =  ry:

n  = b ^ -  for i = 1 , . . . .  I
n,D
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P now estim ates the  num ber of tim es O has held each card, based on th e  probability of 

O holding each card given the sequence S:

C O U N T (Hjp, Hi  : D)  = C O U N T : D)  x P r ( 0  holds H.t | P holds H j v , D)  Mi.

The num ber of tim es th a t P  has observed O take action L  is the  sum  of the  tim es th a t 

O has taken  action L  w ith each card:

i  ____
C O lJN T (//,;jT  - , D L ) ^ Y 1  C O U N T (Hjp, H t : D)  x cm

X

w C O U N T (Hj p , Hi  : D)  x ( n  a i )
2 = 1

X

=  a i  5 3  C O U N T (Hjp , H , : D ) x n
i =  1

Finally  P  can estim ate ot\ by

CO U N T {Hj  , ? : DL)
OL1 — ______  _____________________

C O U N T (Hjp, H l : D ) x r i 

and estim ate  ay0 by the  relationship a io — rio a \ .

This situation  does not arise in K uhn Poker w here one player receives no inform ation 

for b o th  his opponen t’s actions, bu t one could conceive of th is occurring in  games where 

hand-m ucking is allowed. Hand-mucking occurs when a showdown begins and one player 

shows his hand and the  opponent who called sees th a t  he is beaten  and concedes the  pot 

w ithout showing his hand. In  a game w here m ucking is allowed, a  player w ith the best 

possible hand m ight never get to  see his opponen t’s hand, w hether the  opponent folded or 

called the  last bet.

3.3 C om bin ing  S ingle-H and  E stim a tes

The approach to  the  estim ation problem  in th is  chapter began by decom posing the problem, 

first into the problem  of estim ating ju s t one of O ’s param eters, and then  fu rther decomposed 

into the  problem  of estim ating the specific param eter when it occurs in one of P ’s inform ation 

sets. I t is possible th a t  the  param eter occurs in several of P ’s inform ation sets (once for 

each hand  th a t P  could possibly hold and generate the  sequence D).  T his section describes 

how P  can combine these single-hand estim ates to  achieve an estim ate th a t  is b e tte r th an  

each of the  individual estim ates. Specifically, P  w ants to  find weights qi,i0,q2 ,i0, ■ ■ ■ ,qj,i„ 

to  form an estim ate
J

&io = Y l qj ’i°
j  =  1
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where q hLii >  0 Vj and Z j  Qj.i,, =  1- There are several possibilities for how P  could arrive 

a t these weights qj,i„- One possibility is th a t  P  could give each estim ate equal weight, by 

setting  qj j o = l /fT Y j, bu t th is does not ad just for the  fact th a t some of the  estim ates may 

have been formed w ith little or no d a ta  yet are receiving weight equal to estim ates based on 

much m ore data . A nother possibility is to  tru s t the  estim ate which has the m ost datapoints; 

if the £th estim ate has the  m ost data , th en  set qi^o =  1 and =  0 I. However, in 

th is case P  ignores all the  d a ta  used for the  o ther estim ates. A th ird  possibility is to  give 

the estim ates weights depending on how m any datapo in ts they use; this can be achieved by 

setting
=  CO U N T ( H j , H io : D)  +  w ioiD/ J  

qDo CO U N T ( * , H i o : D )  + w io,D ’

where
J

C O U N T ( * , Hlo : D ) =  COUNT<Hjl H io : D)
j = l

This approach results in the  following elegant form ula for the  combined estim ate:

Z U  C O U N T { H j , H io : DL )  +  h o,Dw lo,D
a  — — i— ------------------------------------------------------ (3.8)

E / = i  C O U N T ( H j , H io : D)  +  w iotD

This m ethod  of combining the  single-hand estim ates will be the m ethod  used for all 

com bined-estim ator results shown in th is thesis.

A nother way to  combine the single-hand estim ates is to  give each estim ate  a weight in 

relation to  th e  confidence held in th a t  estim ate; in addition to  giving estim ators th a t use 

more d a tapo in ts  more weight, estim ates w ith  com plete inform ation would receive greater 

weight th a n  estim ates w ith p artia l inform ation. S tudying the effectiveness of this approach 

is a topic for fu ture work.

3.4  C om p u tin g  E stim a tes  in  K uhn  Poker

Figure 3.4 shows hypothetical frequencies for th e  term inal nodes reached after several Kuhn 

Poker hands have been played between P I  and P 2 (for example, the  (J,Q : pp) term inal node 

has been reached five tim es). N aturally, neither player knows all of the  num bers given; for 

example, when P I  holds the  King and bets  in R ound One, he does not know th a t  P2 passed 

four tim es each w ith the Queen and th e  Jack, bu t P I  does know th a t  P2 passed eight times 

in to tal.

To slightly simplify the calculations, suppose th a t the initial estim ates each have zero 

streng th , m eaning th a t they  will not factor into the  calculations. The estim ation problem 

will first be considered from P i ’s point of view and then  from P 2 ’s point of view.
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Chance

1/61/6 1/6 1/61/6 1/6

K|QQ|K

betbet bet betpass passpass pass pass pass

1-a 1- Y,1-a. i-Y

pass \ betbet bet pass / \  bet pass passpasspass \  bet bet betpass

1 - T l 1 —r)

pass /  \  bet pass /  \b e t betpass

i-R

Showdown Node □ Complete Info for PI □  Complete Info for P2 □ Incom plete  Info for Both

Figure 3.4: K uhn Poker exam ple (counts of visits to  term inal nodes listed)



3.4.1 P I  M odelling  P 2

E stim a tin g  rj

The P I  estim ator f j ^  (the superscrip t (J) represents the case where P I  holds the .Jack) is 

an example of a com plete-inform ation estim ato r :

C O U N T (J,Q : bb) =  1

C O U N T(J,Q : bp) =  4

and the  estim ate is

„(J) C O U N T (J,Q : bb) 1 1
V ~  C O U N T(J,Q : bb) +  C O U N T(J,Q : bp) “  1 + 4  -  5

The estim ator r ) ®  is an  exam ple of a partial-inform ation estim ator for which P I  has 

com plete inform ation on one of P 2 ’s actions, as there  is a showdown when P2 calls P i ’s bet, 

and P I  has no inform ation when P2 folds:

CO U N T(K ,Q : bb) =  1

and

CO UNT(K,Q: b) =  C O U N T(K ,?: b) x P r(P 2  holds Q | P  holds K, b) 

- « )  ■!
COUNT(K,Q: bp) =  CO U N T(K ,Q : b) -  C O U N T(K ,Q : bb)

= 9- l  = 7-
2 2

which gives the estim ate

„(K)   C O U N T(K ,Q : bb)___________ _  1 _  2

^  CO U N T(K ,Q : bb) +  C O U N T(K ,Q : bp) 1 +  (7/ 2) 9

Combining the two single-hand rj estim ates gives

„ /  5 \  1 /  9 /2  \  2 _  2 4
T]~  \ 5  +  (9 /2 ) )  5 +  U  +  (9 /2 )J  9 “ 1972 “  19'

E stim a tin g  ^

The estim ator is an exam ple of a partial-inform ation estim ato r for which P I  has com­

plete inform ation when P2 passes and p a rtia l inform ation when P2 bets, as P I  gets to  see

P 2 ’s card if P I  chooses to  call in R ound Three

C O U N T (Q ,J: pp) =  5.
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This particu lar P I  player has called frequently in R ound Three when holding the Queen, 

which means th is player should use Form ula (-3.7) to  estim ate the num ber of tim es P 2 has 

held the .Jack and bet:

C O U N T(Q ,J: pb) =  count(Q ,J: p b b ) /P r (P l  bets in Round Three | P I  holds Q ,  pb)

9
=  3/ U 2 

which gives the  estim ate

£(Q) =  __________ C O U N T(Q ,J: pb)__________  =  _ 4 _  =  4

C O U N T(Q ,J: pb) +  C O U N T(Q ,J: pp) 4 +  5 9

T he estim ator is an exam ple of a com plete-inform ation estim ator as P I  will always 

call w ith the  K ing when P2 bets and the game goes directly to  a showdown when P2 passes: 

C O U N T(K ,J: pb) =  C O U N T(K ,J: pbb) =  2 

C O U N T(K ,J: pp) =  4, 

which gives the  estim ate

PfKi C O U N T(K ,J: pb) 2 1
* “  C O U N T (K ,J: pb) +  C O U N T(K ,J: pp) _ 2 +  4 ~ 3

Combining the  two single-hand £ estim ates gives

* /  9 \  4 /  6 \ 1  6 2
V9 +  6 /  9 +  V9 +  6 /  3 “ 15 “ 5 '

3.4.2 P2 M od ellin g  P i  

E s t im a t in g  a

The estim ator C0Q) (since P2 is now the  m odeller, the  superscrip t (Q) now represents 

P2 holding the Queen) is an exam ple of a partial-inform ation estim ato r for which P2 has 

complete inform ation when P I  passes (P2 will pass w ith  the Queen and the  game goes to  a 

showdown) and partia l inform ation when P I  bets, as P2 can choose w hether or not to  call:

C O U N T (J,Q : p) =  C O U N T (J,Q : pp) =  5;

since this particu lar P2 has called w ith a frequency of 0.2 (twice in 10 opportun ities) when 

holding the Queen, he uses the  m ethods discussed for the case of having com plete inform ation 

on one action and no inform ation on the  alternative to  estim ate C O U N T (J,Q : b):

C O U N T (J,Q : 0) =  ^C O U N T (?,Q : 0) =  i(1 9 )

C O U N T (J,Q : b) =  C O U N T(J,Q : 0) -  C O U N T(J,Q : p)
19 r 9 

“ 2  “  2 '
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This gives the estim ate

„ ( q , _  C O U N T(J,Q : h) 9 /2  _  _9_

C O U N T(J,Q : b) +  C O U N T(J,Q : p> (9/ 2) +  5 19

The estim ator d ^  is an example of a partial-inform ation estim ator for which P2 has 

complete inform ation on one action (P2 always calls when P I  bets) and no inform ation on 

the a lternative, as P2 always bets in R ound Two and P I  will then  fold the  Jack:

CO U N T(J,K : b) =  CO U N T(J,K : bb) =  5

and

COUNT(J,K: </) =  icOUNT(?,K : <f>) =  i(19)

COUNT(J,K: p) =  COUNT(J,K: </>) -  COUNT(J,K: b)
I Q Q19 r 9
2 ” 2 ’

which gives the  estim ate

. (K)  __________CO U N T(J,K : b)__________ 5 _  10

C O U N T(J,K : b) +  C O U N T(J,K : p) 5 +  (9 /2) 19'

Combining the  single-hand estim ates of a  gives

„ /  19/2 \  9 /  19/2 \  10 19/2 1
Q _  ^ ( 1 9 7 ^ ^ ( 1 9 7 2 ) /  19 +  V (Ts72yT(1972) J  19 “  ~  2'

E stim a tin g  0

The estim ator 0 ^  is an  example of a com plete-inform ation estim ator as w hen P I  calls in 

Round T hree there  is a showdown, and when P I  folds in R ound Three he m ust have held 

the Queen:

C O U N T(Q ,J: pbb) =  3 

C O U N T(Q ,J: pbp) =  1,

which gives the  estim ate

CO U N T(Q ,J: pbb) 3 3
^  ~  C O U N T(Q ,J: pbb) +  C O U N T(Q ,J: pbp) ^ 3  +  1 “  4

The estim ator 0 ^ ^  is a partial-inform ation estim ator for which P2 receives complete 

inform ation when P I  calls in Round Three and no inform ation when P I  folds:

CO U N T(Q ,K : pbb) =  6 
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and

CO U N T(Q ,K : pb) =  ^C O U N T (?,K : ©) =  ^(19)

CO U N T(Q ,K : pbp) =  CO U N T(Q ,K : pb) -  CO UNT(Q,K: pbb)
19 7
T  “ 6 = 2 ’

which gives the  estim ate

^ (K)  ___________ CO UNT(Q,K: pbb)_____________  =  6 =  12

CO U N T(Q ,K : pbb) +  C O U N T(Q ,K : pbp) 6 + (7 /2 )  19'

Com bining the  single-hand estim ators of /3 gives

- /  4 \  3 /  19/2 \  12 9 2
V4 +  (19 /2 ) J  4 +  V4 +  (1 9 /2 ) J  19 “  27/2  ~  3 '

E s t im a t in g  7

The estim ator 7 ^ )  is a com plete-inform ation estim ator as P2 can deduce th a t  P I  holds the 

King if he bets in R ound One and will see the  King in a showdown if P I  passes in Round 

One:

CO U N T (K,J: b) =  C O U N T(K ,J: bp) =  4

C O U N T (K ,J: p) =  C O U N T(K ,J: pp) +  C O U N T(K ,J: pbb) = 4  +  2 = 6 ,

which gives th e  estim ate

_„(J) C O U N T(K ,J: b) 4 2
7  “  C O U N T(K ,J: b) +  C O U N T (K ,J: p) “ 4 +  6 “ 5

The estim ator 7 ^ )  is a  partial-inform ation estim ator as P2 will see P i ’s King in a 

showdown if P i  passes in R ound One, bu t will only see the King when P i  bets if P2 chooses 

to  call:

CO UNT(K,Q: p) =  CO U N T(K ,Q : pp) =  4;

since th is particu lar P2 rarely  calls (twice in  10 opportunities) w ith the  Queen, he uses the 

m ethods discussed in Section 3.2.2 to  estim ate C O U N T(J,Q : b):

COUNT(K,Q: </>) =  ^COUNT(?,Q: 0) =  i(1 9 )

CO U N T(K ,Q : b) =  CO U N T(K ,Q : 0) -  CO U N T(K ,Q : p)
19 „ 11

“ T  “ “ T '
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This gives the estim ate

(Q) CO U N T(K ,Q : b) 1 1 /2 11

19CO U N T(K ,Q : b) +  CO U N T(K ,Q : p) (11/2) + 4

Com bining the single-hand estim ators of 7  gives

10 + ( 1 9 /2 ) )  19 39/2  39
19/2 \  11 19/2 19

3.5 S um m ary

This chapter has given a detailed description of how to generate p aram eter estim ates in order 

to  create an opponent model. A lthough the  techniques presented in th e  previous sections 

m ay seem complex, the  basic idea is quite simple and is repeated  here. The first step 

is to  decompose the  whole modelling problem  into single-hand single-param eter problems. 

The next step is to  use partia l inform ation and probabilities (from game properties and a 

previous model of  the  opponent) to  create fictitious d a ta  when the actual d a ta  is not known. 

The th ird  step is to  create single-hand estim ates of each of the param eters by substitu ting  

the  d a ta  (fictitious if necessary) into th e  com plete inform ation formula, E quation  (3.1). The 

final step  is to  combine single-hand estim ates to  achieve more adequate estim ates th a t use 

all of the  available data .

T here  are several lim itations to  th e  param eter estim ation approach. T he first is th a t 

when creating fictitious data , properties of the  deal are assumed, such as if two hands are 

equally likely, then  it is assum ed th a t  each has actually  occurred exactly  the  same num ber 

of tim es. This assum ption holds up in th e  long run  (when equally likely hands have actually  

been dealt nearly the  same am ount of tim es relative to  the to ta l num ber of deals), b u t may 

cause inaccurate estim ates in the sh o rt run. A nother assum ption th a t  is needed is th a t  the 

m odeller can estim ate the  quantity  P r(D | opponent hand). In large games w ith nontrivial 

sequences this probability  will depend on the  s tra tegy  used by the  opponent, and  thus 

knowledge of the  opponent or good in itia l estim ates are necessary for an accurate estim ate 

of th is probability. Also, in large gam es it is expected th a t  d a ta  will be sparse, which means 

the  param eter estim ation m ethod m ay not be practical (as m ost param eters will have no 

d a ta  to  estim ate them ), unless abstrac tions are done to  reduce the  num ber of param eters. 

These abstractions would likely include unifying param eters (assum ing th a t  the  opponent 

plays sim ilar hands identically) and linking param eters (assum ing param eters may not be 

independent).

A nother assum ption th a t is m ade is th a t  the opponent does not play dom inated s tra te ­

gies. This can lead to  bad estim ates and  counterstrategies which do no t take advantage of
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the  dom inated plays by the opponent. This could be counteracted  by including the domi­

nated  strategies in the model of the opponent w ith heavily weighted initial estim ates th a t 

are close to  zero. However, th is could greatly  increase the com plexity of the model; if dom­

inated  strategies are included in K uhn Poker, the num ber of pure strategies available to P2 

increases from four to  64 and  the  num ber of param eters increases from two to  six.

Finally, the  m ethods discussed here do no t recognize when the  opponent plays system ­

atically in the repeated game (for example, if when pu t in a particu lar situation  he bets 

every odd tim e and passes every even tim e) or if the  opponent som etim es switches between 

strategies. This research is restric ted  to  m ore basic opponents, as one of the  objectives of 

th is s tudy  is to  determ ine how quickly one can accurately estim ate a single fixed strategy. 

Recognizing when an opponent is dynam ic and  has changed his s tra tegy  could involve using 

p a tte rn  recognition ideas (to see if the opponen t’s recent actions m atch his previous p a t­

tern ) and the in troduction  of history  decay into the d a ta  (giving recent observations more 

em phasis in the  estim ates); th is research is left for fu ture work.

A lthough there are several lim itations to  the  param eter estim ation m ethod, m ost do not 

seriously hinder its application in K uhn Poker, and should no t prevent the  m ethod from 

being applied in larger games, as long as the  models for the  opponent are kept simple. The 

issue of how the  m ethods can be scaled will be discussed in C hap ter 7.
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Chapter 4

D ata-C ollection M ethods for 
Explicit M odelling

4.1 In trod u ction

This chapter continues the  study  of explicit modelling. W hile th e  last chapter described 

w hat to  do w ith the d a ta  th a t  has been collected abou t an opponent O, th is chapter focuses 

on the issue of how the modeller P ’s playing style affects the  am ount and quality  of d a ta  

collected. C ertain strategies used by P  will guide the gam eplay into situations where he 

can learn more abou t one or m ore of O ’s param eters. A key result is th a t  in a set of 

data-collection strategies th a t  are equally exploitable (for exam ple, the  set of equilibrium  

strategies) elements can have vastly  different exploration  values.

The modeller has three basic options for his playing s tra tegy  while collecting d a ta  about 

the  opponent being modelled: (i) the  modeller can play w ithin th e  space of equilibrium  

strategies; (ii) the  modeller can play non-equilibrium  m ixtures of essential strategies (pure 

strategies which are p a rt of some equilibrium  stra tegy); or (iii) the  modeller can play a 

m ixture of bo th  essential and superfluous strategies (dom inated strategies and other pure 

strategies which a ren ’t  p a rt of any equilibrium  stra tegy). The first option ensures th a t  the 

modeller will not leave himself open to  exploitation during the data-collection process, while 

the  second and th ird  options m ay allow the  m odeller to  learn m ore quickly th a n  if he only 

used equilibrium strategies. One exam ple of a dom inated s tra tegy  th a t  could be used to  gain 

more inform ation is calling a be t w ith  the  w orst hand, to  observe w hat hand  the  opponent 

holds in a showdown (even though  the modeller is guaranteed to  lose in the  showdown). 

A nother example is to  sim ply check (pass when there  is no be t to  call) or call w ith th e  best 

hand rather th an  raising, also to  see w hat the opponent has in a showdown ra th e r th an  have 

the  opponent fold and not be able to  observe his holding.
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This chapter will dem onstrate the advantages and disadvantages of using different data- 

collection strategies in K uhn Poker. Models will be evaluated assuming th a t  the modeller 

uses a data-collection stra tegy  for hands 1 to  t, during the exploration phase, and then  

stops collecting data . T he model is then used to  com pute a counter-strategy, and this 

counter-stra tegy  is played from hand t +  1 onwards, during the exploitation phase. H and t 

is referred to  as the  switching hand, as it is the  hand a t which the modeller switches from 

the exploration phase to  the exploitation phase.

This chapter will begin w ith  the problem  of P I  modelling P2 in K uhn Poker, because P I  

has the option of more th a n  one equilibrium  stra tegy  to  use, and the difference in exploration 

values w ithin th is  set of strategies is revealing. The problem  of P2 m odelling P I  will then  

be discussed, and the  idea of using a dom inated s tra tegy  to  learn more abo u t an opponent 

will be studied.

4.2 P I  M o d ellin g  P 2  in K uhn  Poker

In K uhn Poker, if a  or 7  is large, P I  will bet more often in R ound One and have m ore oppor­

tunities to  observe w hether P 2 will call a bet when holding the Q, thus gaining inform ation 

about 77. If (3 is large or 7  is small, P I  will have more opportunities to  observe w hether 

P2 bluffs w ith the J ,  gaining inform ation about £. This leaves two options for P I  to  gain 

inform ation about P2: P I  can try  to  learn as much as possible about P2 while restricting 

himself to  playing safe equilibrium  strategies, or P I  can play exploitable strategies which 

do more exploration of P 2 ’s s tra tegy  and thus should learn  faster (bu t possibly a t a greater 

cost).

For this study, the exploration value of five P I  equilibrium  strategies will be com pared, 

for the  settings 7  =  {0 ,0 .25 ,0 .5 ,0 .75 ,1}  (recall th a t  a  =  7 /3  and (3 =  ( 7  +  l ) /3  for equi­

librium  strategies). In  addition, th ree non-equilibrium  “exploratory  stra teg ies” will also be 

evaluated: E xploreE ta  =  (a  =  1 ,f3 — 1 ,7  =  1), which forces P2 into th e  m ost situations 

where the  p param eter is used; ExploreXi =  (1 ,1 ,0 ), which forces P2 in to  th e  m ost situ ­

ations where £ is used; and  B alancedExplore =  (1 ,1 ,0 .5 ), which will explore b o th  of P 2 ’s 

param eters. These exploratory  strategies are more exploitable th a n  the  equilibrium  s tra te ­

gies. The E xploreE ta s tra teg y  has a m inim um  winning ra te  of —0.333 dollars per hand, the  

ExploreXi stra tegy  has a m inim um  winning ra te  of —0.5 $ /h an d , and the  B alancedExplore 

stra tegy  has a m inim um  w inning ra te  of —0.417 $ /h an d . In com parison to  the  equilibrium  

data-collection strategies w hich ensure a winning ra te  of —0.0556 $ /h an d , these exploratory 

strategies are risky to  use, b u t the tradeoff in term s of inform ation gained m ay prove to  be 

worth the risk.
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Using the m inim um  winning rates of the  exploratory  strategies to  represent their riskiness 

is m isleading as it  is rare  th a t the opponent being modelled would actually  be playing a best- 

response stra tegy  to  the data-collection strategy. In such a case the  opponent would likely be 

easy to  model since best-response strategies are usually pure strategies, which are generally 

m uch easier to  identify th an  mixed strategies. T hus some sense of the average winning 

ra tes of the  exploratory  m ethods m ight b e tte r describe how risky it is use these strategies in 

practice. Against random ly chosen opponents th a t  have an exploitability  of 0.0556 $ /h an d  

(these opponents will be described in more detail in Section 4.2.1) the  E xplo reE ta  stra tegy  

achieved an average winning ra te  of —0.0850 $ /h an d , the ExploreXi stra tegy  achieved an 

average winning ra te  of —0.0966 $ /hand , and the  BalancedExplore stra tegy  achieved an 

average winning ra te  of —0.0909 $ /h an d  in  experim ents described in this chapter. N ote also 

th a t  the  exploratory  strategies m ay actually  win m ore against certa in  opponents th a n  a safe 

equilibrium  stra tegy  which lim its the  m odeller’s winnings as well as his losses.

In the  K uhn Poker experim ents shown in th is chapter, the  players being modelled are 

all examples of th e  type  (iii) exploitable player described in C hap ter 2, m eaning th ey  play 

essential strategies in non-equilibrium  m ixtures and never play any superfluous strategies. 

Therefore the use of equilibrium  data-collection strategies will each guaran tee the  equilib­

rium  payoff ra te  of —0.0556 $ /h an d  to  P I  against each of the  players being m odelled, while 

the  exploratory strategies m ay have higher or lower payoff rates against the m odelled play­

ers. Experim ents will be shown illustrating  b o th  the  risks and inadverten t rew ards of using 

an exploratory strategy.

4.2 .1  E xp erim en ta l Setup

For the  experim ents in th is thesis, the player being modelled will play a sta tic  strategy, 

and the  modeller will collect d a ta  over the  course of a m atch. For the  experim ents in 

th is chapter, the  m odeller’s data-collection s tra tegy  will also not change during the  m atch. 

However, after each hand  is completed, the  m odeller’s opponent m odel will be upda ted  and 

then  evaluated. T he opponent model is evaluated by com puting the  best-response stra tegy  

to  the model and  com paring th is s tra tegy  to  the  tru e  best-response s tra tegy  against the 

opponent.

Results will be averaged over m any trials, where a single tr ia l consists of a 900-hand 

m atch between th e  modeller (always in P I  position) and the opponent (always in P2 po­

sition). For each hand  in a trial, one of the six possible holdings for the  two players is 

random ly chosen according to  the  uniform distribution . At each decision node the  action 

taken is random ly selected according to  the d istribu tion  defined by the  acting p layer’s s tra t-
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egy. In every tria l in this section, the modeller begins with initial estim ates (77 =  0.5, 

£ =  0.5), each weighted by two fictitious datapoints.

1/3

1/3

Figure 4.1: P2 Strategies used in Experim ents

One type  of experim ent th a t is perform ed in th is chapter is to  have a modeller use 

each of th e  data-collection strategies against six different testpoints, w here a testpo in t is 

an ordered pair (77, £) th a t  defines a P2 strategy. T he testpoints, p lo tted  in Figure 4.1, 

are Cfi =  (0.8,0.29), 0 2 =  (0 .75,0.8), 0 3 =  (0.67,0.4), 0 4 =  (0 .17 ,0 .2 ),0 5 =  (0.25,0.17), 

and  Oe =  (0.25,0.67). The X in figure 4.1 m arks the  stra tegy  corresponding to  P i ’s initial 

estim ate (0.5,0.5). R esults for each data-collection stra tegy  and tes tp o in t will be averaged 

over 30000 trials. Individual testpo in ts vary in exploitability  and o ther properties which 

m eans results between the  testpo in ts cannot be com pared directly. R esults from this study  

are used to  dem onstrate  some of the in teresting outcom es and side effects th a t  can occur 

when explicitly m odelling an opponent.

A second type of experim ent is perform ed in th is  chapter in order to  dem onstrate the 

average perform ance of each data-collection m ethod. In th is experim ent, th e  modeller faces 

a random ly generated  opponent which has a fixed exploitability. R esults are shown for 

the exploitability  settings 0.0556 and 0, and results are averaged over 200000 tria ls  for 

each data-collection stra tegy  and exploitability  setting . P rio r to  each tria l, the  opponent is 

random ly assigned a s tra tegy  th a t loses to  its best-response s tra tegy  a t an  expected payoff 

ra te  of x  $ /hand . Since there are m ultiple m ethods of random ly assigning a stra tegy  to  the 

opponent, the process used in this thesis is as follows. The first step  is to  choose which of
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0.0556

1/3

1/3

Figure 4.2: C ontours of opponent strategies w ith fixed exploitability

the  six regions (see F igure 4.2) the  opponen t’s stra tegy  will lie in, w here each region has 

a probability  of 1 /6  of being chosen. The selection of region and the exploitability  setting 

determ ine a line segm ent £ w ithin the  region th a t  the  opponent’s s tra teg y  m ust lie on, where 

the  equation for £ is E(ctbr , (3br, Ibr, V, 0  =  where E  is the payoff-rate form ula given in 

E quation  (2.1) and {otbn Pbnlbr)  is P i ’s best-response s tra tegy  for the  chosen region. A 

point is uniformly chosen from £ to  be the  stra tegy  used by the opponent. F igure 4.2 shows 

the  possible settings for the  opponent strategies for bo th  levels of exploitability. Results 

from th is  study  illustra te  general trends among the data-collection strategies, indicating 

which strategies should be used when little  is known about the opponent.

Experim ental results will be shown in th ree types of plots: payoff-rate plots , total win­

nings plots, and proportion-above-equilibrium plots. A payoff-rate p lo t shows the expected 

payoff-rate the  modeller would achieve if he stopped collecting d a ta  after t  hands (for each 

of these t hands the modeller is in P I  position) and began playing the  best-response strategy 

to  his model. In K uhn Poker th is payoff ra te  can be com puted directly  from  Equation (2.1) 

given in C hapter 2. F igure 4.3 is an exam ple of a payoff-rate plot, w here th e  modeller (using 

the  equilibrium  data-collection stra tegy  w ith  7  =  1) tends to  quickly learn  a model th a t 

gives a good counter-stra tegy  (after 200 hands against this opponent the  counter-strategies 

chosen in the different tria ls  achieve an  average value of 0.09 $ /h an d ). However, finding the 

counter-strategy which gives the m axim um  value against th is opponent in  all trials, where 

the value is shown by the  bold do tted  horizontal line, can take a very long time. On all
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of the charts the horizontal axis is labelled “Switching H and” , as the  evaluation at hand t 
assumes th a t the  modeller switches from the exploration phase to  th e  exploitation phase at 

th a t  hand.
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Figure 4.3: Sample Payoff-Rate P lo t

An interesting th ing  to  note in th is  sample payoff-rate plot is th a t  against th is opponent 

the  payoff ra te  a t hand 0 is 0.0208 $ /hand . This m eans th a t  the  counter-strategy to  the 

m odeller’s initial model (created from fictitious d a ta  only) happens to  be a good strategy 

against this opponent, as it achieves a much b e tte r payoff ra te  th a n  the  equilibrium  rate  of 

—0.0556 $ /hand . The counter-strategy to  the  initial model will be very good against some 

opponents (particularly  opponents who play a s tra tegy  sim ilar to  th e  initial estim ates) and 

very bad against others. This m eans the sta rting  point of the payoff-rate graphs will vary 

greatly  between testpoints.

A m ajor concern of opponent modelling is how expensive th e  data-collection phase is, 

and w hether anything is gained in the  short term  by doing opponent modelling. A to ta l 

winnings plot assumes th a t the  two players are playing a fixed-length m atch (of length H),  

and thus the to ta l winnings if the  modeller switches to  the  best-response s tra tegy  after hand 

t can be predicted as the  sum  of th e  winnings up until hand  t  plus the expected winnings 

of the best-response stra tegy  over th e  rem ainder of the  m atch ( (p a y o ff - ra te )* ^  — t)). The 

values on the horizontal axis s ta r t a t 0 , when the  modeller has only his initial estim ates 

(based on fictitious data), and  end a t H ,  when the  modeller has used his data-collection 

stra tegy  for the  entire m atch.
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This type of plot allows one to  see if there is an advantage to  doing opponent modelling as 

com pared to  ju st playing an equilibrium  strategy, and also to  identify the best time to  switch 

to  the  perceived best-response strategy. Figure 4.4, which shows the same data-collection 

stra teg y  and the sam e opponent as in Figure 4.3, is an exam ple of a to ta l winnings plot. The 

plot shows th a t opponent modelling can be advantageous in a short m atch, and also shows 

th a t  the  modeller m ay need to  switch to  best-response early in the  m atch to  make the  most 

of his opponents’ errors. Otherwise, as the  end of the  m atch  gets closer, the modeller has less 

tim e to  exploit the  errors and win a significant am ount of money. Even though the model 

of the  opponent continues to  get b e tte r (as shown by F igure 4.3), the  benefits of improving 

the  m odel are outweighed by the cost of continuing to  explore. Total winnings plots tend  to  

have a peak at around hand 40 or 50 when enough inform ation has been learned to  exploit 

th e  opponent and the  plots then  steadily decline as the  data-collection costs more th an  the 

gains m ade by refining the model. The plots finish a t the  expected winnings for playing 

the  data-collection stra tegy  for the entire m atch, as th a t  is exactly  w hat has occurred if the 

m odeller has not m ade the switch to  best-response by then. As in the  payoff-rate plots, 

the  s ta r t points (the values a t Switching H and 0) of th e  to ta l winnings plots will also vary 

greatly  between testpo in ts, as the s ta r t  point of the  to ta l winnings plot is precisely the s ta rt 

point of the corresponding payoff-rate plot m ultiplied by 200.

Maximum ........
Equilibrium Data-Collection Strategy (G am m a = 1 )  ■

Equilibrium Value o

Cflo>c
'cc
s
njo

I -TD03
O
<13
CL
XHI

-10

0 50 100 150 200
Switching Hand

Figure 4.4: Sample Total W innings P lo t

The payoff-rate and to ta l winnings plots show th e  average perform ance of the  m ethods, 

bu t do not tell the  whole story. I t  could be the  case th a t  the  m ethods do not perform
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well in m any of the trials, but a few very good tria ls are bringing up the  average. A 

proportion-above-equilibrium  plot shows w hat proportion of the trials at hand t have an 

expected to ta l winnings (for 200 to ta l hands) above the am ount th a t would be won by 

receiving th e  equilibrium  ra te  for the same num ber of hands. Figure 4.5 is an example of 

a proportion-above-equilibrium  plot and shows th a t against th is opponent 95% of the  trials 

have an expected to ta l winnings above th e  equilibrium  value a t hand 50. An interesting 

th ing to  note is th a t playing an equilibrium  stra tegy  for the entire 200-hand m atch does 

not guaran tee the equilibrium  rate. E quilibrium  strategies have an expected winning ra te  of 

—0.0556 $ /h an d , bu t equilibrium  players d o n ’t  receive th is value on every hand. In practice, 

there is ab o u t a 50% chance of winning m ore th a n  the  equilibrium  ra te  and a 50% chance 

of winning less th a n  the  equilibrium  ra te  w hen playing a sta tic  equilibrium  stra tegy  over 

a 200-hand m atch. Thus the  expected value for the  equilibrium  strategies is not only the 

average b u t also the m edian in the d istribu tion  of m atch  winnings.

1
Equilibrium Data-Collection Strategy (Gam m a = 1) 

Equilibrium Play

0.8

0.6

0.4

0.2

0
0 50  100 150 200

Switching Hand

Figure 4.5: Sample Proportion-A bove-Equilibrium  P lot 

P r o p e r tie s  o f  th e  T estp o in ts

The first testpo in t, O i =  (0.8,0.29), is in th e  region where S i =  (a  =  0,/3 =  0 ,7  =  1) is 

the best-response strategy. This testpo in t has a m axim um  exploitability of 0.0381 $ /hand . 

The exploratory data-collection strategies have low payoff ra tes against th is testpo in t, w ith 

all having rates less th an  —0.2 $ /hand , which is much lower th an  the equilibrium  ra te  of 

—0.0556 $ /hand . Since the  initial estim ates (r] =  0 .5 ,4  — 0-5) for the opponent are not
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too  d istan t from the correct model and the payoff ra tes for the  exploratory data-collection 

stra teg ies are much lower th an  the equilibrium  rate , th is testpo in t will have the property  

th a t a  modeller using one of the exploratory data-collection strategies should switch from 

exploration to  exploitation very early  in a m atch.

The second testpo in t, O 2 =  (0.75,0.8), is in the  region where S 2 = (0 ,1 ,0 ) is the best- 

response strategy. This opponent is highly exploitable w ith a poten tia l expected payoff 

ra te  of 0.1 $ /h a n d  for P I . In  addition, th is opponent is very close to  the  region where 

S3 is m axim al, and thus S3 obtains the high payoff ra te  of 0.0917 $ /h an d  against this 

opponent. Thus it is expected th a t  opponent m odelling m ethods should usually find a good 

counter-strategy, as there are two very good options, bu t it is likely th a t th e  actual best 

counter-strategy will often not be identified in m any of the  trials, even after a large num ber 

of hands. The exploratory  strategies do not have high payoff ra tes against th is  opponent, 

w ith each achieving a payoff ra te  less th an  —0.1 $ /h an d . Finally, th e  initial estim ates held 

by the modeller are th a t  rj and £ are bo th  0.5, which suggest the  counter-stra tegy  of playing 

either S 2 or 53 . These last two factors suggest th a t  for this opponent it is best to  switch 

very early to  the  perceived best-response stra tegy  when playing against him.

The th ird  testpo in t, O3 =  (0.67,0.4), is in the  region where S3 — (0 ,1 ,1 ) is the  best- 

response strategy. This opponent is much less exploitable th an  the previous two, w ith  P I  

obtaining an expected payoff ra te  of 0.0111 $ /h a n d  w hen playing the  best-response strategy. 

The exploratory strategies have poor payoff ra tes against this opponent as well, w ith  all 

having rates less th a n  —0.15 $ /hand . Since the  initial estim ates are close to  the  correct 

values, the results for th is te stpo in t will suggest th a t  the  m ethods should sw itch from the 

data-collection s tra teg y  to  the  perceived best-response stra tegy  very early  in th e  tria ls. In 

Section 4.2.5 th e  effects of having different initial estim ates and different weights on the 

initial estim ates will be shown; some of the  experim ents will show the  ill effect of switching 

early when the  s ta rtin g  guess is not very close to  th e  actual opponent strategy.

The fourth te stpo in t, O4 =  (0.17,0.2), is in the  region where S4 =  (1 ,0 ,0 ) is th e  best- 

response strategy. This te stpo in t has a m axim um  exploitability of 0.05 $ /h a n d  and the 

exploratory strategies have slightly higher payoff ra tes th an  the  equilibrium  value, ranging 

from —0.0222 to  —0.0167 $ /hand . This point nearly  borders the  region w here S 5 is the 

best-response strategy, and thus S 5 achieves the high payoff ra te  of 0.0444 $ /h a n d  against 

this opponent. Since the  point is close to  a border, it is expected th a t the  m odelling m ethods 

will usually find one of the two good counter-strategies after a large num ber of hands, bu t 

not necessarily the  best counter-strategy.

The fifth te s t point, O5 =  (0.25,0.17), is in the  region where S 5 =  (1 ,0 ,1 ) is the  best-
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response strategy. This te s t point has a m axim um  exploitability of 0.0278 $ /h an d  and the 

exploratory  strategies have payoff ra tes com parable to  the equilibrium  value. Since this 

point is qu ite  d istan t from its neighbouring regions, the modelling strategies should find the 

best counter-stra tegy  in m ost of the tria ls, although possibly after m any hands since the 

effect of the  poor fictitious d a ta  m ust be overcome.

T he final testpo in t, 06  =  (0.25,0.67), is in the  region where S q =  (1 ,1 ,0 )  is the best- 

response strategy. This counter-stra tegy  is exactly the ExploreXi strategy, which means 

th a t the to ta l winnings plot for th is point will suggest th a t the  m odeller should never 

switch from the  ExploreXi data-collection s tra tegy  to  the perceived best-response strategy. 

In fact, all of the  exploratory  strategies have high payoff ra tes against th is  opponent in 

com parison to  the  equilibrium  value of —0.0556 $ /hand : ExploreXi ob tains th e  m axim um  

expected payoff ra te  of 0.0972 $ /h an d , E xploreE ta has an expected payoff ra te  of 0.0278 

$ /hand , and  B alancedExplore has an  expected payoff ra te  of 0.0625 $ /h an d . This opponent 

is highly exploitable which m eans opponent modelling m ethods should have a good chance of 

winning m ore th an  the equilibrium  value of the  game. Furtherm ore, the test-po in t is located 

relatively d istan t from the  nearest bordering region, which m eans th a t  th e  exploratory 

strategies should identify the  correct counter-stra tegy  in a large percentage of th e  tria ls after 

900 hands, because once the  estim ates are close to  the correct values the  po in t-estim ate  will 

be in th e  correct region.

Table 4.1 shows th e  expected payoff-rates of the  six pure strategies th a t  are potential 

best-response strategies against each of the  six testpoints. The table headings are slightly 

abbreviated, as E V [ S , O i )  represents E V \ x \ S , O i } .  Table 4.2 shows the  payoff-rates of the 

different data-collection strategies against each of the testpoints.

s E V [ S , 0 1] E V [ S , 0 2} E V [ S , 0 3} E V [S , 0 4] E V [ S , 0 5} E V [S ,O e\
ŝ 0.0381 -0.1417 -0.0222 -0.0389 -0.0139 -0.1806
S 2 -0.0714 0.1 -0.0333 -0.1 -0.1111 0.0556
5s 0.0143 0.0917 0.0111 -0.1056 -0.0972 -0.0139

s 4 -0.2810 -0.3417 -0.2333 0.05 0.0139 -0.0694
-0.1952 -0.35 -0.1889 0.0444 0.0278 -0.1389

s 6 -0.3048 -0.1083 -0.2 -0.0167 -0.0694 0.0972

Table 4.1: Expected Payoff-Rates of C and idate  Best-Response Strategies against Testpoints 

4.2.2 E quilibrium  D a ta -C o llection  S trategy  C om parison

For th is study, P I  uses five equilibrium  data-collection strategies, corresponding to  7 =  

{0,0 .25 ,0 .5 ,0 .75 ,1} , and the  com bined-hand estim ates described in Section 3.4.1 are used 

to  com pute the opponent model. The payoff-rate plots for the two fixed exploitability  values
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S' E V \ S ,0 { \ E V \S ,  0 2] E V [S ,  0 3] E V [S ,  0 4] E V [S ,  0 5] E V \S ,  0 6]
E quilibrium

ExploreXi
E xplo reE ta

BalancedExplore

-0.0556
-0.3048
-0.2190
-0.2619

-0.0556
-0.1083
-0.1167
-0.1125

-0.0556
-0.2

-0.1556
-0.1778

-0.0556
-0.0167
-0.0222
-0.0194

-0.0556
-0.0694
-0.0556
-0.0625

-0.0556
0.0972
0.0278
0.0625

Table 4.2: Expected Payoff-Rates of D ata-Collection Strategies against Testpoints

and the six P2 testpo in ts are shown in Figure 4.6 and Figure 4.7.

The plots showing results against opponents of fixed exploitability  (Figures 4.6(a) and 

4.6(b)) show th a t  the  average payoff-rate of the  model discovered by the 7 =  0 strategy 

is much lower th an  the o ther equilibrium  data-collection strategies. A gainst opponents 

w ith  exploitability  0.0556 $ /hand , the 7  =  0 stra tegy  is only reaching abou t 0.01 $ /h an d  on 

average. This is due to  the  fact th a t the  7  =  0 stra tegy  receives no inform ation about P 2 ’s r/ 

param eter. T he 7  =  0.25 data-collection stra tegy  achieves much b e tte r  results, bu t the  best 

results are obtained by the  7  =  0.5, 7  =  0.75 and 7 =  1.0 data-collection strategies. These 

th ree strategies w ith the higher settings of 7  all appear to  have very sim ilar average-case 

results. In general, convergence to  the  m axim um  payoff-rate is slower in Figure 4.6.(b) than  

in  Figure 4.6 .(a). The line segm ents m aking up the  contour for opponents of exploitability 0 

are half the  length of the  line segm ents m aking up the contour for the  exploitability  0.0556 

opponents, which results in the  average distance of the exploitability  0 opponents to  their 

nearest bordering region being half th a t  of the  exploitability  0.0556 opponents. Being closer 

to  bordering regions makes it more difficult to  identify the  correct best-response strategy, 

which causes convergence to  be slower.

The payoff-rate plots for O 2 and O 3 (Figures 4.6(d) and 4.7(a)) exhibit an interesting 

phenom enon th a t  is present in m any of the  payoff-rate plots in  th is thesis; the  average 

payoff-rate a t switching hand  0 is close to  the  m axim al payoff-rate, b u t the  average payoff- 

ra te  decreases for about 10 hands before increasing back tow ards the  m axim um . This 

phenom enon will be exam ined in much g reater detail in Section 4.2.4, bu t the  underlying 

idea for why it  occurs is th a t  the initial model based on the in itial estim ates is “too  good to  

be tru e ” ; as variance in the  models increases from early observations, the  average payoff-rate 

decreases as bad  models are sometimes created.

The payoff-rate plots for O4, O 5 and Oe (Figures 4.7(b), 4.7(c) and  4.7(d)) are all similar 

in th a t the  7  =  0 data-collection stra tegy  does not converge to  the  m axim um  payoff-rate, 

while the  o ther data-collection strategies do converge to  the  m axim um . As in the  payoff-rate 

plots for the opponents of fixed exploitability, the series corresponding to  the  three higher 

settings of 7 (7 =  0.5,0.75 and 1.0) are all grouped very tigh tly  together, while the 7  =  0.25
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data-collection stra tegy  converges a little  slower. T he convergence to  m axim um  is slightly 

slower for O 5 th an  for the  other opponents because O 5 is closer to  the  equilibrium  point 

(1 /3 ,1 /3 ) than  the o ther testpo in ts in Figure 4.1; thus it is more likely to  m istakenly infer 

th a t  O 5 is in a region th a t has a bad counter-stra tegy  against O 5 (such as S 2 , S 3  or S q ) 

th an  it is the o ther testpoints.

Overall, the payoff-rate plots seem to suggest th a t better modelling occurs when 7  is 

higher and poor modelling occurs for very low values of 7 . When 7  =  0 the data-collection 

strategy only succeeds when the initial estimate of 77 is very good, such as for testpoints 0 1 , 

O2, and O3. This is a repercussion of the fact th a t when 7  =  0, P I never puts P2 into a 

situation where the 77 parameter is used, which means P I can never learn about it. Thus 

when using the 7  =  0 equilibrium data-collection strategy, P i ’s model can only shift up and 

down from the point (77 =  0.5, £ =  0.5) in Figure 4.1.

The setting of the 7  parameter allows P I  to focus the data-collection on either the 77 (high 

7 ) or the f  (low 7 ) parameter. Setting 7  to give equal consideration to both parameters 

seems to result in the best equilibrium data-collection strategy against general opponents, as 

the region diagram (Figure 2.5) is symmetric with regards to P2’s parameters, and it is also 

nearly symmetric in term s of costs as well. Thus for the case of P I modelling P2 in Kuhn 

Poker it is not more im portant to  be more accurate on the estimation of one param eter 

than  the other. It is the case in other games th a t some parameters are more im portant 

than  others, and thus the modeller can gain more by focusing learning on the im portant 

parameters.

To gain datapoints with certainty (complete-information) about P2’s 77 param eter, the 

J|Q  deal must occur and P I must bet in Round One; this event happens with probability 

7 / I 8 . To gain datapoints with certainty about the £ parameter, the K |J deal must occur 

and P I must pass in Round One; this event happens with probability (1 — y ) / 6 . Thus for 

P I to expect equal numbers of datapoints with certainty in his estimates, the setting of 7  

must satisfy
JL  =  1 -~7 
18 6

Solving this equation gives the setting 7  =  0.75. Each hand has a probability of being 

a datapoint (certain or uncertain) which contributes to the 77 estimate of (7 / I 8 ) +  (7 / 6 ). 

Each hand also has a probability of being a datapoint which contributes to  the £ estimate 

of (1 — 7 ) / 6  +  1/6. Therefore, to expect equal numbers of total datapoints, 7  must satisfy

_7 , 7 =  1 - 7  1
18 6  6  6

Solving this equation results in the setting 7  =  6 /7  ss 0.857. The setting of 7  which achieves
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the  least squares error in the estim ates of bo th  param eters is likely between 0.75 and 0.857.

The to ta l winnings plots, shown in Figure 4.8 and Figure 4.9, show the  expected value 

of the  various data-collection strategies for the horizon of 200 to ta l hands. Since each 

equilibrium  stra tegy  has the  same expected winning rate, these series should appear in the 

same order as in the payoff-rate plots (the winnings up to  hand t  should be the sam e for 

each equilibrium  stra tegy  for every t).

In  the  to ta l winnings plot showing the equilibrium  data-collection strategies used against 

opponents w ith a fixed exploitability  of 0.0556, Figure 4.8(a), the  best equilibrium  data- 

collection strategies are achieving positive expected to ta l winnings, w ith  the  peak being 

around hand  45. Thus against opponents of th is exploitability, the  use of opponent modelling 

to  find a good counter-stra tegy  appears to  be much more favourable th a n  th e  a lternative of 

simply playing an equilibrium  strategy  th roughou t the m atch. Against opponents w ith the 

lower fixed exploitability  of 0, shown in F igure 4.8(b), opponent modelling appears to  be 

less useful, bu t is still a b e tte r  alternative th an  settling for the equilibrium  payoff-rate.

The to ta l winnings plots for O i, O 4 , O5 and Oq (Figures 4.8(c), 4 .9(b), 4.9(c) and 

4.9(d)) all sim ilarly show benefits of doing opponent modelling, w ith w innings higher th an  

equilibrium  and a peak a t around hand 40. T he plots for O 2 and O 3 (Figures 4.8(d) and 

4.9(a)) are different in th a t  th e  expected to ta l winnings s ta rts  very high and  then  decreases 

over the  course of the  m atch. This is due to  th e  fact th a t  the  counter-stra tegy  to  the  initial 

estim ates is very good against these opponents, so any tim e spent on collecting d a ta  is 

wasted; the  model improves very little  and a lo t of winnings are sacrificed during the  data- 

collection period. The results for O 2 and O 3 suggest the rash conclusion th a t  data-collection 

is not useful and the modeller should ju s t tru s t the  initial estim ates w hen determ ining a 

counter-strategy. However, testpo in ts such as O 4 and  O5 are counter-exam ples to  this 

conclusion, as they  are points where the  in itia l model achieves a sub-equilibrium  payoff-rate 

and data-collection pays large dividends.

The purpose of doing opponent m odelling when game theoretic solutions are known is 

to  a ttem p t to  win more th a n  the value of the  game. Figure 4.10 and Figure 4.11 show w hat 

proportion of the  tria ls have a higher pro jected  to ta l winnings th a n  the  equilibrium  value as 

a function of the switching hand. The resu lts show th a t  the modeller does b e tte r  th a n  the 

equilibrium value in about 70 to  95% of th e  tria ls  if he uses an  equilibrium  data-collection 

strategy w ith a high setting  of 7 to  learn and  switches to  a best-response stra tegy  after 

a reasonable num ber of hands; the  plots suggest th a t  in a 200-hand m atch , the  modeller 

should switch a t about hand  50. Recall th a t  playing an equilibrium  stra teg y  for the  entire 

m atch will only achieve th e  equilibrium  payoff-rate 50% of the  tim e, so m odelling has been
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shown to be beneficial in each of the experiments.

Many of the proportion-above-equilibrium charts in Figure 4.10 and Figure 4.11 exhibit 

an interesting sawtooth-shape, particularly evident in the 7  =  0 series in Figure 4.11(b). 

An explanation for this sawtooth shape is forthcoming in Section 4.2.4.

4 .2 .3  E xp loratory  D a ta -C o llection  S trategy  C om parison

The main problem with using equilibrium data-collection strategies is th a t they can take a 

very long time to collect useful data. P i ’s equilibrium strategies in Kuhn Poker restrict a  

to the interval [0,1/3], but when P I passes with the Jack in Round One (which happens 

with probability 1 — a  in th a t situation), P I  cannot learn anything about P 2 ’s parameters. 

Similarly, when P I folds with the Queen in Round Three (which happens with probability 

1 — (3 in tha t situation), P I does not get to  observe what card P2 holds. This problem is 

removed by the “exploratory strategies” which each have a  and /3 set equal to 1; the final 

parameter, 7 , can be set to explore 77 (high 7 ) or £ (low 7 ) more thoroughly. The three 

exploratory data-collection strategies used in these experiments are ExploreEta =  (1, 1, 1), 

ExploreXi =  (1, 1, 0), and BalancedExplore =  (1, 1, 0.5). In the graphs shown in this 

section, the equilibrium data-collection strategy corresponding to 7  =  0.75 has been plotted 

for comparison to the exploratory data-collection strategies.

It is evident from the payoff-rate plots in Figure 4.12 and Figure 4.13 th a t the exploratory 

data-collection strategies do learn more quickly than  the equilibrium data-collection strate­

gies. In each plot there is a gap between the exploratory strategies, which are typically 

grouped tightly together, and the 7  =  0.75 equilibrium data-collection strategy. In particu­

lar, when the initial model achieves a low payoff-rate against the opponent, as for O4 and O5, 

the exploratory strategies recover much more quickly from the bad initial model. No single 

exploratory strategy is shown to be superior to  the others, as each exploratory strategy has 

at least one testpoint for which it converges the fastest. Although the exploratory strate­

gies learn faster than the equilibrium data-collection strategies, the use of an exploratory 

data-collection strategy is risky due to the fact th a t the value of the game is not assured. 

The modeller could lose a large amount of money while collecting data.

The total winnings plots for the opponents having fixed exploitabilities, Figures 4.14(a) 

and 4.14(b), show tha t although the exploratory strategies have lower average payoff-rates 

during data-collection than  equilibrium against these opponents, the improved models allow 

for higher expected to tal winnings than  the equilibrium data-collection strategy. However, 

to attain the higher peaks in the total winnings graphs, the modeller must switch from 

exploration to exploitation much earlier in the match, around hand 30.
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The risk of not being guaranteed the equilibrium  payoff-rate is dem onstrated  particu ­

larly by the to ta l winnings plots for 0 \  and O 3 , F igures 4.14(c) and 4.15(a). For these 

points the  safe equilibrium  data-collection s tra tegy  has a higher expected winnings th an  the 

exploratory data-collection strategies, because the  exploratory  strategies lose a lot of money 

while exploring. Conversely, the plots for O 4  and 06, Figures 4.15(b) and 4.15(d), show the 

advantage held by the exploratory  strategies when they  have higher payoff-rates th a n  the  

equilibrium  value.

The plots showing the  proportion  of tria ls which achieve higher expected to ta l winnings 

a t each switching hand th a n  the  equilibrium  value are given in Figure 4.16 and Figure 4.17. 

These plots show th a t if th e  data-collection stra tegy  loses m ore th an  the equilibrium  pay­

off ra te  against an opponent, then  the m odeller generally needs to  switch to  an exploitive 

s tra tegy  earlier in the m atch  to  recoup his losses th a n  if he was using an equilibrium  data- 

collection strategy. As before, each of the  data-collection strategies have to ta l winnings ex­

ceeding the equilibrium  value in 70 to  95% of th e  tria ls regardless of the opponent. However, 

the appropriate switching poin t now differs for m any of the  test-po in ts, and the  proportion 

of exploratory strategies w ith  to ta l winnings above the  equilibrium  value can quickly drop 

below 50% for some opponents, such as opponents 0 \  and O 3 . On the o ther hand, oppo­

nents such as O 4  and Oq can make the exploratory  strategies look deceivingly preferrable 

to  the  equilibrium  data-collection strategies. This occurs because the  exploratory  strategies 

have higher th a n  equilibrium  payoff-rates against these opponents, which results in a large 

proportion of tria ls finishing 2 0 0  hands w ith  h igher-than-equilibrium  winnings.

4.2 .4  E xplanation  o f G raph P ecu liarities

There are two peculiarities present in m any graphs in th is section th a t rem ain to  be ex­

plained. The first peculiarity  to  explain is the  dips, short periods in which the  average 

payoff-rate achieved by th e  model decreases ra th e r th a n  increases, th a t are present a t the  

beginning of several of th e  payoff-rate graphs. An exam ple of such a dip occurs in Fig­

ure 4.6(d). The second peculiarity  is the  odd saw tooth  shape exhibited in m any of the  

proportion-above-equilibrium  plots, possibly m ost no tab ly  displayed by the  7  =  0 equilib­

rium  data-collection m ethod  in  F igure 4.11(b).

The first peculiarity  is relatively easy to  explain. A gainst certain  opponents, such as 

O 2 , the  initial estim ates held by the  modeller of his opponen t’s param eters happen  to  result 

in a counter-strategy th a t  is very good against the opponent. Thus a t hand  0, every tria l 

has a high expected payoff-rate against the  opponent. Focusing on O 2 , there  are two pure 

strategies which have very high payoff-rates against th is opponent, S 2  and S 3 , which have
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payoff-rates of 0.1 $ /h an d  and 0.0917 $ /h a n d  respectively. All o ther pure strategies have 

payoff-rates less than  —0.1 $ /h an d  against 0%. The counter-stra tegy  to  the in itia l estim ates 

[j] =  0.5, £ =  0.5) is to  play each of S2 and S3 half the time; this s tra tegy  has an expected 

payoff-rate of 0.0958 $ /h an d  against 0 2 -

Table 4.3 shows the num ber of trials for which the modeller suggests one of the good 

counter-stra teg ies (52, S3, or half S 2 and half S3), as well as the  num ber of tria ls  th a t the 

modeller suggests some other counter-strategy, for the  equilibrium  data-collection m ethod 

w ith 7  =  0.75. A t hand 0, all 30000 tria ls have an expected payoff-rate of 0.0958 $ /hand . As 

the  m odeller collects a few hands of da ta , m any of the sequences of observations will lead to 

models th a t  identify one of the good counter-strategies as the best strategy. However, some 

sequences of observations lead to  models th a t  do not identify either S2 or S3 as the best 

counter-strategy, which results in a huge decrease in the  payoff-rate for the  m odeller in these 

trials. Table 4.3 shows th a t for a small num ber of hands, a significant portion  of the  trials 

can experience a sequence of observations leading away from the  good in itia l estim ates to  a 

bad m odel. After 7 hands, nearly  1 /4  of the  tria ls  have experienced such a sequence, and 

consequently the  average payoff-rate decreases. As the num ber, t, of hands of d a ta  collected 

increases, sequences of observations of length  t leading to  bad models become less and less 

likely to  occur. This is illustra ted  in the  tab le  by the  increasing num ber of tria ls  th a t find 

a good counter-stra tegy  from hand 8 onwards. As more and more tria ls recom m end a good 

counter-strategy, the payoff-rate increases.

In sum m ary, a t hand 0 the  modeller in  each tria l has an identical model, th a t happens 

to  be very good. Due to  bad  luck in the  first few observations, some tria ls produce models 

w ith m uch lower payoff-rates. Because the  m arginal increase in payoff-rates m ade by the 

tria ls which improve does not balance the  large decrease in payoff-rates for the  tria ls which 

got worse, the  overall average payoff-rate decreases, which explains the  in itia l drop in the 

payoff-rate plot. As the num ber of hands of d a ta  increases, sequences leading to  bad models 

become less likely, since these sequences consist of the  modeller repeatedly  observing events 

which are unlikely based on the  opponent’s param eter settings. As sequences leading to  bad 

models become less likely, the  num ber of tria ls  which find a good counter-stra tegy  increases, 

and th is corresponds to  the  recovery of the  data-collection m ethods in the  payoff-rate plot.

The explanation of the peculiarity  in the  proportion-above-equilibrium  plots is not quite 

as in tu itive as the  explanation of the  dips in the  payoff-rate graphs. The fundam ental idea is 

th a t  each tr ia l’s winnings a t each t  m ust be an integer, while the  m inim um  winnings required 

to  have projected  to ta l winnings above equilibrium  is a real num ber th a t changes by small 

fractional steps as t  increases. W hen th is th reshold  value crosses an integer boundary  the
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t S 2 , S 3 , or S 2 / S 3 O ther C ounter-S trategy Average Switching Payoff-Rate
0 30000 0 0.0958
1 28411 1589 0.0911
2 26467 3533 0.0831
3 24924 5076 0.0757
4 23936 6064 0.0698
5 23360 6640 0.0658
6 23036 6964 0.0630
7 22946 7054 0.0614
8 23014 6986 0.0604
9 23256 6744 0.0605

10 23597 6403 0.0614
11 23967 6033 0.0625
12 24309 5691 0.0638
13 24702 5298 0.0657
14 25070 4930 0.0676
15 25424 4576 0.0693
16 25794 4206 0.0713
17 26125 3875 0.0733
18 26345 3655 0.0746
19 26596 3404 0.0761
20 26794 3206 0.0774

Table 4.3: Frequencies of Different Suggested C ounter-S trategies

s ta tu s  of all of the  tria ls on the borderline suddenly changes in one tim estep, leading to  

e ither a jum p or a dropoff in the  proportion-above-equilibrium  graph.

T he example th a t is analyzed here is the 7  =  0 data-collection m ethod against O4. 

Suppose every tria l recommends the  sam e counter-stra tegy  S,  for all f ; let V q  be the payoff- 

ra te  of this s tra tegy  versus the opponent. For tria l i to  have a pro jected  to ta l winnings 

above equilibrium  after hand t, it m ust be the  case th a t  i ’s w innings over the first t  hands, 

W i ( t ) ,  satisfies

Wi(t) +  (200 — t) * Vo >  200 * (Equilibrium  Payoff-Rate)

T his gives rise to  the condition th a t all tria ls  which have winnings g rea ter th a n  u!mjn(t) have 

p ro jected  winnings greater th an  equilibrium , where

wmin ( t )  — 200 * (Equilibrium  Payoff-Rate) — (200 — t) * V q  

=  Vot +  constan t

Thus if Vo is negative, then  w mm(t) decreases over tim e, which is the  case for O4 and 

th e  counter-strategy S i , which is the  best counter-stra tegy  th a t the  7  =  0 equilibrium  data- 

collection m ethod can find (since th is  m ethod  never receives d a ta  abou t P 2 ’s 77 param eter, 

if the  fictitious d a ta  suggests 77 >  1 /3 , th en  the  only counter-strategies th a t  it can identify
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are S i, S2 and S3). Figure 4.18(a) is a histogram  which shows the num ber of tria ls for 

which u !,(42) =  ui, for each of the  different levels of winnings, w. Figure 4.18(b) is a similar 

histogram  for hand 4 3 .  These particu lar histogram s are shown for three reasons. T he first 

reason is th a t by hand  42, Si has been identified as the best counter-stra tegy  in a m ajo rity  

of the trials. T he second reason is th a t by th is point of the m atch the histogram s do not 

change much from one hand  to  the  next; the  equilibrium  data-collection stra tegy  has an 

expected winning ra te  of —0.0556 $ /h an d , so there  is a tiny  leftward shift of m ass in the 

histogram s. The th ird  reason is th a t  there is a jum p in the proportion-above-equilibrium  

graph  between hand  42 and hand  43.

The missing piece of the  puzzle is the  behaviour of w mm(t) over th is  period; u)mjn ( 4 2 )  =  

— 4 . 9 6 6 7 ,  and u > m i n ( 4 3 )  =  — 5 . 0 0 5 6 .  W hat th is m eans is th a t  a t hand 4 2 ,  all tria ls w ith 

winnings of -4 or g reater (and recom m end the  counter-stra tegy  S i) are projected  to  have 

to ta l winnings above equilibrium . A t hand 43, all tria ls w ith winnings of -5 or greater are 

projected to  have to ta l winnings above equilibrium , increasing th e  num ber of tria ls  above 

equilibrium  by roughly 1 4 0 0 .

Between jum ps there  is a slow decline in the  proportion-above-equilibrium  plot, as there 

is a leftward shift of m ass in the  winnings histogram s (recall th a t  the  expected payoff-rate 

of the equilibrium  data-collection s tra tegy  is —0.0556 $ /h an d ). W hile the  threshold  w min(t) 

rem ains between a pair of integers x \  and x \  — 1 over such a period, there  are a  few less 

trials w ith winnings of x \  or g reater after each hand.

4.2 .5  C hanging th e  In itia l E stim ates

In  the previous sections, th e  m odeller begins w ith fictitous d a ta  th a t  generates the  initial 

estim ates (r] =  0.5, £ =  0.5) and each of these estim ates is generated  from 2 fictitious points, 

for all of the experim ents shown. These initial estim ates can give the  m odelling m ethods very 

high initial payoff-rates against some opponents, particu larly  against 0 2 - This s tudy  varies 

the  initial estim ates and the  weight placed on the  estim ates for th e  param eter estim ation 

m ethods. The purpose is to  see how the  m ethods recover from bad  initial models, as well 

as to  measure how m ore persisten t initial models affect the  results.

Figure 4.19 shows payoff-rate results for O i =  (0.8,0.29) and  O 2 =  (0.75,0.8) w ith  ficti­

tious da ta  supporting bad initial models of (0.2, 0.75) and (0.15, 0.1) respectively. Results 

are shown for the  B alancedExplore data-collection m ethod w ith four series shown on each 

graph. The first series is the  weak default estim ates, which is the  settings used for all 

previous experim ents shown (initial estim ates are (0.5, 0.5) generated  from two fictitious 

points each). The second is the strong default belief, which is the  initial model (0.5, 0.5)

7 3
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weighted by 20 fictitious datapoin ts each. T he th ird  and fourth series are the weak and 

strong bad initial estim ates, sim ilarly weighted w ith two points and 20 points of fictitious 

d a ta  respectively.

T he plots show th a t  when the modeller has weak bad initial estim ates, they  can easily 

be overcome, and this series has nearly as high a payoff-rate as the  weak default estim ates 

by hand  50. S trong initial estim ates are harder to  elim inate from the  model, which is 

why th e  payoff-rate for the strong bad initial estim ates takes much longer to  converge to  

the  m axim um . For O i, the series corresponding to  strong bad  initial estim ates has not 

fully recovered by hand 200, due to  the fact there  is only one good counter-stra tegy  for 

th is opponent (Table 4.1 shows th a t  the best counter-stra tegy  has a payoff-rate of 0.0389 

$ /h a n d  while the  second-best counter-stra tegy  has a payoff-rate of 0.0143 $ /h an d ). The 

series corresponding to  strong bad initial estim ates for O 2 converges much m ore quickly, 

recovering by abou t hand 120, due to  the  fact th a t  there are two very good counter-strategies 

against th is opponent.

T he results suggest th a t it is safest to  give the  initial estim ates a low weight, so th a t 

they  quickly become negligible when actual observations are m ade.

4.3  P 2  M od ellin g  P I  in K u h n  Poker

The case w here P2 models P I  is quite different from the  opposite case stud ied  in the  last 

section; one m ajor difference is th a t if P2 plays his equilibrium  strategy, he expects to  win 

against P I  a t a ra te  of 0.0556 $ /hand . This m eans th a t P 2 m ay be less m otivated  to  change 

strategies to  take  advantage of P i ’s m istakes, as P2 already has a winning strategy. Another 

difference is th a t  P2 only has four possible pure counter-strategies, while P I  has six possible 

pure counter-strategies in the  opposite case. This difference suggests th a t  P2 m ay have 

more success in  finding the  best counter-stra tegy  th an  P I  had in the  last section. Another 

difference is th a t  P2 has to  estim ate three param eters as opposed to  P I  estim ating two, 

which m ay m ake explicit modelling more difficult for P2. A nother m ajor difference is th a t 

P2 has a unique equibrium  strategy, (77 =  1 /3 , £ =  1 /3 ), while P I  has an infinite num ber of 

equilibrium  strategies.

As in the  last section, P2 has two options to  gain inform ation about P I .  P2 can try  to  

learn as much as possible abou t P I  while restric ting  himself to  playing w ithin th e  space of 

equilibrium  strategies, or P2 can play exploitable strategies which do m ore exploration of 

P i ’s s tra tegy  in an a ttem p t to  learn faster. W hen playing an exploratory  data-collection 

strategy, P2 w ants to  set r/ high so th a t he calls bets when holding the  Queen m ore often and 

learns about P i ’s settings of a  and 7 . To learn  m ore about (3, P2 should bet often w ith the
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•Jack w hen P I  passes, which is achieved by setting  £ high. The s tra tegy  (77 =  1, £ =  1) will be 

denoted ExploreAggressively in the plots in this section. This exploration stra tegy  is highly 

exploitable, as P I  could potentially  win 0.167 $ /h an d  against it. The safer data-collection 

s tra teg y  (77 =  2 /3 , £ =  2/3), which has a m axim um  exploitability  of 0.0556 $ /hand , is 

denoted  ExploreM oderately and is also shown on the plots in th is section.

P2 also has the  option of playing the dom inated s tra tegy  of passing w ith  the King in 

R ound Two when facing a pass, in order to  learn w hat card  P I  held when he passed ra ther 

th a n  be forced to  guess w hat P I  held if he folds. This dom inated s tra teg y  will help P2 learn 

abou t a ,  bu t will prevent P2 from w inning ex tra  m oney from the cases when P I  would call 

in  R ound Three w ith  the Queen. P2 will also miss out on the chance to  learn  about f3 when 

he plays the dom inated strategy. T he s tra tegy  where P2 makes th is dom inated error 25% 

of th e  tim e he is pu t in th a t situation  and otherwise plays the ExploreAggressive stra tegy  

will be denoted as ExploreD om inated in th e  plots in th is section.

4 .3 .1  E xperim en tal Setup

T here are four s tra tegy  settings th a t  are used for P I  when being m odelled by P2 in this 

chapter, allowing the  modeller to  face an opponent corresponding to  each of the  four dif­

ferent best-response strategies. T he four P I  strategies, w ritten  in the  form  (a ,/3 ,7 ), are 

o ;  =  (0 .2 ,0 .5 ,0 .9), 0 '2 =  (0 .12,0.65,0.6), 0 '3 =  (0 .25 ,0 .35,0 .3), and 0 \  =  (0.35,0.65,0.7). 

These opponents have different levels of exploitability  and  other significant differences, which 

m eans th e  results between testpo in ts are not d irectly  com parable.

A single tria l consists of a 900-hand m atch, where th e  modeller rem ains in P2 position 

and  th e  opponent being modelled rem ains in P I  position. For each hand, the  holdings 

of the  two players is random ly selected from the  six possibilities according to  the uniform 

d istribu tion . For each decision, th e  action selected is random ly chosen according to  the  

d istribu tion  defined by the  acting player’s strategy. Results are shown for each of the  four 

test-po in ts, where the results for each test-po in t are averaged over 30000 tria ls. For all of the 

following experim ents, P 2 ’s initial estim ates are (a  =  0.5,/? =  0 .5 ,7  — 0.5), each generated 

from  tw o fictitious datapoints.

P r o p e r t ie s  o f  th e  T est P o in ts

T he first test point, 0 [  — (0 .2 ,0 .5 ,0 .9), is in the region where (77, £) =  (0 ,1) is the  best- 

response strategy, which achieves a payoff ra te  of 0.1167 $ /h an d  for P2. The Explore­

Aggressively stra tegy  wins against th is  opponent a t a slightly higher payoff ra te  th a n  the 

equilibrium  strategy, a t a ra te  of 0.0667 $ /h an d , which m eans there  is a good chance th a t  the
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ExploreAggressively s tra tegy  will be the  m ost successful data-collection strategy. However, 

since the  initial estim ate for the p  param eter is actually  correct, the ExploreD om inated 

s tra teg y  may prove more successful as it focuses more learning on the a  param eter while 

sacrificing exploration of the  P param eter.

T he second test point, 0 '2 =  (0 .12 ,0 .65,0 .6), is in the region where (0 ,0) is the best- 

response strategy, which achieves a payoff ra te  of 0.0883 $ /hand . This te s t point is unique 

in  th a t  the three P2 pure strategies which are not the  best-response stra tegy  achieve lower 

payoff ra tes th an  the equilibrium  strategy. This means if P2 does no t find the  best counter­

stra teg y  he will not do as well as he would by ju s t playing the equilibrium  stra tegy  for the 

m atch.

T he th ird  test point, 0 '3 =  (0 .25,0 .35,0 .3), is in the  region where (1,1) is the  best- 

response strategy, which achieves a payoff ra te  of 0.1333 $ /h an d . This te s t point is the 

opposite of the previous te s t point in th a t  th ree of P 2 ’s pure strategies achieve a higher 

payoff ra te  th an  the equilibrium  ra te . I t  is expected th a t  the ExploreAggressively s tra tegy  

will perform  very well against th is opponent, as the  ExploreAggressively stra tegy  is exactly 

the  best-response strategy.

T he fourth test point, 0 \  =  (0 .35,0 .65,0 .7), is in th e  region where (1 ,0) is th e  best- 

response strategy, which achieves a payoff ra te  of 0.1083 $ /h an d . The ExploreAggressively 

stra tegy  has a payoff ra te  of 0.0667 $ /h an d , which is slightly higher th an  the  equilibrium  

rate . Once again, this suggests th a t  th e  ExploreAggressively stra tegy  m ay be the  m ost 

successful data-collection strategy.

4 .3 .2  E xperim ental R esu lts

The payoff-rate plots shown in F igure 4.20 once again show th a t  the  exploratory  data- 

collection strategies learn faster th a n  th e  equilibrium  data-collection strategy. The Explore­

Aggressively stra tegy  seems to  consistently  learn b e tte r models th a n  the  ExploreD om inated 

strategy, as a side-effect of playing th e  dom inated  s tra tegy  to  learn m ore abou t th e  a  pa­

ram eter is th a t there are fewer opportun ities to  learn about the  p  param eter. T he plots 

suggest th a t this is a bad tradeoff. Between the  exploratory  strategies, ExploreAggressively 

learns slightly faster th an  E xploreD om inated, which in tu rn  learns slightly faster th a n  Ex- 

ploreM oderately, for each of the  te s t opponents. The payoff-rate plots for 0 3 and 0 '4 exhibit 

the  initial dips discussed in Section 4.2.4, again due to  th e  high payoff-rates of the  initial 

models, which leaves little  room  for im provem ent bu t lots of room  for deterioration.

T he to ta l winnings plots shown in F igure 4.21 show the  price paid by th e  ExploreD om ­

inated  strategy for using th e  dom inated strategy, as ExploreD om inated has a noticeably
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sm aller to ta l winnings th an  the ExploreAggressively stra tegy  for every testpo in t. A mislead­

ing property  of these experim ents is th a t the ExploreAggressively s tra tegy  has a payoff-rate 

higher th an  the equilibrium  value against th ree of the four testpo in ts. This seems to  sug­

gest th a t it is a good s tra tegy  to  use to  collect da ta , as in addition to  collecting more d a ta  

th a n  the equilibrium  data-collection strategy, the  ExploreAggressively stra tegy  does not 

risk much by playing in an exploitable fashion. However, a different selection of testpo in ts 

(m aintaining the  property  of having one test opponent for each counter-strategy) could have 

had  the opposite property, w ith ExploreAgressively achieving lower th an  equilibrium  rates 

against th ree  of the  four testpoints.

Figure 4.22 shows the proportion-above-equilibrium  plots for the four testpo in ts. In  the 

plots for 0 [ and  0 '4, the  different strategies are all grouped closely together, m eaning none 

appear much m ore favourable th an  any other. In  contrast, the  plot for 0 '2 has only the 

equilibrium  data-collection stra tegy  ever rising above the  line representing equilibrium  play, 

m aking it the  clear favourite to  use against th is  opponent. T he plot for 0 '3 exhibits the 

opposite result, as each of the  exploratory strategies have winning rates higher th a n  the 

equilibrium  ra te  against th is opponent. This results in the exploratory  stra teg ies having the 

best results against 0 '3.

4.4 C onclu sion s

The results shown in th is chapter have shown the  effectiveness and some of th e  lim itations 

of explicit modelling. One surprising result is th a t  the  m odeller does not always converge 

to  the  best-response strategy, even after a large num ber of hands. W hile th is  would no t be 

surprising in a large game where there are a huge num ber of situations to  keep track  of and 

d a ta  is sparse, th is  is surprising in the  tiny  gam e of K uhn Poker.

There are several reasons why there is a lack of to ta l convergence w ithin 900 hands. One 

reason is th a t when a player uses a nondeterm inistic strategy, there  is a  certa in  am ount 

of variance th a t  is expected to  be present. For exam ple, if a player chooses action L  in a 

given situation  w ith  probability  0.7, and the  player faces th a t  situation  10 tim es, he will 

not necessarily take  action L  7 tim es (which would provide the  correct estim ate). However, 

as the player is pu t into th a t  situation more and m ore often, the  proportion  of tim es he 

chooses L  will converge to  0.7.

A second reason why there  is slow convergence is th a t  K uhn Poker is a gam e of im perfect 

inform ation and  p artia l observability, m eaning th a t  for estim ates to  be m ade, assum ptions 

about the  modelled players hidden cards m ust be made. The assum ptions described in this 

thesis depend on the  different deals of the  gam e occurring an  equal num ber of tim es. I t
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is unlikely th a t this will happen exactly, although the num ber of occurrences of each deal 

should be relatively close after a large num ber of hands.

Regardless of the reasons, it appears th a t i t ’s more difficult to  converge to the best- 

response in all cases th an  m ight be expected. The lack of convergence does not diminish 

the m any interesting results which were dem onstrated  in this chapter.

O ne im portan t result is th a t am ong a set of data-collection strategies which have a fixed 

exploitability, there can be a wide range of exploration values. Thus no t all equilibrium  

strateg ies are equally valuable, even though  each achieves the same payoff-rate against a 

com petent opponent (one who does no t use superfluous strategies). In  the  K uhn Poker 

experim ents shown, the  P I  equilibrium  strategies corresponding to  7  =  0.75 and 7  =  1.0 

are efficient in collecting d a ta  for opponent models. O n the o ther hand, th e  equilibrium  

s tra teg y  corresponding to  7  =  0 can produce terrible models, as it gains no d a ta  on P 2 ’s 77 

param eter, as it never pu ts P2 into a s itua tion  where the  param eter applies. The goal of 

finding solutions to  games is to  find some stra tegy  th a t  is the  least exploitable; when solving 

gam es in  the  future, one should no t be satisfied w ith sim ply finding a solution, bu t should 

also try  to  find a solution w ith  a high exploratory  value.

One question th a t is difficult to  answer is w hether an exploitable s tra teg y  should be 

used to  collect da ta , or w hether the  m odeller should play it safer and stick w ith  equilibrium  

stra teg ies to  collect data . A lthough th e  use of exploratory  data-collection strategies does 

pu t the  modeller a t risk of losing m ore th a n  he would by playing equilibrium  strategies, the 

inform ation gained be the use of exploratory  strategies can often result in  higher expected 

to ta l winnings. Additionally, the  exploratory  s tra tegy  used m ay win m ore th a n  the  equi­

librium  ra te  against the opponent. O n the  o ther hand, there are certain  opponents which 

will exploit a modeller using an exploratory  strategy, and the winnings th e  modeller loses 

during the  data-collection period m ay be impossible to  recuperate. T he guarantee of the 

equilibrium  expected payoff-rate is a  very nice property  of the  equilibrium  data-collection 

m ethods.

In th e  experim ents shown here, th e  use of dom inated strategies to  explore did not improve 

the learning rate. This is because the  use of the  dom inated  stra tegy  sacrificed exploration of 

another opponent param eter. In larger gam es there exist dom inated stra teg ies which do not 

make th is sacrifice, and it is expected th a t  they  would improve the learning ra te . However, 

the use of dom inated strategies is very likely to  lose money, so the  value of the  improved 

model m ay be offset by the losses incurred  during data-collection.

A nother interesting result in th is chap ter is th a t the  switching hand th a t  m axim izes the 

expected to ta l winnings for the m odeller doesn’t  seem to  change much from  one testpo in t to
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the  next. In particular, hand 50 is a reasonable switching hand for every test opponent when 

using a good equilibrium data-collection strategy; when using an exploratory  data-collection 

strategy, the m axim al switching hand often occurs earlier, as the losses of the data-collection 

s tra tegy  quickly outweigh the dim inishing gains of im provem ents to  the model.

One final result th a t m ay have gone unnoticed is th a t the use of explicit modelling w ith 

a good equilibrium  data-collection m ethod has shown a t least a m inor im provem ent against 

every test opponent over the  a lternative of strictly  playing an equilibrium  strategy. Thus 

the use of explicit modelling has no t produced any results which suggest th a t  these m ethods 

should not be used.

The next chapter explores the  idea of im plicitly modelling an opponent and examines 

the  effectiveness of such m ethods in experim ents.
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Chapter 5

Im plicit M odelling

5.1 In tro d u ctio n

W hile the last two chapters have focused on explicitly modelling an opponent, this chapter 

is devoted to  the ta sk  of im plicitly modelling an opponent. Explicit modelling involves 

identifying the  opponen t’s s tra tegy  in order to  determ ine a counter-stra tegy  th a t takes 

advantage of the  opponen t’s m istakes. Im plicit modelling sim ply involves identifying a good 

counter-strategy while being oblivious to  the precise na tu re  of the  m istakes the opponent is 

making. The opponent m odelling m ethods used in th is chapter will t ry  different strategies 

against the  opponent, evaluate each s tra teg y ’s perform ance, and recom m end the counter­

stra tegy  w ith the highest score.

The m ethods discussed in th is chapter are derived from the  Hedge and  Exp3 algorithm s 

designed by Auer e t al [2]. These algorithm s were developed for m ulti-arm ed bandit prob­

lem s1, in which one player has to  choose which of /C different slot m achines to  play and 

receives some rew ard from  the  chosen machine; the  opposing player gets to  choose w hat 

reward is available for each m achine prior to  the  first p layer’s choice. This is analogous 

to  a m atrix  game w here prior to  the  game being played the colum n player chooses which 

column he is going to  play; the  row player’s possible rew ards are then  set, and he receives 

the  reward corresponding to  the  row he chooses to  play.

Im plicit modelling will consist of two phases: exploration, where various counter-strategies 

are used against the  opponent and evaluated, and exploitation, where th e  highest-scoring 

stra tegy  (or strategies, if two or more strategies are tied  w ith the  highest score) are played 

against the  opponent. As in the  explicit modelling case, a m ajor concern of implicit m od­

elling is when to  switch from  exploration to  exploitation. If th e  m odeller chooses to  exploit

1 C oin-operated gam bling m achines (called slot m achines in th is  thesis) th a t  a re  played by inserting  a  
coin and pulling a  handle (an “a rm ” ) on th e  side of the  m achine have been nicknam ed “one-arm ed ban d its” , 
due to  th e  large am ounts of m oney taken  in by th e  m achines from  players.
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his model too  soon, then  he may have a counter-stra tegy  which does not perform  well against 

the opponent. However, if the modeller waits too  long to  begin exploiting his opponent, 

he may not have enough tim e to recover the losses incurred during the exploration phase. 

The Exp3 and Hedge algorithm s allow the  modeller to  ad just his stra tegy  during the data- 

collection phase to  use a m ore exploitive data-collection strategy, and possibly incur fewer 

losses, as well as focus data-collection on prom ising counter-strategies. T he two param e­

ters in the  Exp3 and Hedge algorithm s, ip and p play key roles in the  exploration versus 

exploitation issue. The ip param eter in the  Exp3 algorithm  controls the am ount of uniform 

exploration am ong po ten tia l counter-strategies used by the  modeller while exploring. The 

p param eter controls the am ount of em phasis placed on playing the  h ighest-rated  strategies 

during the  exploration  phase.

Because the  algorithm s created by Auer et al. were designed for a slightly different prob­

lem th a n  the  one studied in this thesis, there  are some m odifications which can be m ade to  

improve the  perform ance for th is problem. These m odifications are discussed in Section 5.3. 

This chapter will proceed by describing the algorithm s presented  by Auer e t al., and show 

experim entally th a t  the  algorithm s are inadequate  for the  problem  being studied. The 

modified algorithm s are then  presented w ith justifications for th e  m odifications, along w ith 

further experim ental results which verify th a t the  m odifications improve the  perform ance 

of the basic algorithm s.

5.2 T h e H ed ge and E xp3 A lgorith m s

The Hedge algorithm  is designed for the  full inform ation m ulti-arm ed band it problem. For 

this problem , each tria l consists of the  adversary first setting  th e  rewards available to  each 

slot machine, and  then  the  player choosing one slot m achine to  play; the player then  receives 

the  corresponding reward. In the full inform ation problem  th e  player also learns w hat 

rewards were available a t each of the  o ther slot machines.

The Hedge and Exp3 algorithm s are given below. N ote th a t  the  param eter 7 in Exp3 

has been changed from th e  original publication to  ip to  avoid confusion w ith the  K uhn Poker 

7  param eter.
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A lgorithm  1: Hedge

1. P aram eter: a real num ber p > 0

2. Initialization: Set Wi(0) =  0 for i — 1 , . . . ,  JC (AH is the num ber of experts)

3. R epeat for / =  1, 2 , . . .  until m atch ends

(a ) Choose action i t according to  the  d istribu tion  p(t),  where

(1 +  p)w ^ ~  D 
P i W  =  ---------~---------

^ t

where Z t is a normalizing factor th a t ensures th a t the  probabilities sum to  
one:

z t = j 2 ( i + p ) WAt~ 1]
3 =  1

(b )  Receive a reward vector x( t) ,  w here Xi(t) € [0, inf) for i =  1, . . . ,  1C

(c) Set  W{(t) = Wi( t  — 1) +  Xi(t) for i =  1 , . . . ,  AC

The basic idea of the Hedge algorithm  is to  focus play tow ards actions which have 

resulted in high rew ards in the  past. This is accom plished by keeping running to tals of the 

rew ards assigned to  each action, and th en  assigning a probability  to  playing each action th a t 

is exponentially  re la ted  to  the  to ta l for it. T he p p aram eter controls how much em phasis is 

pu t on playing the  action w ith the highest cum ulative reward. A large p  (eg. p =  100), will 

cause th e  player to  choose among only the  actions w ith  the highest cum ulative rew ard on 

each tria l w ith very high probability, while a sm all p (eg. p =  0 .01) will cause the player to  

choose am ong all of the  actions in each round w ith  near-uniform  probability.

T he Exp3 algorithm  is designed for the  partia l inform ation b and it game, where the 

player only receives inform ation about the rew ard for th e  slot m achine he chooses to  play. 

The basic idea of th e  algorithm  is to  sim ulate the  full inform ation game by supplying Hedge 

w ith a rew ard vector th a t contains the  actual rew ard received for th e  chosen action (scaled 

by the probability  of choosing the action) and rew ards of value 0 for the  actions not chosen. 

Since inform ation is only gained about one action for each trial, the  Exp3 algorithm  contains 

the  p aram eter ip which ensures th a t the  player will no t ju s t pick one action throughou t the 

trials; otherwise if all rewards are nonnegative th e  m achine chosen in the  first tr ia l could 

im m ediately s ta r t  out w ith a nearly insurm ountable lead, being repeatedly  chosen since it 

has the  only nontriv ial probability. A setting  of ip — 1 corresponds to  all actions being 

chosen from uniform ly on every round, while the  se tting  ip =  0 corresponds to  the  m ost 

exploitive case w here experts th a t have been used and  well-rewarded in the past are highly 

favoured to  be chosen repeatedly.
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A lgorithm  2: Exp3

1. Param eters: reals p >  0 and ip, 0 <  h  <  1

2. Initialization: Initialize Hedge(p)

3. R epeat for t =  1 , 2 , . . .  until m atch  ends

(a) Get d istribution  p(t)  from  Hedge

(b) Select action i t to  be j  w ith  probability  P j ( t )  =  (1 —  i p ) p j ( t )  +

(c) Receive rew ard X i { t )  £  [0,1]

(d ) Feed sim ulated rew ard vector x ( t )  into Hedge, where

X j ( t )  =  \  W )  l i  3 = l t  \
0 otherwise

T he rew ard is scaled (divided by the  probability  of choosing the action  taken) so th a t 

the  expected  to ta l rew ard for each action  equals the  to ta l reward for th e  full inform ation 

game. T he expected to ta l reward for expert j  after T  rounds is:

T  T

t = 1 t =  1

= g ( i t M g f J  + U-P/W io)

T  

t=i

W h at th is  m eans is th a t the to ta l of th e  scaled rew ards for action j  after T  hands ap­

proxim ates the to ta l of the  unsealed rew ards th a t  would be achieved if action j  was taken  

every hand. Note th a t the  scaling of rew ards prohibits the  setting  ip — 0, since in th is case 

it would often be the case th a t some actions would have a probability  near zero of being 

selected. On the  rare occasion th a t such an  action is selected, th a t action would receive an 

extrem ely large rew ard (due to  the  division by a miniscule probability), leading to  num erical 

instabilities in the  algorithm .

One of the nice properties of the  Exp3 algorithm , is th a t it has been shown to  have 

an average external regret th a t converges to  zero (when the set of actions is all possible 

actions). Recall th a t  external regret is the  difference between the rew ards achieved by the  

algorithm  and the rewards achieved by th e  best pure stra tegy  played against the  opponent. 

In the  paper introducing Exp3 [2], th e  au tho rs prove bounds th a t ex ternal regret for Exp3 

a t tim e T  is 0 (y /T IC log/C).

In an abbreviated variant of the  original paper, published in 2000, there  are m inor
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m odifications m ade to the algorithm s [3]. Hedge only accepts rew ards in the interval [0,1] 

and Exp3 m ust scale the rewards fed into Hedge by ip/1C to m eet th is restriction . These 

do no t seem to  be necessary changes as all of the bounds were thoroughly proved in the 

original publication, and the changes are equivalent to  setting 1 +  P1995 — (1 +  P2 0 oo)K^ ■ 

T hus the  algorithm s are equivalent w ith different param eter settings. The changes appear 

to  have been m ade to  simplify the  proof of regret bounds for the  Hedge algorithm . The 

im plem entations presented here are based on the  algorithm s published in  the  original paper 

[2 ],

In the m ulti-arm ed bandit problem , the  player takes only a single action  in each game. 

This is nearly  equivalent to  choosing a  single fixed stra tegy  a t th e  beginning of a larger 

gam e th a t  consists of m ultiple moves for each player. Once each p layer’s stra tegy  is fixed, 

th e  average outcom e of the  gam e is determ ined, as it is ju s t the  weighted sum  of the 

rew ards available a t each leaf of th e  gam e tree  m ultiplied by the  probability  of reaching 

th a t  leaf. U nfortunately the m odeller does not get to  observe the  average outcom e, bu t 

instead observes a single outcom e based on chance (the deal) and  from  b o th  players using 

the ir strategies to  make decisions over the  course of one hand. For the  purpose of discussing 

these multiple-move games, Exp3 and  H edge’s action sets will instead  be referred to  as the 

set of expert strategies or experts. T he  stra tegy  th a t is selected in step  3.b (for hand  t) will 

be denoted et .

5.2.1 E xperim ental S etu p

For the problem  of P I  modelling P2 in K uhn poker, P I  will have seven possible expert 

strategies for each tria l in th e  experim ents shown here. Six of these experts will be th e  pos­

sible best-response strategies which p a rtitio n  th e  P2 stra tegy  space, as shown in Figure 2.5 

in C hapter 2; the  seventh expert is th e  P I  equilibrium  strategy  w ith  7  =  0.5, a  =  0.167 and 

/3 — 0.5. This m eans th a t  for every P2 instance th a t  P I  faces, the  best-response stra tegy  

is among P i ’s possible counter-strategies, as well as a safe equilibrium  stra teg y  if P I  has 

difficulty identifying a stronger pure counter-strategy. The test points listed in Section 4.2.1 

are reused for these experim ents.

The performance of the  Exp3 algorithm  depends heavily on the  choice of th e  param eters 

ip and p. In the experim ents listed here, results will be shown for ip having each of the 

values {0.25,0.5,0.75,1} for the  setting  p =  1. The effect of changing p will be studied 

in Section 5.7. Results shown are averaged over 30000 trials for each m ethod  discussed 

against each test opponent. A single tria l consists of a 900-hand m atch, w here the  player 

being modelled uses a fixed stochastic  stra tegy  while the  m odeller’s data-collection stra tegy
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changes in accordance w ith ip, p, and the observed rewards. R esults are prim arily shown 

for the testpo in ts O 2 and Oq as these points have highly contrasting results for the m ethods 

studied.

T he charts shown will be the payoff-rate, to ta l winnings, and proportion  above equilib­

rium  plots introduced in the  previous chapter. Payoff-rate plots show the expected payoff- 

ra te  the  modeller would recieve after hand  t (referred to  as the  switching hand) if he switched 

a t th is point to only playing the  s tra tegy  which has the highest score. In  the  event th a t 

i  strategies are tied  w ith  the  highest score, the counter-strategy used is to  play the mixed 

stra tegy  w ith  each of the  tied  strategies having the probability  \ / t  of being played. To­

ta l winnings plots show w hat to ta l winnings the modeller would expect to  achieve if he 

switched to  the expert(s) w ith  the  highest score im m ediately after the  switching hand in 

a fixed-length m atch, and  is com puted as the  sum of the  winnings achieved in exploring 

up until the  switching hand  plus the  expected winnings over the  rem ainder of the m atch. 

P roportion  above equilibrium  plots show the  proportion  of tria ls th a t  would expect to  win 

more th a n  the equilibrium  value in a 200-hand  m atch if they  switched to  the  highest scoring 

expert(s) at the  sw itching hand.

The payoff-rate plots shown in F igure 5.1 show th a t  for any setting  of ip, the  Exp3 

algorithm  has a very slow convergence to  the  best-response payoff-rate. The explicit m od­

elling m ethod w ith equilibrium  (7 =  0.75) data-collection has been p lo tted  in all results 

plots in th is chapter for com parison. W hen com paring the results of th e  Exp3 algorithm  

and the explicit modelling m ethod, it is clear th a t the  Exp3 algorithm  is very far behind. 

The initial payoff-rate of the  Exp3 algorithm s is the average payoff-rate of all seven experts 

(each expert is tied  w ith  th e  highest score a t hand 0); the  initial payoff-rate of the explicit 

modelling m ethod is the  coun ter-stra tegy  to  the  initial estim ates (77 =  0 .5 ,£  =  0.5). Al­

though the initial payoff-rate for the  explicit modelling m ethod is m uch higher for the  two 

opponents shown here, th is  initial head s ta r t  is not responsible for the  superior perform ance 

of the  explicit modelling m ethods. E xperim ents are shown in Section 4.2.5 for which the 

explicit modelling m ethods have a bad initial payoff-rate bu t still quickly converge to  the 

best-response rate.

The to ta l winnings plots in Figure 5.2 show th a t using Exp3 would achieve close to  the 

equilibrium  payoff ra te  against these opponents. The to ta l winnings p lo ts are much flatter 

th an  the corresponding explicit m odelling plots, because the Exp3 data-collection stra tegy  

is partially  exploitive when ip <  1 (the am ount of exploitation depends on the setting  of 

p and ip). This suggests th a t  a  player using Exp3 would have a m uch larger interval over 

which he could switch from exploration to  exploitation, w ithout losing a g rea t deal in to ta l
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winnings.

T he proportion  above equilibrium  plots in Figure -5.3 further show th a t the Exp3 m ethod 

achieves close to  equilibrium  against these opponents (recall th a t  playing equilibrium  s tra te ­

gies only achieves the equilibrium payoff-rate or higher in 50% of trials).

Sim ilar results also hold for o ther test opponents and for the  case of P2 modelling P I.

5.3 Im proving th e  A lg o rith m s

A lthough the  Exp3 algorithm  has been shown to  have an average ex ternal regret th a t  con­

verges to  zero, the  results shown for the  algorithm  suggest th a t th is  convergence is slow for 

th is  application. Since th is thesis is more concerned w ith short-term  results, modifications 

m ust be m ade to  improve the Exp3 algorithm  for the  m ethod of im plicit modelling to  be a 

viable a lternative to  explicit modelling.

5.3 .1  Sharing R ew ards b etw een  A greeing  S trategies

One key observation th a t can be m ade abou t the  game of K uhn Poker is th a t for each 

individual hand, the modeller is only dealt one of the  three poten tia l holdings th a t he could 

have. D espite the  fact th a t the  expert stra teg ies differ from one another over how to  play 

th e  entire game of K uhn Poker, several experts could agree on w hat to  do for the decisions 

th a t  were faced by the expert, et , chosen to  play hand t. Since several expert strategies 

m ay have acted the same as e t , it is logical to  rew ard the agreeing strategies as well as the 

chosen expert. This idea results in a variation  of Exp3 called SharingExp3 which has two 

distinct differences from the norm al Exp3 algorithm . The first difference is th a t m ultiple 

strategies may have a nonzero rew ard in th e  sim ulated reward vector fed into Hedge. The 

second difference is th a t the  rew ard is no longer scaled by the probability  of choosing et , 

b u t is instead scaled by the probability  of choosing any one of the  agreeing experts. The 

SharingExp3 algorithm  is defined fully as A lgorithm  3:
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A lgorithm  3: SharingExp3

1. Param eters: reals p > 0 and ip, 0 <  ip < 1

2. Initialization: Initialize Hedge(p)

3. R epeat for i =  1 , 2 , . . .  until m atch  ends

(a) Get d istribu tion  p(t)  from Hedge

(b ) Query each expert s tra tegy  for which pure stra tegy  they  recom m end on 
th is round.

(c) Select pure stra tegy  e* to  be the pure stra tegy  recom m ended by expert 
j  w ith probability  Pj ( t )  =  (1 — ip)pj { t )  +

(d ) Observe game sequence D t and receive rew ard x et (t ) £ [0,1]

(e) Let Et be the  set of experts which recom m ended a  pure stra tegy  th a t 
would have m ade the  sam e decisions et did to  generate the  game se­
quence D t . C om pute qt (D t ), the  probability  of generating D t given the 
adversary’s decisions are fixed:

<?t(A) =  Pitt)

(f)  Feed sim ulated rew ard vector x(t)  into Hedge, where

X<r.tSll i f  j  p  £
Qt ( D t )
0 otherwise

The “purification” of experts in step  3.b of A lgorithm  3 is done to  m ake the sharing of 

rew ards simpler, as the  scaling factor for the  rew ard is easy to  com pute, and each of the  

agreeing experts gets an equal share of th e  reward. However, it is also possible to  avoid this 

purification step by considering expert i to  be in p artia l agreem ent w ith  the  pure stra tegy  

et used if i would choose a pure s tra teg y  agreeing w ith et w ith  probability  a i(e t ). In  this 

case the probability of choosing an  agreeing pure s tra tegy  is

K
Q t { D t ) =  ^ ^ p j ( t ) a j ( e t ) ,  

j

and the reward given to  expert i is

x A t )  =  a A e t )  ■
[  J [  q t ( D t )

The effectiveness of th is m ethod  of giving partially  agreeing experts a p a rtia l reward is left 

for future studies. I t is unlikely th a t  th is  m ethod would greatly  affect th e  results in this 

thesis since the set of experts contains only one mixed s tra tegy  (the equilibrium  strategy  

corresponding to  7 =  0.5).
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The sharing among partia lly  agreeing experts done by SharingExpS seems to  be in the 

spirit of the Exp4 algorithm  proposed by Auer et al [2]. The Exp4 algorithm  considers the 

case where there are N  experts, where each expert suggests playing a probability  d istri­

bution over the K, actions in the  /C-armed band it problem. The experts ' d istributions are 

added together to  ob tain  a single d istribution over the  actions and  then a single action is 

selected. All experts th a t  suggest playing the selected action w ith  nonzero probability  are 

given a partia l reward. T he full Exp4 algorithm  is given below for com parison, although 

it has not been im plem ented for the  problem  being studied here. Some of the  indices and 

param eters used have been changed here from the original publication to  avoid confusion 

w ith param eters used in th is thesis.

A lgorithm  4: Exp4

1 . P aram eters: Reals p >  0 and ip £ [0,1]

2. In itia liza tio n : Initialize H edge(p) (w ith K, replaced by TV”)

3. R e p e a t  for t — 1 , 2 , . . .  until m atch  ends

(a) G et the  d istribu tion  q(f) £ [0 ,1 ]^  from H ed g e , where qn {t) is the 
p robability  of choosing expert n.

(b) G et advice vectors A n(t) £ [0,1]^ representing expert n ’s probability  
d istribu tion  over the  K  actions. Let p(f) := J2n=l 9 n (0 A n(f), so th a t 
P j ( t )  is th e  overall probability  of choosing action j .

(c) Select action i t to  be action j  w ith  probability  pj ( t )  = (1 — 'b’)p j(t) +

(d) Receive rew ard Xit (t) £ [0,1].

(e) C om pute the  sim ulated rew ard vector x(f) £ [0, fC/ip}^ as

x j{ t )  = i  =  I
y 0 otherwise. J

(f)  Feed the  vector y(t)  £ [0 ,/C /^ ]^  into H ed g e , w here yn(t) =  A n(t) • 
x (t) . This results in d istribu ting  the rew ard am ong the  expert strategies 
which choose it  w ith  nonzero probability.

There are a few key differences between SharingExp3 and Exp4. SharingExp3 is m eant 

for a game where only a sm all p a rt of the game tree is traversed on each hand. Thus several 

pure strategies for the  en tire  gam e agree on the actual subgam e played and these strategies 

share the reward. Exp4 is m eant for a m atrix  game where experts are mixed strategies; the 

experts which contribute to  the  probability  of choosing the  ac tual row selected share the 

reward (in proportion  to  th e  am ount contribu ted  by the  expert).

The payoff plots shown in Figure 5.4 show th a t the sharing of rew ards greatly  speeds 

up the convergence to  the  m axim um  payoff ra te . The Exp3 algorithm  w ith  p = 1.0 and
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■ip = 0.5 lias been plo tted  for comparison. For the  opponent O 2 , the SharingExpS algorithm  

converges to  being near the maximum payoff-rate of 0.1 $ /h an d  after 900 hands, while the 

Exp3 series w ith the highest payoff-rate results only achieves around 0.04 $ /h an d  after the 

same num ber of hands (note th a t the ip =  0-5 Exp3 series p lo tted  does not achieve th is ra te  

bu t a different ip setting  in Figure 5.1 does).

T he to ta l winnings plots in Figure 5.5 show a m inor im provem ent of th e  SharingExp3 

algorithm  over Exp3 against 0% and a huge im provem ent against Oi- Similar to  the Exp3 

to ta l w innings plots, the  SharingExp3 plots are m uch fla tter in com parison to  the  to ta l 

winnings plots for the  explicit modelling m ethods in C hap ter 4, m eaning a player using 

SharingExp3 has a large interval w ithin w hich to  change from exploration to  exploitation 

w ithou t sacrificing a g reat deal of to ta l winnings.

F igure 5.6 shows th a t  for both  of the  opponents shown, the  SharingExp3 algorithm  

outperform s the  equilibrium  payoff ra te  in over 60% of the  tria ls a t hand 75. These plots 

suggest th a t  using SharingExp3 and switching to  exploitation a t hand 75 is often favourable 

to  using an equilibrium  strategy  for the  entire m atch, as an equilibrium  playing stra tegy  

achieves the  equilibrium  ra te  or greater only 50% of th e  time.

5.3.2 Inference

The im proved perform ance of SharingExp3 over Exp3 inspires the  search for further m odi­

fications th a t  produce large benefits. Since updating  experts more often im proved Sharing- 

Exp3, it seems logical to  continue this process. In SharingExp3, the experts th a t  agree w ith 

the  chosen expert are the ones th a t are upda ted  in every round. Sometimes it is possible to  

infer w hat would have happened if an a lternative action had been taken, which m eans i t ’s 

possible to  update  experts outside the agreeing set on some rounds.

An exam ple of inference occurs when P I  passes w hen holding the Jack in  Round One 

and observes a P 2 bet in R ound Two. Because P2 bet in R ound Two, P i  can deduce th a t 

P2 held the  King and can then  infer th a t if P I  had  taken  the  alternative action of betting  

in R ound One he would have lost $2 (P2 would have called w ith  the K ing). Likewise, if P I  

bets in R ound One and loses $2 when P2 calls w ith  th e  King, P I  can infer th a t he would 

have lost $1 by passing. An example where inference cannot be perform ed occurs when P I  

passes in Round One w ith the Jack and P2 passes in R ound Two w ith the Queen. In th is 

case P I  cannot infer w hat would have happened if he were to  have bet w ith the Jack in 

R ound One.

U nfortunately, the  inference m ethod suffers from a  problem  of im balanced updates, which 

means some experts are updated  for holdings in  p roportions which are greatly  out of balance
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relative to  the probability  of the holdings. For the following exam ple, assum e P I  performs 

inference when the J |K  deal is identified, bu t no inference is done for any other deals. 

W hen the pbp sequence occurs, P I  infers a loss of $2 for the action of be tting  instead of 

passing in R ound One. W hen the bb sequence occurs and P2 shows th a t  he holds the 

K ing in the showdown, P I  infers a loss of $1 for the action of passing in R ound One. 

Furtherm ore, suppose P I  bets or passes w ith the Jack in R ound One w ith  equal probability 

(thus all rewards are scaled by the same probability, and the scaling can be ignored for now). 

F igure 5.7 shows hypothetical observations th a t P I  has m ade after 20 hands of holding the 

Jack; the num bers in th e  leaf nodes represent the num ber of tim es P I  has observed those 

leaf nodes, while the  payoffs for each node are below the nodes. T here have been ten  hands 

w here the  J |K  deal occurred, five of which P I  bet in R ound One and lost $2 and five of 

which P I  passed and lost $1. There have also been ten  hands where the  J |Q  deal occurred, 

five of which P I  be t (and saw one P2 call and four passes), and five which P I  passed and 

went to  a showdown. T he observations of P2 folding four tim es w ith  th e  Queen and calling 

once suggest th a t P 2 ’s rj m ay be lower th a n  1 /3  and the best coun ter-stra tegy  to  such a 

param eter setting is to  always bet w ith  the  Jack in R ound One.

Chance

1/6 1/6

bet betpasspass

1-a1-a

bet bet betpasspass

1-h

pass(+$1) (-$2) (-$2)(-$1)

(-$1)

F igure 5.7: O bservations m ade by P I  w ithou t inference

W ithout inference, b e tting  has five hands of J |K  d a ta  (-$10 to ta l)  and  five hands of J |Q  

da ta  (+$1 for each pass and  -$2 for each call, +$2 to ta l), giving a cum ulative reward of -$8 .
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Passing has five hands of J |K  d a ta  (-$5 total) and five hands of J |Q  data  (-$5 to tal), giving 

a cum ulative rew ard of -$10. W ithout inference, betting  w ith the Jack in Round One is 

correctly identified as the  best counter-strategy.

Chance

1/6 1/6

bet betpasspass

1-a 1-a

bet bet betpass pass

I- T1

pass(-$1) (+$1) (-$2) (-$2)

J!Q

(-$l)

Figure 5.8: O bservations m ade by P I  (actual and inferred observations)

Figure 5.8 shows the  observation counts for P I  when he uses inference. W ith  inference, 

betting  has ten  hands of J |K  d a ta  (-$20 to ta l) and five hands of J |Q  d a ta  (+$2 to ta l), which 

gives a cum ulative rew ard of (-$20 +  $2) =  -$18. W ith  inference, passing has ten  hands 

of J |K  d a ta  (-$10 to ta l) and five hands of J |Q  d a ta  (-$5 to ta l), w hich gives a cum ulative 

rew ard of -$15. T hus w ith inference, passing is seen as the best option. The reason for this 

is th a t the  experts have an im balance in data; twice as much d a ta  is available for th e  J |K  

case th an  the J |Q  case, suggesting to  the experts th a t  the J |K  deal is twice as likely as the 

J |Q  deal.

One idea to  address th is im balance problem is to  divide any rew ards (observed and 

inferred) given to  an expert by the  probability  of observing the  situation  directly plus the 

probability  of inferring the situation. Unfortunately, inference by stra tegy  j  about s tra tegy  

i often depends on the  opponent taking a particu lar sequence of actions. This m eans the 

probability  of inference depends on the  probability  of the  opponen t’s actions, which is usually 

unknown (unless all of the  opponen t’s alternative actions are dom inated). This solution 

fixes the im balance exam ple in troduced above, as each J |K  d a tap o in t in Figure 5.8 would
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be divided by 100% (inferences are m ade abou t the action no t taken every tim e th is deal 

occurs), while each J |Q  datapo in t would be divided by 50% (inferences were not made in 

the exam ple when this deal occurred).

However, this solution also excludes o ther situations where inference would intuitively 

seem possible. For exam ple, when the K |Q  deal and the  bb sequence occurs, it would seem 

possible to  m ake use of th e  knowledge th a t  if P I  had passed w ith  the King in R ound One, 

P2 would also have passed (it would be a dom inated action for P2 to  bet). However, this 

inference depends on P2 calling w ith the Queen after P i ’s initial bet (which is w hat actually  

occurred), and  the probability  of this event is unknown.

5.3.3 A verage R ew ards versus C u m u lative Scaled R ew ards

The m otivation for scaling the rewards in bo th  Exp3 and  SharingExp3 is to  com pensate 

for the  fact th a t  certain  experts m ay be chosen m ore often th an  others and thus have 

their cum ulative winnings increased more often. T he goal of scaling the rew ards is for the  

cum ulative winnings of expert j  after hand  t  to  be approxim ately the average reward (if j  

was rew arded on every round) for expert j  m ultiplied by t. However, th is depends on experts 

being chosen and updated  as often as the  probabilities suggest th a t they should be, which 

m ay not be the  case in  the  short term . For exam ple, suppose expert j i  has a probability  

of being upda ted  20% of the tim e (typically th is  p robability  changes from one game to  the 

next, bu t assume it is constan t for this exam ple), b u t over a 100-game period expert j \  is 

only u pda ted  15 tim es, then  j i ' s  cum ulative score will no t be as high as it would be if it were 

updated  w ith unsealed rew ards 100 times. Conversely, if expert j 2 also has a probability  of 

being updated  20% of the  tim e and is updated  25 tim es in a 100-game period, then  j 2 could 

have a higher cum ulative score th an  j \  while having a lower rew ard on average.

A m odification to  Exp3 to  address th is problem  is to  sim ply keep track  of the  num ber of 

tim es each expert has been updated  and com pute each ex p e rt’s observed average unsealed 

reward. This algorithm  is AverageExp3, which generates the  payoff-rate plots in Figure 5.9. 

T he results in these payoff ra te  plots are clearly worse th a n  th e  SharingExp3 algorithm , 

except when ip =  1 and experts are chosen from uniform ly in each round. The reason for 

these poor results is th a t  the AverageExp3 algorithm  can also suffer from an im balance 

problem.

The SharingExp3 m ethod will also be applied for th e  following example, to  show how 

it avoids the im balance problem  suffered by AverageExp3. In order to  apply SharingExp3, 

the rewards have been converted to  the interval [0 , 1] using the conversion formula £[o,i] =  

(£[—2,2] +  2)/4 .
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Chance

1/3 2/3

betpass

Q.K

2.5 

10 updates 90 updates35 updates

Figure 5.10: O bservations m ade by P I

Suppose there are only two experts, i \  and and they  both  advise th e  sam e action for 

all s ituations except when holding the  Jack  in R ound One, in which case i \  advises betting  

and *2 advises passing. Figure 5.10 sum m arizes the  observations m ade by P I . For the 

situations where the experts agree (ie. w hen the  Queen or King is held), th e  two experts 

are updated  90 tim es for a to ta l rew ard of 65. For the  situation  where th ey  disagree, i i is 

updated  35 tim es for a to ta l rew ard of 11.25, and 12  is updated  ten  tim es for a to ta l rew ard 

of 2.5. N ote th a t i \  has a higher average rew ard th an  i 2 when considering only actions taken 

w ith th e  Jack (ii has an average rew ard of 0.321 while *2 has an average rew ard of 0.25), 

which m eans th a t i \  should be the recom m ended expert.

The average rew ard for i \  is (65 +  11.25))/(125 updates) =  0.61 u n its /u p d a te , while 

the average rew ard for 12 is (65 +  2 .5 ))/(100  updates) =  0.675 u n its /u p d a te . AverageExp3 

would recom m end 12 as the  best counter-strategy. The interesting th ing  is th a t i \  has a 

higher average rew ard th a n  12 when only th e  actions w ith the Jack are taken  into consid­

eration, and they  bo th  have the sam e average rew ard for the rem aining situations, b u t *2 

has the higher overall average2. T he reason for th is is th a t  90% of 1 2 ’s average comes from 

holding strong cards (the King and the  Queen), while only 72% of i / s  average comes from 

holding the strong cards. Thus A verageExp3 also suffers from a problem  of im balancing, as 

a bad expert can appear stronger th a n  a  good expert because the good expert was updated  

more often when the weak card was held. Typically th is  imbalance does no t occur simply 

due to  bad  luck, which would be th e  case if bo th  the good and bad experts were equally 

likely to  be updated  w ith  the weak card , b u t the  good stra tegy  ju s t happened  to  catch  all 

the  bad  hands. The im balance typically  occurs because the good expert has a higher proba­

2T his is an instance of S im pson’s paradox: “It is not necessarily tru e  th a t averaging th e  averages of 
different populations gives th e  average of th e  com bined p o pu lation .” [42]
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bility  of being updated when the weak card is dealt. This occurs because the  set of experts 

is p artitioned  into different agreeing sets for each card, meaning an expert can have different 

probabilities of being updated  for each card (the probability th a t  expert i is u pda ted  given 

card C  is the sum of the probabilities of the experts in ?7s agreeing set for C).

This im balance problem does not occur in SharingExp3 because of the  rew ard scaling. 

W hen %2 has a lower probability  of being updated  when the Jack is dealt, his rew ard when 

u p d ated  in th is  situation  is scaled higher to  com pensate for the lower frequency of updates. 

Suppose for the hypothetical d a ta  in Figure 5.10 th a t  i\ has an 80% chance of being updated  

and f2 has a 20% chance of being updated  when the Jack is held. B oth  have a 100% chance 

of being updated  when the Queen or King is held. Scaling the rew ards by th e  probability  of 

the  observations gives the cum ulative rew ard for of ((65/1.0) +  (11.25/0 .8 )) =  79.0625; the 

cum ulative scaled reward for *2 is ((65/1.0) +  2 .5 /0 .2)) =  77.5. SharingExp3 recommends 

i i as the  best expert, although th e  m argin of victory is p re tty  narrow  due to  the  fact th a t 

*2 has been updated  slightly m ore often th a n  the  probabilities d ictate.

In K uhn Poker it is known th a t  the  probability  of receiving each card  is 1 /3 ; th is means 

th a t abou t 1 /3  of each ex p ert’s score should come from holding each card. T he poor results 

of the  AverageExp3 algorithm  are due to  the  fact th a t some experts can be much luckier 

th an  others, in term s of being upda ted  m ore often w ith strong cards th a n  w ith  weak cards. 

This luck is then  reflected in higher average rew ards received by the  lucky strategies than  

unlucky strategies. One way of reducing th is luck factor is to com pute separa te  averages for 

each expert for the  cases of holding each card, and combine these averages to  form  the overall 

average. This m ethod is used in  the  C om ponent AverageHedge and  Com ponentA verageExp3 

algorithm s, A lgorithm s 5 and 6 .
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Algorithm  5: Com ponentAverageHedge

1. Param eter: a real num ber p > 0

2 . Initialization: Set IF. j(0 )  =  I F  q (0 )  =  W.  j^(0) = 0  and C- j(0 )  =  Ci q (0) =
=  0 for i =  1, . . .  ,/C

3. R epeat for t =  1, 2 , . . .  until m atch  ends

(a) C om pute average winnings, A { jj(£  — 1) for i =  1 , . . .  ,K, and H =  J,
K:

{
I V  T j ( t - l )

C^ t - i ) )  if  Ci M (t -  1 ) > 0  

0 otherwise

(b ) C om pute overall average, A i( t  — 1) for i = 1 , . . . ,  1C:

i  ^  - l ) + - l ) A i ^  - l )
A i ( t  1 ) —

(c) Choose action  i t according to  the  d istribu tion  pit) ,  where

(1 +
P i W  =  ----------7----------At

(d ) Receive hand  H, rew ard vector x(t)  and update  vector u(t)

(e) Set W d jj(t) =  Wi;u ( t  -  1) + x t (t) and -  1 ) +Ui (f )  for 
i =  1 , . . . ,  1C

A lgorithm  6: Com ponentA verageExp3

1. Param eters: reals p > 0 and tp, 0 < t(> < 1

2. Initialization: Initialize Com ponentAverageHedge(p)

3. R epeat for t  =  1 , 2 , . . .  until m atch  ends

(a) G et d istribu tion  p{t) from Com ponentAverageHedge

(b) Select s tra teg y  et to  be expert stra tegy  j  w ith probability  Pj{t) =  (1 —

VOPjW +  jc
(c) Observe gam e sequence St  and receive rew ard x et (t) G [0,1]

(d) Let E t be the  set of experts which would have taken  th e  actions required 
to  generate the  game sequence St-

(e) Feed hand  H along w ith  sim ulated rew ard vector x{t)  and  u p d a te  vector 
u(t)  in to  Com ponentA verageH edge, where

,  m  =  f  A t (<) if j £ E t \  
' [ 0  otherwise J

-  _  /  1 i f  j  S  E t  \
i ' [ 0  otherwise J
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W hile these algorithm s have been designed specifically for K uhn Poker, they  can easily 

be adapted for larger games and games where the holdings are not equally likely. In such 

games, separate averages can be kept for each possible holding, and these averages can then 

be combined according to  the  probability  of each holding. For exam ple, if holding H i  occurs 

w ith 50% likelihood, H i  occurs w ith 30% likelihood, and H% occurs w ith 20% likelihood, 

then  the overall average score for expert i would be A* = 0 .5* A ^i +  0.3* Aq2 +  0 .2 * Aj^.

The payoff-rate plots in Figure 5.11 show th a t the  Com ponentA verageExp3 m ethod con­

verges to  best-response m ore quickly th an  any of the previous Exp3 algorithm s. However, 

the  explicit m odelling m ethod plotted  still outperform s the  Com ponentA verageExp3 algo­

rithm , as it converges even m ore quickly to  the best-response strategy. Reasons why explicit 

modelling m ethods perform  b e tte r  in K uhn Poker are discussed in Section 5.8.

The to ta l winnings plots in Figure 5.12 show th a t  the Com ponentA verageExp3 algorithm  

is a significant im provem ent over the SharingExp3 algorithm . I t is now possible to  have 

positive to ta l w innings against b o th  opponents, which was previously only achieved by 

explicit modelling m ethods. T he Com ponentA verageExp3 series are again much flatter 

th an  the explicit m odelling series, allowing for a larger interval to  switch in w ithout losing 

much in to ta l winnings.

The proportion  above equilibrium  plots in Figure 5.13 show th a t  nearly  80% of the  trials 

have expected to ta l winnings greater th an  equilibrium  a t hand  50 for the  Com ponentAver- 

ageExp3 m ethod. For settings of ip < — 0.5, m ore th an  50% of the  tria ls finish w ith to ta l 

winnings above equilibrium , which is b e tte r th an  the explicit modelling m ethods.

5.4 D eco m p o sitio n  in to  Subgam es

In the previous section, the  Com ponentA verageExp3 m ethod was derived to  ensure th a t  1 /3  

of each experts’ score came from holding each card  in K uhn Poker, as in theory  each card 

will be held 1 /3  of the  tim e. A nother way to  approach th is problem  is to  tre a t each holding 

as a separate gam e altogether, use the  AverageExp3 m ethod in each of these subgames, and 

combine the perceived best strategies in the  subgam es to  form a  counter-strategy for the  

complete game (henceforth referred to  as the  supergame).  K uhn Poker decomposes into three 

subgames (the Jack  subgam e, the Queen subgam e, and the  K ing subgam e), each of which 

has a single param eter in the  case where P I  is the  modeller and  dom inated strategies are 

removed. Each K uhn P I  subgam e then  has two pure expert stra teg ies, which results in up 

to  23 =  8 pure counter-strategies generated for the  supergam e. T he im balance problem  for 

AverageExp3 which was discussed earlier is th a t  experts m ay be m ore likely to  be updated  

w ith certain cards th an  they  are w ith others. Thus the  experts scores often do not have
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balanced contributions from each of the  possible holdings. A verageExp3 can be applied 

here because each subgam e is defined by the  player having a particu lar card, which makes 

it impossible for the holdings to  be ou t of balance w ithin an ex p ert’s score as there is only 

one holding.

A lgorithm  7: Decom positionExp3

1. Param eters: reals p  >  0 and ip, 0 <  ip < 1

2. Initialization: (i) Initialize AverageHedge(p) for J subgam e (2 experts)

3 . R epeat for t  — 1, 2 , . . .  until m atch  ends

(a) Receive holding H.

(b ) G et d istribu tion  p ( t ) from AverageHedge corresponding to  H subgam e

(c) Select s tra tegy  it to  be expert s tra tegy  j  w ith probability  P j ( t )  —  (1 —

(d ) Observe gam e sequence St  and receive rew ard Xi(t)  £ [0,1]

(e) Let E t be the  set of experts which would have taken  the  actions required 
to  generate the  game sequence St-

(f)  Feed sim ulated rew ard vector x ( t )  and update  vector u ( t )  in to  Average- 
Hedge corresponding to  the  holding H, where

T he D ecom positionExp3 algorithm  is very similar to  the  C om ponentA verageExp3 al­

gorithm . The decom position m ethod determ ines the  best expert for each subgam e cor-

supergam e, while the  com ponent average m ethod com putes scores for each supergam e s tra t­

egy which weight the  subgam e scores in proportion  to  the  probability  of each subgam e. The 

two m ethods are identical if the  set of experts for the supergam e in the  Com ponentA verage- 

Exp3 algorithm  consists of all the  pure non-dom inated strategies, b u t th is  is not the case 

in the  studies shown here.

In the experim ents in th is chapter, th e  experts for the Exp3 algorithm s are the six pure 

strategies which are possible best-response strategies to  P 2 ’s possible strateg ies, as well as 

the equilibrium  stra tegy  corresponding to  7  =  0.5. This m eans the  resu lts for the  two al­

gorithm s, Com ponentA verageExp3 and Decom positionExp3, can be slightly  different. The

(ii) Initialize AverageHedge(p) for Q subgam e (2 experts)

(iii) Initialize AverageHedge ( p )  for K subgam e (2 experts)

+  2

X i ( t )  if j  £ E t 
0 otherwise

1 if j  £ E t 
0 otherwise

responding to  the  possible holdings and combines these experts to  form  a  stra tegy  for the
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Decom positionExp3 algorithm  may recom m end one of the strategies (a = 0, (3 = 0,7  =  0) or 

(1.1,1)  as the best counter-stra tegy  which could not be identified by the Com ponentAver- 

ageExp3 algorithm . Similarly, the Com ponent A verageExp3 algorithm  could recommend 

(0 .17.0.5,0.5) as the best counter-strategy, bu t this strategy could not be identified by the 

D ecom positionExp3 algorithm .

For extrem e settings of th e  p and ip param eters, the  data-collection strategies used by 

the two algorithm s m ay also be different. If p is set very high and  ip is very low for the 

D ecom positionExp3 algorithm , th en  the  pure strategies initially chosen for each subgame 

will likely be chosen over and over again, as the alternatives are stuck a t th e  cumulative 

score of 0 .

For these settings in the  C om ponentA verageExp3 algorithm , a sim ilar effect occurs, as 

well as the fact th a t  the  in itial choice in one subgam e affects the  choice of strategies in the 

subsequent subgam es. For exam ple, if P I  was initially dealt the  Jack  and  took  the  action 

corresponding to  a  = 1, then  the  experts (1,0 ,0 ), (1,0 ,1), and (1,1,0) would all receive 

the  reward, which is assum ed to  be greater th an  zero for th is discussion (also assume th a t 

the  stra tegy  (0.17, 0.5, 0.5) recom m ended the  action corresponding to  a  =  0 and thus 

does not receive the  rew ard). Given the extrem e param eter settings, these experts would 

now be the only experts considered for hands following the first one, and  if P I  was dealt 

the  Queen in the  second hand, the  setting  (3 = 0 would be twice as likely to  be chosen 

as (3 =  1. However, w ith  reasonable settings of the  param eters p and ip, th e  results of 

the C om ponentA verageExp3 and D ecom positionExp3 algorithm s in K uhn Poker are nearly 

identical, as dem onstrated  by the  payoff-rate plots shown in F igure 5.14. In these plots, 

the  D ecom positionExp3 (p = I,  ip =  0.5) m ethod has a slightly higher payoff-rate th an  the 

Com ponentA verageExp3 (p =  l , ip =  0.5) m ethod.

5.5 In itia l W eigh ts for E xp ert S tra teg ies

One of the m ost notable properties of the  payoff-rate plots shown in th is  chapter is th a t the 

initial payoff-rate is often very different for the  im plicit m odelling techniques th an  it is for 

the  explicit modellers. For th e  im plicit modellers, each of the expert strategies is initially 

tied w ith a score of 0 , which m eans the counter-strategy initially  recom m ended is to  play 

each expert one-seventh of the  tim e. Meanwhile, the explicit m odellers begin w ith  the initial 

estim ates (77 =  0.5, £ =  0.5) which leads them  to  recom m end the  s tra teg y  of playing S 2 half 

the tim e and S 3 half th e  tim e.

One of the concerns arising from these payoff-rate plots is th a t  the  explicit modelling 

m ethods m ight be outperform ing th e  im plicit modelling m ethods because of a b e tte r starting
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point. This study  ad justs the  initial payoff-rate of the im plicit modellers to  m atch th a t of 

the explicit modellers; th is  adjustm ent is done by adding a small am ount of weight to  the

scores of the expert strategies S 2 and S3. This results in bo th  the im plicit and explicit

modellers recom m ending the  same initial counter-strategy.

Explicitly, the score for expert i after hand  t is com puted as

W-( t)  — {  +  1 if * =  2 ° r  i =  3
1 \  t * Ai( t )  otherwise

where Ai( t )  is com puted as in A lgorithm  5. T he modeller uses the C om ponentA verageExp3 

algorithm  w ith p =  1.0 and  ip =  0.5.

Figure 5.15 shows th a t  having experts S 2 and S3 weighted provides a b e tte r initial 

payoff-rate for testpo in ts  0 \  and Oi-  However, the  im plicit modeller w ith  no weights quickly 

catches up in the payoff-rate plots, catching up w ithin 50 hands for 0 1, while tak ing  about 

300 hands to  catch up for Oi-  N either im plicit modeller is able to  m atch  the  convergence 

speed of the explicit m odeller plo tted  for com parison, who uses the  7  =  0.75 equilibrium  

data-collection strategy.

The to ta l winnings p lo ts in Figure 5.16 show th a t  the  modeller w ith  weighted experts 

has a higher initial to ta l expected winnings for these testpo in ts, bu t the  m odeller w ith no 

initial weights quickly closes the  gap. This gap may not close com pletely (as is the  case 

for O 2 ) for two reasons. T he first reason is th a t  the  m odeller w ith no weights added to  

the experts m ay not have a model w ith as high a payoff-rate as the  m odeller w ith weighted 

experts before the  m atch  is over, which m eans as long as there  are hands to  be played, the  

modeller w ith weighted experts has a higher expected winnings for the  rem ainder of the 

m atch. O 2 is an opponent for which the  m odel w ith  the weighted experts achieves a higher 

payoff-rate until about h and  300, so the  m odeller w ith no weights will have lower expected 

to ta l winnings for an entire 200-hand m atch. T he second reason is th a t  th e  data-collection 

strategy is partia lly  exploitive, which m eans the  im plicit m odeller w ith  the  b e tte r model 

will win more during the  data-collection phase.

In contrast, F igure 5.17 shows th a t  having experts S 2 and S3 weighted provides a lower 

initial payoff-rate for te s tp o in t O4, and in th is  case, the  weighted m odeller never closes 

the gap in the to ta l w innings plot. This shows th a t weighting experts S 2 and S 3 does not 

improve the results for all testpoints; any weighting scheme is likely to  im prove results for 

some testpo in ts and be detrim ental to  the  results of others.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.04

0.02

M axim um  .........
W ith  W eights  □

No W eights  +
Explicit M odeller o

- 0.02
C5cr
§  -0 .0 4
>>
CO
CL

2 -0 .0 6o0)
Q_
X

UJ

-0.1

- 0.12

-0 .1 4
5 0 0 7 0 0 9 000 100 200 3 00 4 0 0 6 00 8 00

Switching H and

(a) O i =  (0.8,0.29)

M axim um  
W ith W eights  □

No W eights  +
Explicit M odeller o

0 .0 5

<33t3
<33
CL
X

Lii

-0 .0 5

-0.1

200 3 00 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 000 100
Switching Hand

(b) 0 2 =  (0.75,0.8)

Figure 5.15: W eighted E xperts Experim ent (Com pA verageExp3 (p = 1.0, ip =  0.5)) Payoff- 
R ate P lots

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W ith W eigh ts  □
N o  W eigh ts  +

Explicit M odeller o

COo>c'c
c
g
CO -10o

I—

T>a>
a.x
w -15

-20

-25
100 15050 2000

Sw itching Hand

(a) O i =  (0.8,0.29)

20
W ith W eigh ts  □

No W eights  +
Explicit M ode ller o

COu>ccc
5
CO■5I-
o(D
Q .
X
UJ -10

-15

-20

-25
50 100 150 2000

Sw itching H and

(b) 0 2 =  (0.75,0.8)

Figure 5.16: W eighted E xperts E xperim ent (Com pA verageExp3 (p =  1.0, ip — 0.5)) Total 
W innings P lots

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.06

0.04

0.02

M axim um  
W ith W eights  □

No W eigh ts  +
Explicit M odeller o

0)fo
a:
seo>>cd
CL

- 0.02

~o
CDO<D
Q .
X

LU

-0.04

-0.06

-0.08

-0.1

- 0.12
100 200 300 400 500 600 700 800 9000

Sw itching Hand

(a) Payoff-R ate P lo t

W ith  W eights  
N o W eights  

Explicit M odeller

Vi
S -8

*5
o
I—
-O - 1 2
CDt)
CD

9- '14
LU

-16

-18

-20

-22
50 1000 150 200

Sw itching H and

(b) T otal W innings P lot

Figure 5.17: Effect of W eighted E xperts  on O4 =  (0.17,0.2)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.6 T h e E ffect o f M atch  L ength  on E x p ec ted  W in n ings

All of the  previous to ta l winnings plots th a t have been shown have m atch lengths of 200 

hands. The purpose of th is study  is to  see how changing the m atch length affects the results 

of the  opponent modelling m ethods. I t is also interesting to see how the  switching hand 

th a t maximizes the expected to ta l winnings changes for different m atch  lengths.

F igure 5.18 shows two plots, w here each plot shows to ta l winnings for a single modelling 

m ethod for different m atch lengths. These results are averaged against random  opponents 

th a t have exploitability 0.0556 $ /hand . The explicit modeller, using the equilibrium  data- 

collection m ethod, is not able to  achieve positive winnings when m atches are 100 hands or 

less, as there is no t enough tim e to  learn  a good model and have tim e to  use it. The explicit 

modeller is able to  achieve positive winnings for longer m atches. The im plicit m odeller, 

using Com ponentA verageExp3 w ith  p  =  1.0 and ip =  0.5, is not able to  expect positive 

winnings against th is set of opponents when the  m atch lasts 400 hands or less.

F igure 5.19 shows the  switching hand  th a t achieves the  highest expected to ta l winnings 

for each m atch length. This m axim al switching hand seems to  grow linearly  w ith the  m atch 

length for both  the explicit and im plicit m ethods. T he line for the  im plicit modeller suggests 

th a t  the  modeller should sw itch from exploration to  exploitation  after abou t one-quarter of 

the  m atch is complete. T he explicit m odeller should switch after collecting d a ta  for about 

one-eighth of the m atch.

If the  precise length of the m atch  is not known in advance, the  to ta l winnings plots 

shown in Figure 5.18 suggest th a t  for any m atch longer th an  50 hands, the  modeller can 

achieve expected to ta l winnings close to  the  m axim al am ount if he switches near hand  25 

for the  explicit modeller shown or near hand  50 for the  im plicit m odeller, for any of the 

m atch lengths shown in the plot.

5.7  T he E ffect o f  V arying  p

The results for each of the  different Exp3 m ethods shown thus far have been for p =  1.0 and 

varying values of ip. This allowed for the  im pact of th e  ip param eter to  be seen, bu t no t the 

im pact of different values of p. This study  rectifies th is situation  by varying the value of p 

for fixed values of ip using the  C om ponentA verageExp3 algorithm .

Figures 5.20 and 5.21 show the  payoff-rate and to ta l winnings plots for the  two opponents 

Oi  and O 2 , for various values of p  w ith  ip = 0.5. For these two opponents and th is setting  

of ip, changing p  has no effect on the  payoff-rate plots. I t  does have an  effect on th e  to ta l 

winnings plots as larger values of p  (such as 3 or 9) result in higher to ta l winnings, as the
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data-collection stra tegy  is more exploitive. Lower values of p (such as 0.111) result in a 

data-collection s tra tegy  th a t  is close to  the  uniform exploration strategy, which is why the 

corresponding to ta l w innings series are very close (the p =  0.111 series has slightly higher 

winnings th an  the  uniform  exploration stra tegy  a t the  end of 200 hands).

Lower values of xp result in less uniform  exploration, and a stronger im pact of the p 

param eter. Figures 5.22 and 5.23 show the  payoff-rate and  to ta l winnings plots for various 

p values w ith xp =  0.25. Here there is a little  b it of separation  between the  series in the 

payoff-rate plot for O 2 , as lower values of p generate b e tte r  opponent models; however the 

to ta l winnings plot shows th a t  these b e tte r m odels come a t a higher cost, as th e  more 

exploitive values of p achieve higher to ta l winnings.

Due to  num erical issues arising, the  setting  xp =  0 cannot be used for th e  Exp3 algo­

rithm , as rewards are divided by the  probability  of choosing the  selected expert et , and 

this probability is som etim es very near zero. In addition , w ith large settings of p, the  first 

expert th a t receives a nonzero reward is very likely to  be repeatedly  selected, as th is expert 

is the only expert w ith  a nontrivial probability  of being selected. The Com ponentAverage- 

Exp3 algorithm  does no t have the num erical issues, as rew ards are no t scaled. Furtherm ore, 

the sharing of rew ards between experts ensures th a t  m ultiple experts are rew arded on each 

hand, and no single expert jum ps out to  an insurm ountable lead.

Figures 5.24 and  5.25 show the payoff-rate and to ta l winnings plots for various p values
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w ith ip =  0. Since no uniform exploration is perform ed, the m ethods w ith  larger settings of 

p do not always quickly build good models, as th e  first experts to  show promise are used 

repeated ly  during the data-collection phase; if the actual best expert, eft, does not initially 

show promise, then  the algorithm  is unlikely to  upd a te  eft very often and it takes longer for eft 

to  be identified as the best expert. Thus for large values of p (ie. p > 3), the  algorithm  may 

no t pay as much during the  exploration phase w hen ip =  0 as it does w hen ip >  0.25, bu t this 

is offset by th e  decrease in modelling effectiveness which results in decreased winnings over 

the  explo itation  phase. W ith  small settings of p (ie. p < 1 /3), the m ethods still perform  a 

g reat deal of exploration among all experts even w ith  ip =  0, leading to  b e tte r models being 

developed th a n  for large settings of p. However, th e  frequent use of bad  experts during 

data-collection results in lower winnings during th e  exploration phase, offsetting the higher 

winnings of the  exploitation phase. The best to ta l winnings results for 0 \  (and for m any 

of the  o ther testpo in ts  th a t  are not shown here) occur for the  setting  p =  1, when a good 

model is usually found, as the  value of p is no t so large th a t  data-collection is solely focused 

on th e  initially  prom ising experts, and the cost of exploration is not too  high, as promising 

experts are played more often th an  bad experts during  data-collection.

Overall, the  param eter settings which achieve the  highest expected to ta l winnings ex­

perim entally  are p =  1 and ip = 0. However, even w ith  these settings, the  Com ponentAver- 

ageExp3 m ethod does not achieve as high a  to ta l w innings as the  explicit modeller in the 

plots shown in Figure 5.26.

5.8  C onclu sion s

The first conclusion th a t seems clear from the  resu lts presented in th is  chapter is th a t  in 

th e  setting  of K uhn Poker, explicit modelling is a  m uch stronger modelling m ethod th an  

im plicit modelling. The explicit modelling m ethods consistently generate stronger models 

and  have higher expected to ta l winnings. A lthough it  appeared th a t  th is  m ight be happening 

because the initial estim ates held by the  explicit m odelling m ethods lead to  be tte r initial 

counter-strategies and  the Exp3 algorithm s could no t catch up, th is theory  is disproved in 

Section 5.5.

In K uhn Poker, explicit modelling should achieve b e tte r  results th a n  im plicit modelling 

for a num ber of reasons. F irst, the  game is sm all enough th a t the  param eter model for P2 

only has two param eters for P I  to  estim ate. Second, m any games end w ith a showdown, 

and  even when hands do not end in a showdown there  are cases for which the card unseen 

by the  modeller can be conclusively inferred. E xplicit modelling techniques depend on this 

d a ta , while im plicit modellers are oblivious to  w hether or not showdowns occur. T hird  and
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probably  m ost im portan tly  is th a t the explicit modelling m ethod does a huge am ount of 

inform ation sharing, as it combines d a ta  from different instances of the opponen t’s param e­

ters in the  game tree, such as the  d a ta  discovered about 77 when P I  holds the  Jack and the 

d a ta  discovered about 77 from when he holds the  King. E m ulating th is inform ation shar­

ing in the  implicit modelling m ethods described in this chapter would undoubtedly  raise 

data-balancing problems.

However, implicit m odelling research is not a lost cause, as there  are some valuable 

properties held by the m ethods. Due to  the fact th a t data-collection is directed tow ards 

prom ising strategies, the  w inning ra te  of the  im plicit modelling m ethod  during the explo­

ra tion  phase is often higher th a n  th a t  of explicit modelling m ethods. This also results in 

fla tte r to ta l winnings curves for th e  im plicit modelling m ethods, which m eans they  have a 

larger interval w ithin to  sw itch w ithou t losing a great deal of winnings in com parison to  

the best switching point. E xp lo ra to ry  data-collection strategies for explicit modellers can 

som etim es be highly exploited by the  opponent, and be unable to  recoup th e  losses even 

after an effective model has been generated. In this case the  im plicit m odelling m ethods are 

preferrable as the data-collection s tra teg y  is ad justed  to  avoid losing as m uch during the 

exploration phase.

The im plicit modelling m ethods are achieving b e tte r results th a n  th e  explicit modelling 

m ethod using the 7 =  0 equilibrium  data-collection strategy. In larger games where only 

a single equilibrium stra tegy  is known, or if m ultiple equilibrium  strategies are known bu t 

their exploration values are unknown, im plicit modelling could be a viable alternative.

One m ajor advantage of im plicit m odelling is th a t  all th a t  is required is a set of strategies 

to  use; no inform ation is required abou t the  opponent’s strategy, which m ay be incredibly 

complex for large games. T his suggests th a t  it  m ay be easier to  im plem ent the implicit 

modelling techniques for larger games, as it does not need to  keep track  of a huge model.

It also seems possible th a t  some hybrid of the two modelling techniques could be created; 

the  implicit modelling m ethod  could be used to  collect d a ta , while the  d a ta  collected is used 

to  create an explicit model of the  opponent. The set of counter-strategies could th en  be 

assigned scores based on the  explicit model. This hybrid technique would com bine the  best 

of bo th  worlds, taking advantage of the  powerful da ta-u tilization  of the  explicit modeller 

while risking less winnings during the  exploration phase due to  the  exploitive n a tu re  of the 

implicit m odeller’s data-collection strategy.
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Chapter 6

R elated Work

Poker has been of in terest to  gam e theorists ever since the  fundam ental work of von Neum ann 

and M orgenstern [40], which included an  analysis of a small poker game. As the field of 

game theory developed, m any gam e theorists developed their own sm all poker variants 

(including K uhn Poker) in order to  dem onstrate gam e theory  dynam ics [21, 26, 28]. More 

recently, a ttem pts have been m ade to  apply game theory  principles to  larger, more popular 

poker variants, including F ive-C ard-D raw  [1, 43], S tud Poker [43], and  Texas Hold’em [8]. 

W ith  the recent b reak th rough  of practical m ethods for solving gam es [23] and increasing 

com putational power, m ore poker games are becoming solvable by gam e theory  techniques.

O ther early studies of poker include the  sim ulation of hum an cognitive processes [17], as 

well as the application of m achine learning techniques [35, 41].

Poker has recently experienced an explosion in popularity, and th is has been m irrored 

in academ ia as well. The U niversity of A lberta C om puter Poker Research G roup (C PR G ) 

has been one of the  leaders in poker research for the  game of Lim it Texas H old’em, taking 

several different approaches to  the  challenge of creating a strong player. Recent approaches 

have resulted in the  program s Poki, PsO pti, and Vexbot.

Poki [14, 15] is a program  which does opponent modelling in Texas H old’em, for play in 

a ring-game w ith up to  ten  players. Poki is a rule-based system  which perform s sim ulations 

of the rest of the  game to  decide w hat action is best. Explicit opponent models are used 

in the simulations to  predict th e  holdings of the opponents as well as their fu ture decisions. 

This program  is slow to  adap t, indicating th a t either the  model is no t being effectively 

developed, or it is no t being effectively used. One problem  is th a t  th e  ten-player ring-game 

has an exponentially larger gam e tree  th an  the two-player game, resulting  in a need for an 

exponentially larger model.

PsO pti j8] was created  using gam e-theory to  solve a simplified version of two-player Texas 

Hold’em. While the  program  cannot be exploited in the simplified gam e, the  m apping of
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the solution of the simplified game onto a stra tegy  for th e  full game leaves “holes” in the  

stra tegy  which can be exploited by strong players. Additionally, since the program  plays a 

fixed strategy, opponents th a t discover weaknesses in the  p rog ram ’s stra tegy  can continually 

exploit these weaknesses.

Vexbot [7] is also designed for two-player Texas H old’em, and uses explicit modelling in 

its approach. V exbot searches a game tree to  com pute the  expected value of each action, and 

uses opponent modelling to  improve its evaluation function, using observations from past 

hands to  estim ate the  probability  of reaching each leaf in th e  game tree, as well as estim ating 

the opponen t’s hand  s treng th  a t each leaf. Vexbot is quickly able to  take advantage (within 

200-400 hands) of m ost weak rule-based com puter program s, bu t takes longer (typically 

several thousand  hands) to  successfully model PsO pti, which is a much m ore complex th an  

other rule-based system s th a t  have been developed. V exbot has had  lim ited success against 

strong hum ans, who effectively change the ir style m ore quickly th a n  V exbot can adapt.

The C PR G  is also curren tly  investigating the  use of Bayesian probabilistic models [36], 

to  m aintain a d istribu tion  over different explicit opponent models. After every hand, a pos­

terior probability  d istribu tion  over opponent models, P r(O pponen t Model | O bservations), 

is updated; th is requires th a t  a prior d istribution , P r(O pponen t M odel), is initially speci­

fied. The fully Bayesian approach to  using th is d istribu tion  to  exploit the  opponent would 

involve com puting a Bayesian Best Response (BBR), m axim izing the  expected value over 

all possible hands and opponent strategies, given the observations. However, com puting 

the B BR can be quite expensive, particularly  in large games. One a lternative suggested is 

to  find the  m axim um  a posteriori (M AP) stra tegy  of th e  opponent (the opponent stra tegy  

th a t is the  m ost likely, given the  observations) and com pute a best-response s tra tegy  to  th is 

M AP strategy. A nother a lternative is to  sam ple opponent stra teg ies based on the posterior 

distribution, and  play a best-response stra tegy  to  the s tra teg y  th a t  is chosen on each hand 

(Thom pson Response). T he M AP response m ethod is th e  m ethod  m ost sim ilar to  the  ex­

plicit modelling perform ed in th is thesis, as here the  m odeller com putes a single stra tegy  

based on the observations and  assumes the  opponent is playing th is  strategy. The effect of 

using M AP estim ates in K uhn Poker is briefly explored in Section 6.1.

O ther interesting approaches to  creating strong poker program s include the use of evolu­

tionary  algorithm s. One such approach [5, 22] evolves a param etrized  stra tegy  while playing 

at a tab le  w ith opponents th a t  use fixed strategies. This is an  im plicit modelling approach, 

as a counter-strategy is developed w ithout explicitly m odelling the  opponents.

A nother evolutionary approach [29, 30], uses P are to  coevolution, an enhancem ent of 

standard  genetic algorithm s which m aintains a population  of strategies, by playing the
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stra teg ies against each other, removing weak stra teg ies and adding new strategies th a t 

are com binations of strong strategies from the population, and repeating  th is process for 

thousands of generations. A nother approach uses Bayesian networks in the im plem entation 

of an adaptive S tud  Poker player [24].

One th ing th a t  is lacking in all of these poker studies is a good m etric to  m easure program  

streng th . W hile results against test suites of simple opponents can be insightful, stronger 

opposition is required for an adequate m easure of s treng th . U nfortunately, m atches against 

strong hum ans only provide anecdotal inform ation, as it is very unlikely th a t a sta tistically  

significant num ber of hands is played. Hopefully as stronger program s are developed by 

independent sources, a set of reference players can be created  which provide a challenging 

and  inform ative te s t for new program s.

O pponent modelling has been used w ith varying degrees of success in m any applications 

besides poker. T he small domains of the  ite ra ted  P risoner’s D ilem m a [4] and Rosham bo

[6] have provided some very interesting and con trasting  results. In the  ite ra ted  P risoner’s 

Dilem m a, a s tra teg y  th a t wins nearly every to u rn am en t is the very simple “tit-fo r- ta t” 

stra tegy  which does no complex opponent m odelling, b u t simply repeats the opponen t’s last 

move. In  con trast, Rosham bo program s which win require the  use of opponent modelling 

to  take advantage of exploitable opponents, while also ensuring th a t  the program  itself is 

difficult to  model.

A recent s tu d y  of universal learning in repeated  m atrix  games [32] used sim ilar m ethods 

(explicit and im plicit modellers) to  those studied in  th is  thesis. Extensions to  handle sys­

tem atic  opponents by way of extending inform ation sets to  include knowledge of the  actions 

taken  in the previous round(s) were also introduced. However, these extensions also increase 

the  com plexity of the  model, slowing down the  learning in m any cases.

One in teresting  opponent modelling study  uses past games to  tra in  a decision tree  to  

identify particu lar opponents or categories of opponents by their playing style [33]. Once an 

opponent is identified (or assigned a style category), his moves can be sim ulated in a search 

of the game tree. A nice consequence of th is research is th a t  the  decision trees can be read 

and in terpreted  in a meaningful way by hum ans.

An algorithm , M * , for using an explicit opponent m odel when searching a game tree 

has resulted in  im proved perform ance of a checkers program  [10, 11]. W hen a com plete 

opponent model is too complex to  create from only a few observations, another approach is 

to  develop a classifier which can categorize certa in  moves as being weak moves; recognizing 

areas where an opponent is weak can lead to  quick exploitation  as the  modeller repeatedly 

directs his opponent into these situations [27]. T his m ethod  of learning a weakness model of
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the  opponent has been successfully applied to  simple program s for games such as Connect 

Four and checkers1.

Im proved artificial intelligence has recently become a high priority in commercial games, 

leading to  efforts to  create adaptive players [38, 37]. Efficiency is a key issue, as these 

adaptive m ethods m ust work in real-tim e. An interesting  property  of th is research is th a t 

while th e  m otivation for doing opponent m odelling is usually to  be able to  exploit the 

opponent as much as possible, this is not necessarily tru e  for commercial games. The goal 

of com m ercial games is to  enterta in  the player, no t provide an unbeatable opponent th a t 

fru stra tes the  player, causing the player to  qu it playing the game. A daptive play is also 

in troduced via dynam ic scripting, in which characters are defined by sets of rules, and the 

probab ility  th a t rules are present in fu ture characters depends on the success of previously 

created  characters. This seems sim ilar to  the  im plicit modelling m ethods studied here, 

where counter-strategies are sampled and evaluated, and counter-strategies which produce 

good results are used more in the future.

Since the  publication of Exp3 and Exp4 [2], research has been done on im proving regret 

algorithm s and forming more complex notions of regret. The notion of response regret has 

been in troduced [44], which examines the  sho rt-term  consequences of actions ra th e r th an  

ju s t th e  im m ediate consequences. In  nonzero-sum  gam es such as the  ite ra ted  P risoner’s 

D ilem m a algorithm s minimizing response regret investigate how other agents respond to  

being trea ted  nicely, leading to  cooperative players ra th e r th an  defecting players which are 

created  by typical regret algorithms.

One concept th a t has not been greatly  explored in th is thesis is the  value o f in form a­

tion  [13, 16]. Each action th a t  the  m odeller can take has an associated inform ation value 

(corresponding to  the improvement m ade to  th e  m odel based on the  inform ation gained) 

and an associated cost. Using an inform ation theory  framework, the  problem  of optim al 

data-collection can be form ulated as a planning problem , bu t such problem s are infeasible 

to  solve exactly. Regardless, the idea of the  value of inform ation can be used to  create more 

com plex data-collection strategies th an  those used in the  thesis, if focus is directed tow ards 

actions w ith a higher value of inform ation; th is in tu rn  focuses data-collection away from 

p aram eters which have been sufficiently estim ated  while more inform ation is required about 

o ther param eters.

xT h e  checkers program s referred to here a re  no t nearly  as strong  as th e  strongest com puter player, 
C hinook [34], which does no opponent m odelling b u t instead  uses large endgam e d a tabases and deep game- 
tree  searches to  defeat all challengers.
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6.1 T h e M A P  A pproach  to  E xp lic it M od ellin g  in K uhn  
Poker

A recent Bayesian study of poker [36] has suggested the possibility of com puting an oppo­

n en t’s m axim um  a posteriori (M AP) stra tegy  and playing the best-response to this strategy. 

W hile th is M AP strategy can be difficult to  com pute in large games, it can be com puted 

for the sm all game of K uhn Poker2. T he M A P param eter estim ates derived differ slightly 

from the estim ates discussed in C hap ter 3.

Consider the portion of the  game tree  for which the modeller learns ab o u t P 2 ’s setting 

of t], shown in Figure 6.1:

Chance

bet bet bet

cx Y Y

pass pass

Figure 6.1: Portion of K uhn Poker Gam e Tree Relevant to  E stim ating  rj

Here the num bers of tim es th a t th e  leaves have been reached are denoted  A , B , C , F \, 

and F 2 ■ W hile A , B , and C  are observable to  P I ,  F\ and F2 events are indistinguishable, 

and P I  can only observe the  sum  of the  num bers of these two events F  =  F \ + F2. The 

goal is to  find the model w ith  the highest probability  of being the correct model, given 

the  observations. I t is difficult to  d irectly  com pute the probability  of a m odel given game 

observations, bu t it is much easier to  com pute the  probability  of the observations given the

2W hile K uhn Poker is not discussed in [36], F innegan Southey has shown derivations of th e  M A P esti­
m ates for K uhn Poker in personal com m unications w ith  th e  author.
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model, which is why B ayes’ Rule is im portant:

P r (Mo del | O bservations)
P r  (Observations! Model) P r  (Model)

P r (Observations)

If all models are considered equally likely a priori, then

Pr(M odel|O bservations) ~  Pr(Observations)M odel)

and  the  task  is to  find a  m odel which maximizes the  right-hand quantity . Focusing ju s t on

r] and the observed quantities A , B , C , and F , the  goal is to  find an  rj which maximizes

The term  (i) preceding the  sum m ation is the probability  of th e  J |Q  observations given 77,

the Jack F2 tim es and the  Queen C  +  F \ tim es {F\ =  F  — F 2 ) when P I  holds the King and 

bets in Round One. This is m ultiplied by (in ) , the  probability  th a t  P2 would call C  times 

w ith the  Queen, fold F\ tim es w ith  the  Queen, and fold F2 tim es w ith  the  Jack.

The key difference betw een th e  estim ates in troduced in C hap te r 3 and  the estim ate 

derived from continuing th is M A P approach, is th a t  previously a single sp litting  of F  was 

considered (based on probabilities of the  deal and the likelihood of the  preceding sequence 

of events) which led to  a simple form ula for the  estim ate. The M AP approach considers all 

possible splittings of F  and th e  probability  of each splitting.

Continuing the  M A P approach, the  probability  can be significantly simplified. Since 

th is is a m axim ization problem , constan ts will be dropped as they  are moved outside the 

sum m ation, in order to  simplify these formulas:

P r ( A ,B ,C ,F |77) =
C + F i

( i )  (ii) ( in)

while the  probability  of th e  K |?  observations are being summed over all possible splittings 

of F  into the unknown quantities Fi and F 2. The term  (ii) is the  probability  th a t P2 holds

F

P r ( A ,B ,C ,F |77) ~  V A + C ( 1  - r j ) B £
f 2 = o

Recognizing th a t  the  sum m ation is the  binom ial expansion of (1 +  (1 — rf))F , the goal is 

to  find an i] which maximizes
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Setting =  0, one determ ines th a t r) m ust satisfy the equation

(A + B  + C  + F)r]2 +  ( -3 A  - Z C - 2 B -  F)r/ +  {2A  + 2C) = 0

and the quadratic  formula can be used to  solve for r/ (note th a t  only the roo t which lies in 

the interval [0 , 1] is considered),

V =
-  4a,, c,,

2 an

where

an = A  + B  + C  + F

bv =  —3A — ‘&C — 2B  — F

c-q — 2 A  -f 2C

M AP estim ates for £, a , (3 and 7  can be derived similarly. T he following study  com pares 

the results of the  C hap ter 3 estim ators to  the M AP estim ators to  see if either is more 

effective in practice.

Figure 6.2 shows payoff-rate plots for the  explicit m odeller using the  B alancedExplore 

data-collection m ethod w ith  bo th  the  C hap ter 3 estim ators and  th e  M AP estim ators. The 

two estim ators produce nearly  identical results for all of the  testpo in ts , except for the two 

testpo in ts shown. These testpo in ts, O 2 and O3, are a little  different because th e  initial esti­

m ates (0.5, 0.5) provides a very good initial payoff-rate to  the  m odeller. U nlucky sequences 

of initial observations cause bad  models to  be formed in a  sm all p roportion  of the  trials, bu t 

the penalty  for these bad  models is large, while the rew ards for the  tria ls  which improve 

their models is negligible. This causes the  average payoff-rates of the  m odels to  initially 

decrease, before rebounding and climbing back tow ards th e  best-response ra te .

In the  plots shown in F igure 6.2, the  payoff-rate for the  m odeller using th e  M AP estim a­

tors does not quite decrease as much as th a t  of the  modeller using th e  C hap ter 3 estim ators. 

This suggests th a t the  M A P estim ators are a little  m ore likely to  devalue the  unlucky se­

quences of initial observations which cause bad  models. However, th e  gap is quite small and 

following hand 40 for O 2 and hand 80 for O3, the  payoff-rates are v irtua lly  identical. Thus 

it appears th a t the  M A P estim ators create m arginally b e tte r  m odels for a few opponents, 

while producing identical results for most.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ex
pe

ct
ed

 
P

ay
of

f 
Ra

te
 

Ex
pe

ct
ed

 
P

ay
of

f 
R

at
e

0 .0 9 5

M axim um  
C hapter 3  Estim ator 

M A P  Estim ator

0 .0 9

0 .0 8 5

0 .0 8

0 .0 7 5

0 .0 7

0 .0 6 5
4 0 60 8 0 100 120 140200

Sw itching H and

(a) 0 2 =  (0.75,0.8)

0 .0 1 5

0.01

0 .0 0 5

-0 .0 0 5

M axim um  .........
C h a p te r 3  Estim ator ■

M A P  Estim ator □
-0 .0 1 5

- 0.02

-0 .0 2 5

-0 .0 3

-0 .0 3 5
4 0 60 8 0 10020 120 1400

Sw itching H and

(b) 0 3 =  (0.67, 0.4)

Figure 6.2: Payoff-Rate Com parison of M A P E stim ates vs C hap ter 3 Estim ates

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 

Conclusions

7.1 Sum m ary

This thesis has studied the effectiveness of two general types of opponent modelling, explicit 

and im plicit, in a game of im perfect inform ation. T he game used was the  small game of 

K uhn Poker, whose small size allowed for indep th  analysis of the positive and negative results 

achieved by the modelling m ethods. The te s t opponents used fixed strategies, as learning to  

m odel sta tionary  opponents is a first step  tow ards m odelling nonstationary  ones. Overall, 

th is is an ideal se tting  for opponent m odelling in an  im perfect inform ation game, as it avoids 

the  problem s of sparse data , high variance, and  opponents th a t change strategies to  rem ain 

a moving target for the  modelling m ethods. T he goal of th is  research was to  be able to  learn 

an exploitive model of an opponent quickly in th is  ideal setting, and identify any problem s 

which make this goal difficult to  achieve.

T he explicit modelling techniques assum e th e  opponent is playing a stochastic strategy, 

for which each undom inated action has a unique p aram eter associated w ith it th a t specifies 

the probability  of tak ing  th a t action. T he explicit m odeller generates point estim ates of each 

of the  opponent’s param eters, and then  uses th is m odel to  identify opponent weaknesses 

and develop a counter-strategy which takes advantage of these weaknesses. Overcoming the 

p artia l observability of the  game is a m ajo r issue, and  techniques dealing w ith th is issue 

were described in C hap ter 3, which detailed how to  create  param eter estim ates in situations 

of varying levels of inform ation.

Im plicit modelling is an approach which is basically oblivious to  w hat precise errors 

are being made by the opponent. Instead, a ttem p ts  are m ade to  evaluate counter-strategies 

against the  opponent, by playing these counter-strategies and observing the  game outcomes. 

The implicit modelling approach was im plem ented in C hap ter 5 by adap ting  the Exp3 

algorithm  [2] to  the  problem, and m odifications were m ade to  the algorithm  to  greatly
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improve the short-term  perform ance. These m odifications include doing inform ation sharing 

between experts (so th a t m ultiple experts are rew arded on each hand), as well as calculating 

the  average reward of each expert instead of the  cum ulative reward, and ensuring th a t 

equally likely holdings contribute equally w ith in  each ex p ert’s score.

The modelling techniques were evaluated w ith  two key m etrics, each of which assumes 

th a t the modeller learns a model during hands 1 to  t  (the exploration phase), and then  

stops all learning and plays the top -ra ted  counter-stra tegy  from hand t +  1 onwards (the 

exploitation  phase). The first m etric, the  expected  payoff-rate of the  counter-stra tegy  played 

from hand  t + 1 onwards, indicates how good th e  model is a t tim e t. The second m etric, 

the expected to ta l winnings (assum ing a fixed-length m atch), factors the cost of learning 

the  m odel into the evaluation. A th ird  m etric, the  proportion  of tria ls w ith expected to ta l 

winnings above equilibrium, is essentially a supporting  m easure for the to ta l winnings m etric. 

T he to ta l winnings m etric m easures the  average perform ance of the  modelling m ethods, 

while the  proportion above equilibrium  m etric  indicates w hether a good result on the  to ta l 

winnings graph  is the  average of a few very lucky tria ls and m any mediocre ones, or instead 

an  average of m any good trials.

Explicit modellers using different m ethods of collecting d a ta  were com pared in  C hapter 4, 

where several interesting results were dem onstrated . F irst, strategies which are equally 

exploitable often do not have equivalent data-collection value; there  are some equilibrium  

strategies for the  modeller th a t allow effective learning, while there  are o ther equilibrium  

strategies th a t prevent learning from occuring. Second, the  use of exploratory  data-collection 

strategies (which play in an exploitable fashion in order to  gain higher-quality inform ation) 

allows for faster learning. However, th is h igher-quality  data-collection often comes a t an 

ex tra  cost over safer data-collection strateg ies, and  th is forces th e  modeller to  switch from 

exploration to  exploitation early in a m atch  if he expects to  win. T hird , it is no t necessary 

to  have good initial estim ates to  achieve good modelling results, as the  im pact of these 

estim ates (positive or negative) is quickly elim inated  when the estim ates have low weights.

Im plicit modellers, which were evaluated  in experim ents shown in C hap ter 5, are not 

as successful in creating useful models in K uhn  Poker as the  explicit modellers. For m ost 

te s t opponents, the  payoff-rate graphs for the  im plicit modellers converge m uch m ore slowly 

to  the best-response rate. Explicit m odellers achieve be tte r results because they  a ttem p t 

to  understand the strategy played by the opponent, which is possible to  do in th is small 

setting. Im plicit modellers ignore the  s tra teg y  played by the opponent, focusing only on the 

scores given to  the counter-strategies played. One positive aspect of the im plicit modelling 

m ethods is th a t since they are based on the  Exp3 framework, the  data-collection s tra tegy  of
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the  m odeller is partially  adaptive to  the opponent, which often results in greater winnings 

for the im plicit modellers during the  exploration phase th an  the w innings achieved by the 

explicit modellers.

The key result of this research is th a t  even in an ideal setting, opponent modelling can 

be difficult. Despite the elim ination of the challenges of dealing w ith a very high variance 

game, sparse data , and a nonsta tionary  opponent, the  opponent m odelling m ethods are not 

always able to  find the best-response stra tegy  w ithin 200 hands. The fact th a t  an opponent’s 

decisions are often only partially  observable, and th a t  there  is still variance in th is small game 

resu lt in incorrect models being generated. However, although th e  best-response stra tegy  

is no t always found, in m ost cases th e  m ethods do discover a good coun ter-stra tegy  to  use 

against the  opponent, and are able to  achieve expected winnings beyond equilibrium .

7.2 L im itations

T he fact th a t  this research has been perform ed in an ideal setting m eans th a t  it is difficult 

to  draw  general conclusions about th e  techniques used. The small size of the  game allows 

th e  modelling m ethods to  make m any observations abou t each of th e  o pponen t’s possible 

decisions, a situation  th a t is not th e  case in m ost real-world games. One way of dealing w ith 

th e  lack of da ta  available in a larger gam e is to  use abstractions to  create an approxim ation 

of the  game which is smaller; for exam ple, situations which are sim ilar, such as when the 

opponent holds a very strong hand, can be trea ted  as identical. P a rtia l observability also 

becomes a much bigger problem  in large games, as there  are m ore possibilities for opponent 

holdings, m aking it  very difficult to  m ake conclusions abou t the opponen t’s decision making. 

One reason why im plicit modelling techniques should be easier to  im plem ent in large games 

is th a t  these techniques don’t  require knowledge of the opponent’s hand.

A nother m ajor assum ption of th is  research is th a t the  opponent’s s tra teg y  is fixed. A 

strong player in a real-world game such as poker is likely to  vary his s tra teg y  over the course 

of a m atch. M any players are even known to present a specific “tab le  im age” (the model 

th a t the opponents develop of th e  player based on his actions) early  in a m atch, before 

radically  changing strategies to  take advantage of the ir opponents’ models. T hus being able 

to  model nonstationary  opponents is a key to  success against strong players. One m ethod 

of dealing w ith nonstationary  opponents is to  pu t more em phasis in the  m odel on recent 

observations; the  decaying of earlier observations will help to  keep up w ith  an  opponent 

changing strategies, b u t m ay prove to  be worse against s ta tionary  opponents, as useful 

older d a ta  is forgotten.

The assum ption th a t the m odeller plays a learning stra tegy  from  hands 1 to  f and
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then  freezes the model and  plays only the recommended counter-stra tegy  from th a t point 

on is a little  too  simplistic. F irst of all, it is likely th a t the modeller would continue to  

learn and refine his m odel after sw itching to an exploitive strategy, as he continues to 

make observations abou t the  opponent; unfortunately, cases do arise in real games where 

the m odeller’s counter-stra tegy  will prevent him from learning valuable inform ation which 

m ight make him change his model. In a real game it is also unlikely th a t  the  modeller 

would switch to  playing only th e  recom m ended counter-strategy for a couple of reasons; one 

is th a t  the  counter-stra tegy  m ight not allow the modeller to  refine and correct his model 

if it is incorrect (or becom es incorrect when the  opponent changes strategies). The other 

reason is th a t the  m odeller does no t w ant to  become too predictable, which is likely to  

occur if he constantly  repeats  the  sam e strategy, and could resu lt in the  opponent changing 

strategies to  counter-attack . A change to  the explicit model th a t  m ight help in m aintaining 

a variety of play (which hopefully aids continued learning) is to  fit each opponent param eter 

to  a d istribution  of possibilities, ra th e r th a n  a single point estim ate; th e  counter-strategy 

recom m ended by the  m odel could then  be a m ixture of the  counter-strategies to  each of the 

opponen t’s possible p aram eter settings.

The explicit modellers presented in th is thesis use very simple stra teg ies for collecting 

data , as they repeatedly  use a single fixed strategy. D ata-collection could be improved by 

changing strategies w hen som e param eters have been precisely estim ated  and others require 

greater a ttention . A nother alternative is th a t  an explicit m odeller could make use of an 

Exp3-like framework, playing prom ising counter-strategies m ore often during  the exploration 

phase, in order to  b e tte r d iscrim inate between the prom ising strategies and  increase winnings 

during the  exploration phase as well.

The implicit m odelling techniques presented here are very lim ited due to  the lack of 

inform ation sharing perform ed in com parison to  th a t of the  explicit m odellers. For im plicit 

modelling to  achieve sim ilar results, increasing the am ount of inform ation sharing is probably 

the  only answer; the  key is to  ensure expert updates are balanced. Im plicit modelling 

techniques do have m any nice properties, including having zero average external regret in 

the long-term  and being easy to  im plem ent, so if the inform ation-sharing problem  can be 

solved, these m ethods m ight become the  preferred opponent modelling m ethods.

7.3 F inal W ord

Finding gam e-theoretic solutions to  large games of im perfect inform ation, such as Texas 

Hold’em poker, is beyond th e  lim its of to d ay ’s com putational technology. In order to  de­

velop strong com puter players for these games, opponent m odelling techniques m ust be used

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to adap t to  different opponents. This thesis has com pared two general types of opponent 

modelling in an  ideal setting, and has showed th a t modelling in this ideal setting  is a  non­

triv ial problem. In the  process, analysis has shown why the difficulties arise, and which 

modelling m ethods best deal w ith these difficulties. A lthough modelling in this ideal setting  

has not produced perfect models of the opponents, there  have been m any positive results, 

including showing th a t  opponent modelling is often b e tte r  th a n  equilibrium  solutions. F i­

nally, while the  techniques of explicit modelling are superior in the setting  studied here, 

bo th  explicit and im plicit m ethods hold promise for larger games.
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