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By adapting the Föppl-von Kàrmàn equation, which describes the deformation of
a thin elastic membrane, we present an analysis of the buckling pattern of a thin,
very viscous fluid layer subject to shear in an axisymmetric geometry. A linear
stability analysis yields a differential eigenvalue problem, whose solution, obtained
using spectral techniques, yields the most unstable azimuthal wave-number, m�.
Contrary to the discussion of Slim et al. [J. Fluid Mech. 694, 5–28 (2012)], it is
argued that the axisymmetric problem shares the same degeneracy as its rectilinear
counterpart, i.e., at the onset of instability, m� is indefinitely large. Away from this
point, however, a comparison with analogue experimental results is both possible
and generally favorable. In this vein, we describe the laboratory apparatus used to
make new measurements of m�, the phase speed and the wave amplitude; note that no
prediction concerning the latter two quantities can be made using the present theory.
Experiments reveal a limited range of angular velocities wherein waves of either small
or large amplitude may be excited. Transition from one to the other regime does not
appear to be associated with a notable change in m�. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4798825]

I. INTRODUCTION

Thin viscous films floating on top of a much deeper and less viscous ambient fluid are a subject
of topical scientific interest and appear in a multitude of industrial and environmental contexts.
The Deepwater Horizon oil spill provides a familiar, if disastrously unfortunate, example. Although
remediation efforts were multifaceted, it is very likely that a greater fraction of the spilt oil could
have been recovered, had there existed a more comprehensive understanding of the rheology of the
oil film relating, in particular, to the action of waves and wind shear, film rupture, the formation of
“tar balls,” etc.

The present investigation does not attempt to model the very complicated fluid mechanics
associated with the calamitous events described above but rather considers a more fundamental
problem, namely the regular pattern of surface waves that arises when an axisymmetric viscous film
experiences buckling by shear forces. Part of our motivation is to add an important clarification to
the recent paper by Slim, Teichman, and Mahadevan1 who examined theoretically and numerically
the patterns of thin film buckling instabilities that arise due to in-plane shear in a rectilinear geometry
(Figure 1(a)). Building on the analysis of Suleiman and Munson,2 Howell,3 Teichman,4 and Slim
et al.5 Slim et al.1 introduce, as an alternative to (numerically) solving the full Stokes equations, a
linear “viscous plate model” applicable in the limits where the film curvature and h/L̂ are small.
Here h and L̂ denote, respectively, the film thickness and a representative horizontal length scale.
(For example, for the flows exhibited schematically in Figure 1, it is sensible to set L̂ equal to the gap
width.) The viscous plate model is itself similar, though not as we argue below completely analogous,
to the classical Föppl-von Kàrmàn equation (Love,6 Landau and Lifshitz7), which describes the
motion of an elastic membrane rather than a viscous film. Citing the Stokes-Rayleigh analogy, Slim
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FIG. 1. Plan view of shear-driven buckling of a thin viscous film in (a) a rectilinear channel and (b) an axisymmetric channel.
Troughs and crests of the associated wave field are indicated by the dashed lines. Panel (c) shows a side view of the thin film
and its (sinuous) deflection from the horizontal where ρ denotes the film fluid density.

et al.1 remark that “there is a close connection between the governing equations for elastic and
viscous plates as well as between the associated buckling instabilities.”

Application of the Föppl-von Kàrmàn equation in the fluidic context has been criticized by
Benjamin and Mullin8 who observed that the wavelength of the most unstable mode “is indefinitely
small when the [linear] instability condition...is just satisfied.” Moreover the stability threshold
coincides, for reasons discussed below, with vanishingly small rather than finite forcing. Slim et al.1

acknowledge this inconsistency in the rectilinear case, but argue that it disappears in the axisymmetric
flow of Figure 1(b), which includes as canonical horizontal length scales both the gap width and
some measure of the curvature of the inner (rotating) or outer (stationary) cylinder. Herein, we argue
that the axisymmetric flow in fact shares the same inconsistencies as its rectilinear counterpart. By
considering the growth rates associated with the most unstable mode, however, we also argue that the
degeneracy (whether viewed from an axisymmetric or a rectilinear perspective) is not so severe as to
render the associated theory “primitive” to use the words of Benjamin and Mullin.8 Corroborating
this discussion, our investigation is supplemented by new laboratory measurements of m�, the most
unstable azimuthal wave-number, which show better agreement with theory than is reported in a
previous analysis, i.e., Figures 3-5(a) and 3-7 of Teichman.4

The theory described above is, we reiterate, a linear theory applicable in the limit of small
interfacial deflections. Although we do not extend our analysis to the weakly- or fully-nonlinear
regime in the manner of, e.g., Balmforth, Craster, and Slim,9 we do report upon a further set of
experiments which characterize, for select combinations of parameters, the variation of the wave
amplitude as a function of the applied shear. Our measurements suggest a limited range of bi-stability
in which waves of either small or large amplitude may arise for the same shear rate.

The rest of the paper is organized as follows: in Sec. II we summarize the viscous plate model
as applied to the axisymmetric geometry of Figure 1(b). The problem is formulated in Sec. II A with
some of the more technical details given in Appendices A and B. In Sec. II B, we summarize the most
pertinent of our model predictions. A description of the experimental apparatus and procedure is given
in Sec. III and a comparison between theory and experiment is presented thereafter in Sec. IV A.
This is followed by a discussion of our wave amplitude measurements in Sec. IV B. Finally, in
Sec. V, we present our conclusions and outline ideas for future work.

II. THEORY

A. Formulation

We consider the axisymmetric flow of a thin film of viscous fluid of thickness h as depicted
schematically in Figures 1(b) and 1(c). The film floats atop a deep layer of much less viscous fluid
(water, say) whose density, ρ−, is greater than the density, ρ, of the film. Out-of-plane displacements,
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H, are driven by the in-plane stresses associated with the rotating inner cylinder. The governing
equations describing this free-surface problem read

∇ · u = 0, (2.1)

∇P = μ∇2u, (2.2)

subject to a kinematic boundary condition

w|z=H± 1
2 h = D

Dt
(H ± 1

2 h) (2.3)

and a dynamic boundary condition

τ · n = T. (2.4)

In the above equations, P and μ are the fluid pressure and dynamic viscosity, respectively, w is the
vertical (i.e., out-of-plane) component of the velocity vector, u, n is the normal vector, and T is the
surface traction, which incorporates surface tension. Finally the stress tensor τ is defined as

τ = −P I + μ(∇uT + ∇u),

in which I denotes the identity matrix and superscript T denotes matrix transpose. On the lateral
edges of the thin film, the azimuthal velocity, v, must match the velocity of the inner or outer cylinder
by the no-slip condition. Thus

v|r=Ri = �Ri and v|r=Ro = 0, (2.5)

where Ri and Ro are defined in Figure 1(b) and the angular speed �, also defined in Figure 1(b), is
expressed in rad/s. In addition, the film is assumed to satisfy clamped boundary conditions so that
H and its radial derivative, Hr, vanish along r = Ri and r = Ro.

A numerical solution of a set of equations very similar to (2.1) through (2.5) is presented in
Slim et al.,1 but the method, which employs a Chebyshev pseudo-spectral discretization, is non-
trivial. In any event, we seek a solution of a lower-order set of equations, derived under the slender
geometry approximation outlined in Sec. I. As shown in the rigorous derivation of Howell,3 the
major simplifications are that out-of-plane velocities are much larger than in-plane velocities and
that the film thickness, h, is constant, i.e., stretching is absent and the deflections to the upper and
lower surfaces of the thin film are sinuous in nature (Figure 1(c)). Following Howell’s approach
(see also Appendix A of Teichman4), one can derive, after much algebra, the (linearized) fluidic
Föppl-von Kàrmàn equation applicable to the geometry of Figures 1(b) and 1(c). This reads

2μh

(
Hrθ

r
− Hθ

r2

) (
vr − v

r

)
− ρ−gH + (γ + + γ −)∇2

H H = 1

3
μh3∇4

H Ht , (2.6)

where g is gravitational acceleration, γ + and γ − denote, respectively, the surface tension along
the upper and lower boundaries of the film, ∇2

H is the horizontal Laplacian and subscripts indicate
derivatives with respect to the spatial coordinates and time. In (2.6), the azimuthal velocity is given
by

v = �R2
i

R2
o − R2

i

(
R2

o

r
− r

)
. (2.7)

Combining (2.6) and (2.7) yields

4μh

r3
· �R2

i R2
o

R2
o − R2

i

(
Hθ

r
− Hrθ

)
− ρ−gH + (γ + + γ −)∇2

H H = 1

3
μh3∇4

H Ht , (2.8)

which is the axisymmetric analogue of (3.5) of Slim et al.1 Term 1 from the left-hand side specifies
the out-of-plane motion due to in-plane stresses; compressive and tensile stresses drive and oppose
buckling, respectively. Terms 2 and 3 reflect the influence of gravity and surface tension while the
right-hand side term specifies the viscous bending resistance.
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In the analogous elastic membrane problem studied, for example, by Balmforth et al.,9 the
bending resistance term is of similar form, however, the Laplacian operator acts on H rather than its
time derivative. This seemingly trivial modification has substantial implications: when drawing the
neutral stability curve of vanishing growth rate, Ht ≡ 0. Consequently the bending resistance term
disappears in the problem of a viscous film but not so in the case of an elastic membrane. Note that
the above comments apply whether ∇H is defined in a rectilinear or an axisymmetric geometry.

To make further progress, it is helpful to non-dimensionalize (2.8) scaling horizontal lengths
with the outer radius Ro and vertical lengths with the (constant) film thickness h = εRo where ε �
1. Furthermore, we scale time, t, with the characteristic timescale T. Obvious choices for T are �−1

or (h/g)1/2, however, these selections introduce difficulties for small � or very thin films; as such,
we take T = (Ro/g)1/2.

In non-dimensional form (2.8) can be rewritten as

12�T

r3
· β2

1 − β2

(
Hθ

r
− Hrθ

)
− 3ϒ1 H

ε
+ 3ϒ2

ε
∇2

H H = ε2∇4
H Ht , (2.9)

where r and H are now non-dimensional variables and the geometric parameter β gives the ratio of
radii, i.e., β = Ri/Ro (<1). Moreover the non-dimensional numbers ϒ1 and ϒ2 are defined by

ϒ1 = ρ−gRoT

μ
and ϒ2 = (γ + + γ −)T

μRo
,

i.e., ϒ1 and ϒ2 measure the respective contributions of gravity and surface tension relative to the
film viscosity.

We seek axisymmetric normal mode solutions of (2.9) that satisfy the clamped boundary
conditions

H |r=β = H |r=1 = 0, Hr |r=β = Hr |r=1 = 0 (2.10)

and are of the form

H (r, θ, t) = f (r )eσ t+imθ + c.c., (2.11)

in which σ is the non-dimensional (linear) growth rate associated with azimuthal mode number m
and c.c. denotes the complex conjugate. (We verify in Appendix A that σ must be a real number.)
Applying (2.11) in (2.9) yields the following differential eigenvalue problem:

12�T

r3
· β2

1 − β2

(
im

r
f − im fr

)
− 3ϒ1 f

ε
+ 3ϒ2

ε

(
frr + 1

r
fr − m2

r2
f

)

= ε2σ

(
frrrr + 2

r
frrr − 1

r2
frr − 2m2

r2
frr + 1

r3
fr + 2m2

r3
fr − 4m2

r4
f + m4

r4
f

)
(2.12)

(cf. Eq. 3.15 of Teichman4). We solve (2.12) by adapting the spectral algorithms discussed in
Weideman and Reddy.10 Details are presented in Appendix B.

B. Theoretical predictions

By varying the independent non-dimensional parameters β = Ri/Ro, ε = h/Ro, �T, ϒ1, and ϒ2,
we can now predict, via the solution of (2.12), the most unstable azimuthal wave-number, m�, in
different regions of parameter space. Sample model output is presented in Figure 2, which indicates
the change of surface buckling pattern as β is increased from 1

5 to 4
5 . A more comprehensive result is

that of Figure 3, which shows the variation of m� with ε and β for different choices of �T, ϒ1, and
ϒ2. Note that m� becomes indefinitely large as ε → 0 and β → 1. In the latter case, the gap width
becomes vanishingly small so that the slender geometry approximation can no longer be applied
with confidence. The former result can be understood by examining the right-hand side of (2.9): as
ε → 0, the bending resistance term quickly also tends to zero suggesting that the thin film can be
readily deformed even at small azimuthal wavelength. Surface tension alone cannot resolve this
degeneracy; as explained by Ribe,11 the forces associated with surface tension and compression
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FIG. 2. Out-of-plane displacement field associated with the most unstable azimuthal mode of (2.12) for (a) β = 1
5 (m�

= 16), (b) β = 2
5 (m� = 23), (c) β = 3

5 (m� = 27), and (d) β = 4
5 (m� = 27). Other parameter values are as follows:

ε = 0.0207, �T = 0.365, ϒ1 = 14.2, and ϒ2 = 4.53 × 10−3. The inner cylinder of Figure 1(b) occupies the white region in
the center of each image and rotates in the counter-clockwise direction.
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FIG. 3. Variation of m� with ε and β as predicted by the numerical solution of (2.12). Note that the minimum value of ε is
6.9 × 10−3, not 0. Parameter values are as follows: (a) �T = 0.365, ϒ1 = 14.2, and ϒ2 = 4.53 × 10−3; (b) �T = 0.365,
ϒ1 = 5.93, and ϒ2 = 1.89 × 10−3; (c) �T = 0.632, ϒ1 = 8.22, and ϒ2 = 7.85 × 10−3; and (d) �T = 0.632, ϒ1 = 3.42,
and ϒ2 = 3.27 × 10−3. Thus moving from the left-hand side panels to their right-hand side counterparts, we increase μ by
a factor of 2.4 (see Sec. III). Likewise in moving from the upper panels to their lower counterparts, we decrease g by a factor
of 3.
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FIG. 4. Variation of m� (solid symbols) and σ (open symbols) with �T for β = 0.655, ϒ1 = 14.2, and ϒ2 = 4.53 × 10−3 as
predicted by the numerical solution of (2.12). Symbols are as follows – diamonds (�): ε = 6.90 × 10−3, left-facing triangles
(�): ε = 0.0138, right-facing triangles (�): ε = 0.0207, squares (�): ε = 0.0276, and stars (*): ε = 0.0345.

both scale as 1/wavelength squared. Consequently, and whether one examines an axisymmetric
or rectilinear flow, “if [compression] exceeds surface tension for some wavelength (as it must if
buckling is to occur) then it will do so for all wavelengths.”

Figure 4 shows that an even more severe degeneracy arises for small �T in which case m�

becomes arbitrarily large irrespective of ε. Consistent with the previous discussion, this prediction
is likewise unreasonable: the asymptotic results (2.9) and (2.12) are long wave equations, i.e., they
assume that the thin film has small curvature, which cannot be satisfied for large m� (Benjamin and
Mullin8). Moreover, on physical grounds, we expect there to exist a finite critical forcing below
which film buckling does not occur in the same way that, for example, Rayleigh-Bénard convection
cells cannot develop when the Rayleigh number associated with free-boundary convection is less
than 27π4/4 (Drazin and Reid12). Even so, there exists a “silver lining” that has, to the best of
our knowledge, been overlooked in previous commentary on this topic. Figure 4 also shows curves
of the non-dimensional linear growth rate, σ . In contrast to m�, which becomes arbitrarily large
as �T → 0, σ becomes indefinitely small suggesting that the associated buckling instabilities,
though present, grow extremely slowly. Complementing this observation, Figure 5 indicates curves
of constant σ (including σ = 0) in the �T-m plane for prescribed β, ε, ϒ1, and ϒ2. Whereas curves
with σ > 0 exhibit a global minimum, the neutral stability curve is monotone decreasing with a
lower bound of zero. So although (2.9) and (2.12) cannot reliably estimate the incipient point of
buckling, there is reason to be optimistic that this equation can do an adequate job of predicting
buckling patterns for larger �T. Indeed in the rectilinear case, Slim et al.1 remark that “for small and
moderate wave-numbers, the viscous plate model approximates the growth rate and mode structures
of the full Stokes equations very well.” Our method of corroboration is different. Rather than
numerically solving (2.1) and (2.2), we juxtapose the predictions of (2.12) with analogue laboratory
data. Comparisons are presented in Sec. IV A. First, it is necessary to describe the experimental
apparatus and technique.

III. EXPERIMENTAL PROCEDURE

Laboratory experiments were conducted in an annular glass beaker of height 18.0 cm. The inner
radius of the outer cylinder (Ro) measured 14.7 cm whereas the outer radius of the inner cylinder
measured 3.7 cm. As shown schematically in Figure 6, a disk assembly constructed of stainless steel
and consisting of a shaft, collar, disk, and perimetric ring was placed inside the beaker. The protruding
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FIG. 5. Curves of constant (non-dimensional) growth rate with σ = 0, 0.030, 0.061, 0.122, 0.304, 0.608. The dashed curve
connects the respective local minima and the arrow indicates the direction of increasing σ . Parameter values are as follows:
β = 0.655, ε = 0.0207, ϒ1 = 14.2, and ϒ2 = 4.53 × 10−3.

shaft fit inside a lubricated brass groove, which was itself a component of a cylindrical base plate
that formed a water-tight seal in the beaker annulus. When connected to a variable-speed DC electric
motor (20 rpm, 45 rpm, or 90 rpm Precision Gear Motor by Servocity), the disk assembly rotated
at constant angular speed in the horizontal plane. Special measures were undertaken to minimize
wobble (i.e., out of plane motion) of the disk assembly.

Three disk assemblies were employed where in each case the respective thickness of the disk
and perimetric ring was 1.6 mm and 12.7 mm. The purpose of the ring was to allow us to vary
the film thickness, h, over a broader range of values than would have been possible had the disk
alone been employed. (By contrast, if we had fabricated the disks out of 12.7 mm-thick stainless
steel, a non-trivial upgrade of motor size would have been necessary.) Relevant β values for the disk
assemblies are given in Table I.

FIG. 6. (Left) Schematic of the experimental set-up (camera elevation and light source position not to scale). The beaker
rests on an adjustable frame of T-slotted aluminum bars, i.e., 80-20 Inc., product 1010. (Right) Detailed schematic of the disk
assembly.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.128.216.34 On: Fri, 27 May

2016 18:22:52



043102-8 Bhattacharya, Craster, and Flynn Phys. Fluids 25, 043102 (2013)

TABLE I. Geometric details for the disk assemblies. Measurements of Ri

are considered accurate to within 1 mm.

Outer radius of the
Disk assembly perimetric ring, Ri (cm) β = Ri/Ro

A 7.3 0.497
B 9.8 0.667
C 12.4 0.844

In a typical experiment, the beaker was filled with warm tap water to a depth of approximately
14 cm, so that the bottom of the perimetric ring was submerged to a depth of at least 2 mm. Thereafter,
the beaker was left undisturbed overnight; the following morning, bubbles of previously dissolved
air were scraped off the side walls and bottom of the beaker. A relatively small quantity of viscous
oil, measured by mass using an Acculab Vicon VIC212 balance and having a specific gravity of 0.97,
was then poured into the water. The system was left undisturbed for an additional eight or more hours
after which a thin film with a smooth free-surface was observed. The film thickness was between
1.9 mm and 5.0 mm with a measurement uncertainty of approximately 0.1 mm. Films with h � 2 mm
(i.e., ε � 0.014) could rupture easily while those with h � 5 mm (i.e., ε � 0.034) often produced
an irregular buckling pattern. Two different viscosities of oil were used in our experiments, namely
ν = 12 500 cSt and ν = 30 000 cSt where ν is the kinematic viscosity. Oils were silicone-based
and manufactured by Xiameter (PMX 200 oil category). Product information supplied by Xiameter
indicates that γ + = 0.022 N/m and γ − = 0.044 N/m.

Our optical set-up consisted of an 8-bit high-speed camera (RedLake, MotionPro), a light source
(Reflecta Diamator A slide projector), a mirror angled at approximately 45◦ and an object image
consisting of a regular array of horizontal and vertical lines with a line thickness of 1 mm and a
center-to-center line spacing of 4 mm. The camera was mounted on a tripod and centered about the
(vertical) axis of the disk assembly. The camera lens (Nikon 35 mm) sat approximately 80 cm above
the free-surface of the thin film. Because a portion of the thin film was obscured by a clamp holding
the motor in place, experimental images were cropped to reveal just over one-half of the free-surface
(see Figure 7 below).

Experiments were begun by slowly increasing the angular speed of the motor to a prescribed
value of between 0.5 rad/s and 4.3 rad/s. (Representative Reynolds numbers for the less and more
viscous silicone oils were 1.0 and 0.25, respectively, where the Reynolds number is defined as
Re = �Ri(Ro − Ri)/ν.) Once transients had subsided and a regular wave field was observed,
the camera began recording images at a frame rate of 100 fps over a 15 s to 20 s time interval.
A representative image from the laboratory is shown in Figure 7. Although motion in the thin
film ceased very shortly after the disk assembly stopped rotating suggesting, consistent with the
assumptions of Sec. II, small fluid inertia, at least 30 min elapsed between successive experimental
runs to allow the thin film to return to its quiescent and smooth initial state.

So as to reduce errors in experimentally estimating m�, pairs of images taken in a short time
(i.e., 0.02 s to 0.04 s) apart were subtracted one from the other (Figure 7). The change in the
distortion pattern of the object image then allowed us to more readily count the number of wave
troughs or crests, for purposes of estimating m�, or to track their evolution in time, for purposes
of estimating the associated angular phase speed, cp. Values for m� reported below represent the
average of approximately 15 such image subtractions. This information was in turn used to estimate
cp: the ratio cp/� equals N1/m� where N1 is the number of wave troughs or crests passing a fixed
point in the experimental image in one full rotation of the disk assembly.

When measuring wave amplitudes, the high speed camera described above was replaced with
a LaVision Imager E-lite model with a Nikon 60 mm lens. This camera captured images at 15 fps
and was oriented so that it made an angle of approximately 30◦ with respect to the (undisturbed)
free-surface of the film. Moreover, we replaced the slide projector of Figure 6 with a vertically-
oriented 5 mW Cemarline CL 801 laser pen (Cemar Electro Inc.) that emits light at 670 nm. This
particular laser pen was selected because the light intensity varies by only a small fraction along the
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FIG. 7. Snapshot image from an experiment with ϒ1 = 14.5, ϒ2 = 4.50 × 10−3, i.e., (ν = 12 500 cSt), β = 0.667,
ε = 0.0193, and �T = 0.239. (Top) Raw image and (middle) subtracted image. In the latter case, the arrows and numbers
denote individual wave crests. For the sake of comparison, the bottom panel shows the associated numerical solution.
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FIG. 8. (a) Comparison between the solution of (2.12) and experimental measurements for ν = 12 500 cSt. Black, red,
and blue curves correspond, respectively, to β = 0.497, 0.667, and 0.844; in all cases, ϒ1 = 14.5 and ϒ2 = 4.50 × 10−3.
(b) Measured angular phase speeds for ν = 12 500 cSt. Data points for panels (a) and (b) are summarized in Table II.
(c) Comparison between the solution of (2.12) and experimental measurements for ν = 30 000 cSt. Red and blue curves
correspond, respectively, to β = 0.667 and 0.844; in both cases, ϒ1 = 6.05 and ϒ2 = 1.88 × 10−3. (d) Measured angular
phase speeds for ν = 30 000 cSt. Data points for panels (c) and (d) are summarized in Table III. Representative vertical error
bars are as indicated.

length of the emitted laser sheet. Therefore, when the laser sheet intersected the free-surface, a thin
line of nearly uniform intensity was observed. The silicone oil being very nearly transparent, this
line appeared to be very faint in the recorded images. Consequently the free-surface was seeded by
hand with hollow spherical particles (Extendospheres TG Hollow Spheres) of mean specific gravity
of 0.72 ± 0.05. Although ρparticles < ρ, we observed that the simple act of shearing the oil film
caused a non-trivial fraction of the particles to become trapped inside the oil layer, i.e., the particles
did not all accumulate at the free-surface. The nominal diameter range of the particles was 10 μm
to 150 μm, however, according to the manufacturer’s specifications, between 5% and 10% of the
spheres were of diameter >150 μm. The seeding density was selected so that the mass percent of
the particles was less than 0.15% the mass of the silicone oil. We confirm in Figure 8(a) below that
particle seeding does not substantially alter the properties of the silicone oil at least insofar as the
parameters of interest here.

Determinations of the out-of-plane displacements were made by measuring the distortion of the
laser line, which, in the absence of shear, was a straight line passing through the center of the disk
assembly. In the camera’s field of view, a succession of free-surface waves passed from right-to-left,
growing to a maximum amplitude between the edge of the disk assembly and the inner wall of
the glass beaker. So as to determine this maximum amplitude, hereafter referred to simply as the
wave amplitude, a series of images, rendered initially using DaVis 8.0 software, were superposed in
MATLAB for the purpose of visualizing the wave envelope. This composite image was thresholded
and filtered using a two-dimensional median filter to remove signal noise. The free-surface elevation
was then determined by estimating the point of transition between dark and illuminated segments
of the thresholded image. (This last step involved fitting pixel intensity data from each column of
the thresholded image using a high-order polynomial – details are summarized by Bhattacharya.13)
Finally, reference was made to a calibration image consisting of a well-illuminated snapshot image
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TABLE II. Data points descriptions – Figures 8(a) and 8(b). In all cases, ϒ1 = 14.5 and ϒ2 = 4.50 × 10−3.

Symbol Color β ε Notes

Upward triangle (�) Black 0.497 0.0160 Data are an amalgam of three independent
trials with ε = 0.0150, 0.0163, and 0.0165

Downward triangle (	) Black 0.497 0.0238 . . .
Upward triangle Red 0.667 0.0199 Data are an amalgam of two independent

trials with ε = 0.0193 and 0.0209
Upward triangle, Red 0.667 0.0205 Control experiment: oil seeded with
filled spherical particles
Downward triangle Red 0.667 0.0337 . . .
Downward triangle, Red 0.667 0.0331 Control experiment: oil seeded with
filled spherical particles
Upward triangle Blue 0.884 0.0186 Data are an amalgam of three independent

trials with ε = 0.0182, 0.0188, and 0.0191

of a ruler held in the plane otherwise occupied by the laser sheet; thus we were able to convert wave
amplitudes measured in pixel counts to measurements in a physical length scale, i.e., mm.

IV. RESULTS AND DISCUSSION

A. Comparison between linear theory and laboratory measurements

Qualitatively speaking, Figure 7 suggests a relatively robust agreement between the model of
Sec. II A and analogue laboratory images. A minor difference between the two concerns the angle
between the wave crests and the disk assembly perimeter, which appears to be moderately over-
predicted. Also, whereas both the top and bottom panel of Figure 7 show a thin region immediately
adjacent to the disk assembly where, consistent with the clamped boundary condition (2.10), the
surface is relatively smooth, the radial extent of this region appears to be under-predicted.

More quantitatively, Figure 8(a) presents a comparison between the solution of (2.12) and
the corresponding experimental measurement of m� for the lower viscosity (i.e., ν = 12 500 cSt)
oil. Small closed circles and open triangles indicate theoretical and laboratory data, respectively.
Conversely solid triangles show the results of a pair of control experiments in which the oil was
seeded with the Extendospheres TG Hollow Spheres according to the protocol summarized in
Sec. III. No measurements of wave amplitude were made in these cases; rather, the control experi-
ments were run to verify that the mechanical properties of the oil do not change in a significant way
due to particle addition.

Corresponding data with the higher viscosity silicone oil are presented in Figure 8(c). When ν

= 30 000 cSt, we were unable to generate a wave field of satisfactory regularity when using disk
assembly A for which β = 0.497.

In general, the quantitative comparison between theory and experiment in Figures 8(a) and 8(c)
is favorable. Although for the lower viscosity oil, generally smaller deviations are observed when
� is relatively small, no such trend is evident for the higher viscosity oil. In all but the case of the
downward red triangles of Figure 8(c), the theoretical prediction matches or exceeds its experimental

TABLE III. Data points descriptions – Figures 8(c) and 8(d). In all cases, ϒ1 = 6.05 and ϒ2 = 1.88 × 10−3.

Symbol Color β ε Notes

Upward triangle (�) Red 0.667 0.0130 . . .
Downward triangle (	) Red 0.667 0.0201 . . .
Upward triangle Blue 0.884 0.0208 . . .
Downward triangle Blue 0.884 0.0283 . . .
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counterpart, however, considering all the data of Figures 8(a) and 8(c) the degree of under- or over-
prediction is, in aggregate, less than 14% and nowhere exceeds 30%. The comparison constitutes
a non-trivial improvement over that reported in Figure 3-5(a) and 3-7 of Teichman.4 There exist at
least two possible explanations for this difference. Although the experiments are relatively simple
to run, ours have the chronological benefit of using present-day state-of-the-art flow visualization
hardware and software, which may render our measurements slightly more accurate. Also, a number
of Teichman’s equations (e.g., his F.3) contain typos; it is unclear whether these were introduced
during typesetting or at some earlier derivational stage.

Note, moreover, that the domain of each experimental data set indicates, for the prescribed
value of ε, the range of � over which a regular buckling pattern of the type indicated in
Figure 7 is observed. For � larger than or smaller than the values in this interval, the free-surface is,
respectively, irregular and smooth, at least to the precision offered by our visualization equipment.
Of course, the corresponding theoretical curves are not so versatile: for reasons alluded to above,
they erroneously predict an unstable film even for small forcing. Moreover, they cannot anticipate the
nonlinear effects that lead to a tangled wave field for large �. On the basis of the comparison between
theory and experiment, Figure 8 thereby offers a concise, graphical means of evaluating where the
predictions associated with the Föppl-von Kàrmàn equation are reasonable or unreasonable in the
fluidic-context.

The right-hand side panels of Figure 8 show measurements of the angular phase speed of
the free-surface waves. Here no comparison with theory is possible because, as explored more
exhaustively in Appendix A, the factor σ that appears in (2.11) and (2.12) is a real, not a complex,
number. This result is not an accident of the particular configuration considered in Figure 1: entirely
equivalent results would apply if, as in the experiments of Suleiman and Munson,2 the inner cylinder
were stationary while the outer cylinder were made to rotate or indeed if both cylinders rotated
whether or not in the same direction. Even more generally and due to the self-adjoint nature of the
governing equation and the associated clamped boundary conditions, cp = 0 in the related rectilinear
problem studied by Slim et al.1 They note that the governing equation (i.e., the rectilinear analogue
of Eq. (2.9)) is devoid of advective terms and is not therefore frame invariant. On physical grounds,
however, the buckling pattern “cannot be biased by either bounding wall” (Slim et al.1): if one of
the (planar) boundaries were fixed while the other translated at a fixed speed U, the resulting phase
speed would be cp = 1

2U . Consistent with the axisymmetric experiments of Suleiman and Munson,2

generally comparable results are achieved here (i.e., cp/� 
 0.5).

B. Wave amplitudes

Ribe’s11 discussion of Slim et al.1 highlights the need for experimental measurements of
wave amplitudes. In this spirit, we present in Figure 9 laboratory data obtained using the pro-
cedure outlined in Sec. III. Consistent with the exposition of supercritical bifurcations presented in
Sec. 49.1 of Drazin and Reid,12 the normalized wave amplitude, A/h, increases with the applied
shear rate, �T. However, in both panels of Figure 9, a sudden increase in A is noted over a narrow
band of �. This interval represents a limited region of bi-stability in that waves of either small or
large amplitude may be realized. Indeed, experimental images show an irregular oscillation in time
between the small and large amplitude waves, both of which are represented among the data of
Figure 9.

Qualitatively, the observations of the previous paragraph are consistent with the investigation of
Balmforth et al.,9 which examined the buckling of a (rectilinear) elastic plate. In describing a similar
region of bi-stability, they remark that “the higher...states gain stability before the lower branches
lose stability, leading to a multiplicity of stable states at a given shear.” Quantitatively, however,
important differences arise: in the study of Balmforth et al., sudden changes in the out-of-plane
displacement are accompanied by simultaneous variations in the planar expanse of a given wrinkle.
Here, by contrast, and although we cannot in a single experimental run simultaneously measure
m� and A, different behavior is believed to occur. Parametrically-speaking, the open circles of
Figure 9(a) coincide very nearly with the upward red triangles of Figure 8(a). (By the same token,
one may contrast, respectively, the open and closed circles of Figure 9(b) with the upward and
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FIG. 9. Wave amplitude (normalized by h, the film thickness) vs. �T. (a) ϒ1 = 14.5 and ϒ2 = 4.50 × 10−3 (i.e., ν

= 12 500 cSt); the open and closed circles correspond, respectively, to ε = 0.0214 and ε = 0.0269. (b) ϒ1 = 6.05 and ϒ2

= 1.88 × 10−3 (i.e., ν = 30 000 cSt); the open and closed circles correspond, respectively, to ε = 0.0139 and ε = 0.0205.
In all cases, β = 0.667; the thin and thick solid vertical lines show representative vertical error bars for the open and closed
circles, respectively. Note that wave amplitudes are too small to be reliably measured for small �T, e.g., for �T � 0.23 when
considering the open circles of (a). Conversely the wave pattern becomes irregular for large �T, e.g., for �T � 0.14 when
considering the closed circles of (b).

downward red triangles of Figure 8(c).) In Figure 9(a), an abrupt increase in A is noted when
�T 
 0.28, however, the data of Figure 8(a) show no corresponding jump or drop in m� when
�T · β2/(1 − β2) · ε/ϒ1 
 3.1 × 10−4. This latter observation is, of course, consistent with the
trend of the analytical solution exhibited in Figure 8(a); being derived from a linear theory, however,
and consistent with our previous remarks, this solution is unable to address any details regarding
wave amplitudes including the possibility of multiple A for fixed �. Although we defer to future
studies a more detailed investigation of the bistable regime (including an analytical characterization
of the stability limits associated with small and large amplitude waves), we may add the dissimilarity
documented above to the list of non-trivial differences between the buckling of elastic membranes
and viscous films.

A final remark concerning the data of Figure 9 is that the wave amplitude never exceeds
approximately one-third of the film thickness. These are not the first experiments to reveal relatively
modest out-of-plane displacements, which are likewise evident in Figures 15–17 of Taylor,14 for
instance. It is interesting to note, however, that in obtaining the viscous plate model from the Stokes
equations, the vertical displacement and layer thickness are assumed to be of comparable order (see,
e.g., Sec. 4.2 of Howell3). Thus the predictions of the fluidic Föppl-von Kàrmàn equation show
positive agreement with laboratory measurement in a regime that is different from that assumed in
the derivation of the lower-order equation. A pertinent question is whether analogous robustness
is exhibited when the vertical displacement and layer thickness are closer together in magnitude.
Unfortunately, this question cannot be adequately addressed here: whereas Figure 9 indicates that
A/h increases as ε decreases, there is a lower bound, imposed by capillarity, to the layer thickness.
In other words and in the context of the previous experiments, A/h ∼ 1 requires an oil of high
viscosity but low surface tension. Identifying such an oil and performing the requisite experiments
is beyond the scope of the present inquiry.

V. CONCLUSIONS

An analytical and experimental study of the shear-induced buckling of a thin, viscous film in
an axisymmetric geometry is presented. In-plane shear is generated by rotating the inner boundary
relative to a stationary outer boundary, which results in buckling or out-of-plane displacements of
the viscous fluid manifest as a regular pattern of free-surface waves.

Using the laboratory equipment described in Sec. III, we measured wave properties from
digitized experimental images. Regarding as independent variables the gap width, the angular speed,
�, and the film thickness, h, and kinematic viscosity, ν, we thereby determined the phase speed, cp,
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and the number, m�, of waves excited. In the latter case, it is possible to compare laboratory data with
predictions derived from a modified (or “fluidic”) Föppl-von Kàrmàn model (Howell3), which has
more traditionally been used to describe the wrinkling of elastic membranes (Landau and Lifshitz;7

Coman and Bassom15). The model equations yield a self-adjoint differential eigenvalue problem;
numerical solutions are obtained using spectral methods in the manner of Weideman and Reddy.10

As exhibited by Figures 8(a) and 8(c), the agreement between theory and experiment is generally
positive.

In contrast to Slim et al.1 who studied a similar problem but in a rectilinear geometry, we
do not attempt to solve the full Stokes equations i.e., (2.1) and (2.2). In performing this (difficult)
computation, Slim et al.1 determined that, in spite of degeneracies of the type exhibited in Figure 5
whereby m� → ∞ at the point of neutral stability, there remains generally good agreement between
solutions of the full model and its asymptotic analogue. Taken together, the results of this and the
previous paragraph suggest that, provided none of �, h or the gap width is too small, asymptotic
equations such as (2.9) may be more useful than is suggested by the discussion of, e.g., Benjamin
and Mullin.8

Granted equations such as (2.9) cannot provide any information regarding cp nor the variation of
the wave amplitude with �, a deficiency that is here addressed by making additional measurements
in the laboratory. Our amplitude data, summarized in Figure 9, reveal a limited region of bi-stability
whereby waves of either small or large amplitude may be generated for the same �. In contrast to
Balmforth et al.,9 however, there is evidence that the transition from small to large amplitude is not
accompanied by a corresponding change in m�. To our best knowledge, these observations have not
been made before in the context of thin film experiments of the type examined here.

We conclude by reiterating one of the important simplifying assumptions applied in this study,
i.e., that the inner and outer boundaries are concentric so that the generated wave field is axisym-
metric. A sensible, though non-trivial, extension of the present investigation, suggested by Professor
N. J. Balmforth, would consist of breaking this symmetry so that the gap width varies with the cylin-
drical polar angle θ . In this case, one would likewise expect potentially significant variations of the
wave field morphology with θ , e.g., waves of large and small amplitude, respectively, where the gap
width is comparatively small and large. Whether the onset of buckling is dictated by the minimum
or maximum gap width or some average of the two remains an open question to be addressed by
future experiments.
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APPENDIX A: GROWTH RATE, σ

By adapting the analysis of Southwell and Skan16 and Teichman,4 we demonstrate below that
the growth rate, σ , defined in (2.11) must be real. Suppose first of all that

H1 = Ĥ1eiP1t (A1)

is a solution of (2.9) where Ĥ1 is a complex function of r and θ and

P1 = P1r + iP1i . (A2)
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Because the coefficients of (2.9) are real, there exists a second solution of the form

H2 = Ĥ2eiP2t , (A3)

where Ĥ2 = Ĥ �
1 , the complex conjugate of Ĥ1, and

P2 = −P1r + iP1i . (A4)

The above discussion suggests that

ε2i(P1 H2∇4
H H1 − P2 H1∇4

H H2) = 12�T

r3

β2

1 − β2

(
H2 H1θ

r
− H1 H2θ

r
− H2 H1rθ + H1 H2rθ

)

+ 3ϒ2

ε

(
H2∇2

H H1 − H1∇2
H H2

)
, (A5)

which is obtained by substituting (A1) and (A3) into (2.9) then performing a number of additional
algebraic operations. Here, for notational economy, we have dropped the hats on H1 and H2. We
integrate (A5) over planar area, i.e.,

∫∫
A
(·) dA =

∫ 2π

0

∫ 1

β

(·) rdrdθ .

Thus, for example,∫∫
A

[(
H2∇2

H H1 − H1∇2
H H2

)]
dA =

∫∫
A

[∇H · (H2∇H H1) − ∇H · (H1∇H H2)] dA = 0 .

(A6)
The former equality follows from integration-by-parts and the latter equality follows from application
of the clamped boundary conditions (2.10). In like fashion, and considering the left-hand side terms
of (A5), it can be shown that∫∫

A
(P1 H2∇4

H H1 − P2 H1∇4
H H2) dA = (P1 − P2)

∫∫
A
∇2

H H1∇2
H H2 dA . (A7)

Finally, in considering those terms from (A5) that are proportional to �T, we find that
∫∫

A

[
12�T

r3

β2

1 − β2

(
H2 H1θ

r
− H1 H2θ

r
− H2 H1rθ + H1 H2rθ
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∫ 2π

0
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r
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= 12�T
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∫ 2π

0

∫ 1

β

(
H1 H2θ

r2

)
r

drdθ

= 0 . (A8)

In deriving the first two equations, we again apply integration-by-parts and also a periodicity
condition, which stipulates that Hj(r, 0) = Hj(r, 2π ) where j = 1, 2. The third equation follows from
the clamped boundary condition (2.10).

Summarizing the results of (A6) through (A8) we conclude that

(P1 − P2)
∫∫

A
∇2

H H1∇2
H H2 dA = 0 . (A9)

Non-trivial solutions of (A9) require P1 = P2 whereupon applying (A2) and (A4) yields P1r = 0,
i.e., P1 = P2 = iP1i . Solutions of (2.9) must therefore be proportional to e−P1i t , where P1i is a real
number. Setting σ = −P1i yields the form of the normal mode solution suggested by (2.11).

Note that the above derivation corrects a minor, but confusing, error in Appendix D of Teichman,4

who erroneously surmised that P2 = P�
1 .
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APPENDIX B: NUMERICAL DETAILS

Solutions to (2.12) are obtained by writing the equation in the form of the matrix eigenvalue
problem Af = σ Bf where the matrices A and B are defined by

A = 12�T

r4
· β2

1 − β2
· im I − 12�T

r3
· β2

1 − β2
· im D1 − 3ϒ1 I

ε
+ 3ϒ2

ε
D2

+3ϒ2

εr
D1 − 3ϒ2

ε
· m2

r2
I (B1)

and

B = ε2

(
D4 + 2

r
D3 − 1

r2
D2 − 2m2

r2
D2 + 1

r3
D1 + 2m2

r3
D1 − 4m2

r4
I + m4

r4
I

)
, (B2)

in which I is the identity matrix and D1 through D4 are, respectively, the first through fourth order
Chebyshev differentiation matrices (Weideman and Reddy10). The annular gap width β ≤ r ≤ 1 is
mapped to the canonical interval [−1, 1] by introducing a new radial variable ρ defined as

ρ = 2r − 1 − β

1 − β
. (B3)

The clamped boundary conditions now require

f |ρ=−1 = f |ρ=1 = 0, fρ |ρ=−1 = fρ |ρ=1 = 0,

where fρ = 1
2 (1 − β) fr . Eigenvalues are determined using MATLAB’s built-in function eig from

which it is straightforward to determine the azimuthal wave-number with the largest associated
(linear) growth rate for a given choice of β, ε, �T, ϒ1, and ϒ2.
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