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Abstract

This thesis aims to create a platform to estimate and monitor the University of Alberta

(UAlberta) fleet vehicles’ fuel consumption and Carbon Dioxide (CO2) emissions. The

main objective is to collect and analyze fleet vehicles information to reduce energy

consumption and greenhouse gas emissions from university vehicles. To this end, this

thesis creates a data collection platform for real-time monitoring and analysis of fleet

activity, utilizing onboard diagnostics (OBD) data from each vehicle. By processing

the collected data, this thesis seeks to identify the causes of high fuel consumption in

the fleet and determine the optimal vehicle type for different applications and driving

cycles.

Two machine learning methods, including random forest (RF) and artificial neu-

ral network (ANN), were investigated to estimate fuel consumption based on OBD

and actual fuel consumption data. The study used data from a Ford Escape plug-in

hybrid electric vehicle (PHEV) and a Ford F-350 vehicle during real-world urban and

highway driving on a 100-km route. The machine learning models utilized OBD pa-

rameters such as engine load, engine speed, intake manifold absolute pressure, air-fuel

equivalence ratio, and throttle position. The validation results indicated that the RF

model was more accurate than the ANN model, achieving an estimation accuracy

of 99% for the Ford Escape PHEV and 100% for the Ford F-350. These findings

confirm that utilizing machine learning models can effectively estimate vehicular fuel

consumption; thus, these models can be used to monitor fleet vehicles’ energy con-

sumption, and design strategies to reduce the fuel consumption from the UAlberta

fleet vehicles.
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Additionally, this thesis investigated the energy consumption and cost of a con-

ventional vehicle (Ford Escape S) with an internal combustion engine (ICE) and a

PHEV (Ford Escape PHEV) from the UAlberta fleet. The vehicles were driven 243

times on a 20-km route in Edmonton, Canada, during 2021 - 2022. The route in-

cluded both urban and highway areas. The research also explored the impact of

ambient temperature (Tamb) on the operations and energy consumption of the vehi-

cles, considering different powertrains and electrification levels. This study reveals

that for warm start tests, the total energy consumption increased by decreasing the

Tamb from 32 °C to -24 °C. Modes that entail continuous operation of the electric

motor are especially affected. Among the modes, Auto EV (i.e., electric and hybrid

electric) mode demonstrated the highest increase in energy consumption, rising by

almost 452% when the Tamb drops from 29°C to -24°C. Similarly, during cold start

tests, there was an increase in energy consumption as the Tamb decreased from 29 °C

to -18 °C. The mode that showed the highest increase in energy consumption was EV

Now (i.e., all-electric) mode, with an increase of 527% by reducing the Tamb from 29

°C to -13 °C.

The thesis also examined the effect of start-stop technology on conventional vehi-

cles’ energy consumption and operational costs. To conduct the study, three vehicles

from the UAlberta fleet were tested, and the effect of start-stop technology was eval-

uated on four different applications of UAlberta fleet vehicles. The findings indicated

that the energy and cost savings achieved by vehicles equipped with start-stop tech-

nology could be significant, depending on the vehicle drive cycle and idling percentage,

as well as engine size. The fuel savings are anticipated to increase during the cold

season operation of fleet vehicles.

INDEX Terms- Instantaneous Fuel Consumption, Machine Learning, Artificial

Neural Networks, Random Forest, Real-world Driving Data Powertrain Modes, En-

ergy Consumption, Energy Cost, CO2 Emissions, Start-Stop Technology.
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Chapter 1

Introduction

This chapter provides the background information, literature review, scope, and goals

of this thesis.

1.1 Motivation

The University of Alberta (UAlberta) manages a fleet of more than 180 vehicles,

including sedans (compact and intermediate), sports utility vehicles (SUVs), trucks,

vans, and buses. These vehicles are used for various purposes, such as passenger

transportation, cargo transportation, police/security operations, and other applica-

tions.

The fleet consumes approximately 205,000 liters of fuel annually, emitting 564,291

kg of Carbon Dioxide (CO2) greenhouse gases (GHG).

The powertrains of the fleet vehicles consist of conventional (gasoline and diesel),

hybrid electric vehicles (HEV), and plug-in hybrid electric vehicles (PHEVs). There-

fore, the university fleet vehicles include a mix of different types of vehicles with

varying levels of fuel conversion efficiency and emissions profiles.

Each vehicle in the fleet is assigned to a specific application, such as passenger

vans, cargo vans, police/security vehicles, passenger sedans/SUVs, trucks (crew and

cargo), and buses. To this end, the fleet is diverse regarding vehicle types and usage

scenarios, catering to different operational needs and requirements.
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Intelligent management of the university fleet vehicles presents opportunities for

implementing strategies to improve fuel conversion efficiency, reduce emissions, and

optimize vehicle usage based on their specific applications. Some of these strategies

may include:

i) Identification of energy-saving opportunities by identifying inefficient driving

patterns, identifying unnecessary idling times, optimizing routes, and exploring alter-

native fuels or technologies.

ii) Short-term and long-term fleet renewal plan development to maximize the fleet’s

transport efficiency and reduce fuel consumption. This involves vehicle replacement

strategies, exploring alternative fuel options, and implementing vehicle technologies

that improve fuel efficiency.

iii) Real-time monitoring of fuel consumption to provide feedback to drivers and

fleet managers on fuel usage patterns and areas for improvement. This involves using

telematics, Global Positioning System (GPS), and other technologies to collect and

analyze real-time fuel consumption data.

iv) Developing practical and reliable methods for estimating fuel consumption and

tailpipe emissions of fleet vehicles, using available sensor data, vehicle parameters,

and other relevant information to estimate fuel consumption and emissions in real

time accurately.

v) Fleet operational cost reduction by exploring strategies to reduce fleet operating

costs through optimum fleet assignments and other operational strategies. This may

involve developing tools or software for fleet management to optimize fleet operations

and reduce costs.

Figure 1.1 illustrates different factors influencing a vehicle’s energy consumption

and CO2 emission. This thesis investigates the effect of vehicle technology and the

environment (winter vs summer) on vehicular energy consumption and CO2 emission.

In particular, this thesis aims to provide contributions in the following areas:

1. Establishment of a framework to estimate fuel consumption from each individual
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vehicle in the university fleet, using available On-Board Diagnostic (OBD) data.

2. Assessment of ambient temperature (Tamb) on the performance of vehicles with

different levels of electrification.

3. Effect of start-stop technology on fuel and cost savings from university vehicles.

This helps the university fleet manager to make an informed decision for including

or excluding the start-stop option and associated cost in the future purchases of the

university vehicles based on their applications.

In the following section, a review of the literature in the three contribution areas

of this thesis is provided.

Figure 1.1: The factors that influence on energy consumption and CO2 emission of a
vehicle. The dark circles show the areas for the focus of this thesis.
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1.2 Literature Review

1.2.1 Fuel Consumption Estimation of Fleet Vehicles

Different vehicle technology types can affect a fleet’s energy consumption, operational

costs, and CO2 emissions. Figure 1.2 illustrates the distribution of Light-Duty Vehicle

(LDV) sales by technology or fuel in the United States [7]. The data shows that

gasoline-powered vehicles are still the most commonly used technology, followed by

HEVs. Over the past few years, electric vehicles (EVs) have become increasingly

popular due to the technology development and the substantial decline in the costs

of batteries [8].

Figure 1.2: LDV sales by technology or fuel in the U.S. [7]

A model for fleet management was developed in [9] based on an efficient and high-

precision fuel consumption estimation. The model used information about the eleva-

tion variations and destination of the trip, weather conditions, vehicle characteristics,

and driver’s behavior. The model can be used to find the most economical itinerary

for fleet vehicles.
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As part of the transportation fleet to cover different market sections, companies are

interested in having vehicles that suit the type of goods transported, which means

a fleet with vehicles of varying load and capacity. A multi-objective model based

on Tchebycheff methods was developed in [10] for Vehicle Routing Problems (VRP).

Vehicle capacities, costs, and emissions were the factors considered in the model to

minimize the total internal costs, CO2 and Nitrogen Oxides (NOx).

Instantaneous vehicle speed influences emissions and fuel consumption. Analyzing

the acceleration, cruising, deceleration, and idling based on time, distance, and aver-

age fuel consumption and emission factors showed that the aggressive modes are more

polluting than steady-speed driving modes. In addition, driving at a low speed (i.g.

V< 32 km/h)[11] contributes to a high percentage of total emissions. Minimizing

vehicle stops in urban areas to smooth driving, acceleration, and deceleration will

help to reduce fuel consumption and emissions [12].

Individualized machine learning methods were developed based on the distance for

fuel consumption of heavy vehicles. Vehicle speed and road grade are the parameters

that were used to produce a predictive neural network model. This method can be

deployed for each vehicle in a fleet to optimize fuel consumption over the whole fleet

[13].

A fuel consumption machine learning model was developed to choose the route

based on road geometry. Support Vector Machine (SVM), Random forest (RF), and

Artificial Neural Network (ANN) models were used. The data set was from the col-

lected data of the fleet truck’s telematics system and the road, vehicle characteristic

data from the Highways Agency Pavement Management System (HAPMS) of High-

ways England. Results showed that the RF model has the highest accuracy for fuel

consumption prediction of the fleet trucks [14].

An approach was developed for estimating truck fuel consumption based on a

Generalized Regression Neural Network (GRNN) model. The proposed model was

compared with the Vehicle Specific Power (VSP) model, the Virginia Tech Microscopic

5



(VT-Micro) model, and the Comprehensive Modal Emission Model (CMEM). The

result showed the model has a strong performance in predicting fuel consumption

[15].

Fuel consumption of a vehicle depends on the vehicle and external factors. However,

some factors may not be available for the fuel consumption analysis. The machine

learning model was developed by learning the patterns in data for these cases. Based

on the results, the RF technique produced a more accurate prediction than gradient

boosting and neural networks [16].

A Real-world Fuel Consumption Rate (RFCR) model was developed to estimate

the fuel consumption of 201 brands of vehicles in 34 cities in different areas of China.

According to the results, the use of manual transmission and the reduction of the

use of air conditioning (AC) can reduce the energy consumption of the investigated

vehicles [17].

Instantaneous fuel consumption was estimated by using smartphones and an OBD-

II data logger. To this end, two models were used. Powertrain-based model, based

on the engine’s fuel injection rate, and vehicle dynamics-based model, regarding the

mechanical work applied on a vehicle. The results showed the average difference

between the models’ estimation and the actual fuel consumption was about 6% [18].

In Brazil, a mobile application was developed to encourage the reduction of fuel

consumption. The application used fuzzy logic and vehicle data was read from an

OBD-II Bluetooth device (ELM 327). The collected parameters were analyzed, and

the instantaneous fuel consumption was estimated. On real-world tests, an accuracy

of more than 85% was obtained [19].

A modal was developed in [20] to estimate the energy/emissions of the vehicle based

on sparse mobile sensor data. Acceleration, deceleration, cruising, and idling are

considered driving modes. The vehicle energy/emissions factors are estimated based

on operating mode distributions reconstructed by a rate of 1 Hertz (Hz). When the

Next Generation Simulation (NGS) data set is compared with the linear interpolation
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model, NGS performs better on vehicle energy/emissions estimation.

1.2.2 Effect of Ambient Temperature on Energy Consump-
tion of Conventional Vehicles and PHEVs

The shift towards EVs and HEVs for light-duty applications is well documented

[21, 22]. Using electricity produced from sustainable sources leads to no emissions

from EVs (Tailpipe emissions). Therefore, these types of vehicles have significant

environmental benefits such as zero tailpipe emissions, easy driving, particularly in

stop-start, quiet driving, and economical fuel costs.

PHEVs have an electric motor and an internal combustion engine (ICE), and their

CO2 emissions depend on the proportion of driving done in all-electric mode versus

using the ICE. Longer All-Electric Range (AER) can result in higher electric driving

percentages and lower overall CO2 emissions. However, the energy consumption and

CO2 emission reduction of these vehicles in extremely cold Tamb is understudied.

Figure 1.3 illustrates the global average temperature during winter in the Northern

Hemisphere, revealing that a significant portion of the world’s population experiences

temperatures below -7 °C. In North America, the Federal Test Procedure (FTP) is

used for emission certification and fuel economy tests of LDVs, the coldest temper-

ature covered in the cold phase of the FTP being 20 °F (approximately -7 °C) [23].

Similarly, the European Real Driving Emission (RDE) test covers Tamb as low as -7

°C [24]. Many Canadian cities experience temperatures below -7 °C during winter.

This thesis reports the energy consumption and CO2 emission results of a PHEV with

different levels of electrification in Tamb as low as -24 °C.

Battery electric powertrains have the potential to significantly reduce air pollutant

emissions generated by combustion and lower CO2 emissions, primarily when powered

by renewable energy sources. However, the effectiveness of electric powertrains in

reducing CO2 emissions depends on multiple factors, including the carbon intensity

of electricity production at the source and the real world performance of the vehicle.
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Figure 1.3: Global average temperature of December, January, and February [23]

Reducing CO2 emissions from shifting towards electric powertrains may be limited

in regions with predominantly carbon-intensive electricity production. The carbon

intensity of electricity production varies geographically and is influenced by the mix

of energy sources used for electricity generation in different regions. For example, in

Alberta, Canada, where only 15% of electricity is generated from renewable and zero-

carbon sources of energy [25], the benefits of electric powertrains compared to ICEs

need to be carefully studied, particularly considering the extreme winter conditions

in Alberta.

The fuel cost of driving an electric vehicle depends on the cost of electricity per

kilowatt-hour (kWh) and the vehicle’s energy efficiency. In addition, the fuel cost of

a conventional vehicle with an ICE depends on the costs of gas and fuel consumption.

According to the Idaho National Laboratory (INL) comparison of energy costs per

mile for electric and gasoline-fueled vehicles in the U.S. (Figure 1.4), the fuel for an

electric vehicle with an energy efficiency of 3 miles (4.83 km)/kWh costs about 3.3
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¢/mile, when electricity costs 10 ¢/kWh [26].

Figure 1.4: Comparing energy costs per mile for electric and gasoline-fueled vehicles
based on INL data [26]

A study conducted in [27] developed an engine model that can predict the influence

of cold battery and engine temperatures on the fuel and electric consumption of

a power-split PHEV with a Prius powertrain. The engine model considers engine

utilization history and starting temperature to calculate engine fuel rate. According

to the results, the cold temperature significantly impacts engine efficiency and battery

power restrictions, resulting in higher fuel and electrical energy consumption for a

PHEV.

Low ambient temperatures have a negative effect on powertrain performance,

charging time, distance range, and costs. In the study by Ghobadpour, et.al.[28],

the effect of cold temperatures on the performance of the PHEV components, road

conditions, and charging infrastructure was studied to improve efficiency and energy

consumption. The study found that PHEVs were a better choice than EVs for cold

climates.

PHEVs are generally considered to produce lower levels of pollution than conven-

tional passenger vehicles. However, a study on a Euro 6 parallel PHEV in Tamb of -7
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°C and 23 °C shows that the PHEVs can emit similar or even higher levels of emissions

and pollutants compared to Euro 6 conventional gasoline and diesel vehicles [29].

A model year (MY) 2012 Chevrolet Volt PHEV was tested in a Tamb range of -25

°C to 25 °C in Winnipeg, Canada. The results confirm that energy consumption has

an inverse relationship with Tamb. At Tamb -3 °C to -5 °C, the electric travel range

was less than half of the baseline range, and electrical energy consumption was more

than double [30].

The energy consumption of PHEVs increases when operating in cold temperatures

due to low powertrain efficiency and the extra energy required for battery thermal

conditioning and cabin heating. Figure 1.5 shows the average energy consumption of

the best-selling vehicles at various Tamb [31].

Figure 1.5: Average energy consumption of top-selling vehicles under varying Tamb

[31]

The hybrid functions of an HEV depend on Tamb. These functions, like auto-

stop/start and brake regeneration, are unavailable in extremely cold climates. A

Thermal Management System (TMS) to warm up the battery quickly without any

additional hardware is a cost-efficient solution [32].
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Extremely cold climate operations have a negative effect on the available energy

of the PHEV’s Li-ion battery and experience degradation mechanisms. A non-

isothermal equivalent circuit battery model was developed in [33] for cold starts in

extremely low temperatures. The model can be used for thermal management and

increasing the performance and persistence of battery energy.

A method was demonstrated in [34] for quantifying energy use and emissions of a

MY2013 Toyota Prius plug-in. The vehicle was equipped with a portable emission

measurement system. VSP-based modal average energy use and emission rates. The

results show that the PHEV operating in charge-depleting mode has better energy

efficiency and lower emission rates than same-sized conventional light-duty gasoline

vehicles.

Battery performance varies throughout the temperature range specific to automo-

tive applications. A dynamic battery model was developed in [35] based on current

and temperature for battery voltage. According to the results, a significant perfor-

mance increase can be achieved by including temperature influences in the models.

An integrated power and thermal management (i-PTM) scheme was developed in

[36] to optimize power split, engine thermal management, and cabin heating. Based

on data collected from a 2017 Prius HEV, the heating requirement influences optimal

power management and energy consumption behavior. The study has shown that

integrating power and thermal optimization has the potential to save up to 6.85%

fuel.

The battery charge in PHEVs is designed to be consumed during a drive cycle.

Sometimes, a drive cycle distance range exceeds a PHEV’s AER. In these situations,

as ICE starts to work, the vehicle produces emissions by changing the powertrain

mode, and optimization of the vehicle’s performance becomes a priority for energy-

saving purposes. A method was developed to synthesize a supervisory powertrain

controller (SPC) that adjusts the engine on/off, gearshift, and power-split strategies

to optimize fuel consumption for known travel distances [37].
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1.2.3 Effect of Start-Stop Technology on Energy Consump-
tion and Costs

Start-stop technology is an alternative for reducing energy consumption with low cost

and high effectiveness. One of the most significant advantages of this technology is

installing it on traditional powertrain systems. Start-stop systems are not a new

development. The early versions arrived in the 1980s [38], but they are now more

developed and commonplace. Figure 1.6 shows the schematic of the start-stop system.

Figure 1.6: The start-stop system components [38]

The system is equipped with various sensors that monitor parameters such as the

vehicle’s speed, brake pedal position, clutch pedal position (in manual transmissions),

battery status, and engine temperature. The start-stop system uses these sensors to

detect when the vehicle comes to a complete stop, for example, at a traffic light or in

heavy traffic.

The system ensures that the transmission is in neutral or the clutch is disengaged,

in case of manual transmissions, and also checks whether the brake pedal is depressed.

If both conditions are met, the system automatically shuts off the engine to conserve

12



fuel and reduce emissions. The system continuously monitors the battery state to

ensure that there is sufficient power to restart the engine. In case of low voltage, the

system may not shut off the engine or may restart the engine to recharge the battery.

When the driver releases the brake pedal or, depresses the clutch (in manual trans-

missions) or accelerates, the engine stop-start system will restart the engine. To do

this, the starter motor will be engaged to crank the engine, and then the fuel and

air mixture will be reignited to resume combustion. The transition between engine

shutdown and restart is designed to be smooth and unobtrusive, so the driver usually

does not notice the engine stopping and starting. While the engine is off, the vehicle’s

power steering, brakes, and other essential systems are still operational.

The start-stop system was tested over the New European Driving Cycle (NEDC).

The results showed a fuel saving rate of up to 8.31% [39].

In the study done by Ma, et.al. [40], during a cold start test, the idling start-stop

function of the first idling segment under NEDC conditions did not work normally.

This was because the coolant temperature was too low at that time, which did not

reach the threshold required to trigger the idling start-stop operation.

It should be considered that using the start-stop function for situations like a red

light for less than 5 seconds is not beneficial because the fuel consumed by using the

engine start-stop technology is more than when the engine idles for the same period

[41].

The research contributed by Abas et al. in [42], in Malaysia at Tamb of 34.7 °C,

showed that the average fuel saved by the start-stop system was about 20.7%. Then,

the test was repeated, considering the cabin comfort temperature of 16 °C, which

was the coldest demand using the air conditioning system. This led to energy saving

dropped to 11%.

1.3 Aim and Scope

The primary aims and scope of this thesis are:
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• Investigating the fuel consumption of the UAlberta fleet vehicles to reduce en-

ergy consumption.

• Measuring a vehicle’s actual instantaneous fuel consumption in the real world

requires costly equipment. In this thesis, a framework is proposed to estimate

the fuel consumption of individual vehicles in the university fleet, utilizing avail-

able On-Board Diagnostic (OBD) data and machine learning models.

• The University of Alberta’s fleet, with more than 180 vehicles, is in Edmon-

ton—a city with extremely cold temperatures down to -40 °C in winter, and

warm weather up to 35 °C in summer. In this thesis, the effect of Tamb on

the performance and energy consumption of conventional (ICE) vehicles versus

the electrified operating modes are investigated. The results reveal valuable

insights into the impact of Tamb on various powertrain options, identifying fuel

consumption patterns and ideas for energy-saving for UAlberta fleet vehicles.

• Analysing the effect of start-stop technology on energy consumption and oper-

ational costs of conventional vehicles in UAlberta fleet vehicles. To this end,

three vehicles with varying engine sizes were selected from the UAlberta fleet:

a Ford Escape S, a Chevrolet Silverado 1500, and a Ford Econoline 450. The

fuel saving by using start-stop technologies in these three vehicles was studied

for four UAlberta fleet vehicle applications by considering their distinct drive

cycles.

1.4 Thesis Outline

The thesis is organized into six chapters, including an introduction, experimental

setup, fuel consumption estimation of UAlberta fleet vehicles, effect of ambient tem-

perature on energy consumption of a vehicle, effect of start-stop technology on energy

consumption and costs, and conclusion. The structure and workflow of the thesis are
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shown in Figure 1.7, and the resulting publications are also listed.

Figure 1.7: Thesis flow including chapters and resulting publications
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The experimental setup chapter provides a detailed description of the research

design, the methods used for collecting vehicle OBD data, and the equipment setup.

It also explains the development of a software platform for real-time monitoring,

highlighting opportunities for energy-saving, pattern recognition, and driving cycle

optimization to reduce fleet operational costs and CO2 emissions.

In chapter three, different practical and reliable methods to estimate the instan-

taneous fuel consumption of fleet vehicles were studied. Two RF and ANN machine

learning methods were developed using real-world OBD data.

Investigating the effect of Tamb on energy consumption, costs, and CO2 emission

is described in chapter four. A Ford Escape PHEV was tested in different weather

conditions in the Tamb range of -24 °C to 32 °C.

Chapter five investigates the impact of start-stop technology on the fleet vehicles

of the University of Alberta. To determine the fuel savings of the vehicles, three

UAlberta fleet vehicles were selected, and the drive cycles of four university vehicle

application areas were considered.

Finally, chapter six summarizes the study’s key findings and conclusions drawn

from analyses of the experimental results, discusses their implications, and provides

recommendations for future research and practice.
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Chapter 2

Experimental Setup

This chapter explains the experimental setups designed to collect the required data for

this thesis. Overall, two types of data are collected: i) On-Board Diagnostic (OBD)

data using Controller Area Network (CAN) data loggers on different UAlberta fleet

vehicles, and ii) Instantaneous fuel consumption data by installing a fuel flow meter.

The following sections explain each of the data collections.

2.1 Vehicle OBD Data Collection

The OBD systems have been mandatory in the United States and Canada for all

passenger vehicles and light to medium-duty trucks since 1996 [43], and the OBD-II

standard was established to ensure that vehicles comply with emission standards.

OBD-II monitors various systems related to engine and exhaust after-treatment sys-

tem operation to detect and report any malfunctions that may impact tailpipe emis-

sions.

OBD-II utilizes different signal protocols to communicate information from the

OBD system to external devices. These protocols are explained in Figure 2.1. Via

OBD-II, a large number of vehicle engine operational parameters become publicly

available by using OBD data loggers. This thesis uses OBD data for performance

analysis of the university vehicles.
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Figure 2.1: OBD-II signal protocols

2.1.1 OBD Data Logger

The OBD data can be accessed using an OBD scanner or a CAN data logger. CAN

data loggers help collect OBD data over extended periods, such as for research or fleet

management. They are typically small, portable devices that can be connected to the

OBD port in the vehicle. The data logger continuously records information from the

OBD system, such as vehicle speed, engine speed, and fuel consumption, and stores

it in its memory for later analysis. Data loggers are especially useful for monitoring

vehicle performance and identifying potential issues. In addition, data loggers can

be equipped with Wireless Fidelity (Wi-Fi) or cellular connection for continues data

transfer to the cloud or server for fleet vehicles’ management. This thesis uses the

Freematics CAN data logger One+ Model B (Figure 2.2).

Wi-Fi Option

In the Wi-Fi mode of the Freematics CAN data logger, the device collects data while

the vehicle is in motion but has no live connection to a server. Instead, the collected
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(a) The Freematics CAN data logger
One+ Model B

(b) The Freematics CAN data logger
installed on OBD port of a vehicle

Figure 2.2: The Freematics CAN data logger used for this study

data is stored on an internal Secure Digital (SD) card. The device must connect to

a Wi-Fi network to access the collected data and use Hypertext Transfer Protocol

(HTTP) Application Programming Interface (API) commands. However, there are

limitations with the Wi-Fi mode as the device needs to have access to specific internet

routers located at limited locations, such as fuelling stations, which are associated

with the University of Alberta. These limitations suggest that the device may have

restricted access to the internet and that data retrieval may only be possible in specific

locations with the required network infrastructure.

Cellular Option

The cellular option of the Freematics CAN data logger allows for real-time monitoring

and data transmission, which is beneficial for fleet management. However, it’s im-

portant to remember that cellular coverage can be limited in certain areas, especially

in remote locations, which may affect the ability to transmit data in real time.

The availability and reliability of cellular coverage can vary depending on location,

network provider, and environmental conditions. In remote or rural areas, cellular

signal strength may be weaker or unavailable, impacting the device’s real-time ability

to transmit data. It’s essential to consider these limitations when relying on cellular
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connectivity for data transmission and fleet management and have contingency plans

for situations where cellular coverage may be limited or unavailable.

The alternative option is to store the data locally on the device and transfer it

later when cellular coverage is available or using satellite communication.

This data logger (Figure 2.2a) is a small device that can be easily installed into

the OBD port of a vehicle (Figure 2.2b). It can collect various data types, including

Global Positioning System (GPS) location, vehicle speed, engine speed, engine load,

and other Parameter Identifications (PIDs) defined by the OBD-II standard. This

device has an internal 16 GB SD card for data storage and can be connected to a

database server via Wi-Fi or cellular network to upload the data.

The technical specifications of the Freematics CAN data logger One+ Model B are

shown in Table 2.1.

Table 2.1: Specifications of the Freematics CAN data logger used in this study

Parameter Value

Random Access Memory (RAM)
configuration

520 KB IRAM + 8 MB PSRAM

Real-Time Clock (RTC) External 32 K

Cellular module Integrated 4G LTE module

Global Navigation Satellite System
(GNSS)

Integrated M8030 10 Hz GNSS
module and antenna

External I/O 2x GPIO for digital I/O, analog
input, serial UART etc.

Co-Processor features Vehicle ECU interfacing GNSS
data processing

Horizontal Pos. Accuracy 2.0m Circular Error Probability
(CEP)

The Freematics CAN data logger uses open-source code and can be programmed

using the Arduino Integrated Development Environment (IDE) or other programs

such as Visual Studio Code (VSC), making it highly customizable for specific tasks.
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This allows users to modify the behavior of the logger by writing and uploading their

code, giving them greater flexibility and control over the data collection process.

To address the concern of potential battery drain during the operation of the

Freematics device in Edmonton’s cold winter conditions, a standby and startup code

was defined in the Freematics program. This code allows the device to be put into

standby mode when not actively collecting data, which can help conserve battery

power.

When the Freematics device is in standby mode, it typically draws a lower current

of 10 milliamperes (mA) than its normal operating mode of 150 mA. By putting the

device into standby mode during periods of inactivity, such as when the vehicle is not

in use or when data collection is not required, the device’s power consumption can

be reduced, potentially helping to mitigate battery drain issues. This can protect the

battery from over-discharge damage and ensure the device’s reliable performance.

When the device detects movement or the vehicle is turned on, it wakes up from

standby mode and resumes its data collection and transmission functions. This en-

sures that data is only collected when the vehicle is in use, reducing unnecessary

power consumption and data storage.

2.1.2 Data Server

The data logger records a minimum of 2 MB of data per hour of operation, and each

vehicle may operate for 4 hours per day. This results in a minimum of 8 MB of data

per vehicle daily. With a fleet of 180 vehicles, the total data generated daily would

be 1,440 MB, or approximately 1.5 GB (1 GB = 1,024 MB). Therefore, the system

should be capable of handling the transfer of a minimum of 1.5 GB of data per day

from the UAlberta fleet’s data loggers. This would require sufficient bandwidth and

storage capacity in the system to accommodate the data transfer and storage needs,

ensuring efficient and smooth operation without data loss or performance issues. It

is also essential to consider the system’s scalability and flexibility to handle potential
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future data volume increases.

A computer server was set up in the National Institute of Nanotechnology (NINT)

building, located at the University of Alberta, to serve as both a network server

and a database. This computer is operational 24/7 and is designed to collect data

continuously. The data collected include GPS and OBD data recorded from vehicles.

The collected data, including vehicle location, speed, engine parameters, and other

relevant data from the OBD system. The collected data is automatically sent to the

network server and uploaded to the database. This allows for efficient and automated

data management, storage, and retrieval. Using a dedicated computer as a network

server and database helps ensure the collected data is securely stored and readily

accessible for analysis and further processing.

2.1.3 Data Collection, Transfer, and Processing

The designed fleet data collection system uses an OBD data logger to record various

vehicle parameters, such as vehicle speed, engine speed, coolant temperature, and

other relevant data.

Parameter Identifications (PIDs)

The specific set of PIDs available for a particular vehicle will depend on various

factors, such as the make and model of the vehicle, the year it was manufactured,

and the type of OBD scanner being used. Some PIDs may be standard across all

vehicles, while others may be unique to specific makes or models.

The device is capable of collecting up to 21 PIDs with a sample rate of 1 Hz.

However, the sampling rate decreases if more PIDs are added. This is because the

logger has to request and receive data for each PID, and the more PIDs that are

collected, the longer it will take to complete an entire data collection cycle.

The number of PIDs collected by the Freematics OBD data logger affects the

sampling rate, as shown in Figure 2.3. Data was collected from four different vehicles
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using the Freematics OBD data logger. These vehicles included a model year (MY)

2010 Ford Econoline E150, a MY2012 Dodge Ram 1500, a MY2011 Hyundai Sonata,

and a MY2017 Chevrolet Express.

Collecting 20 PIDs from both the Dodge Ram 1500 and the Chevrolet Express took

almost 0.6 seconds and 0.7 seconds, respectively. Increasing to 30 PIDs increased the

sampling period to almost 1.5 seconds for both vehicles. The Ford Econoline E150

took the longest sampling period, at 2.8 seconds, to collect 50 PIDs. The Hyundai

Sonata with 46 PIDs took 2.6 seconds, while the Chevrolet Express and Dodge Ram

1500 with 49 and 48 PIDs respectively took almost 2.5 seconds.

Sampling Period (s)2010 Ford Econo E1502012 Dodge Ram 15002011 Hyundai Sonata2017 Chev. Express
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Figure 2.3: The link between the number of PIDs and possible sampling period using
Freematics OBD data loggers

It is common for the number of available PIDs to vary between different vehicles.

In this case, the maximum number of PIDs collected was 54 from the UAlberta fleet

vehicles (Tables 2.2, 2.3). However, the parameters available varied considerably

between different vehicles. These PIDs include data such as vehicle speed, Mass Air

Flow (MAF) rate, throttle position, engine speed, and many others.
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Table 2.2: The list of PIDs collected from UAlberta fleet vehicles in this study (part1)

No. Parameter Unit

1 Calculated engine load %

2 Engine coolant temperature °C

3 Short term fuel trim Bank 1 %

4 Long term fuel trim Bank 1 %

5 Short term fuel trim Bank 2 %

6 Long term fuel trim Bank 2 %

7 Fuel pressure (gauge pressure) kPa

8 Intake manifold absolute pressure kPa

9 Engine speed rpm

10 Vehicle speed km/h

11 Timing advance ° before TDC

12 Intake air temperature °C

13 Mass air flow (MAF) sensor g/s

14 Throttle position %

15 O2 Sensors present (in 2 banks) -

16 O2 Sensor 1 - voltage & short term fuel trim V & %

17 O2 Sensor 2 - voltage & short term fuel trim V & %

18 O2 Sensor 5 - voltage & short term fuel trim V & %

19 O2 Sensor 6 - voltage & short term fuel trim V & %

20 Run time since engine start s

21 Time run with Malfunction Indicator Light (MIL) on min

22 O2 Sensor 1 air-fuel equivalence ratio & voltage ratio & V

23 Commanded Exhaust Gas Recirculating (EGR) %

24 Commanded evaporative purge %

25 Fuel tank level input %

26 Warm-ups since codes cleared -

27 Distance since codes cleared km
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Table 2.3: The list of PIDs collected from UAlberta fleet vehicles in this study (part2)

No. Parameter Unit

28 Evap. system vapor pressure Pa

29 Absolute barometric pressure kPa

30 O2 Sensor 1 air-fuel equivalence ratio & current ratio & mA

31 O2 Sensor 2 air-fuel equivalence ratio & current ratio & mA

32 O2 Sensor 5 Air fuel equivalence ratio & current ratio & mA

33 Catalyst temperature: Bank 1, Sensor 1 °C

34 Catalyst temperature: Bank 2, Sensor 1 °C

35 Catalyst temperature: Bank 1, Sensor 2 °C

36 Monitor status of this drive cycle -

37 Control module voltage V

38 Absolute load value %

39 Air-fuel equivalence ratio ratio

40 Relative throttle position %

41 Ambient air temperature °C

42 Absolute throttle position B %

43 Accelerator pedal position D %

44 Accelerator pedal position E %

45 Commanded throttle actuator %

46 Distance traveled with MIL on km

47 Time since trouble codes cleared min

48 Fuel type -

49 Ethanol fuel %

50 Long term trim O2 sensor, Bank 1, Bank 3 %

51 Long term trim O2 sensor, Bank 1, Bank 3 %

52 Engine oil temperature °C

53 Actual engine - percent torque %

54 Engine reference torque N.m
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Figure 2.4 shows the data collection process by Freematics data loggers. The

Freematic OBD data loggers were used to collect data from UAlberta fleet vehicles

(Figure 2.4a). The capability of transmitting data to the server via cellular was the

advantage of this type of OBD data logger.

(a) The Freematics CAN data logger connected to UAl-
berta fleet vehicles

(b) Schematic of data collection

Figure 2.4: Schematic of data collection and transmitting to the server

As shown in (Figure 2.4b), by leveraging the cellular connectivity of the Freematics

data loggers, the collected data from the UAlberta fleet vehicles can be transmitted

to the network server in real-time, enabling live monitoring and analysis. At the same

time, it can be stored in the database. This allows for prompt identification of any
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issues, monitoring of vehicle performance, and the potential for timely interventions

or decision-making based on the analyzed data.

A software platform was designed that consisted of both a back-end and a front-

end component. The back-end was responsible for handling the processes involved

in collecting data from vehicles and storing it in the database. The front-end was

focused on providing a Graphic User Interface (GUI) for visualization and live data

monitoring. The schematic of the data collection platform is shown in Figure 2.5.

Figure 2.5: The schematic of the data collection platform used in this thesis

Data Collection Platform (Back-End)

Figure 2.6 illustrates the schematic of the back-end process. Following this back-end

process, the collected data from the OBD scanner is effectively transferred and stored

in a database on the computer. This allows for further data analysis, modeling, and

utilization for various purposes, such as estimating fuel consumption or conducting

other data-driven investigations.

The OBD data logger collects data from the vehicle’s OBD port and records it as

a Comma-Separated Values (CSV) file on an SD card stored inside the device. The

collected data from the SD card is transferred to a server in the NINT building. This

data transfer is facilitated by programs such as Teleserver.exe, HubDataRetriever.exe,
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Figure 2.6: The schematic of the back-end software for the data collection platform
used in this thesis

and DatabaseUploader.exe, which are designed for transferring data from OBD read-

ers to the Structured Query Language (SQL) server and need to be run on the server

constantly.

Teleserver

Data from OBD devices is transmitted to the computer and stored using the Freemat-

ics Hub server. The data is stored on the server in TXT format, which can be retrieved

later using API commands. This program bridges the OBD scanners and the server,

allowing real-time data transfer at regular intervals.

HubDataRetriever

The HubDataRetriever program uses API commands to communicate with the Freemat-

ics Hub, a device that acts as a central hub for collecting data from various connected

devices. The API commands allow the program to identify the devices connected to

the hub. Once the devices are detected, the program determines which devices are ac-

tive and ready to transmit data. This step helps identify the devices from which data

will be collected. The program collects the most recent period of data from the active

devices. It communicates with each device using the appropriate API commands to

retrieve the data they have recorded. The collected data may include sensor readings,
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GPS data, or any other relevant information captured by the connected devices.

After collecting the data, the program saves it as a raw text file in the “RawData”

folder. The raw data file contains the unprocessed, original data obtained from the

devices. This allows for further analysis or processing if required. The program uses

the “DATAscanner.exe” file, which is an executable or script, to process the raw data.

This processing step applies specific algorithms or transformations to the raw data,

converting it into a structured format suitable for further analysis or visualization.

Once the data is processed, the program saves it as a CSV file in the “Processed

Data” folder. The CSV format enables easy data manipulation and compatibility

with various software tools and applications.

DatabaseUploader

This program is designed to monitor the ProcessedData folder for any new files cre-

ated, modified, or deleted. This is accomplished using a file system watcher, which

can detect changes to the file system in real-time. When a new file is detected in the

ProcessedData folder, the program sends a series of SQL commands to the SQL server

to upload the processed data into the database. This involves parsing the CSV file

and inserting the data into the appropriate tables and columns in the SQL database.

By automating this process, the DatabaseUploader program allows for efficient and

reliable data transfer from the ProcessedData folder to the SQL database. This can

save time and reduce the risk of errors when manually uploading data to the database.

The three “Teleserver.exe”, “HubDataRetriever.exe”, and “DatabaseUploader.exe”,

programs used for transferring the collected data from the OBD readers to the SQL

server, are set up to run automatically in case the university desktop restarts. This

means that the programs will start running independently without requiring manual

intervention. If any of these three programs crash, the RestartOnCrash software will

be used to restart them automatically. This ensures that the data transfer process is

not interrupted and all collected data is uploaded to the SQL server as expected. The

software also has a “show log” tab that can be used to view the time of the crash,
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which can help troubleshoot any issues that may arise.

Ensuring the security and protection of databases storing sensitive data is indeed

crucial. To address the concern of unrecognized Internet Protocol (IP) addresses at-

tempting connections to the database server, access to the server has been limited to

only defined IP addresses. This is a standard security measure known as IP whitelist-

ing or IP filtering. IP whitelisting involves specifying a list of approved IP addresses

from which connections to the database server are allowed. Any connection attempts

from IP addresses not included in the whitelist are denied, effectively blocking unau-

thorized access attempts. By implementing IP whitelisting, the database server only

accepts connections from devices with IP addresses explicitly defined and approved.

Limiting access to the server to defined IP addresses reduces the risk of unauthorized

access, as only authorized users with recognized IP addresses can access the database.

This helps to prevent data breaches, theft of sensitive information, and other security

threats.

Figure 2.7 indicates that only authorized OBD data loggers with specific IDs (such

as ID: A0HLZJ1U and ID: A0HNZYJ0) have been granted access to the database

server. On the other hand, unauthorized devices with IDs like ID: A0HNZK3J and

ID: A0HN8K3U were denied access.

To maintain the security and integrity of the designed database, it is essential

to review and update the IP whitelist regularly. This will ensure that only autho-

rized devices are granted access and that any unapproved or unnecessary devices are

promptly removed. Additionally, monitoring database access regularly and keeping

security measures up-to-date to protect against potential threats is crucial. Imple-

menting measures such as encryption, user authentication, and data backups can

further enhance database security and ensure its integrity over time.

Once the data is uploaded to the database, it can be accessed by authorized per-

sonnel for further analysis. Data analysis techniques can include pattern recogni-

tion, driving cycle identification, and other data-driven approaches to identify energy-
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Figure 2.7: The server IP filtering

saving opportunities, optimize fleet operations, and develop strategies for reducing

fuel consumption and GHG emissions.

The transferred data is stored in an SQL database on the server. SQL is a widely

used database management system that allows efficient and organized structured

data storage in a relational database. Once the data is stored in the SQL database,

it can be processed, analyzed, and queried. SQL provides powerful tools for data

manipulation, including querying, filtering, and aggregating data to derive insights

or generate reports.

It can be extracted as a CSV file from the SQL database to analyze the data further.

These extracted data can be used for advanced analyses, visualization, reporting, or

integration with other systems or models (Figure 2.8).
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Figure 2.8: The back-end of the data collection platform used in this thesis

Data Collection Platform (Front-End) and Live Monitoring

In the data collection platform, the front-end component includes the usage of Freemat-

ics Hub as the telemetry and data server software. It facilitates the collection and

real-time upload of OBD and GPS data from the OBD data loggers. The OBD data

loggers, connected to the vehicles, transmit the collected OBD and GPS data to the

Freematics Hub. This data is uploaded to the server in real-time using a Wi-Fi or

cellular connection. Real-time data upload ensures that the most recent data is avail-

able for monitoring and analysis. To ensure data is uploaded whenever the OBD

devices have access to DEVNet, Freematics Hub should be running continuously.

This ensures that data is not lost or missed due to server downtime or other issues.

Maintaining an uninterrupted connection with the OBD data loggers makes the data

collection process reliable and consistent.

Freematics Hub is designed to be compatible with Windows and Linux operating

systems. It is lightweight server software that can be easily deployed on the chosen

platform. The operating system’s choice depends on the deployment environment’s

specific requirements and preferences. Freematics Hub provides an interface for mon-
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itoring and managing the collected data. This interface lets users view real-time data,

configure settings, and manage storage and retrieval. It may include visualizations,

data filtering, device management, and system status monitoring. The Freematics

Hub interface (Figure 2.9) contains a dashboard and a map view, where the informa-

tion of the vehicles is presented.

Figure 2.9: Freematics Hub interface

The interface displays the vehicles as individual markers on a map, indicating their

locations. Additionally, real-time data such as vehicle speed, engine speed, fuel level,

coolant temperature, or any other relevant PIDs the vehicle provides can be shown

on the dashboard. The interface provides interactive features, allowing users to zoom

in or out on the map, select specific vehicles for detailed information, or apply filters

to focus on particular data or vehicles of interest. This provides a comprehensive
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view of the real-time data collected from the vehicles and facilitates monitoring and

analysis of their performance and operational parameters.

2.2 Fuel Measurement Data Collection

Instant fuel consumption of selected vehicles was measured by installing an ultrasonic

fuel flow meter. The data was used for i) fuel consumption analysis (e.g., for start-

stop technology assessment) and ii) developing machine learning models to estimate

the instantaneous fuel consumption of a vehicle using real time OBD data. Here, the

installation of the fuel flow meter and special dual-channel high frequency CAN data

logger to collect vehicle data are explained. The schematic of data collection by the

CANedge2 data logger is shown in Figure 2.10.

Figure 2.10: Schematic of data collection by the CANedge2 data logger used in this
thesis

A CANedge2 data logger was used in this thesis to collect data from the vehicle

OBD and the fuel flow meter simultaneously. The collected data contains actual fuel

consumption and the related vehicle’s OBD PIDs. This combined dataset can be
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used to train machine learning models to learn the relationship between the vehicle’s

PIDs and the corresponding fuel consumption.

2.2.1 Sentronics FlowSonic Low Flow (LF) Ultrasonic Flow
Meter

A fuel flow meter is a device specifically designed to measure the flow rate of fuel

passing through it. It provides precise measurements of the amount of fuel consumed

by the vehicle. The fuel flow meter is installed in the vehicle’s fuel line, between the

fuel tank and the engine. As the fuel flows through the flow meter, it measures the

volume or weight of fuel passing through per unit of time. This information is then

recorded to calculate the vehicle’s actual fuel consumption. The actual fuel consump-

tion data is used for validating the machine learning models developed for estimating

fuel consumption and analyzing the effect of Tamb on the energy consumption of a

vehicle.

The Sentronics fuel flow meter (Figure 2.11) was selected for its flexibility of use

with gasoline and diesel engines and absence of any physically moving components.

Ultrasonic fuel flow meters use ultrasonic waves to measure fuel flow without me-

chanical parts. This means they are more reliable and durable than traditional flow

meters with moving parts since they don’t impose any restrictions on the fuel [44].

Figure 2.11: Sentronics flowSonic LF ultrasonic flow meter
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This device has a measurement range of 0-1,000 ml/min, with an accuracy of 0.25%

of the reading and a resolution of 0.01 ml/min. The sensor can measure cumulative

and instantaneous fuel volume and mass and can be configured to sample data at

rates up to 10 Hz. To increase the accuracy of collected data, the flow meter was

set to collect data with a sample rate of 5 Hz. The technical specifications of the

Sentronics fuel flow meter are shown in Table 2.4.

Table 2.4: Specifications of the fuel flow meter used in this thesis

Parameter Value

Measurement uncertainty +/- 0.5 % of reading

Repeatability +/- 0.15 % of reading

Fluid temperature range -20 to +120 °C

Tamb range -40 to +120 °C

Measurement flow range 8 – 4,000 ml/min

Measurement rate Up to 2.2 kHz

Electrical supply voltage 8 V DC to 30 V DC

Fluid Compatibility Petrol, diesel, bio-diesel, ethanol, methanol

The settings of the flow meter were configured using a GUI application. This flow

meter was installed on the vehicle’s fuel line, enabling it to measure real-time fuel

consumption accurately. Figures 2.12 and 2.13 illustrate the installation of the fuel

flow meter on the fuel line of the UAlberta fleet vehicles.
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(a) Chevrolet Silverado 1500 (b) Ford Expedition

(c) Ford Fusion Hybrid (d) Ford F-150

Figure 2.12: Sentronics ultrasonic fuel flow meter installed on UAlberta fleet vehicles
(Part 1)

Table 2.5 shows the list of vehicles on which the Sentronics fuel flow meter was

installed to measure fuel consumption. The vehicles were chosen from the UAlberta

fleet vehicles, with varying engine sizes and technology.
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(a) Ford Escape S

(b) Ford F-350 (c) Ford Escape PHEV

Figure 2.13: Sentronics ultrasonic fuel flow meter installed on UAlberta fleet vehicles
(Part 2)

Table 2.5: Sentronics ultrasonic fuel flow meter installed on UAlberta fleet vehicles

No. Vehicle Model Year Engine Size / Type

1 Ford Escape PHEV 2021 2.5 L / Atkinson-Cycle I-4

2 Ford Escape S 2021 1.5 L / Eco Boost

3 Ford F-350 2021 6.2 L / Tuned Intake

4 Ford F-150 2021 3.5 L / Eco Boost

5 Ford Expedition 2019 3.5 L / Twin Turbocharged

6 Ford Fusion Hybrid 2010 2.5 L / I-4 Engine

7 Chevrolet Silverado 1500 2016 4.3 L / Eco Tec3
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2.2.2 CSS Electronics CANedge2 data logger

The CSS Electronics CANedge2 data logger (Figure 2.14) was used in this thesis to

collect data from the vehicle OBD and the fuel flow meter simultaneously (Figure

2.10). The collected data contains actual fuel consumption and the related vehicle’s

OBD PIDs.

Figure 2.14: CSS electronics CANedge2

The technical specifications of the CSS Electronics CANedge2 data logger are

shown in Table 2.6.)

Table 2.6: Specifications of the CSS Electronics CANedge2 data logger used in this
thesis

Parameter Value

Storage Extractable industry grade
micro SD-card (8-32 GB)

Transceiver Compliant with CAN Protocol
Version 2.0 Part A, B and ISO

11898-1

Common mode input voltage ±30V

Data rates Up to 5 Mbps

Channel 1 voltage supply range +7.0V to +32V DC

Secondary port output supply Channel 2, fixed 5V up to 1.5A

Consumption 1W

Operating temperature: -25 °C to +70 °C

Weight 100 g
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Terminal 1 of the CANedge2 was connected to the OBD port of the vehicle, pow-

ering up the device and enabling the collection of vehicle PIDs. These PIDs represent

various parameters and sensor readings from the vehicle’s internal systems, such as

engine speed, vehicle speed, throttle position, etc.

In addition to the OBD data, terminal 2 of the CANedge2 captured flow meter

data. The flow meter measures the actual fuel consumption of the vehicle. By si-

multaneously recording the OBD PIDs and flow meter data, it becomes possible to

correlate the vehicle’s operational characteristics with its actual fuel consumption.

The CANedge2 OBD data logger saved recorded data in an SD card in MP4 format.

The Assammdf software was used to automatically synchronize and extract data into

a CSV file (Figure 2.15).

Figure 2.15: Assammdf software used in this thesis
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Details of how to set up CANedge2 are explained in Appendix (B.2).

Figure 2.16 shows the engine speed, vehicle speed, and fuel consumption time series

of the Ford Escape PHEV during an urban drive cycle with a maximum speed of 80

km/h.

Figure 2.16: Ford Escape PHEV engine speed, vehicle speed, and fuel consumption
time series

As can be seen in Figure 2.16, the engine maintained a speed of around 1200 RPM

while the vehicle speed remained constant. The fuel consumption was generally below

100 ml/min but increased during acceleration and decreased during deceleration.

Figure 2.17 shows the time series of engine speed, vehicle speed, and fuel consump-

tion for the Ford Escape S during an urban drive cycle with a maximum speed of 80

km/h.

According to plots in Figure 2.17, the engine speed was around 1600 RPM during

the constant vehicle speed. The vehicle was equipped with start-stop technology,

leading the engine to turn off during the stops.
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Figure 2.17: Ford Escape S engine speed, vehicle speed, and fuel consumption time
series

Figure 2.18: Ford F-350 engine speed, vehicle speed, and fuel consumption time series
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Figure 2.18 shows the time series for engine speed, vehicle speed, and fuel con-

sumption of the Ford F-350 during a drive cycle that includes both highway (with a

speed limit of 100km/h) and urban (with a speed limit of 60 km/h) driving.

The Ford F-350 had a larger engine compared to both the Ford Escape PHEV and

model S, resulting in higher fuel consumption. This can be observed by comparing

the fuel consumption time series of the three vehicles. The fuel consumption rate

was between 200 ml/min to 300 ml/min while the vehicle was driven at its highest

drive cycle speed, with approximately 100 km/h. This resulted in the highest fuel

consumption among all three vehicles at a constant speed.
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Chapter 3

Fuel Consumption Estimation of
University of Alberta Fleet
Vehicles

3.1 University of Alberta fleet vehicles overview

Figure 3.1: University of Alberta South campus transportation service

The University of Alberta’s fleet of 180+ vehicles causes significant greenhouse

gas emissions due to its annual fuel consumption of 205,000 liters. This leads to the

emission of 564,291 kg of CO2 annually, contributing to climate change and negatively

impacting the environment and human health.

By using machine learning models to estimate fuel consumption based on real-time

data from data loggers, the University of Alberta can gain valuable insights into its

fleet’s performance and identify areas for improvement in fuel efficiency.

Analyzing this data can better understand the fleet’s energy consumption pat-
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terns, which is crucial for identifying opportunities to transition to low-emission ve-

hicles. Comparing the energy consumption of conventional gasoline vehicles with

low-emission alternatives like electric vehicles (EVs) or hybrid vehicles will provide

valuable information for making informed decisions on fleet replacements or additions.

This showcases the university’s commitment to sustainability and aligns with broader

global efforts to combat climate change and reduce greenhouse gas emissions.

The primary objective of this thesis is to develop a reliable and accurate method

for monitoring the instantaneous fuel consumption of these vehicles using On-Board

Diagnostic (OBD) data.

The study employs Random Forest (RF) and Artificial Neural Network (ANN)

models to accomplish these goals. These are machine learning techniques used to

model and predict instantaneous fuel consumption using real-time OBD data.

RF model is an ensemble learning method that combines multiple decision trees

to improve prediction accuracy and reduce overfitting. It is well-suited for regression

tasks like predicting fuel consumption, as it can handle complex relationships between

the input features (e.g., vehicle speed, engine speed, throttle position) and the output

variable (fuel consumption).

On the other hand, ANNs are computational models inspired by the human brain’s

neural networks. They consist of interconnected nodes (neurons) organized into lay-

ers, with each neuron performing simple computations. Neural networks are powerful

tools for capturing non-linear relationships in data and have been successfully used

in various applications, including fuel consumption prediction.

By utilizing these machine learning methods on real-time OBD data, the study aims

to develop a robust and accurate model that can reliably predict fuel consumption for

the university’s fleet vehicles. This predictive capability will significantly benefit fleet

management decisions, such as identifying areas of improvement in driving behavior,

optimizing routes, and selecting appropriate vehicles for specific tasks.

The new contributions of this thesis are pretty significant and address important

45



aspects of fuel consumption estimation using machine learning models.

i) Actual Measurement of Instantaneous Fuel Consumption: It is essential to con-

sider the usage of actual measurement of instantaneous fuel consumption to provide

accurate and reliable data for training machine learning models. This approach en-

sures that the data used for modeling is as close to real-world fuel consumption as

possible, improving the accuracy of the predictions. By avoiding reliance on indirect

estimations or extrapolations, the results will be more trustworthy and representative

of actual fuel consumption patterns.

ii) Real-Time OBD Data and Wide Operating Conditions: Incorporating real-time

OBD data alongside accurate fuel consumption measurements is an excellent ap-

proach. OBD data can provide valuable information about the vehicle’s performance,

emissions, and operating conditions. Combining this data with fuel consumption

measurements allows for a more comprehensive analysis. It enhances the machine

learning models’ accuracy across various driving scenarios, including critical factors

like cold starts and non-stoichiometric conditions.

iii) Ultrasonic Fuel Flow Meter for Ultra Low-Volume Fuel Flow Operation: An

ultrasonic fuel flow meter is a novel and valuable addition. This technology allows

for precise measurement of ultra-low-volume fuel flow operations, particularly useful

for modern vehicles with high fuel efficiency and reduced fuel consumption. The high

sampling frequency of 5Hz ensures that the models capture fine-grained variations in

fuel consumption, leading to more nuanced and accurate predictions.

iv) Fuel Consumption Data from Modern Vehicles: Including fuel consumption

data from two MY2021 modern vehicles is highly relevant and adds to the applicability

of the research. Modern vehicles often feature advanced fuel-saving technologies,

and understanding their fuel consumption patterns is essential for making informed

decisions about fleet composition and future vehicle choices. Having data from current

vehicles helps bridge the gap between research and real-world applications.

Overall, the contributions of this thesis address critical aspects of fuel consumption
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estimation, considering real-world scenarios and modern vehicles. The methodologies

employed provide accurate, high-quality data for training machine learning models,

which can have broader implications for improving fuel efficiency and reducing green-

house gas emissions in the University of Alberta’s fleet.

3.2 Experimental Procedure

3.2.1 Tested Vehicles

In this part of the thesis, two MY2021 vehicles with different powertrain systems were

selected from the University of Alberta (UAlberta) fleet vehicles for testing. A Ford

F-350 (full-size pickup truck) with a conventional 6.2-liter gasoline engine (Figure 3.2)

and a Ford Escape PHEV (compact SUV) equipped with a 2.5-liter gasoline engine

and an electric motor, allowing the vehicle to operate on both electric power and

gasoline power. The study aims to investigate the instantaneous fuel consumption of

the PHEV model and the conventional gasoline-powered truck.

Figure 3.2: The Ford F-350 used in this thesis

The specifications of the tested Ford F-350 are shown in Table 3.1.
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Table 3.1: Specifications of the Ford F-350

Vehicle Specification

Model Year 2021

Vehicle Body Style Pickup Truck

Fuel Type Gasoline

Engine Type 6.2 L

Engine Rated Power 287 kW @ 5,750 RPM

Engine Torque 583 N.m @ 3,800 RPM

Compressor Ratio 9.8:1

Induction System Naturally Aspirated, Tuned Intake

Transmission Type 10-Speed Automatic

Vehicle Base Curb Mass 3,042 kg

The Ford Escape PHEV (Figure 3.3) used in this study allows the assessment of

vehicle energy consumption under different modes of operation: i) Pure electric, ii)

hybrid electric, and iii) pure combination engine operations using the same vehicle

platform.

Figure 3.3: The Ford Escape PHEV used in this study
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Table 3.2 shows the tested Ford Escape PHEV specifications.

Table 3.2: Specifications of the Ford Escape PHEV

Vehicle Specification

Vehicle Body Style Compact SUV

Fuel Type Gasoline / Battery

Engine Type 2.5 L Aluminum Block and Head,
Atkinson-Cycle I-4

Engine Rated Power (Using 93 Octane
Fuel)

123 kW @ 6,250 RPM

Total System Power (Hybrid and
Plug-in Hybrid)

149 kW @ 6,250 RPM

Engine Torque 210 N.m @ 4,500 RPM

Engine Compressor Ratio 13.0:1

Engine Induction System Naturally Aspirated

Transmission Type Electronic Continuous Variable
Transmission

High Voltage Battery Approximately up to 450 Volt DC,
Liquid cooled lithium ion battery

High Voltage Battery Capacity 14.4 kWh

Vehicle Base Curb Mass 1,762 kg

EPA Gasoline Fuel Consumption 5.8 L/100 km City/Hwy Combined

EPA Electricity + Gasoline Fuel
Consumption

2.2 Le/100 km City/Hwy Combined

EPA Electricity Energy Consumption 19.9 kWh/100 km City/Hwy Combined

It has a 123 kW ICE and a total power (Hybrid and Plug-in Hybrid) of 149 kW. The

vehicle is equipped with a 14.4 kWh Li-ion battery, and according to Environmental

Protection Agency (EPA) data, based on 45% highway and 55% city driving [45], its

energy consumption is 19.9 kWh/100 km. The claimed all-electric range (AER) of

the vehicle based on EPA is 61 km in the Tamb range of 20 °C to 30 °C [46]. The

vehicle mileage was 820km before the study and 10,150 km after completion.
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3.2.2 Test Driving Route

The selected comprehensive driving test route (Figure 3.4) covers a variety of driving

conditions to ensure a thorough evaluation of the university fleet vehicles. The route

length is 100 km, and completing it takes approximately 1 hour and 33 minutes. By

collecting OBD data from the vehicles during this comprehensive route, the university

can gain valuable insights into fuel consumption patterns and identify opportunities

for improvement in various driving scenarios.

Figure 3.4: The driving route in this study

Starting from the University of Alberta Transportation Service at South Campus,
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the route includes diverse scenarios that can impact fuel efficiency.

i) Residential Areas: The route passes through residential areas where the maxi-

mum speed limit is 40 km/h. These areas typically involve frequent stops and starts

due to traffic lights, intersections, and pedestrian crossings. Fuel consumption tends

to increase in such areas due to frequent acceleration and deceleration.

ii) City Areas: The route also covers city areas with speed limits ranging from

40 km/h to 100 km/h. This includes typical urban roads where drivers encounter

moderate traffic, traffic signals, and varying road conditions. Driving in these areas

can present challenges in maintaining fuel efficiency due to constant speed changes

and traffic congestion.

iii) Road Grade Changes: The route incorporates road segments with grade changes

(uphill and downhill sections). Driving on inclines can increase fuel consumption,

while downhill sections might allow for some fuel-saving opportunities.

iv) Highway Areas: The route includes highway sections with an increase in the

maximum speed limit. Highways generally offer smoother driving conditions, but

maintaining high speeds for extended periods can also impact fuel efficiency.

The data collected from this route can be used in conjunction with the RF and ANN

methods mentioned earlier to develop accurate models for predicting fuel consumption

based on real-time OBD data.

3.2.3 Data Collection and Fuel Consumption Measurement

The schematic of the data collection procedure is shown in Figure 3.5.

The CANedge2 data logger was used to collect and store CAN bus data from the

vehicle’s OBD-II port and fuel flow meter. In this case, the OBD reader was connected

to the OBD port of the vehicle to collect OBD data, while the fuel flow meter was

connected to the other terminal of the OBD reader to collect fuel flow CAN data.

The OBD data was collected at a sample rate of 2 Hz, which means the data was

recorded two times per second. This data included a variety of parameters, such as
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Figure 3.5: Schematic of fuel consumption data collection process

engine speed, vehicle speed, throttle position, and more (Table 3.3).

Table 3.3: The main PIDs collected by CANedge2 data logger

Parameter Unit

Vehicle Speed km/h

Engine Speed RPM

Engine Load %

Engine Coolant Temperature °C

Exhaust Catalyst Temperature °C

Short Fuel Trim -

Long Fuel Trim -

Intake Manifold Absolute Pressure kPa

Throttle Position %

Air/Fuel Equivalence Ratio -

The fuel flow meter data were collected at a sample rate of 5 Hz. This data would

provide information about the amount of fuel being consumed by the engine.

By syncing the OBD data with the fuel flow meter data, it is possible to gain
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insights into the vehicle’s transient performance and fuel conversion efficiency at dif-

ferent speeds and load conditions. For example, one could use this data to calculate

the vehicle’s fuel economy or identify areas where the engine may be operating inef-

ficiently.

The data collected from the vehicles using the CANedge2 data logger was recorded

in the MF4 format and stored on an SD card inside the device. To analyze and work

with the data, the Asammdfgui software (which is a software tool used for processing,

analyzing, and visualizing data from various sources) was used to convert the MF4

files to CSV format. This CSV format is commonly used for storing and manipulating

tabular data, making it easier to work with and analyze.

3.2.4 Instantaneous Fuel Consumption Estimation Models

Machine learning models were developed to estimate the instantaneous fuel consump-

tion of the vehicles in the fleet based on OBD data. These models were designed to

work in real time and were tailored to the specific parameters available from each

vehicle’s OBD data logger. Since different vehicles may have other public parame-

ters available via OBD, the models were designed to consider the availability of the

relevant PIDs in the OBD data.

Selected Features

In order to train the selected models, the OBD parameters should be selected carefully,

ensuring that they are readily available in all vehicles and directly impact the engine’s

instantaneous fuel consumption. The selected parameters include engine load, engine

speed, intake manifold absolute pressure (MAP), throttle position, air-fuel equivalence

ratio, and engine coolant temperature, which are listed in Table 3.4. Engine load,

throttle position, and intake manifold pressure are all linked together and help to

include the effect of intake air mass flow rate in the model. It was found that the

combination of these three variables was more effective than including only one of
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them for accurate estimation of instantaneous fuel consumption.

During the cold phase, i.e., when the engine coolant hasn’t reached the fully

warmed-up condition, fuel consumption is more significant for shorter trips. This

is because it accounts for a larger fraction of the overall trip time and distance. Thus,

it’s vital to include the cold start phase in the training data for urban driving fuel

consumption models. To represent engine temperature, coolant temperature from

OBD data is used in the training process.

By training machine learning models to predict fuel consumption based on these

parameters, it will be possible to estimate fuel consumption accurately and in real

time, which can be helpful for monitoring and optimizing fleet performance.

Table 3.4: Parameters used as inputs to machine learning models

Parameter Unit

Engine Speed RPM

Engine Load %

Intake Manifold Absolute Pressure kPa

Throttle Opening %

Air/Fuel Equivalence Ratio -

Engine Coolant Temperature °C

Four machine learning methods were investigated to estimate fuel consumption

in fleet vehicles, including RF, ANN, SVM, and K-Nearest Neighbors (KNN). RF

model is a standard machine-learning algorithm known for its ability to handle high-

dimensional data sets and complex relationships between features. It works by con-

structing multiple decision trees and combining their predictions to produce a final

output. One advantage of the RF model is that it is resistant to over-fitting and can

handle many features without normalizing the data [47]. ANN is another common

machine learning algorithm for handling non-linear relationships between features.

ANNs work by modeling the relationship between input and output data using in-
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terconnected nodes that simulate the behavior of neurons in the brain [48]. This

allows them to capture complex patterns and relationships in the data, making them

well-suited for predicting fuel consumption in fleet vehicles. After initial analysis,

RF and ANN methods were found to offer the highest accuracy, and thus, the study

focuses on presenting the results for these two methods. Overall, both RF and ANN

models have their strengths and weaknesses, and the choice of which method to use

may depend on factors such as the complexity of the data, the number of features

available, and the desired level of accuracy.

Artificial Neural Network (ANN) Model

An ANN is a machine-learning model inspired by the structure and functioning of the

human brain. It is a deep learning algorithm that can be used for various tasks, such

as classification, regression, pattern recognition, and more. ANNs are widely used in

artificial intelligence and have successfully solved complex problems across multiple

domains.

An ANN consists of interconnected artificial neurons organized in layers. There

are three primary types of layers. i) Input Layer: This layer receives the raw data as

input. Each neuron in the input layer represents a feature or attribute of the data.

ii) Hidden Layers: These layers are placed between the input and output layers and

play a crucial role in learning complex patterns from the data. The number of hidden

layers and the number of neurons in each hidden layer can vary depending on the

complexity of the problem. iii) Output Layer: The final layer of the network, which

produces the output. The number of neurons in the output layer depends on the type

of problem.

The connections between neurons are represented by weights, which determine

the strength of the links. During training, the ANN adjusts these weights to learn

patterns and relationships in the data. The process of adjusting the weights is known

as backpropagation, and it involves minimizing a loss function that quantifies the
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difference between the predicted output and the actual target values. Each neuron in

the ANN typically applies an activation function to the weighted sum of its inputs.

The activation function introduces non-linearity to the model, enabling it to learn

complex relationships in the data. Standard activation functions include sigmoid,

tanh, and Rectified Linear Unit (ReLU).

The ANN is trained using a process called supervised learning, where it is presented

with a labeled dataset (input data along with corresponding target outputs). The

network iteratively adjusts its weights during training using optimization techniques

like gradient descent and variants. The objective is to minimize the error between

the predicted outputs and the actual target outputs. Once the ANN is trained on a

sufficiently large and diverse dataset, it can expect new, unseen data with reasonable

accuracy.

An ANN model with one hidden layer was used for this study. The model was

developed using Table 3.5 parameters. During the training and validation of the

model, the optimal number of nodes was determined.

Table 3.5: Parameters of the designed ANN model

Parameter Value

Number of Hidden Layers 1

Activation Function for the Hidden Layer Relu

Solver for Weight Optimization Adam

Learning Rate 0.001

Numerical Stability Criteria 10-8

Maximum Number of Iterations 200

The ANN model used in this thesis was sensitive to the range of feature values.

This is a common issue with many machine learning algorithms, including neural

networks. When the range of feature values is too extensive, it can cause the model to

give too much importance to certain features and ignore others, leading to inaccurate
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predictions. The data was normalized before training the ANN model to address this

issue. Normalization is a technique used to scale the range of feature values to a

standard range. Equation (3.1) shows the general formula for normalizing a feature:

xs̃ =
x−min(x)

max(x)−min(x)
(3.1)

where xs̃ represents the normalized data which is between 0 and 1, x is the origi-

nal data, min(x) is the minimum value of feature x, and max(x) is the maximum

value of component x. By applying this formula to each element in the dataset, all

features are scaled to the same range, which can improve the performance of the ANN

model.

Random Forest (RF) model

RF model is a machine-learning algorithm used for classification and regression tasks

and is known for its high accuracy, robustness, and ability to handle complex data

without overfitting. It creates a multitude of decision trees during the training pro-

cess and combines their predictions to make a final decision. Each decision tree in

the forest is constructed independently, using a random subset of the training data

and features. This randomness and diversity in the trees contribute to the model’s

effectiveness. The critical concepts of the RF model include:

i) Bagging, a technique where multiple subsets of the training data are created by

random sampling with replacement. Each subset is used to train a separate decision

tree. This process introduces diversity in the training data and helps in reducing

over-fitting.

ii) For each decision tree, only a random subset of features is considered for splitting

at each node. This further increases the diversity among the trees and helps improve

the model’s generalization.

iii) During prediction, the outputs of all the decision trees in the forest are com-
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bined. The final prediction is determined by a majority vote from the individual trees

for classification tasks. For regression tasks, the final prediction is the average of the

individual tree predictions.

For this study, an RF model was developed based on the parameters shown in

Table 3.6. The number of decision trees can significantly impact the performance of

the model. The optimal number of decision trees is determined using cross-validation.

The objective is to find the right balance between having enough trees to capture the

complexity of the data while avoiding over-fitting. Generally, having a more signif-

icant number of decision trees can lead to better performance, but it also increases

the computational cost and can lead to over-fitting.

Table 3.6: Parameters of the designed RF model

Parameter Value

Split Criterion Function Squared Error

Minimum Number of Samples to Split 2

Minimum Number of Samples for Leaf Node 1

The collected data was split into two parts to develop and evaluate the machine

learning models. This method applies to both ANN and RF models, and the same

process was followed. The first part, which consisted of 70% of the total data, was

used for training and validation using a 5-fold cross-validation method. Four parts

were used for training, and the remaining was used for validation. This is a specific

type of cross-validation called “k-fold cross-validation,” where the data is divided

into k subsets, and the model is trained and validated k times, with a different subset

used for validation each time. This allows for a more robust evaluation of the model’s

performance by using different subsets of the data for training and validation. The

remaining 30% of the data was held out for testing the final models after training

and validation. This data was not used during the training or validation process and

was used to evaluate the performance of the last models on unseen data. During
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testing on a desktop computer with 32 GB RAM and a core i7-9700 processor, it was

observed that the RF and ANN models took approximately 56 msec and 72 msec to

run respectively for about 90 seconds of operation. If the amount of data is reduced,

the training duration will be shorter. In addition, there were no noticeable differences

in the training duration between the RF and ANN models.

3.3 Results and Discussion

In order to have an accurate fuel consumption model, it is essential to cover a wide

range of engine speeds and loads in the training data. Machine learning models

can learn to accurately predict fuel consumption across a wide range of operating

conditions. Engine speed and load are two of the most critical factors that can help

describe the engine’s operating points.

Engine speed (RPM) is a critical factor in determining fuel consumption because

it affects the amount of air that enters the engine, which in turn affects the amount

of fuel that is burned, assuming maintaining a constant air-fuel ratio. Load, typically

measured as a percentage of the engine’s maximum torque output, is also significant

because it affects the amount of work the engine is doing and, therefore, the fuel

required to support the requested engine load.

The engine operation points of both tested vehicles over the drive cycle (Figure

3.4) are shown in Figure 3.6. As mentioned earlier, the Ford Escape PHEV is a plug-

in hybrid electric vehicle with a gasoline engine and an electric motor. In certain

operating conditions, the vehicle can rely solely on electric power, which limits the

range of data points and engine operating conditions when the gasoline engine is

not being used. The number of points would be fewer due to the selective usage of

the gasoline engine (Figure 3.6a). On the other hand, the Ford F-350 is powered

exclusively by a gasoline engine. As a result, the engine operating range for the

Ford F-350 is broader and covers a more comprehensive range of driving conditions

compared to the Ford Escape PHEV (Figure 3.6b).
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(a) Ford Escape PHEV

(b) Ford F-350

Figure 3.6: Engine operation map (engine speed vs. engine load) for two tested
vehicles

The range of input parameters variation for both RF and ANN models is presented

in Table 3.7.

The time series of vehicle speed and instantaneous fuel consumption shown in

Figure 3.7 indicate that driving behavior and operating conditions significantly impact

fuel consumption. During acceleration, the instantaneous fuel consumption increases

considerably as the engine works harder to generate more power. The similar speed
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Table 3.7: The range of input parameters variation for both RF and ANN models

Parameter Ford Escape PHEV
Min-Max

Ford F-350
Min-Max

Engine Speed 1200 - 2831 RPM 500 - 5190 RPM

Engine Load 27 - 100 % 12 - 100 %

Intake Manifold
Absolute Pressure

29 - 92 kPa 15 - 92 kPa

Throttle Opening 16 - 55 % 6 - 90 %

Air/Fuel Equivalence
Ratio

0.83 - 1.30 0.79 - 1.47

Engine Coolant
Temperature

21 - 105 °C 82 - 88 °C

profiles of both vehicles suggest that they were driven in identical driving conditions.

However, the minor variations in the fuel consumption graphs of the two vehicles

could be attributed to variances in driving behavior, traffic conditions, or other related

factors.

As shown in Table 3.8, the validation results of the ANN model are acceptable

for both vehicles, with a slightly lower Root Mean Square Error (RMSE) for the

Ford Escape PHEV compared to the Ford F-350. This suggests that the ANN model

can accurately estimate fuel consumption for various driving conditions and different

vehicle types.

Table 3.8: Result of ANN fuel consumption model Cross validation

Parameter Ford F-350 Ford Escape
PHEV

Hidden Layer Size 160 260

RMSE (g/min) 18.88 7.38

R2 0.97 0.96

Table 3.9 lists the RF model cross-validation results. The optimization of the hid-

den layer size for each model is an essential step in developing accurate fuel consump-
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(a) Ford Escape PHEV

(b) Ford F-350

Figure 3.7: Time series of vehicle speed and fuel consumption

tion models. Minimizing the RMSE of the estimated fuel consumption, the hidden

layer size can be optimized to provide the best balance between model complexity

and accuracy.

Table 3.9: Results of RF fuel consumption model cross-validation

Parameter Ford F-350 Ford Escape
PHEV

No. of Decision Trees 110 60

RMSE (g/min) 12.47 4.27

R2 1.00 0.99

It is important to note that the RMSE values for both RF and ANN models are

relatively low, indicating that both models can accurately estimate fuel consumption

for the two vehicles. However, the RF model performs slightly better than the ANN
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model.

Table 3.10: Results of the fuel consumption models on the test dataset

Model Vehicle RMSE R2

ANN Ford F-350 21.21 0.97

ANN Ford Escape PHEV 9.07 0.96

RF Ford F-350 11.01 1.0

RF Ford Escape PHEV 6.096 0.99

The ANN and RF models’ predictions are compared to fuel consumption measure-

ments via scatter plots for both vehicles in Figures 3.8 and 3.9, respectively.

(a) Ford Escape PHEV (b) Ford F-350

Figure 3.8: Performance of the developed ANN model for estimating instantaneous
fuel consumption

The closer the points are to the diagonal line, the more accurate the model’s

predictions are. In this case, based on the higher estimation accuracy and the closer

alignment of points to the diagonal line on the scatter plot, it is concluded that the

RF model is a better fit for the data. The RF model performs better in predicting fuel

consumption for both vehicles, with an accuracy of accuracy of 100%, while it’s 99%

for the Ford Escape. Compared to the ANN model. The ANN model can estimate
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(a) Ford Escape PHEV (b) Ford F-350

Figure 3.9: Performance of the developed RF model for estimating instantaneous fuel
consumption

Ford F-350 fuel consumption with an accuracy of 97%, while it’s 96% for the Ford

Escape. Both methods have acceptable accuracy for instantaneous fuel consumption

estimation of the fleet vehicles.

Two ANN and RF machine learning models were developed to estimate the instan-

taneous fuel consumption of vehicles using OBD data. The actual fuel consumption

was measured using an ultrasonic flow meter. In Figure 3.10, the models’ estimated

fuel consumption values were compared with the actual fuel consumption for a se-

lected portion of a driving cycle.
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(a) Ford Escape PHEV

(b) Ford F-350

Figure 3.10: Comparing the estimation models

Looking at part of the drive cycle in Figure 3.10, the RF model deviates less from

the actual values. Overall, the performance of the machine-learning models on the

Ford Escape PHEV is slightly better than the Ford F-350. This comparison aims to

assess the accuracy and performance of the machine learning models in predicting

fuel consumption. By plotting the estimated fuel consumption against the actual fuel

consumption, it can visually observe how well the models’ predictions align with the

65



real-world measurements.
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Chapter 4

Effect of Ambient Temperature on
Energy Consumption of a Vehicle

This chapter studies the effect of Tamb on the energy consumption of three different

powertrain types. These include pure internal combustion engine (ICE), hybrid elec-

tric, and pure electric operations. To properly compare the three powertrain types,

a single vehicle with the possibility to run in each of these three powertrain modes is

selected. To this end, this study is centered on a Ford Escape PHEV.

This chapter will compare energy consumption and Carbon Dioxide (CO2) emis-

sions under different driving conditions and powertrain modes. Transitioning to

low-emission vehicles, such as EVs or hybrids, can significantly reduce the overall

greenhouse gas emissions from the university’s fleet. Electric vehicles, in particular,

produce zero tailpipe emissions when charged with electricity from renewable sources,

making them a desirable option for sustainable transportation. In real-world driving

conditions, energy consumption and CO2 emissions of a vehicle are affected by various

factors (Figure 4.1).

Generally, the energy consumption and CO2 emissions of road vehicles of all pow-

ertrain modes increase in lower ambient temperature (Tamb). Previous studies have

shown that the increase in energy consumption ranges between 20% to 100% com-

pared to normal operating temperatures [49]. In Electric Vehicles (EVs), a large

portion of this increase is due to cabin heating [49]. In ICE vehicles, the wasted heat
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Figure 4.1: Major influencing factors on energy consumption, and CO2 emissions of
a vehicle. White blocks show the focus areas of this study.

from the combustion engine is usually used to provide cabin heating energy; thus,

EVs are more affected by energy consumption increase in cold climates [50, 51]. In

PHEVs, an optimal TMS is essential to increase energy efficiency by maintaining the

vehicle components at an optimum temperature [28].

A real-driving test of a PHEV on three different urban, rural, and freeway routes

showed that the initial battery state of charge (SOC) could change tailpipe CO2

emissions and fuel consumption up to 40%. The powertrain mode of the vehicle

between charge depleting (or EV) and charge sustaining (or HEV) is based on SOC

[52]. In another real-driving PHEV study, the distance-specific energy consumption

of the charge-depleting mode, compared with the charge-sustaining mode, was 45%

lower. Still, the CO2 emission was 50% higher due to the electricity generation carbon

intensity [53].

Another PHEV was driven on different routes to assess energy consumption and

emissions in different powertrain modes. Based on current electricity generation ef-

ficiency and transmission loss, the PHEV operating in charge-depleting mode is less

energy efficient than the charge-sustaining mode for the energy mix of any U.S. state.

However, the charge-depleting mode is more energy efficient than the comparably
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sized conventional light-duty gasoline vehicle [34].

Among driving behavior and trip condition factors, the Tamb had the most decisive

influence on the specific energy consumption of an EV in real-world driving data,

doubling it by changing the temperature from 20 °C to 0 °C [54]. In another study,

a PHEV was driven in a cold climate city with charge-depleting powertrain mode in

different Tamb. At temperatures lower than -3 °C, the travel range did not change

much, while it almost halved from 18 °C to -3 °C [30].

Testing a Chevrolet Volt PHEV in different Tamb showed a high dependency of

energy consumption on the Tamb in both urban and highway driving conditions. The

least energy was consumed during the operation from 20 °C to 25 °C. In the charge-

sustaining mode in extreme winter temperatures (-25 °C), it consumed 20% - 30%

more fuel than at 22 °C. In charge depleting mode, at around 0 °C, vehicle electricity

consumption increased by 50% and 100% for highway and city driving, respectively

[55]. In another study on a Chevrolet Volt PHEV in a Tamb range of -26 °C to 25 °C in

Winnipeg, Canada, it was shown that the electric travel range is half of the baseline

condition in temperatures below -4 °C. The engine was turned on more frequently as

the temperature declined [30].

A PHEV and a range-extended battery electric vehicle (BEVX) were examined for

their AER in cold temperatures. PHEV’s range decreased from 20.1 km at 23 °C to

15.5 km at -7 °C (25%). For BEVX, the reduction was from 123.9 km to 73.5 km

(40%) [29]. Several vehicles with different powertrain systems, such as conventional,

hybrid electric, PHEV, and battery electric vehicles (BEV), were investigated for fuel

and energy consumption. The test temperatures were 20 °F (-6.67 °C), 72 °F (22.22

°C), and 95 °F (35 °C) with 850 W/m2 of emulated radiant solar energy and the tests

were on the Urban Dynamometer Driving Schedule (UDDS), Highway Fuel Economy

Test (HWFET), and US06 drive cycles, maintaining the cabin temperature on 72

°F (22.22 °C) during warm and cold temperatures. For the PHEV, the maximum

increase in energy consumption is in the cold start UDDS test at 20 °F (-6.67 °C)
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relative to 72 °F (22.22 °C), with a 60% increase in charge sustaining and a 100%

increase in charge depleting modes [56].

Table 4.1 shows the summary of previous studies on the effect of powertrain mode

and Tamb on PHEV energy consumption and CO2 emissions.

Table 4.1: Summary of previous studies on the effect of powertrain mode and Tamb

on PHEV energy consumption and CO2 emissions

Reference No. Tamb Powertrain Mode Data Type

[52] Not studied Charge depleting/sustaining Real driving

[53] Not studied Charge depleting/sustaining Real driving

[34] Not studied Charge depleting/sustaining Real driving

[54] 0 °C to 30 °C EV Real driving

[55] -27 °C to 37 °C Charge depleting/sustaining Real driving

[30] -26 °C to 25 °C Charge depleting Real driving

[29] -7 °C, 23 °C EV Chassis dynamo meter

[56] -6.7 °C, 22.2 °C, 35 °C Charge depleting/sustaining Chassis dynamo meter

The main new contributions from this part of the study in this thesis include

(i) Analysis of the effect of Tamb on energy consumption and CO2 emissions of an

electrified vehicle for extremely cold temperatures, as low as -24 °C. This provides

insights into the challenges of electrified vehicles in cold climates and helps understand

the impact of temperature on their energy efficiency and emissions.

(ii) Real-world data collection of actual fuel consumption measurements of a mod-

ern PHEV for urban and highway driving conditions across a wide range of Tamb,

ranging from -24 °C to 32 °C. This experimental data provides valuable information

for understanding the real-world performance of PHEVs in different temperature con-

ditions.

(iii) Measurement of actual fuel and energy consumption of the vehicle in different

powertrain modes, including using the ICE, electric motor, and hybrid mode. This

provides a comprehensive understanding of the energy usage of PHEVs in different

operating modes, which can help optimize their energy management strategies.
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(iv) Identification of the optimal powertrain mode for PHEVs based on Tamb and

initial battery SOC to minimize energy consumption and CO2 emissions.

4.1 Experimental Procedure

A Ford Escape PHEV was driven for 4300 km and repeated a specific test route

213 times in different climate conditions with Tamb ranging from -24 °C to 32 °C.

Investigations include studying the variations in energy consumption and efficiency

for different powertrain modes, including pure electric, hybrid electric, and IC Engine

operations. The collected data were processed and analyzed.

The vehicle was equipped with an ultrasonic flow meter to measure the fuel con-

sumption, and the battery energy usage was collected from the vehicle’s telematics.

Data was collected from the vehicle’s ECU and fuel flow meter to ensure the accuracy

of the measurements.

A camera was used during the tests to record the vehicle’s operation (Figure

4.2) from the vehicle’s instrument cluster display for further analysis. This data

included the vehicle’s speed, engine coolant temperature, powertrain mode, power

usage/charge, Tamb, and trip summary, which can be used to better understand the

vehicle’s behavior under different weather conditions and powertrain modes.

Figure 4.2: Recording from the vehicle’s instrument cluster display

Analyzing the video footage and the collected data from the ultrasonic flow meter
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and ECU can be used to identify specific driving behaviors, such as aggressive accel-

eration or braking, which can significantly impact the vehicle’s energy consumption.

Additionally, the camera footage was used to validate the accuracy of the collected

data and ensure that the vehicle was operating as expected. This can help identify

any potential issues or inconsistencies in the data and ensure the reliability of the

study’s findings.

4.1.1 Powertrain Modes of Ford Escape PHEV

The Ford Escape PHEV used in this thesis had four different powertrain modes,

allowing the driver to choose the electrification level based on needs and preferences.

These four modes are briefly explained in the following:

I. Auto EV Mode

The Auto EV mode is the default powertrain mode of the vehicle, providing an auto-

matic use of battery power during the drive. This mode stays in electric mode when

possible and runs the engine when more power is needed. This mode is suitable for

longer trips where the battery may not be sufficient to cover the entire distance.

II. EV Now Mode

The EV Now mode provides a pure electric experience in which the battery and elec-

tric motor power the vehicle. This mode is suitable for short trips or driving in urban

areas with a high density of charging infrastructure. It was recommended not to use

this mode when towing a trailer. Because the electric drive system was not designed

for towing.

III. EV Charge Mode

The EV Charge mode allows the vehicle to use the ICE to generate electricity, which

is used to charge the high-voltage battery while driving. However, the battery can-

not be charged to 100% using this mode, and it is limited to a maximum SOC of
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77%. Once the battery SOC reaches this level, the engine and electric motor work

sequentially to maintain the SOC in the range of 75% - 78%. This mode is suitable

for situations where the battery is depleted and there is no access to charging infras-

tructure.

IV. EV Later Mode

In EV Later mode, the vehicle operates in a charge-sustaining mode, using the engine

to maintain the battery’s SOC. The electric motor is used to power the vehicle until

the battery’s SOC drops to 2% to 3% less than the target SOC, at which point,

the engine starts to run and charge the battery until it reaches 1% to 2% above the

target SOC. This mode is helpful for drivers who want to save their electric range for

specific times, such as driving in urban areas or during traffic congestion, and switch

to electric mode when needed.

The Ford Escape PHEV used for this study was equipped with regenerative brak-

ing, which converts kinetic energy into electric energy and stores it in the 14.4 kWh

battery when applying the brakes or coasting. This feature helps to increase the

vehicle’s overall efficiency and reduce energy consumption during driving. Table 4.2

specifies the active components for each powertrain mode.

Table 4.2: Active components in different powertrain modes of the studied vehicle

Components (Function)
Powertrain Modes

Auto EV EV Now EV Later EV Charge

High Voltage Electric
Motor (Provides Traction

to the Vehicle)

Yes Yes Yes No

Gasoline Engine (This
Engine Operates Similarly
to Non-Hybrid Vehicles)

No No Yes Yes

Charge Unit (Charges the
High Voltage Battery)

No No Yes Yes
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The powertrain mode can be changed by a button (Figure 4.3a), and the current

running mode is displayed in the vehicle’s instrument cluster display (Figure 4.3b).

These features allow the driver to easily switch between different powertrain modes

and keep track of the current mode during driving. This can help the driver optimize

energy consumption and reduce vehicle emissions based on the driving conditions and

their preferences.

(a) Button for changing
powertrain mode (b) Ford Escape instrument cluster display

Figure 4.3: Powertrain mode selection

The vehicle was equipped with a Positive Temperature Coefficient (PTC) electric

heater, which heats the coolant to provide the passenger compartment with consistent

heat. A PTC electric heater is an electrical device that uses a material with a PTC

of resistance. As the temperature increases, the material’s resistance also increases.

When an electrical current passes through the material, it heats up and provides

warmth. In the case of the vehicle, the PTC electric heater heats up the coolant

that flows through the vehicle’s heating system, providing warmth to the passenger

compartment.

4.1.2 Test’s Driving Route

A test route was selected to cover a broad range of driving conditions. The route

was a 20-km stretch that took approximately 35 minutes to complete (Figure 4.4).

It begins at the University of Alberta’s South Campus and goes through residential

and commercial areas before returning to the South Campus via the Whitemud Dr
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highway. The selected route (with a distance of 20 km) is less than the PHEV

charge depletion range of 61km at a Tamb range of 20 °C - 30 °C. This indicates

that the vehicle’s hybrid battery could power the vehicle throughout the test without

recharging.

Figure 4.4: The driving route in this study

The selected route for testing the PHEV includes a significant number of intersec-

tions with traffic lights (31), stop signs (13), and pedestrian crossing lights (6), which

can affect the duration of the test. The study recorded test duration ranging from

29.5 to 42 minutes, indicating that traffic conditions were inconsistent across all tests.

In order to increase the accuracy of the results, the study excluded 14 tests due to

heavy traffic or construction on the test route. Additionally, tests with a duration of

more than 38.5 minutes were excluded to avoid bias in the data. By removing tests

affected by external factors and setting a time limit, the study aimed to ensure that

the test conditions were consistent across all trials.
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4.1.3 Test Procedure

For this study, all powertrain modes of the Ford Escape PHEV powertrain modes

were tested. These modes include Auto EV, EV Now, EV Later, and EV Charge.

In EV Charge mode, the hybrid battery’s SOC was set to zero percent, meaning

that the ICE was used to charge the battery up to 77%. For the other powertrain

modes (Auto EV, EV Now, and EV Later), the SOC was set to 77% ± 1% at the

beginning of the tests.

The study also included both cold start and warm start tests, which indicates that

the tests were conducted under different conditions to evaluate the performance of

the PHEV in various scenarios.

In order to increase the accuracy of the tests, the cabin Heating, Ventilation, and

Air Conditioning (HVAC) setting was kept constant across all tests. Specifically, the

HVAC temperature was set to 25 °C, and the fan speed was set to the second speed.

Table 4.3 lists the initial conditions for the Ford Escape PHEV tests.

Table 4.3: The initial condition followed for Ford Escape PHEV tests

Powertrain
Mode

SOC at the
beginning of

the Test

Coolant
Temperature

for Cold Starts

HVAC Setting

Auto EV 77% ± 1% Same as Tamb 25 °C / Fan Speed
set on 2 level

EV Now 77% ± 1% Same as Tamb 25 °C / Fan Speed
set on 2 level

EV Later 77% ± 1% Same as Tamb 25 °C / Fan Speed
set on 2 level

EV Charge 0% Same as Tamb 25 °C / Fan Speed
set on 2 level

The Ford Escape PHEV was driven through the selected test route in different

weather conditions, with Tamb ranging from -24 °C to 32 °C.

The driving on the test route was repeated 213 times, with 14 tests excluded to
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avoid bias in the data. This leads to a total of 199 tests used in this study. The total

driving distance covered during these tests was 4300 km, a considerable distance that

can provide a large dataset for analysis in this thesis. The study also considered

seasonal weather and driving conditions variations because the tests were conducted

over nine months, from January to September 2022.

For this study, a minimum of 41 tests were conducted for each powertrain mode

operation out of 199 total tests (Table 4.4). This ensured obtaining a large enough

dataset for each powertrain mode operation.

Table 4.4: Overview of the conducted Ford Escape PHEV tests

Powertrain Mode No. of Total Tests No. of Cold Starts

Auto EV 48 12

EV Now 53 21

EV Later 55 11

EV Charge 41 8

Total 199 53

Additionally, 53 of the 199 tests were cold start tests, which allowed this study to

evaluate the PHEV’s performance during cold starts. Cold starts can significantly

affect a PHEV’s energy consumption and efficiency, as the battery and engine need

extra energy to reach their working operating temperatures.

The fuel flow meter remained attached to the fuel line of the vehicle throughout

the entire duration of the tests. The 12V battery of the vehicle powered the flow

meter. Still, in the first stages of the tests, the connection between the flow meter

and the battery was fixed, which caused the battery to drain, especially in extremely

cold weather. The power cord was changed to a portable one to prevent this issue,

allowing the flow meter to be connected and disconnected more easily between tests.

This approach helped prevent the battery from draining and ensured that the fuel

consumption measurements were accurate and reliable.
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A CANedge2 data logger collected data from the vehicle’s fuel flow meter and

OBD port. The data was then recorded on an SD card in MF4 format. Asammdfgui

software was used to convert the MF4 file to CSV format to analyze the data.

4.1.4 Electric Energy Consumption Measurement

The data on battery energy consumption was obtained from various sources, such as

vehicle telematics and the dashboard display. The Ford Escape PHEV had a hybrid

battery with a capacity of 14.4 kWh, and the SOC level was shown on the dashboard.

To fully charge the battery at a public charging station with 3.2 kW power currency it

took roughly 4.5 hours. Additionally, the battery’s usable capacity was approximately

84% of the total 14.4 kWh capacity. Figure 4.5 shows the details of electric energy

consumption measurement.

(a) SOC status shown on vehicle’s display

(b) Charging details (c) Vehicle Status Shown on Vehicle’s Display

Figure 4.5: Electric energy consumption measurement
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To calculate the total energy consumption of the Ford Escape PHEV, we need to

convert the units of gasoline and electricity into a common unit, such as kilowatt-hours

(kWh). Equation 4.1 illustrates the gasoline power output measurement.

P g = LHV g × Ḟ (4.1)

where Pg is gasoline output power in W, LHVg is the lower heating value of gasoline

and with the value of 44 MJ/kg [57], and Ḟ is the mass flow rate of gasoline being

consumed in kg/s.

Data Collection

The CANedge2 data logger allows synchronizing data collected from different sources

using a common time stamp. In this case, the data from the OBD port and the

fuel flow meter were synchronized through the CANedge2 data logger to provide

accurate and reliable data for analysis. This helped to ensure that the results obtained

from the study could be used to draw valid conclusions about the vehicle’s dynamic

performance under different driving conditions.

The selected OBD parameters collected from the vehicle control units are listed in

Table 4.5.

Table 4.5: The PIDs collected by CANedge2

Parameter Unit

Vehicle Speed km/h

Engine Speed RPM

Engine Load Percentage %

Engine Coolant Temperature °C

Catalyst Temperature °C

Ambient Air Temperature °C

Cumulative Fuel Consumed mL

Instantaneous Fuel Consumed mL
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In addition, the Ford Escape PHEV provides information about the powertrain,

electric energy consumption, and trip summary on its screen and instrument cluster

display. These parameters are shown in Table 4.6.

Table 4.6: Parameters collected from the screen and instrument cluster display of the
vehicle

Parameter Unit

State of Charge of the Battery %

Test Duration Sec

Total Test Distance km

Total ICE Used Distance km

Total Electric Used Distance km

4.2 Results and Discussion

4.2.1 Ambient Temperature Coverage

The Tamb coverage for all powertrain modes of the Ford Escape PHEV is shown in

Table 4.7.

Table 4.7: Tamb coverage in Ford Escape PHEV tests

Powertrain Mode Min Temperature
(°C)

Max Temperature
(°C)

Auto EV -24 29

EV Now -22 29

EV Later -23 28

EV Charge -24 32

The Tamb ranged from -24 °C to 32 °C for the whole set of tests. 36% of the tests

were done in Tamb less than 0 °C.

80



4.2.2 Energy Consumption

The energy consumption of the tested vehicle depends on a variety of factors. Tamb is

a significant factor that affects an electrified vehicle’s energy consumption. In colder

temperatures, the car’s electrical heater by heat pump requires energy to warm up

the cabin and run the defroster, which can increase energy consumption. In PHEV,

the IC engine might mainly run in extreme cold conditions to support cabin heating

due to the electric heater’s limited capacity or the car’s heat pump. In contrast,

in hot weather, the car’s AC system requires substantial energy to cool down the

cabin and avoid high temperatures in the high-voltage battery. These increase energy

consumption. The compressor in the AC system requires energy to operate, and the

battery may be used to power the AC.

Energy consumption can vary depending on whether the vehicle starts in cold

or warm conditions. During a cold start, the engine and other vehicle components

require additional energy to warm up to their optimal operating temperatures [58].

This includes warming up the engine coolant, battery, exhaust after-treatment system,

and other powertrain parts. Additionally, the battery may require additional energy

to power the starter motor and other systems during a cold start. This increased

energy consumption during cold starts leads to low fuel conversion efficiency and high

tailpipe emissions since the exhaust after-treatment system requires time to reach the

required operating temperatures, i.e., 300 °C – 400 °C. This time is called light-off

time, and this increases as the vehicle’s cold start temperature decreases.

In addition, test duration impacts a vehicle’s energy consumption during testing.

Traffic conditions, including the presence of intersections and traffic lights, can affect

the time it takes to complete a test. This can lead to higher energy consumption due

to low-speed operation and frequent declaration and acceleration, while not 100% of

regeneration braking energy can be captured. The percentage of available regenerated

energy that can be captured ranges from 80% to 84% in hybrid vehicles and from 16%
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to 70% in electric vehicles [59], [60]. The test route itself can have an impact on energy

consumption. For example, crossing a Light Rail Transit (LRT) line or encountering

other obstacles that require the vehicle to slow down or stop can increase idle time

and decrease overall efficiency.

Driving behavior is another important factor significantly impacting a vehicle’s en-

ergy consumption. Different driving behaviors, such as accelerating quickly or driving

at high speeds, can increase energy consumption and reduce vehicle propulsion effi-

ciency. On the other hand, driving behaviors that are more fuel-efficient, such as

maintaining a steady speed or using cruise control, can help reduce energy consump-

tion and improve overall efficiency.

Cruise control was used in most parts of the tests done in this study. However,

the need to accelerate quickly to merge into a lane, as in the case of the entrance

to Whitemud Dr, increased instantaneous energy consumption for those situations.

This is because the engine must work harder to accelerate the vehicle, which requires

more fuel to be burned.

Finally, weather conditions and the time of day a test was conducted also impacted

a vehicle’s energy consumption. In rainy or snowy conditions, using windshield wipers

was necessary to maintain visibility, which could increase energy consumption. Sim-

ilarly, headlights were required on cloudy days or during nighttime hours for safety

reasons, which could also increase energy consumption.

Energy Consumption of Different Powertrain Modes

The energy consumption of all powertrain modes of the Ford Escape PHEV is deter-

mined and presented in Figure 4.6.

The vehicle’s energy consumption as a function of Tamb for Auto EV, EV Now,

EV Later, and EV Charge powertrain modes are presented separately in Figure 4.7.
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Figure 4.6: The Energy consumption of all powertrain modes of the Ford Escape
PHEV
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(a) Auto EV mode
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(b) EV Now mode
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(c) EV Later mode

0

200

400

600

800

1000

1200

-30 -20 -10 0 10 20 30 40

En
e

rg
y 

C
o

n
su

m
p

ti
o

n
 (

W
h

/k
m

)

Ambient Temperature (  ̊C)

(d) EV Charge mode

Figure 4.7: Energy consumption of the vehicle as a function of Tamb for four different
powertrain modes
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In cold ambient temperatures (Tamb below 0 °C), the energy consumption of specific

EV modes like Auto EV, EV Now, and EV Later increased, indicating that these

modes required more energy to operate compared to warmer temperatures. This

phenomenon is expected because colder temperatures can negatively impact battery

performance and overall vehicle efficiency.

Colder temperatures can affect battery performance by reducing its ability to de-

liver power efficiently. The chemical reactions within the battery that generate elec-

tricity become less efficient at lower temperatures, resulting in reduced energy output.

Additionally, battery internal resistance increases in the cold, further limiting its per-

formance. As a result, more energy is needed to achieve the same level of performance

as in warmer conditions.

In terms of overall vehicle efficiency, colder temperatures impact the efficiency of

electric motors and other components due to increased friction and fluid viscosity.

Tire performance might also be affected, as they tend to have reduced grip on icy or

snowy surfaces, requiring more energy to maintain the same speed and control.

The EV Charge mode, however, does not show noticeable changes in energy con-

sumption in cold temperatures. This is because the energy that would have been

wasted in traditional ICE vehicles as heat is being repurposed to provide cabin heat-

ing. This is an energy-efficient approach, as the waste heat from the engine coolant is

utilized to warm up the cabin, reducing the need for additional energy consumption

just for cabin heating. As a result, the EV Charge mode’s energy consumption re-

mains relatively stable in colder temperatures. The differences in energy consumption

in lower temperatures are due to overall vehicle efficiency.

The range of Tamb that the vehicle was tested under is shown in Table 4.8, including

the minimum and maximum energy consumption values.

The energy usage for the EV Charge mode was the highest, with a consumption

rate of 1,017 Wh/km. On the other hand, the energy consumption for the EV Now

mode was the least, with a consumption rate of 126 Wh/km. The difference between
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Table 4.8: The Tamb range and the minimum and maximum energy consumption of
the tested vehicle

Drive Mode
Tamb(°C) EC (Wh/km)

Min Max Min Max

Auto EV -24 29 132 692

EV Now -22 29 126 664

EV Later -23 28 360 828

EV Charge -24 32 723 1,017

the two modes was quite significant, with EV Charge mode using almost eight times

more energy than EV Now mode for the same route. This highlights the importance

of selecting the appropriate powertrain mode based on specific driving conditions

and requirements, as it dramatically impacts the vehicle’s energy consumption and

efficiency.

Dividing the fuel tests into cold and warm starts is a common practice in auto-

motive testing to improve the accuracy of results. In automotive testing, tests where

coolant and catalyst temperatures are the same as the Tamb are typically considered

cold start tests. These tests are essential because they allow for measuring emissions

and fuel consumption during engine startup, which can be a significant source of

emissions and energy consumption. On the other hand, warm starts are conducted

after the engine has been running and the vehicle has been operating for some time,

allowing for a measurement of the engine’s performance under typical operating con-

ditions.

Energy Consumption of the Tested Vehicle During Cold Start Tests

For this study, the equipment installation was critical in ensuring the accuracy and

reliability of the cold start tests. Any fault in the installation process led to errors

or interruptions in the data collection, rendering the test results unusable. When the

ICE is turned on, it generates a significant amount of heat in a short period, which
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causes the coolant and catalyst temperatures to rise quickly. It is also interesting to

note that even at very low Tamb (e.g., -20 °C), the cooling down process of a warmed-

up vehicle was quite time-consuming. This underscores the importance of careful

installation of equipment.

Figure 4.8 highlights the three-way catalyst (TWC) warm-up times for the tested

vehicle’s powertrain modes with continuous operation of the ICE (Auto EV and EV

Now powertrain modes).

(a) Auto EV mode

(b) EV Now mode

Figure 4.8: The TWC warming up time of the tested vehicle (for modes without
continuous operation of the ICE)
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Figure 4.9 illustrates the TWC warm-up times for modes with continuous operation

of the ICE (EV Later and EV Charge powertrain modes) of the tested vehicle.

(a) EV Later mode

(b) EV Charge mode

Figure 4.9: The TWC warming up time of the tested vehicle (for modes with contin-
uous operation of the ICE)

The data shown in Figure 4.10 indicates the difference in engine coolant warm-up

times for modes without continuous operation of the ICE (Auto EV and EV Now

powertrain modes).
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(a) Auto EV mode

(b) EV Now mode

Figure 4.10: The engine coolant warm-up duration of the tested vehicle (for modes
without continuous operation of the ICE)

Figure 4.11 indicates the difference in engine coolant warm-up duration for EV

Later and EV Charge powertrain the tested vehicle’s modes of the tested vehicle.

The TWC temperature increased at a faster rate compared to the engine coolant

temperature. This difference in warm-up duration is not surprising, as the engine

coolant has a much larger thermal mass than the catalyst and, therefore, takes longer

to heat up. In the powertrain modes where the ICE was not constantly active, the

tested vehicle did not fully warm up until the end of the tests, as depicted in Figures
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(a) EV Later mode

(b) EV Charge mode

Figure 4.11: The engine coolant warm-up duration of the tested vehicle (for modes
with continuous operation of the ICE)

4.8 and 4.10. Furthermore, the Tamb noticeably impacts the warm-up duration. In

Figure 4.11, it is evident that the time required for the engine coolant to warm up

was nearly twice as long at lower Tamb compared to higher Tamb.

Figure 4.12 illustrates the energy consumption of all powertrain modes of the tested

vehicle during cold start tests. The energy consumption for each of the four powertrain

modes of the vehicle during cold start tests is shown separately in Figure 4.13.
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Figure 4.12: The energy consumption of all powertrain modes during cold start tests
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(a) Auto EV mode
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(b) EV Now mode
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(c) EV Later mode
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(d) EV Charge mode

Figure 4.13: The energy consumption of different powertrain modes during cold start
tests
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The energy consumption during cold start tests and the effect of Tamb on them are

shown in Table 4.9.

Table 4.9: The energy consumption of different powertrain modes during cold start
tests

Powertrain
Mode

Min Tamb

(°C)
EC

(Wh/km)
Max Tamb

(°C)
EC

(Wh/km)
EC

Change(%)

Auto EV -18 661 25 138 479

EV Now -13 664 29 126 527

EV Later -13 823 26 368 224

EV Charge -6 889 16 926 -4

According to the results for cold start tests, the Tamb in cold start tests has a

significant impact on the energy consumption of the EV Now, Auto EV, and EV

Later modes but has little effect on the energy consumption of the EV Charge mode.

Specifically, for the EV Now mode, decreasing the Tamb from 29 °C to -13 °C

resulted in more than a 5-fold increase in energy consumption. Similarly, changing the

temperature from 25 °C to -18 °C for the Auto EV mode increased energy consumption

by about 479%. The energy consumption of the EV Later mode almost doubled from

26 °C to -13 °C. On the other hand, the energy consumption of the EV Charge mode

was almost constant across different Tamb, around 900 Wh/km. This is because in this

mode, the engine is primarily used to charge the battery, and the energy consumption

is less affected by changes in Tamb.

Energy Consumption of the Tested Vehicle During Warm Start Tests

When the engine is started, it takes some time for the coolant to reach its optimal

temperature, typically around 80 °C to 85 °C. The engine coolant is responsible for

absorbing heat generated by the engine and transferring it to the radiator, where it can

be dissipated to the ambient air. Once the coolant reaches its optimal temperature,

the engine can operate efficiently, with reduced emissions and improved fuel efficiency.
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The catalyst temperature is also an essential factor in reducing emissions. The

catalytic converter is designed to operate at high temperatures, typically between

500 °C and 550 °C for the Ford Escape PHEV, to effectively reduce pollutants in the

exhaust gases.

Figure 4.14 illustrates the energy consumption of all powertrain modes of the tested

vehicle during warm start tests.
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Figure 4.14: The energy consumption of all powertrain modes during warm start tests

The energy consumption for each of the four powertrain modes of the vehicle during

warm start tests is shown separately in Figure 4.15.

In general, energy consumption for all powertrain modes is expected to be lower

during warm start tests compared to cold start tests due to the higher temperature of

the engine and catalyst. Same as cold start tests, the highest energy consumption was

for EV Charge mode with the minor effect of Tamb. The energy consumption pattern

for the other three modes is the same, where the energy consumption increased by

decreasing the Tamb.
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(a) Auto EV mode
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(b) EV Now mode
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(c) EV Later mode
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(d) EV Charge mode

Figure 4.15: The energy consumption of different powertrain modes during warm
start tests

Table 4.10 shows the energy consumption of different power train modes of the

Ford Escape PHEV and the effect of Tamb on them.

Table 4.10: The energy consumption of different powertrain modes during warm start
tests

Powertrain
Mode

Min Tamb

(°C)
EC

(Wh/km)
Max Tamb

(°C)
EC

(Wh/km)
EC

Change(%)

Auto EV -24 692 29 153 452

EV Now -22 460 28 138 333

EV Later -23 718 28 386 186

EV Charge -24 930 32 871 107

According to the results, for warm start tests, the highest effect of Tamb was ob-

served on the Auto EV mode, with a 4.5 times increase in energy consumption by
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changing the temperature from 29 °C to -24 °C. Similarly, the energy consumption of

the EV Now mode increased threefold by decreasing the Tamb from 28 °C to -22 °C.

The EV Later mode also doubled energy consumption by reducing the Tamb from 28

°C to -23 °C. Interestingly, no significant changes were observed for the EV Charge

mode, with only a 107% increase in energy consumption.

4.2.3 Fuel Conversion Efficiency

Fuel conversion efficiency refers to the effectiveness with which energy is extracted

from a given fuel source and converted into practical work or desired outputs while

minimizing energy losses. The engine load was used to calculate the fuel conversion

efficiency for the powertrain modes in which the ICE was used to run the vehicle and

charge the hybrid battery. The two modes with the highest utilization of the ICE

were EV Charge and EV Later.

To calculate the fuel conversion efficiency for powertrain modes involving the ICE,

ECU data obtained through OBD is incorporated. The calculation of fuel conversion

efficiency is outlined as follows.

η =
P b

P g

(4.2)

where η is fuel conversion efficiency, Pb is engine brake power in W, calculated in

Equation 4.3, and Pg is gasoline output power in W, calculated in Equation 4.1.

P b = T e × Se (4.3)

where Pb is engine brake power in W, Te is estimated engine torque from OBD in

N.m, Se is engine speed from OBD in Rad/s.

The gasoline output power was calculated by Equation 4.1.

The engine map plots for EV Later mode in minimum and maximum tested Tamb

are shown in Figure 4.16.
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(a) EV Later at Tamb of -23 °C

(b) EV Later at Tamb of 28 °C

Figure 4.16: The engine map for EV later mode of the tested vehicle

As shown in Figure 4.16, the engine load during the EV Later mode was predomi-

nantly within the range of 40% to 80% when the Tamb was -23 °C. However, for Tamb

of 28 °C, the engine load was between 60% and 80%.

The engine map plots for EV Charge mode in minimum and maximum tested Tamb
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are shown in Figure 4.17.

(a) EV Charge at Tamb of -24 °C

(b) EV Charge at Tamb of 32 °C

Figure 4.17: The engine map for EV later mode of the tested vehicle

According to the plots in Figure 4.17, there were no noticeable changes in the

engine load for the EV Charge mode across the minimum and maximum tested Tamb.

The fuel conversion efficiency for EV Later mode in minimum and maximum tested
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Tamb are shown in Figure 4.18.

(a) EV Later at Tamb of -23 °C

(b) EV Later at Tamb of 28 °C

Figure 4.18: The fuel conversion efficiency for EV later mode of the tested vehicle

The average fuel conversion efficiency for the EV Later mode at a Tamb of -23 °C is

39.9%, while it increases to 42.4% at a Tamb of 28 °C. This represents a 5.8% increase

in the average fuel conversion efficiency.
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The fuel conversion efficiency for EV Charge mode in minimum and maximum

tested Tamb are shown in Figure 4.19.

(a) EV Charge at Tamb of -24 °C

(b) EV Charge at Tamb of 32 °C

Figure 4.19: The fuel conversion efficiency for EV later mode of the tested vehicle

Similarly, for the EV Charge mode, the average fuel conversion efficiency at a Tamb

of -24 °C is 40.4%, while it increases to 41.8% at a Tamb of 32 °C. This indicates a
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3.5% increase in the average fuel conversion efficiency.

The duration of fuel conversion for EV Later mode in minimum and maximum

tested Tamb are shown in Figure 4.20.

(a) EV Later at Tamb -23 °C

(b) EV Later at Tamb 28 °C

Figure 4.20: Duration of fuel conversion efficiency of EV Later mode for the tested
vehicle

Based on Figure 4.20 for EV Later mode, the most extended duration is observed

for the fuel conversion efficiency range of 35% to 40% at Tamb of -23 °C. However, at

Tamb of 28 °C, the highest duration occurs for the range of 40% to 45%.

The duration of fuel conversion efficiency for EV Charge mode in minimum and

maximum tested Tamb are shown in Figure 4.21.
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(a) EV Charge at Tamb -24 °C

(b) EV Charge at Tamb 32 °C

Figure 4.21: Duration of fuel conversion efficiency of EV Charge mode for the tested
vehicle

As shown in Figure 4.21, for EV Charge mode, the most extended duration is

observed for the fuel conversion efficiency range of 35% to 40% at Tamb of -24 °C.

However, at Tamb of 32 °C, the highest duration occurs for the range of 40% to 45%.

According to the results, the fuel conversion efficiency for both EV Later and EV

charge modes was increased by increasing the Tamb.
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Ford Escape PHEV charging equipment

The 2021 Ford Escape PHEV came with standard charging equipment J1772 that is

compatible with most public charging stations. The vehicle came equipped with a

level 1 charger port that could be plugged into a regular 110-volt household outlet.

This option would take about 10 to 11 hours to fully charge the battery from 0%

SOC of starting charge. The vehicle was equipped with a level 2 setup with a 240-

volt charging port to charge faster. It took around 3.5 hours to charge the vehicle

fully [61]. Figure 4.22 shows the various types of charging equipment available for

the Ford Escape PHEV.

(a) Level 1 AC 110-volt charging port

(b) Level 2 AC 220-volt charging port (c) Level 2 AC 220-volt charging station

Figure 4.22: The various types of charging equipment available for the Ford Escape
PHEV
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The Ford Escape PHEV had the option to adjust the charging level for the plug-in

mode. The minimum setting for the charging level was 50%, and it could be increased

in increments of 10%. For the tests in the study, the charging level was set to 80%,

which was the closest option to the required 77% needed to start the tests.

Energy Costs

Gas price is an important factor in fleet vehicle costs, return on investment (ROI)

on PHEVs, and fleet management’s extended plans for renewing the vehicles. When

assessing the cost-effectiveness of PHEVs within a fleet, it’s essential to consider gas

prices. PHEVs have a significant advantage in that they rely more on electricity than

gasoline, leading to considerable reductions in fuel expenses.

Various factors influence the expense of charging a PHEV. The battery’s size and

discharge level impact the energy required to charge it. There are multiple methods

to charge a PHEV, which include commercial charging stations that generally charge

a fee for every kilowatt-hour (kWh) of electricity consumed. Home charging stations

with 110-240 V supply can follow the same model or charge a fixed rate per charging

session.

Additionally, the battery can be charged using the ICE of the vehicle. Installing

home charging stations can be highly convenient for fleet vehicles, especially since

they can be set up at the exact parking location where they are stored overnight.

In certain situations, it could be feasible to benefit from lower electricity costs by

charging devices during nighttime or utilizing sustainable energy sources like home-

based solar panels.

Gas Price in Edmonton (12.10.2022)

The cost of gasoline differs significantly due to various factors, such as worldwide oil

prices, supply and demand, and local taxes and regulations. Fluctuations in gas prices

significantly affect the cost of operating and maintaining fleet vehicles, especially those

that run on traditional gasoline engines. Fleet managers need to monitor gas prices
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and consider alternative options, such as PHEVs, to help reduce costs and increase

efficiency. The past year has seen a range of gasoline prices, with a minimum of 126.7

¢/L and a maximum of 190.0 ¢/L (Figure 4.23).

Figure 4.23: Edmonton’s regular gas price summary (12.10.2022)

The data presented in Figure 4.24 indicates that gasoline prices in Alberta and

Edmonton were comparable to each other but significantly different from the average

cost of gasoline in Canada [62].

Figure 4.24: 12-month average retail regular gas price chart (12.10.2022)
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Edmonton Retail Regular Gas Price Map

Figure 4.25 indicates the gas station and the prices of regular gas [63].

Figure 4.25: Edmonton retail regular gas price on (12.10.2022)

Commercial Charge Station in Edmonton

A commercial charge station is an option to charge a PHEV. The cost of charging a

vehicle is determined by two factors: the energy fee and the parking fee. These fees
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can either be free or charged on an hourly basis. Figure 4.26 shows the locations of

commercial charging stations in Edmonton [64].

Figure 4.26: Commercial charge station in Edmonton [64]

Ford Escape PHEV Energy Costs

According to information from the University of Alberta’s transportation service, one

kWh of electricity costs 10 cents. The average gas price from last year was 140.6 ¢/L.

The energy cost calculations in this thesis were based on these prices.

Figure 4.27 illustrates the energy cost of all powertrain modes of the Ford Escape

PHEV. The energy cost for each of the four powertrain modes of the vehicle is shown

separately in Figure 4.28

105



0

2

4

6

8

10

12

14

16

18

-30 -20 -10 0 10 20 30 40

C
o

st
 (

¢/
km

)

Ambient Temperature (  ̊C)

EV Now Auto EV EV Later EV Charge

Figure 4.27: The energy cost of all powertrain modes for the tested vehicle
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(a) Auto EV mode
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(b) EV Now mode
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(c) EV Later mode
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(d) EV Charge mode

Figure 4.28: The energy cost of different powertrain modes for the tested vehicle

According to the results, the energy cost for the powertrain modes with continuous

ICE operation was higher than that of the electric motor. This was because gasoline

tends to be pricier than electricity, and utilizing the ICE engine results in greater
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gasoline consumption. Therefore, it makes sense that EV Charge mode was the

costliest, as it relies solely on the ICE. Then, the EV Later mode with a combination

of ICE and the electric motor was the second rank, as it used the ICE more frequently

than the other modes. Finally, Auto EV and EV Now mode costs were lower and

almost near each other, as they rely primarily on the electric motor.

Table 4.11 shows the energy expenses of the Ford Escape PHEV under various

powertrain modes, at both minimum and maximum Tamb.

Table 4.11: The energy costs of various powertrain modes for the tested vehicle

Test Type Min Tamb

(°C)
Energy Cost

(¢/km)
Max Tamb

(°C)
Energy Cost

(¢/km)

Auto EV -24 9.4 29 1.5

EV Now -22 4.8 29 1.3

EV Later -23 11.3 28 6.1

EV Charge -24 15.9 32 15.2

The results found that the EV Charge mode incurred the highest cost at Tamb of

-24 °C, amounting to 15.9 ¢/km. Tamb had minimal impact on this mode, costing

15.2 ¢/km at 32 °C. However, for the EV Later mode, the energy cost nearly doubled

from 6.1 ¢/km to 11.3 ¢/km as the Tamb dropped from 28 °C to -23 °C.

At Tamb of 29 °C, the EV Now mode demonstrated the most efficient energy usage,

costing only 1.3 ¢/km. Although the cost increased 3.5 times, it remained lower than

the other modes. In comparison, the Auto EV mode experienced the highest increase

in energy cost compared to other modes, with the cost per kilometer rising from 1.5

¢/km to 9.4 ¢/km.

Ford Escape PHEV CO2 Emission

Many companies with large fleets of vehicles, especially those running on conventional

ICE, produce significant amounts of CO2 emissions. These emissions contribute to

global warming and climate change. As a result, there is a growing emphasis on
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reducing CO2 emissions from these fleets. Some companies are prioritizing emission

reduction over cost reduction when it comes to their fleet operations. Environmental

concerns, sustainability goals, regulatory pressures, and customer demand for eco-

friendly practices drive this shift in focus. While reducing costs remains essential,

there is a growing recognition that environmental responsibility can enhance a com-

pany’s reputation and long-term viability.

PHEVs combine electric and ICE propulsion systems. The amount of CO2 emis-

sions generated by a PHEV depends on the energy sources used to generate the

electricity that charges its battery and the efficiency of its combustion engine. The

CO2 intensity of producing a kWh of electricity is vital to determining the total

emissions associated with PHEVs. The choice of electricity sources to charge PHEVs

significantly impacts the overall emissions of a company’s fleet. Charging PHEVs

using electricity from renewable sources can substantially reduce the fleet’s carbon

footprint compared to charging from fossil-fuel-intensive sources.

Furthermore, Tamb also affects CO2 emissions of PHEVs. When the temperature is

low, a PHEV’s ICE needs to run longer to maintain the required cabin temperature,

which results in higher emissions. For this purpose, the production of CO2 emission

by the Ford Escape PHEV was investigated as a part of the study.

The graph in Figure 4.29 shows a decreasing trend in the emission intensity of

electricity generation in Alberta from 1990 to 2020. In 1990, the emission’s intensity

was around 950g of CO2 per kWh, and by 2020, it decreased to 590g of CO2 per

kWh [65]. This trend indicates that electricity generation methods in Alberta are

becoming cleaner and more environmentally friendly.

The last 12 months intensity values show that the average CO2 intensity of electric-

ity generation in Alberta was 457 gCO2/kWh [25]. This indicates that the emission

intensity of electricity generation in Alberta continues to decrease. This is good news

for reducing the overall CO2 emissions of PHEVs that rely on electricity as a power

source. The CO2 intensity of electricity generation in Alberta during the period of
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Figure 4.29: Emissions intensity of electricity generation

this study is shown in Figure 4.30.
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Figure 4.30: The CO2 intensity of electricity generation for Alberta during the period
of this study [25]

Figure 4.31 shows the CO2 emissions of all powertrain modes of the Ford Escape

PHEV. The CO2 emission for each of the four powertrain modes of the vehicle is
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shown separately in Figure 4.32. The results are based on the CO2 intensity value of

electricity generation in Alberta.
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Figure 4.31: CO2 emission of different powertrain modes of the tested vehicle based
on Alberta CO2 intensity value

According to the results, the intensity of CO2 emissions for all powertrain modes

was increased by decreasing the Tamb, as cold weather has a negative impact on the

performance of the batteries and increasing the reliance on the ICE in hybrid vehicles

or a more significant drain on the hybrid battery, ultimately resulting in increased

CO2 emissions.

The CO2 emissions for all powertrain modes of the Ford Escape, based on Alberta’s

CO2 intensity value, during the minimum and maximum tested Tamb, are presented

in Table 4.12.

The highest recorded CO2 emissions occurred during the use of Auto EV mode

in Tamb of -24 °C, with nearly 231 g/km. On the other hand, the lowest emissions

occurred during EV Now mode at Tamb of 29 °C, with just 58 g/km. When switching

to EV Now mode, decreasing the Tamb from 29 °C to -22 °C caused CO2 emissions

to increase by almost 3.5 times. This is because the vehicle relies more on electric

power in the Auto EV and EV Now modes. As the battery’s efficiency has reduced
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(a) Auto EV mode
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(b) EV Now mode
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(c) EV Later mode

0

50

100

150

200

250

-30 -20 -10 0 10 20 30 40
C

O
2

Em
is

si
o

n
 (

gC
O

2
/k

m
)

Ambient Temperature (  C̊)

(d) EV Charge mode

Figure 4.32: CO2 emission of the tested vehicle based on Alberta CO2 intensity value

Table 4.12: CO2 emission of different powertrain modes for the tested vehicle based
on Alberta CO2 intensity value

Test Type
Min Tamb

(°C)
CO2

Emission
(gCO2/km)

Max Tamb

(°C)
CO2

Emission
(gCO2/km)

Auto EV -24 231 29 70

EV Now -22 203 29 58

EV Later -23 188 28 101

EV Charge -24 199 32 177

in extremely cold weather and the battery drained faster, the ICE needed to work

more extended periods to run the vehicle and charge the battery, leading to higher

emissions.

Similarly, in EV Later mode, reducing the Tamb from 28 °C to -23 °C resulted in
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CO2 emissions almost doubling from 101 g/km to 188 g/km. However, when EV

Charge mode was used, the impact of Tamb on CO2 emissions was minimal, with only

a 12% increase since the EV Charge mode relies more on the ICE to run the vehicle

and charge the battery.

The CO2 emissions of PHEVs are directly affected by the CO2 intensity of the

electricity used to charge their batteries. Suppose the electricity comes from a clean

energy source such as solar, wind, hydroelectric, or nuclear power. In that case, the

CO2 emissions associated with charging the batteries will be significantly lower than

electricity generated from fossil fuels like coal, oil, and natural gas. Therefore, using

clean energy sources to power PHEVs is a vital strategy to reduce the environmental

impact of transportation and combat climate change.

Manitoba and Quebec are both provinces in Canada that have a high proportion

of electricity generated from clean energy sources, such as hydroelectric power. As a

result, the CO2 intensity of electricity in these provinces is relatively low compared

to other regions that rely more heavily on fossil fuels for electricity generation. Ac-

cording to the latest data from the Canadian National Inventory Report (NIR), the

CO2 intensity of electricity in Manitoba is 1.2 gCO2/kWh, while in Quebec, it is

1.9 gCO2/kWh. These values are significantly lower than the national average CO2

intensity of electricity in Canada, which is currently around 200 gCO2/kWh [25].

The CO2 emission for different powertrain modes of the Ford Escape PHEV based

on Manitoba CO2 intensity Value is shown in Figure 4.33.

Like Alberta, Tamb has a greater effect on CO2 emissions in powertrain modes with

high use of the electric motor, particularly at Tamb below 0 °C. Using a cleaner energy

source for electricity production, the CO2 emissions of PHEVs can be significantly

reduced, even in extreme temperatures.

The CO2 emissions for all powertrain modes of the Ford Escape, based on Man-

itoba’s CO2 intensity value, during the minimum and maximum tested Tamb, are

presented in Table 4.13.
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Figure 4.33: CO2 emission of different powertrain modes of the tested vehicle based
on Manitoba CO2 intensity value

Table 4.13: CO2 emission of different powertrain modes of the Ford Escape PHEV
based on Manitoba CO2 intensity Value

Test Type
Min Tamb

(°C)
CO2

Emission
(gCO2/km)

Max Tamb

(°C)
CO2

Emission
(gCO2/km)

Auto EV -24 111 29 0

EV Now -22 10 29 0

EV Later -23 183 28 108

EV Charge -24 294 32 287

The results show that the Ford Escape PHEV had the lowest CO2 emissions when

using the Auto EV and EV Now modes, regardless of Tamb, which was extremely

cold or warm. However, the highest CO2 emissions were observed when using the

EV Charge mode, followed by the EV Later mode. These findings were due to clean

Manitoba’s electricity generation; as long as the electric motor powered the vehicle,

the CO2 emissions were at the lowest.
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4.2.4 Comparison of Energy Consumption, Costs, and CO2

Emission of a PHEV .Vs Conventional Vehicle

This part of the study aimed to compare the energy consumption, costs, and CO2

emissions of a Ford Escape PHEV with a conventional Ford Escape with an IC Engine

(Figure 4.34) under similar conditions. The testing conditions of the study were

conducted in a Tamb range of -4 °C ± 1 °C to 14 °C to capture the impact of Tamb on

the performance of both the Ford Escape PHEV and the conventional Ford Escape

S. Tamb affects vehicles’ energy consumption, costs, and emissions, impacting the

powertrain’s efficiency, battery performance, and fuel consumption.

Figure 4.34: The Ford Escape S (on the left) and the PHEV (on the right) used in
this study

The specification of the Ford Escape S is shown in Table 4.14.

The engine and flow meter installed location on the Ford Escape S are shown in

Figure 4.35.

The fuel test procedures used for the Ford Escape S were the same as those used for

the Ford Escape PHEV, as described in the previous chapter. The test was repeated

32 times, with 30 of the tests being deemed acceptable. Additionally, The tests have
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Table 4.14: Specifications of the Ford Escape S used in this study

Vehicle Specification

Model Year 2021

Vehicle Body Style Compact SUV

Fuel Type Gasoline

Engine Type 1.5 L Eco Boost

Engine Rated Power 135 kW @ 6,000 RPM

Engine Torque 258 N.m @ 3,000 RPM

Compressor Ratio 10.0:1

Induction System Turbocharged

Transmission Type 8-Speed Automatic

Vehicle Base Curb Mass 1,496 kg

Fuel Consumption Rate 7.8 L/100 km city/hwy

(a) Ford Escape S engine (b) Fuel flow meter installed on fuel line

Figure 4.35: Ford Escape S used in this study

been divided into cold and warm starts to evaluate how the vehicle performs under

different starting conditions, as starting a vehicle in cold Tamb impacts fuel efficiency

and emissions. Table 4.15 shows the Ford Escape S tests overview.

4.2.5 Energy Consumption of Ford Escape S

The energy consumption of the Ford Escape S in the Tamb range of 0 °C to 4 °C for

cold start and -4 °C to 14 °C for warm start tests are shown in Figure 4.36.
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Table 4.15: Ford Escape S fuel tests overview

Type of the Test No. of Tests

Cold Start 7

Warm Start 23

Total 30
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Figure 4.36: Energy consumption of the Ford Escape S

Table 4.16 shows the energy consumption of the Ford Escape S in minimum and

maximum Tamb tests and their changes.

Based on the results provided, the energy consumption of the Ford Escape S was
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Table 4.16: Energy consumption of the Ford Escape S

Test Type Min Tamb

(°C)
EC

(Wh/km)
Max Tamb

(°C)
EC

(Wh/km)
EC

Change(%)

Cold Start 0 888 4 792 12

Warm Start -4 814 14 706 15

significantly impacted by the Tamb during both cold and warm starts. For the cold

start tests, the energy consumption increased by 12% from Tamb 4 °C (792 Wh/km) to

0 °C (888 Wh/km). This was due to increased rolling resistance and decreased engine

efficiency in colder temperatures. For the warm start tests, the energy consumption

increased by 15% from Tamb 14 °C (706 Wh/km) to -4 °C (814 Wh/km). This

indicates that even in warmer temperatures, the vehicle’s energy consumption was

still impacted by Tamb, albeit to a lesser extent than in the cold start tests.

Energy Consumption Comparison

The energy consumption of the Ford Escape PHEV and model S in the Tamb of -5 °C

to 14 °C ± 1 °C is shown in Figure 4.37.
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Figure 4.37: Energy consumption of Ford Escape S Vs. PHEV
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As shown in Figure 4.37, at lower Tamb, the energy consumption of the model S

was comparable to that of the EV Charge mode of the PHEV. However, as the Tamb

increased, the energy consumption of the PHEV became higher than that of the S.

The other three powertrain modes of the PHEV (Auto EV, EV Now, and EV Later)

consumed less energy compared to the S, particularly at higher Tamb. This is because

the PHEV can rely more on its electric motor in those modes and consume less fuel,

whereas the model S has only the ICE and no electric motor.

Figure 4.38 shows the average and standard deviation of energy consumption for

both vehicles.

392 ± 59

EV Now 361 ± 21
300 ± 86

EV Now 189 ± 54

476 ± 148

Auto EV 361 ± 33 234 ± 47
Auto EV 191 ± 22

507 ± 29

506 ± 62

424 ± 15 416 ± 31

EV Charge 796 ± 0

841 ± 61

831 ± 50 831 ± 61

Ford Escape (S) 790 ± 40 822 ± 53
743 ± 44

706 ± 0

0

100

200

300

400

500

600

700

800

900

1000

-10 -5 0 5 10 15 20

En
e

rg
y 

C
o

n
su

m
p

ti
o

n
 (

W
h

/k
m

)

Ambient Temperature ( ̊C)
EV Now Auto EV EV Later EV Charge Ford Escape (S)

Figure 4.38: Average energy consumption of Ford Escape S Vs. PHEV

The energy consumption of the Ford Escape S and all powertrain modes of the

PHEV at the minimum and maximum tested Tamb is shown in Table 4.17.

The Tamb significantly affects the energy consumption of the PHEV, particularly

in the Auto EV and EV Now modes. The results suggest that at a Tamb of -4 °C ±

1 °C, the energy consumption in these modes was doubled compared to that at 14

°C. However, for the S, the effect of Tamb on energy consumption was very low. The

energy consumption only increased by 15% when the temperature decreased from 14

°C to -4 °C ± 1 °C.
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Table 4.17: Energy consumption of Ford Escape S Vs. PHEV

Powertrain
Mode

Min
Tamb

(°C)

Energy
Consump-

tion
(Wh/km)

Max
Tamb

(°C)

Energy
Consump-

tion
(Wh/km)

Auto EV -4 ± 1 403 14 ± 1 210

EV Now -4 ± 1 392 14 ± 1 197

EV Later -4 ± 1 484 14 ± 1 425

EV Charge -4 ± 1 796 14 ± 1 778

ICE [S] -4 ± 1 814 14 ± 1 706

Energy Cost Comparison

As previously mentioned, the study used an average gasoline price of 140.7 ¢/L and

a cost of 10 ¢/kWh for electricity for its calculations. Based on this information, the

cost of the various powertrain modes of the Ford Escape PHEV and model (S) is

shown in Figure 4.39.
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Figure 4.39: Energy cost of Ford Escape S vs. PHEV
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The energy costs of all powertrain modes of the Ford Escape S and PHEV at the

minimum and maximum tested Tamb based on the considered price of gasoline and

electricity are shown in Table 4.18.

Table 4.18: Comparison of energy cost for Ford Escape S Vs. PHEV

Tamb

Energy Cost (¢/km)

Auto
EV

EV Now EV
Later

EV
Charge

S

-4 ± 1 °C 8.8 3 7.9 14.1 12.8

4 ± 1 °C 2.1 2.4 6.5 14.5 11.4

14 ± 1 °C 2.2 2 6.7 15.3 11.2

The study found that the EV Now mode of the PHEV had the lowest cost at Tamb

of -4 °C ± 1 °C, costing 3 ¢/km. This cost was significantly lower than the cost for

model S, which was over four times higher at the same Tamb. At Tamb of 14 °C ± 1 °C,

the cost of the EV Now mode was 2 ¢/km, which was also lower than the cost for the

S model. The difference in cost between the two vehicles was even more significant

at this Tamb, with the model S costing almost six times more than the PHEV. The

cost difference between the PHEV and model S was more significant at warmer Tamb,

where the PHEV’s electric-only modes were more efficient and had a lower energy

cost. In contrast, the model S relied solely on gasoline, which was more expensive

than electricity. Therefore, the PHEV was more cost-effective and had lower energy

costs in modes using the electric motor.

CO2 Emission Comparison

The study measured the CO2 emissions for different Ford Escape PHEV powertrain

modes and the model S. The CO2 intensity used in the calculations was based on the

average for Alberta in the previous year, which was 457 gCO2/kWh.

The study results are presented in Figure 4.40, which shows the CO2 emissions for

both vehicles.

120



0

50

100

150

200

250

300

-10 -5 0 5 10 15 20

C
O

2
Em

is
si

o
n

 (
gC

O
2
/k

m
)

Ambient Temperature (  ̊C)

EV Now Auto EV EV Later EV Charge (S) Model

Figure 4.40: Ford Escape S Vs. PHEV CO2 emission

Figure 4.41 shows the average and standard deviation of CO2 emissions for both

vehicles.
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Figure 4.41: Average CO2 emission comparison of Ford Escape S Vs. PHEV

The CO2 emission of all powertrain modes of the Ford Escape PHEV and model
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S at the minimum and maximum tested Tamb are shown in Table 4.19.

Table 4.19: Comparison of CO2 emission for Ford Escape S vs. PHEV

Tamb (°C)
CO2 Emission (gCO2/km)

Auto
EV

EV
Now

EV
Later

EV
Charge

S

-4 ± 1 198 200 132 154 210

4 ± 1 96 109 108 141 186

14 ± 1 60 126 99 138 183

The Tamb significantly impacted the CO2 emission of the Auto EV and EV Now

modes of the Ford Escape PHEV. On the other hand, the Tamb had a lesser effect

on the EV Later and EV Charge modes of PHEV. Same as energy consumption, the

CO2 emission for the model S had a slice change by changing the Tamb. Overall, the

amount of CO2 emission for the powertrain modes that used the electric motor was

much affected by Tamb; on the other hand, the powertrains with continued use of ICE

were less sensitive to changes Tamb.

4.2.6 Return of Investment (ROI)

The ROI is a standard financial metric used to evaluate the profitability of an in-

vestment, and it can be calculated by dividing the net profit or savings by the initial

investment. In the context of vehicles, ROI can be affected by various factors, includ-

ing the upfront cost of the vehicle, fuel or energy fees, maintenance costs, and resale

value. PHEVs, which have both an electric motor and a combustion engine, can offer

potential fuel savings and lower emissions than conventional vehicles. However, they

typically have a higher upfront cost.

Ford Escape PHEV and Ford F-150 Lightning were alternatives for the UAlberta

fleet of SUVs and 1/2-tonne trucks for this study. The impact of energy costs and

Tamb on ROI was researched. This analysis has considered the cost of electricity and

gasoline, factors such as Tamb, and the distance traveled. Furthermore, since the
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selected applications of the UAlberta fleet driving cycles were in the city, the ROI

was investigated based on the city cycles.

The price of a Ford Escape S with ICE was 32,444 Canadian dollars at the time of

this study, while the price of a PHEV (SE) model was 43,394 Canadian dollars.

The Ford F-150 Lightning is an all-electric pickup truck. As an EV, the Ford

F-150 Lightning has the potential to offer significant fuel cost savings compared to

the traditional ICE model, with a price difference of 25,114 C$. (The price of a Ford

F-150 Lightning XLT at the time of this study was 73,750 C$ while it was 48,636 C$

for the XLT with ICE).

The F-150 XLT with ICE consumed 13.8 L/100km in city cycles. As one liter

of gasoline contains the energy equivalent to 8.9 kWh of electricity [66], the energy

consumption for F-150 XLT with ICE was 1,228 Wh/km for the city. On the other

hand, the F-150 Lightning XLT consumed 275 Wh/km in the city [67].

The ROI Based on Total Distance

The disparity in energy cost for the Ford Escape S with an ICE and Auto EV (Equa-

tion 4.4), EV Now (Equation 4.5), and EV Later (Equation 4.6) powertrain modes

of the Ford Escape PHEV were calculated.

XS–XSEA = ZA(¢/km) (4.4)

XS–XSEN = ZN(¢/km) (4.5)

XS–XSEL = ZL(¢/km) (4.6)

where XS is the base parameter and represents the energy cost for the Ford Escape

S, XSEA, XSEN , and XSEL represent the energy costs for Auto EV, EV Now,

and EV Later powertrain modes of the Ford Escape PHEV (SE), respectively. ZA,

123



ZN , and ZL represent the difference in energy costs between the Ford Escape S and

Auto EV, EV Now, and EV Later powertrain modes of the Ford Escape PHEV (SE),

respectively.

The ROI based on total distance (km) for Auto EV, EV Now, and EV Later

powertrain modes of the Ford Escape PHEV (SE) were calculated by Equation 4.7:

TD(km) = 1, 095, 000(¢)/Z(¢/km) (4.7)

TD is the total distance required to achieve an ROI for the PHEV, and the value

of 1,095,000 (¢) represents the difference in cost between the Ford Escape S and the

PHEV.

The total distance required to achieve an ROI (TD) was calculated three times

based on the minimum, average, and maximum gasoline prices in Edmonton in 2022.

This approach has allowed the study to account for the potential variability in gasoline

prices over time and provide a range of estimates for the total distance required to

achieve an ROI for the PHEV.

Furthermore, the EV Charge mode was not calculated because it was not consid-

ered beneficial, and a PHEV’s purpose is to use the electric motor to save fuel and

reduce costs.

The energy costs for the Ford Escape S and the PHEV at Tamb of (-4 °C ± 1 °C), (0

°C ± 1 °C), (4 °C ± 1 °C), and (14 °C ± 1 °C) are shown in Tables 4.20, 4.21, 4.22 and

4.23 respectively.

The results showed that the Ford Escape S had the highest energy cost at the Tamb

of -4 °C ± 1 °C with the cost of 16.9 ¢/km; on the other hand, the lowest was for the

EV Now mode at the Tamb of 14 °C ± 1 °C with the cost of 1.6 ¢/km.

Overall, the energy costs for the Ford Escape S were between 15.1 ¢/km to 16.9

¢/km while it was 1.6 ¢/km to 3.6 ¢/km for the EV Now mode, 2 ¢/km to 5.5 ¢/km

for Auto EV mode and 8.4 ¢/km to 10.7 ¢/km for EV Later mode of the Ford Escape
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Table 4.20: The energy costs of the two tested vehicles used in this study at the Tamb

of -4 °C ± 1 °C

Powertrain
Mode

Based on Min
Gas Price
(¢/km)

Based on Ave
Gas Price
(¢/km)

Based on Max
Gas Price
(¢/km)

Auto EV 4.6 4.8 5.5

EV Now 3.6 3.6 3.6

EV Later 7.2 8.0 10.7

ICE [S] 11.2 12.5 16.9

Table 4.21: The energy costs of the two tested vehicles used in this study at the Tamb

of 0 °C ± 1 °C

Powertrain
Mode

Based on Min
Gas Price
(¢/km)

Based on Ave
Gas Price
(¢/km)

Based on Max
Gas Price
(¢/km)

Auto EV 3.8 3.9 4.1

EV Now 3.5 3.5 3.5

EV Later 6.9 7.6 10.3

ICE [S] 10.9 12.1 16.3

Table 4.22: The energy costs of the two tested vehicles used in this study at the Tamb

of 4 °C ± 1 °C

Powertrain
Mode

Based on Min
Gas Price
(¢/km)

Based on Ave
Gas Price
(¢/km)

Based on Max
Gas Price
(¢/km)

Auto EV 2.3 2.3 2.3

EV Now 2.4 2.4 2.4

EV Later 6.0 6.7 9.0

ICE [S] 10.2 11.3 15.3
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Table 4.23: The energy costs of the two tested vehicles used in this study at the Tamb

of 14 °C ± 1 °C

Powertrain
Mode

Based on Min
Gas Price
(¢/km)

Based on Ave
Gas Price
(¢/km)

Based on Max
Gas Price
(¢/km)

Auto EV 2.0 2.0 2.0

EV Now 1.6 1.6 1.6

EV Later 5.6 6.2 8.4

ICE [S] 10.1 11.2 15.1

PHEV. Based on these, it’s evident that the energy costs for the PHEV powertrain

modes were generally lower than those for the Ford Escape S with an ICE, regardless

of the Tamb.

The fuel consumption of conventional gasoline cars can increase by almost 15%

at lower Tamb, such as -7 °C, compared to a warmer Tamb like 25 °C, in city driving

[68]. This is because the engine has to work harder to maintain optimal operating

temperature, and other factors, such as longer warm-up times, can also negatively

affect fuel efficiency.

On the other hand, for EVs, energy consumption can increase by approximately

39% in mixed city and highway driving at lower Tamb [68]. This is because the battery

has to work harder to maintain its operating temperature and provide power to the

electric motor. Additionally, using the vehicle’s heating system to warm the cabin

can increase energy consumption in cold weather.

The ROI of the Ford Escape PHEV based on mileage for Auto EV, EV Now, and

EV Later powertrain modes appear in Figure 4.42.

The ROI was determined by considering the increase in energy consumption of the

conventional gasoline and PHEV vehicles at lower Tamb. According to Figure 4.42,

for EV Now mode, the ROI based on mileage according to the maximum gas price

was around 82,000 km to 86,000 km in the tested Tamb range, while it was between
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Figure 4.42: The ROI of the Ford Escape PHEV based on distance
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130,000 km to 148,000 km based on the minimum gas price.

This indicates the price of gas had the most significant effect on ROI. Also, it can

be concluded that the powertrain modes with higher utilization of the electric motor

required lower mileage for ROI by comparing the EV Now mode mileage with EV

Later mode, which employed both ICE and electric motor.

The fuel consumption and costs for Ford F-150 XLT with ICE are shown in Table

4.24.

Table 4.24: Fuel consumption [67] and costs of F-150 XLT with ICE at Tamb of -7 °C
and 25 °C for urban cycles

Tamb (°C)

Fuel Con-
sumption
(L/100km)

Based on
Min Gas
Price
(¢/km)

Based on
Ave Gas
Price
(¢/km)

Based on
Max Gas
Price
(¢/km)

-7 16.6 21.0 23.3 31.5

25 13.8 17.5 19.4 26.2

The energy consumption and costs for F-150 Lightning XLT are shown in Table

4.25.

Table 4.25: Energy consumption [67] and costs of F-150 Lightning XLT at Tamb of -7
°C and 25 °C for city cycles

Driving Cycle/
Tamb (°C)

Consumption
(Wh/km)

Cost (¢/km)

Urban / -7 382 3.8

Urban / 25 275 2.8

Table 4.26 shows the energy costs for the F-150 Lightning XLT and F-150 XLT

with ICE at Tamb of -7 °C and 25 °C.

The ROI for the Ford F-150 Lightning XLT based on distance, considering the

maximum, average, and minimum gas prices of the previous year in Edmonton, for

city driving cycles at Tamb of -7 °C and 25 °C are shown in Figure 4.43
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Table 4.26: The energy costs of the F-150 Lightning XLT and F-150 XLT at Tamb of
-7 °C and 25 °C

Tamb (°C)
Cost Based on

Min Gas
Price (¢/km)

Cost Based on
Ave Gas Price

(¢/km)

Cost Based on
Max Gas

Price (¢/km)

-7 17.2 19.5 27.6

25 14.8 16.7 28.7
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Figure 4.43: The ROI for the Ford F-150 Lightning XLT based on distance

According to Figure 4.43, it is evident that the ROI for the Ford F-150 Lightning

XLT is considerably less in Tamb of -7 °C with 91,000 km compared to Tamb of 25 °C

with, 107,000 km for urban, which shows almost an 18% difference. Therefore, the

F-150 Lightning XLT is more cost-efficient in Tamb of -7 °C due to the higher energy

consumption of the Ford F-150 XLT at lower Tamb.

The ROI Based on Application of the University of Alberta Fleet Vehicles

The annual average mileage of the UAlberta fleet vehicles based on vehicle type is

revealed in Figure 4.44.

The ROI for the Ford Escape PHEV and Ford F-150 Lightning based on the

UAlberta fleet application mileage was investigated. This part of the study is based
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Figure 4.44: The University of Alberta fleet annual average mileage by vehicle type

on the University of Alberta fleet’s vehicle mileage data for 2019 - 2020 (Before the

Covid-19 pandemic).

The annual average mileage for 1/2 tonne trucks of the UAlberta fleet vehicles

based on application is shown in Figure 4.45.
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Figure 4.45: The annual average mileage of 1/2 tonne trucks of the University of
Alberta fleet by application
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Based on the data presented in Figure 4.45, the ROI for the Ford F-150 Lightning

for different applications and gas prices at the Tamb of 25 °C and -7 °C are shown in

Figures 4.46 and 4.47 respectively.
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Figure 4.46: The ROI for Ford F-150 Lightning by year, based on the annual average
mileage of the UAlberta fleet applications at Tamb 25 °C
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Figure 4.47: The ROI for Ford F-150 Lightning by year, based on the annual average
mileage of the University of Alberta fleet applications at Tamb -7 °C

Based on the analysis, the ROI for the Ford F-150 Lightning was reasonable for
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applications such as PHYS ED and RECREATION, which involved a higher annual

mileage than other applications. However, the ROI was less beneficial for applications

with lower annual mileage.

The annual average mileage for SUVs of the UAlberta fleet vehicles based on

application is shown in Figure 4.48.
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Figure 4.48: The annual average mileage of the SUVs of the University of Alberta
fleet by application

The ROI for Ford Escape PHEV by year, based on the annual average mileage of

the UAlberta vpool (13,100 km) and protective services vehicles (11,100 km) at Tamb

of -4 °C, 0 °C, 4° C, and 14 °C (± 1 °C for all) for EV Now, Auto EV, and EV Later

modes are shown in Figures 4.49 and 4.50 respectively.
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(a) Auto EV mode
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(b) EV Now mode
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(c) EV Later mode

Figure 4.49: The ROI for the Ford Escape PHEV by year, based on the annual
average mileage of the University of Alberta vpool vehicles
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(a) Auto EV mode
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(b) EV Now mode
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Figure 4.50: The ROI of the Ford Escape PHEV by year, based on the annual average
mileage of the University of Alberta protective services (UAPS) vehicles
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The ROI Based on Natural Resources Canada (NRCan) Annual Average
Mileage

Based on NRCan, the annual average mileage for passenger vehicles in Canada is

approximately 20,000 kilometers per year [69]. Based on this, the ROI for the Ford

F-150 Lightning at Tamb of -7 °C and 25 °C for city routes was calculated (Figure

4.51).
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Figure 4.51: The ROI of the Ford F-150 Lightning for city routes at Tamb -7 °C and
25 °C based on NRCan, 20,000 km annual mileage

The ROI of Ford Escape PHEV by year, based on 20,000 km annual mileage at

the Tamb of -4 °C, 0 °C, 4 °C, and 14 °C (± 1 °C for all) for Auto EV, EV Now, and

EV Later modes are shown in Figure 4.52.

According to the results, The ROI for EVs and HEVs is influenced by factors

such as the cost difference between conventional and electric/hybrid vehicles, annual

average mileage, fuel/electricity prices, maintenance costs, and Tamb. These factors

can vary based on location, usage, and other individual characteristics and should be

considered when evaluating the ROI for a specific vehicle and use case. It should be

noted that these calculations are based on the assumption of previous gas prices and

do not consider the potential impact of future gas price fluctuations. Additionally,

the measures only assume the financial aspect of the decision and do not account for

other factors, such as environmental impact and operational requirements.
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(a) EV Later mode
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(b) Auto EV mode
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Figure 4.52: The ROI for the Ford Escape PHEV based on NRCan, 20,000 km annual
mileage
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Chapter 5

The Effect of Start-Stop
Technology on Energy
Consumption and Costs

This chapter investigates the effect of using start-stop technology for the University

fleet vehicles. To this end, a test procedure is designed, and vehicle fuel saving is

determined based on vehicle testing and driving cycles for each application area of

university vehicles.

5.1 Introduction

Start-stop technology is part of the automotive industry’s efforts to improve the fuel

economy of vehicles and reduce emissions in response to environmental concerns and

stricter regulations. One example of innovative engineering solutions is the start-

stop technology, also called “idle stop-start” or “auto stop-start”. This technology is

designed to save fuel and decrease emissions by automatically turning off the engine

when the vehicle stops, such as at traffic lights or in heavy traffic. The engine will

only restart when the driver releases the brake pedal, engages the clutch (in manual

transmission vehicles), or when the vehicle wants to accelerate. This technology

ensures that vehicles are more environmentally friendly without compromising their

performance or the driver’s comfort.

One of the advantages of start-stop technology is that it can be easily integrated
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into traditional powertrain systems without requiring significant changes or modifi-

cations to the engine or transmission. This means it can be implemented relatively

quickly and at a lower cost than other technologies, such as hybrid or electric power-

trains.

However, it’s important to note that the effectiveness of start-stop technology

depends on various factors such as driving conditions, vehicle size, and the specific

implementation of the technology. In some cases, fuel consumption and emissions

savings may be less significant, especially if the vehicle is frequently in motion and

has low idle time. Additionally, the frequent stopping and starting of the engine can

lead to increased wear on the starter and battery, which may require more frequent

maintenance or replacement.

5.1.1 How Start-Stop Technology Works

Figure 5.1 shows the schematic of the Start-stop technology. The system uses sensors

such as brake pedal position, clutch position, engine coolant temperature, and battery

voltage to determine when the vehicle is stationary and when the engine can be safely

turned off. When the vehicle comes to a complete stop, and certain conditions are

met, like engine coolant temperature is within a specific range and the battery has

sufficient charge, the system automatically shuts off the engine. While the engine is

off, the system monitors various parameters to ensure that restarting the engine will

not harm the components and that the vehicle can move safely.

The system uses sensors such as brake pedal position, clutch position, engine tem-

perature, and battery voltage to determine when the vehicle is stationary and the

engine can be safely turned off. When the vehicle comes to a complete stop, and cer-

tain conditions are met, like engine coolant temperature is within a specific range and

the battery has sufficient charge, the system automatically shuts off the engine. While

the engine is off, the system monitors various parameters to ensure that restarting

the engine will not harm the components and that the vehicle can move safely.
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Figure 5.1: The schematic of the Start-stop technology data flow along with ECU

As soon as the driver releases the brake pedal or, engages the clutch in manual

transmission, or intends to accelerate, the system quickly restarts the engine, allowing

the vehicle to resume motion without delay. The technology is designed to operate

smoothly and gradually to avoid the driver discomfort. The vehicle’s electrical system

typically powers the cabin accessories, AC, infotainment, and lights while the engine

is off, ensuring driver comfort and safety; thus, highly durable 12V Absorbed Glass

Mat (AGM) batteries are a distinctive battery variant that is frequently utilized in

start-stop applications due to their extended cycle life in comparison to Enhanced

Flooded Battery (EFB). Research has demonstrated that AGM batteries can endure

twice as long as EFB batteries when employed in start-stop applications [70].

5.1.2 Advantages of Start-Stop Technology

The main advantages of start-stop technology are:

i) Fuel Saving: Reducing idling time leads to better fuel economy, especially in city

driving conditions where stop-and-go traffic is expected.
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ii) Emissions Reduction: Less idling means less emissions of pollutants like CO2

and nitrogen oxides (NOx), contributing to cleaner air and reduced greenhouse gas

emissions.

iii) Noise Reduction: With engines automatically turning off during stops, the

auditory experience for drivers and passengers improves. Quieter surroundings, when

the engine is turned off, contribute to enhanced comfort during idling periods.

5.1.3 Drawbacks of Start-Stop Technology

Here are the main drawbacks of using start-stop technology in vehicles:

i) The increased number of engine restarts places greater demands on the vehicle’s

battery. Manufacturers address this concern by employing advanced batteries capable

of handling the additional load.

ii) Some drivers may find the engine restarting and stopping somewhat noticeable

or annoying, especially in stop-and-go traffic.

iii) Due to the added components, vehicles equipped with start-stop technology

will have a slightly higher capital cost.

Looking ahead, the evolution of start-stop technology is poised to be an integral

part of the broader shift toward electrification and hybridization. As hybrid and

electric vehicles become more prevalent, start-stop technology will serve as a bridge,

easing the transition for drivers accustomed to ICE.

5.1.4 Test Procedure

Three university vehicles were tested to evaluate the effectiveness of start-stop tech-

nology on fuel consumption and emissions. A Ford Escape S, Chevrolet Silverado

1500, and Ford Econoline 450 were chosen for the test. The specifications of the Ford

Escape S were shown previously in Chapter 4, Table 4.14. The Chevrolet Silver-

ado 1500 and the Ford Econoline 450 specifications are shown in Tables 5.1 and 5.2,

respectively.
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Table 5.1: Specifications of the Chevrolet Silverado 1500 used in this study

Vehicle Specification

Model Year 2016

Vehicle Body Style Truck 1/2T

Fuel Type Gasoline

Engine Type 4.3 L

Engine Rated Power 213 kW @ 5,300 RPM

Engine Torque 414 N.m @ 3,900 RPM

Compressor Ratio 11.0:1

Induction System Atmospheric

Transmission Type 6-speed Automatic

Vehicle Base Curb Mass 3,402 kg

Fuel Consumption Rate 12.4 L/100 km city/hwy combined

Table 5.2: Specifications of the Ford Econoline 450 used in this study

Vehicle Specification

Model Year 2018

Vehicle Body Style Bus – 28 Passenger

Fuel Type Gasoline

Engine Type 6.8 L

Engine Rated Power 227 kW @ 6,000 RPM

Engine Torque 569 N.m @ 3,250 RPM

Compressor Ratio 9.2:1

Induction System Atmospheric

Transmission Type 6-Speed Automatic

Vehicle Base Curb Mass 6,577 kg

Fuel Consumption Rate 7.8 L/100 km city/hwy combined

Five routes were selected for the study in this chapter. These routes were selected

141



according to four vehicle applications used for the UAlberta fleet and also the test

route used for fuel tests of this thesis in Chapter 4.

The fuel test route was the same 20.0 km city route used for the fuel tests in

Chapter 4 (Figure 4.4). The reason for choosing this route was that it covered a

wide range of driving conditions, similar to most of UAlberta’s fleet vehicles. The

test route map for UAPS was not provided as GPS data was not collected from this

application’s vehicles due to security concerns.

The University of Alberta’s trade vehicles mainly run near the university campus.

The test route used for this application was about 6.3 km (Figure 5.2).

Figure 5.2: The GPS route map for the tested utility and trade vehicles. Data in the
figure is from Aug. 17, 2021 to Jan. 20, 2022 data collection [71]

The shuttle minibus traveled from the University of Alberta’s North Campus to

Campus Saint-Jean (CSJ). The test route from the University of Alberta’s North

campus to the CSJ was 6.1 km, and the distance from CSJ to the North Campus was

6.3 km, as shown in Figure 5.3.

The test route used for the casual rental vehicle application, shown in Figure 5.4,

was about 144.4 km. The casual rentals category mostly ran on highways.
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Figure 5.3: The GPS route map for the tested shuttle minibus. Data in the figure is
from vehicle testing from Apr. 4, 2022 to Apr. 21, 2022 [71]

Figure 5.4: The GPS route map for the tested casual rental vehicles. Data in the
figure is from May. 12, 2022 to Sep. 14, 2022 [71]

The cycle time for the fuel test route (Figure 5.5) was 2,257 seconds. The idle

drive state time accounted for 21.7% of the total time. Thus, the duration of idling
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for the test loop was 490 seconds. The Ford Escape S with an engine speed of 750

RPM during idling (fully warmed up) was selected for this test route. The vehicle

consumed 0.302 mL/sec during idling, resulting in a total fuel consumption of 147.980

mL during the test.
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Figure 5.5: The driving cycle for the fuel test route (Figure 4.4)

Figures 5.6, 5.7, 5.8, and 5.9 show the driver test cycles for each of the university

vehicle applications. These drive cycles are based on an extensive study done by Liu

Yang (See MSc thesis [71]). These cycles are presented in this chapter to extract the

percentage of idling time in each university fleet application. Thus, the potential for

fuel saving by removing idling via start-stop technology can be determined.

The cycle time for utility and trade vehicles Figure 5.6 was 1,761 seconds. The

idle drive state time accounted for 33.7% of the total time. Thus, the duration of

idling for the Trade vehicles was 594.6 seconds. The Chevrolet Silverado 1500 had

a larger engine compared to the Ford Escape S. With an idling engine speed of 550

RPM and an idling fuel consumption rate of 0.369 mL/sec, the total fuel consumed

during idling was approximately 219.407 mL during the test.

The cycle time for the shuttle minibus (Figure 5.7) was 980 seconds. The idle

driving state time accounted for 24.7% of the total time, which means 242 seconds

for this case. The Shuttle minibus drive cycle test is based on the Ford Econoline

450, which had the largest engine compared to other tested vehicles. With an engine
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Figure 5.6: The driving cycle for the UAlberta trade vehicles [71]

idling speed of 730 RPM and an idling fuel consumption rate of 0.652 mL/sec, the

total fuel consumed during the idling of the test was approximately 157.784 mL.

Figure 5.7: The driving cycle for the UAlberta shuttle minibuses [71]

The cycle time for casual rental vehicles in Figure 5.8 was 9,136 seconds. The idle

drive state time accounted for 17.6% of the total time. Thus, the idling duration for

the causal rental vehicles was 1,607 seconds. The Chevrolet Silverado 1500 was used

for the casual rental drive cycle test. With an idling fuel consumption rate of 0.369

mL/sec, the total fuel consumed during idling was approximately 592.983 mL.

The cycle time for UAPS vehicles (Figure 5.9) was 1,221 seconds. The idle drive

state time accounted for 41.1% of the total time. Thus, the duration of idling for the

Trade vehicles was 502 seconds. The Ford Escape S was used for the UAPS drive cycle

test. With an idling fuel consumption rate of 0.302 mL/sec, the total fuel consumed

during idling was approximately 151.604 mL during the test.
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Figure 5.8: The driving cycle for the UAlberta casual rental vehicles [71]

Figure 5.9: The driving cycle for the UAlberta UAPS [71]

The cycle time and idle driving state time for each application of UAlberta fleet

vehicles are summarized in Table 5.3.

Table 5.3: The cycle time and idle driving state time based on UAlberta fleet vehicles
drive cycles [71] for different applications

Application Cycle (km)
Cycle

Duration
(Sec)

Idling
Duration
(Sec)

Idle Time
Driving

State (%)

Fuel Test 20 2,257 490 21.7

Utility &
Trade

6.3 1,761 594.6 33.7

Shuttle
Minibus

6.1 - 6.3 980 242 24.7

Casual Rental 144.4 9,136 1,607 17.6

UAPS 3.5 1,221 502 41.1
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Based on the data provided in Table 5.3, it can be inferred that UAPS vehicles

exhibited the longest idling state time, making up almost 41.1% of the total cycle time.

In contrast, casual rental vehicles had the shortest idling state time, constituting only

17.7% of the cycle time.

The effect of start-stop technology on saving the cost of fuel during each second

of idling for the three tested vehicles is shown in Table 5.4. The gas prices of $1.267

to $1.900 per liter were used in this study based on Edmonton’s regular gas price in

2022.

Table 5.4: The rate of fuel consumption and costs for three sample fleet vehicles

Vehicle

Fuel Con-
sumption

Rate
(mL/s)

Min Gas
Price

(126.7¢/L)

Ave Gas
Price

(140.6¢/L)

Max Gas
Price

(190¢/L)

Ford Escape S 0.302 0.038 (¢/s) 0.042 (¢/s) 0.057 (¢/s)

Chevrolet
Silverado
1500

0.369 0.047 (¢/s) 0.052 (¢/s) 0.071 (¢/s)

Ford
Econoline 450

0.652 0.083 (¢/s) 0.092 (¢/s) 0.124 (¢/s)

According to Table 5.4, the Ford Econoline 450 had the highest fuel consumption

during idling compared to the other two vehicles. This is due to its larger engine

size. Specifically, the Ford Econoline 450 consumed 0.652 mL/s, which is almost

twice the amount of fuel consumed by the Ford Escape S. By implementing the start-

stop technology in Ford Econoline 450 and considering the average gasoline prices in

Edmonton, during 10 minutes of idling, a savings of 55.2 ¢can be achieved.

The fuel efficiency and cost savings of UAlberta fleet vehicles were assessed across

five different applications using the Ford Escape S, Chevrolet Silverado 1500, and

Ford Econoline 450. Tables 5.5, 5.6, 5.7, 5.8, and 5.9 present the results for the

fuel test route, UAlberta shuttle minibus, utility & trade, casual rental, and UAPS
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applications respectively.

Table 5.5: Total fuel and cost saving for one drive cycle based on fuel test route
(Figure 4.4)

Vehicle
Fuel Saving

(mL)
Min Gas
Price

(126.7¢/L)

Ave Gas
Price

(140.6¢/L)

Max Gas
Price

(190¢/L)

Ford Escape S 147.980 18.75 ¢ 20.81 ¢ 28.12 ¢

Chevrolet
Silverado
1500

180.810 22.91 ¢ 25.42 ¢ 34.35 ¢

Ford
Econoline 450

319.480 40.48 ¢ 44.92 ¢ 60.70 ¢

Table 5.6: Total fuel and cost saving for one drive cycle based on shuttle minibus
application

Vehicle
Fuel Saving

(mL)
Min Gas
Price

(126.7¢/L)

Ave Gas
Price

(140.6¢/L)

Max Gas
Price

(190¢/L)

Ford Escape S 73.084 9.26 ¢ 10.28 ¢ 13.89 ¢

Chevrolet
Silverado
1500

89.298 11.31 ¢ 12.56 ¢ 16.97 ¢

Ford
Econoline 450

157.784 19.99 ¢ 22.18 ¢ 29.98 ¢

According to the test results, the Ford Econoline 450 had the greatest fuel cost

savings for all applications. Specifically, based on cycle length, this vehicle could

save 1,047.764 mL of gasoline for driving one drive cycle based on the casual rental

application, amounting to nearly 147 ¢based on Edmonton’s average gas price. Based

on idling time, the UAPS application had the highest fuel savings of 41.1% of the

cycle time, resulting in a gasoline saving of 327.304 mL (costing 46.02 ¢) for the Ford

Econoline 450 for driving a 3.5-km drive cycle.

The findings from this chapter can aid UAlberta’s fleet management in selecting the
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Table 5.7: Total fuel and cost saving for one drive cycle based on utility & trade
application

Vehicle
Fuel Saving

(mL)
Min Gas
Price

(126.7¢/L)

Ave Gas
Price

(140.6¢/L)

Max Gas
Price

(190¢/L)

Ford Escape S 179.569 22.75 ¢ 25.25 ¢ 34.19 ¢

Chevrolet
Silverado
1500

219.407 27.80 ¢ 30.85 ¢ 41.69 ¢

Ford
Econoline 450

387.679 49.12 ¢ 54.51 ¢ 73.66 ¢

Table 5.8: Total fuel and cost saving for one drive cycle based on casual rental appli-
cation

Vehicle
Fuel Saving

(mL)
Min Gas
Price

(126.7¢/L)

Ave Gas
Price

(140.6¢/L)

Max Gas
Price

(190¢/L)

Ford Escape S 485.314 61.49 ¢ 68.24 ¢ 92.21 ¢

Chevrolet
Silverado
1500

592.983 75.13 ¢ 83.37 ¢ 112.67 ¢

Ford
Econoline 450

1,047.764 132.75 ¢ 147.32 ¢ 199.08 ¢

Table 5.9: Total fuel and cost saving for one drive cycle based on UAPS application

Vehicle
Fuel Saving

(mL)
Min Gas
Price

(126.7¢/L)

Ave Gas
Price

(140.6¢/L)

Max Gas
Price

(190¢/L)

Ford Escape S 151.604 19.21 ¢ 21.32 ¢ 28.80 ¢

Chevrolet
Silverado
1500

185.238 23.47 ¢ 26.04 ¢ 35.20 ¢

Ford
Econoline 450

327.304 41.47 ¢ 46.02 ¢ 62.19 ¢
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most suitable vehicles for various purposes, considering the engine size of the vehicles

and the effects of start-stop technology. Such an approach will undoubtedly reduce

fuel consumption by the university fleet vehicles, minimize expenses, and decrease

CO2 emissions.
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Chapter 6

Conclusions and Future Works

The transportation sector is a major contributor to greenhouse gas (GHG) emissions,

and vehicles are a significant source of GHG emissions. Carbon dioxide (CO2) is the

most prominent GHG produced by vehicles. Thus, reducing fuel/energy consumption

of fleet vehicles is important to reduce GHG emissions by the University of Alberta

(UAlberta) fleet vehicles. This thesis focused on (i) creating an online platform for

collecting data from UAlberta fleet vehicles to monitor their operating conditions,

(ii) analysis of the UAlberta fleet vehicles, (iii) developing machine learning models

to estimate fuel consumption based on real-time On-Board Diagnostic (OBD) data,

(iv) studying the effect of cold climate on electrified and conventional vehicles, and

(v) analyzing the effect of start-stop technology on energy consumption and CO2

emissions of the UAlberta fleet vehicles. The findings from this thesis can help reduce

energy consumption and operational costs of the university vehicles and help the fleet

manager make informed decisions by identifying areas for improvement.

6.1 Main Contribution from this Thesis

The main contributions of this thesis are:

• Experimental setup design and implementation: A combined hardware

and software platform was created to collect real-time OBD data from individ-

ual university vehicles. The data was transmitted through a cellular network,
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stored, and organized in a data server accessible through the university network.

The platform was tested for seven simultaneous vehicle data collections. The

Freematics data loggers were used to collect data from UAlberta’s fleet vehicles

and store them in a database. The platform was used for real-time performance

monitoring of the UAlberta fleet vehicles. The collected data includes infor-

mation such as vehicle speed, engine speed, fuel level, and many other relevant

Parameter Identifications (PIDs) of the vehicle provided via the OBD Controller

Area Network (CAN) bus.

• Fuel consumption modeling: Two machine learning algorithms, random

forest (RF) and artificial neural network (ANN), were designed for estimating

instantaneous fuel consumption using OBD data. This will allow an under-

standing of how and where the highest fuel consumption and CO2 emissions

occur for each vehicle’s operation. It also allows to identify vehicles with high

fuel consumption compared to benchmark data. The resulting models can also

be used to create fuel consumption and GHG CO2 reports for the UAlberta fleet

vehicles to monitor the university’s progress towards increasing sustainability

in the university operation.

• Cold climate effects: The effect of ambient temperature (Tamb) on energy

consumption of internal combustion engine (ICE), hybrid electric, and fully

electric operation of a vehicle was studied via extensive on-road testing including

213 loops and 4300 km. This allowed the understanding of the rate of energy

increase as a function of Tamb reduction during winter conditions. This paints a

picture of how electrified powertrain technology performs in a cold climate and

has a realistic estimate of winter energy consumption and calculation of the

payback period for the university vehicles by investing on electrified vehicles.

• Start-stop technology effects: This thesis investigated the impact of start-

stop technology on energy savings and costs using three vehicles for five driving
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cycles based on the UAlberta fleet vehicles’ applications. The start-stop technol-

ogy in the UAlberta fleet is advantageous for applications that involve a higher

range of idling, such as UAPS or Utility and Trade applications. However, for

applications that are mostly driven on highways with less idling time, such as

Casual Rental applications, it is not required to consider vehicles equipped with

start-stop technology.

6.2 Conclusions

The main findings from this thesis include:

• The designed data collection platform, utilizing available OBD provided by ve-

hicles, presents an interactive platform that allows users to track the location

of vehicles and access relevant information for (i) energy use pattern recog-

nition and (ii) driving cycle extraction and optimization using collected data.

Furthermore, the platform can display specific vehicle data (e.g., vehicle speed,

location, engine speed, etc) to concentrate on specific data or vehicles of interest.

This provides a complete overview of real-time data collected from the vehicles.

By analyzing this information, the University of Alberta’s fleet management

can develop targeted vehicle usage and maintenance strategies to reduce energy

consumption, CO2 emissions, and operating costs.

• The data logger records 2 MB of data per hour per vehicle. At the University

of Alberta, with almost 180 vehicles operated for 4 hours each day, the total

data generated daily is approximately 1.5 GB. The available PIDs for a vehicle

depend on factors like make, model, year of manufacture, and OBD scanner

type. The Freematics data logger was able to collect up to 21 PIDs at 1 Hz

sampling frequency. Adding more PIDs lowers the sample frequency. The

maximum number of 54 PIDs was collected from the UAlberta fleet vehicles.
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• Using ANN and RF algorithms was shown to be accurate in estimating fuel

consumption for various vehicles. The ANN algorithm has an accuracy of 97%

for the Ford F-350 and 96% for the Ford Escape PHEV, while the RF algorithm

has an accuracy of 100% for the Ford F-350 and 99% for the Ford Escape PHEV.

These algorithms are ideal for calculating fuel usage for fleet vehicles. By uti-

lizing these estimated fuel consumption along with machine learning methods,

fuel consumption patterns can be identified, and areas for improvement can be

specified, ultimately leading to energy-saving strategies.

• In order to have an accurate fuel consumption model, it was essential to cover

a wide range of engine speeds and loads in the training data. The Ford Escape

PHEV was equipped with a gasoline engine and an electric motor. It operates

on electric power in some conditions, limiting the range of data points and

engine operating conditions. Meanwhile, the Ford F-350, powered exclusively

by a gasoline engine, has a broader engine operating range, covering a more

comprehensive range of driving conditions than the Ford Escape PHEV.

• During the testing of the Ford Escape PHEV’s EV Later mode, the engine load

was found to be in the range of 40% to 80% at -23 °C and 60% to 80% at

Tamb 28 °C. This indicates that at higher Tamb, the engine load range became

narrower, reaching almost 20%. However, there were no significant changes in

the engine load for the EV Charge mode across the minimum and maximum

tested Tamb.

• The Ford Escape PHEV had a 14.4 kWh hybrid battery. A full charge of the

hybrid battery with a current 3.2 kW power from zero% state of charge (SOC)

to 100% was 12.02 kWh, which was the usable capacity of the battery equivalent

to 84% of the total capacity of the hybrid battery. This information needs to be

taken into consideration when calculating the vehicle’s all-electric range (AER).

154



• In Tamb below 0 °C, when the electric motor powers the vehicle, the positive

temperature coefficient (PTC) electric heater uses energy to warm up the cabin,

which increases energy consumption using the battery power. On the other

hand, warming up the cabin for the EV Charge mode does not significantly

impact energy consumption because waste heat from the engine coolant is used

to warm up the cabin, reducing the need for additional energy for cabin heating.

• When the ICE is turned on, the coolant and the exhaust three-way catalyst

(TWC) temperatures begin to rise. The TWC temperature increased faster

than the engine coolant temperature, which is expected since the coolant has

a larger thermal mass. For the cold start tests, in which the ICE was not

constantly active, the vehicle didn’t fully warm up until the end of the test.

The Tamb impacted the warm-up duration. The engine coolant took twice as

long to warm up at Tamb below 0 °C (around 800 compared to 400 seconds

see in Figure 4.10b). On the other hand, at very low Tamb (e.g., -20 °C), the

cooling down process of a warmed-up vehicle was relatively long, i.e., more than

6 hours.

• The performance of vehicles with different levels of electrification was affected

by Tamb. A Ford Escape PHEV was tested in different weather conditions in the

Tamb rating from -24 °C to 32 °C. During cold start tests, energy consumption

was higher than during warm start tests. For instance, in EV Now mode at

Tamb of -13 °C for cold starts, energy consumption was 664 Wh/km while it was

460 Wh/km at Tamb -22 °C for warm starts. EV Charge mode had the highest

energy consumption in both scenarios, with 889 Wh/km in Tamb -6 °C for cold

starts and 1,017 Wh/km in Tamb -24 °C for warm starts.

• During cold start tests, EV Now mode consumed over five times more energy

when Tamb decreased from 29 °C to -13 °C. Auto EV mode consumed about

479% more energy when the Tamb decreased from 25 °C to -18 °C. The energy
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consumption of the EV Later mode almost doubled by decreasing the Tamb from

26 °C to -13 °C. The energy consumption of the EV Charge mode remained

almost constant at around 900 Wh/km.

• During warm start tests, changing Tamb from 29 °C to -24 °C increased Auto EV

mode’s energy consumption by 4.5 times. EV Now mode’s energy consumption

increased threefold by decreasing Tamb from 28 °C to -22 °C. EV Later mode’s

energy consumption doubled by reducing Tamb from 28 °C to -23 °C. No signifi-

cant changes were observed for EV Charge mode. A 107% increase was observed

by decreasing Tamb from 32 °C to -24 °C.

• The average fuel conversion efficiency for the EV Later mode was 39.9% when

the Tamb was -23 °C, but it increased to 42.4% at 28 °C. This represented an

increase of 5.8% in the average fuel conversion efficiency. Similarly, for the

EV Charge mode, the average fuel conversion efficiency at Tamb of -24 °C was

40.4%, while it increased to 41.8% at 32 °C. This indicated a 3.5% increase in

the average fuel conversion efficiency.

• Increasing the Tamb increased fuel conversion efficiency for both EV Later and

EV Charge modes. The range of 35% - 40% fuel conversion efficiency at Tamb

of -23 °C was the most extended duration for the EV later mode of the Ford

Escape PHEV. At 28 °C, the highest duration was observed in the range of

40% - 45%. For the EV Charge mode, the peak fuel conversion efficiency was

between 35% - 40% at Tamb -24 °C and between 40% - 45% at 32 °C.

• Using the ICE engine results in higher energy costs compared to the electric

motor due to higher gasoline costs. The cost of the EV charge mode with the

most extended active ICE duration was the highest at Tamb -24 °C, costing 15.9

¢/km. EV Later mode with a combination of ICE and the electric motor was

the second rank, with the energy cost nearly doubled from 6.1 ¢/km to 11.3
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¢/km as the Tamb dropped from 28 °C to -23 °C. The EV Now mode was the

most efficient at Tamb 29 °C, costing only 1.3 ¢/km. During severe cold weather,

the cost increased 3.5 times. The Auto EV mode had the highest increase in

energy cost, rising from 1.5 ¢/km to 9.4 ¢/km.

• Lowering the Tamb resulted in CO2 emissions increase for all powertrain modes

based on Alberta CO2 intensity value that was used from [25]. The highest

recorded emissions occurred during Auto EV mode at Tamb -24 °C (231 g/km),

while the lowest occurred during EV Now mode at Tamb 29 °C (58 g/km).

Switching to EV Now mode with Tamb at -22 °C increased emissions by almost

3.5 times. Similarly, in EV Later mode, reducing Tamb from 28 °C to -23 °C

almost doubled CO2 emissions from 101 g/km to 188 g/km. However, the

impact of Tamb on CO2 emissions was minimal in EV Charge mode, with only a

12% increase as it relies more on ICE to run the vehicle and charge the battery.

• PHEVs’ CO2 emissions depend on the CO2 intensity of the electricity generated.

Using clean energy sources, including solar, wind, hydroelectric, and nuclear

power, can significantly reduce the environmental impact of transportation. At

the time of this study, Manitoba had the highest proportion of clean energy

sources. The CO2 intensity of electricity in Manitoba was 1.2 gCO2/kWh.

Based on Manitoba’s CO2 intensity Value, the lowest CO2 emissions were during

the Auto EV and EV Now modes, regardless of Tamb, which was extremely cold

or warm. However, the highest CO2 emissions were observed when using the

EV Charge mode, followed by the EV Later mode.

• Energy consumption of Ford Escape S was significantly impacted by Tamb during

both cold and warm starts. For cold starts, energy consumption increased by

12% from Tamb 4 °C (792 Wh/km) to 0 °C (888 Wh/km) due to increased

rolling resistance and decreased engine efficiency at colder Tamb. For warm

starts, energy consumption increased by 15% from Tamb 14 °C (706 Wh/km) to
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-4 °C (814 Wh/km).

• Comparing the energy consumption of the Ford Escape S (i.e., conventional

ICE) with PHEV, the energy consumption of the model S was similar to that

of the EV Charge mode of the PHEV at lower Tamb. Still, at higher Tamb, the

PHEV consumed more energy than the model S. While the other powertrain

modes of the PHEV consumed less energy than the model S, especially at higher

Tamb, due to the PHEV’s electric motor high efficiency.

• Comparing the energy cost of the Ford Escape S with the PHEV, the energy

costs for the Ford Escape S were between 15.1 ¢/km to 16.9 ¢/km. In com-

parison, it was 1.6 ¢/km to 3.6 ¢/km for the EV Now mode, and 2 ¢/km to

5.5 ¢/km for the Auto EV mode, and 8.4 ¢/km to 10.7 ¢/km for the EV Later

mode of the Ford Escape PHEV.

• Comparing the CO2 emission of the Ford Escape S with PHEV, the Tamb had

a significant impact on CO2 emissions in the Auto EV and EV Now modes of

the PHEV, but a lesser effect on the EV Later and EV Charge modes. While

the model S changed slightly with the change of Tamb.

• To calculate the return on investment (ROI) of sustainable fleet operations, it

is essential to consider various factors such as conventional and PHEV vehicle

costs, yearly mileage, fuel/electricity prices, and Tamb of vehicle operation. This

analysis will assist fleet managers in determining potential savings and cost re-

ductions that can be achieved by implementing energy-efficient strategies. For

the case of considering the Ford F-150 Lightning, it was found that the ROI

period would be reasonable (4 to 6 years) for high annual mileage applications

such as Physical Education and Recreation. This is in contrast to other UAl-

berta fleet vehicle applications, such as the Information Service and Technology

(IST) application, which has a much longer duration of 41 to 66 years (as shown
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in Figure 4.46).

• Assigning vehicles for the application based on engine capacity and start-stop

tech can improve fuel economy, increase saving costs for fuel, and reduce fleet

CO2 emissions. The effect of start-stop technology on fuel and cost savings was

investigated. To this end, three university vehicles, including the Ford Escape S,

Chevrolet Silverado 1500, and Ford Econoline 450, were used from the UAlberta

fleet vehicles. Four driving routes from the UAlberta fleet vehicle applications

were selected, including shuttle minibus, utility & trade, casual rental, UAlberta

protection service (UAPS), and the test route used for fuel test. By use of the

start-stop system, the Ford Escape S with an idling consumption rate of 0.302

mL/sec, the Chevrolet Silverado 1500 with a rate of 0.369 mL/sec, and the Ford

Econoline 450 with a rate of 0.652 mL/sec saved 0.042 ¢/sec, 0.052 ¢/sec, 0.092

¢/sec respectively, based on average gas price in Edmonton in 2022.

• The fuel test route took 2,257 seconds, with 490 seconds spent idling (21.7%).

The utility and trade vehicles had a cycle time of 1,761 seconds, with 594.6

seconds of idling (33.7%). The shuttle minibus had a cycle time of 980 seconds,

with 242 seconds spent in an idle driving state (24.7%). The cycle time for

casual rental vehicles was 9,136 seconds, with 1,607 seconds of idling (17.6%).

The UAPS vehicles had a cycle time of 1,221 seconds, with 502 seconds of idling

(41.1%).

• The Ford Econoline 450 had the highest fuel cost savings for casual rentals

based on distance and idling time. For a 144.4-km route with a duration of

9,136 seconds, the vehicle saved 1,047.764 mL of gasoline, which cost nearly

147¢based on Edmonton’s average gas price in 2022. The UAPS application

had the highest fuel savings of 41.1% of the cycle time, resulting in a gasoline

saving of 327.304 mL (costing 46.02 ¢for 3.5 km) for the Ford Econoline 450.
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6.3 Future Works

There are several ways that this study can be extended for the development of an

effective fleet management system for the University of Alberta’s fleet vehicles:

• UAlbetra fleet renewal plan for different GHG reduction scenarios can be created

by considering findings from this thesis, including ROI, Start-stop saving effect,

and vehicle energy consumption based on Tamb data.

• The RF and ANN models can be added to the Freematics HUB Graphic User

Interface (GUI). These models can be used to monitor the real-time fuel con-

sumption of the vehicles in the UAlberta fleet. By analyzing the collected data

and fuel consumption patterns, the operation of the university fleet vehicles can

be optimized. This optimization can lead to more efficient and effective use of

resources, resulting in the improved overall performance of the UAlberta fleet.

• UAlberta’s fleet assignment for daily tasks can be optimized by considering

vehicle powertrain technology and findings from this thesis.

• Monitoring driver behavior, such as speeding, harsh braking, and rapid acceler-

ation, can help fleet managers identify areas for improvement in driver training

and behavior. This can reduce energy consumption, improve safety, and lower

maintenance costs.

• This thesis did not consider/measure slip in winter driving and also the differ-

ence between winter vs summer driving. Further studies can be conducted to

characterize these effects on vehicle energy consumption as a function of vehicle

powertrain (e.g., Hybrid Electric Vehicle (HEV), Electric Vehicle (EV)) and

drive train (e.g., All-Wheel Drive (AWD) vs Front-Wheel Drive (FWD)) for

winter versus summer driving.

160



Bibliography

[1] H. Abediasl, A. Ansari, V. Hosseini, C. R. Koch, and M. Shahbakhti, “Real-time
fuel consumption estimation using machine learning and on-board diagnostics
data,” Proceedings of the Institution of Mechanical Engineers, Part D: J. of Au-
tomobile Engineering, vol. 70, pp. 1–15, 2023. doi: 10.1177/09544070231185609.

[2] A. Ansari, H. Abediasl, and M. Shahbakhti, “Ambient temperature effects on
energy consumption and CO2 emissions of a plug-in hybrid electric vehicle,” To
be submitted to Energies Journal, pp. 1–23, 2024.

[3] A. Ansari, H. Abediasl, P. R. Patel, V. Hosseini, C. R. Koch, and M. Shah-
bakhti, “Estimating instantaneous fuel consumption of vehicles by using ma-
chine learning and real-time on-board diagnostics (OBD) data,” Canadian So-
ciety of Mechanical Engineers (CSME) 2022 International Congress, pp. 1–6,
Jun. 5-8, 2022, Edmonton, AB, Canada.

[4] Y. Liu, A. Ansari, and M. Shahbakhti, “Identification of the driving cycle for
university fleet vehicles,” Canadian Society of Mechanical Engineers (CSME)
2022 International Congress, pp. 1–6, Jun. 5-8, 2022, Edmonton, AB, Canada.

[5] Y. Liu, H. Abediasl, A. Ansari, and M. Shahbakhti, “Characterizing driving be-
havior and link to fuel consumption for university campus shuttle minibuses,”
Canadian Society of Mechanical Engineers (CSME) 2023 International Congress,
pp. 1–6, May 28-31, 2023, Sherbrooke, QC, Canada.

[6] A. Ansari, H. Abediasl, and M. Shahbakhti, “Effect of cold climate on energy
consumption of a plug-in hybrid electric vehicle,” Canadian Society of Me-
chanical Engineers (CSME) 2022 International Congress, p. 1, Jun. 5-8, 2022,
Edmonton, AB, Canada.

[7] U.S. Energy Information Administration (EIA). “Annual energy outlook.” (2022),
[Online]. Available: https://www.eia.gov/outlooks/aeo/ (visited on 10/15/2022).

[8] M. Muratori, M. Alexander, D. Arent, M. Bazilian, P. Cazzola, E. M. Dede,
J. Farrell, C. Gearhart, D. Greene, and A. Jenn, “The rise of electric vehi-
cles—2020 status and future expectations,” J. of Progress in Energy, vol. 3,
no. 2, pp. 1–35, 2021.
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Appendix B: Data Collection and
Fuel Measurement Equipment
Specifications

B.1 Test Tools Catalogue
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Freematics ONE+ Model B integrates ESP32 MCU, 4G LTE-M cellular module and 10Hz GNSS module
and some useful peripherals into a OBD dongle that directly plugs into a car’s OBD port.

Features

Dual-core Arduino programmable SoC with built-in WiFi and Bluetooth
Access to all standard OBD-II PIDs, DTC, VIN from vehicle ECU
CAN bus data snif�ng
High update rate and accuracy GNSS geolocation
G-force measurement and motion detection
Car battery voltage reading
Massive data storage (microSD up to 32GB)
Real-time data transmission over WiFi and cellular network
Con�guring and monitoring from mobile device app via BLE

Hardware Facts

Speci�cations

Freematics ONE+ Model B Home / Products / Freematics ONE+ Model B

Home Products Blog Store Forum Hub About

B.1.1 Freematics ONE+ Model B Data Logger
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Espressif ESP32 with 4MB or 16MB Flash, 8MB PSRAM, 32K RTC
Built-in 802.11 b/g/n Wi-Fi and dual mode Bluetooth (classic and BLE)
Integrated ICM-42627 motion sensor
Integrated u-blox M10 GNSS module and antenna
Integrated SIM7070G global LTE-M cellular module
Integrated buzzer
Enclosure dimensions: 60x48x20mm

Physical Interfaces

OBD-II male connector
microUSB port
microSD card slot
SIM card slot
GPIO socket (Molex)

OBD-II Compatibility

Freematics ONE+ plugs into the OBD port usually located under the steering column. To check if your
vehicle is OBD-II certi�ed, open your hood and �nd the sticker that looks like this:

Vehicles using following vehicle protocols are supported.

CAN 500Kbps/29bit
CAN 250Kbps/29bit
CAN 500Kbps/11bit
CAN 250Kbps/11bit
KWP2000 Fast
KWP2000 5Kbps

External I/O
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CANedge2 Docs

Specification

CAN-bus (x2)

• Physical

– Two physical CAN-bus interfaces

– Industry standard DB9 (D-sub9) connectors

• Transceiver

– Compliant with CAN Protocol Version 2.0 Part A, B and ISO 11898-1

– Compliant with ISO CAN FD and Bosch CAN FD

–

–
Common mode input voltage: ±30V

–

Data rates up to 5Mbps

• Controller

–

128 standard CAN ID + 64 extended CAN ID filters (per interface)

Supports all CAN based protocols (J1939, CANopen, OBD2, NMEA 2000, . . . )

Logging

• Extractable industry grade micro SD-card (8-32GB)

• Standard FAT file system (can be read directly by a PC)

• Logging to industry standard .MF4 (ASAM MDF4) file format

• Log file splitting based on file size or time

B.1.2 CANedge2 Data Logger
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LED
The LEDs are located at the back of the device as illustrated below.

Overview

LED Short Name LED Color Main Function
PWR Green Power
CH1 Yellow Bus activity on connector 1

(CH1)
CH2 Yellow Bus activity on connector 2

(CH2)
MEM Red Memory card activity
WFI Blue WiFi connected

Connector
The CANedge uses two D-sub9 connectors for supply, 2 x CAN, 2 x LIN and a 5 V Supply Output.

Mechanical
• Dimensions: 50.2 x 83.4 x 24.5 mm (L x W x H)

• Weight: 100g

• Operating temperature: -25 degC to +70 degC

Electrical

• Device supply

– Channel 1 voltage supply range: +7.0V to +32V DC
– Consumption:

∗ CANedge2: 1W

• Secondary port output supply

Configurable output supply on connector 2 (CH2), fixed 5V up to 1.5A
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Deutsch ASDD006-09PC-HE Sensor Connector

Pin 1 Supply +

Pin 2  CAN High

Pin 3  CAN Low

Pin 4  TTL Pulse Output

Pin 5 Analog Output

Pin 6 Comms A

Pin 7 Comms B

Pin 8 CAN Select

Pin 9 Ground (GND)

FlowSonic® LF Dimensions (mm)

PIN 1PIN 2

PIN 3

PIN 4

PIN 5 PIN 6

PIN 7

PIN 8

PIN 9

FlowSonic® LF Pin Out Functions

FlowSonic® LF Low-Flow Sensor

The FlowSonic® LF ultrasonic sensor from SentronicsTM represents a breakthrough in fuel 
flow measurement technology for automotive engines of every type. The FlowSonic LF has 
been designed for the ultra low-volume fuel flow conditions found in today’s high-efficiency 
road car engines, making it an ideal tool for R&D as well as emissions testing to the new 
RDE and WLTP standards. Key features and advantages include:

�  Compact, lightweight, no moving parts �  Easily installed on test bench or vehicle

�  Highly accurate and repeatable �  Extremely robust and vibration-tolerant

�  -40°C to +120°C temperature range �  Internal processing and diagnostics

�  Fast measurement rate for dynamic flows �  CAN, TTL pulse, analog output formats

�  Class-leading ultrasonic turndown ratio �  Minimal operating and maintenance cost

Complete general assembly 
drawing and CAD data 
available for download at 
www.sentronics.com
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B.1.3 FlowSonic LF Low-Flow Sensor
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Sentronics Limited
Unit 40, Downton Business Centre
Downton, Salisbury
Wiltshire SP5 3HU England

Specifications subject to change without prior notice

Telephone +44 (0)1725 513703
Fax +44 (0)1725 513399
Email info@sentronics.com
Web www.sentronics.com

Document LF-DS-02
Issue 0318A
© 2018 Sentronics Limited
All rights reserved

Flow Measurement

Repeatability

Uncertainty*

Turndown ratio

Operating flow range

Measurement flow range

Measurement rate

Maximum operating pressure

Pressure drop at maximum flow

Fluid temperature range

Ambient temperature range

Temperature Measurement

Mechanical

Dry weight

Fluid capacity

Wetted materials

Fuel line connection

Deutsch sensor connector

Deutsch mating connector

Environmental

Storage temperature

External pressure rating

Environmental protection

FlowSonic® LF Specifications and Features  DP-010-02

+/- 0.15% of reading

+/- 0.5% of reading

500:1

+/- 0-4000 ml/min

8-4000 ml/min

2.2 kHz

20 barg (2000 kPag)

< 20 kPa (4000 ml/min for pump petrol @ 20°C)

-20°C to +120°C

-40°C to +120°C

2 x 1000 Ohm RTD (1/3 DIN standard)

330 g

15 ml

FPM, anodised aluminium alloy, stainless steel

-6AN fittings 9/16-inch UNF thread

ASDD006-09PC-HE

ASDD606-09SC-HE

-40°C to 85°C

300 kPa

IP69K (when mated to connector)

Electrical Supply

Voltage

Current

Voltage protection

CAN Communications

Design standard

Message format

Baud rate

CAN termination resistor

TTL Pulse Output

Voltage output range

Pulses per cc

Duty cycle

Output resistance

Analog Output

Voltage output range

Resolution

Output resistance

Load resistance

Configuration Interface

Fuel Compatibility

8V to 30V DC

< 70 mA @ +12V DC

Over-voltage 45V DC, reverse polarity -45V DC

ISO 11898-2 (high-speed applications)

2.0A (11-bit identifier)

1 Mbit/sec

No

0-5V

3000 (fully configurable)

50%

1.0 kOhm

0-10V DC

16-bit

47.0 Ohm

> 1.0 kOhm

3.3V serial interface

Petrol, diesel, bio-diesel, ethanol, methanol
please contact us about other fluids

* Calculated according to ISO/TR using root-sum square method yielding 95% confidence
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B.2 Test Tools Setup

In order to set up CANedge2, users must do so through the

(https://canlogger.csselectronics.com/simple-editor/) website. The configuration set-

tings should be defined using the website’s tools, and the resulting configuration

should be saved as a JavaScript Object Notation (JSON) file. This JSON file should

then be copied to the SD card of the 2x CAN Bus Data Logger device.
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Appendix C: Thesis Files

C.1 Program and Data File Summary

The following files were used in this thesis.

C.1.1 Chapter 1

Table C.1: Chapter 1 Figure files

File Name File Description

Chart1.jpg Figure 1.1

Light-duty vehicle sales.jpg Figure 1.2

Global average temperature.jpg Figure 1.3

Comparing energy costs per
mile.png

Figure 1.4

Average energy consumption of
top-selling vehicles.jpg

Figure 1.5

Start-stop system components.jpg Figure 1.6
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C.1.2 Chapter 2

Table C.2: Chapter 2 Figure files

File Name File Description

OBD Protocols.jpg Figure 2.1

Freematics CAN data logger One+
Model B.jpg

Figure 2.2(a)

Freematics connected.jpg Figure 2.2(b)

Sample rate of data collection.pdf Figure 2.3

Freematics CAN data logger
connected.jpg

Figure 2.4(a)

Scheme of data collection.jpg Figure 2.4(b)

Scheme of the data collection
platform.jpg

Figure 2.5

Scheme of back-end process.jpg Figure 2.6

Server IP filtering.jpg Figure 2.7

Back end of data collection
platform.jpg

Figure 2.8

Freematics Hub interface.jpg Figure 2.9

Scheme of data collection by the
CANedge2.png

Figure 2.10

Sentronics flowSonic LF ultrasonic
flow meter.jpg

Figure 2.11

Fuel flow meter installed on
Chevrolet Silverado 1500.jpg

Figure 2.12a

Fuel flow meter installed on Ford
Expedition.jpg

Figure 2.12b

Fuel flow meter installed on Ford
Fusion.jpg

Figure 2.12c

Fuel flow meter installed on Ford
F-150.jpg

Figure 2.12d
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Table C.3: Chapter 2 Figure files

File Name File Description

Fuel flow meter installed on Ford
S.jpg

Figure 2.13a

Fuel flow meter installed on Ford
F-350.jpg

Figure 2.13b

Fuel flow meter installed on Ford
PHEV.jpg

Figure 2.13c

CSS electronics CANedge2.jpg Figure 2.14

Asammdf.jpg Figure 2.15

Ford Escape PHEV FC.jpg Figure 2.16

Ford Escape S FC.jpg Figure 2.17

Ford F-350 FC.jpg Figure 2.18

Table C.4: Chapter 2 data files

File Name File Description

Ford Escape PHEV.xlsx (Include
vehicle’s OBD and Sentronics fuel

flowmeter collected data)

Figure 2.16

Ford Escape S.xlsx (Include vehicle’s
OBD and Sentronics fuel flowmeter

collected data)

Figure 2.17

Ford F-350.xlsx (Include vehicle’s OBD
and Sentronics fuel flowmeter collected

data)

Figure 2.18
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C.1.3 Chapter 3

Table C.5: Chapter 3 Figure files

File Name File Description

UAlberta South campus
transportation service.jpg

Figure 3.1

Ford F-350.jpg Figure 3.2

Ford Escape PHEV.jpg Figure 3.3

Route Map1.jpg Figure 3.4

Scheme of fuel consumption data
collection process.jpg

Figure 3.5

EV Charge engine map.jpg Figure 3.6(a)

Ford F-350 engine map.jpg Figure 3.6(b)

Time series of speed and fuel
consumption PHEV.jpg

Figure 3.7(a)

Time series of speed and fuel
consumption F-350.jpg

Figure 3.7(b)

ANN-PHEV.jpg Figure 3.8(a)

ANN-F-350.jpg Figure 3.8(b)

RF-PHEV.jpg Figure 3.9(a)

RF-F-350.jpg Figure 3.9(b)

Comparing the estimation models
for PHEV.jpg

Figure 3.10(a)

Comparing the estimation models
for F-350.jpg

Figure 3.10(b)
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Table C.6: Chapter 3 python script files

File Name File Description

Sampling.py Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9 & Figure 3.10 &

Figure 3.11

Model Selection ANN.py Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9 & Figure 3.10 &

Figure 3.11

Model Selection RF.py Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9 & Figure 3.10 &

Figure 3.11

Validation and test ANN.py Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9 & Figure 3.10 &

Figure 3.11

Validation and test RF.py Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9 & Figure 3.10 &

Figure 3.11

Table C.7: Chapter 3 data files

File Name File Description

Ford Escape PHEV EV Charge
Map.xlsx (Include Ford Escape
PHEV EV Charge mode’s OBD

record data)

Figure 3.7(a) & Figure 3.8(a) &
Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9(a) & Figure 3.10(a) &

Figure 3.11(a)

Ford F-350 Map.xlsx (Include Ford
F-350’s OBD record data)

Figure 3.7(b) & Figure 3.8(a) &
Table 3.7 & Table 3.8 & Table 3.9
& Figure 3.9(b) & Figure 3.10(b) &

Figure 3.11(b)
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C.1.4 Chapter 4

Table C.8: Chapter 4 Figure files

File Name File Description

Major factors on energy consumption, and CO2.jpg Figure 4.1

Recording from the vehicle’s instrument cluster display.jpg Figure 4.2

Button for changing powertrain mode.jpg Figure 4.3

Ford PHEV instrument cluster display.jpg Figure 4.4(a)

Route Map2.jpg Figure 4.4(b)

PHEV SOC status shown on vehicle’s display.jpg Figure 4.5(a)

PHEV Charging details.jpg Figure 4.5(b)

PHEV Status Shown on Vehicle’s Display Figure 4.5(c)

Energy consumption of Auto EV.pdf Figure 4.6(a)

Energy consumption of EV Now.pdf Figure 4.6(b)

Energy consumption of EV Later.pdf Figure 4.6(c)

Energy consumption of EV Charge.pdf Figure 4.6(d)

Energy consumption of all modes.pdf Figure 4.7

TWC warming up time for Auto EV.jpg Figure 4.8(a)

TWC warming up time for EV Now.jpg Figure 4.8(b)

TWC warming up time for EV Later.jpg Figure 4.9(a)

TWC warming up time for EV Charge.jpg Figure 4.9(b)

Engine coolant warm-up duration for Auto EV.jpg Figure 4.10(a)

Engine coolant warm-up duration for EV Now.jpg Figure 4.10(b)

Engine coolant warm-up duration for EV Later.jpg Figure 4.11(a)

Engine coolant warm-up duration for EV Charge.jpg Figure 4.11(b)

Cold energy consumption for Auto EV.pdf Figure 4.12(a)

Cold energy consumption for EV Now.pdf Figure 4.12(b)

Cold energy consumption for EV Later.pdf Figure 4.12(c)

Cold energy consumption for EV Charge.pdf Figure 4.12(d)
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Table C.9: Chapter 4 Figure files

File Name File Description

Cold energy consumption of all modes.pdf Figure 4.13

Warm energy consumption for Auto EV.pdf Figure 4.14(a)

Warm energy consumption for EV Now.pdf Figure 4.14(b)

Warm energy consumption for EV Later.pdf Figure 4.14(c)

Warm energy consumption for EV Charge.pdf Figure 4.14(d)

Warm energy consumption of all modes.pdf Figure 4.15

EV Later -23 engine map.jpg Figure 4.16(a)

EV Later 28 engine map.jpg Figure 4.16(b)

EV Charge -24 engine map.jpg Figure 4.17(a)

EV Charge 32 engine map.jpg Figure 4.17(b)

EV Later -23 efficiency.jpg Figure 4.18(a)

EV Later 28 efficiency.jpg Figure 4.18(b)

EV Charge -24 efficiency.jpg Figure 4.19(a)

EV Charge 32 efficiency.jpg Figure 4.19(b)

Duration of fuel efficiency of EV Later -23.jpg Figure 4.20(a)

Duration of fuel efficiency of EV Later 28.jpg Figure 4.20(b)

Duration of fuel efficiency of EV Charge -24.jpg Figure 4.21(a)

Duration of fuel efficiency of EV Charge 32.jpg Figure 4.21(b)

110V charger.jpg Figure 4.22(a)

220V charger1.jpg Figure 4.22(b)

220V charger2.jpg Figure 4.22(c)

Edmonton’s regular gas price summary.jpg Figure 4.23

12-month average retail regular gas price.jpg Figure 4.24

Edmonton retail regular gas price.jpg Figure 4.25

Commercial charge station in Edmonton.jpg Figure 4.26

Energy cost of Auto EV.pdf Figure 4.27(a)
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Table C.10: Chapter 4 Figure files

File Name File Description

Energy cost of EV Now.pdf Figure 4.27(b)

Energy cost of EV Later.pdf Figure 4.27(c)

Energy cost of EV Charge.pdf Figure 4.27(d)

Energy cost of all modes.pdf Figure 4.28

Emissions Intensity of Electricity Generation.png Figure 4.29

CO2 intensity for Alberta.pdf Figure 4.30

CO2 Auto EV Alberta.pdf Figure 4.31(a)

CO2 EV Now Alberta.pdf Figure 4.31(b)

CO2 EV Later Alberta.pdf Figure 4.31(c)

CO2 EV Charge Alberta.pdf Figure 4.31(d)

CO2 all modes Alberta.pdf Figure 4.32

CO2 all modes Manitoba.pdf Figure 4.33

S vs. PHEV.jpg Figure 4.34

Ford Escape S engine.jpg Figure 4.35(a)

Fuel flow meter installed on Ford S.jpg Figure 4.35(b)

Cold energy consumption of S.pdf Figure 4.36(a)

Warm energy consumption of S.pdf Figure 4.36(b)

Energy consumption of Ford Escape S Vs. PHEV.pdf Figure 4.37

Energy cost of Ford Escape S vs. PHEV.pdf Figure 4.38

Ford Escape S Vs. PHEV CO2 emission.pdf Figure 4.39

ROI of PHEV based on distance Auto EV.pdf Figure 4.40(a)

ROI of PHEV based on distance EV Now.pdf Figure 4.40(b)

ROI of PHEV based on distance EV Later.pdf Figure 4.40(c)

ROI for F-150 Lightning XLT based on distance.pdf Figure 4.41

UAlberta fleet annual average mileage by vehicle.pdf Figure 4.42

Annual average mileage of trucks.pdf Figure 4.43
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Table C.11: Chapter 4 Figure files

File Name File Description

ROI of F-150 Lightning by year UAlberta 25.pdf Figure 4.44

ROI of F-150 Lightning by year UAlberta -7.pdf Figure 4.45

Annual average mileage of the SUVs of UAlberta.pdf Figure 4.46

ROI of Ford Escape PHEV by year Vpool Auto EV.pdf Figure 4.47(a)

ROI of Ford Escape PHEV by year Vpool EV Now.pdf Figure 4.47(b)

ROI of Ford Escape PHEV by year Vpool EV Later.pdf Figure 4.47(c)

ROI of Ford Escape PHEV by year PTS Auto EV.pdf Figure 4.48(a)

ROI of Ford Escape PHEV by year PTS EV Now.pdf Figure 4.48(b)

ROI of Ford Escape PHEV by year PTS EV Later.pdf Figure 4.48(c)

ROI of F-150 Lightning by year NRC.pdf Figure 4.49

ROI for PHEV based on NRCan EV Later.pdf Figure 4.50(a)

ROI for PHEV based on NRCan Auto EV.pdf Figure 4.50(b)

ROI for PHEV based on NRCan EV Now.pdf Figure 4.50(c)
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Table C.12: Chapter 4 data files

File Name File Description

Ford Escape Short Route.xlsx (Include
Ford Escape PHEV all tests overview

data)

Table 4.4 & Table 4.7

Ford Escape PHEV Data 1.xlsx & Ford
Escape PHEV Data 2.xlsx (Include

Ford Escape PHEV OBD record data)

Figure 4.6 & Figure 4.7 & Table 4.8 &
Figure 4.12 & Figure 4.13 & Table 4.9
& Figure 4.14 & Figure 4.15 & Table
4.10 & Figure 4.27 & Figure 4.28 &

Table 4.11 & Figure 4.31 & Figure 4.32
& Table 4.12 & Figure 4.33& Table
4.13 & Figure 4.37 & Table 4.17 &

Figure 4.38 & Table 4.18 & Figure 4.39
& Table 4.19 & Table 4.20 & Table
4.21 & Table 4.22 & Table 4.23 &

Figure 4.40

Ford Escape S Data.xlsx (Include Ford
Escape S all tests overview & OBD

record data)

Table 4.15 & Table 4.16 & Figure 4.36
& Figure 4.37 & Table 4.17 & Figure
4.38 & Table 4.18 & Figure 4.39 &

Table 4.19 & Table 4.20 & Table 4.21
& Table 4.22 & Table 4.23

Auto EV TWC.xlsx (Include TWC
warming up for Auto EV mode data)

Figure 4.8(a)

EV Now TWC.xlsx (Include TWC
warming up for EV Now mode data)

Figure 4.8(b)

EV Later TWC.xlsx (Include TWC
warming up for EV Later mode data)

Figure 4.9(a)

EV Charge TWC.xlsx (Include TWC
warming up for EV Charge mode data)

Figure 4.9(b)

Auto EV Engine Coolant.xlsx (Include
engine coolant warming up for Auto

EV mode data)

Figure 4.10(a)

EV Now Engine Coolant.xlsx (Include
engine coolant warming up for EV

Now mode data)

Figure 4.10(b)

EV Later Engine Coolant.xlsx (Include
engine coolant warming up for EV

Later mode data)

Figure 4.11(a)
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Table C.13: Chapter 4 data files

File Name File Description

EV Charge Engine Coolant.xlsx
(Include engine coolant warming up for

EV Charge mode data)

Figure 4.11(b)

EV Later 2-2 -23.xlsx (Include EV
Later mode OBD record data at Tamb

of -23 °C)

Figure 4.16(a) & Figure 4.18(a) &
Figure 4.20(a)

EV Later 27-7 28.xlsx (Include EV
Later mode OBD record data at Tamb

of 28 °C)

Figure 4.16(b) & Figure 4.18(b) &
Figure 4.20(b)

EV Charge 21-2 -24.xlsx (Include EV
Charge mode OBD record data at

Tamb of -24 °C)

Figure 4.17(a) & Figure 4.19(a) &
Figure 4.21(a)

EV Charge 28-7 32.xlsx (Include EV
Charge mode OBD record data at

Tamb of 32 °C)

Figure 4.17(b) & Figure 4.19(b) &
Figure 4.21(b)

2019-2020 Vehicle Annual Mileages
(Include UAlberta fleet vehicles annual

mileages for 2019-2020)

Figure 4.42 & Figure 4.43 & Figure
4.44 & Figure 4.45 & Figure 4.46 &
Figure 4.47 & Figure 4.48 & Figure

4.49 & Figure 4.50

Table C.14: Chapter 5 Figure files

File Name File Description

Scheme of Start-Stop Technology.jpg Figure 5.1

Trade vehicles map.jpg Figure 5.2

Shuttle minibus map.jpg Figure 5.3

Casual rental vehicles map.jpg Figure 5.4

Ford Escape S driving cycle.pdf Figure 5.5

Trade vehicles driving cycle.png Figure 5.6

Shuttle minibus driving cycle.png Figure 5.7

Casual rental vehicles driving cycle.png Figure 5.8

UAPS driving cycle.png Figure 5.9
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Table C.15: Chapter 5 data files

File Name File Description

Ford Escape S Fuel consumption.xlsx
(Include Ford Escape S fuel

consumption)

Figure 5.5

Ford Econoline 450 Fuel
Consumption.xlsx (Include Ford
Econoline 450 fuel consumption)

Table 5.4 & Table 5.5 & Table 5.6 &
Table 5.7 & Table 5.8 & Table 5.9

Ford Escape S Idle Fuel
Consumption.xlsx (Include Ford
Escape S idling fuel consumption)

Table 5.4 & Table 5.5 & Table 5.6 &
Table 5.7 & Table 5.8 & Table 5.9

Chevy Silverado Idling Fuel
Consumption.xlsx (Include Chevy

Silverado 1500 idling fuel consumption)

Table 5.4 & Table 5.5 & Table 5.6 &
Table 5.7 & Table 5.8 & Table 5.9

UAlberta Application Driving Cycles
(Include UAlberta fleet vehicles’

application driving cycles)

Table 5.5 & Table 5.6 & Table 5.7 &
Table 5.8 & Table 5.9
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