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Abstract 

The proposed mechanism in this study is a multi-body cable driven robot. The robot has 6 DOF. 

The thesis first presents the required concepts and definitions. Then a solution to the kinematic 

synthesis problem is reviewed. This solution includes an algorithm that finds all the sets of 

design parameters that make the robot span a desired workspace. Also, an optimization 

procedure is proposed to find the best possible answer to the synthesis problem. Moreover, a 

geometrical approach is used to develop a parameter identification method. This task is very 

important since in practice the fabricated and assembled parts involve errors. More 

importantly, the robot is supposed to be configured before each performance and the new 

parameters need to be identified with acceptable accuracy. 

Also, Impedance Control is investigated as a method of interest in rehabilitation. The simulation 

results on a simple shoulder rehabilitation cable robot are presented. The impedance Control 

makes the robot perform as a mass-spring-damper system. This property lets the patient 

deviate from the designated trajectory while guiding him towards the right path.  
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1 Introduction 

1.1 Literature Review 

Cable-driven is a term which refers to a division of mechanisms that are actuated by cables. 

Being light allows these kinds of systems to move with high speeds and accelerations. 

Moreover, having large workspaces and ease of reconfiguration with low cost makes them a 

good choice for a variety of applications. A few examples of cable-driven robots over the past 

two decades are NIST ROBOCRANE [ 1 ], FALCON [ 2 ], and DeltaBot [ 3 ]. 

These robots are considered as a subset of parallel mechanisms, although links are rigid in 

normal parallel robots. In cable robots, cables are counted as the links. Therefore, to preserve 

stability of a cable-driven mechanism, one has to make sure that all the cables remain in 

tension. A cable mechanism is called “tensionable” when a specific configuration of it is able to 

generate motion while all the cables remain taut. In order to ensure tensionability of a 

mechanism, the cable number should be at least one more than the degrees of freedom of the 

system [ 2 ].  

The same statement can be made for tensionability of multi-body cable mechanisms [ 4 ]. In 

this case, the remaining problem is the distribution of cables among the bodies. For instance, 

connecting all the cables to one body might not preserve the tensionability. Thus, it is required 

to determine the regions in which the robot is tensionable. 

Some work has been done on the analysis of tensionability in cable mechanisms. Verhoeven 

and Hiller [ 5 ] used the term “controllable workspace” as the tensionable region and defined it 

as “the set of poses in which robot can maintain equilibrium against all external wrenches”. 

Additionally, some other work contributed to the workspace analysis and determining the 

region of tensionability [ 6 ]. The same concept was used [ 7 ] for the optimal design of a 6 DOF 

parallel cable robot by considering workspace volume, accuracy of the robot for different 

configurations, and different poses of the end-effector. 

Design and analysis of the workspace was done by Zi [ 8 ]. He studied a 3 DOF cable mechanism 

that is capable of applying high loads. The introduced mechanism drives a 3 DOF translational 

moving platform using 4 cables.  

Gouttefarde [ 9 ] determined the Wrench-Closure Workplace (WCW) of a 6-DOF parallel 

mechanism. WCW is a set of positions and orientations of the “mobile platform for which the 

cables can balance any external wrench”. However, he only delineated the boundary for a 

“constant-orientation” workspace of the 6DOF mobile platform. 
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Chen [ 10 ] introduced a 3DOF cable-driven mechanism and used a methodology to optimize 

the parameters of its spherical joint. The robot was fixed to the global frame using a spherical 

joint and 4 cables were supposed to drive the moving platform. Chen also found the 

relationship between the cable forces and the pose of the end-effector. 

Hassan [ 11 ] conducted a study on the analysis of the kinematics, workspace, and stiffness of 

cable robot manipulators. The robot was a 2DOF planar cable mechanism driven by eight cables 

with applications in warehousing. The boundaries of the workspace were derived analytically 

and the stiffness of the moving platform was investigated in order to maximize the lowest 

natural frequency. 

Alikhani [ 12 ] presented an analysis of a spatial three DOF cable-driven robot which eliminates 

the rotational motion, “leaving the moving platform with three translational motions.” He 

found the geometrical description of the workspace boundary. He proposed a set of conditions 

on the geometry of the mechanism to form the workspace as a well-defined convex 

polyhedron. The same author [ 13 ] later designed the proposed mechanism. He used the 

geometry approach for synthesis of the robot, such that the end-effector is able to apply the 

desired moments and forces. The shape of the end-effector was a polyhedron. He also 

presented a fabricated prototype of the robot while considering the limitations of 

manufacturing. 

Oftadeh [ 14 ] investigated the Forward Kinematics (FK) of a planar cable-driven mechanism 

compared to conventional rigid-link robots. He used the tension forces of cables as “extra 

sensory data” to propose a simplified analytical solution of FK. He claimed that his method 

“provides the sufficient performance” and “significantly reduces the process time compared to 

a similar method.”  

Du [ 15 ] studied the forward kinematics of a large-span cable mechanism which has 

applications in radio telescope systems. He assumed that the end-effector moves slowly and 

that the dynamic effects are negligible. He also considered the cable sag effect to develop the 

Jacobian matrix. Furthermore, he presented numerical examples of his method to verify its 

accuracy. 

Pham [ 16 ] analyzed the workspace of a fully restrained robot by introducing Tension Factor 

(TF). TF reflects the distribution of tension forces amongst all the cables and can be “an 

appropriate measure to evaluate the quality of tension restraint” for cable-driven robots. Later, 

Zhang [ 17 ] analyzed the WCW of a 6DOF cable-robot driven by 8 cables and showed a relation 

between the WCW and the dimension of the robot. 

Lim, W.B. [ 18 ] introduced “a sufficient and necessary tension-closure condition.” He proved 

that his method is sufficiently general to ensure the tensionability of a cable-driven mechanism. 



Page | 3 

He then proposed an algorithm which is “computationally efficient” for pose analysis of a cable 

mechanism. The algorithm only needs to resolve a set of “deterministic linear equations.” 

Hernandez-Martinez [ 19 ] introduced a measuring cable-driven robot called Milli-Cassino 

Tracking System (Milli-CaTraSys). He proposed an error estimation procedure to determine the 

impact of the error effect on the position and orientation of the end-effector. Moreover, he 

compared the results of simulation and the experimental tests “to show the feasibility and 

practical efficiency of a Milli-CaTraSys prototype”. 

Another topic of workspace analysis which has become of interest to researchers in recent 

years is the Wrench Feasible Workspace analysis (WFW) [ 20 ]. The WFW of a cable robot is a 

set of positions and orientations (poses) of the end-effector where tensions of the cables 

remain in a specific range of values. The difference between WFW and WCW (Wrench Closure 

Workspace) is in the limitation on the cable forces. In WCW there is no limit on the tensile force 

and the only criteria is to have all the cables taut in the workspace. In other words, a WCW is a 

set of poses where the cables have non-negative tension forces.  

Gouttefarde [ 21 ] gave a review of three useful characterizations of the force-closure 

approach. The force-closure workspace cable robot can generate any wrench on the end-

effector by pulling the cables. He introduced 7 theorems of the mentioned characterizations. 

He used linear algebra to derive some of the proofs and proved the others using fundamental 

properties of polyhedral cones.   

Loloei [ 22 ] analyzed the workspace of cable driven robot based on the “worst external 

wrench” approach. She proposed a new method to verify WFW which is applicable to “to any 

cable manipulators with any redundant cables as long as the Jacobian matrix is full rank.” She 

formulated the WFW in linear matrix inequalities.  

Castelli [ 23 ] analyzed the kinematics of a 3 DOf cable-robot. The robot had 4 actuators and 8 

cables. The cables were arranged in pairs with identical lengths. The purpose of his study was to 

“constrain the moving platform to keep a constant orientation with respect to the fixed frame.” 

He also simulated the robot numerically to investigate the kinetostatics and dynamics of the 

robot for large-scale applications. 

Bouchard [ 24 ] introduced a new general and non-iterative method for the determination of 

the ability of a cable robot to generate a “given set of wrenches in a given pose” in a WFW. The 

cable robot has d DOF (     ). His method is applicable to under-constrained and fully-

constrained cable mechanisms. 

Moreover, Rezazadeh [ 25 ] presented an analytical approach to the problem and set criteria of 

tensionability for multi-body cable mechanisms. He showed that using Lagrange’s method to 
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develop equilibrium equations of a multi-body cable driven mechanism makes the problem 

easier when it comes to the number of equations. For instance, a spatial 2-body cable robot 

that has 3 degrees of freedom will lead to 12 Newtonian equilibrium equations. However, 

Lagrange’s method results in 3 equations which are less complicated and easier to analyze 

compared to a Newton-Euler formulation. 

Synthesis of a cable robot is another topic in this field. Determination of the parameters of a 

mechanism to make it tensionable in a given workspace is found in several works. In 2005 

Fattah [ 26 ] focused on the design of cable-driven robots. He first introduced a method to 

analyze the workspace of a robot. Then he explained how to obtain a region that is reachable 

by a fixed point on the solid body and named it as its workspace. He introduced a method 

which determines a range of parameters to satisfy a set of desired conditions. According to his 

method, the user should grid a range of parameters and for each grid-point the workspace 

would be determined using workspace analysis introduced in his study. At the end, each set of 

parameters which produces the closest workspace to the ideal one would be chosen by the 

user. 

Another study in 2005 was conducted by Merlet [ 27 ]. He introduced a new mathematical 

method to solve a set of equations and inequalities and named it Interval Analysis. This method 

evaluates a range of variables in the equations and inequalities and returns one of the following 

three results:  

1. None of the values in the range of variables satisfies the criterion.  

2. All the conditions hold for all of the points. 

3. Neither! 

In Case (1) the whole range of variables will be removed, Case (2) proves that this range of 

variables satisfies the conditions, and the most important case is the last one, which leads to a 

bisection. This procedure continues and fillls all the boxes that have been approved or bisected 

by the procedure until the widths of all the boxes that have to be bisected become less than the 

error value, so they would be removed. At the end there will be some boxes remaining in the 

list that have been approved by the procedure. The final answer is some ranges of variables 

which are the solutions of equations and equalities.  

In 2008 Goutterfarde, M. [ 28 ] used Interval Analysis efficiently and applied it to the design of a 

simple cable-driven robot. The planar robot was attached to four cables and it was assumed to 

have a rectangular shape. The length and width of the moving platform were taken as design 

parameters. Furthermore, he planned to gain the appropriate workspace with desired ranges of 

tensile force in cables and external wrenches on the moving plate. Using Interval Analysis, he 

solved the design problem and obtained a set of parameters that satisfied the conditions. 
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Xu [ 29 ] investigated the design and workspace optimization of a 6 DOF moving platform driven 

by 6 cables. He optimized the workspace of the moving platform based on the Jacobian matrix 

and shape of the moving platform.  

Zanotto [ 30 ] introduced a set of indices that can be used for design optimization and 

performance analysis of the cable robots. He carried out a comparison of three cable robots on 

the kinematics and dynamics and showed the functionality of the introduced indices. The 

indices were “Power Dissipation Index”, “Dexterity Index”, and “Inertial Isotropy Index”. 

Yao [ 31 ] designed and optimized a 4-cable-driven mechanism to meet the requirements in 

terms of cable tension and end-effector stiffness. He took the cable stiffness into account when 

deriving the equilibrium equations. To obtain the end-effector stiffness, he presented a 

practical stiffness analysis method.  

Juhui [ 32 ] designed a 4-cable-driven robot for rehabilitation. The robot consists of 4 cables and 

a rigid body which is smoothly fabricated for safety of the patient. He simulated the operation 

of the robot using MATLAB and showed that the presented robot is operable. 

 

1.2 Problem Statement 

The aim of this study is to synthesize and control a cable-driven rehabilitation mechanism. The 

mechanism is supposed to learn a motion from the therapist and then repeat it a specific 

number of times. Physical therapy as a field of rehabilitation medicine requires complex 

motions, which in turn demand skilled personnel, complex machines, a complex robot, or 

several cooperating robots. Thus, we require a mechanism which is able to do a motion with 

even more than 6 degrees of freedom. Moreover, we desire a multi-functional robot which is 

not specifically designed for one limb. Even for a specific limb, there would be different sizes for 

different patients. Therefore, a reconfigurable robot is required so that the therapist can easily 

switch to an appropriate configuration. Furthermore, cost-effectiveness and simplicity are 

always concerns in the design and synthesis of a mechanism. 

Eventually, a mechanism which is actuated by some cables was chosen for the following 

reasons:  

 A cable-driven mechanism can be easily reconfigured simply by changing the position 

actuators.  

 Using a cable mechanism, the therapist is able to teach complex motions, which are 

desired as previously mentioned. By using at least one more motor than the number of 

degrees of freedom, the mechanism can do the desired task. 
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 Since a cable-driven mechanism has cables instead of rigid links, the energy needed for 

each motion is much lower than conventional rigid-link robots.  

 The cost of fabrication of rigid links is much higher than using cables.  

 The kinetic energy that is stored in the inertia of the rigid links is potentially harmful to 

the patient. 

The cable robot introduced in this chapter and used in this research is a multi-body mechanism 

with a maximum of 8 actuators, cables, a frame and a brace that the patient wears. The 

hardware of the robot was 80% built when this thesis started. During the course of the 

research, the remaining components were fabricated and installed. 

Figure below shows the schematic view of the studied cable robot.  

 

Figure ‎1-1 – Schematic view of the robot 

As shown in the above figure, the core concept of the proposed robot is a cubic frame which 

was fabricated and the actuators were installed on the frame. Thus, the actuators can easily be 

fixed onto every point of the frame. The patient is placed in the frame wearing a brace, and the 

cables are connected to points on the brace. The actuators apply tensile forces on the cables 

and the cables drive the patient’s limbs according to a desired trajectory. 

In this research, synthesis, parameter identification, and control of such a robot were studied. 

Each chapter will be deals with one of these subjects. This study will not address the learning of 

a motion from the therapist; rather the goal of the control chapter is to track a given trajectory 

in a way that is comfortable and safe for the patient.  

The synthesis chapter will go through the concepts and definitions of tensionability and the 

criteria for the tensionability of multi-body cable-driven robots. Then, an algorithm that 
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synthesizes a multi-body cable-driven mechanism for a desired workspace will be introduced. 

Also, an approach for optimizing the performance of a cable-driven mechanism will be 

addressed. The last part of the chapter will verify the presented material with a case study. 

The next chapter considers the identification of the parameters of the mechanism of interest. 

Since the actual values of the parameters are not exactly the same as the resultant values of 

the synthesis, it is necessary to find the actual values of the parameters. The mathematics and 

geometry of the mechanism will be presented. At the end of this chapter, the estimation 

introduced method will be verified via a known and accurate method. 

The control chapter of this study addresses the basic concept of impedance control. An 

implementation of impedance control on a multi-body cable robot is described; and a shoulder 

rehabilitation mechanism will be simulated using MATLAB SimuLink as a case. The thesis 

concludes with a summary of contributions and recommendations for future work. 
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2 Kinematics Synthesis 

The goal of this chapter is to synthesize the cable-driven mechanism introduced in the last 

chapter for physical therapy applications. The components of the mechanism are introduced 

and the procedure of synthesis is explained in the following section. This chapter will go 

through the details of an algorithm that returns a specific configuration of a robot such that it 

operates in a desired workspace.  The algorithm takes the workspace and all possible 

configurations and calculates a set of parameters as the final configuration.  

It should be noted that not all the parameters are meant to be obtained from the synthesis 

procedure, due to the nature of the introduced mechanism. Some parameters remain constant 

throughout the design process. However, the other parameters (positions of actuators) satisfy 

the goal of the synthesis, which is to find a configuration which allows the robot to provide the 

given workspace with acceptable accuracy. 

The mechanism is designed for the rehabilitation of an arm consisting of shoulder and elbow. 

The arm model is presented and the fabricated model is shown. In addition, there is a frame 

upon which the actuators are installed.  

After the mechanism introduction, some concepts and definitions for cable robots are 

discussed and some equations are noted to develop the synthesis criteria. It should be 

mentioned that the synthesis criteria which is used in this study is taken from a published study 

in the field of multi-body cable-driven robots [ 25 ]. 

According to the derived equations and mentioned criteria an algorithm was developed and is 

introduced in this study. Furthermore, a method of optimization is presented which uses a cost 

function to optimize the design. 

At the end of this chapter, the algorithm is implemented on the introduced mechanism. 

Moreover, a case study is considered for this chapter: a practical mechanism which has been 

fabricated and assembled by following the directions of this study. The final design 

specifications are also presented.  

2.1 The Robotic Setup 

The robotic setup of this study consists of a model arm, 5 actuators, a frame that the actuators 

have been installed on, and 5 cables that were attached to the arm at one end and wound 

around the actuator spools at the other end. 

The model of the arm that has been considered for this study is shown below. 
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Figure ‎2-1 – Model of the arm 

As is shown in Figure ‎2-1, the arm has 4 degrees of freedom, 3 of them belonging to the 

shoulder and the other one to the elbow. The arrows show the direction of rotation for each 

joint. Each body of the arm is a cylinder with a radius of 2.54 cm. 

A fabricated model of the arm is shown in Figure ‎2-2. 
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Figure ‎2-2 – Fabricated model of arm 

The arm is fixed to a beam in the middle of the frame. Dimensions and specifications of the arm 

will be explained in the case study section. 

Figure ‎2-3 shows all the components together in one figure. The arm is fixed through the 

spherical joint in the reference frame. The coordinate system is depicted as well. It should be 

mentioned that the center point of the spherical joint is assumed to be the origin of the main 

coordinate frame. Therefore, all the coordinates in the global frame should be noted with 

respect to this point. It will be used frequently in the parameter identification in chapter ‎3. 
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Figure ‎2-3 – Schematic view of the studied mechanism 

The actuators apply tensile force on the cables and consequently the arm either stays in its 

position or moves around. The very first concern is how to determine the parameters of the 

system. There are two types of parameters and each has to be investigated individually. First, 

there are parameters for arm specifications such as length of each part and position of points 

that the cables are attached to. The other parameters are the positions of actuators. Since the 

patient is supposed to wear a brace and the cables are connected to particular points on it, 

there are not many choices when deciding the position of such parameters. As a result, in this 

study the first types of parameters are assumed to be known and constant. Based on this 

assumption the synthesis would be mainly about finding the exact position of the actuators. 

Therefore, the term “Design Parameters” refers to the second type, the position of the 

actuators. 

Figure ‎2-4 shows the fabricated frame. 
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Figure ‎2-4 – Fabricated mechanism and actuators 

The whole mechanism is a multi-body cable-driven system. In this study, the shoulder and 

elbow are modeled with spherical and revolute joints, respectively. Therefore, the considered 

model has 4 degrees of freedom. According to [ 2 ], at least        actuators should be 

attached to an      degrees of freedom cable-driven mechanism to provide tensionability; that 

is any motion on the arm can be generated while maintaining tensile force in all cables. Since 

the arm has 4 DoF, a minimum of 5 actuated cables are needed to fulfill the tensionability 

requirement. It should be mentioned that the definition and concept of tensionability will be 

discussed in the next section. To calculate the number of cables for each link, the same criteria 

can be used. The first link has 6 DoF, as a rigid body, and is over-constrained because of the two 

mentioned joints next to it. The spherical joint has 3 translational constraints and the revolute 

join provides 2 rotational relative constraints as well as 3 translational relative constraints. 

Therefore, it would not need any cable essentially, but the other link has only 5 constraints 

(because of the revolute joint) which means at least 2 cables should be attached to fully 

constrain it. The table below briefly shows all the above statements.  
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Table ‎2-1 – Link and Minimum Number of Cables 

Name DoF Constraints Min. Number of Cables 

Link 1 6 Over-Constrained 0 

Link 2 6 5 2 

Whole Mechanism 12 8 5 

 

2.2 Tensionability and Design 

As was mentioned at the beginning of this chapter, the goal is to determine the parameters of 

the system in a way that the given workspace is covered. In other words, designing a robot 

which spans a given workspace is desired.  The algorithm which is proposed in this section 

includes three main parts; and, by following them, one would obtain a desired set of 

parameters. Before going through the details of those three parts, it is necessary to describe 

the problem in engineering terms. 

 Like every other engineering design problem, we have a variety of choices and 

requirements. The problem is how to find one design amongst many possibilities to produce a 

robot that meets the requirements.  

 The option is a range of design parameters and the requirement is the workspace that 

has to be covered. The answer would be a set of values for the design parameters that 

corresponds to a unique cable-driven robot. The obtained robot is supposed to be working 

within the given workspace. Therefore, the mentioned code would have two inputs; range of 

design parameters and desired workspace. Moreover, the output would be a set of design 

parameters. Figure ‎2-5 illustrates how the design optimization code is supposed to work. 

 

 

Figure ‎2-5 - Scheme of the synthesis problem 

Before dealing with the synthesis problem some definitions and concepts need to be discussed. 

Tensionability is the most important subject in cable-driven robotics because in these systems, 

cables can only afford tensile force. In other words, compression in cables leads to buckling. For 
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example, in the figure below, it is impossible to move the grey point in any desired direction - 

without existence of a third motor.  

 

Figure ‎2-6 – A system with three cables 

The above figure shows that for a 2 DoF motion in the plane, three cables are needed. From the 

literature [ 2 ] it is known that for an     system, there should be       cables (actuators). 

In order to investigate the tensionability of cable-driven mechanisms mathematically, we need 

an analytical description of this property. This description can be found in the equilibrium 

equations of the system.  

Figure ‎2-7 shows the schematics of a rigid body cable-driven mechanism of m cables in general. 

 

Figure ‎2-7 – Schematics of a rigid body cable-driven mechanism 

T1 

T2 

Motor 1 

Motor 2 

T3 

Motor 3 
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For the above system one can write Newton's equilibrium equations as 

     (‎2-1) 

where   is a     -by-m matrix,   is a vector of tensile forces in cables and   is the resultant 

vector of external forces and constraints:  

         
       

                
  

 

(‎2-2) 

                
 

(‎2-3) 

where    is a unit vector in the direction of the     cable pointing to the actuator,    is the 

corresponding moment arm, and      is 3 for planar and 6 for spatial systems in single-body 

cable-driven mechanisms. 

In order for equation (‎2-1) to have at least one solution for an arbitrary loading, matrix   

should be full-rank. In other words,   should be equal or greater than     . 

From linear algebra, if matrix A  is full-row rank, the solution of equation (‎2-1) is: 

                
 

(‎2-4) 

where    is the transpose of  ,   is the null vector of    and   is an arbitrary real value.  If   is 

a square full-rank matrix, then the solution of   is unique and depends on  . Therefore, there is 

no guarantee that all the components of   are positive, i.e. have tension in all cables. It can be 

concluded that we need at least        cables to ensure all the cables are in tension.  

In order have all components of   with positive signs, we need to ensure all components of   

are of the same sign. If this condition is met then one can make the signs of all elements of    

positive by assuming a sufficiently large value for    with appropriate signs. Therefore, the 

second term of the right-hand side becomes a vector with large enough positive components 

and that cancels the effect of the first term. 

The above statements can be summarized as follows: for a cable-driven mechanism to be  

tensionable, 

1.   should be full-rank (and) 

2. Null vector of   should have all the components of the same sign. 

Therefore, the two mentioned criteria should hold to have a cable-driven robot tensionable in a 

specific position since matrix   depends on the position of the rigid body. At first, the 

coefficients matrix should have a rank of      (which is the number of rows) and second, the 

null vector of this matrix has to have nonzero and same sign components.  
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If the cable-driven mechanism is not a single rigid body and consists of several links, the internal 

forces at the joints will show up in the equilibrium equations. Consequently, the equations 

become more complicated and the size of matrix    would increase. For instance, for a 4 link 

spatial mechanism, matrix   has 24 rows and at least 25 columns. The large size of the matrix is 

due to the existence of the internal unknown forces. To address this problem, another method 

of formulating the equilibrium should be used. 

For serial multi-body mechanisms, using Lagrange’s approach and generalized force notation 

reduces the complexity of the equilibrium equation by eliminating the internal forces 

corresponding to interaction of bodies.  

In Lagrange’s [ 33 ] method, a set of coordinates called generalized coordinates are defined 

such that the Lagrangian equation (‎2-5) can be analytically expressed in terms of them. If the 

number of such coordinate variables is equal to the number of degrees of freedom, they are 

said to form a minimum coordinate set and the dynamics of the system can be expressed only 

by     differential equations in Lagrange’s equation: 

      

 
(‎2-5) 

 

  
 
  

    
  

  

   
                 

 
(‎2-6) 

where L , T , and V  are the Lagrangian, kinetic energy, and potential energy, respectively. Also, 

   and     are the     generalized coordinate and force. 

In the case of a cable mechanism, the right-hand side of Lagrange’s equation can be divided 

into two parts as shown below: 

           (‎2-7) 

where     represents all the cable forces/moments and    expresses all the other generalized 

forces/moments. By taking     to the left-hand side of equation (‎2-7) and substituting    from 

equation (‎2-6), one can rewrite equation (‎2-7) as shown below. 

 

  
 
  

    
  

  

   
         (‎2-8) 

According to Lagrange’s method, one can write     in terms of the cables forces. 

            
   

   
  

 

   

      
   
   

      
   
   

   

  
 
  

  (‎2-9) 
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where     is a unit vector that lies on the direction of     cable and points to the fixed end of it, 

and    is the position where the cable is attached to the arm. 

Therefore, for all the generalized coordinates the equation (‎2-9) can be written as shown 

below: 

 

   

 
      

  

 
 
 
 
 
     

   
   

      
   
   

 

   

    
   

      

      
   

      

 
 
 
 
 
 
 

 

  
 
  

  (‎2-10) 

 

Again, one can write the equations of the system in the form of equation (‎2-1) but this time the 

number of rows for matrix   equals the number of degrees of freedom. Therefore, the solution 

for that equation would be the in form of equations (‎2-4) if the matrix   is full-row rank. It is 

obvious that the method of formulating the equilibrium does not make any difference in the 

conditions of tensionability, although it may make it easier to verify.  Now equation (‎2-10) can 

be written in the following way:  

        (‎2-11) 

Where    is a vector of tensile forces and    is the coefficient matrix of       -by-(at 

least       ). Also,    is a vector consisting of the left-hand side of equation (‎2-8).  

In fact, Equation (‎2-11) is the matrix form of equilibrium equations of the system. If a system 

has      degrees of freedom and   cables (   ) then the coefficient matrix is as follows: 

         

 
 
 
 
 
     

   
   

      
   
   

 

   

    
   

      

      
   

      

 
 
 
 
 
 
 

 

 

(‎2-12) 

Now, one can easily find out if a cable mechanism is tensionable in a specific position simply by 

evaluating matrix   . Also, the mentioned matrix consists of   ’s,   ’s, and   ’s. Furthermore, 

both    and    are in terms of some parameters (lengths) and    (generalized coordinate). In 

other words,    is in terms of   ’s and that means the tensionability only depends on the 

position of a cable mechanism. The same criteria are used for matrix     to check the 

tensionability of a mechanism: 

1.    should be full-rank (and) 

2. Null vector of    should have all components of the same sign. 
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Note that due to elimination of internal forces, the size of matrix    has reduced significantly. 

For instance, in a 4 link serial spatial mechanism size of matrix    is 4 rows and at least 5 

columns which makes the calculation easier than using Newton’s method, which returns a 

matrix of 24 rows and at least 25 columns for the same mechanism. 

2.3 Workspace Evaluation and Design Algorithm 

Assume we have a desired work space and we want to see if a particular design of the robot is 

tensionable in each single point of that workspace.  Assume that a workspace is given in the 

form of Cartesian coordinates and the task is checking tensionability of the robot in the desired 

region. Since the mentioned criteria could be only applied for a specific point, it is hardly 

possible to check the tensionability of a given workspace in analytical form. 

One solution is to check the tensionability numerically. In order to do that, the first step is to 

grid the given space (region) and check each grid point with the tensionability criteria. It is 

obvious that accuracy of results depends on grid step size. For example, if the grid points are 

too far away from each other and a non-tensionable region exists between two grid points, 

then the result will not show any non-tensionability although the given workspace is not 

tensionable. Figure ‎2-8 illustrates how it may happen. 

 

Figure ‎2-8 – Existence of non-tensionable region between grid points 

As depicted in Figure ‎2-8, the non-tensionable area is located between the grid points; and by 

applying the tensionability criteria one would find the workspace tensionable. 

The problem becomes even harder when the system has more than one body. It is hard to 

check the tensionability analytically because of nonlinear terms. Most of the time, the given 

workspace of a multi-body mechanism is described using a joint coordinate system. Therefore, 

checking the tensionability conditions for a given space of joint coordinates makes sense. One 

Step Size 

Non-Tensionable 

Region 
Grid Point Grid Point 
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can grid the joint coordinates space into a finite number of points and check the tensionability 

criterions for each grid point.  

For example, consider the case shown in Figure ‎2-9. For the mentioned case, there are two joint 

variables (   and   ) and the given workspace is given in the space of those two. The figure 

below shows how the workspace, which lies in the space of the joint variables, can be reduced 

to a finite number of grid points. 

 

Figure ‎2-9 - Workspace that lies in space of joint variables 

The method that is used in this study for evaluating a given workspace is explained in Figure 

‎2-10. 



Page | 20 

 

Figure ‎2-10 – Algorithm of evaluating a given workspace 

As shown in figure above, the first step is to mesh the given workspace. The user specifies a 

step size for each coordinate variable and based on the value of the step sizes, the workspace 

will be meshed into a specific number of nodes. Assume that the workspace is given as below: 

              
       

         
           

      
         

  

or 

       
      

             
         

   

(‎2-13) 
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where   ’s are the generalized coordinates (and also, joint variables).      
’s and      

’s are 

minimum and maximum values of the joint variables.  Equation (‎2-13) says that the given 

workspace has      dimensions. 

By assuming    as the step size of the     variable (  ), the meshed version of a given work 

space can be described as shown below: 

       
      

        
          

              
             

         
           

   

 

(‎2-14) 

where the    
 is the     grid point of     variable and its value can be obtained using the 

following equation: 

     
 =       (‎2-15) 

Equation (‎2-14) represents a finite space of      dimensions that has step-sizes of equal size 

for each dimension. 

Having the workspace meshed, the algorithm picks the grid points one by one and in a specific 

order, while evaluating them using tensionability criteria. Once one grid-point fails in the 

evaluation, the algorithm returns the workspace as non-tensionable. If, and only if, all the grid 

points hold the criteria, then the given workspace is labeled as tensionable. This means that the 

mechanism can span the workspace and the accuracy of the result depends on the value of the 

step-size as previously mentioned. The stated process is shown in Figure ‎2-10. 

By now, we know how to evaluate a desired workspace using the criteria, but the main problem 

is to develop an algorithm which synthesizes a mechanism that is tensionable in a desired 

workspace. Note that the term “synthesis” here means to find the position of actuators since 

the configurable parts of the cable mechanism are actuator positions 

To do so, one can pick a feasible arbitrary configuration of actuators and check the 

tensionability of the mechanism in the desired workspace, using the method described in the 

previous section. In order to check all the possible configurations of the actuators for 

tensionability and find the best one, it would be better to define a space of the actuator 

positions, which is noted as “Design Parameters Space,” and mesh that space using a preset 

step-size value. The dimension of the Design Parameters Space depends on the number of 

actuators and the type of mechanism. For instance, an      spatial mechanism has    at least 

         dimensions of Design Parameters Space, since each actuator has   coordinate 

parameters (x, y, and z). Again, the accuracy of the results would depend on the values of the 

step-sizes. Since the position of actuators are defined in the Cartesian coordinates the 

dimension of the Design Parameters Space is           .  
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Each actuator’s space can be described by the allowed ranges of its Cartesian coordinates as 

shown below. 

          
      

        
      

        
      

   

 

(‎2-16) 

   is space of possible positions of     actuator.  

Having the Design Parameters Space and appropriate step-size, one can mesh it as was done for 

the workspace. Assuming that the step-size for the x-coordinate, y-coordinate, and z-coordinate 

of     actuator are    
,    

, and    
 respectively, each actuator’s meshed space is shown below. 

                                                               (‎2-17) 

where the values of   ,   , and    can be obtained from the following equations. 

     
 =        

 

     
 =        

 

     
 =        

 

 

(‎2-18) 

Having all    , one can simply write a larger space which is the meshed version of Design 

Parameters space. According to Equations (‎2-16), (‎2-17), and (‎2-18) the meshed Design 

Parameters Space can be described as shown below. 

             
  (‎2-19) 

An algorithm was developed to let the user synthesize appropriate design parameters for a 

given workspace. The algorithm first meshes the given workspace as in equation (‎2-14) and 

Design Parameters Space based on equation (‎2-19). Then it picks a set of design parameters, 

based on a specific order, from the meshed space and evaluates the given workspace as was 

shown in Figure ‎2-10. If the workspace is tensionable for the set of design parameters, it will 

flag it as a solution to the synthesis problem; otherwise the algorithm ignores it. Regardless of 

whether the set of design parameters is flagged as a solution or not, the algorithm goes to the 

next cycle and does the same for all the grid points of the meshed Design Parameters Space. 

After the algorithm is done with all the grid points, it will print out all the flagged solutions, if 

there is any. 

The figure below depicts the flowchart of synthesis algorithm. 
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Figure ‎2-11 – Synthesis flowchart 

2.4 Design Optimization 

Now we have several solutions, each of which recommends a set of design parameters or in 

other words, a particular configuration for the mechanism. The problem is how to pick the best 

or the one that is most feasible to the user’s need. In order to have the best solution, a criterion 

should be set and a cost function has to be introduced; the solution that has the minimum 

value of cost function would then be the final answer. 
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In this study, the solution that has the minimum variance of components of vector  , according 

to equation (‎2-4), was chosen. In other words, the objective function is the variance of  ’s 

components. The reason is explained in the next paragraphs. 

According to equation (‎2-1), the null vector of matrix  , which is named as   , is a part of 

solution of   for the same equation. Therefore, components of   represent the pattern of 

tensile forces in cables that are used to increase all cable force to positive values. Moreover, it 

is desired to have magnitudes of forces with low variance so the actuators’ working condition 

will be close to each other. 

Also, to obtain more accurate results, one can fine tune the selected solution of the last step. 

To do so, one can find the best set of obtained solutions by evaluating all of them using the 

mentioned criterion and then try to go in the opposite direction of the cost function’s gradient. 

In other words, having the best obtained solution, one can likely find a better solution to the 

problem near to the resultant grid point, in the Design Parameter Space. The gradient of the 

cost function would guide us to a point in the space which has a smaller cost function than the 

grid point does. It should be noted that this method does not guarantee to achieve the optimal 

solution but it reduces the chance of being trapped in local minima points. 

Figure ‎2-12 shows a two dimensional Design Parameter Space. The circles represent the grid 

points that are flagged as solutions and the dotted lines depict the direction of gradients. The 

red circle is the set of design parameters that has a minimum cost value amongst the others 

and the red line shows the gradient line that passes through it. It shows how the previously 

described method works. 

 

Figure ‎2-12 – Meshed Design Parameter Space of a simple mechanism 
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One may ask why the Design Parameter Space has been meshed since the gradient line would 

be enough to find the best solution. Theoretically, the answer is yes, but when it comes to 

practical cases, following the gradient lines based on a nonlinear cost function may cause the 

search to be trapped in a local minima. There are many points in the Design Parameter Space 

that the cost function has the minimum value compared with the points around it. In other 

words, the gradient approaches zero value at these points, but they do not have essentially the 

absolute minimum value of the cost function. The goal is to find the point that has the lowest 

value of cost function amongst all other points in the Design Parameter Space.  

In this method, meshing and taking the best grid point, by evaluating all the grid points in 

objective function, gives a point that is close enough to the minimum point, which can be used 

as the initial point of the optimization process. Again, the accuracy of this method depends on 

value of step-size. 

2.5 Implementation of Mentioned Synthesis Method on the Robot 

By now, all the materials that are needed for the synthesis of the mechanism have been 

collected and developed. The next step is to implement those materials on the rehabilitation 

mechanism. According to the previous section the first step is to obtain matrix    based on 

equation (‎2-12).  

However, one needs to determine the positions of the points on the arm that the cables are 

attached to. In other words,   ’s and   ’s are needed in terms of   ’s. The model of the arm 

shown in Figure ‎2-1 is expanded and shown in the figure below. 

 

 

Figure ‎2-13 – Expanded arm model 
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The above figure shows how the spherical joint is expanded to three revolute joints, in  three 

perpendicular directions. In order to obtain the same results as the original arm model, the 

distance between those three joints (shoulder) is set to zero in the equations. The length of the 

two parts of the arm are    and   . 

Having the simplified model of the arm, one can write the homogenous transformation matrix 

that returns each point on the arm in the global frame. It should be noted that the center of the 

spherical joint is assumed to be the origin of the global frame. 

Two transformation matrices have to be obtained in order to find the local position of a point 

on the arm in the reference frame. Each transformation matrix gives the position of the local 

point in the specific reference frame. The equation below shows how the transfer matrices 

work. 

  
    

   
  (‎2-20) 

The transformation matrix   
  converts vector   

  to   
 . In general form,   

  is a vector with 

respect to frame  , expressed in frame  . In other words, the transformation matrix converts a 

vector which is with respect to frame   and expressed in frame  , to a vector that is with 

respect to the frame   and expressed in frame  . 

The figure below shows the above concept. 

 

Figure ‎2-14 – Schematic view of vector definition 
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Each transformation matrix contains two parts of rotation and translation. The equation below 

shows a transformation matrix in general form. 

    
        

    
  (‎2-21) 

The dimension of a transformation matrix is 4-by-4.      is the rotation matrix and      is the 

translation vector. 

According to Figure ‎2-13, the reference frame of the arm’s first link is located at the center 

point of the spherical joint; therefore the first transformation matrix only involves rotation. The 

equation below shows the transformation matrix of the first part. 

  
   

    
    

    

 
 
 

    

  

(‎2-22) 

where     is a transformation matrix in general that only involves a rotation with an angle of   

occurred about the   axis. 

The transformation matrix of the second part includes translation as well, since the reference 

frame is located at the elbow. The magnitude of translation is equal to   . The equation below 

shows the second transformation matrix. 

  
   

        

    
  

    

 
 
 

    

  

(‎2-23) 

where     
 is a transformation matrix which only involves translation with magnitude of    

along   direction. 

It should be noted that transformation matrix    
  transfers a point in the reference frame 4 to 

reference frame 3. However, by multiplying the second transformation matrix by the first 

transformation matrix, the result is a new transformation matrix that returns the point directly 

in the global frame (  
 ). The equation below shows how the new transfer function is derived. 

  
    

   
  (‎2-24) 

By now, one can determine a point expressed and located on each part of the arm in the global 

frame according to Figure ‎2-13. 

According to   
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Table ‎2-1, the mechanism has to have at least 5 actuators and at least 2 of them have to 

actuate the second part of the arm. The model which was assumed for this study is to attach 2 

cables to the first part and the rest (3) of them attached to the second body. This is also shown 

in Figure ‎2-3. 

The position of each point on the arm is determined as shown in Table ‎2-2. It should be noted 

that the position of each point is expressed in the link reference frame. Also, as was previously 

mentioned, each body is a cylinder with a radius of 2 cm. Therefore, the position of each point 

is described in cylindrical coordinates with respect to the local frame. 

Table ‎2-2 – Local position of cable points on the arm in cylindrical coordinate system 

                

Length   (mm) 24 27.5 5 8 26 

Angle   (deg)               

 

The points    and     are located on the first body and the other points are located on the second 

body. 

The position of each point in its local reference frame is according to equation below. 

                  (‎2-25) 

Therefore, if the point is located on the first body, the position in the global frame can be 

obtained from: 

  
    

   
  (‎2-26) 

Similarly, for the second body 

  
    

   
  (‎2-27) 

The resultant point is     according to equation (‎2-9).  The    are found from: 

   
    

    

     
    

 
(‎2-28) 

Having all    and   , one can easily find matrix  . It should be noted that the joint variables 

which were noted as    previously are shown as    in Figure ‎2-13. MATLAB code was developed 

to derive the components of matrix  . All the vectors are ewith respect to and expressed in the 

global coordinate system. 
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Now, a workspace has to be defined for the robot that is suitable for rehabilitation. The 

workspace that was considered for this study is shown in the table below. It should be noted 

that the workspace is given in joint variables and since they are angles of rotations, their units 

are in degrees.  
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Table ‎2-3 – Workspace of the rehabilitation mechanism 

             

Minimum Value 
(deg) 

-20 -20 0 0 

Maximum Value 
(deg) 

20 0 20 90 

 

The above table describes the workspace in the joint variables, so according to the “workspace 

tensionability” section, one can evaluate the tensionability of the given workspace using the 

algorithm shown in Figure ‎2-10. 

The last step is to define a space for the positioning of each actuator and eventually Design 

Parameter Space. Figure ‎2-15 shows the possible positions of each actuator based on Figure 

‎2-4. The dark areas are the regions considered for each actuator. 

 

Figure ‎2-15 – Considered region as the Design Parameters Space 

According to Figure ‎2-15, the shaded areas were chosen as the Design Parameters space. The 

reason for only choosing a part of each plane is the location of the beam that holds the arm. If 

the actuators were placed somewhere other than the shaded area on the planes, there would 

likely be interference between the cables and the beam. 
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Also, the actuator can only move within the planes. This means each actuator only has two 

adjustable parameters. For instance, the actuator that is placed on the front plane, has its y-

coordinate fixed, so only x, z-coordinates are design parameters. 

The table below determines the numbering of actuators and their design parameters based on 

their planes. 

Table ‎2-4 – Actuators and their design parameters 

Actuator Plane Fixed component Design Parameters 

2 Front         

3 Top         

4 Right         

6 Bottom         

7 Back         

 

According to the table above, there are 10 design parameters. Therefore, the dimension of the 

Design Parameter Space is 10. The table below shows the range of each dimension of the 

Design Parameter Space. All the dimensions are in millimeters. 

Table ‎2-5 – Design Parameters Space 

                               
Min. 
(mm) 

-400 -600 -600 -600 -400 -600 -600 -600 -400 -600 

Max. 
(mm) 

400 100 600 0 1000 600 600 0 400 100 

   

Also, the value of the fixed component for each actuator is listed in the table below. 

Table ‎2-6 – constant component of each actuator 

 Actuator 2 Actuator 3 Actuator 4 Actuator 6 Actuator 7 

Fixed 
Component 
Value (mm) 

   -897    -592    -792                

 

Having the desired workspace and Design Parameter Space, one only needs to determine the 

step-sizes for both, to be able to implement the synthesis algorithm. 
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The step-sizes considered for workspace and Design Parameter Space were     
           

 
  

and           respectively. 

2.6 Results of the Synthesis Optimization 

MATLAB code was developed based on the algorithm introduced in Figure ‎2-11. There are three 

separate functions for each part. The first evaluates tensionability of a single point in the work 

space. The second checks the tensionability of a given workspace by testing all grid points of 

the workspace using the first function. The last finds those set of parameters that make the 

mechanism tensionable for the desired workspace. The third function uses the second one for 

each grid point of the Design Parameter space.  

The code was run for the input data presented in Table ‎2-3 and Table ‎2-4. All feasible 

configurations for the robot were found. However, the best one is yet to be  chosen which has 

the best performance.  

As previously stated, the best solution is the one that has the minimum variance in the 

components of  .   is the null vector of matrix  . It was discussed in the previous section as to 

why the cost function was chosen as the variance of  . 

The solution that has the minimum value of the cost function was set as the initial point of the 

gradient-based minimization process. That set of the design parameters that correspond to the 

minimum cost function is shown in the table below. 

Table ‎2-7 – The grid point that has the minimum value of cost function amongst all the grid 
points 

Param.                               
Value 
(cm) 

0 15 -40 0 60 40 -40 0 -40 0 

 

According to Figure ‎2-12, the grid point that should be set as the initial point of optimization 

has already been found and mentioned in Table ‎2-7. This point was considered for the initial 

point of the gradient-based optimization. The gradient vector guides the optimization towards 

the point which has probably the minimum value within the Design Parameter Space. A 

MATLAB code was developed that takes the initial point of the optimization and the boundary 

of space as well. It returns the point that has the minimum value for a specific function. The 

resultant point is shown in table below.  
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Table ‎2-8 – The point that has minimum cost function value inside the Design Parameter Space  

Param.                               
Value 
(cm) 

25.65 14.94 -31.51 -0.06 -11.00 59.96 -39.95 10.00 -42.88 0 

 

According to Table ‎2-8 and Table ‎2-6, the final positions of the actuators are determined as: 

Actuator Number Position (cm) 

2 [ 25.65,-89.70,14.94] 

3 [-59.20 -31.51 -0.06] 

4 [-11.00 59.96 -79.20] 

6 [89.70 -39.95 10.00] 

7 [120.70 -42.88  0] 

 

Having the position of all the actuators they were installed on the frame. However, the real 

positions of the actuators after the installation are not exactly the same as the theoretical 

values. Therefore, the actual positions of the actuators need to be identified using a method 

that is explained in the next chapter. 

  



Page | 34 

3 Kinematic Modeling and Parameter Identification 

Since the fabricated mechanical parts and their assemblies do not have necessarily exactly the 

same dimensions as what are specified in drawings, every robotic system needs to undergo 

parameter identification or calibration. Although all the parameters of the system are already 

determined according to the design procedure detailed in chapter ‎2, in the real world, the 

outputs of the system depend on the real values of the parameters of the system, such as 

positions and lengths of the mechanical parts. 

3.1 Introduction 

As mentioned before, the main goal of this study is to present a reconfigurable rehabilitation 

mechanism. Since different rehabilitation tasks are to be performed on patients, the 

mechanism has to be reconfigured by relocating its cable actuators such that the new desired 

workspace is provided. After this relocation is done, the accurate positions of the cable 

actuators need to be identified (i.e., the kinematic model is calibrated).  

It is assumed that the radii of pulleys are known. Also, the sensors do not have any nonlinearity. 

The potential problem of the proposed method in the real world system can be due to the 

mentioned assumptions that were taken in the theory. 

3.2 Method Description 

A method of parameter identification or kinematic model calibration is chosen for this study 

that uses the robot sensors. This helps the operator to identify parameters of the mechanism 

without needing technical knowledge or any other equipment. Also, it decreases the initial 

setup time. 

As shown in Figure ‎2-1, the calibration problem here can be understood as finding the accurate 

location of each cable actuator. This is done by using the known position of several auxiliary 

points such as P1 to P4 
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Figure ‎3-1 – Schematic view of identification problem 

The coordinate of the actuator is shown as   , which is unknown and needs to be identified. 

Also, some known points are perfectly located on the frame and act as auxiliary points. They 

are constant for all the cases and independent of location of actuators. These points are shown 

as   . It will be shown in the next sections that why 4 known points are needed to have a 

unique solution to this problem. 

The procedure is described briefly as following according to Figure ‎3-1: 

1. The operator puts the free end of the cable on    and reads the number that the 

encoder shows. 

2. Then the operator takes the free end of the cable to another point other than    

(e.g.   ). The cable should be tensioned during the process to ensure that the cable 

is not slipping on the encoder’s shaft. In other words, the actuator has to pull the 

cable. 

3. The user reads the number that the encoder is showing.   

4. The difference between the two recorded numbers represents the difference 

between the distances of each known point and the actuator as unknown points. 

5. The operator repeats steps 1-4 for all the points. 
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6. Based on the obtained data and the geometry of the system, the position of the 

unknown point (actuator positions) can be found. The mathematical equations for 

solving the identification problem are presented in the upcoming sections. 

The above procedure requires no external sensor or equipment for parameter identification. 

The measuring task is supposed to be done by the system sensors. 

After collecting all the required data as above, the operator has to put the data into a set of 

equations and solve them. Later in this chapter, it will be explained that the equations are non-

linear and a numerical method is used to solve them. 

The distance between fixed points should not be too short compared to the size of the system. 

A Short distance may cause inaccurate results since the equations will be solved using 

numerical methods. Considering a simple problem below explains the reasoning of this 

statement. 

Assume that finding the position of an unknown point in a plane is desired and two auxiliary 

points are given. We want to use the same procedure of this study to solve the problem. As it is 

shown in Figure ‎3-2, the known points are assumed to be too close to each other in comparison 

with their distances to the unknown point. In this case, the geometry becomes similar to two 

radii of a circle. Therefore, we have little change in the cable length moving from one point to 

another and as a result, there will no way to distinguish between the two points. 

 

Figure ‎3-2 – Two known and one unknown points 

Also, measurement error exists in all physical systems and this error will have its effects on the 

final results. Therefore, verification should be done using a reliable source in order to make 

sure that the method gives appropriate answers.  

 

3.3 Kinematic Modeling 

To derive the required equations, first the model of actuators and geometry of the system 

should be presented. The figure below shows the drawing of the actuator case and the motor 

that been installed on the case.  
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Figure ‎3-3 – Drawing of the actuator case 

Figure ‎3-4 shows the fabricated and assembled actuator’s case. 
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Figure ‎3-4 – photograph of the fabricated actuator case 

One needs to take a point along the cable as the fixed end of it. This assumption is required to 

develop the equations, as will be discussed in the next sections. To claim a point as the fixed 

end of the cable, the side view of the cable guide assembly is shown in Figure ‎3-5. 
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Figure ‎3-5 – Schematic side view of the cable guide assembly 

The cable guide assembly is shown in Figure ‎3-5.  

 

Figure ‎3-6 – Close view of cable guide assembly 

3.4 Governing Equations 

According to Figure ‎3-5, the point that is taken as the fixed end of the cable is exactly in the 

middle of pulley centers. Since the point is surrounded by the two pulleys and there is no space 

for the cable to deviate from that point, one can claim it as the fixed end of the cable with an 

acceptable accuracy.  
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A parameter identification procedure requires a number of known points. In this case, these 

points are located on different points around the frame of the robot and are called known 

points (  ). One end of the cable is placed on the first known point (  ), and then moved to the 

    known point. The user saves both corresponding values of the encoder at    and   . The 

difference between these values is noted as   . In other words, if we assume that    represents 

the length of the cable between the fixed end of it and   , then    represents the difference 

between    and   . 

During this process the cable must remain taut. To find the position of each actuator (the point 

that was assumed as the fixed end of the cable previously), three equations are solved since the 

type of system is spatial (the unknown point has three components). To have three 

independent equations in terms of   , four known points should be taken (         ). 

Because at least four cables are needed due to the nature of the mechanism and how the data 

are collected. 

The figure below shows the parameters and unknown values. It should be noted that this figure 

only includes one of the two pulleys in the cable guide assembly. 

 

Figure ‎3-7 – Schematic view of parameter identification problem 

According to the figure above and provided explanations, the following equation could be 

written: 

        ;     (‎3-1) 

where    is the length of cable between fixed point and     known point.  
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The above equation is not sufficient to determine    (the fixed end of the cable) since the cable 

between    and    consists of two parts. One is the part that bends around the pulley and the 

other part is straight from the tangent point towards    (by neglecting the cable sagging). 

Therefore, according to Figure ‎3-7, Eq. (‎3-1) breaks down into the following expanded 

equations: 

where     and     are straight and curved parts of cable respectively. 

One can write     and     in terms of the components of    : 

where   ,   , and    are  components of   . Also,   is the radius of the pulley and   is the 
corresponding angle of the curved part of the cable. All the mentioned parameters are shown 
in Figure ‎3-7. 

One can easily find   in terms of    and    and rewrite Eq. (7) as follow: 

By now, an expanded version of Eq. (‎3-1) has been developed, but three unknown parameters 

still exist in this new equation. In order to solve the problem, one needs to develop three more 

equations and solve them simultaneously with the main equations. Although the goal is to find 

the values of   ,   , and   , obtaining by position of the tangent point is necessary, since it has 

been introduced to the set of equations. 

Another parameter should be introduced since it will be used frequently later on in this study. 

As the pulley can rotate about X-axis of the coordinate system, a revolution angle should be 

considered to describe the angular position of the pulley in that direction. This angle is shown 

as    in both Figure ‎3-7 and Figure ‎3-8, which is the top view of the pulley.  

                                (‎3-2) 

           
         

         
  (‎3-3) 

 
      (‎3-4)   

     
                                                         

                                                           
       

                                                       

                                                             
 

(‎3-5)  
                    ) 

 



Page | 42 

 

Figure ‎3-8 – Schematic top view of the parameter identification problem 

This angle is measured with respect to the positive direction of Y-axis about X-axis. The shown 

coordinate system is global. One can write an equation for   in terms of    and    as shown 

below: 

Angle   is defined based on the assumption of the coordinate system and the pulley rotates 

about one of the main axes for all the actuators. 

According to Figure ‎3-8, one can easily find the position of the pulley’s center.  

According to the above explanations, it is clear that now the problem has 15 unknowns and the 

other parameters can be written in terms of these 15 unknowns. The unknowns are the 

components of     and     
 (         ). Therefore, 15 equations are needed to obtain a unique 

set of answers for this algebraic problem. Based on equations (‎3-2), (‎3-3), and (‎3-4), three of 

them are already developed.  
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 According to presented material in the previous section, there are four (we have four known 
points) groups of three equations for tangent points and each group is to be written 
independently. 

Below is the procedure to show how each equation in a group is derived. It should be noted 

that three equations below will be derived for           and this means 12 equations will be 

derived. 

1) The first equation is to state that     is on the pulley perimeter: 

which means that the distance between the tangent point (   ) and the center of the pulley (  ) 

is equal to the radius of the pulley.   is Accurately known.  

2) The second equation is obtained from the fact that the line connecting    and    is 

perpendicular to the cable.  

3) The last equation ensures that    lies on the pulley plane or: 

Now, considering equations. (‎3-1), (‎3-8), (‎3-9), and (‎3-10) together we have 15 equations, but 

there are still some terms containing   . By substituting    from Eq. (‎3-7) one can rewrite all the 

mentioned equations only in terms of    and    
            .  

It should be noted that all the above derivations are based on one particular position and 

orientation of an actuator, but the same procedure can be applied to the rest by changing the 

direction of coordinate system’s axes. In all the cases, the concept remains the same. 

3.5 Implementation of the Identification Method and Results 

The last step is to solve equations (‎3-1), (‎3-8), (‎3-9), and (‎3-10) using a numerical method since 

they are nonlinear. The equations were solved using Newton-Raphson method. To do so, a 

MATLAB code including function        was used to solve them numerically. The initial guess 

of MATLAB code was the values obtained in the synthesis section. 

According to the kinematics design section, 5 actuators were considered for this cable-driven 

mechanism whose locations were identified one by one using this approach. 

Based on Figure ‎3-1 and materials discussed in previous sections, 4 points were taken as the 

known points. Coordinates of the known points were measured using a Faro arm [ 34 ] with 

          
 

‎3-8) 

                                                       
 

(‎3-9) 

                          
 

(‎3-10) 
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accuracy of up to 18 microns [ 35 ]. More details about the Faro arm are discussed in the next 

section.  The table below shows the positions of the known points. The coordinates shown in 

Table ‎3-1 are expressed with respect to global frame. 

Table ‎3-1 – Positions of known points 

Point Coordinates (mm) 

   [-709.81 1009.18 -909.33] 

   [-709.35 -181.20 -985.14] 

   [1326.60 -1023.43 -909.33] 

   [-708.8726 -1024.8315 -909.3288] 

 

The known points were located on the frame so there was no need to fabricate an extra fixture. 

According to the procedure introduced at the beginning of this chapter, the following steps 

were followed: 

1. The free end of the cable was placed on    and then moved to   . The difference of 

initial and final numbers read by the encoders were recorded. 

2. The same procedure was done for    and    as well as    and   . 

3. The cable was tensioned during all steps. 

The recorded data is shown in Table ‎3-2. 

Table ‎3-2 – The   ’s that were read using encoders. 

Actuator    (mm)    (mm)    (mm) 

2 489.90 -1763.94 -1121.82 

3 616.23 -608.25 465.65 

4 -262.72 -1423.00 -991.62 

6 373.42 1506.82 353.03 

7 701.57 1040.66 927.61 

 

4. The recorded value was input to the MATLAB function. 

The results are shown in Table ‎3-3 show the parameter estimation results. 
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Table ‎3-3 – Final answers of identification problem obtained from MATLAB code 

Actuator 
The Resultants Obtained from MATLAB code 

   (mm)    (mm)    (mm) 

2 
-481.36 894.52 110.44 

3 
-595.74 -325.30 -000.92 

4 
-105.60 596.50 -799.39 

6 
1276.37 -439.06 64.48 

7 
389.67 919.21 126.95 

3.6 Verification of the Method Using a Faro Arm [ 34 ] 

In order to verify the accuracy of the introduced method, the values shown in Table ‎3-1 were 

compared with values measured using a Faro arm. 

The Faro arm is a Coordinate Measurement Machine (CMM) that measures the coordinates of a 

point in the space with respect to another point as the origin. The figure below shows a Faro 

arm. 

 

Figure ‎3-9 – A Faro arm 

A Faro arm consists of 3 links, which allows the operator to reach a large volume of workspace. 

Using a probe located at the free end of the arm, the operator touches every point that needs 

to be measured. The position is calculated based on the length of the links and angle of joints 

through a forward kinematics analysis of the arm. For instance, in order to measure a plane, the 
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user only needs to measure 3 points; then the integrated software of Faro arm determines the 

plane passing through those 3 points. The manufacturer of Faro arm claims accuracy of up to 18 

microns [ 35 ]. 

Before measuring the position of the actuators, the origin of the coordinate system was 

located. It was said previously that the origin of the global coordinate system is at the center of 

the spherical joint. Therefore, the sphere was determined by measuring 4 arbitrary points 

located on the spherical joint. The figure below shows 4 arbitrary points on the sphere. 

 

Figure ‎3-10 – 4 arbitrary points on the spherical joint to determine the origin 

As shown in the figure above, the point should not be on the same circle; otherwise, there will 

be infinite number of answers. 

After finding the center point of the spherical joint and defining it as the origin of the 

coordinate system, the positions of the fixed end of cables (actuators) were measured. 

According to Figure ‎3-5, the fixed end of the cable is assumed to be at the middle of the two 

pulleys in the cable assembly guide. Therefore, it was necessary to find the center of the top 

surface of the assembly and then find the mentioned point using the provided drawings. First, 

the surface plane of the cable guide assembly was measured at 3 arbitrary points and it was 

intersected by the cylinder of the cable guide assembly. The cylinder was measured using 
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arbitrary points. Figure ‎3-11 shows how the surface plane and cylinder were measured using 

the Faro arm. 

 

Figure ‎3-11 –The circle was constructed by intersection of cylinder and surface plane 

The dotted shape above shows the circle of the cable guide assembly. In order to find the 

coordinate of the point in the middle of two pulleys, the drawing below was used. 
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Figure ‎3-12 – Drawing of cable guide assembly 

As shown in the above figure, the assumed fixed end of the cable is located 21 millimeters 

beneath the top plane. Using the procedure above, all positions of the actuators were 

measured and shown in Table ‎3-4, in comparison with the values obtained from the previous 

section. It should be noted that all the values are given in millimeters. 

Table ‎3-4 – Obtained results using developed code and Faro arm 

Actuator 
Obtained from Parameter Identification Faro Arm 

   (mm)    (mm)    (mm)    (mm)    (mm)    (mm) 

2 -481.36 894.52 110.44 -481.92 895.64 111.54 

3 -595.74 -325.30 -000.92 -595.56 -325.04 -1.166 

4 -105.60 596.50 -799.39 -105.96 596.49 -799.66 

6 1276.37 -439.06 64.48 1277.22 -438.00 63.72 

7 389.67 -919.21 126.95 389.85 -918.50 127.64 

 

Table ‎3-5 shows the absolute error value of each coordinate. 
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Table ‎3-5 – Absolute error values of actuator coordinates 

Actuator 
Absolute error of    

(mm) 
Absolute error of    

(mm) 
Absolute error of    

(mm) 

2 0.56 1.12 1.1 

3 0.18 0.26 0.246 

4 0.36 0.01 0.27 

6 0.85 1.06 0.76 

7 0.18 0.71 0.69 

 

According to the values above, the maximum error is 1.12mm and the minimum error is 

0.01mm. Also, the average of all the error values is 0.26mm which indicates an acceptable 

accuracy. Note that the error between the actual position and obtained value (measured using 

Faro arm) can be neglected compared to the size of the mechanism. Since the size of the 

mechanism is in order of 2m then an error of 1mm is an acceptable number. In other words, 

the errors are called acceptable compared with the size of the mechanism. 
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4 Control 

This chapter introduces a method of control for cable-driven mechanisms. The control will be 

then developed for the cable-driven mechanism being considered in this thesis when working 

with the upper arm of human body for rehabilitation purposes.  

The studied mechanism in this chapter is a cable robot that does the rehabilitation task of a 

shoulder model. The mechanism has 3 degrees of freedom and needs to be actuated by 4 

motors. A MATLAB Simulink model is made and the results of controller implementation will be 

presented at the end. 

After designing the configuration of the mechanism for the required workspace and identifying 

the actual values of the kinematic parameters, a controller has to be implemented. Remember 

that this mechanism has been designed to follow a desired trajectory, provided by the 

therapist. The therapist indicates the trajectory by moving the arm through an appropriate path 

and the mechanism is supposed to save the data using its sensors. Then the robot has to repeat 

the same trajectory in order to complete the rehabilitation process. Collecting data and 

learning the trajectory is being done in a different thesis. The present work assumed the 

trajectory is provided and therefore develops the control for repeating the trajectory.  

Since the present application requires a delicate interaction between the robot and human, we 

needed to select a control strategy that enables us to determine and provide a desired level of 

comfort for the patient while performing a trajectory tracking task. For this reason, impedance 

control was chosen which is briefly explained in the next section. Also, position control can be 

used which is not addressed in this thesis. 

4.1 Impedance Control 

The main concept of impedance control is to find the value of actuation forces such that the 

end-effector acts as a mass-spring-damper system.  In this type of control method, impedance 

of the system is set by assigning the coefficients of virtual inertia, damping and stiffness 

elements. The desired performance of the controlled mechanism should represent the 

impendence of a mass-spring-damper system. 

A simple system with one degree of freedom is shown below. 
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Figure ‎4-1 – A simple one degree of freedom system 

The goal is to find value of   so the body follows the desired trajectory    and performs as a 

mass-spring-damper system.  In other words, the actuator is applying the force   so that the 

system can follow the desired trajectory and act as a mass-spring-system to the environment. 

Neglecting any friction force, the dynamic equation for the system shown in Figure ‎4-1 is:  

where   is the body mass and   is the external force that the environment is applying on the 

system. In other words, the user who is interacting with the system applies the force   . Also,   

is the force applied  by the actuator. 

According to impedance control theory [ 36 ], the user should feel such that he/she is 

interacting with a mass-spring-damper. Therefore the interaction force    is determined using 

the following equation by the controller: 

where   ,   , and    are the desired impedance coefficients set by the user. 

In fact, if the controlled system deviates from the desired trajectory due to some external 

disturbances, the control action (the force value) changes such that the system acts as a mass-

spring-damper to the environment. In other words, the user who interacts with the mentioned 

system feels the reaction force of a mass-spring-damper system with acceleration of        , 

velocity of         , and displacement of       . The mass inertia of such a system is   , the 

damping coefficient of it is   , the user feels a stiffness is equal to   .  It is obvious that when 

the system is following the exact desired trajectory, the value of    is zero.  This means that 

when the system is not following the trajectory, the controller forces it to the desired values of 

acceleration, velocity, and position; and by getting closer to the desired values, the magnitude 

of force   decreases. 

        (‎4-1) 

                                 (‎4-2) 
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In a control cycle, when the user applies force    to the system, he/she causes it to deviate from 

the desired trajectory. The sensors read the actual position, velocity, and acceleration of the 

system, and pass the data on to the controller. The controller then calculates the interacting 

force   that a mass-spring-damper system would apply to the environment based on the 

captured data by the sensors. Having the interacting force and the dynamic equation of the 

system, the controller determines the force that the actuator has to apply to the system such 

that the interacting force between the system and the environment becomes  . 

In summary, the controller takes the values of position, velocity, and acceleration from the 

sensors and calculates the interacting force using equation (‎4-2) and puts it into equation (‎4-1) 

to find the value of actuator force  . Then the actuator applies a force with a value of   on the 

system as the actuation force. 

According to the above, the interacting force that is determined by the controller   and the 

actual force    are not essentially equal.  

One can extend the concept above to a      degrees of freedom system. In this case, following 

the Lagrange notation, the scalar force is replaced by the vector of n generalized forces. Each 

force is related to corresponding generalized coordinate. For instance, Figure ‎4-2 shows a three 

degrees of freedom system. 

 

Figure ‎4-2 – A three degrees of freedom system with single body 

As shown in the figure above, the applied force is a vector of three generalized forces. Each 

component corresponds to a generalized coordinate. 

The dynamic equation for the system shown in Figure ‎4-2 is: 

         (‎4-3) 
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where   is the position of the body in the Cartesian coordinate system, and    is the body’s 

mass, and   is the interaction force between the system and the environment. 

Again, according to the concept of impedance control, the values of generalized forces are 

obtained from: 

where    represents the desired trajectory.  

In this case,   is a vector of three generalized forces 

and so, the impedance coefficients are  3-by-3 matrices: 

In the equations above,     is the inertia that corresponds to the generalized coordinate  , when 

the acceleration of generalized coordinate   deviates from its desired value. The same 

definition is applicable for damping coefficients      and  stiffness coefficients    . 

According to equations (‎4-4) and (‎4-6), deviation from the desired trajectory for a generalized 

coordinate can have an impact on the corresponding generalized force of other variables based 

on the values of    ,   , and    . By assuming all non-diagonal elements of the coefficient 

matrices are zero, the generalized forces are assigned based on the deviation of corresponding 

generalized coordinates. 

 

4.2 Implementation of Impedance Control on Cable Robots 

An impedance controller allows deviations of the coordinates by applying some prescribed 

forces. Based on the assigned forces, the system acts as a mass-spring-damper. The impedance 

of the system can be indicated using the coefficients introduced in the previous section. 

In rehabilitation procedures, it happens that the patient needs to deviate from the trajectory 

because of pain or because following the same trajectory is not applicable for the patient. 

However, the therapist wants the patient’s limb to be forced to the original path.  

Therefore, by choosing appropriate values of coefficients, the mechanism would be able to take 

the patient’s arm along the desired trajectory and let him/her avoid excess pain. 

                               (‎4-4) 

            (‎4-5) 

        

        

        

            
 

(‎4-6) 
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Before implementing the impedance control on cable-driven mechanisms, the associated 

challenges which arise due to the cable tension condition needs to be addressed. As was 

explained in chapter ‎2, the equilibrium condition in a cable-driven system is expressed as: 

     (‎4-7) 

where   is the vector of cable forces and   is the total value of other forces in the system (such 

as inertia, weight, etc.).   is a matrix of coefficients from the equilibrium equations. As was 

stated in chapter 1, the above equation can be derived using both Newton’s and Lagrange’s 

methods, but the obtained equations can be formed as equation (‎4-7) either way. For a multi-

body mechanism, it is easier to develop the equations using Lagrange’s methods and take the 

degrees of freedom as Lagrange’s variables. In doing so, the following equation would be 

obtained. 

        (‎4-8) 

where   subscript refers to the Lagrange’s method. Also, it was said previously that the 

tensionability of the mechanism in a specific position depends on matrix   . Moreover, all 

elements of matrix     are in terms of the generalized coordinates,   . 

To implement impedance controller on a cable-driven mechanism, the patient who interacts 

with the robot should feel that the end-effector acts as a mass-spring-damper system. 

Therefore, a force other than weight and inertia forces of the bodies should be considered that 

represents the interacting force between the robot and the patient. That extra force is included 

as 

             (‎4-9) 

where   is the interacting force between end-effector and the user.  Also,         is a vector 

representing weight and inertia forces. 

The solution for equation (‎4-8) is presented as: 

      
    

    
                

 

(‎4-10) 

where   is null vector of    and   is an arbitrary value. 

Note that force   implies the impedance behavior of the mass-spring-damper. Therefore, it can 

be described as shown below. 

                                 (‎4-11) 

where   ,    and    are the coefficient matrices,    is the desired position of mechanism in 

terms of Lagrange’s coordinates 
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By deviating from the desired trajectory, the mechanism will apply a force to the patient based 

on equation (‎4-11). 

The controller receives the measured positions of the generalized coordinates and calculates 

the interacting force using equation (‎4-11) and finds the required cable forces. Equation (‎4-10) 

returns the cable forces that make the end-effector apply force   on the environment. It is 

obvious that the calculated interacting force   by the controller is not essentially equal to the 

force    that the user is applying. 

From equation (‎4-10) one can find the cable tensile forces. The problem is that the coordinates 

of the patient’s limb are very difficult to be directly measured. The only position that is 

measurable is the displacement of the cables from their initial position. This is completely 

doable by measuring the rotation angle of actuator’s spool from its initial angle. By using 

forward kinematics one can find the length of cables in terms of the joint variables; but the 

inverse problem becomes more complicated in this type of robot. Because the length of each 

cable is a nonlinear and coupled function of joint variables:  

                             
  (‎4-12) 

where   is the vector of the cable lengths and   is a nonlinear function of joint variables. 

Therefore, the position of the arm cannot be obtained in explicit form from the rotation angle 

of the motor spool.  

The values of the joint variables are found by solving a set of nonlinear equations. Using the 

Newton-Raphson method, one can solve equation (‎4-12). Since there are        equations, 

one of the equations is redundant and can be omitted. 

From measurement of joint variables, it is possible to determine the values of cable forces. The 

last step is assigning a value to   according to the equation (‎4-10). It was said in chapter ‎3 that 

a criterion for tensionability of a multi-body cable-driven system is to have all components of 

vector   of the same sign. Thus, by assigning an appropriate value for  , components of    

become positive i.e. the system is tensionable. 

The following algorithm was used in this study to assign a value to  . Since each cable has to be 

pulled with a minimum force to be straight enough and not slack, the algorithm returns   so 

that none of the cables will have a force less than that minimum value. In some cases this 

minimum value can be zero, if the weight of the cable is neglected. This problem can be divided 

into two cases. 

The first one is when all the components of   are positive. In this case, the following equation 

was used to determine the value of  . 
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(‎4-13) 

where      
 is the minimum value of tensile force for     cable,    is the     component of 

vector   , and    is the     entry of  . 

The second case is when all the components of   are negative. The equation below shows how 

the value of   should be determined 

       
     

   

  
  

(‎4-14) 

Figure ‎4-3 shows the control process that executes in each cycle. 

 

Figure ‎4-3 – Workflow of the controller 

The control cycle first reads the encoder values and finds the angle of rotation then calculates 

the length of cables using the following formula: 

          
 (‎4-15) 

where    is the length of the     cable and    is the rotation angle of the     motor’s spool. Also, 

   
 represents the initial length of the    cable .   is the radius of the motor’s spool. 

After obtaining the length of each cable, the control cycle solves (‎4-12) using Newton-Raphson 

method and finds joint variables that correspond to the position of the end-effector. By having 

the joint variables and the geometry of the system, the control cycle determines the required 

cable forces using equation (‎4-10) and actuates the motors by the obtained forces. For each 

new cycle, the controller goes through the described procedure again. 

4.3 Modeling 

In this section, implementation of an impedance controller on a rehabilitation cable robot is 

simulated using MATLAB SimuLink. The robot connects to and moves a shoulder. 
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A simplified model for the shoulder is assumed in this study. The figure below shows the 

assumed shoulder model. 

 

Figure ‎4-4 – Model of shoulder and arm 

As shown in the figure above, the shoulder has been modeled with a spherical joint which 

rotates about three perpendicular axes. Therefore, the model has three degrees of freedom. 

The figure below shows how the arm model is placed in the robot. 

 

Figure ‎4-5 – Shoulder rehabilitation mechanism 

As is shown in the figure above, there are 4 actuators assigned for this task, since the 

mechanism has 3 degrees of freedom. The center of the spherical joint was assumed as the 

origin of the fixed coordinate system 

Lagrange coordinates are shown in an extended version of arm model in Figure ‎4-6. 
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Figure ‎4-6 – Expanded model of shoulder joint 

The desired workspace for the mentioned mechanism was assumed as shown in the table 

below. 

Table ‎4-1 – Desired workspace of shoulder-arm model 

          

Minimum Value (rad) -20 -20 0 

Maximum Value (rad) 20 0 20 

 

According to Chapter ‎0‎2, we need to indicate a space for the design parameters. The design 

parameters in this problem are the positions of the actuators on the frame.  

The same as introduce mechanism in chapter ‎3, one component of each actuator position is 

constant. Table ‎4-2 shows the Design Parameter Space of the robot and the constant 

components. 
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Table ‎4-2 – Actuators and their design parameters 

Actuator Plane Fixed component Design Parameters 

1 Top         

2 Back         

3 Front         

4 Right         

 

According to Table ‎4-2, there are 8 design parameters. Table ‎4-3 shows the space including all 

the 8 design parameters. 

Table ‎4-3 – Design Parameter Space 

                         
Min. 
(mm) 

-600 -600 -400 -600 -400 -600 -400 -600 

Max. 
(mm) 

600 0 400 100 400 100 1000 600 

 

Also, the value of the fixed component for each actuator is listed in Table ‎4-4. 

Table ‎4-4 – Constant component of each actuator 

 Actuator 1 Actuator 2 Actuator 3 Actuator 4 

Fixed Component 
Value (mm) 

                                           

 

The points where the cables are attached to the arm are expressed in cylindrical coordinates in 

Table ‎4-5. The cylindrical coordinate is a local coordinate system used to express the points 

with respect to the shoulder joint. 

Table ‎4-5 – The points that attached to cables expressed in local cylindrical coordinate system 

             

Length   (mm) 275 240 251 254 

Angle  (rad)  
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Kinematic synthesis for this mechanism was performed according to the method presented in 

Chapter ‎0. The step-sizes for workspace and Design Parameter Space were taken as 

 
           

 
  and         respectively.   

Finally, the synthesis process returned the positions of the actuators listed in Table ‎4-6. 

Table ‎4-6 – Position of actuators based on the mentioned global reference frame  

Actuator Number Position (mm) 

1 [ -595.60 -325.05 -1.17] 

2 [389.85 -918.50 127.65] 

3 [-481.92 895.67 111.55] 

4 [-105.91 596.50 -799.67] 

 

4.4 Modeling of the Actuators 

The control approach in this thesis is about determining the required torque of each motor, 

because the motors are assumed to be working in torque control mode.  

The actuator introduced in chapter ‎3 is modeled for the simulation in this section. Since the 

actuator is a type of brushless DC motor, the electrical dynamics were neglected in comparison 

with the mechanical dynamics of motor since dynamics of the electrical part is sufficiently fast 

compared with mechanical dynamics of the motor. To simplify the modeling, the transfer 

function of the actuators that explains the torque-position relation is considered as a linear 

transfer function [ 37 ]: 

    

    
 

 

      
 

(‎4-16) 

where   is the spool’s moment of inertia,   is the damping coefficient.      is the rotation 

angle of motor and      is the total torque applied on the motor’s shaft. Parameter   is a 

factor which depends on the dimension of  ,  , and  . Figure ‎4-7 shows the model presented in 

equation (‎4-16). 
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Figure ‎4-7 – Model of motor 

In the figure above, two torques are applied on the motor’s shaft.      is the sum of the 

motor’s torque       and the cable’s torque      . In other words: 

                . (‎4-17) 

Therefore, by having the cable’s torque and electrical torque, one can find the angle of the 

motor’s shaft. By multiplying equation (‎4-16) by the radius of the spool, the displacement in 

cable length is obtained. 

     

    
 

     

    
 

  

      
 

 

(‎4-18) 

where    is the displacement in cable length. By considering gear ratio  ,    will be multiplied 

by  . Therefore, the resultant output torque of the gear box will be    . 

In this study, the values of the parameters in equation (‎4-18) were assumed as following:  

 

 
    

   

     
   

  

 
     

 

     
  

 

(‎4-19) 

Now, one can rewrite equation (‎4-16) in the following form. 

     

    
 

   

      
 

 

(‎4-20) 

4.5 Simulation 

According to Figure ‎4-7, one needs to have both    and    for simulation. The value of    is 

supposed to be assigned by the controller since the controller calculates the appropriate 

actuator force based on the algorithm shown in Figure ‎4-3.  

Note that    is the torque that is applied by the cable and can be found using: 

      
    

    
                 

 

(‎4-21) 
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where         includes all external forces applied on the arm except the cable forces such as 

weight and inertia.    is the generalized force applied by the patient. It was assumed that the 

arm moves with constant and very low velocity, and so the inertia forces were neglected. This 

assumption was made due to relatively slow motions in rehabilitation. In other words, rapid 

motions and high velocity tasks are not desired in physiotherapy. Therefore, neglecting inertia 

forces does not adversely affect the final results. 

A MATLAB SimuLink model was developed as shown in Figure ‎4-8. 

 

Figure ‎4-8 – MALTAB SimuLink Model 

A core function was built that calculates the values of    and   . The transfer function of each 

motor returns the length of cable according to equation (‎4-20). 
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The core function takes the length of each cable and its derivatives based on the procedure 

above then determines the joint variables by solving equation (‎4-10) using the Newton-

Raphson method. The code takes the previous values of joint variables as the initial guess and 

applies the iterative method of Newton-Raphson to find the values of     .  

Having the desired values of joint variables (desired trajectory) as    
, the code is able to 

calculate the impedance forces as    
. The code is supposed to calculate    

 as the modeled 

forces of the cables applied on the motor spools.    
 are those external forces that are applied 

by the user (patient).    
 are considered as inputs to the model. One goal in this study is to 

model the patient’s interacting force as input and check the functionality of the implemented 

method. 

4.6 Results and Discussion 

The coefficient matrices of impedance control were assumed as shown below as the desired 

values. 

   
   
   
   

      
   
     
     

  

 

(‎4-22) 

The inertia matrix was neglected due to low acceleration and velocities.  

In the first simulation, it was assumed that the arm is supposed to stay at an initial position 

(   
  ) in other words, the robot applies no motion to the arm. The patient applies an 

external force of    
    

    
        

 

  
  . 

Figure ‎4-9 shows the joint variables vs. time. 
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Figure ‎4-9 - Values of joint variables (rad) versus time (sec) 

It is shown that the outputs are close to zero, which is the desired trajectory, but have a 

sinusoidal response. The sinusoidal response is due to having a sinusoidal patient’s force. 

Figure ‎4-10 shows the response of the three spring-damper systems with the same coefficients 

to the mentioned input (force). 
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Figure ‎4-10 – Response of an ideal spring-damper system to the input force 

In the figure above,     is the ideal value of     generalized variable. The ideal value is obtained 

by applying the same patient’s force on the mass-spring-damper system. 

Comparing Figure ‎4-9 with Figure ‎4-10, the output of the model is similar to the desired 

response of a spring-damper system, however some differences also can be seen. One 

difference is the initial slopes of the graphs. The actual output has a transient part initially and 

then starts rising, but the ideal response does not have it. Since the transfer function of motor 

shaft was taken into account in modeling, the output has a transient part and it involves a 

different initial slope. The ideal response is the value of the position based on governing 

equation of a mass-spring-damper system. 

The other difference is on the peak values of the graphs where the outputs of the impedance 

control have higher peak values than the ideal responses. The existence of the overshoot is due 

to dynamics of the motor shaft. In other words, the dynamic of the shaft causes the actual 

values to pass the ideal values and then settle down. 



Page | 66 

The next step is to find the values of the spring and damper coefficients that the patient feels in 

this case. The simulation was used for parameter identification using the least-squares method 

to find the best fitted values for the damping and stiffness coefficients.  

For a spring-damper system the equation below holds between the force and the position: 

         
 

(‎4-23) 

where   is the position and   and   are the damper and spring coefficients, respectively. Also,   

is the force applied on the system.  

By having a sequence of positions and corresponding forces, one can write the equation as 

shown below: 

                       
 

(‎4-24) 

The derivative part can be written as shown below: 

    
       

       
 

 

(‎4-25) 

where    is the corresponding time for position   . 

One can also form equation (‎4-24) for all the values in the matrix format: 

          
 

(‎4-26) 

           
 
 
 
   

       

 

(‎4-27) 

Where  ,   , and   are vectors of positions, velocities, and forces respectively.  

Having equation (‎4-27), one can find the values of   and   based on the least-squares method, 

using the equations below. 

 
 
 
             

 

(‎4-28) 

           
 

(‎4-29) 

Equation (‎4-25) does not return the exact derivatives and only calculates it numerically. 

According to the presented method of estimation, the values of the coefficients obtained from 

the simulation outputs (Figure ‎4-9) are shown in Table ‎4-7 and compared to the desired values 

of controller coefficients. 
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Table ‎4-7 – Values obtained from simulation output using the Least-Squares method  

                   
Desired 1 4 0.5 3 0.3 1 

Least Square 3.24 3.37 2.35 2.39 0.69 0.88 

 

As shown in the above table, the values of   are close to the desired ones, but the differences 

between the desired damping coefficients and the actual ones are significant. One reason is the 

existence of the transient part, due to considering dynamics of the motor shaft. Another reason 

is the natural error in controlling of systems that involve dynamics. In other words, every 

controlling scheme has error in the outputs due to the dynamics if the controlled system. 

Also, as was previously stated, the nature of least-squares method involves error and it caused 

the obtained values to deviate more from the desired ones. To verify the previous sentence, a 

spring-damper system was simulated by applying a sinusoidal force of          
 

  
    . 

Figure ‎4-11 depicts the simulated spring-damper system as well as the applied force. 

 

Figure ‎4-11 – Simulated spring-damper system 

The measured position is shown below. The damping and stiffness coefficients are assumed to 

be 0.2 and 1 respectively. 
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Figure ‎4-12 – Response of spring-damper system to a sinusoidal force input 

The least square method applied to the measured data and the results were            and 

         . 

As was shown in the paragraph above, the obtained   from the Least Square method is close to 

the desired value, but the damping coefficient shows a significant difference between the 

desired value and the obtained one. The difference is possibly due to the approximation of the 

derivatives value using equation (‎4-25). 
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5 Conclusions and Recommendations for Future Work 

5.1 Discussion 

Design, calibration and operation of a cable-driven robot were investigated in this study as a 

new robotic platform for physical therapy. The mechanism is supposed to learn a motion from a 

therapist and redo it a specified number of times under controllable conditions.  

Since rehabilitative motions are complex, they need complex mechanisms or several 

cooperative robots. The proposed mechanism had to be able to do complex tasks. Cable 

mechanisms are able to do high degrees of freedom motions using as many cable actuators as 

required.  Using light cables compared to rigid links in conventional robotic mechanisms has 

enabled the robot to consume less energy and be cost-effective.  

Moreover, since such a robot has to comply with the geometry and kinematics of different body 

parts in different sizes, the chosen mechanism must be reconfigurable and flexible in design. 

One advantage of the proposed cable mechanisms is that it is easily reconfigurable by changing 

the position of the actuators. 

According to the above, a cable-driven mechanism was considered for synthesis, parameter 

identification and control of a rehabilitation robot. The upcoming paragraphs describe how 

each part was approached. 

In the “Synthesis Chapter,” a methodology for design of the proposed rehabilitation robot was 

presented. The developed method finds parameters of the robot such that it covers the given 

workspace. An algorithm that does the synthesis process was developed. 

The algorithm returns all configurations of a cable mechanism that is tensionable in a given 

workspace. In order to do so, the algorithm evaluates tensionability of a specific configuration 

for a desired workspace. By meshing the workspace, the algorithm checks the tensionability of 

each grid-point of workspace to ensure that the mechanism is tensionable for all the points 

within the workspace. Again, by meshing the parameter space and evaluating the desired 

workspace for each set of parameters, the configurations that make the robot tensionable for 

the given workspace were found. 

Also, to optimize the synthesis results and pick the best configuration, an index function was 

introduced. The index value is a variance of cable forces during the operation. If the value is 

relatively small, it means forces of the cables are close together which is practically easier to 

realize and control. The optimization algorithm first finds the set of parameters that have the 

lowest value of the introduced index. Then it moves along the gradient of the mentioned index 

and determines the point that has the minimum index. Using this method, it prevents it from 

being trapped in the local minima.   
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The presented results at the end of the chapter verified the functionality of the proposed 

synthesis method. The proposed algorithm to synthesize and optimize the design was 

implemented on a 4 DoF rehabilitation cable robot.  

A systematic approach for kinematic parameter identification of the proposed mechanism was 

also introduced. Since, the proposed robot needs to be reconfigured due to its application, the 

calibration should be achievable at low cost and in short time. The advantage of the presented 

method is that there is no need of extra equipment for the process. In other words, all the steps 

are done using the integrated encoders of the robot. 

The presented method is based on the position of some known points and solving a set of 

nonlinear equations. The user takes the free end of the cable from one known point to another 

and records the difference between the initial and the final length of the cable. Based on the 

derived equations and the kinematic model of the actuator, the user is able to find the actual 

position of the motor. The equation is solved using the Newton-Raphson method. 

The main challenges in the parameter identification were found to be the complexity of the 

geometry and model of the actuator. Since the cable is wound around the pulley installed on 

the cable guide assembly, the geometry of the cable was divided into two sections. One section 

was between the tangent point of the cable on the pulley and the known point. The other 

section was the curved part of the cable that lies on the pulley. Coupling the equations of these 

two sections, the tangent point was introduced as an auxiliary point. The final set of equations 

included the real position of the actuator and the tangent point as known variables. 

At the end of identification chapter, the accuracy of the results was verified using a Faro arm 

and it was shown that the error of calculations was negligible compared to the size of the robot. 

It was shown that the introduced method of self-identification involves a maximum of 1.12 mm. 

Finally a controller was developed for the proposed robot and evaluated by simulation in the 

last chapter. The goal of this chapter was to develop a controller that makes the rehabilitative 

motion pain-free to the patient. According to the Impedance Control theorem, position of end-

effector is controlled by assigning an appropriate value of input force, such that the 

performance of the mechanism represents the impedance of a mass-spring-damper system. 

One of the main challenges was how to implement the Impedance Control Concept while 

maintaining positive tension in all cables.  

Also, it was found that the values of the joint coordinates are not available since there is no 

sensor in the joints of the patient’s body. Therefore, one needs to estimate them using forward 

kinematic equations. Since the equations were nonlinear, it was said that in each control cycle, 

the controller needs to solve the forward kinematics equations numerically and find the values 

of the joint coordinates. 
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In order to evaluate the controller, a cable mechanism and a shoulder model were were 

simulated using MATLAB SimuLink. The mechanism had 3 degrees of freedom and 4 actuators 

were considered, to ensure tensionability of the mechanism. Furthermore, the mechanism was 

assumed to have quasistatic motion due to the nature of rehabilitation. Therefore, the 

accelerations were neglected in the governing equations and the controller.  

The simulation model was tested versus a mass-spring-damper. The results showed a general 

agreement however, some difference could be noted.The differences are listed below: 

 The  simulation has transient part initially. 

 The peak values of measured data were greater than the response of a spring-damper 

system. 

 A phase delay existed in the measured values of generalized coordinates. 

The major reason for the above-mentioned difference is assumed dynamics for the motor’s 

shaft. Since the shaft’s transfer function had been taken into account in the modeling part, the 

system’s outputs involved dynamics. The mentioned dynamics caused the over shoot and initial 

zero slope. 

Also, the damping and stiffness coefficients were calculated using the Least Square method The 

other reason of existing difference is due to using the Least Square method which has a 

common error in estimation. The error of the Least Square method was shown using a simple 

spring-damper system. The results showed that the stiffness was close to the desired one, but 

the damping coefficient had a significant difference.  

5.2 Future Work 

Based on the acceptable results on the controller test in simulations, the immediate next step 

will be to test the controller on the real robot. Solving the nonlinear equations of the forward 

kinematics in real-time will be the main challenge of this step.  Also, considering the 

displacement of the patient’s shoulder in the controller can be another future work. In real 

practice the shoulder may involve displacement and the controller should be able to 

compensate that effect. 

Investigation of effects of the non-diagonal elements of impedance control coefficients on the 

robot performance is another suggestion for the future work. 

The mechanism that was synthesized and fabricated had 4 degrees of freedom and included 

shoulder and elbow joints. A wrist joint needs to be added in order to make it a realistic model 

of the human arm. The mechanism will have 7 degrees of freedom since the wrist adds 3 more 

degrees of freedom to the system.  In that case, 8 actuators are needed to fulfill the 

tensionability requirement. Also, considering other limb of a human can be the following steps 
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for a rehabilitation robot. For instance, considering rehabilitation of a foot will bring in more 

points and issues that should be considered. This can be done by increasing the number of the 

cables so the robot will be able to handle a motion with more degrees of freedom. 

Another suggestion for the future works is redoing the synthesis of the mechanism using 

Interval Analysis  [ 20 ] and comparison of the results with the method presented here. 
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