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Abstract

This dissertation research addresses the challenge o f scaling up algorithms for se

quential decision making under uncertainty. In my dissertation, I developed new 

approximation strategies for planning and learning in the presence o f uncertainty 

while maintaining useful theoretical properties that allow larger problems to be 

tackled than is practical w ith exact methods. In particular, my research tackles 

three outstanding issues in sequential decision making in uncertain environments: 

performing stable generalization during off-policy updates, balancing exploration 

w ith exploitation, and handling partial observability o f the environment.

The first key contribution o f my thesis is the development o f novel dual rep

resentations and algorithms for planning and learning in  stochastic environments. 

This dual view I have developed offers a coherent and comprehensive approach to 

optimal sequential decision making problems, provides an alternative to standard 

value function based techniques, and opens new avenues for solving sequential de

cision making problems. In particular, I have shown that dual dynamic program

ming algorithms can avoid the divergence problems associated w ith the standard 

prim al approach, even in the presence o f approximation and off-policy updates.

Another key contribution o f my thesis is the development o f a practical ac

tion selection strategy that addresses the w ell known exploration versus exploitation 

tradeoff in  reinforcement learning. The idea is to exploit information in a Bayesian 

posterior to make intelligent actions by growing an adaptive, sparse lookahead tree. 

This technique evaluates actions while taking into account any effects they m ight 

have on future knowledge, as w e ll as future reward, and outperforms current selec

tion strategies.

Finally my thesis also develops a new approach to approximate planning in
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partially observable Markov decision processes. Here the challenge is to over

come the exponential space required by standard value iteration. For this problem, 

I introduced a new, quadratic upper bound approximation that can be optimized 

by semidefinite programming. This approach achieves competitive approximation 

quality while maintaining a compact representation; requiring computational time 

and space that is only linear in  the number o f decisions.

Overall, my dissertation research developed new tools for computing optimal 

sequential decision strategies in  stochastic environments, and has contributed sig

nificant progress on three key challenges in reinforcement learning.
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Chapter 1 

Introduction

Imagine a mobile robot selling candies, bustling around the building to optimize 

its profit. The robot must decide where to v is it while navigates from one place to 

another. The outcomes o f the robot’s actions are not totally predictable because 

its environment is uncertain. The robot is facing a problem o f sequential decision 

making under uncertainty. A t each decision point, the robot has to choose an action. 

A fter executing the action, it finds itse lf in a new state while receiving feedback or 

reward from  the environment (e.g., someone buying a candy). The goal o f the robot 

is to choose a sequence o f actions to affect its environment so that it can maximize 

its total reward.

The solution to a decision making problem is called a policy: a behavior strategy 

for selecting actions based on the states o f the environment. Therefore, solving a 

decision making problem amounts to computing an optimal policy. The sequential 

decision making problem can be categorized as either a planning problem, where 

one is given a complete specification o f the environment dynamics and reward func

tion (i.e., a model), or a learning problem where one does not in itia lly  know the 

model. The planning problem is normally but not exclusively tackled by linear 

programming (LP) or dynamic programming (DP) methods, whereas the learning 

problem is solved by reinforcement learning (RL) methods. Since RL techniques 

generalize DP techniques, they can also be applied when the environment is known.

M y research attempts to tackle three key outstanding issues in sequential deci

sion making under uncertainty: combining off-policy updates w ith generalization, 

balancing exploration and exploitation, and handling partial observability o f the

1
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environment.

First, off-policy learning means learning about a policy other than the one that 

is currently being followed by the agent. O ff-policy learning is appealing for two 

reasons: ( 1) this mechanism allows learning about many different policies in  paral

le l w ith the same stream o f experience from follow ing a single policy (e.g., learning 

to walk to a meeting room from the experience o f moving to a lab); (2) it allows 

for learning the value o f an optimal policy by follow ing a suboptimal policy (e.g., 

Q-leaming), which is very useful when the optimal policy is unknown. Unfortu

nately, it is well-known that Q-leaming w ith linear function approximation (a way 

to generalize the state space) can diverge. It is challenging but desirable to gain 

better convergence guarantees for off-policy updates w ith generalization.

Second, the problem o f balancing exploration and exploitation arises when the 

model o f an environment is unknown. A t each decision point, the robot faces the 

challenging issue o f how to choose its action during learning. Here there is a fun

damental tradeoff: it  can exploit its current knowledge to gain reward by taking 

actions known to give relatively high reward, or explore the environment to gain 

information by trying actions whose value is uncertain. This is the famous prob

lem o f trading o ff between exploitation and exploration during action selection in 

reinforcement learning.

Third, partial observability o f the environment is another important issue in de

cision making. One commonly used formal specifications o f sequential decision 

making problems is the partia lly  observable Markov decision process (POMDP), 

which does not assume fu ll observability o f the state o f the environment. Unfortu

nately, even approximate planning in POMDPs is known to be hard, and developing 

heuristic planners that can deliver reasonable results in practice has proved to be a 

significant challenge.

This thesis seeks to address these three key outstanding problems in sequential 

decision making under uncertainty from the perspective o f representation, planning, 

and learning. In particular, I am trying to answer the follow ing questions:

•  Is it  possible to do off-policy updates w ith generalization while avoiding the 

risk o f divergence? I f  possible, how?

2
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•  How can we balance the fundamental trade-off between exploration and ex

ploitation during action selection?

• How can we approximate POMDP planning efficiently in terms o f memory 

and computation?

1.1 Contributions

Addressing the above three problems, this thesis pursues new approximation strate

gies for planning and learning under uncertainty that maintain useful theoretical 

properties, while allowing larger problems to be tackled than is practical w ith exact 

methods. The key contributions o f this thesis are three-fold.

Dual representations and algorithms (Chapter 3). I  present dual representa

tions and a body o f novel dual algorithms for planning and learning in  sequential de

cision making environments. I also investigate the convergence properties o f these 

new algorithms both theoretically and empirically. Dual representations maintain 

an explicit representation o f stationary distributions as opposed to value functions. 

Therefore, dual update algorithms, since they are based on estimating normalized 

probability distributions rather than unbounded value functions, avoid divergence 

even in  the presence o f approximation and off-policy updates. Moreover, this dual 

view offers a coherent and comprehensive perspective on optimal sequential de

cision making problems, provides a viable alternative to standard value function 

based techniques, and opens new avenues for solving sequential decision making 

problems.

A new technique for on-line action selection (Chapter 4). I propose a relatively 

straightforward action selection strategy to address the w ell known exploration ver

sus exploitation tradeoff. The technique exploits information in a Bayesian pos

terior to make intelligent actions by growing an adaptive, sparse lookahead tree. 

I demonstrate that Bayesian sparse sampling improves action selection in  simple 

reinforcement learning scenarios.

3
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A  novel algorithm for approximate POMDP planning (Chapter 5). I  introduce 

a new approach to approximate value-iteration for POMDP planning that is based 

on quadratic rather than piecewise linear function approximators. Specifically, I ap

proximate the optimal value function by a convex upper bound composed o f a fixed 

number o f quadratics, and optimize it by semidefinite programming. I  demonstrate 

that my approach can achieve competitive approximation quality to current tech

niques while s till maintaining a bounded size representation o f the value function 

approximator. Overall, the technique requires computation time and space that is 

only linear in the number o f decision stages.

1.2 Thesis Outline

The thesis is organized as follows. Chapter 2 presents the standard background on 

Markov Decision Processes (MDPs) and basic reinforcement learning algorithms. 

Chapter 3 introduces novel dual representations, new forms o f dynamic program

ming algorithms and their convergence analysis. Chapter 4 presents the idea o f 

Bayesian sparse sampling, a new on-line action selection strategy that grows a 

sparse lookadhead tree. Chapter 5 introduces an approximate algorithm for POMDP 

planning, which represents value functions as quadratics and optimizes them by 

semidefinite programming. Chapter 6 concludes w ith a summary o f my contribu

tions and a consideration o f future research.

Publication Notes

Some o f the material from Chapter 3 appears in (Wang et al., 2007). The key 

results from Chapter 4 were reported in (Wang et al., 2005). The work in Chapter 5 

was published in (Wang et al., 2006).

4
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Chapter 2 

Background: Markov Decision 
Processes

In  this chapter, I present some fundamental background on Markov decision pro

cesses. I  then conclude this chapter w ith a lis t o f three key outstanding problems 

in sequential decision making in uncertain environments, which w ill be addressed 

in the follow ing chapters o f the thesis. The goal here is to establish the founda

tion for the presentation o f my thesis research. A  more comprehensive treatment o f 

Markov decision processes can be found in standard texts (Puterman, 1994; Bert- 

sekas, 1995).

The interaction between a decision maker and an environment is commonly 

modeled as a Markov decision process (MDP). A  Markov decision process (MDP) 

(Puterman, 1994; Kaelbling et al., 1998) is a mathematical formulation o f the prob

lem o f sequential decision making under uncertainty. It can be defined by a tuple 

(.S , A , T , 11), where

•  S  is the set o f states o f the environment,

•  A  is the set o f actions,

•  T  is a transition (probability) function, T {s, a, s ') =  p (s ' | s, a ) , and

•  1Z is a reward function, lZ (s , a ) =  E[r | s, a],

w here p  denotes the probability, E denotes the expectation, s G S, s ' G S, a  G A ,  
and r G R .

The interaction between the decision maker and the environment can be denoted

as:

So; flo> r i) Si, a i ,  r2, S2 . . . ,  st , a t , r t+ i ,  st+ 1 , . . .  (2 . 1)

5
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The decision maker begins in  an in itia l state sq- A t each time step t ,  it  observes 

the current state o f the environment st G S  and executes an action at G A ,  then it 

receives a reward rt f l  specified by the reward function 7Z (s t , a t ) =  E [rt+i | st , a t] 

and finds itse lf in a new state st+i G S, which is specified by the transition function

T [s t ,  d t i &t-i-i) p(^t+i|®t) d t).

The m odifier “ Markov”  is used because the decision making process satisfies 

the Markov assumption, which requires that the state transition probability function 

and reward function depend only on the current state o f the environment and the 

decision maker’s action, and not on the history o f states and actions. That is,

. .  . , r i , s 0,a 0) =  p (s t+ 1 )r t+1 \su a t ) (2.2)

The solution to an MDP is called a policy. It is a mapping n :  S  x A  —> [0,1] 

where 7r(s, a) is the probability o f taking action a  in  state s. The quality o f a policy 

can be measured by various optim ality criteria for a given problem.

2.1 Optimality Criteria for MDPs

In an MDP there is an obvious tradeoff between obtaining immediate rewards 

and guiding the process toward future states that yie ld potentially greater rewards. 

Therefore, the optim ality criteria or optim ization objectives are usually defined as 

a function o f the future rewards obtained. That is, the goal o f a decision maker in 

an MDP is to find a policy that maximizes the reward obtained over the long run. 

However, there are different ways to define long run reward in an MDP and these 

can affect the choice o f the optimal policy.

Undiscounted Reward for Episodic Tasks. In episodic (or fin ite horizon) tasks, 

the environment has one or more terminal states. A ll the transitions from the ter

minal state go back to itse lf w ith probability one and reward zero. The decision 

maker’s goal is to maximize the expected sum o f the reward obtained over a finite 

episode t =  0 ,..., T  — 1, where T  may be a random variable,

E [ri +  r 2 H b r T \ (2 .3)

6
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Discounted Reward for Continuing Tasks. In continuing (or infinite horizon) 

tasks, the sum o f the rewards can be infinite as the decision maker m ight take an 

infinite number o f actions. Moreover, short-term rewards are preferred over long

term rewards. Therefore, the objective is to maximize the total expected discounted 

reward

E [ r i +  7r 2 +  7V 3 H ] (2.4)

where 0 <  7 <  1 and all rewards are bounded. Note that i f  we let 7 =  1, episodic 

problems can be viewed as a special case o f continuing problems: the discounted 

and undiscounted reward measures agree for any finite horizon tasks.

In this setting, it is useful to define the notion o f a value function. The value for 

a policy tt in  state st is defined as the expected discounted sum o f future rewards 

starting from state st and follow ing policy tt thereafter

" O O

V ^(st) =  E y ^ 7*7l( s t ,a t ) s 0 =  st ,-K (2.5)
_t= 0

The goal o f the decision maker is to fo llow  a policy tt*  that maximizes the value 

function in every state; that is, to fo llow  a policy n* such that

\ T m(s) >  V*{s)  V t t V s g S  (2.6)

The Bellman equation relates the value o f a state to the values o f its possible 

successor states

v ' M  =  Y ,  7r(su at ) [ l l ( s u at) + 7  T(s t ,a t ,s t+1)V*(s t+i)  j (2.7)
a t € A  y s t + i £ S  J

It can be shown that any function that satisfies the follow ing “ optimal”  form o f 

Bellman’s equation must also be the value function o f the optimal policy (Bertsekas 

&  Tsitsiklis, 1996). That is, i f  V*  satisfies

V*(st) =  max [ 7l(st ,at) + 7  Y ]  T (s t , at , st+ i)V *(s t+ i)  I (2.8)
at e A  I  '  I

\  s t + i e S  J

then

V*(st) =  max V*(s t) Vst G S (2.9)7T

7
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Similarly, the action value, also called the Q-function for a policy 7r in  state st 

is defined as the expected discounted sum o f future rewards starting from state st 

and taking action at, then follow ing policy 7r thereafter

Qw(st, at) — E
,t=0

The Bellman action value equation is:

so — ao — at, n (2.10)

Qn{st, &t) — &t) +  7 J ]] T(st , at , st+ i)  7r(s(+i, Oi+i)Q 7r(st+i,  at+i)
s t + i € 5  a t + i E A

(2.11)

Sim ilar to above, any function that satisfies the follow ing form o f Bellman’s equa

tion must also be the action value function o f the optimal policy. That is, i f  Q* 

satisfies

at) =  TZ(st ,at) +  7 }  T ( s t ,a t ,st+1) max <2*(sm ,a t+i)  (2.12)

then

Q*(st ,at) =  m axQ7T(st ,at ) Vst e S , a t e A  (2.13)
7r

Solving an MDP often refers to computing the optimal state value function V* 

or the optimal state-action value function Q*, since the optimal policy can be re

covered from V * or Q* by taking greedy action w ith respect to the optimal values,

i.e., argmaxaQ *(s,a) =  argmaxQ lZ(s, a) + 7  J2s'T (s ,a ,s ' )V*(s ' ) .  Note that the 

optimal policy can be directly recovered from Q*, but requires the model (T  and 

1Z) to be recoverable from V*.

Average Reward for Undiscounted Continuing Tasks. Average reward for undis

counted continuing tasks is defined as the long term reward per time step:

E [r! +  r 2 H------b r T\
hm —i i  (2.14)

T —*00 1

Average reward does not depend on the starting state, assuming that any state can 

reach any other state under any policy (i.e., we assume the decision process is er- 

godic). Thus, in the long run the average reward is the same from any state (Sutton
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&  Barto, 1998). I have not been focusing on the average reward case in  my re

search, so do not consider it further here.

So far, I have defined the MDP model and the optim ization objectives. The next 

task is to solve it. Below, I organize the solution techniques for MDPs as planning 

algorithms, learning algorithms, and hybrid techniques.

2.2 Solution Techniques for MDPs

Solving an MDP means finding an optimal policy for it. Under general conditions, 

for a fu lly  specified MDP there is always a deterministic policy n*: S —»■ A  that 

gives the optimal action in  each state (Bertsekas, 1995). An optimal policy can be 

found by directly searching the space o f policies (policy search based methods),1 or 

by computing the optimal value function first and then deriving an optimal policy 

from the value function by choosing greedy actions w ith respect to it (value function 

based methods), as shown above. Furthermore, depending whether the MDP model 

(state transition probability function and reward function) is known or not, value 

function based approaches can be categorized as planning algorithms that require 

the knowledge o f an environment model, or learning algorithms that do not require 

a model.

2.2.1 Planning Algorithms

I f  the MDP model is known, then Equation 2.8 (or Equation 2.12) defines a system

o f equations whose solution is the optimal value function (action value function).

These equations can be solved directly either by linear programming or via dynamic

programming. These algorithms are called planning algorithms for MDPs because

they require knowledge o f the environment (T  and 11).

Linear programming is a procedure for locating the maximum or minimum o f

'The idea of policy gradient search algorithms is to parameterize a policy, estimate the gradient 
of a performance measure of the policy (e.g., average reward over time) with respect to the policy 
parameters, then improve the policy by moving the parameters in the direction of the gradient (Mar- 
bach & Tsitsiklis, 2000; Baxter & Bartlett, 2001; Ng et al., 1999b; Ng & Jordan, 2000; Strens & 
Moore, 2002; Kakade et al., 2003)

9
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a linear function o f variables that are subject to linear constraints. A  form  o f linear 

program that can solve the MDP planning problem is given by Bertsekas (1995)

m in ̂  V (s) subject to
S

V(s) >  K{s,  a) +  7 £ a, T (s , a, s')V{s’) Vs,a (2.15)

Dynamic programming is a method o f solving problems w ith the properties o f 

overlapping subproblems and optimal substructure.2 The two standard dynamic 

programming algorithms for solving MDPs are policy iteration and value iteration 

(Bertsekas, 1995).

Policy Iteration. The policy iteration algorithm (see Table 2.1) iteratively eval

uates a policy, computes the value function for a given policy, and improves the 

policy by choosing the greedy action w ith respect to the current estimates o f the 

value function. One drawback o f the policy iteration algorithm is that the policy 

evaluation phase can be costly since it either requires a sizeable linear system to be 

solved or requires m ultiple sweeps through every state to compute the value func

tion iteratively. However, the algorithm is guaranteed to converge to an optimal 

policy in a finite number o f policy-update iterations (Bertsekas, 1995).

Value Iteration. The value iteration algorithm (see Table 2.2) tries to avoid the 

drawback o f a doubly nested loop, as in the policy iteration algorithm. This algo

rithm  uses the update form o f the Bellman optimal value function (see Equation 

2 .8)

V(s) <— max ( TZ(s,a) + 7  T(s,a,  s')V(s') | (2-16)
\  s'es /

to approximate the optimal value function iteratively. Once an optimal value func

tion is found, the optimal policy can be recovered by choosing the greedy action in 

each state

7T (s) =  argmax ( 7Z(s, a) +  7 ^  T(s,  a, s ')V (s ') J (2.17)
a V s'es J

2Optimal substructure means that optimal solutions of subproblems can be used to find the opti
mal solutions of the overall problem.

10
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Note that recovering the greedy policy 7r* from the optimal state value function 

requires knowing the model (T  and 71). The value function obtained w ith value 

iteration is only guaranteed to converge to the optimal value function in  the lim it. 

However, a value function sufficient to recover the optimal policy w ill be found 

after a fin ite number o f iterations (Bertsekas, 1995). In my work below, I  w ill refer 

to this as the Bellman Iteration algorithm, for reasons that w ill become clear in 

Chapter 3.

2.2.2 Learning Algorithms

I f  the model is unknown, one can s till estimate the optimal value (action value) 

function simply by interacting w ith the environment. There are two standard ap

proaches to estimating the optimal value function. The first techniques are based on 

temporal difference (TD) learning (Sutton, 1984) or Monte Carlo Methods (M ichie 

&  Chambers, 1968) (referred to as value-based learning or model free learning), 

which attempt to estimate the optimal value function directly without ever attempt

ing to leam the model (T  and 71). The second approach is to directly learn a model 

and then plan using it (referred to as model-based learning).

Most research in reinforcement learning has considered estimating the optimal 

action value function directly from experience. For this purpose, two o f the fun

damental TD methods are Q-leaming (Watkins, 1989) and Sarsa (Sutton &  Barto, 

1998).

The Q-leaming algorithm (see Table 2.3) updates the value o f an executed ac

tion from a sample o f the next state w ith max operator over next actions,3 and can 

leam the optimal value function while follow ing another policy (referred to as off- 

policy learning). The Sarsa algorithm (see Table 2.4), on the other hand, estimates 

the action value function for a policy by a sample o f the next state,4 and improve 

this policy by being greedy w ith respect to the estimated value, then follows the im 

proved policy (referred to as on-policy learning). These algorithms both converge 

to optimal action value function w ith probability 1 as long as a ll the state-action

3That is, maxa/ Q (s \ a').
4Thatis, Q (s',a').

11
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Algorithm: Policy Iteration

1. Initialization 
For each s G S

V (s ) <— arbitrary value
7r(s) *— admissible action in state s

2. Policy Evaluation 
Repeat

Amax * 0
For each s e S

w (s )  <— V ( s )

V ( s )  < -  TZ(s, t t ( s ) )  +  7  T , s,e S  T (s, t t ( s ) ,  s ' ) V ( s ' )

Amax < m a x  (Amax  > I ̂ ( s )  |)
until A max <  e (a small positive number)

3. Policy Improvement 
policy-stable  <— true 
For each s e S

best-action <— 7r(s)
t t ( s )  < -  argmaxa ( 7 £ ( s ,  a )  +  7  Y ) s'e S  T ( s > a > s ' ) v (s 0 )
If best-action 7  ̂ 7r(s), then policy-stable  <— false 

If policy-stable, then stop; else go to 2

Table 2.1: The policy iteration algorithm

A lgorithm : V alue Iteration

Initialize V (s )  arbitrarily 
Repeat

Am ax i  0 
For each s €  S

v (s ) <— V (s )

V (s )  <- m axfl (TZ(s, a) +  7  J2s'eS T a > s ')v (s '))
A max * m ax (A max, |u(s) ^ ( s )|)

until A max <  e (a small positive number)

Output a deterministic policy n
7r(s) <- axgmaxa (K (s , a) +  7  £ s, e 5  T (s , a, s') V (s'))

Table 2.2: The value iteration algorithm

12
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Algorithm: Q-learning

For each s €  S, a e  A
Initialize Q (s ,a )  (How? e.g. arbitrarily)

Repeat (for each episode):
Initialize s (How? e.g. arbitrarily)
Repeat (for each step o f episode):

Choose a from s using policy derived from Q  (How? e.g. e-greedy) 
Take action a and observe the reward r and next state s'
Q (s, a) *— Q (s, a) +  a ( r  +  7 max„/ Q (s ',a ')  — Q (s, a)) 
s <— s' 

until s is terminal

Table 2.3: The Q-leaming algorithm

A lgorithm : Sarsa

For each s e S, a € A
Initialize Q (s ,a )  (How? e.g. arbitrarily)

Repeat (for each episode):
Initialize s (How? e.g. arbitrarily)
Choose a from s using policy derived from Q  (How? e.g. e-greedy) 
Repeat (for each step o f  episode):

Take action a and observe the reward r  and next state s'
Choose a' from s' using policy derived from Q  (How? e.g. e-greedy)
Q (s, a) <— Q (s, a) +  a { r  +  7 Q (s', a!) -  Q (s, a)) 
s <— s' a <— a' 

until s is terminal

Table 2.4: The Sarsa algorithm

13
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pairs are visited an infinite number o f times (Watkins &  Dayan, 1992; Tsitsiklis, 

1994a; Singh et al., 2000).

In Table 2.3 and Table 2 .4 ,1 insert the label “How?” to emphasize the connec

tion between my research in Chapter 4 and these existing popular reinforcement 

learning algorithms. M y research in Chapter 4 contributes to offering solutions to 

these “How?” questions.

2.2.3 Hybrid Solution Techniques for MDPs

When the MDP model is not given, one may attempt to estimate the transition 

function and reward function by interacting w ith the environment first, and then 

determining a policy by solving the planning problem in the learned model. This is 

the model based approach. In addition, many hybrid methods have been proposed, 

such as actor-critic (Sutton, 1984), Dyna (Sutton, 1991), and prioritized sweeping 

(Moore &  Atkeson, 1993), which combine both a model-based learning approach 

w ith a direct value-based learning approach.

Specifically, actor-critic methods are temporal difference methods that have 

both a policy structure for action selection (actor) and an estimated state value func

tion (critic). Dyna-Q is another architecture for integrating planning, leaning, and 

acting. The idea is to leam a model from real experience, and then use the model to 

generate simulated experience, which can be used to update the value function. In 

the Dyna architecture, the value function update starts w ith a random state-action 

pair that is uniform ly sampled from the simulated experience. This is interleaved 

w ith updates based on real experience, using either Sarsa or Q-leaning. Prioritized 

sweeping is an improvement to the experience simulator portion o f Dyna, which 

ranks the state-action pairs according to how much their value is like ly  to have 

changed.

2.3 Approximate Solution Techniques for MDPs

In  order to cope w ith large sequential decision making problems, many approaches 

have been proposed. However, I  w ill only focus on the ones that are closely relevant

14
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to my research. These approximate approaches can be categorized as value function 

approximation, sampling, and exploiting model structure.

2.3.1 Value Function Approximation

Value function approximation approach generalize across state space or state-action 

pair space by exploiting the structure o f the problem. It is mainly applied to scale 

up learning algorithms to large sequential decision making problem domains. It can 

also be used for planning algorithms.

The simplest and most common approach to representing a value function w ith 

a compact approximation is to parameterize the value function as some simple func

tion o f features and adjust the parameters based on gradient principles. The most 

popular approach, for example, is to approximate the state value function V  (s) as a 

linear function o f the parameter vector w  (an k x 1 vector) and features o f the state 

$ (s) (an k x 1 vector); that is

V(s) =  $ (s )T w  (2.18)

The gradient o f the approximated value function w ith respect to w  is then given by

V wT>(s) =  $ (s) (2.19)

The TD update techniques mentioned above (Table 2.3 and Table 2.4) can be modi

fied to work w ith linear value function approximations instead o f the simple tabular 

representations considered before; see for example (Sutton &  Barto, 1998). It is 

also possible to approximate value function w ith nonlinear function, e.g., by using 

a neural network.

Many successful applications o f reinforcement learning w ith function approx

imation have been reported in the literature. For instance, TD(A) w ith nonlinear 

function approximation created the famous world-level backgammon master player 

(Tesauro, 1994); Sarsa(A) w ith linear function approximation has been applied to 

control the acrobot (Sutton, 1996) and to leam decisions in a keepaway task o f 

RoboCup soccer (Stone et al., 2005); reinforcement learning algorithms were used 

for autonomous control o f a helicopter (Ng et al., 2004; Abbeel et al., 2007).

15
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Although there are many successful examples o f reinforcement learning algo

rithms being applied to practical problems, there are also examples that show some 

forms o f approximate reinforcement learning algorithms can lead to instability or 

divergence (Bradtke, 1993; Thrun &  Schwartz, 1993; Boyan &  Moore, 1995; Baird, 

1995; Gordon, 2000). Therefore, it is useful to understand the convergence proper

ties o f these approximate algorithms.

In Chapter 3 ,1 w ill present my research work on dual representations, dual dy

namic programming algorithms, and their convergence analysis, which w ill address 

some o f these convergence issues.

2.3.2 Sampling

A  completely different approach to approximating value functions in large state 

spaces is never to keep an explicit representation, but rather directly estimate the 

values o f visited states as they are encountered. This requires access to either in 

teraction experience or a generative model, but not an explicit representation o f the 

environment. Therefore, sampling is generally applied to planning.

The Monte Carlo approach is a general strategy for approximating values in 

Markov decision processes. It estimates value functions based on averaging over 

samples either from real experience or simulated experience. Since Monte Carlo 

methods can focus on only visited states, they are efficient in updating value esti

mates, and may s till work even when the Markov assumption o f a decision process 

is violated. The details o f Monte Carlo algorithms can be found in (Sutton &  Barto, 

1998).

Different from Monte Carlo methods in  averaging sample trajectories, the sparse 

sampling approach (Kearns et al., 2001) samples experience w ith some structure 

(e.g., shared states). The idea o f sparse sampling is to enumerate the actions at the 

decision nodes and sample the rewards at the outcome nodes to generate a tree w ith 

a fixed depth (see Figure 2.1). Then, it evaluates the value o f the nodes in  the sparse 

lookahead tree from leaves to the root by alternatively computing expectation at the 

outcome nodes and max at the decision nodes. Finally, the optimal action at the 

current state (root node) is the greedy action w ith respect to the estimated optimal
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value at the root. A  generic outline o f the sparse sampling algorithm for finite hori

zon problems is given in Table 2.5. Note that sparse sampling requires a generative 

model to generate the next state and reward o f a given action during the lookahead 

procedure.

Although sparse sampling requires significant computation to determine each 

action value, it s till has some advantages. First, as Kearns and his colleagues (2001) 

show, it  is guaranteed to produce a near optimal action value for any state encoun

tered. Second, sparse sampling can be easily applied to infinite state spaces. As Ta

ble 2.5 shows, this procedure can be parameterized so that the computational cost 

can be controlled by making the outcome branching factor and lookahead depth 

inputs to the procedure. This requires us to give up the theoretical guarantees o f 

near-optimality, but that should not be surprising, since guaranteed approximation 

in this case is s till provably intractable (Mundhenk et al., 2000; Lusena et al., 2001).

Some subsequent work has attempted to improve the practical efficiency o f 

sparse sampling. One such example is Peret &  Garcia strategy (2004), which is 

an on-line search strategy for action selection in MDPs. Motivated by sparse sam

pling, Peret and Garcia construct a lookahead tree by sampling fixed-length trajec

tories from the current state, employing Boltzmann selection to choose the actions 

along each trajectory. Then the optimal action at the root is the one w ith the best 

overall trajectory reward on average.

Below in Chapter 4, I develop an approach, Bayesian sparse sampling, that 

demonstrates further improvements.

2.3.3 Exploiting Model Structure

Another approach to scaling up is to directly exploit representational structure to 

reduce the computational cost o f storing and computing value function approxima

tions (Boutilier et al., 1999). This approach generally assumes there is a compact 

description o f the transition model T — either a compact decision diagram (Boutilier 

et al., 1999) or a dynamic Bayesian network (Koller &  Parr, 1999)— and a compact 

description o f the reward function. Unfortunately, given such a compact descrip

tion o f the domain, it usually does not fo llow  that the optimal value functions also
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max

r r r r

max maxmax max

a a a a a a  a a

Figure 2.1: Illustration o f a lookahead tree, showing decision (max) nodes and 
outcome (expectation) nodes. Once built, optimal value and action estimates are 
backed up to the root.

GrowSparseTree (node, branchfactor, horizon)

If node.depth = horizon; return

If node.type = “decision”
For each a £ A

child = (“outcome”, depth, node.belstate, a)
GrowSparseTree (child, branchfactor, horizon)

If node.type = “outcome”
F ori =  1...branchfactor

[rew,obs] = sample(node.belstate, node.act)
post = posterior(node.belstate, obs)
child = (“decision”, depth+1, post, [rew,obs])
GrowSparseTree (child, branchfactor, horizon)

EvaluateSubTree (node, horizon)

If node.children = empty 
immed = MaxExpectedValue(node.belstate) 
return immed * (horizon - node.depth)

If node.type = “decision” 
return max(EvaluateSub7rce(node. children))

If node.type = “outcome” 
values = EvaluateSubTree(node.children) 
return avg(node.rewards + values)

Table 2.5: Sketch o f the sparse sampling algorithm. Grows a balanced lookahead 
tree, enumerating actions at decision nodes and sampling at outcome nodes. Suf
ficiently large values o f “ branchfactor”  and “ horizon”  yield approximation guaran
tees.
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have a compact description (Koller &  Parr, 1999; Guestrin et al., 2003). There

fore, one usually has to assume a compact form o f value function approximation in 

addition— either another decision diagram (Boutilier et al., 1999) or a linear value 

function approximation (Koller &  Pan, 1999). Given these approximations, an e ffi

cient (although approximate) form o f dynamic programming (Boutilier et al., 1999; 

Koller &  Pan, 2000) or linear programming (Guestrin et al., 2003; Schuurmans &  

Patrascu, 2001) can be used to efficiently compute an approximate solution.

The main drawback o f these approaches is that the algorithms are very complex 

and do not provide strong guarantees about the quality o f their results (Patrascu 

et al., 2002).

2.4 Partially Observable Markov Decision Processes

Another formal specification o f sequential decision making problems are Partially 

Observable Markov Decision Processes (POMDPs), which relax the assumption o f 

fu ll observability o f the state o f the environment. POMDPs are a general frame

work for optimal decision making under uncertainty and have a wide range o f ap

plications such as robot planning (Spaan &  Vlassis, 2004) and health-care robotics 

(Pineau et al., 2003a). A  POMDP model is defined by a tuple (S, A , T , 7Z, H, O ), 

where

•  S, A, T , and 7Z define the underlying Markov decision process o f the POMDP,

•  Q is the set o f observations,

•  O is a observation function, 0 \ S x A  —> f l

Similar to an MDP, a POMDP is defined by a set o f states, a set o f actions, a state 

transition function, and a reward function. However, POMDPs extend MDPs by 

introducing an observation function p(o'\a, s') that governs how a noisy observation 

o' e O is related to the underlying state s' and the action a. Having access to only 

noisy observations o f the state complicates the problem o f choosing optimal actions 

significantly. The agent generally does not know the exact state o f the environment, 

but instead must infer a distribution over possible states, a “ be lie f state” , from the 

history o f observations and actions. Nevertheless, a be lie f state in  a POMDP is a
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sufficient summary o f history for decision making and this notion o f state can be 

updated by Bayes’ rule (see Section 4.2).

Learning a POMDP model means learning an observation function O, transition 

function T , and reward function 1Z. Given a model (i.e, knowing these functions), 

finding a policy for action selection is called POMDP planning. The solution to a 

POMDP is a policy, which specifies the best action to take for every belie f state. As 

one can see, the set o f be lie f states is generally continuous and high dimensional. 

Computing an optimal policy for a POMDP is known to be hard and even approx

imate POMDP planning has proven to be a significant challenge (Mundhenk et al., 

2000; Madani et al., 2003).

Therefore, some form o f approximation is important here, perhaps even more 

so than in  the simpler MDP case. Algorithms to POMDP planning can be cate

gorized as value function approximation (Parr &  Russell, 1995; Hauskrecht, 2000; 

Pineau et al., 2003a; Spaan &  Vlassis, 2005), policy based optim ization (Ng &  

Jordan, 2000; Poupart &  Boutilier, 2002; Poupart &  Boutilier, 2003; Poupart &  

Boutilier, 2004; Amato et al., 2006) and stochatic sampling (Thrun, 2000; Keams 

et al., 2002). Specific approximation strategies relevant to my research w ill be de

scribed further in Chapter 5.

In Chapter 5 ,1 w ill present my approach for approximating POMDP planning.

2.5 Summary

So far I have reviewed models o f sequential decision making, MDPs and POMDPs, 

and some standard algorithms for planning and learning in these models exactly and 

approximately. In Chapter 3, 4, and 5 ,1 w ill present my new approximate strategies 

for planning and learning in  uncertain environments. M y research is motivated 

by trying to address three key outstanding problems in sequential decision making 

under uncertainty.

•  Is it possible to do off-policy updates w ith function approximation while 

avoiding the risk o f divergence? I f  possible, how?

•  How can we balance the fundamental trade-off between exploration and ex-
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ploitation during action selection?

•  How can we deal w ith partial observability in MDPs efficiently in  terms o f 

memory and computation?

Each o f these questions w ill be addressed in turn in the next three chapters.
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Chapter 3 

Dual Representations and Dual 
Algorithms

In this chapter, I propose to use a new dual approach to dynamic programming. 

The idea is to maintain an explicit representation o f v is it distributions as opposed to 

value functions. A  significant advantage o f the dual approach is that it  allows one to 

exploit w ell developed techniques for representing, approximating, and estimating 

probability distributions, w ithout running the risks associated w ith divergent value 

function estimation. I introduce novel dual representations and develop dual algo

rithms. Moreover, I show that dual dynamic programming algorithms remain stable 

in  situations where standard value function estimation diverges. I also show that the 

dual view yields a viable alternative to standard value function based techniques and 

opens new avenues for solving sequential decision making problems.

In some sense, reinforcement learning algorithms can be viewed as sampled ver

sions o f dynamic programming algorithms. That is, we can get the corresponding 

learning algorithms w ith point-wise updates (RL algorithms) by sampling the model 

o f an MDP in these planning algorithms (DP algorithms). Therefore, understanding 

the underlying updates o f dynamic programming algorithms w ill help understand 

reinforcement learning algorithms. For clarity o f the presentation, dual represen

tations, dual dynamic programming algorithms, and their convergence analysis are 

presented in  this chapter. Dual reinforcement learning algorithms are given in Ap

pendix B (tabular case) and Appendix C (approximate case).

This chapter is organized as follows. Section 3.1 motivates the idea. Section 3.2
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gives the notation used in  the later presentation. Section 3.3 presents a modified 

dual o f the standard linear program that guarantees a globally normalized state v is it 

distribution is obtained. Novel dual forms o f policy evaluation, policy improve

ment, and Bellman iteration algorithms are organized according to their underlying 

updates in sections 3.4, 3.5, and 3.6. Section 3.7 shows how linear approxima

tion can be used w ith dual representations, allowing it to be applied to large prob

lems. Section 3.8 demonstrates that the advantage o f dual dynamic programming 

algorithms through experimental studies on randomly synthesized MDPs, the star 

problem, and the mountain car problem. Section 3.9 gives the complexity analysis 

o f both prim al and dual dynamic programming algorithms. Finally, Section 3.10 

summarizes the strengths and weaknesses o f the dual representations.

3.1 Motivation

Algorithms for dynamic programming (DP) and reinforcement learning (RL) are 

usually formulated in terms o f value functions— representations o f the long run 

expected value o f a state or state-action pair (Sutton &  Barto, 1998). The concept 

o f value is so pervasive in DP and RL, in  fact, that it  is hard to imagine that a value 

function representation is not a necessary component o f any solution approach. Yet, 

linear programming (LP) methods clearly demonstrate that the value function is not 

a necessary concept for solving DP problems. In LP methods, value functions only 

correspond to the prim al formulation o f the problem, and do not appear at all in 

the dual. Rather, in  the dual, value functions are replaced by the notion o f state 

(or state-action) visit distributions (Puterman, 1994; Bertsekas, 1995; Bertsekas 

&  Tsitsiklis, 1996). It is entirely possible to solve DP and RL problems in the 

dual representations, which offer an equivalent but different approach to solving 

decision-making problems w ithout any reference to value functions.

Despite the w ell known LP duality, dual representations have not been w idely 

explored in DP and RL. In fact, they have only been anecdotally and partially 

treated in  the RL literature (Dayan, 1993; Ng et al., 1999a), and not in  a man

ner that acknowledges any connection to LP duality. Nevertheless, as I  w ill show,
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there exists a dual form  for every standard DP and RL algorithm, including policy 

evaluation, policy iteration, Bellman iteration, temporal difference (TD) estimation, 

Sarsa learning, and Q-leaming, and for variants o f these algorithms that use linear 

approximation. Reinforcement learning algorithms can be found in Appendix B 

(tabular case) and Appendix C (approximate case).

In this chapter, I  offer a systematic investigation o f dual solution techniques 

based on representing state v is it and state-action v is it distributions instead o f value 

functions in  the planning context (i.e. given an environmental model). Although 

many o f my results show that the dual dynamic programming approach yields 

equivalent results to the prim al approach in tabular case — as one would expect—  

the dual approach has potential advantage over the prim al in approximate case as I 

w ill show below. The dual view offers a coherent and comprehensive perspective 

on optimal sequential decision making problems, just as the primal view, but of

fers new algorithm ic insight and new opportunities for developing algorithms that 

exploit alternative forms o f prior knowledge and constraints. In fact, there is the 

opportunity to develop a jo in t primal-dual view o f sequential decision making un

der uncertainty, where combined algorithms m ight be able to exploit the benefits o f 

both approaches in theoretically justified ways.

3.2 Preliminaries

For the easy o f exposition and elegance o f presentation, I w ill express the transition 

function and the reward function o f an MDP, which I  introduced in Chapter 2, in a 

m atrix form  below.

•  The transition model is expressed as an |Sj | A lxIS) transition matrix P, whose 

entries P(sa,s') specify the conditional probability o f transitioning to state s' 

starting from state s and taking action a (hence P  is nonnegative and row 

normalized), i.e., P(sa,s') =  T {s ,a ,s ')  =  p (s '|s ,a ), where p(s' | s, a) >  0 

and Y ,s> P(s’ I s>a) =  1 V s,a.

•  The reward function is expressed as an |S ||A | x 1 reward vector r , whose 

entries r(sa) specify the reward obtained when taking action a in  state s, i.e.,
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r(sa) =  TZ( s ,a )  =  E [r | s,a].

In this chapter, I w ill use 1 for a vector w ith all ones, whose dimension w ill be 

clear from context.

Here I  focus on addressing the problem o f computing an optimal behavior strat

egy for an MDP where the optim ality criterion is maximizing the infinite horizon 

discounted reward r \  +  7r 2 +  7 V 3  +  • • • =  l t~1'r t given a discount factor 

0 <  7  <  1. It is known that an optimal behavior strategy can always be expressed 

by a stationary policy. In this chapter, I w ill represent a stationary policy by an 

IS 'im  x 1 vector it ,  whose entries 7T(sa) specify the probability o f taking action a 

in  state s;  that is Y la ^(sa) =  1 for all s. Stationarity refers to the fact that the 

action selection probabilities do not change over time. In addition to stationarity, 

it is known that furthermore there always exists a deterministic policy that gives 

the optimal action in each state (i.e., simply a policy w ith probabilities o f 0 or 1) 

(Bertsekas, 1995).

The main problem is to compute an optimal policy given either a complete spec

ification o f the environmental model P  and r  (the “planning problem"), or lim ited 

access to the environment through observed states and rewards and the ab ility  to 

select actions to cause further state transitions (the “ learning problem"). The plan

ning problem is normally tackled by linear programming or dynamic programming 

methods (see Section 2.2.1), whereas the learning problem is solved by reinforce

ment learning methods (see Section 2.2.2).

3.3 Linear Programming

To establish the dual form o f representation, I begin by briefly reviewing the LP ap

proach for solving MDPs in the discounted reward case. Here I assume we are given 

the environmental model P  and r, the discount factor 7 ,  and the in itia l distribution 

over states, expressed by an | Sj x 1 vector //.

A  standard LP for solving the planning problem can be expressed as

m in (l — y)p,Tv  subject to
V

V(S) ^  *̂(sa) +  i P {  Vs,  a  (3 .1 )
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where v  is the state value function (see Equation 3.9 for the matrix form definition). 

By introducing an |5 j x IS) |zl| marginalization matrix, which is bu ilt by placing |S| 

row blocks o f length | A  | in  a block diagonal fashion, where each row block consists

That is, E is constructed to simply ensure that the constraint STv  >  r  +  y P v  

given in  the above matrix form  LP corresponds to the system o f inequalities v (s) >  

r (sa) +  7 -P(sa,:)v  Vs, a in  the prim al LP.

It is known that the optimal solution v* to this LP corresponds to the value 

function for the optimal policy (Bertsekas, 1995; Bertsekas &  Tsitsiklis, 1996). In 

particular, given v*, the optimal policy can be recovered by

Note that /j, and (1 — 7) behave as an arbitrary positive vector and positive 

constant in the LP above and do not affect the solution, provided /x > 0 and 7 <  1 

(def,). However, both play an important and non-arbitrary role in the dual LP below 

(as we w ill see) and I  have chosen the objective in Equation 3.2 in a specific way to 

obtain the result below.

To derive the particular form o f the dual LP, which w ill be exploited below, 

I first introduce a |S||H | x 1 vector o f Lagrange m ultipliers d, and then form the 

Lagrangian o f the standard LP (see Equation 3.2)

o f all Is
(  1- - -1 \

1- - -1
1. . . 1

V
the primal LP (see Equation 3.1) can be rewritten as

m in (l — 7 )/xt v  subject to
V

ETv  >  r  +  7 -Pv (3.2)

a rg m a xr(sa) +  7 P (sa ,:)V :
a

f  1 i f  a =  a*(s)
\  0 i f  a f  a* (s) (3.3)

L (v ,d )  =  (1 — 7 )/ut v  +  dT (r +  7PV — Et v ), d > 0
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Next, taking the gradient o f the Lagrangian w ith respect to v  and setting the 

resulting vector to equal zero yields

Sd =  (1 — 7 )/z +  7P Td

Substituting this constraint back into the Lagrangian eliminates the v  variable and 

results in the dual LP.

max d Tr  subject to

d >  0, Ed =  (1 — 7 )p  +  j P Td  (3.4)

Interestingly, the follow ing lemma establishes that any feasible vector in the dual

LP is guaranteed to be normalized, and therefore the solution d* is always a jo in t

probability distribution over state-action pairs.

Lemma 1 I f  d  satisfies the constraint in the dual LP (see Equation 3.4), then 

l Td =  1.

Proof: By definition o f E, we have

l Td =  l TEd (3.5)

M ultip ly ing the constraint in  Equation 3.4 by 1T yields

l TEd =  ( l - 7) l T/z +  7 l TP Td 

Since P  is row normalized and p  is a probability distribution,

l TEd =  ( l - 7 ) + 7 l Td (3.6)

From Equations 3.5 and 3.6,

l Td  =  ( l - 7) + 7 l Td (3.7)

Rearranging Equation 3.7 and since 0 <  7  <  1

l Td -  1

I

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



By strong duality, we know that the optimal objective value o f this dual LP 

equals the optimal objective value o f the prim al LP. Furthermore, given a solution 

to the dual d*, the optimal policy can be directly recovered by the much simpler 

transformation (Ross, 1997)

d?
7r (sa)

(so) (3.8)
E a d (sa)

A  careful examination o f the dual LP shows that the jo in t distribution d* does not 

actually correspond to the stationary state-action v is it distribution induced by 7r* 

(unless 7 =  1), but it does correspond to a distribution o f discounted state-action 

visits beginning in  the in itia l state distribution fi.

What this dual LP formulation establishes is that the optimal policy tt* for an 

MDP can be recovered w ithout any direct reference whatsoever to the value func

tion. Instead, one can work in  the dual, and bypass value functions entirely, while 

working instead w ith normalized probability distributions over state-action pairs. 

Although this observation seems lim ited to the LP approach to solving the MDP 

planning problem,1 in  fact, I w ill show that explicit representations o f probability 

distributions over state and state-action pairs can be used as a dual alternative to 

classical DP methods (see Sections 3.4, 3.5, and 3.6), classical RL methods (see 

Appendix B), and even classical approximation methods (see Section 3.7 and Ap

pendix C).

Before I present dual algorithms and their convergence analysis. I find it conve

nient to express a policy 7r by an equivalent representation as an 151 x |S j|A | m atrix

n

n (.s ,s 'a )

7T (sa) i f  5 S
0 i f  s' 7̂  s

(  P(a l« i)

n  =
p(a|s2)

P(a|s3)

P(a\s\s\) J

'The dual LP formulation is equivalent to the primal LP formulation in the tabular case (i.e., no 
duality gap), while the approximate dual LP is different from the approximate primal LP.
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where p (a |s i) =  [7T(Siai)7r(Sia2) ' '  ’ ^(sia^i)]- That is, I I  is a sparse matrix bu ilt by 

placing |S'| row blocks o f length \A\ in  a block diagonal fashion, where each row 

block gives the conditional distribution over actions specified by 7r in  a particular 

state s. Although this representation o f I I  m ight appear unnatural,2 1 find it in fact 

extremely convenient in my research: from this definition, one can quickly verify 

that the |S| x |S| matrix product IIP  gives the state to state transition probabilities 

induced by the policy 7r in the environment P, and the |S ||A |x|S ||A | matrix product 

P II gives the state-action to state-action transition probabilities induced by policy 

7r in the environment P. I w ill make repeated use o f these two matrix products 

below.

Here the dynamic programming algorithms are organized according to their up

date types: on-policy update, policy improvement, and off-policy update. In  addi

tion both state based and state-action based representations are introduced.

First consider the problem o f policy evaluation. Here I assume we are given a 

fixed policy 7r, and wish to compute either its value function in  the prim al or its 

distribution o f discounted visitation distribution in the dual.

3.4.1 State Based Policy Evaluation

First let us examine the standard state based policy evaluation.

Primal Representation

In the prim al view, the role o f policy evaluation is to recover the value function, 

which is defined to be the expected sum o f future discounted rewards (see Equation 

2.5). I can now express this definition in vector-matrix form

t = 0

As is w ell known and easy to verify, this infin ite series satisfies a recursive relation

ship (see Equation 3.10) that allows one to recover v  by solving a linear system o f

2The same definition also used in paper (Lagoudakis & Parr, 2003).

3.4 On-Policy Update

oo

V (3.9)
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15 1 equations on (S'! unknowns.

OO
v  =  J ^ 7 l(ILP)TIr

i= 0
00

=  n r  +  7‘ ( IL P ) ilr
1 = 1

OO

=  n r  +  7 ( n p ) J ^ 7<(n p )<n r
i=0

=  n r  +  7n P v  (3 .io )

For a given policy n , the on-policy operator O is defined as

O v =  n ( r  +  7P v ) (3.11)

It brings the current representation closer to satisfying the policy-specific Bellman 

equation (see Equation 3.10). Therefore, we can have a solution to Equation 3.10 by 

iterating the on-policy operator O. I present an analysis o f convergence properties 

o f the on-policy operator in  Section 3.4.3 below.

Dual Representation

In the dual form o f policy evaluation, one needs to recover a probability d istri

bution over states that has a meaningful correspondence to the long run discounted 

reward achieved by the policy. Such a correspondence can be achieved by recover

ing the follow ing probability distribution over states im p lic itly  defined as

OO

cT =  ( l - ^ ^ ^ Y i u p y  (3.12)
i=o

This infinite series satisfies a recursive relationship (see Equation 3.13) that allows 

one to recover c by solving a linear system o f |5| equations on |S'| unknowns.

OO

cT =  ( i - 7 )/zT £ ; 7 i (n p ) i
i= 0

OO

= ( i - 7)MT + ( i - 7)MT^ y ( n  py
i - 1 

oo

=  ( i -  7 )/xt  +  7 ( i  -  7 )mt  J ^ y c n p ^ n p )
i= 0

=  (1 - 7)p T +  7 cTIIP  (3.13)
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It can be easily verified that Equation 3.12 defines a probability distribution. 

Lemma 2 I f  c satisfies the above definition (see Equation 3.12) then cT l  =  1.

Proof: We know that the definition o f c satisfies Equation 3.13, then we have

cT l  =  (1 -  7 ) / iT l  +  7ct ILP1 

Since IIP  is row normalized and /x is a probability distribution,

cTl  =  (1 — 7)1 +  7CT1 

Rearranging the above equation and since 0 <  7  <  1

cTl  =  1

I

Not only is c a proper probability distribution over states, it also allows one to 

easily compute the expected discounted return o f the policy 7r (see Lemma 3).

Lemma 3 ( 1  — 7  )/xTv  =  cTIIr

Proof: Plugging the definition o f v  (see Equation 3.9) into the le ft o f the above 

lemma yields
OO

( 1 - 7 ) m Tv  =  (1 -  j ) f x T ^ 2 f ( n p y u r
i= 0

Plugging the definition o f c (see Equation 3.12) into the right o f the above lemma 

yields

OO

cTnr -  ( l - 7 )//T ^ y ( I L P ) i l r
i=0

Thus,

(1 — 7 ) / xt v  =  cTIIr

I
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Thus, a dual form o f policy evaluation can be conducted by recovering c from 

Equation 3.13. The expected discounted reward obtained by policy 7r starting in 

the in itia l state distribution p  can then be computed by cTI I r / ( l  — 7 ) according 

to Lemma 3. In  principle, this gives a valid form  o f policy evaluation in  a dual 

representation. However, below I w ill find that merely recovering the state d istri

bution c is inadequate for policy improvement (see Section 3.5), since there is no 

apparent way to improve 7r given access to c. Thus, I am compelled to extend the 

dual representation to a richer representation that avoids an im plic it dependence on 

the in itia l distribution p.

Consider the follow ing definition for an |5| x |5| matrix

OO

M  =  (3-14)
i= 0

This infinite series satisfies a recursive relationship that allows one to recover M  by 

solving a linear system o f | *S”[ equations on 151 unknowns.

OO

m  = ( i - 7) ^ y ( n  py
i= 0

00

=  ( i - 7 ) /  +  ( i - 7 ) ^ 7 i(n p ) i
i = 1

00

=  (1 -  7 ) i  +  (1 -  7 )(7 n p )  ^ 2  y ( u p y
i = 0 
00

= ( i - 7)/ + (7np)(i-7)]Tf(iiPr
i = 0

=  ( l - 7 ) /  +  7n P M  (3.15)

Based on the above recursive relationship, each row o f M  can be written as

(  m iT ^  ̂ (1 — 7 )e !T +  7IIP m iT ^
m2T (1 -  7 )e2T +  7n P m 2T

M  = m 3T = (1 -  7 )e3T -)- 7n P 7n 3T

\  ™|S|T / \  (1 -  7 )e|5|T +  yUPm\s\T /

where es (s =  1, . . . ,  |5 |) is a vector o f a ll zeros except for a 1 in the sth position. 

The matrix M  that satisfies this linear relation is sim ilar to cT, in that each row is a
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probability distribution (Lemma 4 below) and the entries M (SiSq correspond to the 

probability o f discounted state visits to s' for a policy 7r starting in  state s. However, 

unlike cT, M  drops the dependence on /x and obtains a close relationship w ith v  

(Theorem 1 below).

Lemma 4 M l =  1

Proof: Plugging the definition o f M  (see Equation 3.14) into the le ft o f the above

lemma yields oo

M l =  ( l - 7 ) E ^ n P )11
i= 0

Since H P  is row normalized, we have

( n p ) 'i  =  i

Thus, 00
M l =  ( l - 7 ) ^  y i  =  1

i= 0

I

Lemma 5 cT =  /xTM

Proof: Note that the definition o f c (see Equation 3.12) is

OO

cT =  ( l - 7 )MT J > l (n P )1
i=0

Plugging the definition o f M  (see Equation 3.14) into the right o f the above lemma 

yields

OO

/xt M  =  /xt (1 - 7 ) $ > * ( n p )1
i=0

Thus,

cT =  *xTM  (3.16)

I

Interestingly, Lemmas 4 and 5 show that M  is a variant o f Dayan’s “ successor 

representation”  proposed in (Dayan, 1993), but here extended to the infinite horizon

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



discounted case. Moreover, not only is M  a matrix o f probability distributions over 

states, it  allows one to easily recover the state values o f the policy 7r.

Sim ilarly, the on-policy operator for a given policy I I  is

O M  =  (1 -  7 ) / +  7A /ILP  (3.17)

It brings the current representation closer to satisfying the policy-specific Bellman 

equation (see Equation 3.15). Therefore, we can have a solution to Equation 3.15 

by iterating the on-policy operator O (see Section 3.4.3 for convergence results).

Relationship between Primal and Dual Representations

There exists a further connection between state value function v  and state v is it 

distribution M .

Theorem 1 (1 — 7)v  =  M llr

Proof: Plugging the definition o f v  (see Equation 3.9) into the le ft o f the above 

theorem yields

OO

( l - 7 )v  =  ( l - 7 ) E ^ n P )t n r
i=0

Plugging the definition o f M  (see Equation 3.14) into the right o f the above theorem 

yields

M llr =
i=0

n r

Thus,

(1 — 7 )v  =  M n r

A  dual form o f policy evaluation can be conducted by recovering M  from Equa

tion 3.15. Then at any time, an equivalent representation to v  can be recovered by 

M n r /(1  — 7 ), as shown in the above theorem.
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3.4.2 State-Action Based Policy Evaluation

Although state based policy evaluation methods like those outlined above are ade

quate for assessing a given policy, and eventually for formulating DP algorithms, 

for the RL algorithms below I  w ill generally need to maintain jo in t state-action 

based evaluations.

Primal Representation

In the prim al representation, the state-action value function (see Equation 2.11 

for the definition) can be expressed as an |5 j | A\ x 1 vector

OO

q =  £ 7 W r (3.18)
i=0

This state-action value function is closely related to the previous state value function 

(see Equation 3.10) and satisfies a sim ilar recursive relation.

q  =  r  +  7 P I I q  (3 .1 9 )

For a given policy I I ,  the on-policy operator is defined as

O q =  r +  7 ? n q (3.20)

Iterating the on-policy operator O gives a solution to Equation 3.19, which I  show 

form ally in Section 3.4.3.

Dual Representation

To develop a dual form o f state-action policy evaluation, I  use the dual LP rep

resentation introduced in  Section 3.3, and represent a probability distribution over 

state-action pairs that has a useful correspondence to the long run expected dis

counted rewards achieved by the policy
OO

dT =  ( l - 7 ) r / T£ 7 l(P n )1 (3.21)
i=0

This state-action v is it distribution is closed related to the previous state v is it 

distribution (see Equation 3.13) and satisfies a sim ilar recursive relation

dT =  (1 -  7 )i/ t +  7dTP n  (3.22)
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where u  is the in itia l distribution over the state-action pairs,3 whose dimension is 

|S'| \A\ x 1. It can be verified that this defines a probability distribution.

Lemma 6 I f  d  satisfies the above relation (see Equation 3.22) then d T l  =  1. 

Proof: Since IIP  is row normalized and v  is a probability distribution,

dTl  =  (1 -  7 )1̂ 1 +  7 dTP n i  

=  (1 — 7)1 +  7d T l

Rearranging the above equation and since 0 <  7 <  1

d Tl  =  1

I

Not only is d  a proper probability distribution over state-action pairs, it also 

allows one to easily compute the expected discounted return o f the policy n.

Lemma 7 (1 — 7 )izTq =  d Tr

Proof: Plugging the definition o f q  (see Equation 3.18) into the le ft o f the above 

lemma yields

OO
( l - 7 ) i/Tq =  (1 -  7)i^T J ^ 7J(P n )V

i=0

Plugging the definition o f d  (see Equation 3.21) into the right o f the above lemma 

yields

OO
d Tr  =  ( l - 7)r/T J ^ 7i (P n )ir

i = 0

Thus,

(1 — 7) i 'Tq =  d Tr  (3.23)

I

3We can have the relationship i / T =  fj,T U between initial state visit distribution /x and state- 
action visit distribution v  by their definitions.
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A  dual form o f state-action policy evaluation can be conducted by recovering 

d  from Equation 3.22 and computing the expected discounted reward obtained by 

policy 7r starting in  the in itia l state-action distribution v  by d Tr / (1— 7 )  (Lemma 7). 

However, once again we w ill find that merely recovering the state-action distribu

tion d  is inadequate for policy improvement (see Section 3.5), since there is no 

apparent way to improve 7r given access to d. Thus, again, I  extend the dual repre

sentation to a richer representation that avoids an im p lic it dependence on the in itia l 

distribution u.

Consider the follow ing definition for an |5||A| x [,S||A| matrix
OO ^

H  =  ( l - T ^ f O P I i r  (3.24)
i = 0

This infinite series satisfies a recursive relationship that allows one to recover H  by 

solving a linear system o f |5||A| equations on |S||A| unknowns.

H  =  ( l - y ) I  +  y P I lH  (3.25)

The matrix H  that satisfies this linear relation is sim ilar to d T, in that each row 

is a probability distribution (Lemma 8 below) and the entries P(sa,sV) correspond 

to the probability o f discounted state-action visits to {s'a!) for a policy 7r starting in

state-action pair (so). However, H  drops the dependence on p  and obtains a close

relationship w ith q (Theorem 2 below).

Lemma 8 H I  =  1

Proof: Plugging the definition o f H  (see Equation 3.24) into the le ft o f the above 

lemma yields
OO

H I  =  ( l - 7 ) ^ 7i(P n )il
*=o

Since P n  is row normalized, we have

(p n )H  =  1

Thus,
OO

H I  =  ( I - 7 ) =  1
i= 0

I
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Lemma 9 dT =  u r H

Proof: Note that the definition o f d (see Equation 3.21) is

OO

d T =
i = 0

Plugging the definition o f H  (see Equation 3.24) into the right o f the above lemma 

yields

OO

u t h  =  *,T( i - 7 ) ^ Y ( p n r
i = 0

Thus,

d T =  v t H  (3.26)

I

Not only is i f  a matrix o f probability distributions over state-action pairs, it  also 

allows one to easily recover the state-action values o f the policy tt.

For a given policy II, the on-policy operator O is defined as

O H  =  (1 -  7 ) / +  y P I I t f  (3.27)

It brings the current representation closer to satisfying the policy-specific Bellman

equation (see Equation 3.25). Iterating the on-policy operator O gives a solution to

Equation 3.25, which I  show form ally in  Section 3.4.3.

Relationship between Primal and Dual Representations

We observe the connection between state-action value function q and state-action 

v is it distribution H  as follows.

Theorem 2 (1 -  7 )q =  H r

Proof: Plugging the definition o f q  (see Equation 3.18) into the le ft o f the above 

theorem yields

OO

( l - 7)q =  (1 - 7  ) J 2 ^ ( P U y r
i=0
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Plugging the definition o f H  (see Equation 3.24) into the right o f the above theorem 

yields

i = 0
H r  =

Thus,

( l - 7 )q =  H r

I

A  dual form o f state-action policy evaluation can be conducted by recovering 

H  from its Bellman equation (see Equation 3.25). Then at any time, an equivalent 

representation to q  can be recovered by H r / ( l  — 7 ) .  However, there is a many to 

one relationship between the dual and prim al representations because the number 

o f variables in H  ( \S\ \A\x |5||A|) is more than the number o f the constraints given 

by their relation, as shown in  Theorem 2.

Relationship between State and State-action Based Representations. Finally, 

one can relate the state and state-action matrix representations defined above to each 

other. We can have the relationship between state value function v  and state-action 

value function q  in the prim al representation as follows.

Lemma 10 v  =  n q

Proof: By the definitions o f v  (see Equation 3.9) and q  (see Equation 3.18)

OO

n q =
0

00

=  =  v
i = 0

I

The relationship between state v is it distribution M  and state-action v is it d istri

butions H  in  the dual representation is as follows.

Lemma 11 M U  =  I I H
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Proof: By the definitions o f M  (see Equation 3.14) and H  (see Equation 3.24)

OO
m u  = ( i - 7 ) ^ 7 i(np)in

i = 0 
oo

=  ( l - ^ X ^ n c n p ) *
i = 0 

oo

=  n ( i - 7 ) ^ 7l ( n p r  =  n  h
i = 0

I

Thus, to this point, I  have developed new dual representations that can form the 

basis for state based and state-action based policy evaluation, respectively. These 

are defined in terms o f state distributions and state-action distributions, and do not 

require value functions to be computed. In the next section, I w ill examine the 

convergence properties o f on-policy update w ith the dual representations.

3.4.3 Convergence Analysis

I first investigate whether on-policy update w ith the dual representations exhibit 

the same (or better) convergence properties to their prim al counterparts. These 

questions w ill be answered in the affirmative, largely showing equivalence to the 

standard prim al cases. The real advantage o f the dual approach w ill arise below 

when function approximation is considered in Section 3.7. To keep the presenta

tion simple, I w ill concentrate only on state-action based representations, q  and H , 

respectively. Analogous results are easily obtained for the state based representa

tions, v  and M .

For the on-policy operator O, convergence to the Bellman fixed point is easily 

proved in the prim al case, by establishing a contraction property o f O w ith respect 

to a specific norm on q vectors. Although these results are already w ell known, I 

repeat some b rie f details that w ill be helpful later.

First, to establish contraction, define a weighted 2-norm w ith weights given by 

the stationary distribution determined by the policy I I  w ith respect to the transition 

model P. Let z >  0 be a vector such that zTP II =  zT; that is, z is the stationary 

state-action v is it distribution for PH.. (Note that z is not the same as the in itia l
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distribution u  nor the discounted stationary distribution d.) Let Z  =  diag(z). Then 

define the norm

||q ||z2 =  qTZ q  =  £ (ao) Z(Sa)q?so) (3-28)

Crucially, for this norm, a state-action transition is not an expansion.

Lemma 12 ||P IIq ||z < ||q||z (Tsitsiklis &  Van Roy, 1997)

Proof: The result follows from Jensen’s inequality

ll-Pnqllz =  z (so ) | 'y ] [■Pnl(aa,S'a')q (8la')
(sa ) \  ( s 'a ')

— y / z (sa) y ) [■ P n ] ( s0;3/a ' ) q ( 5>a?)
(.sa ) ( s 'a ')

^3 ^(*'a') Ĵ[P ^](sa ,s 'a '),Zi(sa)
( s 'a ' )  (sa)

=  tfs'a')Z(s'a.') =  IIqIIz2
(s'a1)

I

This allows one to easily recover the fact that O is in  fact a contraction w ith 

respect to ||- \\z in  the prim al case.

Lemma 13 ||O q i — C,q2||z <  7 ||q i — q21|z, (Tsitsiklis &  Van Roy, 1997)

Proof: By the definition o f on-policy operator O (see Equation 3.20), we have

\ \ 0 < h  -  O q a \ \ z  =  ||r  +  7 -P n q i - r - 7 P n q 2||z 

=  7 ||P II(q i -  q2)||z

Together w ith Lemma 12, we obtain

||e>q! -  O q2||z <  7 l|q i — qall*

I

By the contraction map fixed point theorem (Bertsekas, 1995) there exists a 

unique fixed point o f O in  the space o f vectors q. Therefore, repeated applications
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o f the on-policy operator converge to a vector qn such that qn =  O qn; that is, qn 

satisfies the policy based Bellman equation (see Equation 3.19).

For the dual representation H ,  the convergence o f the on-policy operator can 

be established in a sim ilar fashion, by first defining an appropriate weighted norm 

over matrices and then verifying that O  is a contraction w ith respect to this norm. 

Define

||tf||z ,r2 -  ||t f r ||z2 =  I ] T  (3 .29)
{so) \ ( s 'a ' )  J

It is easily verified that this definition satisfies the property o f a pseudo-norm, and 

in particular, satisfies the triangle inequality. This weighted 2-norm is defined w ith 

respect to the stationary distribution z, but also the reward vector r. Thus, the mag

nitude o f a row normalized matrix is determ ined by the magnitude o f the weighted 

reward expectations it induces.

Interestingly, this definition allows us to establish the same non-expansion and 

contraction results as the prim al case. For example, state-action transitions remain 

a non-expansion.

Lemma 14 ||PnP||Z;I. < ||i?||z,r 
Proof:

| |P I IP ||z,r =  ||P I I (P r) ||z

<  ||Pr||z by Lemma 12 

=  ||7Pj|z,r by Equation 3.29

I

Moreover, the on-policy operator is a contraction w ith respect to || • ||Z)I..

Lemma 15 ||O H ,  -  O H 2||z,r < 7 ||P i -  H 2||Zjr

Proof: By the definition o f on-policy operator O  (see Equation 3.27), we have

W O H . - O H ^  =  | | ( l - 7) /  +  7 P n P 1 -  ( l - 7 ) / - 7 PniT2||z,r

= ||7pntf1- 7pnp2||z,r
=  7 ||pn(p-x -  p 2)||z,r 
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Together w ith Lemma 14, we obtain

I

Thus, once again by the contraction map fixed point theorem, there exists a fixed 

point o f O among row normalized matrices H . Therefore, repeated applications 

o f O converge to a matrix H n such that H n =  O H U', that is, Hu satisfies the 

policy based Bellman equation for dual representations (see Equation 3.25). One 

subtlety here is that the dual fixed point is not unique because there is a many to one 

relationship between the dual and prim al representations, given by H r  =  (1 — 7 )q  

in Theorem 2.

So far I  have shown that on-policy dynamic programming converges in  the dual 

representation, w ithout making direct reference to the prim al representation. By 

sampling the model o f an MDP (P  and r)  in  these planning algorithms, we can get 

their corresponding learning algorithms w ith point-wise updates (see Appendix B).

3.5 Policy Improvement

The next step is to consider mechanisms for policy improvement, which combined 

w ith policy evaluation form policy iteration algorithms capable o f solving MDP 

planning problems.

Primal Representation

The standard primal policy improvement update is w ell known. Given a current 

policy 7r, whose state value function v  or state-action value function q have already 

been determined, one can derive an improved policy tv' via the update

The subsequent “policy improvement theorem”  verifies that this update leads to an 

improved policy.

a*(s) =  arg max q (sa)
a

=  arg max r (sa) +  7P(sa,:) v

n {sa) (3.32)

(3.30)

(3.31)
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Theorem 3 I l q  <  I l ' q  implies v  <  v '

Proof: Since v  =  I lq  (see Lemma 10) and q  =  r  +  7 .P IIq  (see Equation 3.19)

q =  r  +  7P v  (3.33)

Plugging the above relation into the assumption I lq  <  Il'q ,

I I ( r  +  7P v) <  I I / (r +  7P v)

=7- I l r  4 -7EPV <  I I 'r  +  711'P v  (3.34)

Using v  =  I l r  +  7 IIP V  (see Equation 3.10) recursively, the above inequality rela

tion becomes

v  <  iT r  4- 7 IIP V

=  n'r +  7n P n (r  +  7 Pv)

<  I l 'r  +  7 l lP l I '( r  4 -7P v)

=  n'r +  7n p n 'r  +  72(n p )2v

00

=  ^ y ( I lP ) T I ' r
i = 0

From the definition o f v  (see Equation 3.9), we have

OO
^ 7l ( II 'P )T I'r  =  v ' (3.35)
2 = 0

Therefore,

v  < v ; (3.36)

I

Dual Representation

The above development can be parallelled in  the dual by first defining an analo

gous policy update and proving an analogous policy improvement theorem. Given
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a current policy t z , in  the dual one can derive an improved policy iz' by the update

a* (s) =  a rg m a x tf(sa):)r

=  a rgm ax(l -  7 ) r (sa) +  - y P ^ M U r
a

(3.37)

(3.38)

(3.39)

In  fact, by Theorem 2, the two policy updates given in  Equation 3.30 and Equa

tion 3.37 respectively, must lead to the same resulting policy 7r'. Therefore, not 

surprisingly, we have an analogous policy improvement theorem in  this case.

T h e o r e m  4  HHv <  T l 'H r implies M l i r  <  M 'l l ' r

Proof: Plugging Mil =  11H  (see Lemma 11) and H  =  (1 - 7 ) /  +  ' y P H H  (see 

Equation 3.25) into the assumption U H r  <  W H r,  we have

Using the assumption I liT r  <  Yl'H r  and Equation 3.25 recursively in the above 

relation,

M lir  <  (1 -  7)n 'r  +  7n 'P n 7 7 r (3.40)

(1 -  7)n'r + 7n'pni7r < ( l - 7 )n'r + 7imrT7r
=  ( l - 7 ) n 'r  +  7n,P n ' [ ( l - 7 ) /  +  7 F n F ]r  

=  (1 -  7)n'r +  (1 -  7)7n 'p n /r +  72(n'P)2nMr 

<  (1 -  7)n'r +  (1 -  7)7n 'p n /r +  72(n'P)2n 'P r

00

=  ( l - 7 ) J > ‘(n'P)TI'r

From the definition o f M  (see Equation 3.14), we have

OO

=  M ' U ' r (3.41)

Therefore,

Mlir < M'n'r (3.42)
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I

Thus, a dual state policy iteration algorithm can be completely expressed in 

terms o f the dual representation M ,  incorporating both dual policy evaluation (see 

Equation 3.15) and dual policy improvement (see Equation 3.38) leading to an 

equivalent result to the standard prim al policy iteration algorithm based on v  (see 

Equation 3.10) and prim al policy improvement (see Equation 3.31).

3.6 Off-Policy Update

The off-policy update is prominent in  dynamic programming (e.g., value iteration) 

and reinforcement learning algorithms (e.g., Q-leaming). The off-policy update M. 

is different from on-policy update O in that it is neither linear nor defined by any 

reference policy, but instead applies a greedy max update to the current estimates.

In this section, I only present the planning algorithms using the off-policy up

date and their convergence analysis. In particular, I show primal Bellman iteration 

algorithms w ith value function representations and dual ones w ith v is it distribution 

representations. By sampling the model o f an MDP (P  and r)  in  these p lanning 

algorithms, we can get their corresponding learning algorithms w ith point-wise up

dates (see Appendix B).

3.6.1 Primal Representations

In the prim al case, Bellman iteration o f state value function corresponds to the well 

known value iteration algorithm (see Table 2.2), which is based on the off-policy 

update M. for state value function v

A t v  =  IT  [r +  7 P v] where 

n*[r+  7 P v ](s) =  m a x r(sa)+ 7 P(sa,;)v  (3.43)
a

The goal o f this greedy update is to bring the representation v  closer to satisfying 

the optim al-policy Bellman equation v  =  II*  [r +  7P v].

Similarly, the off-policy update operator M  for state-action value function q  is
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defined as

.M q  =  r  +  7P II*[q ] where 

II*  [q] (s) =  m axq(sa) (3.44)
a

The goal o f this greedy update is to bring the representation q closer to satisfying 

the optim al-policy Bellman equation q = r +  7Pn*[q].

3.6.2 Dual Representations

In the dual, Bellman iteration bypass the explicit representation o f the value o f a 

policy, and attempt to update the evaluation o f the optimal policy im plicitly. An 

analogous off-policy update M  for the state v is it distribution can be defined as

M M  =  (1 — 7 ) /  +  7 II*  [M ]P , where

n r [-AT](s s/a/) l(s=s') l(a'=a*(s))

a*(s) =  argm axP(sa, : )M U r  (3-45)
a

where l( s=s/) equals 1 when s =  s' and 0 when s /  s', and l( a'=a*(s)) equals 1

when a' =  a*(s)' and 0 when a' ^  a*(s). The goal o f this greedy update is to

bring the representation M  closer to satisfying the optim al-policy Bellman equation 

M  =  (1 -  7 ) / +  7 II* [P M ],

Similarly, the max-policy update operator M  for state-action v is it distribution 

H  is defined as

M H  =  (1 - 7 ) /  +  7P n *[P ], where

n r [P](s,s'a') l(s=s')l(a'=a*(s))

a*(s) =  argmax ^  P(sa,s"a")*Vv') (3.46)
(s"a")

The goal o f this greedy update is to bring the representation H  closer to satisfying 

the optim al-policy Bellman equation H  =  (1 — 7 ) I  +

Note that a dual form o f Bellman iteration algorithms need not refer to the p ri

mal value functions at all. Nevertheless, the off-policy update o f q  (see Equation
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3.44) and the off-policy update o f H  (see Equation 3.46) behave equivalently be

cause o f their relation (1 — 7)q  =  H r  (see Theorem 2 in  Section 3.4.2).

Lemma 16 I f (  1 —7)q  =  H r, then (1 —7 ).M q  =  M H r .

Proof: From the assumption,

(l~7)q =  H r  = >  (1 -  7)q(sa) = [ffr](sa) V(sa)

Together w ith the definitions o f II* in  Equation 3.44 and 3.46, we have 

( l - 7)n*[q] =  U*[Hr}  = * (1 —7 )II*[q] = n;[i/]r 

Applying M  update on q (see Equation 3.44), we get

(l_7)A4q = ( l - 7)(r+7/,n*[q])

Substituting (1 — 7)11* [q] w ith II* [iT ]r, we have

( l-7 )A 4 q  =  (1 — 7 )r +  7P II* [ if ] ) r  

Note that M H  =  (1 — 7 ) /  +  /yPIi*r [H) (see Equation 3.46),

(1 —7 )A4q =  M H r

I

Sim ilarly, the off-policy update o f v  (see Equation 3.43) and the update o f M  

(see Equation 3.45) behave equivalently because o f their relation (1 — 7 )v  =  M Tir  

(see Theorem 1 in  Section 3.4.1). That is, (1 —7)A fv  =  A 4M H r holds.

3.6.3 Convergence Analysis

To keep the presentation efficient, here I only show the convergence analysis o f off- 

policy update for the state-action based representations, q and H . Analogous results 

are easily obtained for the state-based representations, v  and M .  The strategy for 

establishing convergence for the nonlinear max operator is sim ilar to the on-policy 

case, but involves working w ith a different norm. Instead o f considering a 2-norm
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weighted by the v is it probabilities induced by a fixed policy, one simply uses the 

max-norm in  this case

llqlloo =  m ax|g(sa)| (3.47)
(so.)

The contraction property o f the M  operator w ith respect to this norm can then 

be established in  the prim al case as follows.

Theorem 5 ||A fq i — A fq 2||oo <  7 ||Qi — q2||oo (Bertsekas, 1995)

Proof: Let scalar 5
$ =  llq i-q a llo o

Then
q2 -  5e <  q x <  q2 +  5e 

By Lemma 17 and Lemma 18 below, we have

M q 2 — jSe <  M q i  <  M q2 +  jSe  

= >  — A lq 2 <  7Se and M q i — M q 2 >  —7Se

=> \\Mqx -  A4q2||oo < 7^

That is

||A4qi -  A4q2||oo <  7 | | q i - q 2||oo

I

Lemma 17 A 4(q +  Se) =  A4q  +  75e (Bertsekas, 1995)

Proof:
A 4 ( q  +  Se)  =  r  +  7 _Pn*[q  +  de]

=  r  +  7 P I l* [q ]  +  jSe  

=  A iq - j - jS e

I
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Lemma 18 I f  q i <  q2, then M.<\i <  A lq 2 (Bertsekas, 1995).

Proof:
Qi <  q2 

= 4 *  qi (s o ) ^  q2(sa) 

m̂'x qi (sa) < rnaxq2(,a)
n*[qi] < n* [qj]

=̂ > 7^n*[qi] < 7PIT[q2] 
r  +  7jpn*[qi] < r  +  7jpn*[q2]

-M q i <  .M q2

I

The above theorem shows that contraction suffices to establish the existence o f 

a unique fixed point o f M  among vectors q, and that repeated application o f M  

converges to a fixed point q* such that A4q* =  q *.

To establish convergence o f the off-policy update in  the dual representation, 

First I define the max-norm for state-action v is it distribution as

Then I  w ill sim ply reduce the dual to the prim al case by appealing to the relationship 

(1 — 7 )A lq  =  M H r  (see Lemma 16) to prove convergence o f M H .

Given convergence o f M q  to a fixed point .M q* =  q*, the same must also 

hold for M. H . Again, one subtlety here is that the dual fixed point is not unique. 

That is, the relationship between H  and q  is many to one, and several matrices 

can correspond to the same q. These matrices form a convex subspace (in fact, a 

simplex), since i f  f f i r  =  (1 -  7 )q  and H 2r  =  (1 -  7 )q  then (a H i  +  (1 — ol) H 2)r  =  

(1—7)q  for any a, where furthermore a  must be restricted to 0 <  a <  1 to maintain 

nonnegativity. The simplex o f fixed points {H * : M H *  =  H *}  is given by matrices 

H * that satisfy H*r  =  (1 — 7 )q*.

So far I  presented novel, dual algorithms for dynamic programming in tabu

lar case, based on maintaining explicit representations o f stationary distributions

max
(.s a )

(3.48)
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instead o f value functions. Primal and dual representations (algorithms) exhibit 

strong equivalence in the tabular case, as they should. However, when I  begin to 

consider approximation, differences emerge.

3.7 Approximate Dynamic Programming

Scaling up DP and RL algorithms to large sequential decision making problem 

domains has received a great deal o f attention in  recent years. One commonly 

used technique is to generalize across state or state-action space by exploiting the 

structure o f the problem w ith function approximation. That is, the target function is 

approximated as a parameterized function o f a set o f basis functions (also usually 

referred to as “ bases”  or “ features” ). This parametrization could be either linear 

approximation or non-linear approximation.

3.7.1 Approximate Representations

Here I examine the representations o f linear approximation for both the prim al and 

dual cases since linear function approximation is w idely used.

Primal Linear Approximation

In the prim al case, linear approximation proceeds by fixing a small set o f basis 

functions, form ing a |<Sj|A| x k matrix $ , where k is the number o f bases. The 

approximation o f q  can be expressed by a linear combination o f bases

q =  <f>w (3.49)

where w  is a k x 1 vector o f adjustable weights. This is equivalent to maintaining 

the constraint that q e coLspan(<h).

Dual Linear Approximation

In the dual, a sim ilar linear approximation strategy can be followed as in the prim al 

case, except that constraints need to be added to ensure the resulting approximation 

H  is row normalized. That is, we start w ith a linear representation

H  =  reshape^  w ) (3.50)
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where w  is a k x 1 vector o f adjustable weights as it  is in  the prim al case, '3/ is 

a (|5 j|.4 |)2 x k matrix o f basis functions, and the operator reshape converts the 

vector \kw , whose dimension is (|S j|A |)2 x 1, into a |S j)A | x |S j|A | matrix. Since 

the vec operator4 is an inverse operator o f the reshape operator, the above linear 

representation can be rewritten as

vec(H) — \!/w (3-51)

I explain this representation a little  further. We know that matrix 'k has k 

columns o f bases. The i th column o f \k can then be viewed as 'k(. j) =  vec(T^),  

where is an |S j|kl| x |5 j|/l| matrix. Each o f these basis matrices is required to 

be row normalized (i.e, T ^ l  =  1). Since T ^ l  is a \S\\A\x 1 vector, this constraint 

can be expressed by

T (i)l  =  t;ec(Tw l) (3.52)

Using vec{AR>) =  (B <2> I)vec(A ) , 5 it follows that

vec(T w l )  =  (1T ® I)vec{T w ) =  (1T ® (3.53)

where the operator <g) is the Kronecker product.6

4 The vec opera to r creates a c o lu m n  ve c to r fro m  a m a tr ix  A b y  s tack ing  the c o lu m n  vecto rs  o f  

A =  (aia 2 • • • a„) b e lo w  one another:

vec{ A)

(  31 \  
a2

V an /

5R eca ll P ro p o s itio n  7 .1.9. in  B o o k  (B ernste in , 2005).
6 L e t A be an n  x  p  m a tr ix  and B be an m  x  q m a tr ix . The  m n  x  pq m a tr ix

A ®  B =

{  a ( n ) B  a ( i 2 ) B  • • •  a ( i p ) B  )  

0(2i)B a(22)B a(2p)B

\  ^ ( n l ) ^  ^ ( n 2 ) ®  Q'(np) B  J
is  ca lled  the K ro n e cke r p ro d u c t o f  A and B. I t  is  a lso ca lled  the d ire c t p ro d u c t o r  the tensor p roduct.
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Therefore, we have

(1T ® / ) ^  =  - ^ 0,0) ■■•$(:,*))]

=  [ ( iT ® m {,D ■ • ■ ( r  ® / ) t f (:ii)) • • • ( r  ® / ) ^ (:,fc))]

=  [(1 T <8> J ) v e c ( T ^ )  ■ • • (1 T <g> I)v e c (T ^ )  • ■ • (1 T <g> I ) u e c ( Y ^ ) ]  

=  [ w e c ( T ^ l ) -  ■ • vec(T ^ l )  • • • u e c ( Y ^ l ) ]

=  [1 - - - 1 - - - 1]

=  H T (3 .54)

where 11T defines a |£>| | A\ x A; m atrix o f a ll ones.

To ensure that H  remains a nonnegative, row normalized approximation to H,  

we simply add the constraints

Lemma 19 I f f y  >  0, (1T® /)^  =  11T and w  >  0, w Tl  =  1, then vec(H) =  

$ w  satisfies H  >  0 and H I  =  1.

Proof: From the assumption that 'I' >  0 and w  >  0, H  >  0 is obvious.

From the assumption that ( 1T =  11T and w Tl  =  1, we have

(3.55)

and

w  >  0, w Tl  =  1 (3.56)

( 1 t ® / ) ' F w  =  l l Tw  -  1  

Plugging vec(H) =  'I'w  into Equation 3.57, we have

(3.57)

( l T® i> e c ( tf) 1

Since uec(AB) =  (BT ® I)vec(A), we know that

vec(H l)  =  1 (3.58)

Since H i  is an |5| \A\ x 1 vector,

H  1 =  1 (3.59)
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I

In summary, in  the dual the linear approximation o f matrix H  is 

vec(H) =  \I/w  subject to

® >  0, (1T® I ) V  -  11T, w  >  0, w Tl  =  1 (3.60)

I denote the constraint on H  as H  e sim plex(T), such that s im p le x ^ ) =  { H  : 

vec(H) =  'Fw ,'F  >  0, ( l T (g>/)\I/ =  11T , w  >  0, w T l  =  1). This means that 

the bases can be reshaped into row normalized, nonnegative matrices. Therefore, it 

is sufficient fo r the weight vector w  to be positive and normalized to ensure that H  

is positive and row normalized.

In this section, I first introduce operators (projection operator and gradient op

erator) that ensure the approximations stay representable in the given bases. Then 

I consider their composition w ith the on-policy update and off-policy update, and 

analyze their convergence properties. For the composition o f the on-policy update 

and projection operator, I establish a sim ilar bound on approximation error in  the 

dual case as in the prim al case. Famously, the off-policy update does not always 

have a fixed point when combined w ith approximation in the prim al case (de Farias 

&  Van Roy, 2000), and consequently suffers the risk o f divergence (Baird, 1995; 

Sutton &  Barto, 1998). However, in the dual case the off-policy update w ith linear 

approximation cannot diverge because o f boundedness o f the dual representations; 

although the question o f whether off-policy update always converges in the dual 

remains open.

3.7.2 Projection Operator

Recall that in  the primal, the action value function q  is approximated by a linear 

combination o f bases in $  (see Equation 3.49). Unfortunately, there is no reason 

to expect Oq or M q  to stay in  the column span o f 4>, so a best approximation 

is required. The subtlety resolved by Tsitsiklis and Van Roy (1997) is to iden

tify  a particular form o f best approximation— weighted least squares— that ensures 

convergence is s till achieved when combined w ith the on-policy operator O. Un

fortunately, the fixed point o f this combined update operator is not guaranteed to be
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the best representable approximation o f O ’s fixed point, qn- Nevertheless, a bound 

can be proved on how close this altered fixed point is to the best representable ap

proximation.

Primal Case

We summarize a few details that w ill be useful below. First, the best least squares 

approximation is computed w ith respect to the distribution z. The map from a 

general q  vector onto its best approximation in col_span(,F) is defined by another 

operator, P, which projects q  into the column span o f $

P q  =  argmin | | q - q ||z2 (3.61)
q £ co L sp a n ($ )

where q  is the true value function and q is an approximation for it.

The above equation can be rewritten as

P q  =  argmin ||q — q ||z2 subject to q  =  <f>w for some w  (3.62)
q

This optim ization problem can be expressed in terms o f w  as

P q  =  $w * subject to w * =  argmin ||q — $ w ||z2 (3.63)
W

w * can be solved by taking derivative o f ||q — $ w ]|z2 w ith respect to w  and letting 

it equal to zero,

w* =  ($ TZ<f>)“ 1$ TZ q  (3.64)

Plugging w * back into Equation 3.63, we have

p q  = Z§)~ l § J Zq_

The important property o f this weighted projection is that it is a non-expansion 

operator in  ||-||z, i.e., j|P q ||z < ||q||z, which can be easily obtained from the gener

alized Phythagorean theorem (see below Lemma 20).

Lemma 20 ||q ||z2 =  ||P q ||z2 +  ||q -  P q ||z2 (Tsitsiklis &  Van Roy, 1997)
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Approximate dynamic programming then proceeds by composing the two oper

ators — the on-policy update O w ith the subspace projection V —  essentially com

puting the best representable approximation o f the one step update. This combined 

operator is guaranteed to converge, since composing a non-expansion w ith a con

traction is s till a contraction. In fact, Lemma 13 can be re-established for the com

position VO .  Thus, by the contraction map fixed point theorem (Bertsekas, 1995) 

a fixed point must exist and is unique. Let q+ =  VO q+  be the fixed point o f 

the combined operator. Unfortunately, the fixed point q+ is not guaranteed to be 

the best representable approximation o f O 's fixed point qn- Nevertheless, a bound 

can be proved on how close the altered fixed point q + is to the best representable 

approximation Vqn  o f O 's fixed point.

Lemma 21 ||q+ — qn||z < y iy  ii'Pqn — qn ||z (Tsitsiklis &  Van Roy, 1997)

Proof: First note that

l|q + -q n ||z  — ||q+ —T’q n + T ’qn — qn||z

<  l|q + —L,qn||z +  ||'Pqn —qn||z (3.65)

Since q+ =  V O q +, we have

l|q + -P q n ||z  =  \\VOq+ - V q n \\z (3.66)

Next notice that V  is a non-expansion operator and qn =  Oqn,

||P (9q+ -P q n ||z <  ||0 q + -q n ||z  =  ||0 q + -0 q n ||z  (3.67)

By Lemma 13, we also have

l|C’q+-O qn||z <  7 l|q + -q n ||z (3.68)

From Equations 3.66, 3.67, and 3.68, we have

q + -P q n ||z  <  7 ||q + -q n ||z (3.69)

Plugging Equation 3.69 back into Equation 3.65, then we have

q + -q n ||z  <  7 ||q + -q n ||z  +  ||^ q n -q n ||z
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Since 0 <  7  <  1, rearranging the above equation yields,

l|q+-qnl|z < 7-̂ — ll^qn-qnllz1 - 7

I

Linear function approximation in the dual case is a b it more complicated be

cause matrices are being represented, not vectors, and moreover the matrices need 

to satisfy row normalization and nonnegativity constraints. Nevertheless, a very 

sim ilar approach to the prim al case can be successfully applied.

Dual Case

Recall that in the dual, state-action v is it distribution H  is approximated by a lin 

ear combination o f bases in  vp (see Equation 3.60). As in the prim al case, there is 

no reason to expect that an update like O H  should keep the matrix in the simplex. 

Therefore, a projection operator must be constructed that determines the best rep

resentable approximation to O H.  One needs to be careful to define this projection 

w ith respect to the right norm to ensure convergence. Here the pseudo-norm || • ||Zil. 

defined in Equation 3.29 suits this purpose. Define the weighted projection operator 

V  over matrices

V H  — argm in \\H — H \\ZyT2 (3.70)
iresim p lex('I')

The projection could be obtained by solving the above quadratic program. A  key 

result is that this projection operator is a non-expansion w ith respect to the pseudo

norm || • 11z,r-

Theorem 6 | | : P t f | | Z i r  <  | | # | | z , r

Proof: The easiest way to prove the theorem is to observe that the projection oper

ator V  is really a composition o f three orthogonal projections: first, onto the linear 

subspace span(T), then onto the subspace o f row normalized matrices span(T) n 
{ H  : H I  =  1 }, and fina lly onto the space o f nonnegative matrices span(T) n { H  : 

H I  =  1} n  { H  : H  >  0}. Note that the last projection into the nonnegative
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halfspace is equivalent to a projection into a linear subspace for some hyperplane 

tangent to the simplex.

Each one o f these projections is a non-expansion in  ||-||z,r in  the same way: a 

generalized Pythagorean theorem holds. Consider just one o f these linear projec

tions V\.

\ \ H \ \ J  =  \\V iH  +  H - V i H \ \ z/

=  \ [P iHv  +  H r  -  V i H r \\z2 

=  \ \P iH r\\z2 +  \\Hr — 'P1iJ i j |z2

=  +  \\h

where the third equality follows from Lemma 20. Since the overall projection is 

just a composition o f non-expansions, it too must be a non-expansion. |

As in the primal, approximate dynamic programming can be implemented by 

composing the on-policy update O w ith the projection operator V. Since O is a 

contraction and V  a non-expansion, VO  must also be a contraction, and it  then fo l

lows that it has a fixed point. Note that, as in the tabular case, this fixed point is only 

unique up to F/r-equivalcnce, since the pseudo-norm || • ||Zjl. does not distinguish / i)  

and H2 such that H i r  =  H 2r. Here too, the fixed point is actually a simplex o f 

equivalent solutions. For sim plicity, I denote the simplex o f fixed points for V O  by 

some representative H + — V O H +.

Finally, I can recover an approximation bound that is analogous to the prim al 

bound, which bounds the approximation error between H + and the best repre

sentable approximation to the on-policy fixed point H u =  O H u .

Theorem 7 \\H+ -  i?n |k r  <  ^ \ [ P H n -  H U\\^T

Proof: First note that

\\H+ - H n \\ZtT =  \\H+ - V H n + V H u - H n \Ur

<  \\H+ - V H n \ \ z,r +  \ \VHu - H n \\z,r (3.71)

Since H + =  V O H +, we have

\\H+ - V H n \Ur =  \ \VOH+ - V H u \\z>r (3.72)
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N ext notice that V  is a non-expansion operator and Hn =  OHu,

\\VOH+ - V H n \\z,r <  | |0 / /+ - i? n ||,,r  =  |jO H +- O t fn lk r  (3.73) 

By Lemma 15, we also have

\\OH+ — O H u \\z,t <  7\\H+ - H u \\Zs (3.74)

From Equations 3.72, 3.73, and 3.74, we have

\\H+ — PHu\\x,r <  M \H+ - H n \\z,r (3.75)

Plugging Equation 3.75 back into Equation 3.71, then we have 

| | if+ - tfn ||z ,r  <  'y\\H+ — Hu\\z,r +  \\'PHu — Hu\\z,r 

Since 0 <  7  <  1, rearranging the above equation yields,

\\H+ - H n \\z,r <  - ± - \ \ V H n - H n \\z,r
1 - 7

I

To compare the prim al and dual results, note that despite the sim ilarity o f the 

bounds, the projection operators do not preserve the tight relationship between p ri

mal and dual updates. That is, e v e n if(l — y )q  =  H r  and (1 — y)(C7q) =  (O H )  r , it 

is not true in  general that (1 — j ) (V O q )  =  (V O H )r .  The most obvious difference 

comes from the fact that in  the dual, the space o f H  matrices has bounded diameter, 

whereas in  the primal, the space o f q  vectors has unbounded diameter in  the natural 

norms. Automatically, the dual updates cannot diverge w ith compositions like V O  

and V M .  However update V M  is known to not have fixed points in the prim al in 

general (de Farias &  Van Roy, 2000).

3.7.3 Gradient Operator

In large scale problems one does not normally have the luxury o f computing fu ll 

dynamic programming updates that evaluate complete expectations over the entire 

domain, which requires knowing the stationary v is it distribution z for P II, i.e.,
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knowing the model o f an MDP. Moreover, fu ll least squares projections are usu

ally not practical to compute either. The main intermediate step toward practical 

algorithms is to formulate gradient step operators that only approximate complete 

projections. Conveniently, the gradient update and projection operators are inde

pendent o f the on-policy and off-policy updates and can be applied in either case. 

However, as we w ill see below, the gradient update operator causes significant in

stability in the off-policy update, to the degree that divergence is a common phe

nomenon (much more so than w ith fu ll projections). Composing approximation 

w ith off-policy update (max operator) in  the prim al case can be dangerous. A ll 

other operator combinations are much better behaved in practice, and even those 

that are not known to converge usually behave reasonably.

P rim al Case

Gradient step updates are easily derived from a given projection operator. In

this case, one always works directly w ith weight vectors w , rather than q  vectors. 

Recall that the projection operator actually is equivalent to solving for a vector w  

o f basis combination weights that minimizes the least square objective

Jq =  7; l | q - q | | z 2 =  ^ | | q - $ w ||z2 (3.76)

where q  =  <f>w.

The gradient o f above objective w ith respect to w  is

V wJq =  <f>TZ(<f>w -  q) =  $ TZ (q  —q) (3.77)

Using the relation q  =  $ w , we can derive the gradient update w ith respect to q

as

£qq =  q  — a $ V w Jq =  q  — a<f><I>TZ (q  — q) (3.78)

where a  is a positive step-size parameter.

Since the target vector q  is determined by the underlying dynamic programming 

update, this gives the composed updates

GqOq =  q - Z ( q - O q )  (3.79)
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and

Q qM q  =  q  -  o ;$$T (q  — M q ) (3.80)

respectively for the on-policy and off-policy cases.

In practice, an iterative optim ization o f q  is attempted by

q t+ i =  QqtOqt (3.81)

and

qt+i =  9qtM v t (3.82)

respectively for the on-policy and off-policy cases.

Dual Case

In the dual representation, one can derive a gradient update operator in a sim ilar 

way, except that it is important to maintain the constraints on the parameters w  

given the basis functions are the probability distributions. As in  the prim al case, I 

start by considering the projection objective

By the norm definition (see Equation 3.29), the above objective can be written as

1 ~ 2 
JH -  - \ \H  -  H\\ZyJ. subjectto

vec(H) =  f fw ,  w  >  0, w T 1 =  1 (3.83)

Jh  =  \ \ \ H r  -  H r \\,2 (3.(3.84)

Since H r  and H r  are column vectors and uec(AB) =  (BT ® I)vec(A), we have

H r  =  vec(Hr) =  ( rT ® I )vec(H)  =  ( rT ® I )h  

H r  =  vec(Hr) =  ( rT ® I)vec(H) =  ( rT ® I )h

where h =  vec(H) and h =  vec(H). Therefore, the objective becomes

(3.85)

(3.86)

Jh  =  ^ \\vec(Hr) -  vec(Hr)\\z2

=  ^ l l ( rT ® I){vec(H) -  vec{H))\\z 

=  ^ | | ( rT ® J )(/i — ^ w )||z2 (3.87)
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The unconstrained gradient o f the above objective w ith respect to w  is

V wJ tf -  $ T ( rT ® / ) TZ ( r T ® ; ) ( f w - / j )

=  t f T ( rT <8>J)TZ ( r T ® J ) ( / i - / i )

= VTZ{vT ® I ) { h -  h) (3.88)

where T =  ( r T Q / ) ' ! ' , 7 and diag(Z) corresponds to the stationary distribution over 

state-action pairs.

However, this gradient step cannot be followed directly because I  need to main

tain the constraints. The constraint w Tl  =  1 can be maintained by first projecting 

the gradient onto it, obtaining

=  ( I - ^ 1 1 J ) VWJH (3.89)

Thus, the weight vector can be updated by

w t+i =  Wj — aSw (3.90)

=  w t - < * ( / -  \ l l y )VTZ{vT ( Z l ) { h - h )  (3.91)

where a is a step-size parameter.

Then the gradient operator can then be defined by

g~hh =  h — a'l'^w (3.92)

=  h - a ^ { I - \ l l J )TTZ{TJ ® I ) { h - h )  (3.93)

Sim ilarly as in  the primal, since the target vector H  (i.e., h) is determined by 

the underlying dynamic programming update, this gives the composed updates

GhOh =  a * ( I -  l l l T) r TZ ( r r  ® I ) ( h - O h )  (3.94)
rC

7Note that T, whose dimension is |S| \A\ x k, can be precomputed if r is known.

=  [(rT 0  I ) $ ( - . , i )  • ■ • (rT ®  • • • (rT 0

=  [(rT ® I ) v e c ( T ^ )  ■ ■ ■ (rT ® I )ve c (T w ) • ■ • (rT ® I)uec(T(fc))]
=  [T(1)r - - - T (V - - T (fc)r]
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and

QhM h  =  a V { I -  i l l T) r T(rT ® I ) ( h -  M h )  (3.95)
K

respectively for the on-policy and off-policy cases.

Again, iterations that attempt to optimize h in  the on-policy and off-policy cases 

respectively are given by

ht+l =  gh Oht (3.96)

and

ht+l =  gktM ht  (3.97)

The convergence properties o f the gradient operators are investigated through 

the experimental studies in  Section 3.8. The convergence o f the QO operator is 

observed in both prim al and dual cases for a ll the testing tasks. However, the Q M  

operator behaves quite differently. In the prim al, the divergence o f the QM. operator 

is observed in  all the testing tasks while the Q M  operator always converges in the 

dual. The in tuition o f the convergence o f the Q M  operator in the dual case is that 

the dual representations are bounded. Dual approximate reinforcement learning 

algorithms can be found in  Appendix C.

So far, I have shown the dual dynamic programming algorithms w ith linear 

function approximation. The dual approach appears to hold a significant advantage 

over the standard prim al approach: dual updates cannot diverge because the fun

damental objects being represented are normalized probability distributions (i.e., 

belong to a bounded simplex).

3.8 Experimental Results

To investigate the effectiveness o f the dual representations, I conducted experiments 

o f the dynamic programming algorithms on randomly synthesized MDPs, on the 

star problem, and on the mountain car problem. The randomly synthesized MDP 

domains allow me to test the general properties o f the algorithms. The star prob

lem is perhaps the most-cited example o f a problem where Q-leaming w ith linear
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function approximation diverges (Baird, 1995), and the mountain car domain has 

been prone to divergence w ith some primal representations (Boyan &  Moore, 1995) 

although successful results were reported when bases are selected by sparse tile  

coding (Sutton, 1996).

I believe understanding the convergence properties o f the dynamic program

ming algorithms w ill help understand the convergence o f the reinforcement learn

ing algorithms, which can be viewed as the sampled versions o f the DP algorithms 

without the knowledge o f an environment model. For each problem domain, twelve 

dynamic programming algorithms 8 w ith a finite horizon 1000 were run over 100 

repeats. The discount factor was set to 7 =  0.9. For on-policy algorithms, I measure 

the difference between the values generated by the algorithms and those generated 

by the analytically determined fixed-point. For off-policy algorithms, I measure the 

difference between the values generated by the resulting policy and the values o f 

the optimal policy. The step size for the gradient updates was 0.1 for prim al repre

sentations and 100 for dual representations. The in itia l values o f state-action value 

functions q are set according to standard normal distribution and state-action v is it 

distributions H  are chosen uniform ly randomly w ith row normalization.

In a ll the plots in  this section, the x-axis is the number o f the step in  a sequen

tia l decision making process and the y-axis measures the error difference between 

different algorithms w ith respect to some particular norms. For the on-policy O 

update, the plots show the distance from the current estimates (either q  or H ) to the 

fixed point determined by the policy. The distance for on-policy prim al representa

tion q is measured by the norm defined in Equation 3.28; the distance for on-policy 

dual representation H  is measured by the norm defined in Equation 3.29.

For the off-policy M  operator, the plots show the distance from the current 

estimates to the optimal values (either q* or H*). The distance for off-policy p ri

mal representation q  is measured by the max norm defined in Equation 3.47. The 

distance for off-policy dual representation H  is measured by the norm defined in 

Equation 3.48.

8Tabular on-policy (O), projection on-policy (VO), gradient on-policy (GO), tabular off-policy 
(M ) ,  projection off-policy (V M ) ,  and gradient off-policy (Q M )  for both the primal and the dual.
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Figures 3.2, 3.4, and 3.6 show the behavior o f the on-policy update operators on 

different problems w ith both primal and dual representations. Figures 3.3, 3.5, and 

3.7 show the behavior o f the off-policy update operators on different problems w ith 

both prim al and dual representations.

3.8.1 Task: Randomly Synthesized MDPs

For the synthesized MDPs, I generated the transition and reward function o f the 

MDPs randomly— the transition function is uniform ly distributed between 0 and 1 

and the reward function is normally distributed w ith  mean 0 and variance 1. Since 

my goal is to investigate the convergence o f the algorithms without carefully craft

ing features, I  also choose random basis functions according to standard normal 

distribution for prim al representations, and random basis distributions according to 

uniform  distribution for dual representations.

Here I only reported the plots o f random MDPs w ith 100 states, 5 actions, and 

10 bases, averaging over 100 repeats because I observed consistent convergence 

using dual representations w ith various MDP problems w ith different number o f 

states, actions, and bases (the trends o f the curves are sim ilar).

In Figure 3.3, the curve (solid line w ith the circle marker) o f the gradient off- 

policy (Q M )  update w ith state-action value blows up (diverge) while a ll the other 

curves (algorithms) in Figures 3.2 and 3.3 converge. Interestingly, the approximate 

error o f the algorithm V O H  (4.60 x 10“ 3) is much smaller than the approximate 

error o f the algorithm V O q  (4.23 x 1CT2) although their theoretical bounds are the 

same (see Figure 3.2).

3.8.2 Task: The Star Problem

The star problem has 7 states and 2 actions as Figure 3.1 shows. The reward func

tion is zero for each transitions. The transitions in solid lines are triggered by action 

ai and the transitions in  dotted lines are generated by action a2, that is, taking ac

tion ax in  all the states w ill cause a transition to state s7 w ith probability 1; taking 

action a2 in each state w ill cause a transition to one o f states s i through s6 w ith 

equal probability 1/ 6.
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In my experiments, I used the same fix  policy and linear value function approx

imation as Baird d id.9 The fixed policy chooses action <xi w ith probability 1 /7  and 

action a2 w ith probability 6/7. How the action values are represented can be figured 

out from Figure 3.1. The number o f bases is 14 and the dimension o f the weight 

vector is 14 x 1. The i th component o f the weight vector is wt where i  =  0, • • • ,13. 

The action values are given by the linear combination o f the weights. For example, 

Q (s i ,a i) =  Wo +  2wi and Q (s i,a2) =  W7. The in itia l action values o f a\ are 

bigger than the ones o f a2 and the value o f the action ci\ in  state six is the largest 

action values. In the dual, the number o f bases is 14 too and the in itia l values o f the 

state-action v is it distribution matrix H  are uniform ly distributed random numbers 

between 0 and 1 w ith row normalization.

The gradient off-policy update in  the prim al case diverges (see the solid line 

w ith the circle marker in Figure 3.5). However, a ll the updates w ith the dual repre

sentation algorithms converge (see Figures 3.4 and 3.5).

3.8.3 Task: The Mountain Car Problem

The mountain car domain has continuous state and action spaces, which I discretize 

w ith a simple grid, resulting in an MDP w ith 222 states and 3 actions. The num

ber o f bases is chosen to be 5 in  both the prim al and dual algorithms. For the 

same reason as before, I chose the bases for the algorithms randomly. In the p ri

mal representations w ith linear function approximation, I  randomly generated basis 

functions according to the standard normal distribution. In the dual representations, 

I randomly picked the basis distributions according to the uniform  distribution.

In Figure 3.7,1 again observed blow-up o f the gradient off-policy update w ith 

state-action value in the prim al and the convergence o f a ll the dual algorithms (see 

Figures 3.6 and 3.7). Interestingly, the approximation error o f the projection on- 

policy V O H  in  the dual (0.19) is also considerably smaller than the one PC7q 

(3.26 x 102) in  the primal.

In summary, the dual dynamic programming algorithms in  fact converge in the

9Baird observed that Q-leaming with linear function approximation can diverge on this problem 
even when training on a fixed stochastic policy (Baird, 1995).
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Update Prim al Representation q  Dual Representation H
o 0 (mn) 0 (m2n)
M 0 (m) 0 (m)

V 0 (mk +  k3) 0 (m2k +  k3)
G 0 (mk ) 0 (m2k)

VO 0 (mn  +  mk  +  k3) 0 (m2n +  m2k +  k3)
GO 0 (mn  -1- mk) 0 (m2n  -f m 2k)

VM 0 (mk  +  k3) 0 (m2k +  k3)
GM 0 (mk) 0 (m2k)

Table 3.1: Computational complexity o f the dynamic programming algorithms: 
tabular on-policy (O ), projection on-policy (V O ), gradient on-policy (GO), tab
ular off-policy (M ) ,  projection off-policy (V M ) ,  and gradient off-policy (G M )  
updates for both the prim al and the dual representations. The quantity n is the num
ber o f states, i.e. n — |.S'[. The quantity m  is the product o f the number o f states 
and the number o f actions, i.e. m  =  |5 j |/1|. The quantity k is the number o f bases 
(features) in  linear approximation case. Usually, k is much less than [S) and \A\.

very circumstance where primal algorithm can diverge: gradient off-policy update 

w ith linear function approximation. The experimental results o f randomly synthe

sized MDPs and the mountain car problem showed that off-policy updates diverge 

when composed w ith gradient (G M )  in  the primal w ith randomly picked basis func

tions while Q M  converges in the dual w ith randomly picked basis distributions.

3.9 Complexity Analysis of Dual Algorithms

Although dual representations are interesting, dual algorithms can be computation

a lly much more expensive than the corresponding prim al algorithms, ignoring pos

sible sparsity o f the dual representations. Table 3.1 is a summary o f the complexity 

o f the dynamic programming algorithms presented in  this chapter. The cost o f the 

composed update operators are the sum o f the costs o f its operators. For example, 

the cost o f V O  is the sum o f cost o f O and cost o f V.
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13

Figure 3.1: The star problem
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Figure 3.2: On-policy update o f state-action value q  and v is it distribution H  on 
randomly synthesized MDPs
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Figure 3.3: O ff-policy update o f state-action value q  and v is it distribution H  on 
randomly synthesized MDPs
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Figure 3.4: On-policy update o f state-action value q  and v is it distribution H  on the 
star problem
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Figure 3.5: O ff-policy update o f state-action value q  and v is it distribution H  on the 
star problem
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Figure 3.6: On-policy update o f state-action value q  and v is it distribution H  on the 
mountain car problem
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3.10 Conclusion

I have introduced dual representations and a body o f novel dual algorithms for se

quential decision making problems. Dual representations maintain an explicit rep

resentation o f v is it distributions as opposed to value functions. Therefore, dual 

algorithms, since they are based on estimating normalized probability distributions 

rather than unbounded value functions, avoid divergence even in the presence o f 

approximation and off-policy updates. Moreover, dual algorithms remain stable in 

situations where standard value function estimation diverges. One lim itation o f the 

dual approach is that the updates in the dual algorithms are more expensive than 

the ones in  the prim al case. However, this lim itation may be tackled by exploiting 

the sparsity in the dual matrix representations, which m ight be the case for some 

decision making problems.

I studied the convergence properties o f the dual dynamic programming algo

rithms both theoretically and empirically. I observed that on-policy updates con

verge in both prim al and dual algorithms while off-policy updates diverge when 

composed w ith gradient operator in  the primal, not in the dual. Learning from the 

techniques for proving convergence for the prim al algorithms, I  proved the conver

gence o f tabular on-policy (O ), tabular off-policy (M ),  and projection on-policy 

(VO ) updates for the dual. The reason is that these updates are non-expansion 

(or contraction) operators w ith respect to the right norm. The experimental studies 

show the convergence o f the projection off-policy (V M ),  gradient on-policy (GO), 

and gradient off-policy (QA4) in  the dual, however these were not proved.

In the next chapter, I  w ill present my attempt to the second issue: how can 

we balance the fundamental trade-off between exploration and exploitation during 

action selection?
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Figure 3.7: O ff-policy update o f state-action value q  and v is it distribution H  on the 
mountain car problem
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Chapter 4 

A Sparse Sampling Approach to 
Action Selection

In this chapter, I address the well-known problem o f balancing exploitation w ith 

exploration, or more generally, the problem o f action selection during reinforcement 

learning from a Bayesian point o f view. M y approach combines sparse sampling 

w ith Bayesian exploration to achieve improved decision making, while controlling 

computational cost. The idea is to exploit a Bayesian posterior to make intelligent 

action selection decisions by constructing and searching a sparse lookahead tree. 

The outcome is a flexible and relatively straightforward technique for improving 

action selection in simple reinforcement learning scenarios (Wang et al., 2005). 

The lim itation o f this work is that it was only demonstrated on the multi-armed 

bandit problems where the planning (for computing the values o f the leaf nodes in 

the sparse lookahead tree) is relatively easy.

This chapter is organized as follows. Section 4.1 motivates the problem. Sec

tion 4.2 reviews the basics in Bayesian Statistics. Section 4.3 briefly surveys Bayesian 

reinforcement learning. Section 4.4 discusses existing action selection strategies. 

Section 4.4 then presents my idea o f Bayesian sparse sampling for on-line action 

section. Section 4.6 demonstrates that my idea improved action selection quality in 

simple reinforcement learning domains. Finally, Section 4.7 summarizes the con

tributions o f this work.
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4.1 Motivation

Action selection is fundamental in  reinforcement learning. Although many strate

gies (Kaelbling, 1994; Dearden et al., 1999; Strens, 2000; Wyatt, 2001; Strehl &  

Littman, 2005) have been proposed to address this issue, few techniques have been 

adopted beyond the papers that originally proposed them other than the standard 

e-greedy and Boltzmann selection strategies. A  possible reason for the lim ited use 

o f sophisticated exploration approaches m ight be the complexity o f implementing 

the proposed methods, or the assumption that the degree o f improvement m ight not 

be dramatic. Therefore, beyond the quality o f action selection results, it  is also im 

portant to consider the complexity and computational cost o f any proposed method.

The Bayesian approach to reinforcement learning appears to be under-researched 

given the important role it has played in other areas o f machine learning (Jordan, 

1999; Neal, 1996). Flexible Bayesian tools, such as Gaussian process regression 

(W illiam s, 1999; Neal, 1996), have had a significant impact on other areas o f ma

chine learning research but have only just recently been introduced to reinforcement 

learning (Engel et al., 2003). Nevertheless, Bayesian approaches seem suited to re

inforcement learning as they offer an explicit representation o f uncertainty, which is 

essential for reasoning about the exploration versus exploitation tradeoff. Bayesian 

decision theory suggests to solve the exploration versus exploitation tradeoff d i

rectly (but im p lic itly) by asserting that the optimal action is one which, over the 

entire time horizon being considered, maximizes the total expected reward aver

aged over possible world models. Therefore, any gain in reducing uncertainty is 

not valued for its own sake, but measured instead in terms o f the gain in future re

ward it offers. In this way, explicit reasoning about exploration versus exploitation 

is subsumed by direct reasoning about rewards obtained over the long term.

Despite the elegance o f the Bayesian approach, there remain serious barriers to 

its application. The most obvious drawback is the computational challenge posed 

by optimal Bayesian decision making, which is known to be intractable in  a ll but 

triv ia l decision making contexts (Mundhenk et al., 2000; Lusena et al., 2001). This 

means that w ith a Bayesian approach one is forced to consider heuristic approxi-
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mations. In response, a small body o f research has developed on on-line approx

imations o f optimal Bayesian action selection (Dearden et al., 1999; D uff, 2002; 

Strens, 2000). However, the potential power o f Bayesian modeling for approximat

ing optimal action selection makes this approach worth investigating.

Before I present my idea for on-line action selection in Bayesian reinforcement 

learning. First, I review the basic concepts o f Baysian statistics.

4.2 Bayesian Statistics

Bayesian statistics provide a rationalist theory o f subjective beliefs in the context 

o f uncertainty. In particular, Bayes’ rule provides the key to combining beliefs in  

the light o f new evidence, such as observed data. In the follow ing sections, I w ill 

review some important concepts in Bayesian statistics and more inform ation can be 

find in text (Bernardo &  Smith, 2000).

The Subjective View o f P robability. Probability can be viewed as either a rel

ative frequency o f the observation o f an outcome during many repeatable experi

ments (objective or frequentist) or an individual’s personal assessment o f an out

come’s likelihood {subjective or Bayesian). Throughout this chapter, I adopt a sub

jective interpretation o f probability. Let p (X )  denote the probability o f a random 

variable or vector X : p denotes a probability density function and f  denotes an 

integration i f  X  is continuous; otherwise i f  X  is discrete, P  denotes a probabil

ity  mass function andf  denotes a summation. p(x) measures the agent’s level o f 

confidence or “ degree o f be lie f ’ in the likelihood o f X  taking value x.

Bayes’ Rule. Let a random variable or vector 6 e 0  denote the unknown pa

rameter o f a model, where 0  characterizes a class o f possible models for a given 

problem, and let x represent the observed data. The prior probability o f the model 

parameter p{6) reflects our prior knowledge about the given problem. The like li

hood function p(x  | 6) reflects the conditional probability o f observing data x given 

a model that is specified by parameter 6. Bayes’ rule allows us to compute the
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posterior probability o f model parameter 6 after observing the data x  as follows:

That is, a posterior distribution can be calculated by m ultiplying a prior distribution 

w ith a likelihood function and then normalizing.

In Bayesian statistics, Bayes’ rule inverts the statistical connections, and shows 

how the probability distribution o f 6 changes from the prior probability p{6) to 

the posterior probability p(6 | x) after we have observed the data x. Bayes’ rule 

provides a formal framework for uncertainty analysis and decision making as well 

as a solution to the problem o f how to learn from  data.

Conjugate Priors. In general, the calculation o f the probability in Equation 4.2 

(normalization factor) can be very d ifficu lt. However, for certain choices o f a prior, 

a d ifficu lt numerical integration can be avoided i f  a posterior has the same functional 

form as its prior (i.e., the prior distribution and the posterior distribution are in  the 

same fam ily o f distributions). Such a choice is called a conjugate prior, and a prior 

and posterior chosen in  this way are said to be conjugate.

Conjugate priors make Bayesian estimation procedures very straightforward be

cause they can be simply expressed in terms o f using the sufficient statistics o f the 

observed values to update the parameters o f the conjugate prior. Some useful con

jugate priors can be found in  Appendix E.

The choice o f the functional form o f the prior (posterior) depends on the lik e li

hood, which is determined by the nature o f the data-generating process. For exam

ple, i f  one is estimating the unknown parameters that define the probability d istri

bution o f a Binom ial random variable, then a Beta distribution is a common choice 

o f prior for those parameters. Since the Beta distribution is conjugate, the posterior

(4.1)

where

(4.2)

Equation 4.1 can be explained inform ally as follows:

posterior = ---------- ----------------------
norm aliza tion fac to r

posterior =
likelihood  x  p rio r

(4.3)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is another Beta distribution. Sim ilarly, i f  one is estimating the mean parameter o f a 

Gaussian distribution, the use o f a Gaussian prior on the mean w ill lead to another 

Gaussian posterior. I  w ill make particular use o f Gaussian processes below, which 

are a generalization o f multivariate Gaussian to general index sets. Appendix D 

reviews several specific probability models that I exploit below.

So far I have covered basic concepts in Bayesian statistics. In the next section,

I  w ill give a b rie f survey o f Bayesian reinforcement learning.

4.3 Bayesian Reinforcement Learning

The literature on Bayesian reinforcement learning is relatively small, although Bayesian 

approaches were considered almost from the beginning (Martin, 1967; Bellman, 

1961). However, interest has re-emerged in  this approach (Engel et al., 2003; Dear- 

den et al., 1999; Strens, 2000; Wyatt, 2001). In the Bayesian approach to reinforce

ment learning, uncertainty is represented explic itly as a probability distribution over 

an MDP model {model based) or the (action) value function {value based). In this 

way, the estimates o f the unknown parameters o f the model (or the value function) 

take into account the fact that the estimates themselves are uncertain.

Overall, Bayesian modeling is a flexible tool that allows prior knowledge about 

the transition and reward models to be explicitly stated. It also allows generalization 

across actions, states and rewards, through a principled mechanism. Some o f the 

best developed Bayesian modeling tools, such as Gaussian processes (W illiams,

1999), are suited specifically for continuous state and action spaces, where classical 

reinforcement learning methods are not always conveniently applicable. Bayesian 

approaches also naturally provide an explicit representation o f uncertainty in  the 

posterior distribution, which is useful for exploration/exploitation decision making.

I  attempt to exploit a ll o f these advantages in  Section 4.5.

Model-based Bayesian Exploration

The most straightforward Bayesian approaches are generally model based. In 

this case, a prior is kept over the underlying MDP (i.e., the transition and reward 

models, T  and TV) and learning consists essentially o f updating the posterior.
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The model based Bayesian approach to reinforcement learning, as I  review, is 

equivalent to choosing actions in  a meta-level MDP. This meta-level problem is 

sometimes referred to as a belie f state MDP or a Bayes-adaptive MDP (Duff, 2002). 

I  w ill refer to the underlying MDP as the base-level MDP.

Let 9 and £ to denote the unknown parameters o f the state transition and re

ward models o f the underlying MDP, respectively. Given a particular 9 and £, the 

corresponding base-level MDP is given by the tuple (S, A ,T e ,11*). However, the 

parameters 9 and £ are not precisely known, but instead assumed only to belong 

to a general set, 9 G 0  and £ € 2 . We assume in particular that a p rio r  distribu

tion P(9, £) =  P(9, £|s0) is defined over the models o f the base-level MDP. The 

prior is typically assumed to be factored into separate transition and reward models 

I so) =  P(0\so)P(£\so) =  pe0( 9 )p ^ ) .  Let p6t =  P(9\s0a0...st- ia t- 1st) and 

Pt — P{£,\soaQr i---st - ia t - i r t)- Given experience 5oaor iS i...s t_ ia t_ iriS t, one can 

calculate the posterior distribution P (0 ,£ | ,s0af)r A si...st_ ia t i st ) =  petp\ using 

Bayes’ rule.

The decision maker begins in an in itia l meta-level MDP state m0 =  (s0,Po,Po) G 

M . A t each time step t, it  executes an action at G A , and then receives a reward 

r t drawn from the reward distribution specified by 7Z(mt , at} r t) (given in Equation 

4.5 below), and finds itse lf in a new meta-level state mt+i =  {st+i,p et+1,p\+ l), 

where st+1 G S. In fact, the meta-level states rnt — (st ,p9t ,p̂ t ) are equivalent to 

histories mt =  s0a0r l ...s t-ia t_l r tst, and the state transition probability is simply 

the probability o f a particular history extension r t+1, Si+1 given the current history 

s0a0ri...s t- ia t - i r tst and action at .

Formally, the meta-level Markov decision process can be defined by a tuple 

(M , A , T , 71), where

•  M  is the set o f meta-level states M  =  S x {P (0 )} x {P (£ )},

•  A  is the set o f actions,

•  T  is a transition (probability) function, T (m , a, m ') =  P(m ! | m, a),

•  1Z is a reward (probability) function, 7Z(m, a, r )  =  P ( r  \ m, a),

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where m € M ,  m.' € A i,  a G A, r G l .  The meta-level transition model is given 

by

T (m u at)m t+ l) =  P ((s t+1,pet+ l,p\+ l) \ (su pet ,p \) ,at )

~  ■*-b?+i=-P(6' l soao--St+l)]

/  1 lP ?+ 1 = P f c l * o . . . * a t r t + l ) ] /  K t(s t ,a t , r t+1)p fe )dZ drt+1
J  r t £ M  J ££S

(4.4)

and the meta-level reward model is then simply given by the expectation

n {m t ,a t , r t+ l) =  /  TẐ  (st ,a t , r t+1)p(t (^)d^
Jie  s

(4.5)

Interestingly, even though the base-level transition and reward models are not known, 

the meta-level transition and reward models are known, and hence define a known 

meta-level MDP.

Reinforcement Learning with Gaussian Processes

The above discussion concerns a model based approach to Bayesian reinforce

ment learning. Recently, there has been an attempt to pursue a more direct, value 

based approach to Bayesian reinforcement learning.

The idea is to use Gaussian processes as a tool for estimating the action value 

function o f a fixed policy (unfortunately not the optimal value function) from a 

Bayesian perspective (Engel et al., 2003; Rasmussen &  Kuss, 2004). Engel and 

his colleagues put a Gaussian prior over the value function o f a fixed policy and 

assume that the reward distribution is also Gaussian. Then the Bellman equation 

update for the po licy’s value function (see Equation 2.7) can be maintained by a 

Gaussian process posterior update as shown in Section F. 1.

Although this is an elegant approach, it is d ifficu lt to maintain the Gaussian 

process representation when introducing the max operator for the optimal value 

function Bellman’s optim ality principles (see Equations 2.8 and 2.12). Although 

some work (Engel et al., 2003; Dearden et al., 1998) has considered a Bayesian
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approach to value based learning, I  consider a model based approach to Bayesian 

reinforcement learning in  my work.

4.4 Action Selection

Sections 4.2 and 4.3 presented the general technical background about Bayesian 

statistics and Bayesian reinforcement learning. However, beyond estimating mod

els, value functions, or policies, another key question in learning is action selection. 

That is, which actions should be executed during learning to ensure that a large 

value o f reward is obtained over the agent’s lifetim e or w ith in a learning episode? 

This section reviews the existing techniques for addressing the problem o f action 

selection.

Previous research on action selection can be classified according to whether the 

reward accumulated by the agent during the learning matters or not. The distinction 

is captured in  the terms on-line and off-line reinforcement learning problems. On

line learning is a very natural model for reinforcement learning as it captures the 

characteristics o f a learner that is improving its action selection while performing 

actions. O ff-line or batch learning distinguishes an in itia l training phase from a sub

sequent testing phase. During training, the learning algorithm has no responsibility 

to obtain reward and focuses solely on gaining information. During subsequent 

testing, a non-adaptive policy is executed. The goal o f the agent is actually very 

different between on-line learning and off-line learning. The goal o f an on-line 

learning agent is to maximize the total reward it  can accumulate during learning. 

However, the goal o f an off-line agent is to reduce the time spent learning; that is, 

to minimize the total number o f actions executed to achieve a policy that is approx

imately optimal, which is not the same as maxim izing the total reward obtained 

along the way. I am much more interested in on-line learning so I w ill only briefly 

mention some work on batch learning in  Appendix F.3.

Here existing on-line action selection strategies (see Table 4.1) w ill be catego

rized according to their representation o f the uncertainty o f their estimates (e.g., 

estimates o f action values). I f  uncertainty is represented as a prior (posterior) distri-
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bution, the strategies are considered as Bayesian approaches; otherwise, they belong 

to the non-Bayesian approaches. Non-Bayesian strategies, which are all myopic and 

do not consider the future estimates o f the action value, are first introduced. Then 

the Bayesian formulation o f action selection is introduced.

Method Bayesian Lookahead Uncertainty
e-greedy — — —
Boltzmann — — —
Interval Estimation — — Confidence Interval
Bayes Optimal / / Probability Distr.
Value o f Perfect Information / — Probability Distr.
Thompson Sampling / — Probability Distr.

Table 4.1: On-line methods for action selection

4.4.1 Non-Bayesian Methods for Action Selection

First I w ill review the most commonly used non-Bayesian action selection strate

gies: e-grecdy, Boltzmann, and interval estimation. Non-Bayesian approaches very 

often assume that a point estimate o f the action value function, Q(s, a), is main

tained (either by Q-leaming or Sarsa or some other means). Based on these point 

estimates, some decision needs to be made about which action to take in  a current 

state s.

e-greedy. e-greedy is the most commonly used strategy to balance exploration 

and exploitation in reinforcement learning. The idea is to choose the action w ith 

the highest estimated action value, that is a* =  arg maxa Q(s, a), w ith probability 

1 — e, or choose a (uniform) random action a € A  w ith probability e.1 It is also 

referred to as semi-uniform random exploration. It is common to decrease e over 

the learning process, e-greedy is popular for its sim plicity and it  is w idely used 

in  reinforcement learning algorithms (Sutton &  Barto, 1998). However, it  ignores 

the estimated action values o f the non-greedy actions, and instead treats them all 

equally. As a consequence, e-greedy w ill select promising actions w ith the same 

'For infinite action spaces we assume the range of possible actions is bounded.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



probability as ones that are known to be poor. A  more sophisticated action selection 

strategy, Boltzmann exploration, takes these differences into account.

Boltzmann Exploration. The Boltzmann exploration strategy (Luce, 1959), also 

called the sofitmax strategy, randomly selects actions according to their estimated 

action values, so that the probability o f an action being selected increases w ith the 

current estimate o f its action value. That is, actions w ith high estimated values 

(relatively good actions) are more like ly to be chosen while actions w ith low es

timated values (relatively poor actions) are less like ly to be taken. Formally, the 

Boltzmann strategy samples a random action according to the probability P (a|s) =  

exp (^Q(s,a)/T^j fZ  where r  is a temperature parameter and Z  is a normalization 

constant. When the temperature parameter r  —> oo, the Boltzmann strategy behaves 

like uniform  random action selection; when the temperature parameter r  —> 0, the 

Boltzmann exploration behaves like greedy action selection. However, Boltzmann 

exploration does not account for the uncertainty o f the action value estimates.

Interval Estimation. The basic in tu ition behind interval estimation (Kaelbling, 

1994) is that the greater the uncertainty in  an action’s value, the greater the chance 

that it m ight actually prove to be optimal, and therefore we should select it w ith 

a greater probability. Thus, considering the uncertainty o f the estimated action 

value, interval estimation adds the confidence level to the estimated action value 

and chooses an action according to a =  arg maxa[Q(s\ a) +  U (s, a)] where U(s, a) 

is a (1 — J) upper bound o f the confidence interval on the point estimate Q(s, a).2

Although generally interval estimation is thought to be more sophisticated and 

more effective than e-greedy or Boltzmann exploration, it  is s till a myopic strategy. 

That is, the above action selection strategies (e-greedy, Boltzmann, and interval 

estimation) do not explicitly consider the effects that actions have on future value 

estimates. Interval estimation tries to overcome its myopia by using uncertainty as a 

proxy for lookahead. One d ifficu lty w ith this type o f intuitive reasoning, however,

2T h is  approach has been extended to  genera l M D P s  (W ie r in g , 1999; S treh l &  L ittm a n , 2005) 
and bandit-based M on te -C a rlo  p la n n in g  (K ocs is  &  Szepesvari, 2006).
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is that it is hard to quantify and ignores horizon effects (i.e., one would like to 

exploit more heavily i f  nearing the end o f a decision making process). These three 

selection procedures are heuristic, sometimes d ifficu lt to justify, and do not perform 

well in  all circumstances, as we w ill see below.

There are a few other simple non-Bayesian action selection strategies that peo

ple have considered, particularly for bandit problems.

Uniform Random. This strategy chooses actions randomly and uniform ly. Every 

action has an equal probability o f being selected.

Round Robin. This method selects actions one after another according to some 

fixed order. This is a potentially useful strategy when trying to gather data about all 

the actions.

Biased Robin. Given that the actions are arranged in some fixed order, the biased 

Robin method w ill stick to an action as long as it receives a reward that is higher 

than some fixed value; otherwise, it switches to the next action w ith wrap-around.

Probability Matching. Given pointwise estimates for the value o f each action, 

the probability matching method normalizes each estimate by dividing it over the 

sum o f the estimates, then selects an action according to the normalized probability.

4.4.2 Bayesian Action Selection

Classically, action selection in reinforcement learning has not been thought o f in 

Bayesian terms but instead tackled intuitively. Typically, given a current Q-function 

estimate Q(s, a), an exploitation step is one where an optimal or near optimal action 

is selected according to the current estimate, whereas an exploration step involves 

choosing an alternative action, hoping that its current low estimated value is just an 

underestim ate.

Bayes Action Selection. A  conceptually elegant solution to the action selection 

problem is offered by Bayesian decision theory. A  Bayesian approach to leam-
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ing optim ally in a Markov decision process is equivalent to solving for an optimal 

action selection strategy in  the meta-level Markov decision process (see Equations 

4.4 and 4.5). That is, an optimal action selection strategy for reinforcement learning 

in this setting is given by the policy that obtains maximum expected reward in  the 

meta-level Markov decision process. However, even though this formalization char

acterizes optimal action selection for Bayesian reinforcement learning, there is no 

efficient way to compute this strategy in a guaranteed way (Mundhenk et al., 2000; 

Lusena et al., 2001). One obvious d ifficu lty is that there are far more meta-level 

states (i.e., base-level histories) than original base-level states. In a ll but triv ia l c ir

cumstances, there is no hope o f exactly follow ing an optimal action selection strat

egy. Perhaps the only w ell known exception to this is the result o f G ittins (1989) 

which shows that in the special case where there are fin ite ly many actions, each w ith 

their own independent (finite) state spaces (i.e., bandit problems3), then optimal ac

tion decisions can be made in polynomial time to maximize the expected sum o f in

finite horizon discounted rewards (see Appendix F.2). However, the restrictiveness 

o f the independence assumption has prevented this approach from being w idely ap

plied in reinforcement learning problems. Beyond the work o f Salganicoff &  Ungar 

(1995) and D u ff (2002), very few successes have been reported in  this direction.

For the most part, work on approximating Bayes optimal action selection has 

followed two approaches: pre-compilation and on-line computation. In the pre

compilation approach, one attempts to derive a compact approximation to the opti

mal value function (as in Section 2.3.1) for the meta-level state MDP. In fact, any 

approximation strategy for general POMDPs is applicable in  this case, although a 

few interesting specializations have been attempted for belie f state MDPs (Duff, 

2002). One potential shortcoming o f the pre-compilation approach is that once an 

action selection strategy has been fixed, it is hard to adapt it to the meta-level states 

that are actually encountered during learning. Moreover, this approach necessarily 

cannot obtain a uniform ly accurate approximation over the entire state and action

3 The multi-armed bandit problem is a mathematical model for the problem of optimizing the total 
reward accumulated by choosing actions from a number of arms (e.g., a slot machine), whose reward 
distributions are unknown. An informal review of the multi-armed bandit problem is presented in 
Appendix F.2.
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space, and there is no guarantee that the approximation holds over the meta-level 

states that are encountered in  a particular learning episode. Pre-compilation might 

nevertheless be the only viable approach i f  actions need to be selected w ith little  or 

no serious computation.

In contrast, the on-line approach to approximating Bayes optimal action selec

tion attends only to the particular meta-level states encountered during learning, 

which would seem to relax the burden on the approximation strategy and offer 

the prospect o f higher quality decisions. The drawback is that instead o f exten

sive pre-compilation (allowing fast on-line decisions), these techniques can require 

non-trivial computation for each action selection decision. To date, on-line approx

imation strategies to Bayesian optimal decision making have all been myopic.

Thompson Sampling. One o f the most interesting myopic action selection strate

gies in the Bayesian setting is in fact one o f the first action selection strategies to 

have ever been proposed (Thompson, 1933; Thompson, 1935; Berry &  Fristedt, 

1985). In the context o f learning in  MDPs, Thompson sampling performs the fo l

lowing procedure. Given a current meta-level state (st ,pet ,p i), sample a transition 

and reward model, 6 and £, from the distributions pf and p\. Solve for the optimal 

action value function Qe^{s, a) for this model, then select the optimal action

at =  argmax Q e(.(su a) (4.6)
cl£ A

This technique was orig inally proposed by Thompson (1933) for bandit prob

lems, and has recently reemerged in the reinforcement learning literature (Strens,

2000). Thompson sampling selects actions according to the probability that they 

are optimal in  models drawn randomly from the current meta-level state. Although 

old, this remains an elegant and effective action selection strategy that often out

performs modem proposals (Berry &  Fristedt, 1985). Thompson sampling is not 

Bayes optimal, however, as it is s till myopic. In our experiments (see Section 4.6) 

we find that it tends to over-explore, which is obviously true at the horizon.

Like non-Bayesian myopic strategies, Thompson sampling does not explicitly 

account for the effects that actions have on future meta-level states, and therefore
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can only supply proxy summaries for the future rewards that might indirectly accrue 

as the result o f a current action.

Myopic Value of Perfect Information. A  more recent action selection strategy 

is that o f Dearden et al. (1998; 1999) and Wyatt (2001), which attempts to take the 

effects o f exploration explicitly into account. This approach is based on considering 

the value that is gained by improving a Q-value estimate.4

Consider the distribution over action value functions, Qez(st,a), defined by the 

current meta-level state (st ,pet ,p \), where 0 ~  p\, £ ~  p\. Then, for each action 

a € A , consider the value o f learning the exact value Q*(st ,a ) under the true 

model. Let ax and a2 be the actions w ith the largest and second largest expected 

action values respectively. The gain in  value o f learning Q*{st , a) for an action a is 

given by definition

new action becomes the best, but not otherwise.) The value o f learning the exact 

Q-value o f an action in the current meta-level state is then simply given by the 

expected gain VPIt (a) =  Eg^Gain (QSi(st , a)), which provides an upper bound on 

the myopic value o f inform ation o f executing action a. Finally, one chooses the 

action that maxim izes Qt (st , a) +  VPIt (a).

Other Strategies. Many non-Bayesian strategies in fact can be reformulated in a 

Bayesian way. Bayesian variants o f the e-greedy, Boltzmann, and interval estima

tion action selection strategies are straightforward. One simply uses the expected

4 Wyatt (1997) proposed Q-value sampling, which is also using Bayesian method for representing 
and propagating prior/posterior over action values. The idea was originally developed for solving 
bandit problems.

i f  a =  ax 
otherwise

(4.7)

where the mean Q-values Q(s, a) is defined as

Q(s, a) =  E ^ pe ^ p( [Qee(s, a)] (4.8)

are taken w ith respect to 6 ~  p\, £ ~  p\.5 (That is, value is gained only i f  a

5Here we use the notation (x)+ =
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action value function (see Equation 4.8) defined by the current meta-level state and 

select actions as described in  Section 4.4.1.

The main drawback w ith these Bayesian action selection approaches is that 

computing the mean action value function, Q, or even just computing the action 

value function for a sampled base-level MDP (as in Thompson Sampling) requires 

solving the planning problem in a base-level MDP. The fact that Bayesian on-line 

action selection strategies require (even lim ited) replanning for every meta-level 

state they encounter is probably the single greatest barrier to their use. Neverthe

less, replanning is s till viable in  a range o f interesting cases, which we w ill exploit 

in the Section 4.5. For example, planning is triv ia l in finite bandit problems and 

remains feasible in  many episodic problems. Dearden et al. (1999) also show how 

importance sampling and prioritized sweeping can reduce the cost o f replanning to 

just a few sampled models while maintaining reasonable estimates o f Qt (s, a).

In next subsection, I present my study on the problem o f on-line action selection 

in relatively simple reinforcement learning problems (multi-armed bandits). The 

idea is to grow a sparse lookahead tree, intelligently, by exploiting information in 

a Bayesian posterior—rather than enumerate action branches (sparse sampling) or 

compensating m yopically (value o f perfect information). The outcome is a flexible, 

practical technique— “ Bayesian sparse sampling”—  for improving action selection 

in simple reinforcement learning scenarios.

4.5 Bayesian Sparse Sampling

M y investigation on the problem o f learning to behave optim ally in an in itia lly  un

known MDP is a model based Bayesian approach discussed in Section 4.3. Recall 

that T e(st ,a t ,s t+1) and 7Z^(st , au r t+1) denote the transition and reward models 

w ith unknown parameters 9 and £ respectively, and consider a learning scenario 

where the transition and reward parameters, 9 and £, are not precisely known, but 

instead assumed only to belong to a general set, 9 e ©  and ( g S .  Furthermore, 

assume we are given priors, P(9) and P (£), on 9 and £ respectively. As we have 

seen this creates a meta-level MDP whose state space, transition model and reward
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model are now known. Optimal action selection in this meta-level MDP specifies 

the best possible action choices in the underlying Bayesian reinforcement learning 

problem. Unfortunately, it is not practical to solve the meta-level MDP, and the 

real question is how best to approximate Bayesian optimal action selection. Bayes 

optimal action selection essentially involves enumerating possible futures, averag

ing according to their realization probabilities, and choosing the best action. It is 

no surprise therefore that the only guaranteed way to approximate Bayes optimal 

action selection at a given meta-level state is to simulate the meta-level MDP to the 

effective horizon.

In my research, I exploit the sparse sampling technique o f Section 2.3.2, which 

employs lookahead to derive a better approximation to Bayesian optimal action 

selection than myopic strategies. Note that sparse sampling requires a generative 

model, but this is conveniently exactly what a model-based Bayesian approach pro

vides, as shown in Equations 4.4 and 4.5. In this approach, lookahead is performed 

only by simulation in  the meta-level MDP which is maintained internally, not by 

actually taking actions in the world. That is, sparse sampling is an action selec

tion strategy where, upon entering a meta-level state, extensive computation is per

formed to determine an action that would yield near optimal reward over the long 

run (i.e., to the horizon) in  the meta-level MDP. Once chosen, the action is executed, 

and a new meta-level state is entered. To the extent that the Bayesian posterior con

centrates on the true underlying model, this next meta-level state would have been 

influential in the previous computation. Surprisingly, sparse sampling has never 

been applied to approximating optimal action selection in Bayesian reinforcement 

learning before.

Even though sparse sampling can be parameterized to achieve a controllable 

lookahead strategy, it is s till not an efficient action value estimator, and can be 

easily improved by addressing some shortcomings. M y idea o f addressing these 

shortcomings is to first grow a sparse lookahead tree adaptively, then evaluate the 

values o f the nodes from leaves to the root by alternatively computing expectation 

at outcome nodes and maximum at the decision nodes.

First note that given a meta-level state (st ,pet ,p f), the goal is to use lookahead
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search to estimate the long term value o f possible actions. This situation is sim ilar 

to game tree search where one wants to expand the lookahead tree (here an expecti- 

max tree) in telligently so that search effort is not wasted and important branches 

are explored. One lim itation o f the sparse sampling algorithm in  this respect is that 

it requires one to enumerate a ll possible actions to achieve its guarantee o f approx

imating the optimal action w ith high probability. However, enumerating actions is 

not necessary in a Bayesian setting. The Bayesian approach has an advantage in 

that it  allows one to approximate the maximum o f a set o f random variables w ith

out enumeration. Given a prior and sampled values, a posterior is determined over 

the distribution o f the remaining variables. Thus, it  is possible to stop whenever the 

expected posterior maximum value is no larger than the current maximum value, 

plus e. In this way, it appears as though one can derive sparser sampling bounds in 

the Bayesian setting that are applicable to infin ite action spaces. The main point is 

that it  is not necessary to branch on every action to yie ld a good decision.

G r o w  a  T ree . Thus my goal is not to build a fu lly  balanced lookahead tree, but 

instead attempt to grow the tree adaptively. The in tu ition is that one need only in 

vestigate actions that are actually optimal, and not waste computational resources 

on proving that unpromising actions are, indeed, suboptimal. That is, uniform ly ac

curate estimates are not required at every decision node in the lookahead tree. The 

next idea I  pursued uses an effective myopic action selection strategy— specifically 

Thompson sampling— to preferentially expand the tree below actions that at least 

appear to be locally promising (see Figure 4.1). Also, to reduce the variance o f the 

estimates at outcome nodes, I  also exploit the fact that unbiased reward expecta

tions, locally, can be obtained by sampling them from the mean model, rather than 

first sampling a model and then sampling rewards from a random model. Finally, 

although it seems subtle, the last idea I  considered was to explicitly include the 

m yopically greedy action at each decision node in  the sparse lookahead tree. This 

small detail actually led to a significant improvement in action selection quality and 

is necessary to ensure an advantage over m yopically greedy strategies. These ideas 

led to the algorithm shown in  Table 4.2.
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Figure 4.1: Illustration o f an irregular lookahead tree that was generated by 
Bayesian sparse sampling idea.

GrowSparseBayesianTree (node, budget, p, horizon)

While # nodes < budget
branchnode = BayesDescend(root, p)
I f  branchnode.type = “decision”

Add outcome then leaf node below branchnode 
I f  branchnode.type = “ outcome”

Add leaf decision node below branchnode
return EvaluateTree(ro ot)

BayesDescend (node, p)

I f  node.type = “decision” 
a = ThompsonSample(node.belstate)
I f  a ^  node.children; return [node,a]
Else return BayesDescend{no&Q.chi\d(a))

I f  node.type = “ outcome”
I f  possible to branch, with probability p; return node 
Else [rew,obs] = sample(node.belstate,node.act) 

return B ayesDescend{r\oAt. chi 1 d( [rew, obs]))

Table 4.2: Modified evaluation peocedure for sparse sampled trees that explicitly 
includes myopically.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Evaluate a Tree. Once grown, the sparse lookahead tree must be evaluated to 

choose an action at the root. There are a few subtleties in doing so effectively. 

Clearly, values are backed up from the leaves; averaging at outcome nodes, and 

maximizing at decision nodes, as shown in Figure 4.1. However, when evaluating 

leaf nodes (which are always decision nodes in  this approach) it is important to 

account for differing depths. Therefore, at each leaf, the mean posterior reward for 

each action is first m ultiplied by the number o f decisions remaining to the horizon, 

thus correcting the leaf values to the same absolute depth. Another important issue 

is to always consider the greedy action at each decision node, even i f  it  was not 

sampled during the tree growing phase.6

Note that in this action selection procedure, myopic strategies are only used 

to decide where to look ahead in  the simulation, not make any real action selec

tion decisions. Real decisions are le ft to the fu ll lookahead search. The procedure 

exploits the fact that there is much freedom, during lookahead, to make heuristic 

action choices at the internal decision nodes (i.e., max nodes). In  fact, the Bayesian 

sparse sampling procedure can be easily applied to infinite action spaces, whereas 

sparse sampling is inapplicable i f  actions cannot be enumerated.

4.6 Experimental Results

To investigate the effectiveness o f the improved sampling approach, I conducted 

experiments on a number o f simple domains where the planning problem is not 

d ifficu lt. These include bandit problems, but also episodic reinforcement learning 

problems. M y goal in this research is not to focus on MDP planning, but rather 

to demonstrate action selection improvements, which is already a challenge even 

in simple reinforcement learning scenarios. Subject to coping w ith possible MDP 

planning challenges (Dearden et al., 1999), the approach can be applied to a very 

rich class o f domains.

I compared Bayesian sparse sampling (BayesSamp) w ith sparse sampling (Sparse-

6In the continuous action case I did not consider actions beyond those explicitly sampled, al
though additional local sampling could be used to ensure that a reasonable number of actions are 
considered at each decision node.
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Samp) and standard myopic action selection strategies. These included Bayesian e- 

greedy w ithe =  0.1 (eps-Greedy), Boltzmann exploration w ith temperature t  =  0.1 

(Boltzmann), and interval estimation (IE) w ith a range o f two standard deviations, 

all using the expected Q-values given the current meta-level state. I  also compared 

to Thompson sampling (Thompson) and the myopic value o f perfect information 

(M VPI), using the same number o f samples as a fu ll lookahead tree o f depth one 

to estimate the Q-value distributions. Finally, I compared to a lookahead strategy 

for action selection in MDPs proposed by (Peret &  Garcia, 2004). For this strategy, 

independent trajectories to a fixed horizon H  are generated (set to H  =  5 in  my 

experiments) and the action w ith the best overall trajectory reward on average is 

selected at the root.

For each problem domain, I set a finite horizon time T  and measure the rewards 

accumulated by each action selection strategy, averaged over 1000 to 10,000 repe

titions to estimate the expected total reward achieved as a function o f horizon time 

T  =  5,10,15, 20. I also have collected the standard deviations for all these results 

which are reasonably small. The lookahead strategies were set up to give a con

trolled comparison w ith each other. First, sparse sampling was run w ith a given 

lookahead depth (1 or 2) and fixed decision and outcome branching factors, yie ld

ing a balanced tree. Then the total number o f nodes expanded in the balanced tree 

generated by sparse sampling was set as a maximum node budget for both Bayesian 

sparse sampling and Peret &  Garcia sampling. Figures 4.2 to 4.5 show the results 

obtained.

The first domain is a simple bandit problem w ith five actions, each yielding 

{0 ,1 } rewards according to independent Bernoulli distributions w ith payoff prob

abilities distributed according to a Beta prior. Here one can see that lookahead 

strategies outperform the myopic strategies, even M VPI which uses comparable 

computation (Figure 4.2). Nevertheless this simple problem does not show much 

advantage for Bayesian over sparse sampling. Sim ilar results were obtained for a 

related five action bandit problem where instead each action yields a reward accord

ing to an independent Gaussian distribution w ith means distributed according to a 

Gaussian prior (Figure 4.3).
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Figure 4.2: Results: Bernoulli bandits
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Figure 4.3: Results: Gaussian bandits
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1-d im e n s io n a l C ontinuous G au ss ian  Process  
1

A e p s -G re e d y  
+- B o ltzm ann  

IE
Thom pson  

b M V P I
P ere tG arc ia  
S p a rs e S a m p  

«—  B a y es S am p

10 15
H orizon

Figure 4.4: Results: 1-dimensional continuous action Gaussian process
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Figure 4.5: Results: 2-dimensional continuous action Gaussian process
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More interesting domains involve actions where their rewards are correlated, 

and the number o f actions is large or infinite. To examine those situations, I con

ducted experiments in a scenario that involved continuous action spaces. Specifi

cally, I  considered problems where the reward distribution over actions is defined 

by a Gaussian process prior over the action space (W illiam s, 1999). This creates an 

interesting exploration problem where rewards are correlated between actions, and 

actions themselves are not restricted to a triv ia l fin ite set.

Figures 4.4 and 4.5 show the results o f the two continuous problems I consid

ered. The first involved a 1 -dimensional action space and the second a 2-dimensional 

action space. In each case, a Gaussian process prior over rewards was defined by 

an RBF kernel on actions, specifying the covariance between action rewards. (I 

used a Gaussian RBF kernel w ith w idth parameter 1. The noise standard deviation 

was set to a  =  0.5.) Technically, sparse sampling and M PI are unable to cope w ith 

continuous action spaces, so I sampled actions for them to consider according to 

a uniform  distribution. Figures 4.4 and 4.5 show a clear advantage for Bayesian 

sparse sampling over sparse sampling and the myopic approaches— using the same 

number o f lookahead nodes as sparse sampling and Peret &  Garcia sampling, and 

sim ilar computation to MVPI. Surprisingly, Peret &  Garcia sampling performed 

nearly as w ell in  this case, even though it  exhibits weaker performance in  the bandit 

problems.

4.7 Conclusion

I  have proposed a simple approach to improving action selection quality in model 

based Bayesian reinforcement learning. M y approach provides a flexible frame

work for integrating the prior knowledge o f the problem w ith the interactive expe

rience o f a decision maker.

I  have observed that this approach achieved good performance over other action 

selection strategies, in  particular for 2-dimensional continuous Gaussian process 

domain, where both action space and reward space are continuous. The main ad

vantage o f my approach is that it yields improved exploration/exploitation decision

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



making whenever Bayesian posteriors can be conveniently calculated. The main 

drawback o f my approach is shared by a ll model based Bayesian approaches to 

reinforcement learning: the need to repeatedly solve an MDP planning problem. 

Nevertheless, there are many interesting domains where this is not a significant 

barrier, and promising approaches have been developed for m itigating this expense 

(Dearden et al., 1999).

In the next chapter, I am going to present an approximate POMDP planning 

algorithm.
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Chapter 5

Quadratic Approximations for 
POMDP Planning

Partially observable Markov decision processes (POMDPs) are an intuitive and gen

eral way to model sequential decision making problems under uncertainty. Unfortu

nately, even approximate planning in POMDPs is known to be hard, and developing 

heuristic planners that can deliver reasonable results in practice has proved to be a 

significant challenge.

In this chapter, I present a new approach to approximate value-iteration for 

POMDP planning that is based on quadratic rather than piecewise linear function 

approximators. Specifically, I approximate the optimal value function by a convex 

upper bound composed o f a fixed number o f quadratics, and optimize it at each stage 

by semidefinite programming. I demonstrate that this approach can achieve compet

itive approximation quality to current techniques while s till maintaining a bounded 

size representation o f the function approximator. Moreover, an upper bound on the 

optimal value function can be preserved i f  required. Overall, the technique requires 

computation time and space that is only linear in  the number o f decision stages.

This chapter is organized as follows. Section 5.1 motivates the problem. Sec

tion 5.2 introduces the POMDP model. Section 5.3 surveys the value function 

approaches. Section 5.5 demonstrates my approximate algorithm on benchmark 

POMDP problems.
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5.1 Motivation

Partially observable Markov decision processes (POMDPs) are a general model o f 

an agent acting in an environment, where the effects o f the agent’s actions and the 

observations it can make about the current state o f the environment are both subject 

to uncertainty. The agent’s goals are specified by rewards it receives (as a function 

o f the states it visits and actions it  executes), and an optimal behavior strategy in  

this context chooses actions, based on the history o f observations, that maximizes 

the long term reward o f the agent.

POMDPs have become an important modeling formalism in  robotics and au

tonomous agent design (Thrun et al., 2005; Pineau et al., 2003c). Much o f the cur

rent work on robot navigation and mapping, for example, is now based on stochastic 

transition and observation models (Thrun et al., 2005; Roy et al., 2005). Moreover, 

POMDP representations have also been used to design autonomous agents for real 

world applications, including nursing (Pineau et al., 2003c) and elderly assistance 

(Boger et al., 2005).

Despite their convenience as a modeling framework however, POMDPs pose 

d ifficu lt computational problems. It is well known that solving for optimal be

havior strategies or even just approximating optimal strategies in a POMDP is in 

tractable (Madani et al., 2003; Mundhenk et al., 2000). Therefore, a lo t o f work 

has focused on developing heuristics for computing reasonable behavior strategies 

for POMDPs. These approaches have generally followed three broad strategies: 

value function approximation (Hauskrecht, 2000; Spaan &  Vlassis, 2005; Pineau 

et al., 2003b; Parr &  Russell, 1995), policy based optim ization (Ng &  Jordan, 2000; 

Poupart &  Boutilier, 2003; Poupart &  Boutilier, 2004; Amato et al., 2006), and 

stochastic sampling (Kearns et al., 2002; Thrun, 2000). In this chapter, I  focus on 

the value function approximation approach and contribute a new perspective to this 

strategy.

Most previous work on value function approximation for POMDPs has focused 

on representations that explicitly maintain a set o f a-vectors or be lie f states. This is 

motivated by the fact that the optimal value function, considered as a function o f the
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belie f state, is determined by the maximum o f a set o f linear functions— specified 

by a-vectors— where each a-vector is associated w ith a specific behavior policy. 

Since the optimal value function is given by the maximum o f a (large) set o f a- 

vectors, it  is natural to consider approximating it  by a subset o f a-vectors, or at least 

a small set o f linear functions. In fact, even an exact representation o f the optimal 

value function need not keep every a-vector, but only those that are maximal for 

at least some “ witness”  be lie f state. Motivated by this characterization, most value 

function approximation strategies attempt to maintain a smaller subset o f a-vectors 

by focusing on a reduced set o f be lie f states (Spaan &  Vlassis, 2005; Hauskrecht, 

2000; Pineau et al., 2003b). Although much recent progress has been made on 

a-vector based approximations, a drawback o f this approach is that the number 

o f a-vectors stored generally has to grow w ith the number o f value iterations to 

maintain an adequate approximation (Pineau et al., 2003b).

In this chapter, I consider an alternative approach that drops the notion o f an 

a-vector entirely from the approximation strategy. Instead I exploit the other fun

damental observation about the nature o f the optimal value function: since it is de

termined by a belief-state-wise maximum over linear functions, the optimal value 

function must be a convex function o f the belie f state (Sondik, 1978; Boyd &  Van- 

denberghe, 2004). M y strategy, then, is to compute a convex approximation to the 

optimal value function that is based on quadratic rather than linear functions o f the 

belie f state. The advantage o f using a quadratic basis for value function approxi

mation is several-fold: First, the size o f the representation does not have to grow 

merely to model an increasing number o f facets in the optimal solution; thus one 

can keep a bounded size representation at each horizon. Second, a quadratic repre

sentation allows one to conveniently maintain a provable upper bound on the opti

mal values in an explicit compact representation w ithout requiring auxiliary linear 

programming to be used to retrieve the bound, as in current grid based approaches 

(Hauskrecht, 2000; Smith &  Simmons, 2005). Third, the computational cost o f 

updating the approximation does not change w ith iteration number (either in time 

or space), so the overall computation time is only linear in  the horizon. Finally, as 

I demonstrate below, despite a significant reduction in representation size, convex
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quadratics are s till able to achieve competitive approximation quality on benchmark 

POMDP problems.

5.2 Partially Observable Markov Decision Processes

I begin w ith Markov decision processes (MDP) since I w ill need to exploit some 

basic concepts from MDPs in  my approach below. Recall that an MDP is defined by 

a set o f states S, a set o f actions A, a state transition model p(s'\s, a), and a reward 

model 7Z(s, a). In this setting, a deterministic policy is specified by a function from 

states to actions, 7t : S —> A, and the value function for a policy is defined as the 

expected future discounted reward the policy obtains from each state

V*(s) =  E* So =  s^ 2 ' y tK ( s t ,n(s t))
,t=0

Here the discount factor, 0 <  7  < 1, expresses a tradeoff between short term and 

long term reward. It is known that there exists a deterministic optimal policy whose 

value function dominates a ll other policy values in  every state (Bertsekas, 1995). 

This optimal value function also satisfies the Bellman equation

(s ) =  m ax7?.(s, a) +  7 y ^ p ( s ' | s ,  a ) I / * ( s ')  (5.1)
a ^

Computing the optimal value function for a given MDP can be accomplished in 

several ways. The two ways I  consider below are value iteration and linear pro

gramming. Value iteration is based on repeatedly applying the Bellman backup 

operator, Vn+1 =  H Vn, specified by

K + i(s ) =  max7?.(s, a ) + 7 y ^ p (s /|s,a)Vn(s') (5.2)
a *

s'

It can be shown that Vn —> V* in  the L Xl norm, and thus V* is a fixed point o f (5.2) 

(Bertsekas, 1995). V* is also the solution to the linear program

m in X y ( s) s± V (s) ^ n (si a)+~f'% 2p{s '\s,a)V {s ') (5.3)
S s '

fo r all s € S and a £ A. It turns out that for continuous state spaces, the Bellman 

equation (see Equation 5.1) s till characterizes the optimal value function, replacing
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the transition probabilities w ith conditional densities and the sums w ith Lebesgue

integrals. However, computationally, the situation is not so simple for continuous 

state spaces, since the integrals must now somehow be solved in place o f the sums, 

and Equation 5.3 is no longer fin ite ly defined. Nevertheless, continuous state spaces 

are unavoidable when one considers POMDP planning.

POMDPs extend MDPs by introducing an observation model p(o'\a,s') that 

governs how a noisy observation o' G O is related to the underlying state s' and 

the action a. Having access to only noisy observations o f the state complicates the 

problem o f choosing optimal actions significantly. The agent now never knows the 

exact state o f the environment, but instead must infer a distribution over possible 

states, b(s), from the history o f observations and actions. Nevertheless, given an 

action a and observation o' the agent’s belief state can be easily updated by Bayes’ 

rule

where Z  =  p(o'\b,a) =  Y^S’ P{° 1a>s') a)b(s).

By the Markov assumption, the belief state is a sufficient representation upon 

which an optimal behavior strategy can be defined (Sondik, 1978). Therefore, a 

policy is naturally specified in this setting by a function from belie f states to actions, 

7r : B  —> A, where B  is the set o f a ll possible distributions over the underlying state 

space S (an |5'( — 1 dimensional simplex). Obviously for any environment w ith two 

or more states there are an infinite number o f belie f states, and not every policy can 

be fin ite ly represented. Nevertheless, one can s till define the value function o f a 

policy as the expected future discounted reward obtained from each belie f state

where r(b, a) =  7Z(s, a)b(s). Thus, a POMDP can be treated as an MDP over

belie f states; that is, a continuous state MDP. As before, an optimal policy obtains 

the maximum value for each be lie f state, and its value function satisfies the Bellman

(5.4)
S

oo

V*(b) =  Ew ^ 7V(6t ,7T(6t)) bQ =  b
t=o
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equation (Sondik, 1978)

V*(b) =  m axr(6, a )+ 7 p(b'\b,a)V*(b')
V

=  m axr(b ,a)+-y '£2p(o '\b ,a )V *(b [bao,)) (5.5)
o'

Unfortunately, solving the above functional equation for V* is hard. Known 

techniques for computing the optimal value function are generally based on value 

iteration (Cassandra et al., 1997; Zhang &  Zhang, 2001); although policy based 

approaches are also possible (Sondik, 1978; Poupart &  Boutilier, 2003; Poupart 

&  Boutilier, 2004). As above, value iteration is based on repeatedly applying a 

Bellman backup operator, 14+i — 7714, to a current value function approximation. 

In  this case, a current lower bound, 14, is represented by a finite set o f a-vectors,

Tji =  {a v  : 7r' € I f „ } ,  where each a-vector is associated w ith an n-step behavior

strategy n'. Given 14, the value function is represented by

14(6) =  max 6 • a v  
aff/Grn

A t each stage o f value iteration, the current lower bound is updated according to the 

Bellman backup, 14+1 =  7714, such that

Vn+i(b) =  m a x r(6,a )+ 7 ^ p ( o '| 6,a )14(6'( w ) ) (5.6)
o'

=  max 6 • r a+ 7  V ]  6 • arg max 6 • o')
“  , W , o ' )  w 'e n n

o '  v '

=  max 6 • aai{ol_ ,r} (5.7)
a,{o'—>7r'}

where I use the quantities

g(n',a,o'){s) =  J ^ p ( o / |a ,s ' )p (5 ' |a , 'S )a + (s ' )
s'

^a,{o'—>7r'} r Q +7^ , ( + ;a,o')
o'

Once again it  is known that 14 —> V* in  the norm, and thus V* is a fixed point 

o f Equation 5.6 (Sondik, 1978).

Although the size o f the representation for 14+1 remains finite, it can be expo

nentially larger than 14 in the worst case, since enumerating every possibility for

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a, {o' —> -k ' }  over a € A, o € O, ix' € n „ , yields | I I „ +i| <  |̂ 4| jn ^ j combi

nations. Many o f these a-vectors are not maximal for any belie f state, and can be 

pruned by running a linear program for each that verifies whether there is a witness 

belie f state for which it is maximal (Cassandra et al., 1997). Thus, the set o f a - 

vectors, T „, action strategies, I I „ ,  and witness belie f states, B n, are all associated 

1 to 1. However, even w ith pruning, exact value iteration cannot be run for many 

steps, even on small problems.

5.3 Value Function Approximation Strategies

Much research has focused on approximating the optimal value function, aimed 

for the most part at reducing the time and space complexity o f the value iteration 

update. Work in  this area has considered various strategies (Hauskrecht, 2000), in 

cluding direct MDP approximations and variants, and using function approximation 

to fit Vn+1 over sampled belie f states (Parr &  Russell, 1995; Littman et al., 1995). 

However, two approaches have recently become the most dominant: grid based and 

belie f point approximations.

The grid based approach (Gordon, 1995; Hauskrecht, 2000; Zhou &  Hansen, 

2001; Bonet, 2002) maintains a fin ite collection o f belief states along w ith associ

ated value estimates {(&, Vn(b)} : b <5 Bgrid}. These value estimates are updated by 

applying the Bellman update on 6 € Bgrid. An important advantage o f this approach 

is that it  can maintain an upper bound on the optimal value function. Unfortunately, 

maintaining a tight bound entails significant computational expense (Hauskrecht, 

2000): First, B grid must contain all comers o f the simplex so that its convex closure 

spans B. Second, each successor belie f state b' in  Equation 5.6 must have its in

terpolated value estimate minimized by a linear program (Zhou &  Hansen, 2001). 

Below I  show that this large number o f linear programs can be replaced w ith a 

single convex optimization.

Unlike the grid based approach, which takes a current belie f state in B grid and 

projects it  forward to be lie f states outside o f Bgrid, the belie f point approach only 

considers belie f states in a witness set B wit (Pineau et al., 2003b; Smith &  Sim-
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mons, 2005). Specifically, the belie f point approximation maintains a lower bound 

by keeping a subset o f a-vectors associated w ith these witness belie f states. To 

further explain this approach, let Tn =  (g v  : tt' € f l n}, so that there is a 1 to 1 

correspondence between a-vectors in Tn, action strategies in I I n and belie f states 

in  Bwit. Then the set o f a-vectors is updated by applying the Bellman backup, but 

restricting the choices in  Equation 5.7 to 7r' e n „, and only computing Equation 

5.7 for b € Bwit. Thus, the number o f a-vectors in  each iteration remains bounded 

and associated w ith b € B wlt.

The quality o f both these approaches is strongly determ ined by the sets o f belie f 

points, Bgrid and B wit, they maintain. For the belie f point approach, one generally 

has to grow the number o f be lie f points at each iteration to maintain an adequate 

bound on the optimal value function. (Pineau et al., 2003b) suggested doubling the 

size at each iteration, but recently a more refined approach was suggested by (Smith 

&  Simmons, 2005).

5.4 Convex Quadratic Upper Bounds

The key observation behind my proposed approach is that one does not need to be 

confined to piecewise linear approximations. The intuition is that convex quadratic 

approximations are particularly w ell suited for value function approximation in 

POMDPs. This is motivated by the fact that each value iteration step produces a 

maximum over a set o f convex functions, yielding a result that is always convex. 

Thus, one can plausibly use a convex quadratic function to upper bound the max

imum over a-vectors, and more generally to upper bound the maximum over any 

set o f back-projected convex value approximations from  iteration n. The basic goal 

then is to retain a compact representation o f the value approximation by exploiting 

the fact that quadratics can be more efficient at approximating a convex upper bound 

than a set o f linear functions (see Figure 5.1). As w ith piecewise linear approxima

tions, the quality o f the approximation can be improved by taking a maximum over 

a set o f convex quadratics, which would yield a convex piecewise quadratic rather 

than piecewise linear approximation. In  this chapter, however, I  w ill focus on the
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Convex quadratic 
upper bound

a3

b

Figure 5.1: Illustration o f a convex quadratic upper bound approximation to a max
imum o f linear functions b ■ a n.

most naive choice, and approximate the value function w ith a single quadratic in 

each step o f value iteration. The subsequent extension to m ultiple quadratics is 

discussed below.

An important advantage the quadratic form has over other function approxima

tion representations is that it permits a convex m inim ization o f the upper bound, as 

I demonstrate below. Such a convenient formulation is not readily achievable for 

other function representations. Also, since one is not compelled to grow the size o f 

the representation at each iteration, one can obtain an approach that runs in linear 

time in  the number o f value iteration steps.

There are a few drawbacks in  dropping the piecewise linear representation how

ever. One drawback is that I lose the 1 to 1 correspondence between a-vectors and 

behavior strategies tv' ,  which means that greedy action selection requires a one step 

look ahead calculation based on Equation 5.5. The second drawback is that the con

vex optim ization problem I have to solve at each value iteration is more complex 

than a simple linear program.
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5.4.1 Convex Upper Bound Iteration

The main technical challenge I face is to solve for a tight quadratic upper bound on 

the value function at each stage o f value iteration. Interestingly, this can be done 

effectively w ith a convex optim ization as follows. I represent the value function 

approximation over belie f states by a quadratic form

Vn{b) =  bTWnb +  wTn b +  ujn (5.8)

where Wn is a square m atrix o f weights, wn is a vector o f weights, and u>n is a 

scalar offset weight. Equation 5.8 defines a convex function o f be lie f state b i f  and 

only i f  the matrix Wn is positive semidefinite (Boyd &  Vandenberghe, 2004). I 

denote the semidefinite constraint on Wn by Wn y  0. As shown above, one step 

o f value iteration involves expanding (and back-projecting) a value approximation 

from stage n; defining the value function at stage n  +  1 by the maximum over the 

expanded, back-projected set. However, back-projection entails some additional 

complication in this case because I  do not maintain a set o f a-vectors, but rather 

maintain a quadratic function approximation at stage n. That is, the approximate 

value iteration step has to pu ll the quadratic form through the backup operator. Un

fortunately, the result o f a backup is no longer a quadratic, but a rational (quadratic 

over linear) function. Fortunately, however, the result o f this backup is s till convex, 

as I now show.

Let the action-value backup o f V  be denoted by

qa(b) =  r { b ,a ) + 1^ p {o '\b ,a )V {b [ b̂ 0,] ) (5.9)
o'

To express this as a function o f 6 ,1 need to expand the definitions o f b'(b a o,} and Vn 

respectively. First, note that b'{h a ()l) is a ratio o f a vector linear function o f b over a 

scalar linear function o f b by Equation 5.4, therefore one can represent it by

rl   M aorb _ M ao/b
~  p (o % a ) -  l ^ M ^ b  ( • 0)

where M a o, is a matrix such that M aj0/(s ', s)  =  p{o'\a, ,s')p(s'|,s, a), and 1 denotes
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a vector o f  a ll Is. Substituting Equations 5.8 and 5.10 into Equation 5.9 yields

^  bTM jn,W M ao,b
qa(b) =  rib, a) +    ’ +  (w +  w l)  M a,0>b (5.11)

1 M at0ib  ' --------------------------- „ ------------------------------

sca la r lin e a r

Theorem 8 qa(b) is convex in b.

Proof: Since W  y  0, we have Mj 0, \V M afi< >z 0. Therefore, M ^ W M aj0> =  UU T 

for some U. Letting /  (b) =  — z ff  this quadratic-over-linear function can
1 M a,o 'b

be written as

m  =  =  (u-'b)T(vTu)-'(uTb) (5.12)

where vTb =  1TM a^b. Since M a o/ >  0 and b >  0, vTbI >- 0 holds.

Recall that a function is convex i f f  its epigraph is a convex set (see Section 3.1.7 

in (Boyd &  Vandenberghe, 2004)). By the definition o f the epigraph o f a function 

(Boyd &  Vandenberghe, 2004),

e p i/  =  {(6, vTbI, 8) | vTbI >- 0, [U Tb)r  [vTb l)^1 [U J b) <  5} (5.13)

>- 0. Then theBy the Schur complement lemma, 1 we have 

epigraph o f f(b )  becomes

vTbI UTb 
(U Tb)T 8

e p i/  =  < (b, v bl, 8) | v b l x  0,
vTbI UTb

(■UTb)T y  o (5.14)

e p i/  is convex because this set can be written as a linear matrix inequality.2 There

fore, we have f(b ) is convex.

Thus, qa(b) is convex in  b since qa{b) is a sum o f a scalar, a convex function in 

b, and a linear function in  b. |

C oro lla ry 1 Given a convex quadratic representation fo r  Vn, maxtt qa (b), and hence 

TCVn, is convex in b.

' if  vT bI  >- 0 , then vT bI U Tb 
(UT b)T 6 

A.5.5 in (Boyd & Vandenberghe, 2004)).
2See Example 2.10 in (Boyd & Vandenberghe, 2004).

y  0 iff A— (U by ( v ' b l )  1(U b) >  0 (see Appendix
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So back-projecting the convex quadratic representation s till yields a convex re

sult. The goal is to optimize a tight quadratic upper bound on the maximum o f 

these convex functions (which o f course is s till convex). In  some approaches be

low I w ill use the back-projected action-value functions directly. However, in  other 

cases, it  w ill prove advantageous i f  one can work w ith linear upper bounds on the 

back-proj ections.

Proposition 1 The tightest linear upper bound on qa(b) is given by qa(b) < u jb  

fo r  a vector ua such that u j  l s =  r/a( l s) fo r  each corner belief state l s.

5.4.2 Algorithmic Approach

I would like to solve for a quadratic Vn+i at stage n + 1 that obtains as tight an upper 

bound on TLVn as possible. To do this, one appeal to the linear program character

ization o f the optimal value function (see Equation 5.3) which also is expressed as 

m inim izing an upper bound on the back-projected value function. Unfortunately, 

here, since one is no longer working w ith a fin ite space, one cannot formulate a 

linear program but rather have to pose a generalized semi-infinite program

where fi(b) is a measure over the space o f possible belie f states. This semi-infinite 

program specifies a linear objective subject to linear constraints (albeit in fin ite ly 

many linear constraints); and hence is a convex optim ization problem in W , w, u j .

There are two main difficulties in solving this convex optim ization problem. 

First, the objective involves an integral w ith respect to a measure /i(b) on belie f 

states. This measure is arbitrary (except that it  must have fu ll support on the belie f 

space B ) and allows one to control the emphasis the m inim ization places on differ

ent regions o f the be lie f space. For sim plicity, I  assume the measure is a D irichlet 

distribution, specified by a vector o f prior parameters 6(s), Vs € S. The D irichlet 

distribution is particularly convenient in  this context since one can specify a uniform  

distribution over the belie f simplex merely by setting 8(.s) =  1 for a ll s. Moreover,

m in
W,VJ,UJ

(b Wb +  w b +  uj) n(b) db subject to 

bTWb +  w Tb +  u j  >  qa{b), V a,b; W  y  0

(5.15)
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the required integrals for the D irichlet have a closed form solution, which allows us 

to simply precompute the linear coefficients for the weight parameters, by

Jb(bTWb +  wTb +  w) p(b)db =  {W,E[bbT))+ w TE[b]+uj

where E[6] =  0 /||0 ||i; E [bbT] =  (diag(E[fe]) +  ||0||iE[&]E[6]T) / ( l  +  ||0 ||i) (Gelman 

et al., 1995); and (A, B ) =  £ !:j That is, one can specify 0 and compute the

linear coefficients ahead o f time.

The second and more d ifficu lt problem w ith solving Equation 5.15 is to find 

a way to cope w ith the infinite number o f linear constraints. Here, I address the 

problem w ith a straightforward constraint generation approach. The idea is to solve 

Equation 5.15, iteratively, by keeping a finite set o f constraints, each corresponding 

to a belie f state, and solving the finite semidefinite program

m in (W, E[bbT]) +  w TE[b\ +  cc subject to (5.16)
W,W,LL>

bJWbi + w Tbi +  lo >  qa(bi), V  a f i i  G C; W  >z 0

Given a putative solution, W , w, cu, a new constraint can be obtained by finding a 

belief state b that solves

m in bTWb +  wTb +  d  — qa(b) subject to 
b

b >  0, £ ,& (« ) =  1 (5.17)

for each a. I f  the minimum value is nonnegative for all a then there are no violated 

constraints and I  have a solution to Equation 5.15.

Unfortunately, Equation 5.17 cannot directly be used for constraint generation, 

since qa(b) is a convex function o f b (see Theorem 8) and hence —qa(b) is concave; 

yielding a non-convex objective. Thus, to use Equation 5.17 for constraint genera

tion I need to fo llow  an alternative approach. I  propose three different approaches 

to this problem.

The first strategy maintains a provable upper bound on the optimal value func

tion by strengthening the constraint threshold w ith the linear upper bound u jb  >  

qa(b) from Proposition 1. Replacing qa(b) w ith u jb  (in  Equations 5.15 and 5.17) 

ensures that an upper bound w ill be maintained, but also reduces Equation 5.17 to
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a quadratic program that can be efficiently minimized to produce a belie f state w ith 

maximum constraint violation.

The second strategy relaxes the upper bound guarantee by only substituting u j  b 

for qa(b) in the constraint generation procedure, maintaining an efficient quadratic 

programming formulation there, but keeping qa(b) in  the main optim ization (see 

Equation 5.16). This no longer guarantees an upper bound, but can s till produce 

better approximations in practice because the bounds do not have to be artific ia lly 

strengthened.

The th ird strategy side-steps optimal constraint generation entirely, and instead 

chooses a fixed set o f belie f states for the constraint set C in  Equation 5.16. In this 

way, the semidefinite program (see Equation 5.16) needs to be solved only once per 

value iteration step. This strategy doesn’t produce an upper bound either but the 

resulting approximation is fast and effective in practice.

Finally, to improve approximation quality, one could augment the approximate 

value function representation w ith a maximum over a set o f quadratics, much as 

w ith a-vectors. One natural way to do this would be to maintain a separate quadratic 

for each action, a, in  Equation 5.15.

5.5 Experimental Results

I  implemented the proposed approach using SDPT3 (Toh et al., 1999) as the semidef

inite program solver for solving the finite semidefinite program in Equation 5.16. 

Specifically, in my experiments, I have investigated the third (simplest) strategy 

mentioned above, which only used a random sample o f belie f states to specify the 

constraints in  the constraint set C. I  compared this method to two current value func

tion approximation strategies in  the literature: Perseus (Spaan &  Vlassis, 2005) and 

PBVI (Pineau et al., 2003b). Here, both Perseus and PBVI were run w ith the num

ber o f be lie f states fixed at 1000, whereas the convex quadratic method, CQUB, 

was run w ith 100 random belie f states.

In my experiments, I  considered the benchmark problem s:3 Maze (Hauskrecht,

3http ://w w w .cassandra .o rg /pom dp/exam p les
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1997), Tiger-grid, Hallway, Hallway2, and Aircraft. Table 5.1 gives the problem 

characteristics. In each case, a number o f value iteration steps was fixed as shown 

in  Table 5.1, and each method was run 10 times to generate an estimate o f value 

function approximation quality.

Table 5.2 shows the results obtained by the various value function approxima

tion strategies on these domains, reporting the expected discounted reward obtained 

by the greedy policies defined w ith respect to the value function estimates, as well 

as the average time and the size o f the value function approximation.4 Interest

ingly, the convex quadratic strategy CQUB performed surprisingly w ell in  these 

experiments, competing w ith state o f the art value function approximations while 

only using 100 random be lie f states for constraint generation in Equation 5.16. The 

policies that computed from CQUB are competitive w ith other state o f the art tech

niques (Perseus and PBVI). The result is significantly stronger in  the Hallway do

mains, reasonable good in  the Maze and A ircraft domain, and slightly weaker in 

the Tiger-grid domain. The size o f the representation for value function (i.e., the 

number o f unknown variables) requires by CQUB is significantly less due to the 

representational power o f quadratics. That is, convex quadratics capture value func

tion structure more efficiently than the linear approximation approaches. Moreover, 

the size o f representation in CQUB grows much slower than the ones in  Persus and 

PBVI. However, the running time o f CQUB is significant higher than previous tech

niques due to the need to solve a semidefinite program for every back projection o f 

the value function.

5.6 Conclusion

I  have introduced a new approach to value function approximation for POMDPs that 

is based on a convex quadratic bound rather than a piecewise linear approximation. 

The unknown parameters in  the quadratics are optimized at each decision making 

stage by semidefinite programming.

From the empirical studies on the benchmark problems, I  have found that quadratic

4For Perseus and PBVI, the size is |S| times the number of a-vectors. For CQUB, the size is just 
|5 |( |5 | +  l ) /2  +  |S'| +  l , which corresponds to the number of variables in the quadratic approximator.
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Problems \s\ 14 \0\ value iters
Maze 20 6 8 40
Tiger-grid 33 5 17 76
Hallway 57 5 21 55
Hallway2 89 5 17 33
A ircraft 100 10 31 10

Table 5.1: Problem characteristics.

CQUB Perseus PBVI
Maze
Avg. reward 45.35 ±3.28 30.49 ±0.75 46.70 ±2.0
Run time (s) 197.71 60.00 0.66
Size 231 460 1160
Tiger-grid
Avg. reward 2.16 ±0.02 2.34 ±0.02 2.25 ±0.06
Run time (s) 7.5 x 103 61.36 28.47
Size 595 4422 15510
Hallway
Avg. reward 0.58 ±0.14 0.51 ±0.06 0.53 ±0.03
Run time (s) 7.5 x 103 61.26 39.79
Size 1711 3135 4902
Hallway2
Avg. reward 0.43 ±0.25 0.34 ±0.16 0.35 ±0.03
Run time (s) 1.8 x 104 63.72 27.97
Size 4095 4984 8455
Aircraft
Avg. reward 16.70 ±0.58 12.73 ±4.63 16.37 ±0.42
Run time (s) 3.8 x 105 60.01 8.03
Size 5151 10665 47000

Table 5.2: Experimental results. Mean discounted reward obtained over 1000 tra
jectories using the greedy policy for each value function approximation, averaged 
over 10 runs o f value iteration.
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approximators can achieve highly competitive approximation quality w ithout grow

ing the size o f the representation, even while explic itly focusing on a tiny fraction 

o f the belie f states. In summary, CQUB maintains a compact representation o f the 

value function and only requires computational time and space linear in the number 

o f decision stages. The drawback o f CQUB is that it took longer run time than 

Perseus or PBVI in my runs above, which mainly comes from the lim ita tion o f the 

speed o f the current semi-definite program solver.

Since this approach introduces a new perspective on approximating POMDP 

planning, I hope that it can lead to new avenues o f research in value approximation 

for POMDPs.
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Chapter 6

Conclusions

This thesis addresses the challenge o f scaling up algorithms for sequential deci

sion making under uncertainty. Specifically, my research attempts to tackle three 

key outstanding issues in sequential decision making in uncertain environments: 

combining off-policy updates w ith generalization, balancing exploration and ex

ploitation, and handling partial observability o f the environment.

6.1 Contributions

The key contributions o f this thesis can be summarized as follows.

Dual representations and algorithms (Chapter 3). I have introduced dual rep

resentations and a body o f novel dual algorithms for sequential decision making 

problems. Dual representations maintain an explicit representation o f stationary 

distributions as opposed to value functions. Therefore, dual algorithms, since they 

are based on estimating normalized probability distributions rather than unbounded 

value functions, avoid divergence even in  the presence o f approximation and off- 

policy updates. Moreover, dual algorithms remain stable in situations where stan

dard value function estimation diverges. Furthermore, this dual view offers a co

herent and comprehensive perspective on optimal sequential decision making prob

lems, provides an alternative to standard value function based techniques, and opens 

new avenues for solving sequential decision making problems. I studied the con

vergence properties o f the dual dynamic programming algorithms both theoretically 

and empirically. I  observed that on-policy updates converge in both prim al and dual
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dynamic programming algorithms while off-policy updates diverge when composed 

w ith gradient operator in  the primal, not in  the dual. Learning from the techniques 

for proving convergence for the prim al algorithms, I proved the convergence o f tab

ular on-policy (O), tabular off-policy (M ) ,  and projection on-policy (VO ) updates 

for the dual. The reason is that these updates are non-expansion (or contraction) 

operators w ith respect to the right norm.

A new technique for on-line action selection (Chapter 4). I have proposed a 

simple approach to improving action selection quality in  model based Bayesian 

reinforcement learning. The technique exploits information in  a Bayesian poste

rio r to make intelligent actions by growing an adaptive, sparse lookahead tree. I 

demonstrate that Bayesian sparse sampling improves action selection in  simple re

inforcement learning scenarios. The main advantage is that the approach yields 

improved exploration/exploitation decision making whenever Bayesian posteriors 

can be conveniently calculated. The main drawback o f my approach is shared by all 

model based Bayesian approaches to reinforcement learning: the need to repeatedly 

solve an MDP planning problem.

A novel algorithm for approximate POMDP planning (Chapter 5). Finally, 

I  have introduced a new approach to value function approximation for POMDPs 

that is based on a convex quadratic bound rather than a piecewise linear approxi

mation. Specifically, I approximate the optimal value function by a convex upper 

bound composed o f a fixed number o f quadratics, and optimize it by semidefinite 

programming. I have found that quadratic approximators can achieve highly com

petitive approximation quality w ithout growing the size o f the representation, even 

while explic itly focusing on only a tiny fraction o f the belie f states. Overall, the 

technique requires computation time and space that is only linear in the number o f 

decision stages. However, CQUB took longer run time than Perseus or PBVI in 

my mns above. This drawback o f my approach mainly comes from the lim itation 

o f the speed o f the current semi-definite program solver. S till since this approach 

introduces a new perspective on approximating POMDP planning, I expect that this
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approach can lead to new avenues o f research in  value approximation for POMDPs.

6.2 Future Research

There are a number o f future research directions suggested by the work in  this 

thesis.

Exploiting the joint primal-dual view of DP/RL. The dual view offers a co

herent and comprehensive perspective on optimal sequential decision making prob

lems, provides a viable alternative to standard value function based techniques, and 

opens new avenues for solving sequential decision making problems. Neverthe

less, a problem can be solved jo in tly  by a combination o f both the prim al and dual 

approaches.

Extensions of Bayesian sparse sampling. One possible future research for the 

Bayesian sparse sampling idea is to compare on-line action selection strategies 

w ith pre-compilation approaches (Boyan &  Moore, 1996). It is also interesting 

to contemplate the prospect o f hybrid action selection strategies that combine pre

compilation w ith on-line computation, perhaps by allowing a pre-compiled value 

function approximation to guide lookahead simulation without the need for on-line 

MDP planning.

Extensions of approximate POMDP planning. The quadratic approximation 

for POMDP planning can be extended by considering structured POMDP mod

els, and combining value function approximation w ith policy based and sampling 

based approaches. Also the idea o f be lie f state compression (Poupart &  Boutilier, 

2002; Poupart &  Boutilier, 2004; Roy et al., 2005), and factored models (Boutilier 

&  Poole, 1996; Feng &  Hansen, 2001; Poupart, 2005) can help tackle POMDPs 

w ith large state spaces. Another idea I  am exploring is the interpretation o f convex 

quadratics as second order Taylor approximations to the optimal value function, 

which offers further algorithm ic approaches w ith the potential for tight theoretical 

guarantees on approximation quality.
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Combining Bayesian sparse sampling with approximation. The unification o f 

Bayesian sparse sampling and quadratic approximate POMDP planning should pro

vide a principled methodology fo r integrating prior knowledge o f the problem w ith 

the interactive experience o f a decision maker. Although the action selection strat

egy (Bayesian sparse sampling) in  Chapter 4 is proposed for MDPs, the idea o f 

making use o f both prior knowledge and interactive experience by growing a sparse 

lookahead tree can be applied to sequential decision making in general. Potentially, 

the Bayesian sparse sampling idea can be extended to handle action selection in 

partially observable environments. However, the extension is non-trivial because a 

belie f state in  a POMDP is continuous. Fortunately, approximate POMDP planning 

algorithm in  Chapter 5 can be a natural choice for computing the values o f the leaf 

nodes in the tree evaluation. Combing Bayesian sparse sampling w ith convex up

per bound iteration algorithm can give us a general framework to reflect a decision 

maker’s the domain knowledge while allow it to behave adaptively as it can learn 

from its interactive experience.

Robotics applications. A  robotic application I  am currently pursuing is designing 

a mobile Vendorbot (a wheeled Pioneer I II  robot). The goal o f Vendorbot project 

is to provide a real world domain to evaluate and extend my ideas. Imagine a robot 

wandering around an office building (like ours) selling candy bars and coffee to 

the people who m ight want to have them without stepping out o f their offices. In 

addition to taking Internet food requests via wireless communication, the robot can 

try to learn the preferences and habits o f its customers from its observations and 

experiences. One candidate strategy for a robot to select action on-line (e.g., where 

to v isit) w ill be the ideas mentioned in  Chapter 4 o f this thesis. The robot might 

choose to give high p rio rity to the Internet orders that are either expected to have 

high payoff or be trustworthy. By saying that orders are “ trustworthy” , I  mean that 

the orders are from customers who have never cheated the robot in  the past by re

fusing to pay for the delivery. Although I have to face challenging problems besides 

decision making, e.g., robot navigation, I hope that Vendorbot project provides an 

opportunity to investigate the fle x ib ility  o f Bayesian sparse sampling strategy.
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Appendix A 

Notation for Chapter 3

5 set o f states \s\ s e S
A set o f actions \A\ a e A
r reward model | S | | A | x l r {sa)

7r stationary policy \S\\A\ x  1 7T (sa)
P transition model |S ||A |x |S | P (s a ,s ' )

n sparse policy matrix | S | x | S | | A | n ^ s .s 'a )

z stationary state-action distribution | S | | A | x | S p |

V state value function | S | x l V (4)

q state-action value function |S | |A |x l Q (sa)

in itia l state distribution \S\ x  1

V in itia l state-action distribution |5 | | A | x l

marginalization matrix |5 |x |5 | |A |
c jo in t prob. distr. over state pairs | S | x l c (s)
d jo in t prob. distr. over state-action pairs |5 | | A | x l d (s a )

M prob. o f discounted state visits |5 |x |5 |
H prob. o f discounted state-action visits |5 | | A | x | 5 | | A | H{sa,s'a')

w adjustable weights k x  1

<f> bases for the prim al representation |<Sj|A| x  k
$ bases for the dual representation ( | 5 | | A | ) 2 x f c

T basis matrix, nonnegative, row normalized |5 | | A | x | 5 | | A |

r ( rT ® I )V | S j | A |  x  A:
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Appendix B

Tabular Reinforcement Learning

Beyond demonstrating novel dual representations for planning w ith a given MDP 

model, I  can also show how these representations can be used to derive novel forms 

o f learning algorithms without a MDP model as well. In reinforcement learning 

algorithms, e.g., temporal difference (TD) evaluation, Sarsa, and Q-leaming, the 

environmental model P  and r  are unknown, but instead access to the environment 

is lim ited to the selection o f actions and observation o f state transitions and rewards.

B.l Temporal Difference Evaluation

First, I address TD prediction methods for policy evaluation. In the prim al case, the 

value o f a given policy can be estimated by the standard TD evaluation algorithm, 

w ith the update step given by

C>v(s) =  ( l  -  a )V(a) +  a [r  +  7v (a»)] (B .l)

Note that a simple entry o f the state value vector is updated. The computational 

complexity o f prim al TD evaluation algorithm is 0 (1 ).

In the dual representation, an analogous TD evaluation algorithm can be derived 

w ith respect to the state distribution matrix. In this case, the update step is given by

O M m  =  ( l - a ) M (s, ) + a [ ( l - 7 )esT +  7 M (s,):)] (B.2)

and es is the vector o f all zeros except for a 1 in  the sth position. Note that a row 

o f the discounted state v is it distribution matrix is updated, and no reference to the 

immediate reward r  is made. The computational complexity o f dual TD evaluation
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algorithm is OdS'j), which is more expensive than the prim al TD algorithm unless 

the sparsity o f the matrix M  can be exploit.

B.2 Sarsa: On-Policy TD Control

Next we consider the on-policy control problem. In the prim al case, the Sarsa 

algorithm approximates the action-value function o f the policy being followed, and 

interleaves this w ith policy improvement. The action-value update step is

The policy improvement step here is im p lic it since the next action is chosen 

greedily w ith probability 1 — e w ith respect to the estimated update q. That is, 

choosing a' =  argmaxa, q(s/a/) from s' w ith probability 1 — e.

In the dual representation, an analogous Sarsa algorithm can be derived w ith 

respect to the state-action distribution matrix. In this case, the distribution update 

can be given by

row o f the state-action distribution matrix is updated, and again, no reference to the 

immediate reward r  is made.

The computational complexity o f prim al Sarsa algorithm is 0 (1 ) per time step 

while the computational complexity o f dual Sarsa algorithm is 0 ( |5 |  |^4|). The dual 

Sarsa algorithm can be much more expensive than standard Sarsa algorithm unless 

the sparsity o f the matrix H  can be exploited.

Finally, I  consider the off-policy control problem. In the prim al case, the Q-leaming 

algorithm directly approximates q*, the optimal action-value function. Here the 

state-action value update is

C*q(aa) =  (1 -  a )q (sa ) +  V  +  7 % 'a ') ] (B.3)

and esa is the vector o f a ll zeros except for a 1 in  the sath position. Note that here a

B.3 Q-Learning: Off-Policy TD Control

•A d q (s a )  =  (1 -  a)q(sa) +  a  r  +  7 m axq(sV)L a'
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The update is a convex combination o f the new estimate and old estimate.

In the dual representation, an analogous Q-Leaming algorithm can be derived 

w ith respect to the state-action distribution matrix, by using the distribution update

M H {sa.) =  (1 -  a)H^a.) +  a  [(1 -  7 )eJa +  7 /fya '*,:)] (B .6)

where a'* — argmaxQ, and e(sa) is the vector o f all zeros except for a 1 in

the sath position.

The computational complexity o f prim al Q-leaming algorithm is 0 (\A \)  per 

time step while the computational complexity o f dual Q-leaming algorithm is 0 ( |5 |  \A\2). 

The dual Q-leaming algorithm can be much more expensive than standard Q-leaming 

algorithm unless the sparsity o f the matrix H  can be exploited.
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Appendix C

Approximate Reinforcement 
Learning

In a reinforcement learning scenario, the gradient update operators are applied 

pointwise w ith a single sampled transition, in  place o f a fu ll expectation w ith re

spect to P II in  dynamic programming algorithms. This update is called sampled 

gradient operator.

Primal Case

In the primal, recall that the gradient o f objective Jq =  | | |q  — q ||z2 =  § [| q — $ w ||z 

w ith respect to w  is

where diag(Z) corresponds to the stationary distribution over state-action pairs. 

Sampling the expectation in the above equation, we can get the sampled gradient

V wJq =  $ TZ ( q - q )

E(sa)~Z^>(saJ:) (q.(sa) q(sa)) (C .l)

V wJq — ^ ( s a , : ) ( 4 ( s a )  q ( s a ) ) (C.2)

Therefore, we have the stochastic gradient update o f the weight vector

w<+i =  w t -  a V w Jq

=  w t -  a $ J ai0(q(so) -  q (sa)) (C.3)

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since q  =  <hw, we have q(sa) =  $ (sa,:)w - Plugging it  back into the above update

wt+1 =  w* -  a $ 5 0,:)($ (sa,:)w t -  q (sa)) (C.4)

Because the true value o f q  is unknown, we approximate it by sampling either

O q =  r  +  jP T lq  or A fq  =  r  +  7 P II*[q ]. This yields the stochastic gradient

updates

w t+i =  w* -  a $ J ai:)($ (s0i:)w t -  r (sa) -  7 ^ ( s 'a ' , : ) W t )  (C.5)

and

w m  =  w t -  a $ J a>:)($(«»,:)Wt -  r (sa) -  7 m a x $ {sVi:)W() (C.6)

respectively for the on-policy and off-policy cases.

Thus, the unknown parameter w  can be learned iteratively w ith the above up

dates. Then one can recover the estimation o f action value from q =  $w .

The computational complexity for one iteration o f sampled GO (see Equation 

C.5) is k, which is the number o f bases in the linear approximation. The compu

tational complexity for one iteration o f sampled Q M  (see Equation C.6) is k\A\. 

The total computational complexity o f the prim al sampled gradient algorithm is the 

product o f the number o f iterations (samples) and the cost for each iteration.

Dual Case
a 2

In the dual, recall that the gradient o f objective Jh  =  \  \\H — H  ||Zjr w ith respect 

to w  is

V WJH =  YTZ { r r  ® I ) ( h - h )

=  r TZ ( ( r T ^ / ) $ w -  ( rT ® I » )

=  r TZ (T w  — H r)

'y y P '( s a , : ) ^ ( s a ,s a )  ( E ( s a , : ) w  H(sa, : ) r )  

sa

=  E(sa)̂ r J a:)( r (sai:)w - i / (sa):)r) (C.7)

Sampling the expectation in  the above equation, we can get the sampled gradient 

VwJi/ =  r j 0>:)( r (s0i:)w -  H {sa.}r)  (C.8)
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Therefore, we have the stochastic gradient update o f  the weight vector

w t+1 =  w  t - a V wJH

=  w t - a T Ja :) (T(a0i.)w t -  (sa>:)r) (C.9)

Because the true value o f H  is unknown, we approximate it by sampling either 

O H  =  (1 -  7 ) /  +  jP U H  or M H  =  (1 -  7 ) I  +  jP U r*[H ]. This yields the 

stochastic gradient updates

w m  =  w t -  a T jsa :) ( r (aaj:)w t -  (1 -  7 ) r (s V )  -  7 lV a ', : )W t)  (C.10)

and

w t+1 =  wt -  a r ; Oi0 ( r (ia,:)Wi -  (1 -  7 )* V a ')  -  nMX7r (t/0/.)WtJ (C .l 1)

for the on-policy case and off-policy cases respectively.

Thus, the unknown parameter w  can be learned iteratively w ith the above up

dates. Note that we need check i f  the w  satisfies the constraints o f the weights 

(positive and normalized) and enforce constraints i f  needed. Then one can recover 

the estimation o f state-action v is it distribution from H  =  reshap e^  w ).

The computational complexity for one iteration o f sampled QO (see Equation 

C.10) is k, which is the number o f bases in  the linear approximation. The compu

tational complexity for one iteration o f sampled QM. (see Equation C .l 1) is k\A\. 

The cost o f dual stochastic gradient updates are the same as the prim al ones. How

ever, in  the dual one needs to check i f  the learned w  satisfies the constraints. I f  not, 

an extra step o f enforcing the constraints o f the weights is required, e.g., projecting 

w  to its linear constraints w Tl  =  1 costs 0 (k 2). The total computational complex

ity  o f the dual sampled gradient algorithm is the product o f the number o f iterations 

(samples) and the cost for each iteration (update and enforcing constraints).

Although approximate dual algorithms are interesting, they can be computation

a lly more expensive than their counterparts in  the primal. The theoretical analysis 

o f the convergence o f the approximate dual reinforcement learning algorithms has 

not been conducted yet.
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O ther A lgorithm s

Here I only give a b rie f review o f prim al approximate reinforcement learning 

algorithms.

It is proven that TD(A) w ith linear function approximation converges (w ith 

probability one) in  both the discounted (Tsitsiklis &  Roy, 1997) and average re

ward case (Tsitsiklis &  Roy, 1999; Tsitsiklis &  Roy, 2002). TD(A) can diverge w ith 

nonlinear function approximation (Tsitsiklis &  Roy, 1997).

Least-squares temporal difference (LSTD) learning algorithm (Bradtke &  Barto, 

1996; Boyan, 1999) is an approximate policy evaluation method, which minimizes 

mean squared TD errors over sampled data. The state value function is represented 

as a linear combination o f features w ith unknown parameters. LSTD first estimates 

its model (A  and b) from sampled data, then it  computes the unknown parameters 

from the estimated model. The underlying update o f LSTD is using projection op

erator V  on approximate state value function. Recursive LSTD (Xu et al., 2002) 

and iLSTD (Geramifard et al., 2006) are approaches to speed up LSTD.

Least-squares policy iteration (LSPI) is approximate policy iteration, which is 

a combination o f policy evaluation LSTDQ (LSTD on state-action value function) 

and policy improvement. It is a stable algorithm and requires the storage o f samples 

to estimate the coefficients o f a linear system (matrix A  and vector b) to compute the 

learned parameters w  (Lagoudakis &  Parr, 2003). An approximate policy iteration 

algorithm was shown to be able to find an “ approximately”  optimal solution in 

polynomial time (Kakade &  Langford, 2002). Their algorithm assumes that a restart 

distribution over states is given so that the trajectories can be sampled from the 

same state during estimation and treats the step o f generating a greedy policy as a 

regression problem.

Approximate Sarsa is a combination o f state-action value update GO (see Equa

tion C.5) and an im p lic it policy improvement. It has been shown that Sarsa(O) w ith 

linear function approximation cannot diverge, but m ight oscillate (Gordon, 2000; 

Singh et al., 2000).

Q-leaming w ith linear function approximation whose update is G M  (see Equa

tion C.6), is a common algorithm attempted in  reinforcement learning. It is inter-
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esting as explained in Chapter 1. However, it can diverge (Bradtke, 1993; Boyan 

&  Moore, 1995; Baird, 1995). Fortunately, an off-policy algorithm that combines 

TD(A) over state-action pairs w ith importance sampling is proven to converge w ith 

probability one (Precup et al., 2001).
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Appendix D

Common Probability Distributions

Distribution Probability P[x)  E[X] V ariance(X )

B e rnou lli(x  \ 9) 
0 <  9 <  1

9x{ l - 9 f - x, x  =  0 , 1 9 9 ( 1 - 9 )

B inom ia l(x  | 9, t )
0 < 9 < l , t  =  1 ,2 ,...

te t9( 1 -  9)

Gaussian(x | //, <x2) J_ e~(x-M)2/2<72 —QQ <  x <  q-oo 
v27r<7 a 2

Beta(x | a, /?), a, (3  >  0 r(a+p) Ta - l / i  n ^  T ^  1 a oc(3
r(a)r(/3)X I 1 X) ’ U "  X ^ 1 a+P (a+p)2 (a+p+1)

T (x  | a , /?), a, f3 >  0 ■SPxa~1e~0x, x >  0 r(a) 5 a f t " 1 a/3~2

Table D . l:  Some common probability distributions. The quantity x  is a realization 
o f the random variable, and 9, /j , a, a , p  are unknown parameters o f the distribu
tions.
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Appendix E

Some Useful Conjugate Priors

Likelihood P( x \ 9 ) Conjugate Prior P{9) Posterior P(9 \x)

B inom ia l (x | 9, t ) 

Poisson(x | A) 

Gaussian(x | fi, a2)

Beta(9 \ cr, (3) 

G am m a(\ | a, (3) 

Gaussian{n | /zq, <Tq)

Beta{9 \ a +  s, (3 +  t — s) 

G am m a(\ | a  +  t, (3 +  1) 

Gaussian(fj, \ /x1; a2)

Table E.l:  Some useful conjugate priors. The quantity X is a realization o f the 
random variable, and 9, //, <r, a, (3 are unknown parameters o f the distributions. Here 
the notation x stands for the observed value, and 9 is the generic symbol for the 
parameter to infer (corresponding to /j, and a o f a Gaussian, 9 o f a binom ial and A 
o f a Poisson distribution). The quantity t  is the total number o f observations, the 
notation s represents the number o f outcome l's  (successes).
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Appendix F 

Other Related Work

F.l Exponential Family

In  probability and statistics, the exponential fam ily is an important class o f prob

ability distributions as they have nice algebraic properties that make them mathe

m atically convenient. A ll members o f the exponential fam ily  have conjugate priors 

and can express a wide range o f beliefs. The Bernoulli, Gaussian, binomial, m ulti

nomial, Gamma, Poisson and Beta distributions are members o f the exponential 

fam ily and their probability distribution functions can be expressed as a general 

form

P (x  | rj) =  h(x)  exp { r j r T(x)  — A(r])}  (F .l)

where

• x  is a random variable,

• rj is the vector o f natural parameters whose transpose r/T =  (tji, ...,r}n) is a 
row vector,

•  h(x)  reflects the underlying measure w ith respect to which p(x\rj) is a prob
ab ility  density distribution,

•  T(x)  is a sufficient statistic1 o f the distribution, which is a column vector 
whose number o f scalar components is the same as that o f 77 so that r]J T(x)  
is a scalar,

•  A(rj) is a normalization factor.

'Note that the concept of sufficient statistic applies more broadly than just to members of the 
exponential family.
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The Bernoulli Distribution

A  Bernoulli experiment has only two possible outcomes: 1 (success) w ith prob

ability 9 and 0 {failure) w ith probability 1 — 9. Let a random variable X  represent 

the success o f an experiment. The probability mass function o f a Bernoulli random 

variable X  is given as follows.

log ( l ^ )  x + 1°s(1 “  e)}  (R2)

The Bernoulli distribution is an exponential fam ily distribution w ith

9
~ 9

T(x)  — x

A{rj) =  -  lo g (l -  9) =  lo g (l +  e f  

h{x)  =  5 q { x )  +  Sf x )

where 5y(x) is the unit impulse function, such that /  f ( x ) 6y(x)dx =  f ( y ) for all 

continuous / .  Note that the relationship between rj and 9 is invertible; therefore we 

have 9 =  7—r r  by solving the above equations.

Beta Posterior Update. A  conjugate prior for the Bernoulli parameter 9 is a Beta 

distribution. That is, consider a Bernoulli process w ith unknown parameter 9, and 

choose a Beta distribution B e ta {a , 9) to be the prior over 9, given by P(9\a, 9) =  

9a~1 (1—9)i3~ 1 ■ Rere r  is the Gamma function. The parameter a  denotes the

“ prior”  number o f successes observed; the parameter 9 denotes the “ prior”  number 

o ffailures observed before the new observations.2 A fter observing the outcome o f 

the Bernoulli process, either success or failure, we can update the Beta posterior 

simply by adding one to the corresponding Beta parameter.

, . f  a : = a  +  l  i f  success is observed
Beta poster,or :=  {  0 ,=  p +  1 if /a i; „ re is observed <R3>

That is, the posterior density over 9 is given by P{9  | s, t)  =  Beta{9\ a+s,  9 + t —s), 

where s the number o f successes and t  — s is the number o f failures.

2Beta{ 1,1) is the uniform distribution.
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The Univariate Gaussian Distribution

The univariate Gaussian (normal) density o f a random variable X  w ith mean /i 

and variance a2 can be written as follows:

Univariate Gaussian Posterior Update. A  conjugate prior for the Gaussian mean 

/x is just another Gaussian. Consider a data-generating process that can be described 

by the likelihood P{x\y)  =  J\f(x \ j i ,  a2), where parameter / i is unknown and pa

rameter a is known. Assume we have prior knowledge about the distribution o f // 

o f the form P(/x) =  Af(fi | /x0, ctq), where both /x0 is our best guess o f /x and ctq is 

our uncertainty about the guess. A fter observing t  independent samples, X i,.... x t , 

we have the posterior distribution

The Multivariate Gaussian Distribution

The multivariate Gaussian (normal) distribution o f a random vector X  G M" w ith

(F.4)

It is in the exponential fam ily w ith

T(x)

■-,*() =  V ( / / 1 //, a 2) (F.5)

where

- _  V 0-2 - 1/crg
^  t / a 2 - \ - \ / a l  + t / a2 +  l / a ^ °

a2 =  0t /a2 +  1/ao2) - 1

and x =  \  53l= i Xk is the sample mean (Duda et al., 2001).
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mean /it (an n  x  1 vector), and variance £  (an n x n  symmetric positive definite 

m atrix) can be written as follows:

^ (X 1 ^  S )  =  ( 2 7 r ) ^ | S | V 2 exp { “ ^ X _  ^ ) T S _ 1 (X “  ^ ) }  (R 6 )

Multivariate Gaussian Posterior Update. A  conjugate prior for the m ultivari

ate Gaussian mean p, is also just another multivariate Gaussian (Duda et al., 2001). 

Consider a data-generating process that can be described by the likelihood P(x| p )  =  

J\f(x  | /x, £ ) ,  where the parameter vector p  is unknown and the parameter vector £  

is known. Assume prior knowledge about the distribution o f the unknown vector 

p  in the form P{p)  =  Af ( p  \ p 0, £o). A fter observing t independent samples, 

X i , ..., x t, we have the posterior distribution

P ( # i | x 1, x 2, . . . ,x t) =  M { p \ p , t )  (F.7)

where

ft- =  ^0  X “h Po

and x  =  \  x fc is the sample mean (an n x  1 vector).

Gaussian Processes

A  Gaussian process can be thought o f as a possibly infinite dimensional general

ization o f the multivariate Gaussian. Formally, a Gaussian process {F (x )  | x  € X }  

is a (finite, countably infinite, or uncountably infinite) collection o f random vari

ables indexed by a variable or vector x  € X  such that any finite subset o f the 

F-variables has a jo in t multivariate Gaussian distribution (W illiams, 1999). A  

Gaussian Process can be fu lly  specified by its mean function p(x)  and covariance 

function K ( x ,  x' ),  where x , x ' e X ,  and K  is a symmetric and positive-definite 

function {kernel). For any finite subset o f indices x i , x 2,. . . ,x t S A ,  we have
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Ft ~  A K t). That is

n * i ) ' / M(xi) fc(Xi,Xi) fc (x i,x2) • • f c ( x i , x t ) \
F (x  2) K X2)

>
fc(x2, X i ) A:(x2, x 2) • • fc(x2,x t)

F M  _ V _ M(xt) _ _ k(x t , x  1) fc(xt,x2) • • fc(xt,xt) _ /
(F.8)

Gaussian processes allow us to express priors over functions. One property o f 

Gaussian processes is that the posterior distribution is Gaussian given that both the 

prior distribution and likelihood are Gaussian. As w ith other conjugate distribu

tions, this is computationally convenient.

Gaussian Process Posterior Update. Consider a data-generating process that can 

be described by a Gaussian process (F (x )  | x  € X } . Normally in  the posterior up

date for Gaussian processes we do not assume that we observe F-values directly, but 

get noisy observations corrupted by some additional independent Gaussian noise. 

That is, we define

y  (x) =  F (x )  +  JV(x) (F.9)

where F  is the underlying Gaussian process and N  is an independent zero mean 

Gaussian process. Then given a sequence o f samples (xj, ?/*), i  =  1,..., t, we have t 

equations

Yt =  Ft +  N t (F.10)

where y  =  [ y ( x i ) , ..., y ( x t )]T and N t =  [A f(x i) , ..., N ( x t)]T. From Equation F.8 

and the definition o f N  we then have

Ft ~ M ( n t , K t), N t ~ A f ( 0 , X t) (F. 11)

where Ft and N t are independent. Therefore, from Equation F.10 we get

Yt ~  K t +  E t) (F.12)

The posterior F( x )  conditioned on the observations Yt is Gaussian distributed. 

The mean E [F (x ) | Yt] and the covariance C o v (F (x ) ,  F (x ') | Yt) can be updated 

by

E [F(x) | Yt =  yt] =  /x0(x) +  k t (x )T (F t +  S t )_1yt (F.13)
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C o v ( F ( x ) , F ( x ' ) | ^  =  y t) =  f c ( x , x ' ) - k t (x )T ( F t +  E t) : k t (x') (F.14)

where/x0 =  [ ^ ( x i ) , / / 0(x4)]T, y t =  [y1: . . . ,yt]T , k t (x) =  [ f c f a . x ) , f c ( x « , x ) ]  

and K t is the same as in  Equation F.B.

F.2 Multi-armed Bandit Problem

The multi-armed bandit problem is a mathematical model for the problem o f opti

m izing the total reward accumulated by choosing to play a number o f arms (“ slot 

machines” ), whose reward distributions are unknown and independent.

Early work on the multi-armed bandit problem (Berry &  Fristedt, 1985) con

centrated on fin ite horizon problems w ith Bernoulli arms. These were introduced 

in the framework o f clin ical trials by Thompson (1933) for two treatments whose 

outcomes are either 1 (success) or 0 (failure) and the prior distribution over the out

comes is uniform. Robbins (1952) reintroduced the multi-armed bandit problem 

from a non-Bayesian viewpoint, proposed the play-the-winner/switch-ffom-a-loser 

strategy, and discussed the asymptotic behavior o f the minimax decision rules for 

the Bernoulli case. Bradt, Johnson and Karlin (1956) wrote the first paper to search 

for Bayes decision rules for this problem. Bellman (1956) adopted a Bayesian for

mulation o f multi-armed bandit for the infinite-horizon discounted case.

There are various multi-armed bandit problems, which can be categorized from 

dimensions such as discrete-time vs. continuous-time bandits, fin ite horizon vs. 

infinite horizon case, and discount factor (uniform, geometric, and exponential).

Here we consider the basic version o f the bandit problem (Karoui &  Karatzas, 

1993) to introduce the key terms. Given a collection o f N  statistically indepen

dent reward processes, a decision maker chooses one process to “ activate”  at each 

decision stage t. The activated process yields an immediate reward and changes 

its state; the other processes remain “ frozen”  in  their current states and yie ld no 

reward. The goal for the decision maker is to choose a sequence o f processes to 

maximize the expected total discounted rewards

OO

(F.15)

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



An optimal strategy for a multi-armed bandit problem can be determined by 

computing the G ittins index o f the state o f each arm, then choosing the arm w ith 

highest G ittins index (G ittins, 1989). Consider a single arm. The G ittins index o f 

state St =  i  o f the arm, g(i), is defined as the supremum o f expected discounted 

reward per expected unit o f discounted time over a ll possible stopping rules, ^  E [ E l J o  7 * f l ( s * ) | s 0 =  * ]sW =  sup-— j—  n (F-16)
^>° E  L L t= o  7  lso =  i ]

Theorem 9 The N-armed bandit problem (with independent arms and geometric

discount) can be solved by solving N  one-armed bandit problems}

Theorem 10 The optimal policy is to play the bandit arm with the greatest Gittins 

index at each stage.

Rigorous proofs o f the above two theorems could be found in  (T sitsiklis, 1994b; 

Bertsimas &  Nino-Mora., 1996; Frostig &  Weiss, 1999).

Rem ark 11 The multi-armed bandit problem can be decomposed into simpler, low

dimensional subproblems (stopping problems). Therefore, the problem o f finding  

optimal policies fo r  the original MDP (Markov Decision Process) can be reduced 

to a sequence o f stopping problems (Varaiya et al., 1985; Katehakis &  Veinott, 

1987).

The papers (Auer et al., 1995; Mickova, 2000; Kleinberg, 2005) provide some 

recent work on the multi-armed bandit problem.

F.3 Batch Methods for Action Selection

Although batch (off-line) learning is a slightly unnatural model for reinforcement 

learning, important theoretical results have been obtained which show that near 

optimal policies can be learned in  time polynomial in  the size o f the state and action 

spaces (as well as other variables). Even though I  did not necessarily work on this 

topic for my thesis, for completeness, I include a b rie f discussion here.

3 The one-a rm ed  b a n d it p ro b le m  can be v ie w e d  as tw o -a rm e d  b a n d it p rob lem . T he  rew ard  d is tr i
b u tio n  o f  a rm  1 is u n kn o w n  w h ile  the a rm  2 g ives a constant re tu rn  each tim e  w h e n  i t  is pu lled .
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Explicit Exploration Exploitation. The E xplicit Exploration Exploitation (E 3) 

algorithm (Kearns &  Singh, 1998) was considered the first provably optimal poly

nomial time algorithm for optim izing average reward on an MDP. It divides the 

states o f the MDP being learned into two parts: the known states and unknown 

states. A  good estimate o f an unknown state transition probability function can be 

gained by visiting the unknown state a sufficient number o f times. When in a known 

state o f the MDP, planning is used to determine a policy that can efficiently reach 

an unknown state, which is necessary to reduce the number o f steps required to v is it 

some unknown state. The algorithm can be shown to produce a close approximation 

to the optimal value function w ith high probability in polynomial time.

R-max. As a fo llow  up to this line o f research, the R-max algorithm (Brafman 

&  Tennenholtz, 2001) employs a much simpler idea but also achieves polynomial 

time guarantees. R-max puts high artificia l rewards on unknown state-action pairs 

(optim istic in itia lization) and then simply executes exploitive actions by planning 

in the optim istic MDP. A fter observing a sufficient number o f transitions from a 

particular state and action, the new optim istic MDP is solved for a new policy. 

Sim ilar results to E 3 can be established, but for a much simpler algorithm.

Both methods are theoretically interesting as they proved that a near optimal 

policy could be found in  polynomial time w ith high probability. However, they 

do not attempt to maximize the rewards obtained during the learning. In addition, 

the number o f actions taken is chosen (up to a polynomial bound) by the methods 

themselves and not under direct external control.
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