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Abstract

The problem o f determining the distribution and probability density function o f a sum o f 

lognormal random variables occurs in the design and study o f ultra-wide bandwidth w ire­

less systems. Many approximations have been proposed assuming that the sum distribution 

can be represented by another lognormal random variable. None of these approximations 

are valid fo r a wide range o f parameters. A  new method to calculate an approximation to 

the lognormal sum distribution, based on curve fitting  is introduced in this thesis.

Expressions fo r the performance o f a pulse amplitude and position modulation (PAPM) 

ultra-wideband (UWB) system in lognormal fading channels with maximal ratio combin­

ing (MRC) have been derived using W ilkinson’s approximation. Simple expressions fo r 

the error rate performance o f a diversity PAPM UWB system based on using the new ap­

proximation are derived, calculated, and compared to results obtained by using W ilkinson’s 

approximation fo r the performance o f MRC and equal gain combining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I  would like to thank my supervisor Norman C. Beaulieu fo r his guidance, feedback, and 

financial support. I  would also like to thanks the members o f the /CORE Wireless Com­

munications Laboratory for their technical guidance and friendship.

Finally, I  would like to thank my parents for their continued support and encouragement 

throughout my university career.

This thesis was financially support through the Natural Sciences and Engineering Re­

search Council o f Canada (NSERC) and the Alberta Informatics Circle o f Research Excel­

lence (/CORE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1

1.1 O ve rv ie w .........................................................................................................  1

1.2 Wireless Channels............................................................................................. 2

1.2.1 Small-Scale Fading.............................................................................  2

1.2.2 Large-Scale Path Loss and Shadowing............................................... 5

1.2.3 Interference.......................................................................................... 6

1.3 Ultra-W ide Bandwidth C hannels....................................................................  8

1.4 Diversity Schemes .......................................................................................... 9

1.4.1 Maximal Ratio C om bining.................................................................  11

1.4.2 Equal Gain C om bining.......................................................................  12

1.4.3 Other Combining Techniques ...........................................................  12

1.5 Lognormal Random Variables .......................................................................  13

1.6 Sum o f Lognormal Random V a ria b les ...........................................................  18

1.7 Literature R eview ............................................................................................. 18

1.7.1 W ilkinson’s M e th o d ...............................................................................20

1.7.2 Schwartz and Yeh’s M e th o d .................................................................. 21

1.7.3 Farley’s M e th o d .....................................................................................23

1.7.4 Comparison o f M e th o d s ........................................................................ 24

1.8 Thesis Outline and Contributions....................................................................  25

2 Approximation to the Sum Distribution of Independent and Identically Dis-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tributed Lognormal Random Variables 27

2.1 CDF o f the Lognormal Sum D istribu tion ...........................................................28

2.2 CDF A p p rox im a tio n .......................................................................................... 32

2.3 PDF Approxim ation.............................................................................................42

2.4 S um m ary.............................................................................................................52

3 Approximation to the Sum Distribution of Non-Independent, Identically Dis­

tributed Lognormal Random Variables 62

3.1 CDF o f the Sum o f Correlated Lognormal RVs ........................................... 63

3.2 PDF Approxim ation.........................................................................................  76

3.3 S um m ary......................................................................................................... 76

4 Performance of a Pulse Amplitude and Position Modulation Ultra-Wide Band­

width Wireless System over Lognormal Fading Channels 94

4.1 System M o d e l.......................................................................................................95

4.2 Maximal Ratio C om b in in g .................................................................................96

4.3 Equal Gain C om b in ing ....................................................................................... 99

4.4 Numerical Results...............................................................................................100

4.5 S um m ary........................................................................................................... 107

5 Conclusion 108

References 110

Appendix A Generation of Random Variables 114

Appendix B Code to Generate Correlated Lognormal Random Variables 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

2.1 The coefficients fo r the approximation <£(<z0 — axe~â ) .....................................40
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Chapter 1

Introduction

1.1 Overview

Wireless communications is a fundamental part o f our daily lives. We use many wireless 

applications on a daily basis such as cellular phones, wireless networks, satellite television 

and broadcast radio. There are also many new products being developed based on ultra- 

wideband (UWB), radio frequency identification tags, and W i-Max. The trend is leading 

toward wireless devices overtaking the use o f traditional devices. In  fact, in 2000, the total 

number o f cellular phone subscribers in Japan overtook the number o f fixed line subscribers 

[1].
This trend w ill continue around the world as new technologies are introduced and qual­

ity  o f service is improved. First generation (1G) cellular phone systems were deployed in 

the early 1980’s based on analog frequency modulation and frequency division multiple ac­

cess. In the early 1990’s, the second generation (2G) o f cellular systems were introduced. 

One o f the new standards, called Global System M obile (GSM) was introduced to allevi­

ate the inability to roam throughout Europe caused by many incompatible 1G systems. In 

North America, the lim ited capacity in the 1G system led to the development o f two digital 

cellular standards, IS-54/136 and IS-95. These 2G standards made a switch from analog 

to digital modulation to increase the system capacity. Currently third generation cellular

1
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phone technology is being deployed. It allows for voice and data traffic w ith applications 

such as mobile internet, picture messaging and video conferencing. Researchers are also 

working on fourth generation standards that w ill allow fo r very high data rates through 

mobile devices.

As these new technologies are developed, a portion o f the radio frequency (RF) spec­

trum must be assigned to the users. W ith a finite amount of spectrum available to each tech­

nology, users are required to share the spectrum. The sharing o f frequencies between users 

leads to co-channel interference, and as a result, all users w ill experience a degradation in 

the quality o f service. To determine the performance o f systems in these environments it is 

necessary to determine accurate and simple channel models.

1.2 Wireless Channels

Developing devices, standards, and understanding current technology requires a model of 

the channel in which these devices w ill operate. The wireless channel is a hostile environ­

ment, that is, it  changes w ith time and location. In this section we w ill describe in detail 

different types o f fading and interference present in a cellular system.

1.2.1 Small-Scale Fading

In a propagation environment that is filled with buildings, generally there is no line-of-sight 

(LOS) path from the transmitter to the receiver. The signal, in the form  o f an electromag­

netic (EM) wave, reaches it destination by scattering and reflecting from the surfaces of 

buildings, and diffracting around buildings. Scattering is the result o f the wave passing 

through a medium that consists o f many objects that are small compared to the wave­

length. In a practical setting, rough surfaces, street signs, leaves, and lamp posts w ill cause 

scattering. Reflection occurs when the wave reaches an object that is much larger in di­

mension than its wavelength. This could be the wall o f a building or the surface o f the 

earth. Since the reflecting surfaces have different electrical properties, the wave can either
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be completely reflected for a perfect conductor, or be partially reflected and partially trans­

mitted fo r a perfect dielectric. Waves can also bend around an obstruction, this is called 

diffraction. The bending is explained by Huygen’s principle that states fo r every point on a 

wavefront, there is a point source that produces a secondary wave that combine to produce 

the new wavefront. The secondary wavefront is the source o f the wave bending around the 

obstacle.

As a result o f the scattering, reflecting and diffracting, the waves w ill arrive at the 

receiver from different directions and with different propagation delays. This phenomenon 

known as multipath propagation, is constructed by plane waves w ith randomly distributed 

amplitudes, phases, and angles o f arrival. The waves add up constructively or destructively 

to cause small-scale fading, or fading fo r short. Fading is defined as changes in amplitude, 

phase, and multipath delay o f the signal over a small distance or time.

Multipath propagation also results in frequency modulation due to Doppler shift. In 

the channel, either the mobile or the surrounding objects can be moving relative to the 

base station. When the mobile is moving, there is a shift in the carrier frequency, which is 

known as Doppler shift. Depending on whether the mobile is moving toward or away from 

the base station, the Doppler shift can be positive or negative. I f  the surrounding objects 

are moving, a time varying Doppler shift is introduced onto the multipath components. 

This shift w ill dominate the fading when the surrounding objects are moving at a faster rate 

than the mobile. The Doppler spread w ill largely determine how long the channel can be 

considered to be a constant, otherwise known as the coherence time.

When the coherence time is greater than a symbol period we call this slow fading. 

This is because the fading parameters change slower than the rate o f the transmitted signal 

allowing us to assume that the channel is constant over several symbol periods. A channel 

is said to undergo fast fading i f  the coherence time is smaller than symbol period. This 

means that the channel characteristics w ill change during a symbol period and cause signal 

distortion.

Another result o f multipath propagation is time dispersion, which causes flat or fre­

quency selective fading. Flat fading is when the channel gain is flat and has a linear phase

3
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response over the bandwidth o f the signal. The channel gain changes in time but the spec­

trum o f the transmitted signal is maintained. A  measure by which we can determine i f  a 

channel is flat or frequency selective is the coherence bandwidth, which is defined as the 

frequency range where we can assume the channel spectrum to be flat. The coherence 

bandwidth is inversely proportional to the root mean square (RMS) delay spread. For a flat 

fading channel, the bandwidth o f the transmitted signal must be smaller than the coherence 

bandwidth, and the symbol period must be much larger than the RMS delay spread o f the 

channel. I f  the channel gain is flat and has a linear phase response over a range smaller than 

the bandwidth o f the signal, it  is said to undergo frequency selective fading. This results in 

multiple faded copies o f the transmitted signal arriving at the receiver delayed in time. This 

can result in intersymbol interference (ISI) i f  the symbol period is larger than the difference 

in arrival times o f adjacent copies. For frequency selective fading the coherence bandwidth 

o f the channel is smaller than the signal bandwidth and the symbol period is smaller than 

the RMS delay spread.

When the received signal undergoes fading, the envelope is a statistical quantity. A 

Rayleigh distribution is commonly used to model the amplitude o f the received envelope R 

in a flat fading channel. The probability density function (PDF) o f this distribution is

where 0£  is the mean power o f the received signal. The phase o f the distribution is uniform 

and is expressed as

The Rayleigh distribution is also used to express the sum o f zero mean Gaussian noise on 

quadrature carriers. When the channel has a LOS component, the Rayleigh distribution 

is no longer a valid model. A  better model is the Ricean distribution which can be de­

rived from  the sum o f non-zero mean, Gaussian noise on quadrature carriers. The Ricean 

distribution is expressed as

/ * ( r ) =  “ 2 exP ( - ^ )
\J n  — ' - ' D° R  2<JR

(1.1)

(1.2)

K ( K + 1)2 r(K +  1)
(1.3)

4
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where £[R2] =  cr|, / 0(-) is the modified Bessel function o f the first kind and zeroth or­

der, and K  is the Rice factor, defined as the ratio o f the specular component power to the 

scattered component power. When K  =  0, the Ricean distribution simplifies to a Rayleigh 

distribution and when K  =  it  models a channel w ith no fading. Being able to model 

different fading environments by changing K  makes the Ricean distribution more versatile 

than the Rayleigh distribution.

Another important distribution is the Nakagami distribution that was developed based 

on empirical data [2]. The distribution is given by

where m >  ^ and T(-) is the Gamma function. The Nakagami distribution degenerates to 

a Rayleigh distribution when m =  1 and a one-side Gaussian distribution when m — 1/2. 

The special case o f m =  °° models a no fading environment. The Nakagami distribution 

can sometimes be used to approximate a Ricean distribution by carefully selecting the 

parameter m. While small-scale fading in a wireless system w ill in  large part determine the 

performance o f the system, other factors such as path loss and shadowing w ill also affect 

the performance.

1.2.2 Large-Scale Path Loss and Shadowing

W hile it is important to know the model o f the channel over small distances and times, it 

is also important to model the system over larger distances. As the receiver moves farther 

away from the transmitter, the local average received signal w ill decrease. This is known 

as large-scale path loss.

The basic path loss model is the free space propagation model which predicts that the 

received power decays as a square o f the transmitter-receiver separation distance. The 

model can be used when there are no obstructions such as the ground, foliage, buildings 

and hills. In bu ilt up areas, using the free space propagation model w ill result in large 

errors due to reflection, scattering, and diffraction o f the transmitted signal. In such an 

environment the path loss is a function o f the separation distance to a power a. The path

2 rn mr2m ~ l mr~
(1.4)

5
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loss exponent must be determined experimentally. It can take values o f 2 for free space,

2.7 to 3.5 for an urban environment, and 4 to 6 inside a building w ith obstructions [3]. 

W hile this model is simple, it is not always the best method by which to predict the path 

loss. Many empirical models have been proposed by collecting experimental data. These 

more complex models take into account transmission frequency, base station height, mobile 

height, and degree o f urbanization [4].

Propagation models only consider the transmitter-receiver separation distance. Another 

factor that must be taken into consideration is that the surrounding buildings and h ills  can 

d iffe r between two locations having the same separation distance. This leads to a variation 

in the received signal power that has an average signal power predicted by the path loss 

calculation. This variation is known as shadowing. Experimental results have shown that 

the variation can be accurately represented by a lognormal distribution. The received signal 

in units o f decibels (dB) is then a Gaussian distribution. The mean is obtained by averaging 

the received signal over 20 to 30 wavelengths to average out the multipath fading.

1.2.3 Interference

A major factor in the performance o f cellular phone systems is interference. There are many 

sources for interference but the primary sources are mobiles in the same cell, mobiles in 

other cells, base stations using the same frequencies, or other systems that leak energy in 

the cellular frequency band. Interference leads to disruptions, cross-talk, missed calls and 

dropped calls due to a larger number o f errors in transmission.

In a mobile phone system there is a lim ited number o f available frequencies or chan­

nels. Assigning all these channels to one high power transmitter would result in the mobile 

receiving high power, undesired signals from other base stations. This type o f interference 

when the received signal consists o f undesired signals on the same transmission frequency 

is known as co-channel interference. It is possible to mitigate the co-channel interference 

by employing a cellular concept where the area is serviced by a number o f low power 

transmitters, or cells, as opposed to one large transmitter. A ll the available channels are

6
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Figure 1.1. Illustration o f frequency reuse w ith 7 sets o f channels.

split into frequency sets and assigned to base stations so that neighboring base stations use 

different frequency sets. I f  the channels are assigned in a systematic way to maximize the 

distance between cells using the same frequencies, it  is possible to reduce the co-channel 

interference. The process o f assigning cells with a small set o f the available frequencies is 

known as frequency reuse. This concept is illustrated in Figure 1.1 where the number in 

each hexagonal cell corresponds to a particular set o f channels.

Reducing co-channel interference is not as simple as increasing the transmitter power. 

Thermal noise can be overcome by increasing the transmit power, which raises the signal- 

to-noise ratio (SNR), but increasing the transmit power w ill increase the co-channel in­

terference at neighboring co-channel cells. Co-channel interference can be reduced by 

increasing the distance D  between the center o f co-channel cells and reducing the radius 

of each cell 3$. This w ill allow the path loss between co-channel cells to provide isolation 

from the co-channel cells, which w ill reduce the co-channel interference. For hexagonal 

cells, as in Figure 1.1, the D/3% ratio is given by

(1-5)

where JV  is the number o f sets o f channels. The co-channel interference is reduced by

7
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increasing J f ,  but this results in a smaller capacity per cell. This means there is a trade-off 

between capacity and co-channel interference.

Given that we know a shadowed signal is well modeled by a lognormal distribution it is 

possible to model the co-channel interference in a shadowed environment using the same 

distribution. The difference being that we require the distribution o f a sum o f lognormal 

random variables to account fo r numerous co-channel interferers. Having a model fo r the 

co-channel interference makes it possible to determine the performance o f the system.

1.3 Ultra-Wide Bandwidth Channels

Major advances are occurring in wireless communications w ith the introduction by the 

Federal Communications Commission in the United States o f “ new spectrum”  at the noise 

floor. The huge amount o f spectrum is allowing the introduction o f ultra-wide bandwidth 

radios that can overlay existing systems. The ultra-wideband (UW B) systems can be used 

fo r a number o f applications such as localization w ith centimeter level accuracy, precision 

navigation, through-wall imaging, and short range high-speed network access [5].

Since UWB transmission is composed o f very short pulses, the symbol period is smaller 

than the RMS delay spread o f the channel resulting in frequency selective fading. This type 

o f fading can be modeled by both frequency and time domain models, however, discrete 

time domain models are the industry accepted practice [6]. The channel impulse response 

o f such a channel is ^

S  a/5o(r“ T/) (L6)
1=0

where at is the amplitude o f the fading, r ; is a random delay, and SD(-) is the Dirac delta 

function. Due to the short range nature o f UWB, most commercial applications being 

developed are fo r indoor environments. Accordingly, we can no longer assume that Ricean 

or Nakagami distributions w ill model the fading amplitude. In fact, empirical studies have 

shown that a lognormal distribution is a better model to the fading amplitude distribution 

than a Rayleigh distribution [6]—[8]. The fading amplitude can also be assumed to be a 

real number since UW B is a carrier-less system. However, to account fo r random pulse

8
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inversions, the fading amplitude is expressed as a( =  where 0[ 6 {± 1 }  w ith equal 

probability and is the lognormally distributed fading amplitude. A  number o f complex 

models that accurately model empirical results have been summarized by Foerster and L i 

[6]. In this thesis, to provide tractable expressions, a simplified channel model is used that 

lim its the number o f paths and sets discrete steps for the random delay. The details o f the 

channel model used in this thesis can be found in Chapter 4.

1.4 Diversity Schemes

Diversity is a scheme whereby the properties o f the radio propagation channel are exploited 

to improve the performance o f the wireless link. In a fading environment, there may be 

numerous channels separated by space, frequency or time, that can be considered to be 

independent or nearly so. That is, it is highly unlikely that all the channels w ill experience 

a fade at the same time. By using independent signals it  is possible to improve the SNR 

at the receiver. D iversity is also explained by looking at the probability &  that the SNR 

o f any o f the channels is below some threshold. W ith independently faded channels, the 

probability that all N  channels are below the threshold is £gN.

It is possible to achieve diversity using space, angle, polarization, frequency, multipath 

and time. Space diversity is implemented by using multiple transmitter or receiver anten­

nas. By separating the antennas by a large enough distance, the branches w ill experience 

independent fading. Direction or angle diversity is achieved by using directional antennas 

that receive signals from a small angle o f the arrival spread. Polarization diversity exploits 

the fact that horizontal and vertical polarizations o f an EM wave are uncorrelated [9] in typ­

ical cellular transmission environments. Frequency diversity is employed by using multiple 

carrier frequencies separated by the coherence bandwidth o f the channel. Transmission us­

ing frequency diversity is not bandwidth efficient so spread spectrum systems implement 

frequency diversity using frequency hopping, where symbols are transmitted on a sequence 

o f carrier frequencies. Multipath diversity collects the paths w ith different delays using a 

RAKE receiver. Time diversity transmits replicas o f the signal separated by at least the co-

9
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Figure 1.2. Postdetection diversity receiver.

herence time o f the channel. In most cases the multiple received replicas can be considered 

to undergo independent fading. The lim itation is that there could be an unacceptable delay 

introduced by transmitting multiple copies o f the signal. It is also possible to combine a 

number o f diversity techniques. One example o f this is space-time coding that employs a 

combination o f space and time diversity.

To implement the diversity techniques it is required to combine the different paths to in­

crease the received SNR. The combining can take place at the modulation frequency which 

is called predetection combining or at baseband which is called postdetection combining. 

Theoretically the performance o f the two is identical [4], but in this thesis we w ill only 

consider postdetection combining. A  postdetection diversity scheme is shown in Figure 

1.4. The received signal at RF rRF̂ (t) is demodulated to baseband and then passed through 

a correlator detector. This baseband signal is applied to a diversity combiner as shown in 

Figure 1.4. Given that a signal s(t) is transmitted, the received signal on the l-ih  diversity 

branch is

rl (t) =  a,s(t) +  n[(t) (1.7)

where a; =  /3/e- -/0' is the complex fading gain and n[ (r) is the Gaussian noise on the I -th 

branch. For simplicity, (1.7) is expressed in vector notation as

r( =  a ^ + n ^  (1.8)

10
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Some o f the combining techniques that can be used are maximal ratio combining (MRC) 

and equal gain combining (EGC). The following sections w ill explain the details o f the 

combining techniques.

1.4.1 Maximal Ratio Combining

In MRC each diversity branch is co-phased and weighted by the ir respective fading gain 

and then combined. The resultant signal

(L9>
/=!

where tty* is the complex conjugate o f the fading gain, is then sent through a detector to

determine which symbol was transmitted. The variance o f the noise at the detector can

then be expressed as

=  ( 1-10)
“  /=1

assuming that the variance o f the noise on each branch before co-phasing is JV0/2 . The 

instantaneous symbol SNR is then obtained as

N o rE
a . i i )

/=1 " 0

where Eav is the average symbol energy o f the digital constellation. Using (1.11) it is 

possible to express the average SNR as

E l Y , ] = Y = j r l E { o t } -  (1-12)
/V0 /=1

The SNR produced by MRC is the largest when compared to a ll other linear combining 

diversity schemes. This is only true when the signal is independent o f the noise, the fading 

is slow, and the noise components on different branches are uncorrelated [10]. It is shown in 

[10] that the optimal performance o f MRC is independent o f the fading distribution. While 

MRC provides the best performance the drawback is the increased complexity required to 

implement such a system. It is also important to note that MRC requires coherent signal 

combination so we are lim ited to coherent modulation schemes such as binary phase shift 

keying (BPSK) and quadrature amplitude modulation.

11
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1.4.2 Equal Gain Combining

An EGC system w ill co-phase each diversity branch and then combine the signals to gen­

erate
jv

(1.13)A =  M rz.
/= i

This is sim ilar to MRC but w ith the branch weights set to one. The variance o f the noise

after the combining is

(1.14)

and the envelope o f the combining signal is

N

i= i
(1.15)

As a result, the instantaneous SNR is given by

Ys =
arE,av

N N n
(1.16)

Now the average SNR is

f  N N n

N 

,/=0

p  N N t-'av
N N n

(1.17)
’0 l=0k=0

which can be sim plified further i f  the fading o f the diversity branches are independent. 

W hile the performance o f EGC is inferior to MRC, EGC is easier to implement as no 

channel gain estimation is required [11]. In a practical system, EGC is only used in coherent 

modulation schemes that have equal energy symbols such as M-ary PSK.

1.4.3 Other Combining Techniques

There are many other combining techniques that use different algorithms to improve the 

performance o f a system. One o f these systems is selection combining (SC). In this sys­

tem, the branch w ith the highest SNR is always selected. This is impractical in systems

12
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with continuous transmission because it requires monitoring o f the all the branches which 

is sim ilar in complexity to MRC. Another possible diversity scheme is switch and stay 

combing (SSC). An SSC system w ill cycle through the branches until it  finds one that ex­

ceeds a pre-set threshold. The receiver w ill then stay w ith this branch until it  drops below 

the threshold at which time it w ill look for another branch that exceeds the threshold. The 

performance o f SSC is worse than SC except near the threshold where the performance is 

identical [4].

There are also other generalized diversity schemes based on either MRC or EGC that 

combine a fixed number o f the strongest paths out o f the N  available paths [12]. These 

schemes are denoted as SC/MRC or SC/EGC. The performance o f SC/MRC approaches 

that o f MRC, while SC/EGC can perform better than EGC in some cases [11]. Another 

type o f diversity scheme used in multicarrier CDMA is a combination o f antenna arrays 

each with a RAKE receiver that can exploit diversity in frequency and multipath.

1.5 Lognormal Random Variables

As discussed previously, the large-scale fading in a cellular environment is well modeled 

by a lognormal distribution. A  lognormal random variable (RV) is defined such that taking 

the logarithm o f the RV results in a Gaussian distribution. Let L  be a lognormal RV and

then define the Gaussian RV as X  =  101og10L. The PDF o f X  is

/* ( * )  =
y / 2 7 t O x

exp (1.18)

where mY is the mean, and <7y is the standard deviation o f X  in units o f dB. The PDF o f L

is then given by

/ i ( 0 = |  USSox, eXP 

0 ,

(101ogin / - mx )2 l >  0  

l < 0
(1.19)

where A =  ln(10)/10. The standard deviation o f X, <JX, is referred to in wireless systems 

as the dB spread. For practical cellular systems it takes on values in the range o f 6  to 12

13
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dB [13]. The lower end o f the range at 6  dB represents a ligh tly shadowed transmission 

environment, while the higher end o f the range at 12 dB represents a heavily shadowed 

environment. In UWB transmission environments, the dB spread takes on values in the 

range o f 3 to 5 dB [8 ].

Since working w ith the natural logarithm is more convenient, we define a Gaussian RV 

Y =  InL. The PDF o f Y is

1 (y - m Yf
2a}

(1.20)

where mY and aY are the mean and standard deviation respectively. The RV X  is related to 

the RV Y by the relation

Y =  XX. (1.21)

As a result the mean and standard deviation o f Y is

mY =  Xmx ,

aY —

(1.22)

(1.23)

The PDF o f L  can then be rewritten in  terms o f the moments o f Y which is given by

A ( 0  =  < 'S o v ' 
o.

exp
(In/—my)~

" ~ W ~ .
i >  o 

/ <  o.
(1.24)

The n-th moment o f the lognormal RV L  can be calculated from the moments o f the Gaus­

sian RV as

E[Ln) =  E[eYn]

=  f > —
7-oo \j2na .

■exp
(y - m Y)2'

dv

I^nmy+ <Jy (1.25)

From (1.25) the mean o f L  is given by

E[L) = m L =  emr+ '-ar (1.26)
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and the variance is given by

=  E[L2] - E 2[L]

  ^2/7]y,-}-2(Jy   ^ItT ly -rC y

_ e2mY+Cf^eOy _ (1.27)

A  lognormal distribution is generally given in terms o f the two parameters m and <72, 

which is denoted by A (m, a 2). The corresponding Gaussian distribution can be denoted 

by N(m, a 2). Figure 1.3 shows the PDF o f A(0, a 2) for a  =  0.15,0.5,1.3816 and 2.0723. 

In units o f dB the standard deviations are calculated to be 0.6514, 2.1715, 6.0 and 9.0 

respectively.

Given a lognormal RV A (m, g 2) the PDF can be written as

m  s exp

=  e -” / 0( / O

(In / — m)~ 
2 a 2 

ln2 (/e_m) 
2 cr2

(1.28)

where / 0(-) is a the PDF o f the lognormal RV A(0, cr2). From (1.28) it can be observed that 

a PDF o f a lognormal RV w ith nonzero mean is the same as the the PDF o f the zero-mean 

lognormal RV A(0, a 2) but with the abscissa scaled by e~m and the ordinate scaled by the 

same amount. This is illustrated in Figure 1.4 for m =  0,0.5, 1.0 and 2.0.

W hile the PDF is important in certain calculations such as the b it error rate (BER), the 

cumulative distribution function (CDF) is important in outage probability calculations. The 

CDF o f a lognormal PDF A {mY, <J2) is given by

Fl (x ) =  P r(L < Jc)= P r(e y < jt)

=  P r(r <  In*)

=  i - < 2
lnX-THv

(1.29)

where Pr(-) is the probability o f the argument and Q(-) is the complementary CDF o f a

15
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Figure 1.3. Lognormal PDF A(0, cr2) fo r u  =  0.15,0.5, 6  dB and 9 dB.
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Figure 1.4. Lognormal PDF A (m, 1) for m =  0,0.5, 1.0 and 2.0.
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zero-mean, unit-variance Gaussian distribution given by

Q{x) =  W n [ A i '-  (130)

The CDF is plotted in Figure 1.5 fo r a  =  0.15,0.5,6 dB and 9 dB.

1.6 Sum of Lognormal Random Variables

Many problems in wireless communications such as outage probabilities in shadowing en­

vironments and detection o f radar targets in lognormal clutter require the distribution and 

densities o f a sum o f lognormal RVs. Define a new RV Z, that is a sum o f lognormal RVs, 

as given by
N

z  =  £ l ; =  L j +Zo +  • • • + L n  =  + / 2  +  • • • +  / "  (1.31)
i= l

where L- and Yi are defined in the same manner as L  and Y in the previous section. It is also 

important to note that each summand can have a different mean and variance given by mY 

and Gy. respectively. When the mean and variance o f each summand is different, we denote 

this as a sum o f non-identically distributed lognormal RVs.

1.7 Literature Review

Numerous approaches have been proposed to compute the CDF and moments o f a sum o f 

independent lognormal RVs. Most o f the methods are based on assuming that a sum o f 

lognormal RVs is equivalent to another lognormal RV. This is expressed as

Z  =  L ,+ Z o  +  --- +  LA, =  / > + / = +  ••• +  / "  =  eXX = Z  (1.32)

where Y and X  are Gaussian RVs, and Z  is lognormally distributed. In this section, a 

brie f description o f these approximations is given along w ith a comparison o f the different 

methods.
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Figure 1.5. Lognormal CDF A(0, a 2) fo r a  =  0.15,0.5,6 dB and 9 dB.
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1.7.1 Wilkinson’s Method

W ilkinson’s method is based on assuming that a sum o f lognormal RVs can be approxi­

mated as another lognormal RV. To determine the mean and standard deviation o f Y, the 

first and second moments o f Z  and Z are matched. Using (1.25) the first moment o f Z  is 

given by

E[Z] =  E [L l + L 2 +  --- +  LN]

=  E[Ll ]+ E [L 2] +  --- +  E[LN\
N

=  2 , emyi - y>. (1.33)
/=!

Then equating (1.33) w ith the first moment o f Z results in

emM a? =  £  em> + H  =  Vj . (1.34)
i= l

Equating the second moments o f Z and Z is expressed as 

E[Z~] =  E [(L i + L 1 +  - -  +  LNf \
IV W -l N

=  £ £ [ i r ] + 2 £  £  £ [£ ;]£ [£ ;]
1=1 1=1 j —i+ 1

2mY+ 2 c f  wj’.+ ,n)'.+507.+20?.
=  L e ' , +  L  2 , *  ' J ‘ J

i= l i= l  y= i+ l

e2m?+2Cf — ^  +  y2 _  ( 1 .35 )

i= l
where

a l  =  E[L}] -  E 2[L;], (1.36)

v2 =  f j c l. =  '£ e 2myt+af i ( e ^ - l ) .  (1.37)
i= i 1=1

Now it is possible to solve for m^ and Oj- by squaring both sides o f (1.34) and dividing by 

(1.35), which yields

o l
m-r =  In Vj — 2  (1.38)

<x> =  In ( +  1 ] .  (1-39)T  -  V V2
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Given the moments m^ and a^, the CDF o f Z  is

(1.40)

1.7.2 Schwartz and Yeh’s Method

The method derived by Schwartz and Yeh is based on an exact expression fo r the first two 

moments o f a sum o f two lognormal RVs. Employing a recursive approach, the moments 

are calculated fo r a sum o f more than 2 lognormal RVs by assuming that a sum o f two 

lognormal RVs is also a lognormal RV. For example, suppose that Z  =  L j +  +  £3  +  L4.

The exact first two moments o f ln (L j +  L ,) are calculated. Then define a new Gaussian 

RV Z , =  ln (L j +  Ln), and let Z =  +  L3 +  L4. Now compute the first two moments o f

l n ^  +  L3), and repeat the procedure for L4. Since Schwartz-Yeh’s method is recursive, 

we only need to consider the case o f a sum o f two lognormal RVs, i.e.

where the Gaussian RVs Yx and Y2 have means mŶ and mŶ and standard deviations <7^  and 

<7^  respectively. Define a new Gaussian RV, Yd =  Y2 — Yx such that

Z  =  L j +  =  eY' +  eY- «  e* =  Z (1.41)

mv — mv — mv .
‘ d r2 M '

(1.42)

Gy — Gv 4" Gv . 
rd M I2

(1.43)

A fter a very long manipulation [14], the mean o f Y is given by

=  my^+ G (1.44)

where

G

(1.45)
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The variance can also be computed sim ilarly by

<7p — CF/j — — 2 c G3 +  G2 (1.48)

where

G2 =  Y .bkT2 +
k=l

mv
1 - 0

X  bke - [k+X)V [k+ l)1% 12 O

/ *> , , Yd Yd -«? /(2o? )(mv +  Oy ) 4-----t=4<? V  V
d \p2 jl

cdi2̂ (mY,-oi(k+iy
k=l

- 2 S v  v
-my k+kros 12l j  rd‘

k=l

m y  \  G y  _ m2 j [ lG l  )
mykO | I -------= e  Yk Yd

s fS t

C3 =  £ ( - i ) i ^ / 2 r ,  +  £ ( - i ) %
jfc=0  k=0

T  =  / V i+ 1« l+ 1> H / 2<l> ( ~ m\  ~  +  ‘ K

and

_ 2 ( - l ) ^ i  1 

4 * + 1  JTl /

=  — my +  /rcTv .

(1.49)

(1.50)

(1.51) 

(1-52)

(1.53)‘ k ‘d *d

It is obvious that this method is more computationally complex than W ilkinson’s method. 

Approximately 40 terms are required in the infinite summations for accuracy to four sig­

nificant digits [14]. W ith the moments derived using Schwartz and Yeh’s method the CDF 

is then given by (1.40).
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1.7.3 Farley’s Method

The approach o f Farley is based on assuming that the summands are N independent, iden­

tica lly distributed (iid ) Gaussian RVs w ith mean mY and variance aY. The complementary

CDF o f the lognormal sum
N

Z  =  % e '

is approximated as

Pr(Z > / ) « ! -

/=!

l - 2
In l  — mY N

(1.54)

(1.55)

It was shown by Beaulieu and Abu-Dayya [15] that Farley’s approximation is actually a 

strict lower bound on the complementary CDF o f an iid  lognormal sum. This can be shown 

by defining the two events

A = {a t least one Lt >  /} ,

B ={complement o f event A }. (1.56)

Since the two events, A and B, are mutually exclusive, the complementary CDF can be 

expressed as

Pr(Z >  /) = P r(Z  > I,A ) + P r(Z  >  l,B ) 

=  Pr(A) +  Pr(Z >  I, B). (1-57)

It can easily be shown that the second term in (1.57) is positive fo r continuous PDFs. As a 

result, a lower bound on the complementary CDF is given by

N
Pr(Z >  I) >  Pr(A) =  1

i=I

=  1 - 1 - 2
In / — 7 7 Z v

N
(1.58)

Equivalently, the upper bound o f CDF is given by

Pr(Z < / )  <
^ , In l  — mv

i - 2 f  y
N

(1-59)
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Farley’s method can also be extended to a sum o f independent non-identical lognormal 

RVs. In this case the bounds on the CDF and its complement are

1.7.4 Comparison of Methods

Numerous papers [13]—[19] have looked at the accuracy o f the approximations to the log­

normal sum distribution. Some o f the works have looked at the accuracy o f the moments 

while others have examined the accuracy o f the CDF and complementary CDF. A ll the 

works are compared to simulation results to determine the accuracy o f the approximation.

Schwartz and Yeh [14] compared the approximate CDF w ith one obtain through simu­

lation and found that outside the range o f 0.001 to 0.99, the approximate CDF did not match 

well to the simulated CDF for a sum o f two lognormal RVs. As the number o f summands 

was increased, the approximation to the CDF was found to deviate further from the simu­

lated CDF. Schwartz and Yeh also studied how well the calculated moments approximated 

the actual moments o f the sum distribution. It was found that for a sum o f two lognor­

mal RVs, the approximate mean and standard deviation were accurate. This is in contrast 

to W ilkinson’s approximation [14] that does not accurately approximate the moments for 

a sum o f two lognormal RVs. It was also shown that the estimated mean and standard 

deviation decreased in accuracy as the both the true variance and number o f summands 

increased.

Beaulieu, Abu-Dayya and McLane [13],[15] compared the complementary CDF ob­

tained using W ilkinson’s, Schwartz and Yeh’s, and Farley’s approximations. It was reported 

in [14] that W ilkinson’s approximation breaks down for ox >  4 dB but it is shown in [13] 

that this is only true when calculating the moments. In fact, W ilkinson’s approximation 

is actually better than Schwartz and Yeh’s for the complementary CDF. Farley’s method 

was also compared and it was found that the approximation was almost an exact fit fo r the

(1.60)

(1.61)
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values o f the complementary CDF less than 10- 2  and ax =  6  dB. However, fo r ox  =  12 

dB, Farley’s approach was the best when compared to a ll the other approximations.

Cardieri and Rappaport [16] also compared the accuracy o f Schwartz and Yeh’s, and 

W ilkinson’s method to simulation where the summands had different means and standard 

deviations. It was shown that Schwartz and Yeh’s method is more accurate in calculating 

the moments of the sum distribution than W ilkinson’s approximation. Also, it  was shown 

that the error in Schwartz and Yeh’s moment calculation is almost invariant with changing 

means and standard deviations.

By comparing the results o f previous work it  can be observed that when approximating 

the CDF, none o f the approximations are valid over a large range o f parameters such as the 

number o f summands, the variance o f the summands, and the range o f the CDF. This thesis 

w ill look at determining a new approximation to the CDF that is valid over a large range o f 

parameters.

1.8 Thesis Outline and Contributions

The ability to model the channel in a simple, yet accurate manner is required to be able 

to assess the performance o f a wireless system. In particular, co-channel interference in 

a shadowing environment is an important problem that needs to be accurately modeled. 

Many previous works have looked at approximations to the lognormal sum distribution 

which can be used to model the co-channel interference. None o f these works is widely 

accepted and accurate for a wide range o f parameters. The work in this thesis w ill focus on 

determining a new approximation to the lognormal sum distribution that is accurate over a 

large range o f parameters. The new approximation is well suited to UWB applications and 

is used to determine accurate expressions fo r the performance o f a diversity pulse amplitude 

and position modulation (PAPM) UWB system with lognormal fading channels.

This thesis is organized as follows. Chapter 2 w ill investigate a new approximation 

to the lognormal sum CDF and PDF. Numerical results w ill be provided along w ith com­

parisons to Schwartz and Yeh’s, W ilkinson’s and Farley’s approximations. Chapter 3 w ill
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extend the result o f Chapter 2 to a sum o f correlated lognormal RVs. Again, numerical 

results and comparisons w ill be examined. Chapter 4 w ill examine the performance o f a 

PAPM UWB system in lognormal fading w ith diversity reception. The approximation pro­

posed in Chapter 2 w ill be used to find simple expressions for the performance o f PAPM 

UW B w ith MRC and EGC combining. Finally, Chapter 5 w ill provide a conclusion and 

summary o f contributions.
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Chapter 2

Approximation to the Sum Distribution 

of Independent and Identically 

Distributed Lognormal Random 

Variables

The w idely used approximations to lognormal sum distributions and densities by W ilkin­

son, and Schwartz and Yeh are based on the assumption that a lognormal sum distribution 

can be represented by another lognormal distribution. It is has been shown by many au­

thors [13]—[18] that these approximations are only valid for a certain range o f parameters. 

In this chapter, we w ill investigate a new approximation to the CDF and PDF for a sum o f 

iid  lognormal RVs that is more accurate over a larger range o f parameters. Many numerical 

examples and results are provided to show the accuracy o f the approximation.
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2.1 CDF of the Lognormal Sum Distribution

A commonly used method fo r deriving a sum distribution is based on the characteristic 

function (CF). Given a sum o f iid  lognormal RVs

(2.1)
1=1

the CF is given by [20]

Oz M = n ^ W  (2 -2 )
i= l

where
o o

®Li(a ))= E [e jcoL‘} =  J f Lj{x)eJt0Xdx (2.3)
— o o

is a Fourier transform o f the PDF f L(x ). Accordingly, the PDF o f the sum distribution can 

be determined by taking the inverse Fourier transform o f the CF which is given by

o o

/z M  =  2 ^  /  (2.4a)
— OO

(2 . * )

where * is the convolution operator. Using the results o f [21] the CDF o f Z is obtained as 

Fz (z) =  « M Z < z )  =  l -  ^ /  (2.5a)
— OO

^ 1  1 7  5 [d>z (o))]cos(mz) -SR[d>z (co)]sin(q);)^2 n J (i)
o

where 9\[-] and 3[-] are the real and imaginary parts respectively. For most distributions

it is possible to use this method to determine the sum distribution but it is not feasible

with the lognormal distribution because there is no exact expression fo r the CF. Also it 

is d ifficu lt to numerically calculate the sum distribution using a V -fo ld  convolution as in 

(2.4b) because the tail o f the lognormal PDF decays very slowly as can be seen in Figure 

1.3. A  number o f numerical methods including trapezoidal rule, Simpson’s rule, adaptive
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algorithms, fast Fourier transform, and a modified Clenshaw-Curtis method have been in ­

vestigated by Beaulieu and Xie [17],[22] to evaluate (2.5b). It was determined that the 

modified Clenshaw-Curtis method was very accurate and highly efficient when compared 

to the other numerical methods.

W hile the above results are fo r iid  RVs, the same method can be used for a sum o f 

independent lognormal RVs w ith different means mi and variances o f. From (1.28), it is 

possible to define a new RV as

L- =  e -^ L ,  (2 .6 )

where the PDF of L* is

/ l ;  ( « ) = / * ,  W mi

=  m e ~m')■ (2-7)

Now it can be seen that L* ~  A(0, o f) , and mi is a scaling parameter. The sum (1.31) can 

then be expressed in terms o f a sum o f lognormal RVs with zero mean as

Z = X c , L ;  (2 .8 )
1 = 1

where ci =  em* is the weight to account fo r the scaling parameter. The characteristic func­

tion can then be written as

=  n * i »  =  I I  (1 9 )
i= i ' /= i '

Due to the form o f the CF it is possible to see that the parameter mi is only a frequency 

scaling factor and there is no loss in generality in assuming it is equal to zero. This w ill 

allow us to focus on an approximation fo r a sum o f zero-mean, independent lognormal 

RVs.

On a conventional plot o f the CDF as seen in Figure 1.5, it  is hard to see the character­

istics o f the CDF in the tails. Another way to visualize the CDF is to use a probability plot 

[23] that transforms a CDF o f a RV into a straight line. For normal probability paper, the 

y-axis is transformed according to O -1  (•), where

^ ) =  W n S - j ' h '  (210)
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is the zero-mean, unit-variance Gaussian CDF. This w ill result in a normal CDF being 

transformed into a straight line. For a lognormal probability paper, the abscissa must also 

be scaled by 10 log10(-) to obtain the x-axis in units o f dB. Performing these two transforms, 

the lognormal CDF FL(l) is expressed as

Oy

where y =  101ogIO/. Notice that (2.11) is in the form o f a straight line as is expected 

fo r the lognormal probability paper transform. The lognormal CDF plotted on lognormal 

probability paper is shown in Figure 2.1 for a  =  0.15, 0.5, 6  dB and 9 dB. Comparing 

Figures 1.5 and 2.1 you notice that it  is easier to observe the behavior in the tails o f the 

distributions using probability paper.

The CDF o f a sum o f independent lognormal RVs can be calculated using the modified 

Clenshaw-Curtis method described in [22]. The range being examined in this thesis is from 

10- 6  to 1 — 10-6 , which is much larger than most previous works. For example, [14] only 

considered the range from 0.0005 to 0.9999. Also, Reference [13] simulated the CDF for 

values greater than 10-5 . Recently, Beaulieu and Xie [17] examined the accuracy o f Far­

ley’s, W ilkinson’s, and Schwartz and Yeh’s method over the range 10- 6  to 1 — 10~6. It was 

determined that none o f the examined approximations were accurate over the entire range 

o f interest, and the approximations deviated further from the actual values as the number o f 

summands increased. They also proposed a minimax approximation based on lognormal 

probability paper that minimizes the maximum error [17]. W hile the minimax approxi­

mation reduces the maximum error when compared to other approximations, it  is s till not 

accurate over the entire range o f interest because it approximates the sum distribution as 

another lognormal RV.

The sum o f iid  lognormal RVs fo r different numbers o f summands is plotted on the 

same graph to compare their behavior in Figures 2.2 and 2.3. From the use o f lognormal 

probability paper, it  is possible to extract information about the behavior o f the sum d istri­

bution. It is observed that the sum distributions are not lognormal (i.e. not straight lines)
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Figure 2.1. Lognormal CDF A(0,O'2) for a  =  0.15, 0.5, 6  dB, and 9 dB on lognormal 

probability paper.
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but smooth curves, that are convex down, w ith increasing concavity as N  increases. Only in 

the range [0.1,0.9], are the CDFs close to a straight line. Outside this range, the curves de­

viate from  a straight line. These observations are in  contrast to many published examples 

that assume the sum distribution can be approximated as another lognormal distribution

It is also observed that while the ta il o f the complementary CDF is largely unaffected 

by the number o f summands, the tail o f the CDF is influenced by the number o f summands. 

The complementary CDF tail asymptotically approaches that o f o f single lognormal RV. 

This is explained by Janos [24] who showed that the ta il o f a sum distribution approaches 

that o f the summand in the distribution with the largest dB spread. However, in the iid  case, 

the higher order moments o f the sum distribution w ill approach N  times the moments o f a 

single lognormal RV.

It is clear from Figures 2.2 and 2.3 that a set o f smooth functions could be used to ap­

proximate the CDF. Since the CDF has a nice shape on lognormal probability paper, it is 

easier to pick a function that w ill fit in this domain and then transform the function to ob­

tain an approximation for the CDF. This corresponds to fitting a curve based on a plot o f 

c*>-1 (^ l(y )) versus y, which is the right hand axis o f Figure 2.1.

Let f ( y )  be the approximating function defined on lognormal probability paper. Now 

it is possible to express the approximate CDF in units o f dB as

It is necessary to empirically choose an approximating function. The requirements are that 

the function be simple, have few parameters, and provide an accurate approximation to the

[14], [17],

2.2 CDF Approximation

(2.12)

The CDF can then also be written as

(2.13)
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Figure 2.2. The CDF o f a sum o f N  lognormal RVs (ax  =  6  dB) fo r N = 2 , 6 ,10 and 20.
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Figure 2.3. The CDF o f a sum o f N  lognormal RVs (crx  =  12 dB) for N  = 2 ,6 ,10  and 20.
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distribution. From these criteria and the shape o f the curves in Figures 2.2 and 2.3, it  is 

evident that the quadratic function o f the form

f { y )  =  aQ +  al y + a 2f  (2.14)

could be a possible choice fo r the approximating function, where aQ, ax and a2 are pa­

rameters that need to be calculated. The parameters aQ, ax and a2 are optimized using a 

non-linear least squares method [25],[26]. The results o f the quadratic approximating func­

tion can be found in Figures 2.4 and 2.5, in which the markers are the exact CDFs and the 

solid lines are the approximations for each number o f summands. W hile the approximate 

CDF obtained using the quadratic function is accurate over most o f the range, it  is less 

accurate for values o f the CDF greater than 0.99 as the number o f summands increases. As 

a result, the quadratic function does not provide the required accuracy needed fo r a good 

approximation.

Another possibility is using an exponential function with a negative exponent, which 

w ill have a shape very sim ilar to the exact CDF. The form o f such an approximating func­

tion is given by

A r )  =  < b - ‘ (2.15)

where aQ, ax and a~, are constants that need to be determined. The exponential approx­

imation has an advantage that it is closed-form and very simple for a given number o f 

summands. Given (2.15) the approximate CDF in units o f dB is

Fz (y) =  ®{a$ — axe~a-Y), (2.16)

which can also written as

(217)

The exponential approximating function is plotted in Figures 2.6 and 2.7 fo r ox =  6  dB 

and ax  =  12 dB, respectively. It can be easily seen that the exponential approximating 

function is more accurate than the quadratic approximation over the entire range o f the 

CDF and number o f summands. To maintain this high accuracy, it  is necessary to set the
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Figure 2.4. The CDF o f a sum o f N  lognormal RVs (px =  6  dB) and the quadratic approx­

imating function f ( y )  =  aQ +  a j y +  a2y2 fo r N  =  2, 6 , 10 and 20 (line is exact and 

marker is approximate).
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Figure 2.5. The CDF o f a sum o f N  lognormal RVs (<JX =  12 dB) and the quadratic 

approximating function / ( y )  =  a0 +  a l y + a 2y1 fo r N  =  2 ,6 ,10 and 20 (line is exact 

and marker is approximate).
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Figure 2.6. The CDF o f a sum o f N  lognormal RVs (gx =  6  dB) and the approximating 

function /( y )  =  aQ — axe~â  for N  =  2, 6, 10 and 20 (line is exact and marker is 

approximate).
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Figure 2.7. The CDF o f a sum o f N  lognormal RVs (ax =  12 dB) and the approximating 

function /( y )  =  aQ — axe~a for N  =  2 ,6 , 10 and 20 (line is exact and marker is 

approximate).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE 2.1

The coefficients fo r the approximation <!>(a0 — a1e~ai y).

gx = 6  dB ax = 12 dB

N ao a i a2 * 0 ai a2
2 25.636 26.600 0.008282 23.911 24.670 0.004301

3 15.954 17.738 0.01553 16.333 17.674 0.007094

4 13.656 16.160 0.01993 1 2 .6 8 8 14.512 0.009947

5 11.083 14.367 0.02702 11.217 13.483 0 .0 1 2 0 0

6 10.760 14.685 0.02938 10.132 12.809 0.01401

7 10.037 14.670 0.03335 9.465 12.531 0.01567

8 9.465 14.825 0.03723 8.942 12.382 0.01723

9 9.087 15.166 0.04051 8.523 12.326 0.01869

10 8.748 15.575 0.04381 8.205 12.373 0.02004

11 8.435 16.052 0.04720 8.027 12.532 0.02103

12 8.156 16.612 0.05061 1.112 12.624 0.02227

13 8 .0 2 1 17.241 0.05297 7.615 12.788 0.02322

14 7.896 17.905 0.05529 7.423 12.937 0.02434

15 7.647 18.669 0.05897 7.290 13.120 0.02524

16 7.652 19.340 0.05999 7.144 13.311 0.02625

17 7.418 20.258 0.06385 7.033 13.515 0.02709

18 7.310 21.132 0.06632 6.942 13.731 0.02786

19 7.204 22.068 0.06883 6.826 13.952 0.02880

20 7.223 22.799 0.06961 6.745 14.181 0.02954
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value o f the parameters aQ, ax and a2 fo r a particular sum, i.e. a particular set o f values fo r 

N  and ax . The calculated values o f a0, ax and a, for ox =  6  dB and ox  =  12 dB can be 

found in Table 2.1.

Comparing the exponential approximation with the approximations discussed in Chap­

ter 1 w ill provide an important measure that w ill determine i f  this exponential approxima­

tion is more accurate than Schwartz and Yeh’s, W ilkinson’s, and Farley’s approximations. 

Figures 2.8 - 2.15 compares W ilkinson’s, Schwartz and Yeh’s, Farley’s approximations 

with the exponential approximation fo riV  =  2 ,6 ,10 and 20 for dB spreads o f 6  and 12. As 

is illustrated in the figures, the exponential approximation is more accurate that Schwartz 

and Yeh’s, W ilkinson’s, and Farley’s approximations for any number o f summands and dB 

spread. For N  =  2, all the approximations are relatively good because the distribution o f 

two summands is almost a lognormal distribution.

Schwartz and Yeh’s approximation is close to the exact distribution in the range 0.1 

to 0.99 but deviates in the tails o f the CDF and complementary CDF. In the ta il o f the 

CDF, Schwartz and Yeh’s approximation deviates up to 3 orders o f magnitude, and the 

deviation increases as the dB spread becomes larger. The same deviation is seen in the ta il 

o f the complementary CDF but it  is much larger. For example, fo r N  =  20 and <JX =  6 dB, 

there is 7 orders o f magnitude difference between Schwartz and Yeh’s approximation and 

the exact CDF when the CDF equals 1 — 10-6 . The performance o f Schwartz and Yeh’s 

approximation is much better in the tail o f the CDF than in the ta il o f the complementary 

CDF.

The simpler W ilkinson’s approximation is generally more accurate than Schwartz and 

Yeh’s method fo r values o f the CDF larger than 0.1. For 6  dB spread, W ilkinson’s approx­

imation is almost the same as Schwartz and Yeh’s approximation, but slightly better in the 

ta il o f the complementary CDF and slightly worse in the tail o f the CDF. This is in contrast 

to the case o f 12 dB spread where W lkinson ’s approximation is very close to the ta il o f the 

exact complementary CDF, but deviates more than Schwartz and Yeh’s approximation in 

the ta il o f the CDF. For example, in the tail o f the CDF, W ilkinson’s approximation devi­

ates 5 orders o f magnitude for N  =  20 and ox  =  12 dB, while Schwartz and Yeh’s method
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only deviates by 3 orders o f magnitude. In contrast to Schwartz and Yeh’s method, W ilk in ­

son’s approximation for the ta il o f the complementary CDF improves as the dB spread 

increases. It is also observed that W ilkinson’s method decreases in accuracy as the number 

o f summands increases.

Farley’s approximation is actually a strict upper bound for the CDF and a strict lower 

bound for the complementary CDF. It is observed that as the number o f summands in­

creases, the performance o f Farley’s approximation becomes worse. Also, the performance 

deteriorates as the dB spread becomes smaller. For example, Farley’s approximation de­

viates in the tail o f the CDF from the exact distribution by over 5 orders o f magnitude for 

N  =  20 and <7X =  6  dB.

It is observed in Figures 2.8 - 2.15, that the exponential approximation is always better 

than any o f the other approximations when considered over the entire range. In certain 

regions o f the CDF, other approximations might be as accurate as the exponential approx­

imation but i f  these approximations are good in one region, they are generally terrible in 

other regions. For example, Farley’s approximation for N =  20 and ax =  6 dB is as accu­

rate as the exponential approximation fo r values o f the CDF greater than 0.999, but fails 

fo r values less than 0.99 and deviates by up to 3 orders o f magnitude in the ta il o f the CDF. 

The areas o f great interest are the tails o f the CDF and complementary CDF. In these re­

gions, the exponential approximation performs better than both Schwartz and Yeh’s, and 

W ilkinson’s approximation, and deviates very slightly from the exact distribution over the 

entire range of the CDF.

2.3 PDF Approximation

W hile the CDF o f a sum o f lognormal RVs is important in calculations such as outage 

probabilities, the PDF is equally important. For example, the PDF is required to be able to 

calculate the BER o f certain communications systems. In general, given a CDF Fz (z), the
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Figure 2.8. The CDF o f a sum o f N  =  2 lognormal RVs (ax =  6  dB) and various CDF 

approximations.
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Figure 2.9. The CDF o f a sum o f TV =  2 lognormal RVs (ox =  12 dB) and various CDF 

approximations.
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Figure 2.10. The CDF o f a sum o f N  =  6  lognormal RVs (ox =  6  dB) and various CDF 

approximations.
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Figure 2.11. The CDF o f a sum o f N  =  6  lognormal RVs (ox =  12 dB) and various CDF 

approximations.
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Figure 2.12. The CDF o f a sum o f N  =  10 lognormal RVs (ax  =  6  dB) and various 

approximations.
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Figure 2.13. The CDF o f a sum o f N =  10 lognormal RVs (<jx =  12 dB) and various CDF 

approximations.
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Figure 2.14. The CDF o f a sum o f N  =  20 lognormal RVs (<7X =  6 dB) and various CDF 

approximations.
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Figure 2.15. The CDF o f a sum o f N  =  20 lognormal RVs {qx — 12 dB) and various CDF 

approximations.
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PDF of the distribution can be determined by using the relation

(2.18)

Note that the derivative o f an accurate approximation to a function is not in general, neces­

sarily an accurate approximation to the derivative o f the function. Consider, for example, a 

Fourier approximation to a square wave. The derivative o f the square wave is infinite at the 

transitions, but the derivative o f the Fourier approximation is finite at these transitions. As 

a result, it  is necessary to evaluate whether the exponential approximation given by (2.15) 

w ill produce an equally accurate approximation to the PDF as the CDF.

Assuming that (2.18) w ill produce an accurate PDF, (2.17) can be form ally differenti­

ated to yield

as a potential approximation to the PDF o f a sum of lognormal RVs, where the values o f aQ, 

av  and an are identical to the values obtained for the CDF. In units o f dB, the approximate 

PDF can be expressed as

The PDF approximation is shown in Figures 2.16 - 2.23 for values o f N  =  2 ,6 ,10  and 

20 for dB spreads of 6  and 12. In addition, the PDF obtained using Schwartz and Yeh’s, 

W ilkinson’s, and Farley’s methods are also plotted on Figures 2.16 - 2.23 to allow for com­

parisons. The PDF is determined numerically by performing an inverse transform using a 

modified Clenshaw-Curtis method on the characteristic function that is also obtained using 

the modified Clenshaw-Curtis method [22]. A number o f observations can be made from 

these plots.

1. The PDF approximation obtained from the exponential CDF approximation is accu­

rate over the entire range.

2. The PDF obtained using Schwartz and Yeh’s method is only accurate when the PDF 

is decreasing. Schwartz and Yeh’s approximation deviates by as much as 3 orders of 

magnitude, but the error decreases as y increases and as the dB spread is reduced.

'=/A )2) (2.19)

(2.20)
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3. W ilkinson’s approximation follows Schwartz and Yeh’s approximation very closely 

for ax  =  6  dB, but does not accurately approximate the PDF as N  increases. For 

ax  =  12 dB, W ilkinson’s approximation is always worse than Schwartz and Yeh’s 

by over 2 orders o f magnitude fo r the increasing section o f the PDF. In the decreasing 

section, W ilkinson’s approximation is very close to the numerically determined PDF.

4. Taking the derivative o f (1.59) results in an approximation for the PDF based on 

Farley’s approximation to the CDF. It  is observed that this PDF is better than both 

Schwartz and Yeh’s, and W ilkinson’s approximation for N  =  2, but as N  increases, 

Farley’s approximation is very inaccurate over the entire range o f y. This is consistent 

over all dB spreads.

5. The exponential PDF approximation is very consistent over y, N  and ox , which is in 

contrast to the other approximations considered.

2.4 Summary

A new method for approximating the distributions and densities o f a sum o f lognormal 

RVs was introduced in this chapter. It can easily be seen when using lognormal probability 

paper that a lognormal sum distribution is not lognormal and as a consequence should 

not be approximated as one. This leads to new methods o f approximating the distribution 

and densities based on lognormal probability paper. In this chapter, a highly accurate, 

closed-form approximation fo r the lognormal sum distribution was introduced based on 

the use o f lognormal probability paper that linearizes the distribution. It was seen that 

this new approximation was very accurate for a large number o f parameters, such as the 

number o f summands and dB spread. The approximation was also compared to other well 

known approximations by Schwartz and Yeh, W ilkinson, and Farley. It was determined 

that the new approximation performed many orders o f magnitude better than the other 

approximations, and only slightly deviated from the exact distribution.
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Figure 2.16. The PDF o f a sum o f N  =  2 lognormal RVs (crx =  6  dB) and various PDF 

approximations.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 Exact
+ <!>(•) approximation

-  A -  Schwartz and Yeh
-  *  -  Wilkinson
-  9 -  Farley__________

Qr -O -

10' -

S

Figure 2.17. The PDF o f a sum o f N  =  6  lognormal RVs (ax =  6  dB) and various PDF 

approximations.
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Figure 2.18. The PDF o f a sum o f N  =  10 lognormal RVs (o^ =  6  dB) and various PDF 

approximations.
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Figure 2.19. The PDF of a sum o f N =  20 lognormal RVs (gx =  6  dB) and various PDF 

approximations.
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Figure 2.20. The PDF o f a sum of N =  2 lognormal RVs (ax  =  12 dB) and various PDF 

approximations.
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Figure 2.21. The PDF o f a sum o f N  =  6  lognormal RVs (gx =  12 dB) and various PDF 

approximations.
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Figure 2.22. The PDF o f a sum o f N  =  10 lognormal RVs (o^ =  12 dB) and various PDF 

approximations.
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Figure 2.23. The PDF o f a sum o f N  =  20 lognormal RVs (cfx =  12 dB) and various PDF 

approximations.
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From the CDF approximation it was possible to obtain a PDF approximation that was 

also accurate over the same large range o f parameters. The PDF approximation was also 

compared to Schwartz and Yeh’s, W ilkinson’s, and Farley’s approximations. The new PDF 

approximation was considerably more accurate than the existing approximations over the 

entire range o f the PDF. Schwartz and Yeh’s, and W ilkinson’s methods were only accurate 

over the decreasing part o f the PDF while the PDF obtained using Farley’s CDF approx­

imation was found to be highly inaccurate for more than 2  summands and not a suitable 

PDF approximation. The approximation w ill be extended to correlated RVs in Chapter 3.
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Chapter 3

Approximation to the Sum Distribution 

of Non-Independent, Identically 

Distributed Lognormal Random 

Variables

In a shadowing environment it is possible that the received signal on each diversity branch 

is the result o f the same obstacles near the receiver. Hence, the signals can be correlated. 

As a result, it is necessary to determine the distribution and density o f a sum o f correlated 

lognormal RVs. This problem has not been as extensively studied as the iid  case that was 

considered in Chapter 2. The few approximations that exist in the literature are based 

on extensions o f methods used for a sum o f iid  lognormal RVs [18],[19],[27]. In this 

chapter, we w ill extend the exponential approximation to the CDF and PDF o f a sum o f 

iid  lognormal RVs determined in Chapter 2 to a sum o f correlated lognormal RVs. We 

w ill also compare the exponential approximation to extensions o f Schwartz and Yeh’s, and 

W ilkinson’s approximations.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.1 CDF of the Sum of Correlated Lognormal RVs

In practical systems, there is a statistical correlation between the shadowed received sig­

nals. This is a result o f the received signals being shadowed by the same obstacles and 

obstructions in the area o f the receiver. Accordingly, the correlation coefficient is defined 

as
E [ ( Y i  -  m Y)  ( Yj  -  m y ) ]  £ [ ( * ,  -  m x )  (X -  -  mx )]

p   ----------= -------------------------------- L_. (3.1)
J ° Y ? Y j  ° X ° X j

In this thesis, when a sum o f correlated lognormal RVs is considered, it w ill be assumed

that pu =  1 and p iy- =  p fo r i  ^  j .  This means that we w ill be considering a sum o f non-

independent, identically distributed (niid) lognormal RVs which is also know as a sum o f 

correlated lognormal RVs. Note that the analysis is s till valid fo r a sum o f non-independent, 

non-identically distributed lognormal RVs.

As in the case o f a sum o f iid  lognormal RVs, an approximation to correlated sum dis­

tribution can be determined using a moment matching method. Abu-Dayya and Beaulieu 

[18] derived expressions for the approximate moments m^ and <7? by applying the tech­

nique offered by W ilkinson [14]. The approximate moments are given by

m- -  21n«j -  ^ ln u 2 (3.2)

=  In m-, — 2 In m j (3.3)

where

N
B l = 2 A + K ,  (3.4)

i= 1

u2 = Z e ^ ' , +2° l + 2 f!Z  £  / r i+ v K ^ +V - P“ ‘’ ’A ) .  (3.5,
i= l /=! j= i+ 1

Using these moments, the CDF s till takes on the same form as the iid  case, as given by 

(1.40).

Another method used in the iid  case to determine the distribution o f a sum o f lognormal 

RVs was a recursive method determined by Schwartz and Yeh [14]. This technique was
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extended to a sum o f correlated RVs by Safak [19]. Using an extension o f Schwartz and 

Yeh’s method, the mean and variance o f Y are given by

replaces (1.43), and p; - is defined by (3.1). For more than two lognormal RVs, the mo­

ments are determined using the same recursive approach introduced by Schwartz and Yeh 

as outlined in [19] but with p p  replaced by

Another method for determining an approximation to the distribution o f a lognormal 

sum is based on plotting the distribution on probability paper. Given the shape o f the curves 

in this plot, new techniques can be used to determine an approximation. For example, 

Beaulieu and X ie [17],[22] derived a minimax approximation that fit a lognormal RV to 

the sum distribution that would minimize the maximum error. Another technique was 

discussed in Chapter 2, that fit an exponential curve to the sum distribution on lognormal 

probability paper. It was easy to find these new approximations because the exact CDF 

could be easily calculated using a modified Curtis-Clenshaw integration. In this integration, 

the product o f the CFs o f the lognormal distribution can be calculated numerically, which

=  mYi +  Gj (3.6)

(3.7)

where G ,, G2 and G2 are given by (1.45), (1.49) and (1.50) respectively,

a Yd — g yx +  ° yz ~  - P \ 2 ° yx °V , (3.8)

where

Zk =  \n(Yl +Y 2 +  --- +  Yk), (3.10)

(3.11)
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can then be used to obtain the CDF for the sum RV. This type o f analysis is only valid for a 

sum o f independent RVs because a sum o f correlated RVs cannot be expressed as a product 

o f CFs [20]. Accordingly, it  is necessary to use simulation to obtain the CDF o f a sum o f 

correlated lognormal RVs. Since simulations can take a long time, determining an accurate 

approximation is very important because it can be used to obtain solutions to problems that 

might otherwise be d ifficu lt to obtain through simulation.

Before a simulation o f a sum distribution can be obtained it is necessary to simulate 

the summands and generate the sum. The summands, which are correlated RVs, can be 

generated using two different methods. The first one requires that the jo in t distribution 

be available for the set o f RVs to be simulated [28]. For example, i f  a set o f correlated 

Gaussian RVs are required, it  would be possible to use the jo in t Gaussian distribution to 

obtain the simulation points. The drawback o f such a method is that as the number of 

RVs increases, the jo in t distribution becomes complex and cumbersome to use. Another 

method that uses the marginal distribution o f the RVs and defines the correlation between 

the variables w ill yield sim ilar results [28]. In the case o f the lognormal distribution, using 

marginal distributions is easier to implement as N  become larger.

In order to simulate the distribution o f a sum o f correlated lognormal RVs it is first 

necessary to generate correlated lognormal RVs, which can then be used to determine the 

sum distribution. As a result, we define the vector o f correlated lognormal RVs as

where the marginal PDF o f L; is given by (1.24). The related Gaussian vector is then 

defined as

where Xi =  101og10L;. We w ill also define a covariance matrix Cx where the entries are 

are given by

L = [ L j  U  -  LN ]T (3.12)

X =  [ x l x2 ... xn ]t (3.13)

(3-14)
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By simple algebraic manipulation [28] the covariance o f L ; and L j  in terms o f the moments 

o f X  is expressed as

A nx +Xf ix  +  
C, — e ' J

‘j

This implies that that the correlation between Li and L j  is related to p-y by

/ 2p'A %
P, =  , -T- ■ (3.16)

v  (e xi -  l ) (e  j -  1)

Given this relation it  is possible to define the correlation in terms o f the lognormal RVs or 

the Gaussian RVs. In this thesis we w ill define the correlation in terms o f the Gaussian 

RVs.

In order to generate the correlated lognormal RVs, we first generate W, a normal ran­

dom vector with zero-mean, unit-variance and zero correlation. The correlated normal 

vector is then expressed

X =  Bt W (3.17)

where B is the Cholesky decomposition o f C. The Cholesky decomposition is defined as 

the decomposition given by

C =  Bt B (3.18)

and is possible because C is a positive definite matrix [29]. Finally, the correlated lognormal 

random vector is given by

L  =  exp(AX). (3.19)

Taking the sum o f the components o f the random vector results in a sum o f correlated 

lognormal RVs. Simulating this process w ill result in a sum o f correlated RVs that is then 

used to determine the PDF and CDF. More details about the method used to simulate the 

RVs can be found in Appendix A. The simulated CDF is plotted in Figures 3.1 - 3.6 on 

lognormal probability paper.

Just as in the iid  case, the sum o f correlated lognormal RVs have a desirable shaped

when plotted on lognormal probability paper. As a result, it  is possible to use the same
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Figure 3.1. The CDF o f a sum o f N  correlated lognormal RVs (<JX =  6  dB, p =  0.1) and 

the exponential approximating function for N  =  2, 6 , 10 and 20 (line is simulation 

and marker is approximate).
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Figure 3.2. The CDF o f a sum o f N  correlated lognormal RVs (ax  =  6  dB, p =  0.5) and 

the exponential approximating function fo r N  =  2, 6 , 10 and 20 (line is simulation 

and marker is approximate).
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Figure 3.3. The CDF o f a sum o f N  correlated lognormal RVs (ax =  6  dB, p =  0.9) and 

the exponential approximating function fo r N  =  2, 6, 10 and 20 (line is simulation 

and marker is approximate).
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Figure 3.4. The CDF of a sum o f N  correlated lognormal RVs (<JX =  12 dB, p =  0.1) and 

the exponential approximating function for N  =  2, 6 , 10 and 20 (line is simulation 

and marker is approximate).
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Figure 3.5. The CDF o f a sum o f N  correlated lognormal RVs (ctx =  12 dB, p  =  0.5) and 

the exponential approximating function for N  =  2, 6 , 10 and 20 (line is simulation 

and marker is approximate).
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Figure 3.6. The CDF o f a sum o f N  correlated lognormal RVs (cr*- =  12 dB, p =  0.9) and 

the exponential approximating function for N  = 2 , 6, 10 and 20 (line is simulation 

and marker is approximate).
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TABLE 3.1

The coefficients for the approximation <£(a0 -  axe~a'-Y) for ox =  6 dB.

oIIQ.

dIIa. p  =  0.9

N *0 a i a-, 103 ao ai cl, 10s ao ai a2 106

2 32.160 33.015 6.43 138.16 138.84 1.358 490.25 490.75 3.484

3 23.424 24.973 9.93 137.93 139.07 1.436 490.09 490.91 3.516

4 19.584 21.713 12.89 137.77 139.24 1.486 489.98 491.02 3.534

5 17.803 20.440 15.07 137.64 139.37 1.520 489.89 491.11 3.545

6 16.598 19.703 16.98 137.54 139.48 1.546 489.82 491.18 3.552

7 15.655 19.188 18.73 137.45 139.57 1.566 489.76 491.24 3.557

8 15.336 19.258 19.76 137.37 139.65 1.581 489.71 491.30 3.561

9 14.858 19.151 20.98 137.30 139.72 1.594 489.66 491.34 3.564

10 14.617 19.260 21.87 137.24 139.79 1.605 489.62 491.38 3.567

11 14.577 19.538 22.41 137.19 139.84 1.614 489.58 491.42 3.569

12 14.700 19.952 22.63 137.14 139.89 1.622 489.55 491.46 3.571

13 14.560 20.123 23.31 137.09 139.94 1.630 489.52 491.49 3.571

14 14.637 20.469 23.56 137.05 139.99 1.635 489.49 491.52 3.574

15 14.498 20.596 24.12 137.01 140.03 1.641 489.46 491.54 3.575

16 14.506 20.857 24.44 136.97 140.06 1.646 489.44 491.57 3.577

17 14.518 21.116 24.74 136.94 140.10 1.650 489.41 491.59 3.577

18 14.830 21.619 24.45 136.90 140.13 1.654 489.39 491.61 3.578

19 14.926 21.936 24.57 136.87 140.16 1.657 489.37 491.63 3.579

2 0 15.011 22.239 24.70 136.84 140.20 1.661 489.35 491.65 3.580
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TABLE 3.2

The coefficients for the approximation O(a0 — axe~ai'f ) for ox =  12 dB.

1

fHoIIQ. p  =  0.5

OSoIIQ.

N a 0 a i <£> 103 * 0 a\ a2103 f l0 a i ^ lO 4

2 29.211 29.893 3.434 83.237 83.731 1.108 399.87 400.15 2.132

3 21.589 22.778 5.124 83.087 83.899 1.161 399.78 400.25 2.155

4 16.524 18.095 7.166 82.982 84.013 1.194 399.72 400.31 2.164

5 14.986 16.888 8.288 82.902 84.101 1.219 399.67 400.36 2.170

6 13.857 16.050 9.316 82.838 84.170 1.237 399.64 400.40 2.174

7 13.064 15.515 10.19 82.784 84.228 1.251 399.61 400.43 2.177

8 12.582 15.266 10.85 82.738 84.278 1.263 399.58 400.45 2.180

9 12.091 14.992 11.55 82.697 84.321 1.273 399.55 400.48 2.183

10 11.833 14.928 1 2 .0 2 82.661 84.359 1.282 399.53 400.50 2.184

11 11.524 14.809 12.57 82.629 84.394 1.290 399.51 400.52 2.186

12 11.349 14.805 12.95 82.599 84.425 1.296 399.50 400.54 2.187

13 11.167 14.788 13.34 82.573 84.453 1.303 399.48 400.55 2.188

14 11.091 14.859 13.59 82.548 84.479 1.307 399.47 400.57 2.189

15 10.929 14.846 13.95 82.525 84.504 1.313 399.45 400.58 2.191

16 10.855 14.906 14.18 82.504 84.526 1.317 399.44 400.60 2.193

17 10.680 14.872 14.57 82.484 84.547 1.321 399.44 400.62 2.193

18 10.628 14.944 14.76 82.465 84.567 1.325 399.43 400.63 2.193

19 10.577 15.013 14.95 82.447 84.586 1.328 399.42 400.64 2.194

2 0 10.529 15.079 15.13 82.431 84.603 1.332 399.41 400.65 2.195
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approximation as in the iid  case to approximate the correlated sum CDF. For the correlated 

sum case, the coefficients aQ, a1 and a2 w ill have to be recomputed fo r the cases being 

considered using the same technique as Chapter 2. The value o f the coefficients for p =  0.1, 

0.5 and 0.9 can be found in Tables 3.1 and 3.2, for ox  = 6  and 12 dB respectively. From 

Figures 3.1 - 3.6 it  is observed that the exponential approximation is accurate over a large 

range o f probabilities, N, ox  and p. Also, as p increases, the CDF becomes closer to a 

straight line, closely resembling the distribution o f a single lognormal RV. For p =  0.9, the 

CDF is almost a straight line fo r any value o f N. This means that fo r values o f N  >  2, the 

distribution is almost that o f a single lognormal RV but w ith a shifted mean as represented 

by the distribution moving to the right and the slope staying constant as N  increases.

To determine the usefulness o f the exponential approximation, it is necessary to com­

pare it w ith the extensions o f W ilkinson’s, and Schwartz and Yeh’s methods for computing 

the distribution. In Figures 3.7 - 3.12, the exponential approximation is plotted along with 

Schwartz and Yeh’s, and W ilkinson’s approximations fo r N  =  2 ,6 ,10  and 20, and p =  0.1, 

0.5 and 0.9 for ax  =  6  dB. From these figures, the follow ing observations can be made.

1. For low correlation, Schwartz and Yeh’s, and W ilkinson’s approximation are not 

very accurate. Also, as N  increases, the accuracy o f the moment matching methods 

decrease. This is sim ilar to the observations made in Chapter 2 for a sum o f iid  

lognormal RVs.

2. W ilkinson’s approximation deviates from the exact value by up to 4 orders o f magni­

tude in the ta il o f the complementary CDF and by up to 2 orders o f magnitude in the 

ta il o f the CDF. Schwartz and Yeh’s accuracy is very sim ilar to that of W ilkinson’s.

3. As the correlation increases, the accuracy o f W ilkinson’s, and Schwartz and Yeh’s 

method approach that o f the exponential approximation. This is a result o f the highly 

correlated sum CDF exhibiting sim ilar statistics to that o f a single lognormal RV. 

Also, the moment matching methods assume that the sum distribution is given by 

another lognormal RV, which more closely matches the behavior o f the sum o f highly 

correlated lognormal RVs than a sum o f iid  lognormal RVs.
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Sim ilar observations are made for ox  =  12 dB in Figures 3.13 - 3.18.

3.2 PDF Approximation

An equally important test o f the exponential approximation is to determine i f  the PDF is 

as accurate for the correlated sum as it was fo r the iid  sum. Also, it  is important to see 

how much an improvement the exponential approximation can provide over the moment 

matching techniques.

Just as in the iid  case, the approximate PDF for a correlated sum is given by (2.19). 

Using the values o f aG, a l and a2 in Tables 3.1 and 3.2, the PDF has been plotted in Fig­

ures 3.19 - 3.22 for a few select cases. From these plots it is possible to see that the PDF 

approximation is accurate over the entire range o f interest. The accuracy is not affected 

by the number o f RVs, dB spread, or correlation coefficient. For low correlation values, 

Schwartz and Yeh’s, and W ilkinson’s approximations are not very accurate and the accu­

racy increases as the correlation coefficient is increased. For large correlation coefficients, 

there is little  advantage to use either Schwartz and Yeh’s approximation or the exponen­

tia l approximation. W ilkinson’s approximation is very accurate in these cases and easier 

to calculate than the other approximations. Overall the exponential approximation is an 

excellent approximation fo r low to medium correlation, where it  is dramatically better than 

Schwartz and Yeh’s, and W ilkinson’s approximations.

3.3 Summary

The exponential approximation introduced in Chapter 2 was extended to a sum o f corre­

lated lognormal RVs. Using simulation, it  was seen that the new approximation is accurate 

over a large range o f parameters, just as in the iid  case. The exponential approximation 

was also compared to Schwartz and Yeh’s, and W ilkinson’s approximations. It was found 

that fo r low values o f correlation, the exponential approximation outperformed the moment 

matching techniques. For high correlation, all the approximations performed almost iden-
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tically. It was shown that the exponential approximation is accurate not only for a sum o f 

iid  lognormal RVs but also fo r a sum o f correlated RVs.
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Figure 3.7. The CDF o f a sum o f 77 =  2 correlated lognormal RVs (<JX =  6  dB, p =  0.1) 

and various approximations.
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Figure 3.8. The CDF o f a sum o f N  =  6  correlated lognormal RVs (crx =  6 dB, p =  0.1) 

and various approximations.
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Figure 3.9. The CDF o f a sum o f N =  10 correlated lognormal RVs (ox =  6  dB, p  =  0.1) 

and various approximations.
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Figure 3.10. The CDF o f a sum o f N  =  20 correlated lognormal RVs (ax  =  6 dB, p =  0.1) 

and various approximations.
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Figure 3.11. The CDF o f a sum o f N  =  2, 6 ,10  and 20 correlated lognormal RVs (<JX =  6  

dB, p =  0.5) and various approximations.
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Figure 3.13. The CDF o f a sum o f N  =  2 correlated lognormal RVs (gx =  12 dB, p =  0.1) 

and various approximations.
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Figure 3.14. The CDF o f a sum o f N  =  6  correlated lognormal RVs (<JX =  12 dB, p =  0.1) 

and various approximations.
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Figure 3.15. The CDF o f a sum o f N  =  10 correlated lognormal RVs (gx =  12dB,p =  0.1) 

and various approximations.
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Figure 3.16. The CDF of a sum o f N =  20 correlated lognormal RVs (ax =  12 dB, p =  0.1) 

and various approximations.
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Figure 3.17. The CDF o f a sum o f N  =  2 ,6 ,10 and 20 correlated lognormal RVs (ax =  12 

dB, p =  0.5) and various approximations.
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Figure 3.18. The CDF o f a sum o f AT =  2 ,6 ,10 and 20 correlated lognormal RVs (ox =  12 

dB, p =  0.9) and various approximations.
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Figure 3.19. The PDF o f a sum of N  =  2 correlated lognormal RVs (ax =  6  dB, p  =  0.1) 

and various approximations.
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Figure 3.20. The PDF o f a sum o f N  =  10 correlated lognormal RVs (<7X =  6  dB, p =  0.9) 

and various approximations.
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Figure 3.21. The PDF o f a sum o fN  =  2 correlated lognormal RVs (ax =  12 dB, p =  0.1) 

and various approximations.
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Figure 3.22. The PDF o f a sum o f N  =  10 correlated lognormal RVs (<7X =  12 dB, p =  0.9) 

and various approximations.
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Chapter 4

Performance of a Pulse Amplitude and 

Position Modulation Ultra-Wide 

Bandwidth Wireless System over 

Lognormal Fading Channels

UWB is a rapidly emerging and viable technology for short distance, indoor wireless com­

munication systems [30]. It also has other attractive uses in radar, imaging, and positioning 

systems [5]. A typical UWB system is carrier-less and can overlay existing wireless sys­

tems using low power, ultra-short pulses to transmit information. The interference between 

systems is mitigated by using signals w ith flat power spectral densities. One possible modu­

lation scheme is PAPM which does not have any spectral lines [31], making PAPM suitable 

fo r UWB signals.

The performance o f PAPM UWB using a MRC receiver in a lognormal fading channel 

was evaluated by L iu  [32]. A  single integral approximation to the error rate was deter­

mined based on W ilkinson’s approximation [14] to the lognormal sum distribution. It  was 

seen in Chapter 2 that W ilkinson’s approximation to the CDF is not very accurate and the 

accuracy is dependent on the dB spread and number o f summands. The exponential ap-
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proximation based on lognormal probability paper was shown to be more accurate than 

any other approximation and not dependent on dB spread or number o f summands. Using 

the exponential approximation it is possible to determine a more accurate BER expression 

fo r PAPM UWB using MRC in lognormal fading channels. Furthermore, it  is possible 

to extend the method to obtain accurate single integral expressions for EGC, which have 

not previously been presented. Using the single integral expressions it w ill be possible to 

compare PAPM UWB with MRC and EGC diversity in a lognormal fading environment.

4.1 System Model

A typical PAPM UWB signal has the form [32]

s ( t ) =  £  ^ E sb °„ p (t~ n T f - ^ - S )  (4.1)
n =—<» —

where T j is the time duration o f a frame (pulse repetition time), p(t) is the pulse shape and 

Es is the symbol energy. The energy o f the pulse is normalized so that j ^ x p 2{t)d t =  1 . 

The two bits b® and b\, determine the n-th transmitted symbol. A  non-return to zero format 

is utilized, such that {&°&*} € { 1 1 ,1 - 1 , - 1 1 , - 1 - 1 } .  Furthermore, the symbols are 

precoded by interchanging { —1 1 }  and { — 1 — 1} , to reduce the complexity o f the receiver. 

The impulse response o f the channel is given by [6 ]

(4-2)
1=0

where N  is the number o f resolvable paths, SD(-) is the Dirac delta function, Tp is the 

minimum path resolution and pulse width, and is the fading coefficient fo r the I-th path. 

More complex models exist fo r modeling the impulse response o f a UWB channel [6 ], but 

(4.2) was chosen because it is simple and w ill yield simple expressions for the performance 

o f the system. In this model, it  is necessary to account fo r random pulse inversions [6 ] 

because UWB is a carrierless system. This is accomplished by making at =  0/j3/ where the 

parameter fy is the fading amplitude and Ql e { ± 1}  with equal probability.
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The fading amplitude can be considered to be a lognormal random variable with a

variance o f 3-5 dB [6 ],[7],[33]. Also it can be considered to be constant during a symbol

interval. Thus, the received signal present in a RAKE receiver is

K 0 =  Y,<*lp ( t - lT p)+ n ( t )  (4.3)
1=0

where n(t) is the additive white Gaussian noise (AWGN) w ith two-sided power spectral 

density N0/ 2. The receiver for PAPM UWB uses two template waveforms [32]

01 ( t ) = P ( t ) + p ( t - S ) ,  (4.4a)

4>2(t) =  p ( t ) - p ( t - 6 ) .  (4.4b)

The correlation o f a time shifted pulse p (t) and the template waveforms are

Rl ( x )= R (x )+ R (x -8 ) ,  (4.5a)

R2(x) =  R(x) -  R(x -  8) (4.5b)

where

R(x) = j  p { t )p { t - x )d t  (4.6)

is the autocorrelation o f the pulse shape. The correlator output is determined fo r the N  

resolvable paths and then combined using MRC or EGC. The structure o f a PAPM UWB

receiver using MRC is shown in Figure 4.1.

4.2 Maximal Ratio Combining

A single integral expression for the BER o f an MRC receiver was derived by L iu  [32] 

using an orthogonal signaling scheme [33]. The performance o f the receiver is dependent 

on the value o f 8 that is chosen. In an orthogonal signaling scheme, 8 is chosen to be 

the minimum value such that R(8) =  0. Since 8 is a fraction o f the pulse width o f p{t), 

it  is assumed that R(Tp -  8) «  0. It is also assumed that perfect estimates o f the fading 

coefficient are available fo r each resolvable path o f the receiver.
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Figure 4.1. The UWB PAPM receiver block diagram.

Given these assumptions and assuming detection o f the first symbol, it is possible to 

write the decision variable, without loss o f generality, as

A, =  %  otfVEsblRi ( + * , .  (4.7)
i=o \  -  /

where

Furthermore, since TP^ T ^  [30] no ISI occurs due to multipath because it can be assumed 

that all the multipath components are contained w ithin a frame. The b it decision is made 

by independently passing A; through a decision device with a threshold o f zero. The noise
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is uncorrelated for Aj and Aj, which is shown by

V-l Tf N - 1 T/
X  [ n ( t ) ^ ( t - k T p)dt  X  a/ / n ( t ) f c { z - l T p) d r
t= o  j  /=0 '

j v _ i a t _ i  Tf Tf

=  X  / ’^ ( rM T ) ]0 1( r - ^ ) 0 2( r - / r /7)drdr
* = o  /= o  ^  j

=  J 1's ' .Efoa,]:̂  [*, {(Z-- .t ) :Tp - S, ((/ ■-.I ) :r„+,5)1
k=0 1=0

A=0 

=  0. (4.9)

As a result, the decisions fo r b„ and b\ can be made independently. Due to the independence 

o f the statistics A j and A,, either statistic can be analyzed to determine the BER.

For a fixed {j3 J , A; is a Gaussian RV, and, thus the conditional BER for Aj can be 

written as

Pel]p =P r(A j < 0|b0 =  {1, l} )P r (6 0 =  {1 ,1 })

+  Pr(Aj < 0 |£ 0 =  { 1 , —l} )P r (&0 =  {1 ,-1 } )

+  Pt(Aj > 0|60 =  { - 1, l» P r(3 0 =  { - 1, 1})

+  Pr(A, > 0 |^0 =  { - l , - l } ) P r ( f c 0 =  { - 1 , - 1 } )

= Pr > X  A2v ^  •

When {j5t } is fixed, the noise variance can be shown to be

N —l

£ .
1=0

Using the result o f (4.11), (4.10) is written as

° Z = No E A 2-

Pe\\^M R c) ~  Q ( \ l

(4.10)

(4.11)

(4-12)
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N - 1
where PMRC =  2  Pf- The unconditional BER is then given by 

1=0

oo

= /  J’.upW/ffW* <4-!3)
0

where (z) is a lognormal sum PDF A  closed-form expression does not exist fo r this 

PDF and an approximation must be used. An approximation to the BER is derived in [32] 

based on W ilkinson’s method [14], but as seen in Chapter 2 W ilkinson’s method is not 

the best approximation to the lognormal sum distribution [13],[17],. Using the exponential 

approximation to the PDF given by (2.19) the BER is approximated as

p',=l Q W l*) £î S ^ exp("5(ao"a,r°2/;")2) & ( 4 - i 4 )

The values o f aQ, ax and an are chosen depending on the model that is used to represent the 

lognormal fading channel.

4.3 Equal Gain Combining

For MRC, the channel fading gains are required and they can be d ifficu lt to estimate ac­

curately. Another possible combining technique is EGC, which only requires the phase o f 

the fading channels. In a carrier-less UWB system, determining the phase is even simpler 

because the phase is either 0 or n, to account fo r pulse inversion [33]. In a practical system, 

performing EGC w ill be simpler than MRC but there w ill be a performance trade-off.

Just as with MRC, a single integral expression can be determined fo r the BER o f PAPM 

UWB w ith EGC diversity. Using an EGC combining scheme the decision variable is given

by N  i i
A; =  ( k i r M +»>,. <4-15>

1=0  \  -  /

Again, without loss o f generality, we can just look at the first branch o f the receiver. The
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BER for this branch can be written as

fi|P<̂?1|J3 — ̂  ( nl >  X  fyy/Es 
1=0

E,
~Q  I 11 TTTtPEGC I <4-16)

N - 1

where a - =  NQN  and PECC =  £  j3z. The unconditional BER can then be written using the 
'  1=0 

exponential approximation as

( ' J i z) - i e i J £ + l> exp H (a° - a >r ‘ ;/A )2)  (4 i7 )

The constants a0, and a2 are not the same for EGC and MRC because the sum distri­

butions are different in these two combining schemes. Also, the parameters w ill change 

depending on the severity o f the fading and the number o f branches in the receiver.

4.4 Numerical Results

A reasonable model for an indoor UWB channel is an exponentially decaying multipath 

intensity profile [33], as represented by

E l° f}  =  (4-18)

Given a fixed dB spread for all N  paths, it  can be seen that fiMRC and PECC are sums of 

independent, non-identically distributed lognormal RVs. The exponential approximation 

provided in Chapter 2 is fo r a sum o f iid  lognormal RVs. Accordingly, it  w ill be necessary 

to verify that this approximation is accurate in the non-iid case.

The exact distributions o f fiMRC and fiEGC are determined by numerically integrating 

the CFs using the modified Clenshaw-Curtis method [22], The parameters aQ, a, and a2 

are determined fo r y/ =  0.046 and a variance o f 4 dB [32] using a non-linear least squares 

algorithm as in Chapter 2. The values o f the parameters for the approximation to the distri­

bution o f PMRC and PEGC can be found in Tables 4.1 and 4.2 respectively. The exact PDFs
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TABLE 4.1

The coefficients for the exponential approximation to $MRC

N ao a\ a2
2 26.521 26.199 0.005882

3 16.956 16.196 0.01048

4 13.322 13.794 0.01472

5 11.698 12.495 0.01802

6 10.714 11.808 0.02086

7 9.993 11.366 0.02086

8 9.315 10.960 0.02353

9 8.949 10.846 0.02867

10 8.635 10.777 0.03074

TABLE 4.2

The coefficients fo r the exponential approximation to /3£GC

N ao Ch

2 36.886 36.894 0.008809

3 24.752 25.539 0.01542

4 20.536 22.042 0.02087

5 17.929 20.124 0.02624

6 16.894 19.761 0.03003

7 15.810 19.348 0.03430

8 15.431 19.651 0.03742

9 14.954 19.843 0.04067

10 15.237 20.796 0.04202
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Exact N=2
O Approx. N=2 
□ Wilkinson N=2

 Exact N=6
Approx. N=6 

* Wilkinson N=6 
Exact N=10 

+ Approx. N=10 
A Wilkinson N=10

Figure 4.2. The PDF o f PMRC, the 4>(a0 - a xe ai y) approximation, and W ilkinson’s 

proximation fo r N  =  2, 6  and 10.
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 Exact N=2
O Approx. N=2
□ Wilkinson N=2

 Exact N=6
*  Approx. N=6
x Wilkinson N=6

 Exact N=10
+ Approx. N=10
A Wilkinson N=10

10' *

p -

X  *

r 6*-
-20 -1 0-15

Y (dB)

Figure 4.3. The PDF o f /3£GC, the &(aQ - a xe a-Y) approximation, and W ilkinson’s 

proximation for N  =  2,6  and 10.
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o f fiMRC and jS£GC, along w ith the new approximation and W ilkinson’s approximation for 

N  =  2 ,6  and 10 can be found in Figures 4.2 and 4.3 respectively. It can be observed that 

the new approximation is many orders o f magnitude better than W ilkinson’s approximation 

in the given non-iid channel. For example, fo r the PMRC distribution, W ilkinson’s approx­

imation is 4 orders o f magnitude worse than the exact distribution. As a result, this new 

approximation should give a better approximation to the average error rate performance o f 

PAPM UWB in the same channel.

Evaluating (4.14) and (4.16) using the previously obtained coefficients we obtain the 

approximate BER. The simulated BER and W ilkinson’s approximation are compared to the 

new approximation in Figures 4.4 and 4.5. I t  can be observed that the new approximation 

is more accurate than W ilkinson’s approximation for the given values o f N. For example, 

in the case o f MRC, W ilkinson’s approximation overestimates the BER by a factor o f 3.7 

when N  =  2 and Pe =  10-3 , and by a factor o f 280 when N  — 10 and Pe =  10-6 . We 

see that W ilkinson’s approximation is less accurate for MRC than for EGC by comparing 

Figures 4.4 and 4.5. This is a result o f the variance o f the individual summands in EGC 

being less than the variance o f the summands in MRC. As the variance decreases, the 

accuracy o f the PDF obtained using W ilkinson’s approximation increases and accordingly 

the accuracy o f the approximate BER using W ilkinson’s method increases. Comparing 

Figures 4.4 and 4.5, it can also be seen that fo r Pe =  10-6 , MRC performs better than EGC 

by 0.2, 0.8 and 1.2 dB for N  =  2, 6  and 10 respectively. This is as expected, because 

MRC is a maximum-likelihood receiver in Gaussian noise. The gain in performance is 

small fo r small values o f N  and might be vitiated by implementation losses. I f  W ilkinson’s 

approximation was used to predict the difference in performance for Pe =  10-6 , MRC 

would outperform EGC by 4.0, 6.5 and 6.1 dB for N  =  2, 6 and 10 respectively. It is 

obvious that W ilkinson’s approximation is neither a good choice to predict the performance 

o f a MRC or EGC system, nor to predict the difference in performance between the two 

combining schemes. EGC is a more attractive diversity scheme because it  is easier to 

implement than MRC and provides sim ilar performance. A  potential reason to use MRC is 

when a channel is excessively noisy. In such a case, EGC is unable to cut-off the noise.
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Simulation N=2
O Approximation N=2 
□ Wilkinson N=2

 Simulation N=6
*  Approximation N=6 

Wilkinson N=6
 Simulation N=10

+ Approximation N= 10 
A Wilkinson N=10

lu m

15 20 25 30
SNR per bit (dB)

Figure 4.4. The BER o f MRC PAPM UWB for N =  2,6  and 10.
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Simulation N=2
O Approximation N=2 
□ Wilkinson N=2

 Simulation N=6
Approximation N=6 

* Wilkinson N=6
 Simulation N=10

+ Approximation N= 10 
A Wilkinson N=10

15 20 25
SNR per bit (dB)

Figure 4.5. The BER o f EGC PAPM UWB fo r N =  2,6  and 10.
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4.5 Summary

A  more accurate approximation fo r the performance o f PAPM UWB w ith MRC and new 

results for PAPM UWB with EGC were derived using the exponential approximation to the 

lognormal sum distribution introduced in Chapter 2. It was shown that the BER approxi­

mated by this new approximation is more accurate than using W ilkinson’s approximation 

fo r all cases o f interest. The performances o f MRC and EGC diversity used w ith PAPM 

UWB were compared. As expected, there is a slight performance advantage fo r MRC but 

it  is relatively insignificant. Analytical expressions are also derived fo r MRC and EGC 

systems with lognormal fading channels.
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Chapter 5

Conclusion

A long standing problem in wireless communications is to find a closed-form expression 

fo r the distribution o f a sum o f lognormal RVs. Numerous approximations have been pro­

posed, but none o f them are accurate over a large range o f parameters. Many o f the tech­

niques are based on assuming that a sum o f lognormal RVs can be represented by another 

lognormal RV. It is easily seen on lognormal probability paper that this is not true. The sum 

distribution is actually a smooth curve that can be easily fit w ith another curve.

In this thesis, a new approximation to the lognormal sum distribution was proposed 

based on fitting a curve to the sum distribution on lognormal probability paper. The ap­

proximation was found to very accurate over the entire range o f the CDF for a large range 

o f dB spreads and number o f summands. This is in contrast to many previously published 

approximations that are only accurate fo r a small range o f values. The CDF approximation 

was up to 5 orders o f magnitude more accurate than an approximation based on moment 

matching. From the CDF it was possible to determine an approximation to the PDF by 

taking the derivative. The PDF approximation was also accurate over the same range as 

the CDF. The PDF approximation was also many orders o f magnitude more accurate than 

Schwartz and Yeh’s, and W ilkinson’s approximations. This new approximation provided a 

closed-form expression for the CDF and PDF that would be useful in many applications.

Chapter 2 examined a sum o f iid  lognormal RVs but another important problem is the
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distribution o f the sum o f correlated lognormal RVs. Applying the approximation found 

in Chapter 2 to the correlated sum distribution results in a very accurate approximation to 

the correlated sum distribution. For low correlation, the approximation was found to be 

more accurate than Schwartz and Yeh’s, and W ilkinson’s approximations. In contrast, for 

high correlation, the moment matching methods were just as accurate as the new approx­

imation. The same observations were made fo r the PDF approximation as for the CDF 

approximation.

Having an expression fo r the CDF and PDF o f a lognormal sum RV allows it to be used 

in many applications such determining the performance o f communication systems. One 

such application discussed in this thesis was the performance o f PAPM UWB using a MRC 

combining scheme in lognormal fading channels. The new approximation provided a large 

improvement in the approximation o f the performance o f the system when compared to the 

performance approximated by W ilkinson’s method. In addition, the new approximation 

was used to find expressions for the performance o f an EGC combining scheme. This 

allowed fo r a good comparison to be made between EGC and MRC that would not have 

been possible using W ilkinson’s approximation. In summary, a new approximation to the 

lognormal sum distribution was proposed that is accurate fo r a large range o f parameters 

and types o f sum distributions, that w ill prove to be useful in many applications.
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Appendix A 

Generation of Random Variables

In this thesis random numbers are used to generate PDFs and CDFs o f a sum o f lognormal 

RVs. There are many random number generators available but they vary in speed and qual­

ity. Since random number generators are actually deterministic sequences that appear to be 

random, it is necessary to carefully choose a random number generator. A  good random 

number generator w ill have a long period, low correlation, and match the statistical prop­

erties o f the required distribution. Developing random numbers generators is not a simple 

task and requires advanced mathematics. Accordingly, software libraries w ith existing ran­

dom number generators are used in this thesis.

The GNU Scientific Library (GSL) is a numerical C and C++ library that has imple­

mentations o f many random number generator. The most robust random number generator 

in GSL is the MT19937 generator. This generator was chosen for the generation o f random 

variables in this thesis because it has a period o f 2 19937 — 1 and is comparable in speed to 

other random number generators. The extremely long period o f this generator is more than 

sufficient fo r the cases being considered.

The output o f the random number generator from GSL is uniform ly distributed in the 

range (0,1). As a result, it  is necessary to convert this uniform distribution into the re­

quired distribution. GSL contains many subroutines that transform the uniform  d istri­

bution to the required distributions. For example, the subroutines gsl-ran-gaussian and

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gsljranJognormal generate Gaussian and lognormal random numbers respectively, using 

the uniform random number generator. W ith these built in subroutines and random num­

bers generators it is easy to simulate the lognormal sum distribution. The C code used for 

the generation o f a sum o f correlated lognormal RVs can be found in Appendix B.
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Appendix B 

Code to Generate Correlated Lognormal 

Random Variables

The fo llow ing C code in conjunction w ith GSL is used to generate the PDF o f a sum o f 

correlated lognormal RVs.

#include <stdio.h>

#include <std lib .h>

#include <m ath.h>

#include <gsl/gsl_mg.h>

#include <gsl/gsl_randist.h>

#include <gsl/gsl_histogram.h>

double **mat_init(double rho, double sigmadB, int N); 

void free_matrix(double **a , int N); 

double **choldc(double **a , int n); 

void print_matrix(double **a, int n);

in t main (void) 

{
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const gsl_mg_type *  T;

const in t N = 2 0 /*  number o f summands * /

char o fpnam e[]= "test .d a t" ;

double rho = 0.9; / *  correlation between RVs * /

long in t num = 2 0 0 0 0 0 0 0 0 0 ; / *  number o f random numbers generated * /  

long in t i, j ,  k;

double zeta = 0.0; / *  mean o f RV * /  

double sigma = 1.38155105579643; / *  6 dB * / 

double sigmadB = 6 ;

/*double sigma = 2.76310211159285;*//* 12 dB * / 

double sum; 

double **C ; 

double **LT ;

double hmin = —7; / *  range o f bins in d.B/10 * / 

double hmax = 7;

size_t n=260; / *  number o f bins in histogram * /

double ranges[n+l];

double *y;

double *x;

gsLmg **r;

double step;

gsLhistogram *h;

FILE *ofp;

double lambda = log(10 ) /1 0 ;

/ *  create a generator variable * / 

gsl_mg_env_setup();

T = gsl_mg_default;

//default mg is m tl9937 

/ *  initialize r  and k vectors * /
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r  = calloc(N, sizeof(gsl_mg *)); 

x = calloc(N, sizeof(double)); 

y = calloc(N, sizeof(double));

/ *  setup r  vector with mg and seed mg * / 

fo r(i=0 ;i< N ;i+ + ){ 

r [i] = gsl_mg_alloc(T); 

gsl_mg_set(r[i], rand());}

/ *  prin tfi “matrix initialization\n ”); * /

C =  mat_init(rho, 1.0 , N);

LT=choldc(C, N);

/ *  p rin tf(“LT  = \n " ) ;  * / 

print_matrix(LT, N);

/ *  p r in tf ( “generator type: %s\n", gsl^mgjiame (r)); * /  

h = gsl_histogram_alloc(n); 

step = (hmax — hmin)/n; 

fo r (i=0 ; i< = n ; i++)

{ranges[i]=pow(10 ,hmin + i * step);

/ *  ranges[i]=exp(hmin+i*step); * /} 

gsLhistogram_set_ranges(h, ranges, n+1); 

fo r (i=0 ; i <  num; i++)

{ /*  generate N normal RVs * / 

fo r(j=0 ;j<N ;j++ ){ 

y [j] = gsLran_gaussian(r[j], sigmadB);}

/ *  generate N  correlated RVs using LT from Cholesky * /  

fo r(j=0 ;j<N ;j++ ){ 

for(k=0,x[j]=0;k<=j;k-H -){ 

xUl+= L T [j][k ] * y [k ];}}

/ *  generate sum o f N correlated RVs * /  

for(j=0,sum=0;j <N ;j++)
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sum +=exp(lambda*x[j]); 

gsl_histogram_increment(h, sum);}

/ *  output data to a file  * /  

ofp = fopen(ofpname, "w"); 

for(i=0 ;i<n ;i++ )

{fprin tf(o fp , ‘"/.10 .9 f ", h ->range[i]); 

fprintf(ofp, M,/,10 .9 f ", h -> ra n g e [i+ l]); 

fprintf(ofp, " 7,1 0 . 9 f/n " , h—> b in [i]);}

/ *  clear memory * /

gsl_histogram_free(h);

fclose(ofp);

fo r(i=0;i<N ;i++) gsl_mg_free(r[i]); 

free(r);

free_matrix(C, N); 

free(x); 

free(y); 

return 0 ;

}

double **mat_init(double rho, double sigmadB, int N) 

{

in t i,j; 

double **a;

a = calloc(N, sizeof(double*)); 

for(i=0; i< N ;i+ + )

{a[i]=calloc(N, sizeof(double));} 

for (i=0; i< N ; i++)

{fo r (j=0; j< N ; j++ )

{ i f  0 = j )
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a [i][j] = sigmadB * sigmadB; 

else

a [i][j] = rho * sigmadB * sigmadB;}}

return a;

}

void free_matrix(double **a, in t N)

{

in t i;

for(i=0; i< N ;i+ + )

{free(a [i]);}

free(a);

}

double **choldc(double **a, in t n)

{
in t i,j,k ; 

double sum; 

double *p;

p = calloc(n, sizeof(double)); 

for(i=0 ;i <=n — 1 ;i++) { 

fo r(j= i ;j< = n — 1 ;j++)

{for(sum =a[i][j], k = i- l;k > = 0 ;k— )

{sum - =  a [i][k ] * a [j][k ];}

i f ( i= j)

{ i f  (sum <=0 .0 )

{ /*  p rin tf(“ decomposition fa ile d \n ") ;* /  

e x it( l);} 

p[i]=sqrt(sum );}
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else a [j][i]= sum /p [i];}} 

for(i=0 ;i<n;i++)

a [i][i]= p [i];

for(i= 0 ;i<n;i++) 

fo r(j= i+ l;j< n ;j+ + ) 

a [i][j]= 0 ; 

free(p); 

return a;

}

void print_matrix(double **a, int n) 

{

in t i,j;

for(i= 0 ;i< n ;i+ + ){

for(j=0 ;j<n;j++)

{p rin tf("'/,f ", a [i][j]);} 

p rin tf("\n ");}
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