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Abstract

The generation and evolution of internal solitary waves by intrusive gravity

currents and river plumes are examined in an axisymmetric geometry by way

of theory, experiments and numerical simulations. Full depth lock-release ex-

periments and simulations demonstrate that vertically symmetric intrusions

propagating into a two-layer fluid with an interface of finite thickness can

launch a mode-2 double humped solitary wave. The wave then surrounds the

intrusion head and carries it outwards at a constant speed. The properties

of the wave’s speed and shape are shown to agree well with a Korteweg-de

Vries theory that is derived heuristically on the basis of energy conservation.

The numerical code is also adapted to oceanographic scales in an attempt

to simulate the interaction between the ocean and a river plume emanating

from the mouth of the Columbia River. Despite several approximations, the

fundamental dynamics of the wave generation process are captured by the

model.
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Chapter 1

Introduction

1.1 Motivation

Internal waves, which propagate along density interfaces within a stratified

fluid, are commonly observed in the coastal ocean (Jackson, 2004). These

waves can attain large amplitudes with respect to the local fluid depth, and if

they propagate with a constant speed and unvarying shape, they are referred

to as “internal solitary waves”. Because solitary waves can transport both

mass and momentum they are responsible for the redistribution and mixing of

nutrients in coastal regions.

Internal solitary waves are visualized from space using synthetic aperture

radar (SAR) which measures backscatter signals from the ocean surface. SAR

images of internal waves consist of periodic dark and bright bands, which corre-

spond to surface regions of enhanced smoothness and roughness, respectively.

The smooth regions arise ahead of the wave peaks where the horizontal veloc-

ities are diverging, whereas the rough regions arise ahead of the wave troughs,

where the horizontal velocities are converging. Over 300 observations, from

54 regions of the world, are presented in the Atlas of Oceanic Internal Soli-

tary Waves (Jackson, 2004). Although the images have a spatial resolution

as fine as a couple metres (Pan et al., 2007), it is difficult to measure the

characteristics of the waves’ vertical structure from the top-view perspective.
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The advancement of ocean instrumentation, and specifically the develop-

ment of thermistor arrays, in the 1960s and 1970s motivated several observa-

tional in situ studies of internal solitary waves (Helfrich and Melville, 2006).

For example, waves were measured in the Andaman Sea (Perry and Schimke,

1965), the Strait of Gibraltar (Ziegenbein, 1969) and the Massachusetts Bay

(Halpern, 1971), among other locations. These, and related studies, demon-

strated that internal solitary waves can be generated by tidal currents flowing

over bottom topography, including shelf breaks and sills.

In the absence of topography, internal solitary waves can be launched by

gravity currents, which arise when a fluid of one density flows horizontally

into an ambient fluid of a different, or varying, density. In the ocean, these

currents may be manifest in the form of river plumes (Nash and Moum, 2005).

At high tide the ocean water forces the river water upstream. Then, as the

tide relaxes, ebb currents begin to flow allowing the fresh water from the river

to propagate along the surface of the coastal ocean. These plumes force the

denser near-surface ocean waters downwards launching an internal wave which

is manifest as an undulation of the pycnocline.

A distinguishing feature of SAR images of internal waves is that the fronts

tend to have some degree of curvature, regardless of whether the waves are

launched by localized topography or gravity currents. Most of the previous

experimental and theoretical attempts to characterize the dynamics of inter-

nal solitary waves have been limited to a rectilinear geometry which does not

describe the lateral spreading of the waves as they propagate away from their

source. The major thrust of this thesis is to extend earlier research into recti-

linear internal waves to the study of radially spreading internal waves.
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1.2 Background

In this work, we focus on the generation of internal solitary waves from gravity

currents and “intrusions”, which are gravity currents that propagate at an

intermediate level between the upper and lower boundaries of a fluid along

their level of neutral buoyancy. We begin by reviewing existing experimental

and theoretical research on gravity currents and internal solitary waves in both

rectilinear and axisymmetric geometries.

1.2.1 Rectilinear Gravity Currents and Intrusions

Gravity currents are often studied in the laboratory by way of lock-release

experiments where two fluids of different densities are initially separated by

a vertical lock (e.g. see Simpson (1997)). The lock is then rapidly extracted

causing the denser fluid to flow beneath the lighter fluid. The propagation of

gravity currents can be divided into three distinct phases: the slumping phase,

the inertial (or self-similar) phase and the viscous phase. The slumping phase

occurs immediately after the lock removal and it is characterized by a gravity

current that moves at a constant velocity. In the inertial phase, the current

thins and decelerates, as the motion is dominated by buoyancy and inertial

forces. The viscous phase occurs when the motion is so slow and the current

is so thin that its evolution is dominated by the viscous and buoyancy forces

(Huppert, 1982).

Lock-release experiments of “symmetric” intrusions have been performed

in an approximate two-layer fluid with equal upper- and lower-layer depths

in which the intrusion density was the average ambient density (Britter and

Simpson, 1981; Faust and Plate, 1984; Rooij et al., 1999; Lowe et al., 2002). By

symmetry, such studies are equivalent to the examination of surface gravity

currents moving across a free-slip boundary in a stratified ambient. Unlike
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gravity currents in uniform ambients, which are predicted to transition to the

inertial phase and decelerate after propagating 6 to 10 lock lengths (Rottman

and Simpson, 1983), symmetric intrusions at sufficiently thick interfaces were

found to propagate well beyond this distance at a constant speed (Mehta

et al., 2002; Sutherland and Nault, 2007). In a rectilinear geometry, intrusions

maintained a constant speed beyond 22 lock lengths. For small, but finite

interface thicknesses, the measured speed was faster than the linear long wave

speed, suggesting that the intrusion generated a solitary wave. Subsequently,

the closed-core solitary wave carried the intrusion outwards. The waves were

observed in intrusion experiments because the stratification at the interface

supported the formation of a wave. Similarly, if a surface gravity current

propagated into a thin stratified layer (the symmetric extension of a symmetric

intrusion at a thin interface), its speed was constant well beyond 10 lock lengths

(Sutherland and Nault, 2007).

1.2.2 Axisymmetric Gravity Currents

The dynamics of radially spreading gravity currents are qualitatively differ-

ent from rectilinear gravity currents because energy and mass conservation

require the head height to decrease. Hence the current should decelerate soon

after release due to the reduction of the horizontal pressure gradient driving

the flow. Lock-release experiments (Huppert and Simpson, 1980; Didden and

Maxworthy, 1982; Huq, 1996; Hallworth et al., 1996; Patterson et al., 2006)

demonstrated that axisymmetric bottom-propagating gravity currents main-

tain a constant speed up to 3 lock radii. Thereafter, in the inertial phase, the

position of the front changed as t1/2, consistent with the theory (Hoult, 1972;

Huppert and Simpson, 1980) that assumes the current maintains a self-similar

cylindrical shape. By symmetry, Zemach and Ungarish (2007) used shallow

water theory to extend this prediction to axisymmetric intrusion propagation,
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again predicting that the intrusion decelerates shortly after release from the

lock.

Contrary to this prediction, full-depth lock release experiments demon-

strated that axisymmetric intrusions propagate at a constant speed well be-

yond 3 lock radii (Sutherland and Nault, 2007). This suggested that, as in

a rectilinear geometry, solitary waves were responsible for transporting the

lock-fluid long distances at a constant speed. The experiments thus put into

question the applicability of shallow water theory, which necessarily filters the

albeit weakly non-hydrostatic dynamics of solitary waves. However, the ex-

perimental analysis did not go on to study the wave generation and evolution

process.

Axisymmetric intrusions are symmetric expansions of the experiments by

Maxworthy (1980), who launched a solitary wave by releasing a bottom-

propagating gravity current into an ambient consisting of a shallow stratified

layer beneath a uniform density fluid. He observed that the front velocity of

the wave was nearly constant until its amplitude decreased beyond a critical

value. After this time the front position changed according to r ∼ t2/3.

In part of the work presented here, we will examine the advance of intru-

sions in different ambient densities. This will be done through the analysis of

experiments and numerical simulations.

1.2.3 Axisymmetric Solitary Waves

As explained in Section 1.1, the motivation for this work arises in part from

the observation of laterally spreading internal solitary waves, for which theory

is limited. In a rectilinear geometry, the weakly nonlinear Korteweg-de Vries

(KdV) model is appropriate if nonlinearity and nonhydrostatic dispersion are

comparable and small. Large amplitude closed-core solitary waves can be ac-

curately described by the fully nonlinear Dubreil-Jacotin-Long (DJL) equation
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(Dubreil-Jacotin, 1937; Long, 1953, 1956).

Following up upon the work of Miles (1978), Weidman and Velarde (1992)

developed a theory for axisymmetric internal solitary waves within a strati-

fied ambient fluid. They predicted an amplitude dependence upon distance

as r−2/3. But, in an earlier paper, Weidman and Zakhem (1988) compared

this amplitude prediction with experiments by Maxworthy (1980) and found

that the amplitude differed by up to 34%. They explained that their weakly

nonlinear theory did not capture the experimental results because the trap-

ping of the mixed fluid was “a clear manifestation of strong nonlinear effects”.

They admitted, however, that their equation was asymptotically inconsistent

and so its predictions were not necessarily reliable. The theory presented by

Weidman and Velarde (1992) likewise relied upon inconsistent assumptions.

Part of the work presented here uses numerical simulations to examine

radially spreading solitary waves. From these observations, a heuristic theory

is developed to describe their evolution. Ultimately the goal of this thesis is to

provide some insight into the observed dynamics of solitary waves generated

by river plumes.

1.3 Thesis Overview

In this work we use theory, experiments and numerical simulations to charac-

terize the dynamics of internal solitary waves in an axisymmetric geometry1.

The thesis is organized such that the theory is summarized in Chapter 2, the

experiments are summarized in Chapter 3, and the numerical simulations are

summarized in Chapters 4–6.

More specifically, Chapter 2 outlines the theory governing the speed of a

vertically symmetric intrusion as a function of interface thickness. The theories

1Sections of Chapters 2 and 5 have been published: Justine M. McMillan and Bruce R.
Sutherland (2010). Nonlinear Processes in Geophysics. 17: 443–453.
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of axisymmetric linear waves and rectilinear solitary waves are then reviewed

before discussing two theories for cylindrical solitary waves. One theory was

derived rigorously using perturbation methods whereas the other was obtained

heuristically on the basis of an energy conservation assumption.

Chapter 3 discusses experiments of intrusions that were conducted in a

cylindrical tank. In the idealized setup, the intrusion was released from a

full-depth lock into an approximately two-layer ambient with equal upper-

and lower-layer depths. For all experiments, the density of the intrusion was

equivalent to the average density of the ambient fluid. The analysis methods

and results of measuring intrusion speeds are also provided in Chapter 3.

Chapter 4 describes the fully nonlinear numerical code that was used for

the simulation of axisymmetric internal waves. A discussion of how the code

was used to simulate intrusions is provided in Chapter 5, in which the results

are also compared to the idealized experiments of Chapter 3.

Chapter 6 explains how the code was used to simulate a river plume ema-

nating from the Columbia River and its consequent interaction with the ther-

mocline. The results of these simulations are then compared to the observa-

tions of Nash and Moum (2005).

Finally, in Chapter 7 a summary of the significant results of this work is

presented and directions for future work are suggested.
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Chapter 2

Theory

This work involves the study of radially spreading intrusions and the interfa-

cial waves they generate. We begin by adapting existing theory for rectilinear

gravity currents in a uniform density fluid and in a uniformly stratified fluid

to develop a prediction for the speed of intrusions at interfaces of arbitrary

thickness. This analysis is restricted to the study of symmetric intrusions,

meaning that the density of the intrusion is the average ambient density and

the background density gradient is itself symmetric in the vertical. In Chap-

ters 3 and 5, we proceed to compare the speeds of experimental and simulated

radial intrusions with the rectilinear theory prediction. In doing so, we eval-

uate the effect of the initial curvature of the intrusion front upon setting the

radial intrusion speed.

Being symmetric, the intrusion most efficiently excites a mode-2 interfacial

wave, which bulges upwards above and downwards below the mid-depth of the

interface. These waves are sometimes referred to as being “varicose” because

of the double-humped shape of the isopyncals. A schematic comparing mode-1

and mode-2 waves is shown in FIgure 2.1. We briefly review the theory for

small-amplitude long interfacial waves with this mode-2 structure. Finally,

we review Korteweg-de Vries (KdV) theory for rectilinear solitary waves in

continuously stratified fluid. We then describe an adaptation of this theory

8



(a) (b)

Figure 2.1: Schematic showing the deflection of isopycnals for (a) mode-1 and
(b) mode-2 waves in a vertically bounded domain.

for radially spreading solitary waves that is later compared to observations.

2.1 Rectilinear speed of a symmetric intrusion

at a thick interface

The speed of a rectilinear intrusion at an interface of finite thickness was first

predicted by Ungarish (2005) using a shallow water model. That said, his

result underpredicted the experimental speeds measured by Faust and Plate

(1984). These experiments were well described, however, by White and Hel-

frich (2008) who used a fully nonlinear Dubreil-Jacotin-Long (DJL) approach

to describe an intrusion at a finite-thickness interface. But that theory too is

limited because recent experiments and simulations by Bolster et al. (2008)

suggest that the theory of White and Helfrich (2008) overpredicts the intru-

sion speed for the limit of a linearly stratified ambient. In this limit, DJL

theory is obviously flawed because it unphysically requires the head height of

the intrusion to tend to zero.

Rather than adapt DJL theory, here we take the simplest approach to pre-

dict the rectilinear intrusion speed while ensuring that our result is in agree-

ment with the predictions for two-layer and linearly stratified ambients. The

9
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1

2
hT h

2

1

2
(hT−h)

ρU

ρi

Figure 2.2: The domain and the density profile used to derive a theory for the
speed of intrusions as a function of interface thickness.

background density profile, ρ̄, is assumed to have the piecewise-linear form,

ρ̄(z) =


ρU

h
2
< z < H

2

ρi + z
h

(ρU − ρL) − h
2
≤ z ≤ h

2

ρL − H
2
< z < −h

2
,

(2.1)

where h is the thickness of the interface and ρi = 1
2
(ρU + ρL) is the average

of the upper and lower layer densities. To take advantage of symmetry, the

level z = 0 is positioned at the mid-depth of the fluid, which has a total depth

H. The intrusion can be viewed as a symmetric expansion of a surface- or

bottom-propagating gravity current within an ambient of total depth hT = H
2

,

as illustrated in Figure 2.2.

We first formulate the speed of a gravity current with density ρi moving

in an ambient with density given by (2.1) for 0 ≤ z ≤ hT ≡ H
2

. Benjamin

(1968) predicted that an energy conserving gravity current released from a

lock of height hT will propagate with a head height of hT/2 in a uniform

ambient. Ungarish (2006) made an equivalent prediction for the propagation

of a gravity current in a linearly stratified ambient. Here, it is also assumed

that the head height is hT/2 and thus the the mean density over the depth of

10



the bottom-propagating gravity current is given by

ρavg =

{
ρU + (ρi − ρU)δh 0 ≤ δh ≤ 0.5
ρi + ρU−ρi

4δh
0.5 < δh ≤ 1,

(2.2)

where δh ≡ h
H

. The gravity current speed, Ugc, given by Benjamin (1968) for

a one-layer fluid and by Ungarish (2006) for a linearly stratified fluid is

Ugc =
1

2

√
g

(
ρi − ρavg
ρ00

)
hT. (2.3)

Here we have used the Boussinesq approximation allowing us to normalize the

density difference by the characteristic density ρ00.

By extension, the speed Ui of an intrusion moving along the interface of a

stratified fluid with a density profile given by (2.1) is predicted by combining

(2.2) and (2.3) and letting hT = H/2 to give

Ui = U0

{
(1− δh)1/2 0 ≤ δh ≤ 0.5
1
2
δ
−1/2
h 0.5 < δh ≤ 1,

(2.4)

where U0 is the speed of a symmetric intrusion in a two-layer fluid (δh = 0),

given by

U0 =
1

4

√
g′LUH. (2.5)

Here the reduced gravity between the upper and lower ambient fluid is

g′LU = g

(
ρL − ρU

ρ00

)
. (2.6)

As illustrated by the dashed line in Figure 2.3, the intrusion speed is pre-

dicted to decrease as the relative thickness of the interface, δh, increases. This

formula correctly predicts the rectilinear intrusion speed in the two-layer limit

(δh → 0) and in the uniformly stratified limit (δh → 1).

2.2 Long small-amplitude waves at a thick in-

terface

Symmetric intrusions may efficiently excite mode-2 solitary waves if they travel

faster than long mode-2 interfacial waves at a thick interface. Rectilinear intru-
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Figure 2.3: Relative initial intrusion speeds, Ui/U0, computed numerically for
ambients with piecewise-linear (squares) and hyperbolic tangent (triangles)
profiles (discussed in Chapter 5) are compared to the predicted rectilinear
speed (dashed line) defined by (2.4) and the relative speed, c0/U0, of a mode-2
linear long wave (solid line) defined by (2.20). Experimental speeds (discussed
in Chapter 3) are plotted as circles with corresponding largest error bars shown
in the lower right hand corner.

sion speeds were thus compared with long mode-2 waves in the x-z plane with a

piecewise-constant three-layer density profile (Mehta et al., 2002; Sutherland

and Nault, 2007). Here we find the speed of long axisymmetric interfacial

waves in a three-layer fluid with piecewise-linear background density given by

(2.1).

A cylindrical coordinate system is represented by a radial direction, r,

an azimuthal direction, θ, and a vertical direction, z. In an axisymmetric

system, derivatives with respect to θ are zero. Under this assumption, the

fully nonlinear equations of motion for an inviscid, incompressible, Boussinesq
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fluid are

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= − 1

ρ00

∂p

∂r
, (2.7)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= − 1

ρ00

∂p

∂z
− g

ρ00

ρ, (2.8)

∂ρ

∂t
+ u

∂ρ

∂r
+ w

∂ρ

∂z
+ w

dρ̄

dz
= 0, (2.9)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2.10)

where equations (2.7) and (2.8) are the Euler equations which represent the

conservation of momentum in the radial and vertical directions, respectively.

The conservation of internal energy for a non-diffusive fluid is captured by

(2.9), and the continuity equation for an incompressible fluid (2.10) ensures

that mass is conserved. In the above equations, the radial and vertical compo-

nents of the velocity field are given by u and w, respectively. The fluctuation

pressure is represented by p and the fluctuation density is denoted by ρ. The

background density is assumed to vary in the vertical as ρ̄(z) with its char-

acteristic density denoted by ρ00. The acceleration due to gravity is given by

g.

In the study of small-amplitude waves, the nonlinear advection terms in

equations (2.7)–(2.9) are neglected. From (2.10) we may introduce a stream

function, ψ, such that

u = −∂ψ
∂z

and w =
1

r

∂

∂r
(rψ) . (2.11)

Combining the coupled linear equations, a single governing equation in ψ can

be obtained. This is a special case of the Taylor-Goldstein equation with no

background flow. Explicitly, ψ satisfies

∂2

∂t2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
− ψ

r2
+
∂2ψ

∂z2

]
+N2

[
1

r

∂

∂r

(
r
∂ψ

∂r

)
− ψ

r2

]
= 0, (2.12)

where

N2 = − g

ρ00

dρ̄

dz
(2.13)
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is the squared buoyancy frequency.

Using separation of variables, (2.12) can be solved to give bounded solutions

of the streamfunction in the form

ψ(r, z, t) = AψJ1(kr)φ(z)e−iωt, (2.14)

where Aψ is the amplitude, k is the radial wavenumber, ω is the wave frequency,

J1 is the first-order Bessel function of the first kind and φ is the vertical

structure function which solves

d2φ

dz2
+ k2

(
N2

ω2
− 1

)
φ = 0. (2.15)

The solution of this ordinary differential equation depends on the upper and

lower boundary conditions as well as the stratification of the fluid prescribed

through N2.

In a fluid with a density profile given by (2.1) and no-normal-flow boundary

conditions at z = ±H
2

, the vertical structure of a mode-2 wave satisfies

φ(z) =



sinh[k(H
2
−z)]

sinh[ k2 (H−h)]
h
2
< z < H

2

sin (mz)

sin (mh
2 )

− h
2
≤ z ≤ h

2

− sinh[k(H
2

+z)]
sinh[ k2 (H−h)]

− H
2
< z < −h

2
.

(2.16)

Here the vertical wavenumber of the disturbance within the interface is

m = k
√
N2

0/ω
2 − 1, (2.17)

in which the squared buoyancy frequency of the thick interface is

N2
0 =

g

ρ00

(ρL − ρU)

h
. (2.18)

Using (2.17), k and ω are implicitly related by the dispersion relation

k tan

(
mh

2

)
+m tanh

[
k

2
(H − h)

]
= 0. (2.19)

14



In the long wave limit this becomes

tan

(
N0h

2c0

)
+
N0

2c0

(H − h) = 0, (2.20)

where c0 = ω/k is the long wave speed for a mode-2 wave. This speed is

plotted by the solid line in Figure 2.3. The same result would be found for

rectilinear interfacial waves. This indicates that although the radial structure

of the waves is different, the long wave speed is the same.

Given that the interface has a finite thickness (δh > 0), we expect that a

mode-2 wave can be established by the widening of the interface. Furthermore,

if the intrusion speed is supercritical (Ui > c0) we expect the wave to take the

form of a nonlinear solitary wave, whereas subcritical intrusions (Ui < c0)

generate linear waves. Whether, or not, the intrusion is supercritical can be

prescribed by the value of the Froude number, Fr ≡ Ui/c0. This is defined

such that Fr > 1 corresponds to a supercritical intrusion from which solitary

waves are expected to be generated. Comparing the solid and dashed lines in

Figure 2.3, we expect that Fr > 1 if δh > 0.5.

2.3 Internal Solitary Waves

KdV theory for rectilinear internal solitary waves is well-established (Benney,

1966). Using perturbation methods, Weidman and Velarde (1992) attempted

to extend the theory to an axisymmetric geometry. However, the result was

asymptotically inconsistent and it predicted an amplitude decrease as r−2/3,

inconsistent with energy conservation. Here, after reviewing rectilinear theory

we present two alternate approaches, one rigorous and one heuristic, that are

used to derive an energy conserving axisymmetric KdV equation.
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2.3.1 Rectilinear KdV Theory

In a rectilinear geometry, internal solitary waves in a stratified fluid can be

modelled by the KdV equation. The formulation by Benney (1966) predicts

that in the Boussinesq approximation the vertical displacement field, ξ, has

the form

ξ(x, z, t) = a(x, t)φ(z), (2.21)

in which a(x, t) = a(x − ct) satisfies the KdV equation that includes the

advection term:

at + c0ax + γaax + βaxxx = 0. (2.22)

Here the subscripts denote derivatives and the constants γ and β are given by

(Benney, 1966)

γ =
3

2
c0

∫ H
2

0
φ3
z dz∫ H

2

0
φ2
z dz

and β =
1

2
c0

∫ H
2

0
φ2 dz∫ H

2

0
φ2
z dz

, (2.23)

where c0 is the linear long wave speed. For a stratified ambient with the density

profile given by (2.1), we exploit symmetry and consider only the upper half

of the domain (hT = H
2

). The corresponding vertical structure function, φ,

is given by the long wave limit of (2.16) with 0 ≤ z ≤ H
2

and the long wave

speed, c0, satisfies (2.20).

The solution of (2.22), which assumes an isolated, steadily propagating

disturbance is

a(x− ct) = a0 sech2

(
x− ct
λ

)
. (2.24)

The speed, c, and width, λ, of the wave depend on the maximum displacement

amplitude, a0, by

c = c0 +
γ

3
a0 and λ2 =

12β

γ

1

a0

. (2.25)

The KdV coefficients, along with the wave speed and width, are shown in

Figure 2.4 as functions of interface thickness.
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Figure 2.4: (a) Coefficients of the KdV equation as functions of interface
thickness. The nonlinear coefficient, γ, is shown by the solid line and the
dispersion coefficient, β, is shown by the dashed line. (b) The speed, c, (solid
line) and width, λ, (dashed line) of a rectilinear solitary wave as a function of
interface thickness.

From the numerical simulations, which are reported upon later, it is easier

to diagnose the structure of the vertical velocity rather than the vertical dis-

placement field. The vertical velocity derived from the vertical displacement

field is

w(x, z, t) =
∂ξ

∂t
' 2.598Aw sech2

(
x− ct
λ

)
tanh

(
x− ct
λ

)
φ(z), (2.26)

in which the coefficient satisfies

2a0c

λ
' 2.598Aw. (2.27)

Here Aw is defined as the maximum value of w. In these expressions, the value

2.598 is determined from the computed maximum value of sech2(x) tanh(x).

2.3.2 Axisymmetric KdV – Rigorous Derivation

Weidman and Velarde (1992) extended the theory of Benney (1966) to derive

a formula for the leading order weakly nonlinear evolution of axisymmetric

internal solitary waves. Here we outline a similar derivation but we further

17



impose that the amplitude of the wave must decrease as r−1/2 as is required

by energy conservation.

For an incompressible Boussinesq fluid, the governing equations of motion

are given by (2.7) – (2.10). Putting the nonlinear terms on the right-hand

side, the equations are

ρ00ut + pr = −ρ00(uur + wuz), (2.28)

pz + ρg = 0, (2.29)

ρt + wρ̄ ′ = −(uρr + wρz), (2.30)

1

r
(ru)r + wz = 0, (2.31)

in which the subscripts denote partial derivatives. Because we are interested

in long waves, it is assumed for now that the flow is hydrostatic. Therefore,

the vertical momentum equation (2.8) is replaced by (2.29). In Eulerian co-

ordinates, the vertical displacement field, ξ, is related at leading order to the

velocity fields by

w − ξt '
1

r
(rξu)r. (2.32)

The linear terms on the left-hand side of (2.28) – (2.32) can be combined to get

a linear operator acting on ξ alone. The corresponding right-hand side of the

resulting combined equation gives the nonlinear terms which non-negligibly

perturb the displacement of moderately large amplitude waves.

To determine the weakly nonlinear evolution equation, the vertical dis-

placement field is expanded in terms of the amplitude parameter, α, as follows:

ξ(r, z, t) = αξ0 + α2ξ1 + ... (2.33)

The vertical structure of the leading order solution, ξ0, is assumed to be sep-

arable from the slowly varying horizontal space and time dependence in the

following way:

ξ0 =
(r0

r

)1/2

A(R, τ)φ(z). (2.34)
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Here R = ε(r− ct) is the translating radial co-ordinate which varies slowly as

measured by ε. For consistency with the perturbation analysis that follows, the

slow time scale is taken to be τ = εαt. Different from the axisymmetric theory

of Weidman and Velarde (1992), here we have imposed energy conservation by

requiring the magnitude of ξ0 to decrease as r−1/2 beyond some radius r0. The

vertical structure function, φ, and the amplitude, A, are both of order unity.

Inserting (2.33) and the corresponding expansions for ~u, ρ and p into the

governing equations (2.28) – (2.32), extracting leading order terms in α, and

assuming r/r0 is large gives

Lξ0 = 0, (2.35)

where the linear operator L is defined as

L ≡ c2
0∂Rzz +N2∂R, (2.36)

in which N2(z) is the squared buoyancy frequency. Equations (2.35) and (2.36)

result in the ordinary differential equation for the vertical structure function

c2
0φ
′′ +N2φ = 0. (2.37)

In particular, for the piecewise-linear density profile given by (2.1), φ is given

by the long-wave limit of (2.16); the vertical structure is the same whether in

a rectilinear or cylindrical geometry.

At order α2 and assuming r � r0, the following equation is satisfied:

Lξ1 = N , (2.38)

where the nonlinear operator N is given in terms of the leading-order functions

A and φ through

N = 2c0φ
′′Aτ + [ 2c2

0(φφ ′)zz+2N2φφ ′′ + (N2)zφ
2

+ 2c2
0φ
′φ ′′ − c2

0(φφ′′)z ]
(r0

r

)1/2

AAR .
(2.39)

Here the primes and z-subscripts both denote ordinary z-derivatives.
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Recognizing (2.36) as a self-adjoint operator in z, both sides of (2.38) are

multiplied by ξ0 and the result is integrated over the domain height (0 ≤ z ≤

hT ). By construction, the left-hand side evaluates to zero, thus we arrive at the

following approximate equation describing the influence of nonlinearity upon

the amplitude A at large r >> r0:

Aτ + γ
(r0

r

)1/2

AAR = 0. (2.40)

Additionally including the effects of linear dispersion introduces the term

βARRR on the left-hand side of (2.40). In the result, both γ and β are defined

as for rectilinear waves by (2.23). The result can rewritten in terms of r, t and

a = α
(
r0
r

)1/2
A, as

at + c0

(
ar +

a

2r

)
+ γ

(
aar +

a2

2r

)
+ βarrr = 0. (2.41)

Somewhat surprisingly, with the omission of the a2/2r term, this result is

identical to that of Weidman and Velarde (1992). Furthermore, setting φ(z) to

be the vertical structure function of surface waves in a one-layer fluid gives the

formula derived by Miles (1978) for cylindrical solitary surface waves. How-

ever, as was pointed out by Weidman and Zakhem (1988) for the surface wave

equation, the theory presented here is asymptotically inconsistent. By requir-

ing r � r0 in order to arrive at the KdV-like equation (2.41), the balance

between nonlinear steepening and dispersion may no longer be valid. Fur-

thermore, Weidman and Zakhem (1988) found that for large r, the solution

of (2.41) satisfied a ∼ r−2/3, whereas energy conservation requires that the

amplitude decreases with radius as r−1/2.

2.3.3 Axisymmetric KdV – Heuristic Derivation

Because the rigorous attempt at deriving an axisymmetric KdV equation did

not yield an energy conserving result, here we attempt to extend the rectilinear
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theory to describe a solitary wave that spreads radially. For a solitary wave

spreading as an expanding ring with sufficiently large radius, we may assume

that the front on any point along the circumference negligibly feels the curva-

ture of the front but that the amplitude nonetheless decreases with radius as

r−1/2. Thus, by extension of (2.26), we predict that the vertical velocity field

should evolve as

w ' 2.598Aw0

(r0

r

)1/2

sech2

(
r − ct
λ

)
tanh

(
r − ct
λ

)
φ(z), (2.42)

in which the amplitude Aw0 is measured at a distance r0 where the axisym-

metric solitary wave is first generated.

For measured Aw0, we can use (2.25) and (2.27) to determine the initial

displacement amplitude, a0, the solitary wave speed, c, and the width, λ. As

the wave spreads radially, Aw = Aw0(r0/r)
1/2 decreases. Correspondingly,

these equations predict that the displacement amplitude and speed should

decrease and its width should increase. Eventually, the amplitude will be

so small that weakly nonlinear effects associated with wave steepening will

become negligible, so that linear dispersion dominates the evolution.

In contrast to the asymptotically inconsistent equation (2.41), the heuristic

solution of the form (2.42) is established for r & r0. The corresponding vertical

displacement field of the form a(r, t) = a0(r0/r)
1/2sech2[(r − ct)/λ] does not

satisfy (2.41). Instead, through manipulation of rectilinear KdV theory, it

satisfies the leading-order equation

at + c0

(
ar +

a

2r

)
+ γ

(
r

r0

)1/2 [
aar +

a2

2r

]
+ βarrr = 0. (2.43)

Compared to (2.41), here the nonlinear term is of order (r/r0)1/2, which seems

to suggest that the balance between nonlinearity and dispersion exists for large

r. However, because a ∝ r−1/2 the nonlinear term will eventually become

negligible as the wave moves to large r and the motion will then be governed
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by

at + c0

(
ar +

a

2r

)
+ βarrr = 0. (2.44)

This equation simply describes a dispersing linear wave. Using the method of

stationary phase, it can be shown that the dispersion results in spreading such

that the amplitude decreases as r−1/2. Together with the effect of geometrical

spreading, the amplitude of a long wave thus decreases as r−1.

Through comparison of these theories with the results of numerical simu-

lations (Chapter 5), we will show that the heuristic solution (2.42) more ac-

curately represents the life-cycle of axisymmetric solitary waves generated by

intrusions. Thus we show that the admittedly inconsistently derived cylindri-

cal solitary wave equation of Weidman and Velarde (1992) and our extension

of it in Section 2.3.2, indeed provide an inaccurate description of axisymmet-

ric solitary waves. However it must be emphasized that (2.43) is heuristic:

whereas the balance in rectilinear KdV theory for a disturbance of length L

is aL2 ∼ 1, the nonlinear dispersive ‘balance’ is aL2 ∼ r−1/2. And so the na-

ture of competition between nonlinearity and dispersion changes with radial

distance.
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Chapter 3

Experiments

The motivation for this work was largely based on the experiments of axisym-

metric intrusions that were conducted, but not analysed, by Joshua Nault

and Lauren Blackburn in 2003 and 2004, respectively. I did conduct some

experiments myself, although the results are not presented here. This chapter

reports primarily upon the analysis methodology and the quantitative results.

3.1 Set-up

Experiments were conducted in a cylindrical acrylic tank with an inner di-

ameter of 2R = 90.7 cm and a height of 30.0 cm as illustrated in Figure 3.1.

The tank was filled to a depth of 5 cm with salt water of density ρL. Using a

sponge float, fresh water of density ρU was added to the surface until the total

depth of the fluid was H = 10 cm. In all experiments, the density of the upper

layer was ρU = 0.9982 g/cm3, whereas the lower layer density varied between

ρL = 1.0515 g/cm3 and ρL = 1.1047 g/cm3. Due to mixing and diffusion dur-

ing the filling process, the interface between the two layers was assumed to

vary smoothly over a depth of h = 1.5± 0.5 cm.

A small acrylic cylindrical lock with an inner diameter of 2r0 = 12 cm and

a height of 22.8 cm was inserted at the centre of the tank. The fluid within the

lock was then dyed and vigorously mixed, so that its density, ρi, was equal to
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Figure 3.1: A side-view schematic of the experimental setup used to observe
intrusions propagating in a cylindrical tank. Although the ambient fluid is
shown here as two distinct layers, it was assumed that the filling process and
diffusion caused the interface to have a thickness of approximately 1.5±0.5 cm.
For all experiments, the density of the fluid within the lock was ρi = 1

2
(ρU+ρL).

the mean density of the ambient fluid. The small concentration of dye allowed

the intrusion to be visualized without significantly changing the density of the

fluid in the lock.

Using a string and pulley system, the cylindrical lock was rapidly lifted

vertically out of the tank. This caused an intrusion to propagate outwards

along the interface between the light and dense fluid. An experiment was con-

sidered successful if the lock removal was purely vertical causing the intrusion

to propagate axisymmetrically.

3.2 Analysis and Results

Figures 3.2(a) and (b) show an overhead view taken from a COHU CCD

camera situated 2 m above the tank. These snapshots were taken at t = 2 s and

4 s after the lock was removed. The circular spreading of dyed fluid indicates

that the intrusion propagates axisymmetrically and the linear diagonal contour

in the time series (Figure 3.2c) confirms that it does so at a constant rate. At

about t = 6 s, the intrusion reflects off the cylinder side wall at R ' 45 cm
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and then returns to the centre of the tank at approximately the same speed.

The magnitude of the speed was determined by measuring the slopes of two

diagonal contours from time series images. These measurements were typically

made between r = 12 cm and r = 24 cm (i.e. between one to three lock-radii

from the edge of the lock). The intrusion speed, Ui, was then calculated as

the average of the four slope values. The experimental error was taken to be

the standard deviation in the slopes.

3.3 Discussion

The measured speeds in six experiments are plotted as solid circles in Fig-

ure 2.3. In the figure, the speeds are non-dimensionalised by U0, given by (2.5).

For all experiments, the interface thickness was taken to be h = 1.5(±0.5) cm;

therefore, with H = 10 cm, δh = 0.15(±0.05). With the exception of one

experiment, Figure 2.3 shows that within error the measured speeds collapse

to a value of 0.75(±0.06)U0. This suggests that axisymmetric intrusions are

slower than rectilinear intrusions which, for δh = 0.15, have a predicted speed

of Ui/U0 ≈ 0.92 by (2.4). Furthermore, the measurements are consistent with

axisymmetric gravity current experiments (Huppert and Simpson, 1980; Pat-

terson et al., 2006) and simulations (Zhang et al., 2010), in which the observed

front speeds were about 0.8Ugc. Here Ugc, given by (2.3), plays the role of U0

for gravity currents.

The experiments that are presented here were all vertically symmetric,

meaning that the depths of the upper and lower layers were equal and the

density of the intruding fluid was equal to the average density of the ambient

(ie. ρi = 1
2

(ρU + ρL)). In all six experiments, the intrusions propagated

to the tank wall at a constant speed, a distance of 6.5r0 from the edge of

the lock. As explained in Section 1.2.2, axisymmetric gravity currents are

expected to decelerate around 3r0 from the release location, a consequence
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Figure 3.2: Top view images at (a) t = 2 s and (b) t = 4 s. (c) Time
series of an axisymmetric intrusion where the ambient density difference is
ρL − ρU = 0.1065 g/cm3. The lock fluid is darkly dyed. The diamond pat-
tern in the time series indicates that the intrusion moves at a constant speed
radially away from the lock and also radially inward after reflection from the
side walls.
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of their decreasing head height, but this does not happen in the vertically

symmetric intrusion experiments. Instead they propagate at a constant speed

beyond 8 lock radii. It is therefore hypothesized that the vertical symmetry

of the experiments presented here allows the intrusion efficiently to excite a

double-humped mode-2 wave at the density interface of the ambient fluid,

which then carries the intrusion outwards at a constant speed. Because the

experiment analysis was limited to top-view camera images, it was necessary

to use numerical simulations to confirm the existence of these waves and to

examine their properties.
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Chapter 4

Numerical Simulations

Fully nonlinear numerical simulations were performed to confirm the exper-

imental results presented in Chapter 3, as well as to obtain a better under-

standing of internal solitary waves in an axisymmetric geometry. The original

finite-difference code was created by Richard Rotunno for the purpose of study-

ing hurricanes. Preliminary modifications were made by Bruce Sutherland to

employ the Boussinesq approximation and to advect the density field as op-

posed to the potential temperature field. I was responsible for debugging the

code, adding a passive tracer field, and including a sponge layer for enhanced

stability. I also tested the code by simulating a mode-1 small-amplitude wave

in a linearly stratified fluid. As the wave evolved, the simulated fields and fre-

quencies were compared to the respective analytical predictions (not shown).

This chapter presents a general overview of the solution method with emphasis

on features relevant to the applications discussed in the chapters that follow.

4.1 Governing Equations

In Section 2.2 the governing equations for an incompressible, inviscid, Boussi-

nesq fluid were given for an axisymmetric geometry. In the numerical code,

the effects of viscosity and diffusion are included to ensure stability by damp-

ing out numerical noise. In addition, the code includes the effects of rotation
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and azimuthal flow, although these dynamics were not included in the simula-

tions discussed in Chapters 5 and 6. Requiring no variation in the azimuthal

direction, the governing equations are

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
− v2

r
− fv = − 1

ρ00

∂p

∂r
+ ν

[
∇2u− u

r2

]
, (4.1)

∂v

∂t
+ u

∂v

∂r
+ w

∂v

∂z
+
uv

r
+ fu = ν

[
∇2v − v

r2

]
, (4.2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= − 1

ρ00

∂p

∂z
− ρg

ρ00

+ ν∇2w, (4.3)

∂ρ

∂t
+ u

∂ρ

∂r
+ w

∂ρ

∂z
+ w

dρ̄

dz
= κ∇2ρ, (4.4)

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (4.5)

where v is the azimuthal velocity, f is the rotation rate, ν is the viscosity

and κ is the diffusivity. The remaining variables are the same as those in

(2.7) – (2.10) and are described below those equations in Section 2.2. In an

axisymmetric geometry the Laplacian is given by

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
. (4.6)

By introducing the azimuthal vorticity,

ζ =
∂u

∂z
− ∂w

∂r
, (4.7)

and using equation (4.5), the pressure can be eliminated from equations (4.1)

and (4.3) to yield

∂ζ

∂t
+ ur

∂

∂r

(
ζ

r

)
+ w

∂ζ

∂z
− 1

r

∂

∂z

(
fvr + v2

)
=

g

ρ00

∂ρ

∂r
+ ν

(
∇2ζ − ζ

r2

)
. (4.8)

The numerical code that was used in the completion of this work solves the

coupled partial differential equations for the azimuthal velocity (4.2), pertur-

bation density (4.4), and vorticity (4.8).

The streamfunction is related implicitly to the vorticity field by

∇2ψ − ψ

r2
= −ζ. (4.9)
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Figure 4.1: A graphical representation of the discretization of the staggered
grid.

Inverting this equation gives ψ from ζ and, using (2.11), this gives u and w.

A passive tracer is also advected and its concentration, CPT, is governed by

∂CPT

∂t
+ u

∂CPT

∂r
+ w

∂CPT

∂z
= κPT∇2CPT, (4.10)

where κPT represents a small diffusivity required for maintaining a smooth

field.

4.2 Solution Method

For a simulation, the domain is specified by its radial extent, R, and its vertical

extent, H. It is then discretized into a uniform grid consisting of Nr points in

the radial direction and Nz points in the vertical direction.

The grid is ‘staggered’ such that the fields are not all computed at the same

locations in the domain. This is illustrated pictorially in Figure 4.1. The v

and ρ fields are approximated at the centres of the grid boxes, whereas the ζ

30



and ψ fields are approximated at each node. Furthermore, the radial velocity,

u, is computed at node locations in the radial direction and at midpoint lo-

cations in the vertical direction. The vertical velocity, w, is computed at the

node locations in the vertical direction and at midpoint locations in the radial

direction.

At each instant in time, (4.9) is inverted using a Fourier-Bessel series.

Explicitly, the spatial components of the vorticity field are represented by

ζ(r, z) =

Nr/2∑
i=1

Nz∑
=1

Aζ(ki,mj)J1(kir) sin(mjz), (4.11)

where ki=αi/R is the radial wave number given in terms of the zeros, αi, of the

J1(r) Bessel function and the vertical wave number is given by mj = 2πj/H.

The series coefficients, Aζ , are found from the inverse Fourier-Bessel transform

of ζ. Likewise, we may assume the streamfunction takes the form

ψ(r, z) =

Nr/2∑
i=1

Nz∑
=1

Aψ(ki,mj)J1(kir) sin(mjz). (4.12)

Substituting the series expansions for ζ and ψ into (4.9) and comparing terms

gives a sequence of simple algebraic formulae relating Aψ to the computed

values of Aζ . Finally, (4.12) can be used to reconstruct ψ(r, z).

Representing ψ as a J1 function in r and a sine function in z ensures that

the no-normal flow condition, u · n̂ = 0, is satisfied at the free-slip boundaries.

Additionally, the form of (4.11) constrains ζ to be zero at all boundaries. This

assumption is suitable for the study of flows which, near the boundary, are of

uniform-density and inviscid (hence irrotational).

From the calculated ψ field, u and w are computed using (2.11). Then,

the spatial derivatives in (4.2), (4.4), (4.8) and (4.10) are approximated using

second-order finite difference methods.

The evolution equations are then stepped forward in time using a leap-frog

scheme that is second-order accurate. More specifically, each field is advanced
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as

F (tn+1) = F (tn−1) + 2
∂F (tn∗)

∂t
∆t, (4.13)

where ∆t is the time-step, F represents v, ρ, ζ or CPT and ∂tF is given by the

spatial derivatives in the Navier Stokes equations. For computational stability,

the advection and forcing terms are calculated using fields at centred timesteps

(n∗ = n), whereas the dissipation terms are calculated using fields evaluated a

timestep earlier (n∗ = n− 1). Every 20 timesteps, the fields from the current

and previous timestep are averaged. This is known as an Euler backstep and its

purpose is to minimize time-splitting errors that occur in the leapfrog scheme.

4.3 Running the Code

For all the simulations presented in this work, intrusions were launched by a

constant-volume lock-release. The code was initialized by specifying the lock

radius, r0, as well as the spatial resolution parameters (Nr, Nz, R and H).

Typical values for ∆z = H/Nz and ∆r = R/Nr were 0.039 cm and 0.044 cm,

respectively, for the idealized intrusion simulations presented in Chapter 5.

The corresponding typical values for the river plume simulations presented

in Chapter 6 were 1.6 m and 2.0 m. Typical values of the timestep (∆t) were

0.00125 s and 0.25 s for the intrusion and river plume simulations, respectively.

Input files were used to specify the background density field, ρ̄(z), and the

initial ρ, v and CPT fields. It was assumed there was no motion in the radial

and vertical directions. Therefore u, w and ζ were initially set to zero.

To prevent the code from becoming numerically unstable while maintaining

a reasonable computation speed, a sponge layer was included to damp out

small-scale noise created by the collapse of the lock fluid. A spatially varying
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Parameter Intrusions River Plumes

r0 6 cm 2500 m
rin 12 cm 2700 m
rout 18 cm 3200 m
νin 0.1 cm2/s 0.10− 0.45 m2/s
νout 0.01 cm2/s 0.02− 0.09 m2/s

Table 4.1: The parameters used for the sponge layers in the simulations of
vertically symmetric intrusions (Chapter 5) and river plumes (Chapter 6).
The lock radius, r0, is also given.

piecewise-linear viscosity was prescribed such that

ν(r) =


νin 0 ≤ r ≤ rin

νout −
(
νin−νout
rout−rin

)
(r − rout) rin < r < rout

νout rout ≤ r ≤ R,

(4.14)

where νin and νout are constants satisfying νin > νout. Typical values of rin and

rout and the viscosities are given in Table 4.1. It should be noted, that in the

river plume simulations the value of νout was up to 1000 times greater than

physical value of 0.01 cm2/s. This was done to maintain numerical stability

and it did not affect the motion at early times.

The code also requires the user to specify the values of ρ00, g, κ and κPT.

Because the code works with dimensional quantities, it is important that the

units of these constants are consistent. For all simulations, ρ00 = 1.00 g/cm3

and g = 980.6 cm/s2. The diffusivities, on the other hand, were treated dif-

ferently for the intrusion and river plume simulations. For the intrusion sim-

ulations, κ and κPT were set to be everywhere equal to ν and therefore varied

with r. For the river plume simulations, κ and κPT were constant throughout

the domain and were given values such that the Schmidt number, Sc = νout/κ,

was equal to 10.

As the simulations proceeded, snapshots of the density, vorticity, velocity

and passive tracer fields were output at intervals of 0.1 s and 10 s for the
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intrusion and river plume simulations, respectively.

All the simulations described in Chapters 5 and 6 were completed on the

WestGrid High Performance Computing cluster, including the SGI Origin

model 350 (8 MIPS, 700 MHz) and the SGI Altix XE320 model (2.5 GHz).

Because the Fourier-Bessel transform is computationally expensive, the simu-

lations described in this work required several days to complete. More specif-

ically, simulations of idealized intrusions evolving over 14 s required about 36

hours of computing time. Simulations of river plumes evolving over 4000 s

required at least 8 days.
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Chapter 5

Axisymmetric Vertically
Symmetric Intrusions

Fully nonlinear numerical simulations were performed to examine vertically

symmetric intrusions and internal solitary waves in an axisymmetric geome-

try (McMillan and Sutherland, 2010). More specifically, the effect of a finite

thickness interface was analysed. The results were compared to the theory

presented in Chapter 2 and the experiments presented in Chapter 3.

5.1 Initial Conditions

The simulations were completed using the code described in Chapter 4 on

a domain with a radius of R = 45 cm and a height of H = 10 cm. The

grid consisted of Nr = 1024 radial points and Nz = 256 vertical points. To

examine the long-time evolution of the system, simulations with a domain

radius of R = 80 cm were also performed. The other input values are given

in Section 4.3. It should be noted that the viscosity near the lock was 10

times greater than the physical value of 0.01 cm2/s. The dynamics of the

flow were unaffected using this viscosity because the Reynolds numbers were

on the order of 103 indicating that viscosity did not govern the dominant

motion. To confirm this, a high resolution simulation with a uniform viscosity

of 0.01 cm2/s was performed (this taking many days rather than many hours
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to run) and it was found that the propagation and speed of the intrusion near

the lock remained unchanged. The diffusivity of salt water, κ, was set to

be everywhere equal to ν, even though its physical value is 10−5 cm2/s. The

purpose of doing this was again for numerical stability. However, the value of

κ was still small enough that molecular diffusion had a negligible influence on

the flow.

The simulations were completed for a non-rotating system with no back-

ground azimuthal flow. Therefore, f = 0 and v = 0. The code was initialized

by a density field that mimicked the initial density of the experimental setup

described in Chapter 3. Explicitly, we prescribed

ρinit(r, z) =

{
ρi 0 < r < r0

ρ̄(z) r0 < r < R.
(5.1)

where r0 = 6 cm is the radius of the lock. Simulations were completed with

both a piecewise-linear background density, ρ̄(z), given by (2.1) and a smooth

hyperbolic tangent profile given by,

ρ̄t(z) = ρi −
1

2
(ρL − ρU) tanh

(
2z

δhH

)
. (5.2)

For all simulations, the density within the lock was the average ambient den-

sity, ρi = 1
2
(ρL + ρU). The concentration of the passive tracer field, CPT, was

initially set to unity over 0 < r < r0 and zero elsewhere.

Simulations were performed with interface thicknesses of δh = 0.02, 0.1,

0.2, 0.4, 0.6, 0.8 and 1.0 for ρ̄(z) given by (2.1) and δh = 0.02, 0.1, 0.2 and

0.4 for ρ̄t(z) given by (5.2). All simulations were completed with an upper

layer density of ρU = 0.9982 g/cm3. In different simulations, the lower layer

density was set to ρL = 1.0515 g/cm3, 1.0662 g/cm3 and 1.1047 g/cm3.

5.2 Results

In agreement with the experimental observations described in Chapter 3, ax-

isymmetric intrusions at a thin interface (δh ≤ 0.2) were observed to propa-
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gate beyond 8r0 at a constant speed as shown in Figure 5.1. On the contrary,

axisymmetric bottom propagating gravity currents have been observed to de-

celerate as early as 3r0 from the edge of the lock (Huppert and Simpson, 1980;

Patterson et al., 2006; Sutherland and Nault, 2007). Therefore, it is believed

that the stratification of the thin interface allows for the formation of a nonlin-

ear wave that tightly encloses the intrusion and advects it at a constant speed

far from the lock.

This behaviour is evident in the sideview snapshots in Figure 5.2 for a

simulation with an ambient density given by (5.2) with an interface thickness

of δh = 0.2. The wave and intrusion initially propagate outwards together, but

some lock fluid leaks rearward of the intrusion and eventually, the intrusion

head runs out of fluid. It then decelerates to a stop at r = 8r0 while the wave

continues to spread radially outwards.

This behaviour can be compared to the snapshots in Figure 5.3 for a simula-

tion of an intrusion in a linearly stratified ambient. Again the intrusion excites

a mode-2 wave. However, the wave is smaller in amplitude and the lock fluid is

not tightly enclosed by the wave. The wave in this case is linear, and therefore,

it is unable to transport the intruding fluid. Correspondingly, the intrusion

decelerates after propagating a distance of 3 lock radii (at r = 4r0), not unlike

the gravity current observations. As shown in Figure 5.1, this deceleration and

ultimate separation of intrusion and wave, was observed to occur at smaller

r/r0 for increasing δh.

For a range of simulations, the initial intrusion speeds, Ui, were measured

by calculating the slope, dri/dt, for 2r0 ≤ ri ≤ 3r0. These speeds are plotted

as squares and triangles in Figure 2.3 for intrusions in ambients with both

piecewise-linear and hyperbolic tangent profiles. The results were found to be

in good agreement with the speeds measured in laboratory experiments (open

circles). Consistent with the rectilinear theory outlined in Section 2.1, as the
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Figure 5.1: The location of the intrusion front versus time for simulations with
ρL = 1.0530 g/cm3 and ρ̄(z) given by (2.1). At a thick interface (δh ≥ 0.60), the
intrusion begins to decelerate around 3r0, whereas at a thin interface (δh ≤ 0.2)
the intrusion maintains a constant speed beyond 8r0.

thickness of the interface increases, the intrusion speed decreases. However,

for all δh, axisymmetric intrusions were found to travel more slowly than the

predicted speed of intrusions in a rectilinear geometry, given by (2.4). This

implies that the curvature of the geometry has an effect on the initial intrusion

speed.

Figure 2.3 also shows that compared to the long-wave speed, symmetric in-

trusions travel more quickly if δh > 0.4 and hence the intrusion is supercritical.

This observation provides further evidence that at a sufficiently thin interface

the wave is nonlinear upon generation. Because nonlinear waves can transport

mass, intrusions in ambients with δh > 0.4 can be carried beyond 3 lock radii

at a constant speed, consistent with the results presented in Figure 5.1. On

the other hand, intrusions at thicker interfaces (δh > 0.4) are subcritical and

hence they excite linear waves, which are unable to transport mass.

Because the motivation of this work was to understand axisymmetric in-
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Figure 5.2: Snapshots of the normalized vertical velocity field, w/wmax, ob-
tained from a numerical simulation of an axisymmetric intrusion in an ambient
fluid with a background density, ρ̄t, given by Eq. (5.2) with a non-dimensional
interface thickness of δh = 0.2. The thick black lines outline the intrusion
profile at each time and illustrate that the intrusion head is being carried out-
ward by a wave. In each plot, the vertical velocity field is normalized by the
maximum amplitude of the wave at t/t0 = 0.5, where t0 = r0/U0. The colour-
bar limits are scaled by

√
t/t0 − 0.5, making it evident that the amplitude of

the wave decays from its maximum value as t−1/2. The wave is observed to
propagate at a constant speed (ie. r ∼ t); therefore, the amplitude of the wave
is decreasing as r−1/2 as is predicted by linear theory.
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Figure 5.3: Snapshots of the normalized vertical velocity field obtained from
a numerical simulation of an axisymmetric intrusion in an ambient fluid with
a linearly stratified background density. The colorbars are the same as those
in Figure 5.2 to illustrate that the magnitude of the wave is smaller in this
ambient fluid. Futhermore, the generated waves move much slower and the
intrusion fluid is not trapped, as in Figure 5.2.
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ternal solitary waves, the properties of the nonlinear waves were measured for

simulations where δh ≤ 0.4. Here, we present the results for the simulation

with δh = 0.2 that is shown in Figure 5.2.

To determine the wave’s position, rw, and amplitude, Aw, a radial time

series (not shown) of the vertical velocity field was made by taking a radial slice

at a height of z/H = 0.15. The wave’s position was taken to be the location of

maximum isopycnal displacement. As shown in Figure 5.4, rw ∼ t, indicating

that the wave travelled at a constant speed throughout the simulation even

after it separated from the intrusion front.

To ignore interactions of the wave with the intrusion, the amplitude of the

leading wave crest was measured. The analysis of amplitude versus radial po-

sition, which is plotted in Figure 5.4, shows that the wave amplitude initially

decays as r
−1/2
w . This behaviour is anticipated on the basis of energy conser-

vation for a non-dispersive wave. Beyond 8r0, the wave separates from the

intrusion and its amplitude becomes sufficiently small that linear dispersion

increases the amplitude decay rate to r−1
w . This late-time behaviour is consis-

tent with the additional effects of linear dispersion on a small amplitude wave

as discussed in Section 2.3.

The wave evolution was compared to the theory predicting its structure,

which was presented in Section 2.3. To do this required first estimating the

height, h/2, of the theoretical interface. Because the simulation had a contin-

uously stratified ambient, ρ̄t, given by (5.2), the height at which the vertical

velocity was a maximum (z/H ' 0.15) was assumed to correspond to z = h/2,

where the normalized streamfunction amplitude satisfies φ(z) = 1. Radial

slices of the vertical velocity field were then taken at several times, as shown

in Figure 5.5(a). For each slice, the maximum amplitude, Aw, was determined

and equations (2.25) and (2.27) were solved for a0, c and λ.

As shown in Figure 5.5(b), the profiles collapse onto a theoretical curve
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Figure 5.4: The wave amplitude and position for the simulation shown in
Figure 5.2 with δh = 0.2. The solid line shows the amplitude of vertical
velocity, Aw, versus radial position, rw, for the wave at a height of z/H = 0.15.
A reference amplitude, Aw0 , is defined such that Aw = Aw0(rw/r0)−0.48 for
2r0 ≤ rw ≤ 3r0. The circles correspond to t/t0 = 2.5, 5.0, 7.5 and 10.0, for
which wave profiles are illustrated in Fig. 5.5. The radial position of the wave
versus time is indicated by the dashed line. A reference time, t∗, is defined
such that rw = drw

dt
(t − t∗) for 4r0 ≤ rw ≤ 10r0. The curves are compared

with lines of constant slope as indicated.

when the amplitude is scaled by r
−1/2
w and the radial extent is shifted by

2r0 + c∆t and scaled by λ. It should be noted that the reference location

of 2r0 was chosen to ignore the initial generation of the wave caused by the

intrusion. For the intermediate times, t/t0 = 5.0 and 7.5, the simulation

results are in excellent agreement with the theory. However, at t/t0 = 10.0,

the wave amplitude became small and linear dispersion slightly increased the

broadening of the wave. The slight discrepancy at t/t0 = 2.5 can be explained

by the strong interaction between the wave and intrusion at early times.

These simulations of vertically symmetric intrusions are in good agreement

with the experimental results presented in Chapter 3 and the heuristic theory

for axisymmetric solitary waves presented in Chapter 2. The results are next

extended to oceanographic scales in an attempt to capture the essential dy-
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Figure 5.5: (a) Horizontal profiles of the vertical velocity field at a height
z/H = 0.15 for δh = 0.2. (b) Corresponding normalized and shifted profiles,
where ∆t is the time elapsed since rw = 2r0, p = −1

2
and Aw0 is a reference

amplitude defined in Fig. 5.4.

namics governing the wave generation process at the mouth of the Columbia

River.
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Chapter 6

River Plumes

The motivation for this work is based in part on the observations of internal

solitary waves by satellite images (Jackson, 2004). Synthetic aperture radar

(SAR) images, which detect surface roughness, illustrate that internal soli-

tary waves in many locations of the world’s oceans have curved wavefronts.

This lateral spreading of the wavefronts occurs when they are generated by a

localized source and the motion is not restricted by a rectilinear domain.

As shown by experiments in Chapter 3 and by simulations in Chapter 5,

internal solitary waves can be launched by the flow of vertically symmetric

intrusions into a two-layer fluid with finite interface thickness. This is a sym-

metric expansion of a gravity current flowing along the surface of a fluid that

consists of a thin stratified layer overlying a deep layer of uniform-density fluid.

In nature, such gravity currents can manifest themselves in the form of river

plumes flowing into the coastal ocean. For example, in July 2004, measure-

ments of density and velocity fields were taken near the mouth of the Columbia

River revealing both the advance of the intruding river into the ocean and the

generation of waves at the pycnocline (Nash and Moum, 2005). Details of the

specific observations are described in Section 6.1.

Using the numerical code described in Chapter 4, simulations were per-

formed in an attempt to capture the essential dynamics of the Columbia River
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plume. To do so, it was necessary to make many crude simplifications to the

oceanographic conditions. Regardless of this fact, the dynamics of the motion

were captured qualitatively and, for some measurements, quantitatively. Com-

parisons between the observations and the simulation results are presented in

Section 6.4.

6.1 Columbia River Plume

The Columbia River is the fourth largest river in the United States, flowing

into the Pacific Ocean at the border of Washington and Oregon. The depth

near the river mouth is approximately 20 m, increasing to 100 m within 15 km

of the coastline (Pan et al., 2007). The average flow rate from the Columbia

River is 7300 m3/s. However, during the spring months the flow rate may be

upwards of 15, 000 m3/s with ebb currents reaching 3.5 m/s (Jay et al., 2010).

SAR images and in situ measurements indicate that internal waves, manifest

as sinusoidal undulations of the pycnocline, are frequently launched ahead of

the plume (Nash and Moum, 2005; Pan et al., 2007; Stashchuk and Vlasenko,

2009), though details of the generation mechanism remain unclear.

Here we focus on the in situ measurements that were made on July 23rd,

2004, which are presented in Nash and Moum (2005). Figure 6.1 shows three

snapshots of the sea surface temperature, where the plume front is approxi-

mated by the black contour. In total, nine transects across the plume front

were made, as indicated by the diamonds. Initially, at 17:21UTC, the plume

of warm summertime water flowed towards the northwest. At later times

(20:22UTC and 21:52UTC) the plume propagated eastward. These directions

are indicated in Figure 6.1 by the white velocity vectors.

At each transect of the plume front, a Chameleon turbulence profiler was

used to measure the density profiles and an Acoustic Doppler Current Profiler

was used to get the velocity profiles. Figure 6.2 shows these measurements at
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Figure 6.1: Images of the sea surface temperature at the mouth of the
Columbia River showing the progression of the plume on July 23rd, 2004 at (a)
11:50, (b) 19:22, and (c) 21:31. The diamonds represent positions where the
plume front was crossed and the red line represents the ship track. Measured
fluid velocities are indicated by the vectors and the 17◦C isotherm, which ap-
proximates the plume front, is indicated by the black contour. The domain
size of each image is approximately 28 km in the N-S direction and 26 km in
the E-W direction. Reprinted by permission from Macmillan Publishers Ltd:
Nature Publishing Group, from Figure 2 of Nash, J. D. and J. N. Moum.
Nature. 437, 400 – 403 (2005).

four crossings. At 19:01UTC (Figure 6.2(a)) the plume flowed at a speed of

Uf ≈ 0.6 m/s against an ambient wind-driven current of Ua ≈ −0.1 m/s. From

the density measurements, it is evident that the plume of fresh water forced the

near surface waters to be displaced approximately 20 m downwards. One-and-

a-half hours later the plume’s speed decreased to 0.4 m/s and the internal wave

began to separate from the front (Figure 6.2(b)). The amplitude of the wave

at this time was ∼ 25 m. Approximately an hour later a second depression

of smaller amplitude separated from the plume front and trailed the leading

wave by ∼ 400 m (Figure 6.2(c)). In the final frame (Figure 6.2(d)) a total

of six waves are visible. At the ninth and final transect (not shown), a total

of seven waves were measured. All the waves propagated at a nearly constant

speed of cw ≈ 0.45 m/s. Nash and Moum (2005) also observed that the waves
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were rank-ordered in that the largest amplitude wave was at the front of the

wave packet and each successive wave had a smaller amplitude. The distance

separating contiguous pairs of waves was also rank-ordered.

Using their measurements of the plume’s front speed, Nash and Moum

(2005) calculated two Froude numbers. The first, F = Uf/cw, was the ratio

of the front speed to the measured wave speed. The second, Fa = Uf/ca, was

the ratio of the front speed to the theoretical speed of a mode-1 linear wave

in the ambient, ca ≈ 0.4 m/s. The value of ca was determined by solving the

Taylor-Goldstein equation for the measured background density and velocity

fields. The definition of Fa is equivalent to the Froude number, Fr, introduced

in Section 2.2, though Fa is based on a measured, not theoretical, intrusion

speed. Hence, when Fa > 1 the current was supercritical and the generation of

solitary waves was expected. Initially, both F and Fa were greater than unity,

but as the plume decelerated, the Froude numbers decreased. When F ≈ 1, at

which time Fa ≈ 1.1, the leading wave separated from the plume front. Nash

and Moum (2005) diagnosed wave fission to occur when F = 1. Because the

definition of F is based on the measured, not the theoretical, wave speed it

is not useful in predicting the exact fission location for an arbitrary ambient.

However, it is useful to note that Fa is only slightly greater than unity at the

time of fission.

The measurements made by Nash and Moum (2005) are summarized in

Table 6.1.

6.2 Approximations and the Simulation Setup

The intent here is not to perform a realistic simulation of the Columbia River

plume. Rather, it is to use a simple model that attempts to capture the essen-

tial dynamics of the wave generation process. Thus many approximations are

made. The wind-driven surface currents and topography in the coastal region
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Figure 6.2: Measurements of density, acoustic backscatter and velocity made
about 10 km from the mouth of the Columbia River on July 23rd, 2004. (a)
Internal waves grow at the front of the plume. (b) Initial separation of the
internal wave from the plume front. (c) Separation of a second wave from the
plume front. (d) Large amplitude internal waves propagate freely ahead of
the plume. The inset shows the density profile that was measured for Pass 4
(panel a). Reprinted by permission from Macmillan Publishers Ltd: Nature
Publishing Group, from Figure 3 of Nash, J. D. and J. N. Moum. Nature. 437,
400 – 403 (2005).
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are omitted: there is no initial ambient motion and the depth is constant.

Furthermore, the numerical code requires the background density profile to

be constant in r and t, whereas in reality the stratification changes both with

location and time.

The forcing conditions also differ significantly. As explained by Nash and

Moum (2005), the river plume is released when ebb currents begin to flow,

immediately following high tide. Rather than simulate the exact influence of

the tides by including a time-variable momentum flux at the source, a partial-

depth lock-release initial condition was used to generate the surface gravity

current.

Due to the code’s boundary conditions that require the flow to be irrota-

tional at the bottom and top of the domain, it is difficult to maintain numerical

stability in the simulation of a surface gravity current; the flow is not neces-

sarily irrotational at the front itself. Instead, a vertically symmetric intrusion

was simulated and the analysis was carried out in the lower half of the domain

where −H
2
≤ z ≤ 0. This symmetry was exploited, for example, in Section 2.1

in the derivation of the rectilinear intrusion speed.

The study of the Columbia River plume by Pan et al. (2007) indicated

that the coastal ocean depth in the region where the waves were observed was

about 100 m. Therefore the domain half-height was chosen to be H
2

= 100 m.

Two different background density profiles, which are shown in Figure 6.3

for z < 0, were used in these river plume simulations. To ensure that the

intruding fluid propagated along z = 0, both of the density profiles were odd

functions with respect to z about the density at z = 0 (not shown).

The initial profile, denoted by ρ̄ST(z), is an analytic idealization of the

actual Columbia River data. The values of the densities were estimated based

on the profile presented in the inset of Figure 6.2, where the densities at

z = −5 m and z = −40 m were approximately 1023 kg/m3 and 1028 kg/m3,
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Figure 6.3: The background density profiles, ρ̄ST(z) and ρ̄CR(z), used for the
river plume simulations in comparison with data measured on July 23, 2004
(Nash and Moum, 2005)(or other reference). Here, only the lower half of the
domain, z < 0, is shown. The actual profiles were odd functions with respect
to z.

respectively. A hyperbolic tangent profile was used for the majority of the

simulation profile. However, the density at the three points below z = 0

varied linearly in z such that ρ̄ST(0) = ρi. This was done to maintain numerical

stability by minimizing the magnitude of the density jump at the interface.

As is shown in Figure 6.3, ρ̄ST(z) moderately overestimated the measured

densities, but it still captured a thin stratified region overlying a deeper region

of constant density.

In the actual data presented in Nash and Moum (2005) the density in

the upper 10 m of the ocean was nearly uniform. To examine its influence,

additional simulations with a density profile denoted by ρ̄CR(z) were performed

in which the measured data were interpolated onto the computational grid, as

shown in Figure 6.3. Below a depth of 60 m, it was assumed that the density

was constant because there was no data in this region. Furthermore, the
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densities at the two points near the surface were modified to minimize the

magnitude of the density jump at z = 0.

The initial density field for the simulations was given by

ρinit(r, z) =

{
ρi 0 < r < r0, −Hm

2
< z < Hm

2

ρ̄(z) elsewhere,
(6.1)

where r0 is the lock radius and Hm is the total height of the mixed region in

the lock. In an effort to simulate the scale of the Columbia River plume, the

lock diameter, 2r0, was chosen to be 5 km, which is the approximate width of

the river’s mouth. To control the volume of the collapsing fluid, the value of

Hm

2
was varied from 20 m to 70 m in increments of 10 m. The density of the

intruding fluid, ρi, was set to 1015 kg/m3, which was the approximate density

of the Columbia River plume on July 23rd, 2004 (Nash and Moum, 2005).

As was described in Section 4.3, a spatially varying viscosity was used to

damp out the small scale noise arising from the collapse of the mixed fluid.

In order to obtain a nearly uniform Reynolds number, a different viscosity

was chosen for each Hm. The value of νout where r > 3.2 km increased from

0.02 m2/s for Hm

2
= 20 m to 0.09 m2/s for Hm

2
= 70 m. For all simulations, the

viscosity where r < 2.7 km was set to νin = 5νout and between r = 2.7 km and

r = 3.2 km the viscosity varied linearly as given by (4.14). Upon completing

the simulations, the Reynolds numbers, Re =
UfHm

νout
, were determined to vary

between 2070 and 2760. The diffusivity, κ, was chosen so that the Schmidt

number, Sc = νout/κ, was equal to 10 for all simulations. Both the viscosity

and the diffusivity were much greater than the physical values in order to

maintain numerical stability. The passive tracer diffusivity, κPT, was set equal

to κ for all simulations.

The radial extent of the domain was chosen to be R = 10 km because

beyond this distance the wave amplitude was sufficiently small that the motion

was dominated by viscosity. The grid contained 5000 points in the radial
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direction and 128 points in the vertical direction.

The majority of runs simulated the evolution of the river plume and waves

for at least 4000 s with a timestep of 0.5 s; however, a timestep of 0.25 s was

required to maintain numerical stability for Hm

2
= 70 m. Snapshots of the

density, velocity and vorticity fields were output every 10 s. Due to the large

domain size, each simulation took at least 8 days to complete.

6.3 Analysis and Results

Qualitatively similar to observations, the propagation of the simulated river

plume launched a train of freely propagating internal waves. This is shown

for Hm

2
= 50 m in Figure 6.4 for a simulation with analytically prescribed

ambient density (ρ̄ = ρ̄ST) and in Figure 6.5 for a simulation with interpolated

Columbia River ambient density (ρ̄ = ρ̄CR). In these figures, the black line

denotes the 1023 kg/m3 isopycnal.

More waves were launched in the simulation using ρ̄ = ρ̄ST than in the

simulation using ρ̄ = ρ̄CR. This comparison is consistent for all values of Hm

2
,

as shown in Table 6.1. The reason less waves appear when ρ̄ = ρ̄CR can be

attributed to the structure of the upper mixed region in that ambient density

profile. The large density jump at z ≈ −10 m can be approximated by a

strongly stratified region between two layers of uniform density. When long

waves propagate in such an ambient fluid, shear is introduced across the strat-

ified interface. This shear causes the flow to go unstable which, in turn, causes

some of the wave energy to be converted into mixing. The necessary condi-

tion for the instability of a parallel stratified shear flow is that the Richardson

number satisfies Ri > 1/4. Generalizing the definition of Ri, at all points in

the domain we estimate

Ri(r, z) ≈ N2
T

ζ2
, (6.2)
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Figure 6.4: Snapshots of the total density field in units of kg/m3 from a
simulation with ρ̄ = ρ̄ST and Hm

2
= 50 m. The black line is the 1023 kg/m3

isopycnal. Only a subsection of the total domain is shown as R = 10 000 m
and H

2
= 100 m. It should be noted that the simulated plume is propagating

from left to right in this figure, whereas the observed plume in Figure 6.2 is
propagating from right to left.
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Figure 6.5: As in Figure 6.4, but showing snapshots from a simulation with
ρ̄ = ρ̄CR. The upper limit of the colour map is also reduced to 1027 kg/m3.
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Figure 6.6: The local Richardson number, given by (6.2), near the front of the
river plume at t = 1000 s for Hm

2
= 50 m with (a) ρ̄ = ρ̄ST and (b) ρ̄ = ρ̄CR.

The unstable regions where Ri > 0.25 suggest that there is strong mixing near
the plume’s head, especially in (b).

where NT is the local buoyancy frequency based on the background and per-

turbation density gradients and ζ is the local vorticity. The value of Ri at

t = 1000 s for Hm
2

= 50 m is plotted in Figure 6.6(a) for ρ̄ = ρ̄ST and

Figure 6.6(b) for ρ̄ = ρ̄CR. The low Richardson numbers in these figures are

highly suggestive of mixing. However, the small scale shear-unstable distur-

bances were not explicitly resolved due to the necessarily high viscosity of the

simulations. By comparing Figures 6.6(a) and (b), it can be argued that the

flow is more unstable when ρ̄ = ρ̄CR. This is also apparent in the profile of

the isopycnals shown in Figure 6.5. Due to the increased flux of energy to

small scales by mixing, which is further enhanced by viscosity, less energy was

available for wave formation in the simulations with ρ̄ = ρ̄CR and hence, fewer

waves were formed.

The initial speed, Uf , of the river plume for all the simulations were deter-

mined by locating the position of its front, rf , at each time and then calculating
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Figure 6.7: Initial speeds of the leading wave, and hence the river plume, as
determined by calculating drf/dt from t = 150 s to t = 450 s.

the slope, drf/dt, between t = 150 s and t = 450 s. These speeds are plotted

versus Hm

2
in Figure 6.7. This shows that Uf increases with Hm

2
, as expected,

because the initial available potential energy that is partially converted to ki-

netic energy of the plume is proportional to H2
m. Figure 6.7 also shows that,

for given Hm

2
, the river plume in the ambient with ρ̄ = ρ̄ST travelled on average

2% faster than those in ambients with ρ̄ = ρ̄CR. The relatively small difference

in speeds implies that the advance of the plume is relatively insensitive to the

structure of the density profiles that were used.

The analysis of these simulations involved calculating the speed and ampli-

tude of each wave for various times. To do so, the location of the 1023 kg/m3

isopycnal was found every 10 s. From the resulting profile, the position of

each wave was determined from the radial location of each local minima. The

wave position rw was then plotted versus time, as shown in Figure 6.8(a) for

Hm

2
= 50 m and ρ̄ = ρ̄ST.
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For each wave, the average speed cw was calculated every 300 s by calcu-

lating the slope, drw/dt, over a 300 s interval. As shown in Figure 6.8(b), the

wave speeds decreased with time and eventually all the waves attained a simi-

lar speed. The initial speeds of the leading waves were equal to the front speed,

Uf , because the plume and the wave initially propagated together. Eventu-

ally, the wave separated from the plume front. Admittedly, though, it was

difficult to determine the exact location of wave fission because the density of

the intruding plume was the same as that just ahead of it. Furthermore, the

high diffusivity of the passive tracer field made it an unreliable indictor for the

location of the plume at late times.

Figure 6.4 shows that waves develop successively, one after the other, even-

tually forming a wave train of crests and troughs. This is quantified in Fig-

ure 6.8. The leading wave is launched almost immediately (at t ≈ 60 s) whereas

the second wave forms around t ≈ 550 s. At this time, the second wave is ap-

proximately 130 m behind the first and, because the leading wave is initially

travelling faster than the second wave (see Figure 6.8(b)), the distance sep-

arating the waves grows. The maximum separation distance ∆r12 ≈ 250 m

is eventually attained when the waves reach a similar speed. This trend was

observed for all the simulations with ρ̄ = ρ̄ST and the ∆r12 values are given

in Table 6.1. For these simulations, the separation distance does not depend

significantly on Hm

2
. All values lie between 210 m and 280 m, suggesting that

∆r12 is set by the background density profile, not the speeds of the waves.

Additional measurements (not shown) indicate that the distance separating

successive waves decreases (ie. ∆r12 > ∆r23 > ∆r34).

The approximate values of ∆r12 are given in Table 6.1 for the simulations

with ρ̄ = ρ̄CR. Due to the enhanced mixing that occurs in these simulations, it

was sometimes difficult to locate the exact position of the waves. In some cases

a steady separation distance was not attained in the time of the simulation.

57



2000

4000

6000

8000

r w
 [

m
]

(a)

Wave 1
Wave 2
Wave 3
Wave 4

0 1000 2000 3000 4000
time [s]

1.0

1.2

1.4

1.6

c w
 [

m
/s

]

(b)

Figure 6.8: Six waves were formed in the simulation with Hm

2
= 50 m and

ρ̄ = ρ̄ST (see Figure 6.4). The positions, rw, of the first four waves were
measured from r = 0 are plotted versus time in (a) and the average speeds,
cw, of the first four waves which were calculated every 750 s are shown in (b).
In comparison, the mode-1 wave speed, ca, for ρ̄ = ρ̄ST is 0.67 m/s.

58



3000 4000 5000 6000 7000 8000
rw  [m]

0

5

10

15

20

25

30

A
ρ
c
 [

m
]

Wave 1
Wave 2
Wave 3
Wave 4

Figure 6.9: The magnitude of the isopycnal displacement for ρc = 1023 kg/m3

versus position for the simulation with ρ̄ = ρ̄ST and Hm

2
= 50 m. Although

six waves were observed (see Figure 6.4), only the amplitude for the first four
waves is plotted.

This is indicated in Table 6.1 by the asterisks.

In the snapshots in Figures 6.4 and 6.5 it is evident that the amplitudes

of the waves decrease as they propagate outwards. The displacement of the

isopycnal troughs were measured relative to the upstream position, and are

plotted versus position in Figure 6.9 for the simulation shown in Figure 6.4.

After an initial increase in amplitude during the generation of the wave, the

amplitude decreases approximately linearly with r. It is expected that the am-

plitude should obey an inverse power law for sufficiently large r. In particular,

a single inviscid wave should decay in amplitude as r−1/2. However, the simu-

lations were not run long enough to observe this trend. Due to the damping of

the motion by the artificially high viscosity we expect the amplitude to decay

more rapidly than A ∼ r−1/2.

It is also evident in both Figures 6.4 and 6.9, that at any given time the

waves are rank-ordered. That is, the amplitude of each successive wave is
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smaller than the one ahead it (ie. A1 > A2 > A3). The maximum amplitudes

of the leading waves, Amax = max(A1), for all the simulations are summa-

rized in Table 6.1. As expected, the maximum wave amplitude increases with

increasing Hm

2
. Furthermore, Amax does not vary significantly between simu-

lations with the two different background density profiles.

6.4 Discussion

Despite the omission of tides, surface currents and bottom topography, the sim-

ulations were in good qualitative, and in somewhat good quantitative agree-

ment with the observations presented in Nash and Moum (2005). In this

section, the observations discussed in Section 6.1 will be compared to the sim-

ulations with Hm

2
= 50 m because the initial amplitudes of the observed and

simulated wave were approximately equal (see Table 6.1).

Figures 6.4 and 6.5 clearly show that the surface-propagating gravity cur-

rent launches a train of freely-propagating internal waves which are formed in

succession, qualitatively consistent with the observations of Nash and Moum

(2005).

Nash and Moum (2005) observed a total of seven freely propagating waves.

In comparison, the number of waves in the simulations varied from 2 to 6 with

less (2–3) waves being generated in simulations with ρ̄ = ρ̄CR, the ambient

density interpolated from the observed data. There are several possible rea-

sons for this discrepancy. As explained in Section 6.3, there appeared to be

enhanced mixing in simulations with ρ̄ = ρ̄CR, which reduced the amount of

energy available for wave formation. Furthermore, the measured density pro-

file shown in Figure 6.3 was observed at a specific instant in time at a specific

location, whereas the stratification likely varied throughout the observation

region, having a significant effect on wave formation. The wind-driven surface

currents that were observed by Nash and Moum (2005) also helped the wave
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Speed Amplitude Wave Separation No. of Waves
Hm

2
Uf Amax ∆r12

(m) (m/s) (m) (m)

Columbia River Observations

0.7 20 - 25 400 7

ρ̄ST(z)

20 1.1 11 220 6
30 1.3 17 210 6
40 1.4 22 240 6
50 1.5 27 250 6
60 1.6 32 260 5
70 1.6 36 280 5

ρ̄CR(z)

20 1.0 11 150 3
30 1.3 16 150* 3
40 1.4 23 170 3
50 1.5 29 220 2
60 1.6 34 280 2
70 1.6 38 250* 3

Table 6.1: Data from the river plume simulations in comparison with the ob-
servations made by Nash and Moum (2005). The initial speed of the river
plume is denoted by Uf . For the observations, Uf was measured at 17:21UTC

and for the simulations Uf was computed at t = 300 s. The maximum dis-
placement of the 1023 kg/m3 isopycnal of the leading wave is denoted by Amax
and the maximum separation distance attained between the first and second
waves is denoted by ∆r12. The * indicates that the separation distance was
increasing or decreasing rather than remaining constant.
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formation by increasing the convergence of horizontal velocities at the plume

front. Of all these reasons, it is most likely the artificially high viscosities

that caused fewer waves to form in the simulations. At late times, when the

wave amplitudes and speeds were small, the motion was significantly damped

preventing the formation of additional waves. This conclusion was made on

the basis of simulations (not shown) with still higher viscosities, in which only

1–2 waves formed.

The simulated location of the initial wave fission is significantly different

from the observed location with respect to the river mouth. As shown in

Figure 6.2(b), the leading wave separated from the plume front at roughly

19:25UTC, at which time the plume was roughly 12−15 km from the mouth of

the Columbia River (determined from Figure 6.1). In simulations, the initial

wave fission occurred within 500 m of the lock (for Hm

2
= 50 m). As mentioned

in Section 6.3, it was difficult to determine the exact location of wave fission

from the simulations because the density of the intruding fluid was the same as

that just ahead of it. Because the second wave formed around r = 3000 m (see

Figure 6.8), it was assumed that the wave fission occurred prior to the intrusion

reaching this location. The reason for the discrepancy between the simulations

and the observations is likely due to the initial conditions: the simulations

used an instantaneous constant-volume release to generate a gravity current,

whereas the Columbia River plume is better represented by gradual increase

in volume flux at the source while the tide ebbs. Based on a mean flow rate

of 1 m/s and a semidiurnal tide (Jay et al., 2010), the maximum volume flux

occurs approximately 3.1 hours following high tide at a distance of 11 km from

the mouth of the Columbia River. It is at this location that a lock-release best

describes the plume. Therefore, it can be argued that the simulation results

are consistent with the observation of waves being generated 12− 15 km from

the mouth of the river.
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Another comparison can be made in regards to the plume speeds and

Froude numbers. Although the initial front speed measurements differ by

up to a factor of 2 (see Table 6.1), the river plume decelerates as it propagates

outwards in both the simulations and the observations. On the other hand,

the observed wave speeds were approximately constant at 0.45 m/s, while the

simulated initial wave speed for Hm

2
= 50 m was 1.5 m/s and then decreased

throughout the simulation by up to 50%, as shown in Figure 6.8(b). The de-

creasing values of cw in time make it difficult to determine a Froude number

with respect to the wave speed, F = Uf/cw, as was done by Nash and Moum

(2005).

It is possible, however, to calculate a linear long wave speed for the ambient,

ca, by solving the Taylor-Goldstein equation. To do so, a Matlab program

(Smyth et al., 2010) was used to calculate the mode-1 wave speed. Explicitly,

ca ' 0.67 and 0.65 m/s for ρ̄ = ρ̄ST and ρ̄CR, respectively. In comparison, Nash

and Moum (2005) calculated ca ' 0.4 m/s, but this computation included

the measured background horizontal velocity field. For all the simulations,

the initial plume speeds were significantly larger than ca (see Figure 6.7).

Hence, Fa > 1 and solitary waves were launched. Due to the high diffusivity

of the passive tracer field, it was difficult to measure the plume speeds, and

consequently Fa, at late times. However, the speeds of the waves (shown in

Figure 6.8) suggest that Fa > 1.5 for the entire duration of the simulation. In

comparison, Nash and Moum (2005) observed that the initial wave separated

from the front of the plume when Fa ≈ 1.1 and Fa decreased to less than unity

by the fifth measurement of the plume’s speed.

Nash and Moum (2005) measured a 20 − 25 m amplitude for the leading

wave, which compared well with the simulations in cases where Hm

2
was equal

to 40 m or 50 m. In the simulations, the wave amplitude decreased rapidly

as shown in Figure 6.9. However, Nash and Moum (2005) reported that the
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amplitude remained constant for nearly 5 km. Due to the axisymmetric ge-

ometry, the amplitude decay is expected. Therefore, their observed constant

amplitude must be attributed to other factors. A possible explanation is that

at the time of the measurements, the observed wave front (black line in Fig-

ure 6.1) is more or less planar; since the wave is not spreading radially, a

constant amplitude would be expected.

There is qualitatively good agreement between the observations and the

simulations in that the amplitude of each successive wave was smaller than the

one ahead of it. This is apparent in Figure 6.2(d) for the observed waves and in

Figure 6.9 for the simulated waves. The decreased amplitude can be attributed

to the reduced convergence at the front of each wave and the observation

of rank-ordered waves is consistent with other observations of solitary wave

packets (Jackson, 2004).

A final comparison between the observations and the simulations can be

made with respect to the spacing between contiguous waves. Figure 6.2(d)

shows that the maximum distance between the leading wave and the second

wave, ∆r12, is about 400 m. In comparison, the maximum distance measured

in the simulations varies between 150 m and 280 m. Although the magni-

tude of the separation is significantly different, both the simulations and the

observations show that the distance between successive waves decreases.

In general, despite the approximations of the numerical model, the simu-

lations were found to be in good qualitative agreement with the observations:

the propagation of a river plume into the coastal ocean launches a train of

freely-propagating internal waves that are rank-ordered with respect to their

amplitudes and separation distances. Because the intent of these simulations

was to capture the essential dynamics of the wave generation process, we can

also argue, for Hm

2
= 40 m or 50 m, that the wave characteristics are is good

quantitative agreement with the observed wave speeds and amplitudes.
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Chapter 7

Summary and Conclusions

We have studied the dynamics of axisymmetric internal solitary waves by

way of theory, experiments and numerical simulations. Although this work

was motivated by the observation of curved wave fronts advancing ahead of

river plumes in the coastal ocean, we began by investigating the launch of

these waves by vertically symmetric intrusions in a two-layer fluid with finite

interface thickness. We then adapted the idealized study to more realistic

oceanographic circumstances and compared the results with observations of

the Columbia River plume.

In the study of vertically symmetric intrusions, a theory was derived to

predict the speed of such an intrusion as a function of the interface thickness.

Unlike previous estimates (Ungarish, 2005; White and Helfrich, 2008), our

theoretical prediction was in agreement with the recent experiments by Bolster

et al. (2008).

Laboratory experiments and numerical simulations of vertically symmetric

intrusions were conducted in a cylindrical geometry. In agreement with the

theory, the intrusion speed was dependent upon the non-dimensional thickness

of the interface, decreasing from 0.8U0 to 0.5U0 as δh increased from 0 to 1.

These speeds were up to 20% slower than those of intrusions in a rectilinear

geometry.
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From the observation that the experimental intrusions propagated well be-

yond 3 lock radii at a constant speed, it was hypothesized that a closed-core

solitary wave surrounded the intrusion and carried it outwards. In addition

to confirming the presence of this wave at interfaces satisfying 0 < δh . 0.4,

the simulations were used to obtain more information about the wave char-

acteristics. The wave carried the intrusion to approximately 7 lock radii as

its amplitude decreased as r−1/2, a power law consistent with energy conser-

vation. Beyond this distance, the intrusion ran out of fluid and decelerated

to a stop, whereas the wave continued to propagate at a constant speed. Due

to the additional effect of linear dispersion, the rate of wave amplitude decay

increased to r−1 beyond 7 lock radii.

Profiles of the wave just above the intrusion head were compared to a recti-

linear solitary wave KdV theory adapted to a cylindrical geometry in which the

wave amplitude decreased as r−1/2. The wave profiles collapsed onto a theoret-

ical curve suggesting that the amplitude decay was slow enough that it did not

significantly affect the propagation of the wave. From a single measurement

of wave amplitude and the assumption that the amplitude decays as r−1/2,

this heuristic KdV theory is able to predict the amplitude, speed and spread

of the wave during its nonlinear evolution phase after generation. The fact

that the solitary wave evolved in a manner closer to the heuristic prediction

than to the rigorous cylindrical solitary wave equation suggests that a different

mathematical approach should be taken in developing an appropriate weakly

nonlinear theory. Because the adapted KdV theory did not account for the

leaky closed-core behaviour of the wave, it is suggested that future investiga-

tion could adapt the Dubreil-Jacotin-Long equation to a cylindrical geometry;

this equation has been used to describe closed-core (Davis and Acrivos, 1967;

Tung et al., 1982) and leaky (Derzho and Grimshaw, 2007) solitary waves in

a rectilinear geometry.
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The numerical code was also used to simulate a river plume emanating

from the mouth of the Columbia River. In essence, this involved prescribing

more realistic ambient density profiles and allowing the intrusion to emanate

from a partial-depth mixed region. In contrast to the simulations of vertically

symmetric intrusions, which launched a single wave, a freely propagating train

of internal solitary waves was launched by the simulated river plume.

The development of a freely propagating train of waves was consistent with

the observations made by Nash and Moum (2005) in July 2004 of a plume

emanating from the Columbia River. There was also qualitative agreement

between the simulations and the observations in that the waves formed one at

a time with each successive wave having a smaller amplitude. Furthermore,

the separation distance between contiguous waves decreased with each succes-

sive wave pair. Quantitatively, it can be argued that the magnitudes of the

speeds and amplitudes are of the same order. This was somewhat surpris-

ing considering the number of approximations that were made. In particular,

wind-driven surface currents and bottom topography were omitted in the sim-

ulations. Furthermore, a constant-volume lock-release was used to simulate

the river outflow and a constant stratification (in r and t) was used for the

ambient fluid. These limitations had the most effect in the Froude number

criterion for wave fission. Nash and Moum (2005) observed that the leading

wave separated from the plume when Fa ≈ 1.1 and eventually Fa was less than

unity. In contrast, Fa > 1.5 for the duration of the simulations.

Further investigation is necessary to generalize our results to make pre-

dictions about the realistic propagation of river plumes in the coastal ocean.

A better understanding of the dynamics of these plumes and the waves they

generate is important for predicting the transport of nutrients, sediments and

pollutants in the local region. Higher resolution simulations with lower viscos-

ity would be beneficial as the motion of the river plume at late times seemed
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to be dominated by viscosity. More specifically, the fact that the amplitude

decayed more rapidly than r−1/2 suggests that energy was being dissipated due

to viscosity. It would also be useful to have in situ data for plumes emanating

from different rivers. This could provide additional insight into how parame-

ters such as stratification, wind-driven currents, or bottom topography affect

the formation and propagation of the waves. At this time, however, only the

Columbia River plume has been examined in detail for its ability to generate

internal solitary waves.

68



Bibliography

Benjamin, T. B. (1968). Gravity currents and related phenomena. J. Fluid

Mech. 31, 209–248.

Benney, D. J. (1966). Long nonlinear waves in fluid flows. J. Math. and

Phys. 45, 52–63.

Bolster, D., A. Hang, and P. F. Linden (2008). The front speed of intrusions

into a continuously stratified medium. J. Fluid Mech. 594, 369–377.

Britter, R. E. and J. E. Simpson (1981). A note on the structure of the head

of an intrusive gravity current. J. Fluid Mech. 112, 459–466.

Davis, R. E. and A. Acrivos (1967). Solitary internal waves in deep water. J.

Fluid Mech. 29, 593–607.

Derzho, O. G. and R. Grimshaw (2007). Asymmetric internal solitary waves

with a trapped core in deep fluids. Phys. Fluids 19, Art. No. 095102.

Didden, N. and T. Maxworthy (1982). The viscous spreading of plane and

axisymmetric gravity currents. J. Fluid Mech. 121, 27–42.

Dubreil-Jacotin, M. K. (1937). Sur les thèoremes d’existence relatifs aux ondes
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