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Abstract

The asymptotic behavior of the elementary particle scattering amplitudes at high-

energy is a fundamental problem of quantum field theory. In the leading order of

the expansion in inverse powers of the characteristic energy scale, the problem has

been solved decades ago in the classical works of Sudakov and others [1–9]. Beyond

this approximation, however, the problem becomes far more challenging and requires

the development of principally new theoretical techniques. Only recently the solution

has been found for the leading mass-suppressed amplitudes revealing a number of

amazing new effects in quantum field theory [10–14]. In this thesis, we make further

advances in the analysis and consider for the first time a high-energy process at the

next-to-next-to-leading power.

The main focus of the thesis is the analysis of the QCD effects in the light quark

mediated Higgs boson production via gluon fusion. We study the dominant “double-

logarithmic” radiative corrections enhanced by the second power of the logarithm of

the light quark to Higgs boson mass ratio per each power of strong coupling constant

αs. The analytic result is obtained for the three-loop α3
s contribution through the

third power in the quark mass. The all-order double-logarithmic asymptotic result is

then obtained in two complementary approximations: (i) the large number of colors

limit which is supposed to catch the qualitative behavior of real QCD, and (ii) in the

Abelian limit which fully reveals the structure of the double-logarithmic result at the

next-to-next-to-leading power.

The second problem considered in the thesis is the asymptotic behavior of the massive

quark scattering amplitudes by an external color singlet field. The all-order result at

next-to-leading power in quark mass for which was first obtained in [13,14]. We com-
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plete this previous analysis and obtain for the first time the fully analytic asymptotic

result for the leading mass-suppressed term in the double-logarithmic approximation.



Preface

This thesis serves as a detailed extension of the work the author and his collaborators

published in reference [15]. This work in many ways builds upon and is an extension of

the previously published work of my collaborators; the most relevant past publications

are the references [12–14]. Other previous publications that are partially related or

contain certain relevant calculations and/or techniques can be found in references

[10, 11].

It is also important to note that the algorithm QGRAF [16–19] was used for di-

agram generation. The output of the symbolic diagrams generated by QGRAF was

converted into the graphs used in this thesis manually. After writing the amplitudes

of the relevant diagrams, the algorithm FORM [20] was used to compute the traces

and simplify the numerators; with some of the earlier results verified by direct eval-

uation for cross-checking. The integration in the double-logarithmic region within

the Sudakov method [1, 21] is straightforward to compute and was done explicitly

for all the cases with the help of Mathematica; along with all other integrals and

sums that appear during the calculations presented here. Lastly, all the Feynman

diagrams featured in this thesis were drawn with the help of online Feynman diagram

maker [22].
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Chapter 1

Introduction

The start of the Large Hadron Collider (LHC) era opened up the previously inac-
cessible energy domain resulting in the experimental verification of the spontaneous
electroweak symmetry breaking and mass generation mechanism through the discov-
ery of the Higgs boson in 2012 [23]. Over the last few years, however, the LHC
has transformed from a raw discovery into a high-precision machine. Despite many
expectations, no direct signal of new phenomena such as extra space dimensions, su-
persymmetry, low-scale gravity, etc. has been detected so far. Thus the “new physics”
is likely to show up only as a tiny deviation of the experimental data from the theo-
retical predictions based on the Standard Model (SM) of particle interactions. At the
same time, the increasing accuracy of the high-energy experiments allows for a very
accurate determination of the fundamental parameters of particle physics and be-
comes competitive in probing physics beyond the SM. Hence, the theoretical analysis
which is able to provide the required precision becomes ultimately important. Such
an analysis is essentially based on the perturbative quantum field theory and during
the last two decades the related computational methods reached an unprecedented
level. However, many of the pending problems are still beyond the reach of available
techniques and require development of new computational tools as well as a deeper
understanding of the dynamics of quantum fields. One such problem is of particle
scattering in the high-energy region, to which we turn our attention now.

1.1 Amplitudes in the high-energy limit

For the high-energy processes the fixed order results of perturbative expansion
are often insufficient for an accurate description of the strong interaction effects due
to the presence of the large logarithms of the ratio of a characteristic infrared scale
to the process energy. Such logarithms in the perturbative coefficients result in slow
convergence of the series in strong coupling constant and have to be resummed to

1



1.1. AMPLITUDES IN THE HIGH-ENERGY LIMIT 2

all-orders. This program has been completed for the amplitudes which are not sup-
pressed at high-energy by the scale ratio. The asymptotic behavior of such amplitudes
is governed by the “Sudakov” radiative corrections enhanced by the second power of
the large logarithm of the scale ratio per each power of the coupling constant i.e.,
∝ αn ln2n (Λ2/q2) with Λ and q denoting the infrared and the high-energy scale of
the problem, respectively. Sudakov logarithms exponentiate and result in a strong
universal suppression of the scattering amplitudes in the limit when all the kinematic
invariants of the process are large [1–9]. The structure of the power-suppressed log-
arithmically enhanced contributions is by far more complex and the corresponding
renormalization group analysis poses a serious challenge to the modern effective field
theory. One of the important problems in this category is the analysis of the scattering
amplitudes involving massive particle(s) in the limit of small mass or high-energy. The
mass effects on the leading power (LP) contributions have been extensively studied
in the context of the high-order electroweak and QED radiative corrections [24–34].
The next-to-leading power (NLP) contributions for several key processes in QED and
QCD have been analyzed in the leading (double) logarithmic (LL) [10–14,35–39] and
the next-to-leading logarithmic (NLL, ∝ αn ln2n−1 (Λ2/q2)) approximation [40–42].
Many highly nontrivial results for the power corrections in threshold and event shape
variables, jettiness, rapidity, scattering angle, etc. have been obtained in various
contexts [43–56].

In the processes with massive fermions already at the NLP the origin of the
logarithmic corrections and the asymptotic behavior of the amplitudes drastically
differ from the LP Sudakov case. The double-logarithmic terms, in this case, are
related to the effect of the eikonal (color) charge non-conservation in the process
with soft fermion exchange and result in asymptotic exponential enhancement for a
wide class of amplitudes and in a breakdown of a formal power counting [10, 13, 14].
Thus, it is of primary theoretical interest to get insight into the asymptotic behavior
of the next-to-next-to-leading power (NNLP) contributions and determine whether
any qualitatively new phenomenon appears in this order. The renormalization group
analysis has not been extended beyond the NLP for any kind of power corrections to
the high-energy processes. In this thesis, we present the first NNLP analysis of the
simplest but fundamental and phenomenologically important amplitude of the light
quark-mediated Higgs boson production in gluon fusion.

The Higgs boson sector remains to be one of the least known and most intriguing
parts of the SM, and the study of the Higgs boson properties is currently one of the
most important and pursued parts of the physics program at LHC [57]. Matching the
increasing precision of the experimental measurements requires the analysis of the
high-order effects of the strong interaction, and is one of the biggest challenges for
perturbative QCD. For the gluon fusion channel, the amplitude is dominated by the
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loop with virtual top quark, as it is directly proportional to the Higgs mass (∝ m2
H);

while one of the main sources of theoretical uncertainty is due to the contribution
mediated by the bottom quark loop. Though this contribution is suppressed by the
bottom quark to Higgs boson mass ratio (m2

b/m
2
H), it includes the corrections en-

hanced by the second power of the large logarithm of the mass ratio mH/mb. The
effective expansion parameter in this case is ∼ 40αs rather than the strong coupling
constant αs and the logarithmically enhanced terms clearly have to be resummed to
all-orders.

In this thesis, we obtain the analytic result for the three-loop α3
s contribution to

the bottom quark mediated amplitude of the Higgs boson production in gluon fusion
through the third power in the quark mass. The all-order double-logarithmic asymp-
totic result for the amplitude is then obtained in two complementary approximations:
the limit of large number of colors and the Abelian limit. The results of the analysis
are used to get a quantitative estimate of the accuracy of the fixed order calcula-
tions [58, 59] and the calculations based on the small mass expansion [60, 61] of the
light quark contribution to the Higgs boson production and decays.

In this thesis, we also complete the previous analysis of another fundamental
quantity in QCD, the massive quark scattering amplitudes by an external color singlet
field. As it has been shown in [13, 14], the double-logarithmic asymptotic behavior
of the leading mass-suppressed contribution to the corresponding FF is described by
a universal function independent of the Lorentz properties of the external field. We
derive the closed form fully analytic result for the high-energy asymptotic behavior
of this function.

1.2 Outline

The thesis is organized as follows:
The focus of chapter 2 is the review of background theory and computational

techniques. We start with a review of QCD as it pertains to our calculation. This is
followed by an overview of the two types of double-logarithms; the so-called “Sudakov”
and “non-Sudakov” logarithms. We go over how they are generated and outline
their key differences. Then we outline the technique developed in refs [13, 14] for
the factorization of power-suppressed QCD amplitudes utilizing an artificial quark
scattering amplitude.

In chapter 3, we consider the quark scattering by an external color singlet field.
There we summarize the results obtained in [13,14] for the scalar FF by the direct eval-
uation of the relevant two and three-loop diagrams for the non-Sudakov logarithms,
as well as the all-order result. This is followed by the calculation of the asymptotic
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form for the function that encapsulates the resummation result. We generalize the
result to the off-shell FF which is a crucial ingredient for the analysis of the Higgs
boson production in the following chapter.

The Higgs production FF is discussed in chapter 4. Contribution to the NNLP co-
efficient is generated via three sources: the factorizable contribution with a single soft
quark exchange, the triple soft quark exchange contribution, and the non-factorizable
contribution of the single soft quark with an emission of an eikonal gluon. After
providing the exact three-loop result in the double-logarithmic approximation we
consider two limits for the all-order result: the large number of colors limit of QCD,
and the Abelian approximation. We end this chapter with a comparison of our results
with other known results and apply them to the phenomenology of the Higgs boson
production.

Chapter 5 is our Conclusion. We summarize the major results and discuss their
implications.

CHAPTER 1. INTRODUCTION



Chapter 2

Theoretical background

2.1 Quantum Chromodynamics

QCD is the non-Abelian gauge theory describing the interactions of quarks and
gluons, which transform in the fundamental and adjoint representation of the gauge
group SU(3) respectively. The QCD Lagrangian is

LQCD = −1

4
(Ga

µν)
2 + ψ̄j

(
iδjk /∂ + gs /A

a
T a
jk −mδjk

)
ψk, (2.1)

with the gluon field strength tensor Ga
µν defined as

Ga
µν = ∂µA

a
ν − ∂νAa

µ + gfabcAb
µA

c
ν . (2.2)

We have excluded the gauge-fixing, and Faddeev-Popov ghost and anti-ghost terms
from the Lagrangian as they do not contribute to the double-logarithmic approxima-
tion. The resulting Feynman rules are listed below. The gluon propagator is

≡ Dmn
µν (p) = −i

gµν − (1− ξ)pµpν
p2

p2 + iϵ
δmn −−→

ξ=1

−igµνδmn

p2 + iϵ
; (2.3)

we always work in the Feynman gauge for which ξ = 1. The propagator of colored
fermions with mass mf is

≡ S(l) =
i(/l +mf )

l2 −m2
f + iϵ

δij; (2.4)

5



2.1. QUANTUM CHROMODYNAMICS 6

The fermion gluon interaction vertex is

= igsγ
µT a

ij. (2.5)

The three gluon self-interaction vertex is

= gsf
mnr
[
gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν

]
. (2.6)

The four gluon self-interaction vertex is omitted as it cannot generate contribution in
the double-logarithmic approximation. External fermion lines get the factor of spinor
u,

= u(p), (2.7)

= ū(p). (2.8)

Similarly, external gluon lines give polarization vector,

= ϵµ(p), (2.9)

= ϵ∗µ(p). (2.10)

For our analysis, we also need the Higgs boson and fermions interaction, Lint =
gwmf

2mw
ψ̄ϕψ, which generates the vertex

=
igwmf

2mw

≡ yf , (2.11)

where yf is the fermion Yukawa coupling. The external scalar particle lines only get
a factor of 1. Finally, the equations of motion for on-shell external fermions are

ū(p)(/p−mf ) = (/p−mf )u(p) = 0. (2.12)

Other important rules are that each closed fermion loop in a Feynman diagram gets
a factor of (−1), and the momentum is conserved at each vertex. Note from the
Lagrangian of eq. (2.1) that in the massless fermion limit, the left-handed and right-
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handed representations of the Dirac fermions completely decouple. More generally,
terms with an even number of gamma matrices couple the opposite handedness, while
the terms with an odd number of gamma matrices couple the same handedness. Since
scalar FF is defined without gamma matrices (eq. (3.1)), it must vanish in the massless
fermion limit, similar to the Pauli FF which is defined with two gamma matrices.
While the Dirac FF is defined with a single gamma matrix and does not vanish in the
massless limit.

The SU(3) generators denoted by T a, which are 8 traceless Hermitian matri-
ces, also play a vital role in the evaluation of QCD amplitudes. Frequently utilized
identities are

tr (T aT b) = T a
ijT

b
ji = TF δ

ab, (2.13)

(T aT a)ij = T a
ikT

a
kj = CF δij, (2.14)

tr
[
T aT bT c

]
=

1

4

(
dabc + ifabc

)
, (2.15)

and
fabcfdbc = CAδ

ad. (2.16)

The final equation follows from the fact that the elements of the generating matrices
in the adjoint representation are defined in terms of the structure constants. TF is
called the index of the fundamental representation, while CF (CA) is the quadratic
Casimir of the fundamental (adjoint) representation. Another handy relation known
as Fierz identity is

T a
ijT

a
kl =

1

2

(
δilδjk −

1

Nc

δijδkl

)
, (2.17)

which reduces to eq. (2.14) for j = k. For the fundamental representation of SU(3),

CF =
N2

c − 1

2Nc

=
4

3
, (2.18)

TF =
1

2
; (2.19)

and for the adjoint representation

CA = TA = Nc = 3. (2.20)

The Dirac or gamma matrix identities used throughout the calculations are listed in
appendix A.
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2.2 Origin of the double-logarithms

The double-logarithmic radiative corrections are a distinct feature of the gauge
field theories and can be universally associated with the soft and collinear virtual or
real particle emission. We focus on two types of double-logarithms: “Sudakov” and
“non-Sudakov” logarithms. The Sudakov logarithms are characteristic of the LP of
high-energy or small mass expansion; while the non-Sudakov logarithms are power-
suppressed. The difference in their origin is the most crucial aspect for our analysis.

The Sudakov logarithms are generated by the exchange of soft virtual gauge bo-
son(s) by highly energetic on-shell charged particles. The momenta of the soft gauge
bosons can be ignored in the numerator of the propagators as the integrals involving
additional powers of the soft momentum do not develop the necessary singularity
needed to get the double-logarithms. In the soft gauge boson limit, the fermion prop-
agator becomes eikonal,

S(pi ± l) ∼
/pi ± /l +mf

(pi ± l)2 −m2
f

≈ ±/pi +mf

2pil
; (2.21)

where mf is the fermion mass, pi are the external particle momenta, and l is loop
momentum. The soft gauge boson propagator reads

Dµν(l) ∼
gµν
l2
. (2.22)

Thus, the soft gauge bosons provide the LP double-logarithmic contribution. In
general, the massless soft gauge bosons do not generate double-logarithmic corrections
at O(m2

f ) as it has been shown in [11] by using the expansion by regions method [62].
The double-logarithmic contributions from the strongly ordered momenta regions at
LP can be obtained by the method outlined in [1, 11, 63]. These Sudakov logarithms
exponentiate to provide universal suppression of the amplitude at the LP of the high-
energy expansion.

Contrary to the Sudakov logarithms, the non-Sudakov logarithms are generated
by an exchange of soft virtual fermions. To account for this crucial change, the
momentum configuration from eqs. (2.21) and (2.22) can be modified such that the
soft fermion propagators become scalar while the gauge boson propagators become
eikonal,

S(pi ± l) ≡ S(l′) ∼
/l
′
+mf

l′2 −m2
f

≈ mf

l′2 −m2
f

, (2.23)

Dµν(l) ≡ Dµν(∓(pi − l′)) ∼
gµν

(pi − l′)2
≈ gµν
m2

f − 2pil′
. (2.24)

Therefore, the roles of the fermions and gauge bosons are reversed. From eq. (2.23), it
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2.3. FACTORIZATION OF POWER-SUPPRESSED LOGARITHMS IN QCD 9

Figure 2.1: Examples of diagrams generating the (a) Sudakov, and (b) the power-
suppressed non-Sudakov logarithms. The dark vertex connects to the rest of the
diagrams via current or an external source.

is clear that each soft fermion propagator, which is now scalar, explicitly contributes
a factor of the fermion mass, leading only to power-suppressed contribution. The
double-logarithms can be obtained by following the standard Sudakov parametriza-
tion of the soft momenta. The original method of Sudakov [1,21] can still be utilized
to obtain the double-logarithms as the power suppression is explicit [11]. The com-
plex structure of the non-Sudakov logarithms requires systematic treatment of the
factorization in both Abelian and non-Abelian theories; making their all-order resum-
mation a much more challenging problem, in turn resulting in limited knowledge of
the all-order structure. Further details on the origin of these double-logarithms can be
found in ref. [11]. A detailed sample calculation of producing the double-logarithms
with Sudakov parametrization and the original method of Sudakov is given in ap-
pendix C.1.3.

2.3 Factorization of power-suppressed logarithms
in QCD

To study the factorization process in QCD, we focus on a somewhat artificial
process that retains the main features of the general problem despite being minimally
complex. A massive quark (mq) is being scattered by a local gauge field operator
(Ga

µν)
2. The incoming and outgoing momentum of the quark is p1 and p2 respectively.

The origin of this interaction is not relevant to our discussion but it provides an ideal
toy model to derive the factorization in QCD. In fact, this model is the perfect example
and precursor for the gauge boson scattering by a scalar field via a massive quark loop
i.e., the Higgs production process. Let us first derive the LO and NLO amplitudes
for this artificial process by direct evaluation of all the contributing diagrams.
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Figure 2.2: (a) The LO 1-loop diagram contributing to the quark scattering by the
gauge field operator,

(
Ga

µν

)2, denoted by the dark vertex; and (b) the effective 2-loop
diagram with soft gluon exchange between the eikonal lines; the hollow vertices denote
eikonal color charge non-conservation explained in the text.

2.3.1 Direct evaluation of the LO amplitude

The LO contribution comes from the one-loop diagram fig. 2.2(a). In the high-
energy limit, we have on-shell quarks p21 = p22 = m2

q, and large momentum transfer for
scattering q2 = −(p2 − p1)2 ≈ 2p2p1; this makes the high-energy approximation pa-
rameter, ρ = m2

q/q
2, small and positive. A required chirality flip on the virtual quark

line in the high-energy limit results in the propagator becoming soft and provides
mass suppression for the amplitude. Thus, the one-loop integral reduces to

2iq2

π2

∫
d4l

(l2 −m2
q)(p1 − l)2(p2 − l)2

(2.25)

where the prefactor is kept for convenience. For the mq ≪ l ≪ q soft quark limit,
the gluon propagators become eikonal, and the quark propagator becomes scalar as
explained in section 2.2. By introducing the standard Sudakov parameterization for
the loop momentum, l = up1 + vp2 + l⊥, the propagators can be approximated as
follows:

(l2 −m2
q) ≈

[
−2iπδ(q2uv + l2⊥ −m2

q)
]−1

, (2.26)

(p1 − l)2 ≈ −2p1l ≈ −q2v, (2.27)

(p2 − l)2 ≈ −2p2l ≈ −q2u. (2.28)

The eikonal approximation for the propagators is only valid and thus requires that
|u|, |v| < 1 along with an additional condition uv > ρ that allows the quark propagator
to go on-shell. The integration over the transverse component of the momentum, l⊥,
can now be performed by taking the residue of the soft quark propagator, reducing
eq. (2.25) to

2

∫ 1

ρ

dv

v

∫ 1

ρ/v

du

u
= 2 ln2 ρ

∫ 1

0

dη

∫ 1−η

0

dξ = ln2 ρ, (2.29)
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Figure 2.3: The 2-loop diagrams contributing to the NLO of quark scattering by(
Ga

µν

)2. Symmetric diagrams are not included.

where η = ln v/ ln ρ, and ξ = lnu/ ln ρ are the normalized logarithmic variables. The
LO amplitude now reads

G0 = 2CFxmq q̄(p2)q(p1), (2.30)

with x = αs

4π
ln2 ρ incorporating the double-logarithmic factors, and αs being the strong

coupling constant. This is a typical example of a massive soft quark exchange gener-
ating the power-suppressed non-Sudakov logarithms. The peculiar thing is that the
emission of the soft quark also results in the change of the color group representation
for the particle propagating along the eikonal lines, known as the eikonal color charge
non-conservation. This crucial feature plays an important role in further analysis.

2.3.2 Direct evaluation of the NLO amplitude

At the NLO, the contributing diagrams are shown in fig. 2.3. Only the analysis of
fig. 2.3(a) poses an additional challenge due to the IR divergence that is present in the
final result as it is not regulated by the quark mass. Soft and eikonal approximations
of eqs. (2.26) to (2.28) for the soft quark momentum l are still valid. Starting with
fig. 2.3(a), the color factor is

c2.3a = Tm
jkT

a
kdT

b
dcT

n
ciδ

abδmn = Tm
jkT

a
kdT

a
dcT

m
ci = Tm

jkT
m
ci CF δkc = C2

F δij; (2.31)

resulting in the reduced color ca = CF after the one-loop color CF is factored out.
The integral over the soft gluon momentum, lg, gets the double-logarithmic scaling if
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lgpi < lpi, making lg negligible in the eikonal quark propagators with the soft quark
momentum l, leading to the condition ug < u and vg < v for the corresponding
Sudakov parameters. Thus, retaining lg only in the propagators without the soft
quark momentum l, integral over soft gluon momentum reduces to

2iq2

π2

∫
d4lg

l2g{(p1 − lg)2 −m2}{(p2 − lg)2 −m2}
. (2.32)

With Sudakov parameterization of lg = ugp1 + vgp2 + lg⊥, the propagators can be
approximated as

l2g ≈
[
−iπδ(q2ugvg + l2g⊥)

]−1
, (2.33)

(p1 − lg)2 −m2 ≈ −2p1lg ≈ −q2(vg + 2ρug), (2.34)

(p2 − lg)2 −m2 ≈ −2p2lg ≈ −q2(ug + 2ρvg). (2.35)

After integral over the Dirac delta function and ρ⊥ = −l2g⊥, eq. (2.33) in the double-
logarithmic region reduces to

2

∫ v

ρug

dvg
vg

∫ u

ρvg

dug
ug

. (2.36)

This integral has the aforementioned soft IR divergence when both ug and vg become
small simultaneously. This divergence can be removed by subtracting “the factorized
expression”

2

∫ 1

ρug

dvg
vg

∫ 1

ρvg

dug
ug

. (2.37)

This subtraction term is independent of soft quark momentum and is equivalent to
the factorized one-loop Sudakov FF given by

CFαs

4π

2iq2

π2

∫
d4lg

l2g
{
(p1 − lg)2 −m2

q

}{
(p2 − lg)2 −m2

q

} =
CFαs

4π

(
2

ln ρ
ε

+ ln2 ρ

)
.

(2.38)
This integral is evaluated in dimensional regularization with d = 4 − 2ε, where ε ̸=
0 regulates the (soft) IR divergence. This result coincides with the one-loop on-
shell Sudakov FF, which includes all the universal Sudakov double-logarithm for the
amplitudes with quark-antiquark external lines. The full term is of course given by

∫
d4l

(2π)4
1

(l2 −m2)(p1 − l)2(p2 − l)2
×∫

d4lg
(2π)4

1

l2g{(p1 − lg)2 −m2}{(p2 − lg)2 −m2}
; (2.39)
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Figure 2.4: The two configurations for fig. 2.3(b) in which quark propagator (a)
above and (b) below the soft gluon emission vertex is soft, and goes on-shell.

with the integral over lg resulting in the Sudakov factor, while the integral over soft
quark momentum l is equivalent to the one-loop factor of eq. (2.25). Subtracting the
factorized expression eq. (2.37) from eq. (2.36) gives

2

∫ v

ρug

dvg
vg

∫ u

ρvg

dug
ug
− 2

∫ 1

ρug

dvg
vg

∫ 1

ρvg

dug
ug

= −2

(∫ 1

v

dvg
vg

∫ u

ρvg

dug
ug

+

∫ 1

ρug

dvg
vg

∫ ρvg

u

dug
ug

+

∫ 1

ρug

dvg
vg

∫ 1

ρvg

dug
ug

)

= −2

(∫ 1

v

dvg
vg

∫ u

ρvg

dug
ug

+

∫ 1

ρug

dvg
vg

∫ 1

u

dug
ug

)

= −2

(∫ 1

v

dvg
vg

∫ u

ρvg

dug
ug

+

∫ 1

u

dug
ug

∫ v

ρug

dvg
vg

+

∫ 1

v

dvg
vg

∫ 1

u

dug
ug

)

= −2 ln2 ρ

(∫ η

0

dηg

∫ 1+ηg

ξ

dξg +

∫ ξ

0

dξg

∫ 1+ξg

η

dηg +

∫ η

0

dηg

∫ ξ

0

dξg

)
∼ ln2 ρ

[
(η − ξ)2 + 2(η + ξ)

]
, (2.40)

where we have introduced the standard normalized logarithmic variables ηg = ln vg/ ln ρ
and ξg = lnug/ ln ρ. In eq. (2.40), the expression obtained after the integral over the
soft gluon momentum is called the weight and denoted by wλ(η, ξ) ≡ wλ.

Next, fig. 2.3(b) too has soft IR divergence which cancels when both configurations
of this diagram shown in fig. 2.4 are included. They correspond to the soft quark
propagator above and below the soft gluon emission vertex going on-shell. Integral
over lg in these cases is

4i(p2l)

π2

∫
d4lg

l2g{(p2 − lg)2 −m2}{(l ± lg)2 −m2}
; (2.41)

with lg = ugl + vgp2 + lg⊥. Momentum p1 is replaced by l as it acts as the external
momentum for the soft gluon emitted by the soft quark line. The propagators are
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approximated as
l2g ≈

[
−iπδ(2p2lugvg + l2g⊥)

]−1
, (2.42)

(p2 − lg)2 −m2 ≈ −2p2lg ≈ −2p2lug −m2vg ≈ −q2(ugu+ 2ρvg), (2.43)

(l ± lg)2 −m2 ≈ ±2lgl ≈ ±2p2lvg ±m2ug ≈ ±q2(vgu+ 2ρug). (2.44)

When the propagator above and below the soft gluon emission vertex is on-shell,
integral of eq. (2.41) reduces to

2

∫ 1

ρug/u

dvg
vg

∫ 1

ρvg/u

dug
ug

, (2.45)

and
− 2

∫ v

ρug/u

dvg
vg

∫ 1

ρvg/u

dug
ug

(2.46)

respectively. Adding the two, we obtain

2

[∫ 1

ρug/u

dvg
vg
−
∫ v

ρug/u

dvg
vg

]∫ 1

ρvg/u

dug
ug

= 2

∫ 1

v

dvg
vg

∫ 1

ρvg/u

dug
ug

= 2 ln2 ρ

∫ η

0

dηg

∫ 1−ξ+ηg

0

dξg ∼ ln2 ρ
(
η2 − 2ηξ + 2η

)
. (2.47)

The color of this diagram is
c2.3b = Tm

jkT
a
kdT

m
dcT

a
ci

c2.3b =
1

4

(
δjcδkd −

1

Nc

δjkδdc

)(
δkiδcd −

1

Nc

δdkδic

)
c2.3b =

δij
4

(
−1 + 1

N2
c

)
∼ δijCF

(
CF −

CA

2

)
(2.48)

with reduced color of cb = (CA/2)− CF .
Moving on to fig. 2.3(c), the color of which is

c2.3c = Tm
jkT

b
kdT

a
dif

amb

c2.3c =
1

2
Tm
jk

[
T b, T a

]
ki
famb

c2.3c =
1

2
Tm
jkT

n
kif

banfamb

c2.3c =
CA

2
Tm
jkT

n
kiδ

mn ∼ CA

2
CF δij (2.49)

resulting in the reduced factor of cc = −CA/2. Eikonal approximation for the new

CHAPTER 2. THEORETICAL BACKGROUND



2.3. FACTORIZATION OF POWER-SUPPRESSED LOGARITHMS IN QCD 15

λ cλ wλ

a CF (η − ξ)2 + 2(ξ + η)

b −CF + CA/2 η2 − 2ξη + 2η

c −CA/2 η2 − 2ξη + 2η

d −CA 2ξη

Table 2.1: The reduced color factors cλ and the weights wλ for the 2-loop diagrams
in fig. 2.3. Contributions of the symmetric diagrams can be obtained by η ←→ ξ in
the rows b and c.

propagators are

(p1 − l − lg)2 ≈ −2p1(l + lg) ≈ −2p1p2(v + vg) (2.50)

(p2 − l − lg)2 ≈ −2p2(l + lg) ≈ −2p2p1(u+ ug) (2.51)

with eqs. (2.26), (2.27), (2.33) and (2.35) still valid. These results in double-logarithm
over lg when p1l < p1lg and p2lg < p2l corresponding to v < vg and ug < u; integral
gives

2iq2

π2

∫
d4lg

l2g(p1 − l − lg)2{(p2 − lg)2 −m2}

= 2

∫ 1

v

dvg
vg

∫ u

ρvg

dug
ug

= 2 ln2 ρ

∫ η

0

dηg

∫ 1+ηg

ξ

dξg ∼ ln2 ρ
(
η2 − 2ηξ + 2η

)
. (2.52)

For the final diagram, fig. 2.3(d), color factor of

c2.3d = T b
jkT

a
kif

amnf bmn = T a
jkT

a
kiCA ∼ CFCAδij, (2.53)

results in cd = −CA. With soft and eikonal approximations of eqs. (2.26) to (2.28),
(2.33), (2.50) and (2.51), double-logarithmic condition over lg requires that p2l < p2lg

and p1l < p1lg or u < ug and v < vg. The integral over lg,

2iq2

π2

∫
d4lg

l2g(p1 − l − lg)2(p2 − l − lg)2

= 2

∫ 1

v

dvg
vg

∫ 1

u

dug
ug

= 2 ln2 ρ

∫ η

0

dηg

∫ ξ

0

dξg ∼ ln2 ρ (2ηξ) ; (2.54)

results in wd = 2ηξ.
Final IR finite results for all the two-loop diagrams are collected in table 2.1. The
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Figure 2.5: Diagrammatic representation of eq. (2.57). The diagram on the left
represents iqµMµ.

total contribution at NLO can be written as the sum,

2x

[∑
λ

cλ

∫ 1

0

dη

∫ 1−η

0

dξ ωλ

]
G0, (2.55)

with the reduced color factor cλ, and the weight wλ of table 2.1. This sum must include
the contribution from the symmetric diagrams that are not included in fig. 2.3; which
can be obtained by interchanging η and ξ in the rows b and c of table 2.1 for their
symmetric counterparts. We observe that the sum of eq. (2.55) reduces to

− 2z

[∫ 1

0

dη

∫ 1−η

0

dξ (2ηξ)

]
G0 = −z

6
G0, (2.56)

with z = (CA−CF )x. An important thing to note in table 2.1 is that the non-Abelian
part between rows b and c cancels exactly.

2.3.3 Factorization at the NLO amplitude

Let us see how the same result is obtained by the method of factorization at the
NLO. The key to this method is in moving the soft gluon vertex from the virtual
quark line in fig. 2.3(b) to the upper eikonal gluon line, obtaining a diagram of the
form of fig. 2.3(c). This is done by applying a sequence of identities, graphically
represented by fig. 2.6. The lower eikonal quark line in the fig. 2.6(a) can only emit
the A− light-cone component of the gluon field in covariant gauges, with the emission
of the other components being suppressed. The interaction of the A− component is
completely determined by the gauge invariance as it does not correspond to a physical
polarization of the gluon field. Now we utilize the Ward-Takahashi identity at the
interaction vertex on the soft quark line. Standard Ward-Takahashi identity is given
by

iqµM
µ(q, p1, p2) =M0(p1 + q, p2)−M0(p1, p2 − q), (2.57)
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diagrammatic representation of which is given in fig. 2.5 [64]. This can be written in
terms of the associated vertex with qµ = (p1 − p2)µ as

qµS(p1)Γ
µ(q)S(p2) = iS(p1)− iS(p2); (2.58)

where Γµ can be replaced with γµ to the leading order with no loops present in fig. 2.5.
Thus from the Ward-Takahashi identity, with p1 = l and p2 = l + lg in eq. (2.58) we
can write

S(l)γµS(l + lg) ≈ S(l)γ−S(l + l+g ) =
1

l+g

[
S(l)− S(l + l+g )

]
. (2.59)

at the interaction vertex on the soft quark line in fig. 2.3(b). The standard form of the
Ward identity can be obtained by multiplying eq. (2.59) with lgµ ≈ lg− = l+g . Starting
with the amplitude of fig. 2.6(a),

M∝ γβS(l)γµS(l + lg)γ
αS(p2 + lg)γ

νDµν(lg)D(p1 − l)D(p2 − l); (2.60)

applying the Ward identity of eq. (2.59) gives

∼ γβ
1

l+g

[
S(l)− S(l + l+g )

]
γαS(p2 + lg)γ

νDµν(lg)D(p1 − l)D(p2 − l). (2.61)

This is equivalent to fig. 2.6(b) with the crossed circle representing the S(l)→ S(l)−
S(l + l+g ) replacement, while the upper eikonal quark line absorbs the 1/l+g factor in
the eikonal approximation since S(p1+ lg) ≈ 1/(2l+g ). It is important to note that the
integral over lg gives logarithmic scaling when lg+ = l−g component is ignored in the
S(l + lg), making the propagator proportional to 1/lg− .

To go from fig. 2.6(b) to (c), i.e., move the crossed circle from the soft quark line
to the upper eikonal gluon line, a momentum shift l → l − l+g must be applied to
the second term of the expression in eq. (2.59). For the amplitude in eq. (2.61) this
results in

∼ γβ
1

l+g
S(l)γαS(p2 + lg)γ

νDµν(lg)D(p1 − l)D(p2 − l)−

γβ
1

l+g
S(l)γαS(p2 + lg)γ

νDµν(lg)D(p1 − l + l+g )D(p2 − l + l+g ). (2.62)

Since p−2 ≈ 0, the opposite eikonal line with momentum p2 is insensitive to this
shift and remains unaffected; and as long as lg ≪ l, we can make the substitution
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Figure 2.6: Diagrammatic representation of the sequence of identities that move the
soft gluon vertex from the soft quark to the upper eikonal gluon line. The crossed
circle in (b) and (c) are defined in the text. The hollow vertex on the upper eikonal
line in (d) represents effective coupling as explained in the text.

D(p2 − l) ≈ D(p2 − l + l+g ), reducing eq. (2.62) to

∼ γβ
1

l+g
S(l)γαS(p2+lg)γ

νDµν(lg)
[
D(p1 − l)−D(p1 − l + l+g )

]
D(p2−l+l+g ). (2.63)

This is now equivalent to fig. 2.6(c).
Applying the “inverted Ward identity” on the upper gluon eikonal line results in

1

l+g

[
1

−2p1l
− 1

2p1(−l + l+g )

]
=

1

−2p1l
2p−1

1

2p1(−l + l+g )
≈ 1

(p1 − l)2
2pµ1

1

(p1 − l + lg)2
.

(2.64)
In terms of the amplitude of eq. (2.63), this reads

∼ γβS(l)γαS(p2 + lg)γ
νDµν(lg)D(p1 − l)(2pµ1)D(p1 − l + l+g )D(p2 − l + l+g ); (2.65)

which corresponds to the final diagram fig. 2.6(d). For p+1 ≈ 0, the 2p1(−l + l+g ) −→
(p1− l+ lg)2 replacement works only if lg ≪ q. The effective coupling for this diagram
is CFαs, making it equivalent to the sum of the lines b and c from table 2.1.

Eikonal factorization is then achieved by summing over all the diagrams to get
the “ladder” structure. Diagrams required for this summation are fig. 2.6(d), its
symmetric counterpart, fig. 2.3(a) and (d). But the reduced color for fig. 2.3(d) is
CA, while the same for the rest in the sum is CF , thus we must manually add the
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contribution of the fig. 2.3(d) with the color factor CF . The denominators of these
diagrams are

D2.3a = {(p2− lg)2−m2}(l2−m2){(p1− lg)2−m2}(p1− l− lg)2(p2− l− lg)2l2g, (2.66)

D2.6d = {(p2 − lg)2 −m2}(l2 −m2)(p1 − l)2(p1 − l − lg)2(p2 − l − lg)2l2g, (2.67)

D2.6dS = {(p1 − lg)2 −m2}(l2 −m2)(p2 − l)2(p1 − l − lg)2(p2 − l − lg)2l2g, (2.68)

D2.3d = (p2 − l)2(l2 −m2)(p1 − l)2(p1 − l − lg)2(p2 − l − lg)2l2g; (2.69)

where eq. (2.68) is for the symmetric diagram to fig. 2.6(d), obtained by a similar
sequence of Ward identities and momentum shifts from the symmetric counterpart of
fig. 2.3(b).

Itot ≈
∫
d4l d4lg
(2π)8

(
1

D2.3a

+
1

D2.6d

+
1

D2.6dS

+
1

D2.3d

)

Itot =

∫
d4l d4lg
(2π)8

1

(l2 −m2)l2g(p1 − l − lg)2(p2 − l − lg)2[
1

(p2 − lg)2 −m2

{
1

(p1 − lg)2 −m2
+

1

(p1 − l)2

}
+

1

(p2 − l)2

{
1

(p1 − lg)2 −m2
+

1

(p1 − l)2

}]

Itot ≈
∫
d4l d4lg
(2π)8

1

(l2 −m2)l2g{−2p1(l + lg)}{−2p2(l + lg)}[
−2p1(l + lg)

(−2p1lg)(−2p1l)

] [
−2p2(l + lg)

(−2p2lg)(−2p2l)

]

Itot ≈
∫

d4l

(2π)4
1

(l2 −m2)(p1 − l)2(p2 − l)2
×∫

d4lg
(2π)4

1

l2g{(p1 − lg)2 −m2}{(p2 − lg)2 −m2}
; (2.70)

where we have rewritten the full propagators in the last line to emphasize the fac-
torization of the soft gluon contribution. This sum is diagrammatically represented
by fig. 2.7. The integral is identical to the full factorized expression of eq. (2.39).
Integral over lg in eq. (2.70) is exactly the same as eq. (2.38) and factors out into the
universal Sudakov exponent Z2

q ; while the integral over l is identical to the one-loop
contribution of eq. (2.25) and factors out into the non-Sudakov exponent i.e., g(z).
The function g(z) is discussed in the next section.

The remaining contribution is given by the “effective diagram” fig. 2.2(b) with
effective coupling proportional to (CA − CF )αs. Apart from the effective coupling
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Figure 2.7: Diagrammatic representation of the eikonal factorization. From top
left to bottom right they represent fig. 2.3(a), fig. 2.6(d), symmetric counterpart of
fig. 2.6(d), fig. 2.3(d), fig. 2.2(a), and the 1-loop vertex correction for quark scattering.

with modified color along the eikonal line, it is obvious that fig. 2.2(b) and fig. 2.3(d)
are identical; this change in the color due to the emission of the soft quark is exactly
the previously mentioned eikonal color charge non-conservation. The corresponding
integral is proportional to(

2iq2

π2

)2

(CA − CF )

∫ ∫
d4l

(l2 −m2
q)(p1 − l)2(p2 − l)2

d4lg
l2g(p1 − l − lg)2(p2 − l − lg)2

.

(2.71)
The integrals over both l and lg produce double-logarithms when lpi < lgpi and
thus the soft quark momentum l can be ignored in the eikonal propagators with the
gluon momentum lg. For the Sudakov parameter ordering along the eikonal lines, this
reduces to u < ug and v < vg, identically to fig. 2.3(d) as expected. Soft and eikonal
approximations of eqs. (2.26) to (2.28), (2.33), (2.50) and (2.51) are also still valid.
By introducing the normalized logarithmic variables after performing the integrals
over the transverse components of the momenta, eq. (2.71) reduces to

αs

π
(CA − CF ) ln4 ρ

∫ 1

0

dη

∫ 1−η

0

dξ

∫ η

0

dηg

∫ ξ

0

dξg

= 2z

[∫ 1

0

dη

∫ 1−η

0

dξ(2ηξ)

]
G0 = z

6
G0 (2.72)

This agrees with the exact result, eq. (2.56), obtained by the direct evaluation of the
NLO diagrams. Thus, we have shown the factorization of the amplitude at the NLO
in QCD.
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2.3.4 All-order resummation

The resummation of the double-logarithms at all-orders in the perturbation theory
can now be performed. The procedure can be applied to an arbitrary number of
gluons being emitted from the soft quark line as the soft gluons from the eikonal line
factorize and exponentiate. These exponentiated one-loop Sudakov logarithms result
in a universal suppression factor

Z2
q = exp

[
−CF

(
αs

2π

ln ρ
ε

+ x

)]
, (2.73)

where ε is the dimensional regulator for the IR divergences. The same statement
applies to the soft gluon exchange of the effective diagram fig. 2.2(b). Thus, the
all-order non-Sudakov contribution can be obtained similarly by exponentiating the
one-loop result, −2zηξ, from eq. (2.56), within the integrals over the normalized
double-logarithmic variables and reads

G = Z2
q g(−z)G0. (2.74)

The non-Sudakov contribution of an arbitrary number of soft exchanges between the
eikonal lines is completely encapsulated within the function g(z). This function is
normalized to z = 0 as g(0) = 1, and can be written explicitly as two-fold integral

g(z) = 2

∫ 1

0

dη

∫ 1−η

0

dξ
(
e2zηξ

)
. (2.75)

The exact solution for this function is found in terms of generalized hypergeometric
function and can be Taylor expanded as

g(z) = 2F2(1, 1; 3/2, 2; z/2) = 2
∞∑
0

n!(2z)n

(2n+ 2)!
. (2.76)

For a comprehensive review of this technique, including further verification by di-
rect evaluation of the NNLO diagrams for the artificial amplitude considered in this
section, readers are encouraged to check ref. [14].

2.3.5 Large z asymptotic for g(z)

In the previous section, we showed that the function g(z) encapsulates the all-order
contribution to the artificial process we investigated to obtain the factorization. We
will encounter this function again in the Higgs production FF. Thus, it is important
to find out how this function may behave in different theories and at large values of
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z. To calculate the analytical asymptotic form for g(z) as z → ±∞, let us rewrite
the function with an explicit sign in front of the variable z,

g(±z) = 2

∫ 1

0

dη1

∫ 1−η1

0

dξ1
(
e±2zη1ξ1

)
. (2.77)

To proceed, we must first apply a change of variables ξ1 = y
√
λ and η1 =

√
λ/y with

the Jacobian |J | = y−1. The integration limits for the new variables are

0 < λ < 1/4,
1−
√
1− 4λ

2
√
λ

(≡ yL) < y <
1 +
√
1− 4λ

2
√
λ

(≡ yH); (2.78)

obtained by solving the quadratic equation resulting from plugging the original inte-
gration limit ξ1 = 1− η1, in η1ξ1 = λ and ξ1/η1 = y2. The limits for the y integration
enforce the λ integration limits as all the original variables are positive. This gives

g(±z) = 2

∫ 1/4

0

dλ

∫ yH

yL

dy
e2zλ

y
,

g(±z) = 2

∫ 1/4

0

dλ e±2zλ ln
(
1 +
√
1− 4λ

1−
√
1− 4λ

)
. (2.79)

Further evaluation depends on the sign in front of the variable z. For positive z, the
integral is enhanced due to the exponential factor and is saturated in the proximity of
the maximal value of λ = 1/4. Expansion of the logarithm around x =

√
1− 4λ = 0

is ln
(
1+x
1−x

)
≈ (2x), and eq. (2.79) reduces to

g(z) = 2

∫ 1/4

0

dλ e2zλ
(
2
√
1− 4λ

)
,

g(z) =

√
2

z3/2
ez/2

[√
π − 2 Γ

(
3

2
,
z

2

)]
. (2.80)

As z →∞, the gamma function vanishes and eq. (2.80) reduces to

g(z) ≈
(
2πez

z3

)1/2

. (2.81)

For the opposite limit, we must instead expand the logarithm in eq. (2.79) near λ = 0;
1+

√
1−4λ

1−
√
1−4λ

≈ 1+1
1−1+2λ

≈ 1
λ

gives,

g(−z) = 2

∫ 1/4

0

dλ e−2zλ (− lnλ) ,

g(−z) =
γE + E1

(
z
2

)
− e−z/2 ln 4 + ln (2z)

z
; (2.82)
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where E1(z/2) is the exponential integral function. As z → ∞ limit is applied,
eq. (2.82) reduces to

g(−z) ≈ γE + ln (2z)

z
. (2.83)

The positive z limit is applicable in QCD, and the negative z limit in QED as CA =

0 ⇒ z = −CFx. In general, we can conclude that if a generic QCD amplitude gets
exponentially enhanced at high energies, then an amplitude with inverted color charge
flow from the eikonal lines defined by the scattering particles, or the same amplitude
in QED have logarithmic scaling, and vice versa.
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Chapter 3

The quark scattering

Quark scattering by a color singlet external field is one of the simplest fundamental
processes in QCD. In the high-energy limit the corresponding FF for the massive
quarks have been studied at NLP in [13, 14] where the all-order double-logarithmic
result has been derived in the form of the four-fold integral representation. This
representation, however, is not suitable for an analytic evaluation of the asymptotic
result. Moreover, the analysis of [13, 14] applies to the on-shell FF only, while in
many applications the result for slightly off-shell FF is mandatory. In particular, such
an off-shell result is necessary for the analysis of the Higgs boson production at the
NNLP presented in the next chapter. In this section, we derive an alternative integral
representation of the double-logarithmic result and use it to get the fully analytic
asymptotic result as well as the all-order result for the off-shell FF. We focus on the
case of the scalar external field which is relevant for the application to the Higgs boson
production.

Let us start with reproducing the result of [13,14] for the scalar FF. The amplitude
F for a quark scattering by an external scalar field can be parameterized as

F = q̄(p2)Γq(p1) = yq q̄(p2)FS q(p1), (3.1)

where Γ is the vertex function, FS is known as the scalar FF, and yq is the Yukawa
coupling of the scalar particle with a massive quark of mass mq. We have used the
projection method for our calculations. After projection, the scalar FF is given by

FS =
1

2Ncyq(s+ 4m2
q)
tr
[
(/p2 +mq)Γ(/p1 +mq)

]
, (3.2)

with s = −(p2 − p1)2, Nc being the total number of colors in QCD, and the vertex
function Γ obtained for the diagram of interest by writing the amplitude in the form
of eq. (3.1). We have taken this projector from ref. [65], where it was used to calculate

24



3.1. THE 1-LOOP DIAGRAM 25

Figure 3.1: Quark scattering by Higgs boson at 1-loop. The convention shown here
are used for all the diagrams and calculations of the scalar FF.

the full heavy quark FF at two-loops in QCD.
Starting at one-loop, fig. 3.1 highlights the conventions used for all the diagrams

and throughout the calculations of the massive quark scattering problem. For all
fermionic lines, the momentum flows in the same direction as the particle flow; while
for the external Higgs, the momentum q = (p2 − p1) is incoming. External fermions
are also taken on-shell i.e., p21 = p22 = m2

q, with mq being the mass of the quark.
And in the high-energy or small mass limit with mq ≪ li ≪ q, for large Euclidean
momentum transfer q2 = −(p2−p1)2 = m2

H , the ratio ρ = m2
q/q

2 is small and positive.
For the remainder of this problem, mq ≡ m. Thus, the scalar FF can be expanded as
an asymptotic series in ρ,

FS = Z2
q

∞∑
n=0

ρnF
(n)
S (3.3)

with F
(n)
S given by power series in αs. The only remaining ρ dependence for these

coefficients can come through the logarithmic enhancement. While the pre-factor Z2
q

in eq. (3.3) is the LP universal Sudakov correction incorporating all the IR divergence;
which is of course same as eq. (2.73) and can be obtained to the LO by evaluating
fig. 3.1. With the Sudakov corrections completely factored out, the coefficients F (n)

S

can only depend on the non-Sudakov logarithms; implying that the scalar FF is
normalized such that the leading coefficient of the series F (0)

S = 1.

3.1 The 1-loop diagram

The amplitude for the only non-trivial one-loop diagram contributing to the scalar
FF can be written as

iMij = −ig2syqCF δij

∫
d4l

(2π)4
q̄(p2)N1L q(p1)

l2{(p1 − l)2 −m2}{(p2 − l)2 −m2}
, (3.4)

with N1L = γα(/p2 − /l + m)(/p1 − /l + m)γα. This reduces to 4p2p1 in the double-
logarithmic limit; proving that this diagram can only contribute to the leading co-
efficient F (0)

S as power suppression factors are absent. Then the remaining integral

CHAPTER 3. THE QUARK SCATTERING



3.2. THE 2-LOOP DIAGRAMS 26

Figure 3.2: Diagrams for quark scattering by Higgs Boson at 2-loops. Symmetric
diagrams and diagrams with opposite particle flow for closed quark loop are not shown.
The dark vertex represents the Higgs boson with momentum q = p2− p1 coming into
the vertex.

over the gluon momentum l is identical to the integral in eq. (2.38), resulting in the
Sudakov logarithms that have been factored out into Z2

q , and F
(0)
S = 1. The details

of this evaluation are given in appendix B.1. For the next coefficient in the series,
let us turn our attention to the two-loop diagrams, fig. 3.2, which does generate the
power-suppressed contribution.

3.2 The 2-loop diagrams

All two-loop diagrams generated by QGRAF are shown in fig. 3.2. QGRAF was
restricted to output only the diagrams that were one particle irreducible, had no self-
energy insertions, and had no scalar particle(s) as intermediate states. In fig. 3.2(d)
and (e), one of the soft particles is emitted and absorbed by the same eikonal line, i.e.,
there is no exchange. This configuration cannot produce large double-logarithms and
does not contribute to the approximation in consideration. The topology of fig. 3.2(c)
is the same as of the one-loop diagram fig. 3.1 with an additional gluon exchange,
which does have a double-logarithmic region but can only generate the Sudakov log-
arithms at the LP of high-energy or small mass expansion as explained in section 2.2.
Thus, the contribution of this diagram is already accounted for in terms of the factored
out universal Sudakov exponent, Z2

q ; resulting in no contribution to the coefficient
F

(1)
S . It was found in [13, 14] that while fig. 3.2(b) and the diagram with opposite

particle flow for the closed quark loop, cancel each other for vector scattering due to
Furry’s theorem; they contribute to the scalar FF due to the additional chirality flip at
the vertex. The remaining diagram, fig. 3.2(a), while having the correct topology with
soft quark exchanges, cannot generate the power-suppressed large double-logarithmic
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Figure 3.3: Diagrams contributing to the double-logarithmic approximation for the
quark scalar FF at 3-loops; symmetric diagrams to (d)-(h), and diagrams with oppo-
site particle flow for the closed quark loop are not included. The dark vertex represents
the Higgs boson with momentum q = p2 − p1 coming into the vertex. All diagrams
are obtained by dressing fig. 3.2(b) with leading soft gluon exchange.

contribution to the scalar FF atO(ρ) due to the chirality flip at the scalar vertex. This
is again opposite to the vector FF case where only fig. 3.2(a) generated non-Sudakov
double-logarithmic contribution to the Dirac FF at O(ρ) [13, 14]. In both cases, the
chirality flip associated with the soft quark propagator becoming scalar provides the
mass suppression factors. The details of the evaluation for the two-loop diagrams are
included in appendix B.2. The result obtained at two-loops for the scalar FF at O(ρ)
is

F
(1,2L)
S = − α2

s

48π2
CFTF ln4 (ρ) = −x2CFTF

3
. (3.5)

This agrees with the expansion of the exact two-loop result obtained in ref. [65] along
with the result obtained in the high-energy region for the scalar FF at two-loop
in [13, 14]. A necessary first step to obtain the all-order result for the FF is to dress
the only contributing two-loop diagram with soft gluon exchange to obtain three-loop
diagrams; to which we turn our attention.

3.3 The 3-loop diagrams

At three-loops, QGRAF generates a total of 108 diagrams for the same conditions
that were used to generate two-loop diagrams; of which only 13 contribute to the
double-logarithmic approximation. The rest of the diagrams do not contribute as
they either have incorrect topology or simply did not have valid double-logarithmic
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λ cλ wλ dλ

a CF η2(η2 + 2) + ξ2(ξ2 − 2η2 + 2) 26
15

b CF −2ξ1η1 − 1
15

c −CA 2(ξ1 − ξ2)(η1 − η2) 1
15

d −1
2
CA η1(η1 − 2ξ2 + 2) 1

3

e −1
2
CA (η2 − η1)(2− 2ξ2 + η1 + η2)

2
5

f 1
2
CA 2η1(ξ1 − ξ2) − 1

15

g 1
2
CA 2η1(ξ1 − ξ2) − 1

15

h 1
2
CA − CF η2(η2 − 2ξ2 + 2) 11

15

Table 3.1: The reduced color factors cλ, weights wλ and the integrals dλ for 3-loop
diagrams in fig. 3.3. Contribution of the symmetric diagrams can be obtained via
η1 ←→ ξ1 and ξ2 ←→ η2 for rows d-h.

regions. The diagrams of fig. 3.3 can be obtained by adding a leading soft gluon
exchange on the topology of fig. 3.2(b). Their numerators for the amplitudes of the
FF are simplified with the help of FORM [20]. After performing the integrals in the
double-logarithmic region over the soft gluon momentum, the result can be written
as

F
(1,3L)
S = −x3CFTF

3

∑
λ

cλdλ. (3.6)

The sum in eq. (3.6) must include the contribution from the diagrams symmetric to
fig. 3.3(d)-(h). The four-fold integral over the Sudakov parameters for the soft quark
momenta is given by,

dλ = 4!

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2wλ. (3.7)

The reduced color factor cλ, the weight factor wλ, and the result of the integral dλ
are collected in table 3.1. The weight is obtained after performing the integrals in
the double-logarithmic region over the soft gluon momentum l3. Symmetric diagrams
have the same color, while wλ can be obtained by η1 ←→ ξ1 and η2 ←→ ξ2. By adding
all the contributions to the scalar FF at three-loops, eq. (3.6) can be reduced to

F
(1,3L)
S =

1

15
x3(CA − CF )TFCF . (3.8)
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Figure 3.4: (a) The leading 2-loop Feynman diagram for the NLP double-logarithmic
correction to the quark scalar FF. (b), (c) The diagrams with effective soft gluon
exchange incorporating the all-order non-Sudakov corrections to the scalar FF at
NLP. The dark circle represents mass insertion.

Adding this with the two-loop contribution at O(ρ) gives

F
(1)
S = −x2TFCF

3

[
1− xCA − CF

5
+O(x2)

]
= F

(1,2L)
S

[
1− z

5
+O(z2)

]
, (3.9)

with higher order terms corresponding to the diagrams with additional soft gluon
exchanges.

3.4 All-order resummation

The results for the scalar FF at two and three-loop at O(ρ) have been derived
for quark scattering via Higgs boson by direct evaluation so far. This allows us to
perform the all-order resummation by way of exponentiation as we now show. To do
this explicitly, the three-loop result eqs. (3.6) and (3.7) must be slightly modified and
written in terms of the two-loop result eq. (3.5) as

F
(1,3L)
S = 24 x

∑
λ

[
cλ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2wλ

]
F

(1,2L)
S . (3.10)

Unlike eq. (3.8), taking the sum in eq. (3.10) before performing the integrals gives

F
(1,3L)
S = F

(1,2L)
S (−24z)

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2 (2η2ξ2 − 2η1ξ1) .

(3.11)
Applying the technique of factorization in the non-Abelian amplitudes described in
section 2.3 helps write the contribution to the scalar FF as

F
(1)
S = −x2TFCF

3
f(−z), (3.12)

with the function f(−z) incorporating the non-Sudakov double-logarithmic contri-
bution of an arbitrary number of additional soft gluon exchanges on the two-loop
topology of fig. 3.2(b). This implies that the function f(−z) is normalized to the
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two-loop result with f(0) = 1, and is obtained by exponentiating within the integral
of eq. (3.11) to give,

f(z) = 4!

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2
(
e−2zη1ξ1e2zξ2η2

)
. (3.13)

We have obtained the result of the scalar FF that was derived in [13,14]. By comparing
the sum in eq. (3.11) with table 3.1, it is clear that the sum of all contributing diagrams
reduces to effective diagrams which are identical to fig. 3.4(b) and (c). The only
subtlety is related to the fact that for the effective diagram fig. 3.4(b), the integral
over the soft gluon momentum factors out of the inner quark loop. We must simply
modify the reduced color factor from CA to CA−CF and CF to CF −CA in fig. 3.4(b)
and (c) respectively, to account for the color charge non-conservation along the eikonal
lines. These effective diagrams can be derived using the sequence of Ward-Takahashi
identities and momentum shifts for the soft quarks similar to the process described
in section 2.3.3. The result of these transformations for fig. 3.3(g) and (h) are shown
in fig. 3.5. The shift in fig. 3.3(h) is identical to that of fig. 2.3(b) with the gluon
operator G2

µν of the artificial amplitude being replaced by the rest of the scattering
diagram, the closed quark loop attached to the scalar particle. The transformation
of fig. 3.3(g) is almost identical to that of fig. 3.3(h). The main difference is that the
roles of the quark and gluon lines on the edge of the diagram are reversed, resulting
in the reversal of color flow direction. The set of resulting ladder diagrams fig. 3.5(b)
and (d) along with fig. 3.3(a), (b), (c) and (d) complete the eikonal factorization.
Adding these diagrams leads to the factorization of the soft gluon contribution to
one-loop Sudakov factor of eq. (2.38); and the remaining contribution to F (1)

S is given
by fig. 3.4(b) and (c).

Getting back to eq. (3.13), Taylor expansion of f(z),

f(z) = 1 +
z

5
+

11z2

420
+

z3

378
+ · · · , (3.14)

gives loop-by-loop approximation for the scalar FF; as clearly visible from the three-
loop term in eq. (3.9). In general, the nth term in the expansion of the exponential
corresponds to (n+2)-loop diagrams with two soft quark exchanges with the topology
of fig. 3.2(b) and n additional soft gluon exchanges. It is challenging to solve the four-
fold integral entirely and does not provide any real insights into the result but a closed
analytic form for the asymptotic behavior can be obtained. In the next section, we
provide the full derivation for the form of f(±z) as z →∞.
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Figure 3.5: The diagrammatic representation of the Ward-Takahashi identities and
momentum shift for fig. 3.3(g) and (h). The shift from (c) to (d) is identical to that
of fig. 2.3(b), diagrammatically shown in fig. 2.6. The shift from (a) to (b) is almost
identical, with the difference explained in the text.

3.5 Large z asymptotic of f (z)

In the previous section, we encapsulated the all-order result for the coefficient F (1)
S ,

which corresponds to the O(ρ) in the series expansion of the scalar FF in the high-
energy limit, in terms of the function f(z). To calculate the analytical asymptotic
form of f(z) for large z, we introduce an explicit sign in front of the variable z as we
did in section 2.3.5 for evaluation of the large-z asymptotic of g(z). Note that the
representation of the function f(z) is not unique. An alternative representation was
obtained in the analysis of the vector FF and reads [13, 14]

f(z) = 12

∫ 1

0

dη1

∫ 1

η1

dη2

∫ 1−η2

0

dξ2

∫ 1−η1

ξ2

dξ1
[
e2zη1(ξ1−ξ2)e2zξ2(η2−η1)

]
. (3.15)

However, both representations eqs. (3.13) and (3.15) are not suitable for the ana-
lytic evaluation of the large z asymptotic behavior of the function f(z) since the
integrations over the logarithmic variables are entangled. At the same time, we can
rearrange the integration limits in eq. (3.13) preserving the actual integration domain
and transforming it into

f(±z) = 4!

∫ 1

0

dη1

∫ 1−η1

0

dξ1
(
e±2zη1ξ1

) ∫ η1

0

dη2

∫ ξ1

0

dξ2
(
e∓2zη2ξ2

)
. (3.16)

The equivalence of all three representations can be directly verified by Taylor expan-
sion in z with the explicit integration of the resulting polynomial coefficients. How-
ever, in contrast to eq. (3.13) the integration over ξ2 and η2 in eq. (3.16) decouples
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and can be done explicitly with the result

2

∫ η1

0

dη2

∫ ξ1

0

dξ2
(
e∓2zη2ξ2

)
= ±

∫ η1

0

dη2

(
1− e∓2zη2ξ1

η2z

)

= ±1

z
[γE + ln (2zη1ξ1)− Ei(∓2zη1ξ1)] , (3.17)

where the Euler gamma constant γE = 0.57721 . . ., and Ei(x) is the exponential
integral function of x. For the remaining integrals, we must apply the change of
variables from section 2.3.5, ξ1 = y

√
λ and η1 =

√
λ/y with the Jacobian |J | = y−1.

Then eq. (3.16) simplifies to

f(±z) = ±12
∫ 1/4

0

dλ

∫ yH

yL

dy

[
e2zλ

z y

{
γE + ln (2zλ)− Ei(∓2zλ)

}]

f(±z) = ±12
∫ 1/4

0

dλ

[
e±2zλ

z

{
γE + ln (2zλ)− Ei(∓2zλ)

}
ln
(
1 +
√
1− 4λ

1−
√
1− 4λ

)]
.

(3.18)
The further evaluation depends on the sign in front of the argument of f(z). Let
us first look at the case of z → ∞. The exponential factor e2zη1ξ1 = e2zλ provides
enhancement making the integral over λ saturated around the region of maximal value
λ = 1/4. Thus expanding around λ = 1/4 reduces eq. (3.18) to

f(z) ≈ 12
[
γE + ln

(z
2

)
− Ei

(
−z
2

)] ∫ 1/4

0

dλ

[
e2zλ

z

(
2
√
1− 4λ

)]

f(z) = 6

(
2ez

z5

)1/2 [√
π − 2 Γ

(
3

2
,
z

2

)] [
γE − Ei

(
−z
2

)
+ ln

(z
2

)]
. (3.19)

As z →∞, eq. (3.19) reduces to

f(z) ∼
(
72πez

z5

)1/2 [
γE + ln

(z
2

)]
. (3.20)

Thus, there is an exponential enhancement when z →∞. Let us turn our attention to
the evaluation of f(−z). By applying another change of variable λ ≡ 2zλ, eq. (3.18)
is reduced to

f(−z) = 6

z2

∫ z/2

0

dλ

[{
Ei(λ)− γE − lnλ

}
e−λ ln

(
1 +

√
1− 2λ/z

1−
√

1− 2λ/z

)]
. (3.21)

To further evaluate this integral, the asymptotic behavior of the exponential integral
function and the logarithm are required. For very large z,

√
1− 2λ/z ≈ 1−λ/z, thus

the logarithm can be approximated as ln
(

1+
√

1−2λ/z

1−
√

1−2λ/z

)
≈ ln

(
1+1

1−1+λ/z

)
≈ ln

(
2z
λ

)
. Sim-
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ilarly, Ei(λ) ≈ eλ−1
λ

with 1/λ dominating around 0 and the exponential dominating
at very large λ. With these, we get

f(−z) = 6

z2

∫ z/2

0

dλ

[
eλ − 1

λ
+ Ei(λ)− eλ − 1

λ
− γE − lnλ

]
×

e−λ

[
ln
(
2z

λ

)
+ ln

(
1 +

√
1− 2λ/z

1−
√

1− 2λ/z

)
− ln

(
2z

λ

)]
. (3.22)

Expanding the terms into a sum of six integrals gives,

I1 =

∫ z/2

0

dλ

[
eλ − 1

λ
e−λ ln

(
2z

λ

)]

=⇒ I1 ≈
γ2E
2

+
π2

12
+ γE ln (2z)− 3

2
ln2 2 + ln 2 ln z + 1

2
ln2 z, (3.23)

I2 =

∫ z/2

0

dλ

[
eλ − 1

λ
e−λ

{
ln
(
1 +

√
1− 2λ/z

1−
√

1− 2λ/z

)
− ln

(
2z

λ

)}]

=⇒ I2 ≈ −
π2

6
+ 2 ln2 2, (3.24)

I3 =

∫ z/2

0

dλ

[{
Ei(λ)− eλ − 1

λ

}
e−λ ln

(
2z

λ

)]
=⇒ I3 ≈ −

π2

3
, (3.25)

I4 =

∫ z/2

0

dλ

[{
Ei(λ)− eλ − 1

λ

}
e−λ

{
ln
(
1 +

√
1− 2λ/z

1−
√

1− 2λ/z

)
− ln

(
2z

λ

)}]
=⇒ I4 ≈ 0, (3.26)

I5 =

∫ z/2

0

dλ

[{
− lnλ− γE

}
e−λ ln

(
2z

λ

)]
=⇒ I5 ≈

π2

6
, (3.27)

and

I6 =

∫ z/2

0

dλ

[{
− lnλ− γE

}
e−λ

{
ln
(
1 +

√
1− 2λ/z

1−
√

1− 2λ/z

)
− ln

(
2z

λ

)}]

=⇒ I6 ≈ 0. (3.28)

Adding these contributions gives the f(−z) asymptotic,

f(−z) ∼ 3

z2

[{
γE + ln (2z)

}2 − π2

2

]
. (3.29)
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This implies that the amplitude is logarithmically suppressed when z → −∞.
For QCD the parameter z = (CA − CF )x > 0, and since the FF is proportional

to f(−z), in the asymptotic range it scales with the double-logarithmic variable ln2 x

as the factor of z2 cancels with x2 in eq. (3.12). Similarly, in QED CA = 0 makes
z = −CFx < 0, and the leading asymptotic behavior of the FF is proportional to
ex/2.

3.6 Off-shell scalar FF

In the previous sections, we have computed the result for the on-shell scalar FF
i.e., the external quark lines were on-shell and satisfied the relation p2i = m2. Before we
move on to the Higgs production process, we would like to briefly discuss the off-shell
scalar FF; the reason behind will become apparent in the next chapter. The off-shell
“external” momenta are ∆i = (pi−l1)2−m2. In the double-logarithmic approximation,
we can set l21 = m2 for the soft quark momentum, leading to ∆1 = −2p1l1 = −v1q2 and
∆2 = −2p2l1 = −u1q2, and consider the case |∆i| ≫ m2. The FF can be expanded in
ρ and ∆i/q

2 as

FS = Z2
q

∞∑
n=0

[
ρnF

(n)
S +O(∆i/q

2)
]
. (3.30)

Since the terms vanishing for ∆i = 0 cannot generate double-logarithms, we can
ignore them. The coefficient

Z2
q = e−2CF xη1ξ1 (3.31)

represents the usual Sudakov factor, analog of eq. (2.73), computed for the off-shell
external lines. Thus, eq. (3.30) is also normalized such that the leading coefficient
F

(0)
S = 1, and the next coefficient F (1)

S gets power-suppressed double-logarithmic con-
tribution from fig. 3.4(a) i.e., the diagrams with soft quark pair exchange. The analysis
can be extended to the off-shell FF by simply replacing the IR cutoff from m2 to ∆i.
Thus, the lower limit on integration over the parameters ui and vi are changed from
ρ to ∆i/q

2. The off-shell FF differs from the eqs. (3.12) and (3.13) in the on-shell
scalar FF case only by these integration limits. Unlike the on-shell FF, the ηi and ξi

variables are not correlated, and the integration limits are obtained here by simply
ordering these variables along the eikonal lines as ξ1 > ξ2 > ξ3 and η1 > η2 > η3. This
leads to a modification of the upper integration limits in eq. (3.16) with the result

F
(1)
S = 8x2CFTF

∫ η1

0

dη2

∫ ξ1

0

dξ2

∫ η2

0

dη3

∫ ξ2

0

dξ3
(
e−2zη2ξ2e2zη3ξ3

)
, (3.32)

with the exponential factors corresponding to the effective diagrams fig. 3.4(b) and
(c).
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Chapter 4

Higgs production via light quark
mediated gluon fusion

We turn our attention to the Higgs production via quark-mediated gluon fusion
in this chapter. Since the amplitude for this process can only be loop generated, it
can be parameterized as

Mq
ggH = TF

αs

π

yqmq

m2
H

(pν1p
µ
2 − gµνp1p2)Am

µ (p1)A
m
ν (p2)HM

q
ggH , (4.1)

where yq is the quark Yukawa coupling to the Higgs field, mH is the Higgs mass,
Am

µ is the gluon field, H is the Higgs field, TF = 1/2 is known as the index of the
fundamental representation of SU(3), andM q

ggH is the Higgs production FF. Note that
the amplitude is denoted byMq

ggH while the FF is denoted by M q
ggH . The quark mass

factor comes from the chirality flip on the soft quark line. The Higgs coupling to the
quark field also provides another chirality flip, and the associated mass factor is part of
the Yukawa coupling (see eq. (2.11)). The on-shell condition for the external particles
means that p21 = p22 = 0 for the gluons, and q2 = (p1+p2)

2 = 2p2p1 = m2
H for the Higgs

boson with ρ = m2
q/q

2 = m2
q/m

2
H . For the remainder of this problem, mq ≡ m. Recall

that the amplitude is dominated by the contribution from the top (heavy) quark loop
as in the heavy quark limit, the scalar amplitude approaches the value M q

ggH = −2/3ρ
i.e., it is directly proportional to the Higgs boson mass. At the same time for the same
process with the bottom (light) quark loop, the amplitude is suppressed by a factor of
m2

b/m
2
H . But as mentioned in chapter 1, in the asymptotic region, with the help of the

large double-logarithms the effective coupling goes from αs to αs ln2 (m2
b/m

2
H) ≈ 40αs,

necessitating computation of the bottom loop contribution to improve the theoretical
accuracy. In this limit, the FF can be expanded in asymptotic series

M q
ggH = Z2

g

∞∑
n=0

ρnM
(n)
ggH , (4.2)

35



4.1. FACTORIZABLE CONTRIBUTION WITH SINGLE SOFT QUARK
EXCHANGE 36

Figure 4.1: (a) O(mq) and (b), (c) O(m3
q) double-logarithmic contribution to the

ggH amplitude. The dark (empty) circle represents mass (loop momentum) insertion.
The blob corresponds to the off-shell scalar FF at O(m0

q) and O(m2
q).

where the finite coefficients M (n)
ggH depend on ρ only through the power-suppressed

non-Sudakov logarithms, and Z2
g incorporates the entire IR divergence from the on-

shell external gluon lines. This universal Sudakov factor is given by

Z2
g = exp

(
−CAs

−ε

ε2
αs

2π

)
. (4.3)

The leading coefficient M (0)
ggH , that was calculated in refs. [13, 14] will be reproduced

during the evaluation of the next coefficient in the series, M (1)
ggH . Three distinct sources

need consideration:

(i) Factorizable contribution with single soft quark exchange,

(ii) Contribution from triple soft quark exchange,

(iii) Non-factorizable contribution with single soft quark exchange.

The general topology of the diagrams generating contributions to the FF is outlined
in fig. 4.1. Each of the contributions is discussed in sections 4.1 to 4.3 respectively.
Let us now turn our attention to the first group of diagrams and compute their full
contribution.

4.1 Factorizable contribution with single soft quark
exchange

The one-loop single soft quark exchange Higgs production diagram is shown in
fig. 4.2(a). Furry’s theorem does not apply to this case as there is no purely QED
interaction vertex; the diagram with opposite particle flow in the closed quark loop
has exactly equal contribution as fig. 4.2(a). The presence of this quark loop simplifies
the problem significantly as the numerator reduces to a trace. The projector for this
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Figure 4.2: Higgs production via quark mediated gluon fusion at (a) 1-loop, and (b)
2-loop diagram with effective soft gluon exchange. Diagrams with opposite particle
flow for the closed quark loop are not shown.

process is given by

Pµν =
4

(d− 2)

1

q4
[
gµν(p2p1)− p1,µ p2,ν − p1,ν p2,µ

]
; (4.4)

simple derivation for which is in appendix C. The amplitude for fig. 4.2(a) is

Mµν,mn
ggH,1L = −ig2syq

∫
d4l1
(2π)4

Nµν,mn
4.2a

D4.2a

(4.5)

with
Nµν,mn

4.2a = tr
[
(/p1 +

/l 1 +m)γµTm
ij (/l 1 +m)γνT n

ji(/l 1 − /p2 +m)
]
, (4.6)

and
D4.2a = (l21 −m2){(p1 + l1)

2 −m2}{(p2 − l1)2 −m2}. (4.7)

The trace over the SU(3) generator matrices, and the color indices in eq. (4.6) reads
tr (Tm

ij T
n
ji) = TF δ

mn as per eq. (2.13). Appendix C.1 provides full technical details
of the calculation of this diagram starting from diagram generation with QGRAF to
trace evaluation by FORM and integration in the double-logarithmic region with the
Sudakov method. Multiplying the projector, eq. (4.4), after taking the trace over
vector indices reduces to

N4.2a ∼ 4m(1− 4ρ). (4.8)

Only the integral over loop momentum remains; the factors in the numerator corre-
spond to no and double insertion of the soft loop momentum l1 respectively for the
terms proportional to 1 and ρ. These are responsible for the contribution to the O(m)

and O(m3) coefficients, M (0)
ggH and M (1)

ggH respectively. It is important to note we have
encountered the first instance of additional mass factors coming from the on-shell
condition l21 = m2, for the soft quark loop momentum rather than the chirality flip
at the propagator for the O(m3) contribution. With no factors of loop momentum
remaining in the numerator, we introduce the Sudakov parameterization to obtain
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the following soft and eikonal approximations:

l21 −m2 =
[
−2iπδ

(
u1v1q

2 + l21⊥ −m2
)]−1

, (4.9)

1

(pi ± l1)2 −m2
= ± 1

2pil1

 1

1± l21−m2

2pil1

 ≈ ± 1

2pil1

[
1∓ l21 −m2

2pil1
+ · · ·

]
. (4.10)

Only the leading term can contribute as all the subleading terms in the above equa-
tion cancel the soft quark propagator, and cannot generate double-logarithms. Using
2p1l1 = v1(2p2p1) and 2p2l1 = u1(2p2p1), the integral is reduced to,

I4.2a ∝
∫ 1

ρ

dv1
v1

∫ 1

ρ/v1

du1
u1

= ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1 =
ln2 ρ

2
. (4.11)

Combining all the components for the amplitude, from eq. (4.1), the Higgs production
FF for fig. 4.2(a) is [

M q
ggH

]
4.2a

= (1− 4ρ) ln2 ρ. (4.12)

The coefficients, M (n)
ggH , for n = 0 and 1 can simply be read off from the above equation,

and at one-loop we have [
M

(0)
ggH

]
4.2a

= ln2 ρ, (4.13)

and [
M

(1)
ggH

]
4.2a

= −4 ln2 ρ = −4
[
M

(0)
ggH

]
4.2a

. (4.14)

To get the all-order result for the diagrams with single soft quark exchange, we must
dress fig. 4.2(a) with additional leading soft gluon exchanges similar to the artificial
amplitude and the scalar FF. The diagrams at two-loops and higher would be, while
not identical but very similar to that of the artificial amplitude from section 2.3.3.
External line Sudakov corrections factor out into Z2

g , the universal Sudakov factor for
external gluons. The remaining non-Sudakov contribution is given by the effective
gluon exchange Higgs vertex correction diagram fig. 4.2(b) at two-loops. This is
identical to the LP term in eq. (3.31) in the expansion of the off-shell scalar FF,
diagrammatically represented by fig. 4.1(a). To account for the non-conservation of
the color charge along the eikonal lines due to the soft quark exchange the color factor
must be changed from CF to CF − CA [13–15]. The all-order result is then obtained
by exponentiating the two-loop result to give

M
(0)
ggH = ln2 ρ g(z), (4.15)

with g(z) defined by eqs. (2.75) and (2.76). The asymptotic behavior for this function
as ±z → ∞ also has been calculated in section 2.3.5. The main difference between
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Figure 4.3: Higgs production via triple soft quark exchange. Diagrams with opposite
particle flow for the closed quark loops are not included. Only (a) contributes to
double-logarithmic approximation at NNLP. The dark circle represents mass insertion;
additional mass factors can come via the on-shell soft quark momentum.

the all-order result in this problem and the artificial amplitude of section 2.3 is the
sign in front of the parameter z within the function g, which is to say that the color
flows in the opposite direction with respect to each other. Bringing our attention back
to the Higgs problem, since the same diagram(s) generate part of the contribution to
the next order coefficient (see fig. 4.1(b)), the same factorization applies; and we can
write [

M
(1)
ggH

]
1q

= −4 ln2 ρ g(z) = −4M (0)
ggH . (4.16)

This is only partial contribution to the coefficient M (1)
ggH . To get the complete result

at NNLP, we must investigate the diagrams for the other two sources as well.

4.2 Contribution from triple soft quark exchange

Out of 54 QGRAF generated diagrams at three-loops, only the diagrams shown
in fig. 4.3 require consideration. Of these, only fig. 4.3(a) contributes to the O(m3)

of the approximation with the contribution starting at higher powers for the rest.
It is clear that fig. 4.3(a) has two-loop off-shell scalar FF substructure of fig. 3.4(a)
present within i.e., it has the structure of fig. 4.1(c). Corresponding correction to the
FF is obtained by including the NLP term Z2

q F
(1)
S from eq. (3.30) into the integral

eq. (4.11). This way the result for the triple quark exchange at three-loops can be
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Figure 4.4: Effective diagrams with triple soft quark exchange for the Higgs produc-
tion with vertex correction by effective gluon exchange on the topology of fig. 4.3(a).
Each diagram corresponds to an exponential in eq. (4.20). The dark circle represents
mass insertion.

expressed as

[
M

(1)
ggH

]
4.3a

=
α2
sTFCF

π2
ln6 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2

∫ η2

0

dη3

∫ ξ2

0

dξ3,

[
M

(1)
ggH

]
4.3a

=
x2TFCF

45
ln2 ρ = −x

2TFCF

180

[
M

(1)
ggH

]
4.2a

. (4.17)

The integrals over the Sudakov parameters corresponding to the loop momenta l1,2,3
in the fig. 4.3(a) are double-logarithmic when u1 < u2 < u3 and v1 < v2 < v3 with
u1v1 > ρ for the “outer” loop. The expression above accounts for the diagrams with
opposite particle flow for the closed quark loops. Appendix C.2.1 shows the complete
evaluation of all the triple soft quark exchange diagrams. For resummation, we dress
fig. 4.3(a) with additional leading soft gluon exchange to obtain the next order of
diagrams. All diagrams reduce to three effective diagrams shown in fig. 4.4 with
eikonal color non-conservation due to the soft quark exchanges. The full contribution
of the effective diagrams to the Higgs production FF can be written as

[
M

(1)
ggH

]
4.4

= 64x2TFCF ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2∫ η2

0

dη3

∫ ξ2

0

dξ3 (2zη1ξ1 − 2zη2ξ2 + 2zη3ξ3) . (4.18)

Exponentiating the integrand in the above equation results in the all-order contribu-
tion from this source, normalized to the three-loop result eq. (4.17) as

[
M

(1)
ggH

]
3q

= ln2 ρ
x2TFCF

45
h(z) (4.19)
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n 1 2 3 4 5 6

n22nn!hn
3
7

8
9

90
77

59392
45045

5360
3861

7559936
5360355

n!jabn
17
28

83
175

241
550

47984
105105

3645
7007

97228
153153

Table 4.1: The normalized coefficients in the Taylor expansion of the function h(z)
and jab(z) from n = 1 to 6.

with the six-fold integral representation of the function h(z) given by

h(z) = 6!

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2∫ η2

0

dη3

∫ ξ2

0

dξ3
(
e2zη1ξ1e−2zη2ξ2e2zη3ξ3

)
. (4.20)

The Taylor expansion h(z) = 1 +
∑∞

n=1 hnz
n can be obtained by expanding the ex-

ponents with the nth term corresponding to (n + 3)-loop contribution. The first six
coefficients for the series are listed in table 4.1. We can now turn our attention to the
final group of diagrams, and investigate the non-factorizable contribution.

4.3 Non-factorizable contribution with single soft
quark exchange

This group of diagrams corresponds to a new source where an eikonal gluon line
connects the soft and eikonal quark lines on the single soft quark exchange topology.
We refer to them as non-factorizable because their contribution does not factor out
into effective Higgs boson vertex correction. We must first consider the two-loop
diagram to understand the origin of the contribution. The double-logarithmic scaling
can appear for fig. 4.5(a) when the gluon emitted by the soft quark line is eikonal
i.e., the propagator is proportional to 1/(l1l2). Since the momenta p2 and l1 act as
the external momentum for l2, the standard double-logarithmic scaling for l2 appears
with the eikonal factor 1/(p2l1). For the integral over l1 to get the double-logarithms,
this eikonal factor must be cancelled by the numerator. However, the appropriate
tensor structure does not appear in the Dirac chain of the numerator due to the
transverse polarization of the external gluons. In other words, upon projecting the
numerator of fig. 4.5(a) to the FF, appropriate factors do not appear to generate the
double-logarithms at two-loops.

We can turn our attention to three-loops where the appropriate structure does ap-
pear in the numerator. The diagrams of fig. 4.6 are divided into Abelian (fig. 4.6(a,b))
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Figure 4.5: The non-factorizable Higgs production diagrams with an additional
eikonal gluon (represented by the wavy line) being emitted by the soft quark (a)
at 2-loops, and (b) effective diagram at 3-loops that gives the total 3-loop QCD
contribution from this source; it does not represent the all-order contribution in this
case. Symmetric diagrams and diagrams with opposite particle flow for the closed
quark loop are not included. The dark circle represents mass insertion.

and non-Abelian (fig. 4.6(c,d)) subgroup. Let us begin with nonplanar topology
fig. 4.6(a), we define the Sudakov parameterization as l2 = u2l1 + v2p2 + l2⊥ and
k′1 = r′1p1 + w′

1p2 + k′1⊥, and assume that in the light-cone coordinates p1 = p−1 and
p2 = p+2 . The double-logarithmic integral over l2 results in the factor 1/(p2l1) =

1/(p+2 l
−
1 ) which has the same structure as the lower eikonal quark propagator

S(l1 − k′1 − p2) ≈ −
γ−

2l−1
+ · · · , (4.21)

where we used the relation k′−1 < l−1 in the double-logarithmic region. This factor
of 1/l−1 must be cancelled to obtain double-logarithms. We find that only the upper
eikonal quark line has the relevant tensor structure in the numerator

S(p1 + l1 − k′1) ≈
γ+

2k′+1

(
1 +

l−1 − k′−1
p−1

)
+ · · · , (4.22)

as indicated in fig. 4.6(a) as real (virtual) gluons have transversal (light-cone) po-
larization. The integrals obtain double-logarithmic scaling for v1 < w′

1 < 1 and
u1u2 < r′1 < u1, with on-shell conditions for the soft quark propagators requiring
u1v1 > ρ and u2v2 > ρ/u1. Then the contribution of fig. 4.6(a) to M (1)

ggH reduces to

[
M

(1)
ggH

]
4.6a

= −8z2 ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

0

dη2

∫ 1−ξ1−η2

0

dξ2

∫ η1

0

dη3

∫ ξ1+ξ2

ξ1

dξ3,

[
M

(1)
ggH

]
4.6a

= −8z2 ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

0

dη2

∫ 1−ξ1−η2

0

dξ2(η1ξ2),

[
M

(1)
ggH

]
4.6a

= −
(
z ln ρ
3

)2

, (4.23)
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for z = −CFx. Note that the integral over Sudakov parameters r′1 and w′
1 results in

the standard one-loop Sudakov correction factor 2zη1ξ2. Turning our attention to the
planar diagram fig. 4.6(b), integration over soft gluon momentum k1 = r1u1 +w1v1 +

k1⊥ generates the factor 2zη1ξ1 for v1 < w1 < 1 and u1 < r1 < 1 corresponding to
l−1 < k−1 in the logarithmic region. In contrast to the nonplanar case, the required l−1

term is generated in two ways. The lower eikonal quark propagator can be expanded
as

S(l1 − k1 − p2) ≈ −
γ−

2k−1

(
1 +

l−1
k−1

)
+ · · · , (4.24)

while the upper quark propagator has an expansion similar to eq. (4.22),

S(p1 − k1 + l1) ≈ −
γ+

2k+1

(
1 +

l−1 − k−1
p−1

)
+ · · · . (4.25)

The relevant structure is generated by product of l−1 /k−1 term from eq. (4.24) and
k−1 /p

−
1 term from eq. (4.25), which cancels with the product of the leading term

from eq. (4.24) and l−1 /p
−
1 term from eq. (4.25). Thus the contribution of the planar

diagram to the FF vanishes in the double-logarithmic region. This cancellation is
specific to three-loops and does not hold for higher-order diagrams with multiple soft
gluon exchanges in the planar topology. Moreover, for the non-Abelian diagrams,
the contribution of the soft gluon momentum coming from the three gluon vertex is
not included. Though such a term produces a double-logarithmic contribution for
the given diagram, it is proportional to the momentum of the on-shell soft gluon and
after we cut the corresponding gluon line it vanishes in the sum of the diagrams by
the Ward identity. Complete evaluation for these diagrams is given in appendix C.3.
After factoring out the IR divergence, the remaining IR finite result reduces to the
effective diagram fig. 4.5(b), which is the same as the Abelian diagram fig. 4.6(a) with
effective soft gluon exchange. Contribution to M (1)

ggH at three-loops reduces to

[
M

(1)
ggH

]
4.5b

= −(CA − CF )(CA − 2CF )x
2

9
ln2 ρ, (4.26)

with the (CA−CF ) factor accounting for the eikonal color charge variation due to the
soft quark. While emission of the eikonal gluon provides the (CA − 2CF ) factor, and
accounts for the eikonal quark and antiquark changing into color octet.

Resummation requires dressing fig. 4.5(a) with multiple additional soft gluon ex-
changes to get higher-order diagrams. Obtaining the full result would in turn require
systematic treatment of factorization in QCD. This is a rather challenging problem
due to the gluon self-interactions; specifically, further soft emissions by the eikonal
gluon itself start contributing from four-loops. Thus full QCD analysis to obtain the
all-order contribution is beyond the scope of our current work.
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Figure 4.6: The 3-loop non-factorizable Higgs production diagrams with an addi-
tional eikonal gluon (represented by the wavy line) being emitted by the soft quark
where (a) and (b) are Abelian, while (c) and (d) are non-Abelian. Symmetric di-
agrams and diagrams with opposite particle flow for the closed quark loop are not
included. The dark (empty) circle represents mass (loop momentum) insertion.

4.4 Higgs production FF at NNLP

So far we have obtained the all-order result for the factorizable contributions to
Higgs production from diagrams with single and triple soft quark exchanges. We
also obtained the non-factorizable contribution from diagrams with single soft quark
exchange at three-loops. Previous resummation results were written in terms of the
functions g(z), f(z), and h(z) corresponding to single, double, and triple soft quark
exchanges respectively. These functions were also normalized to the base one, two, and
three-loop diagrams. Similarly, the non-factorizable contribution can be normalized
to the three-loop result of eq. (4.26); we denote this resummation via the function
j(z). We can finally write down the NNLP coefficient in the asymptotic expansion of
the Higgs production FF in the high-energy limit as

M
(1)
ggH = ln2 ρ

[
−4g(z) +

{
TFCF

45
h(z)− (CA − CF )(CA − 2CF )

9
j(z)

}
x2
]
. (4.27)

As mentioned, deriving the all-order full QCD result for the function j(z) is beyond
the scope of our current work. Instead, we consider two complementary limits: (i)

the large-Nc limit of QCD, and (ii) the Abelian limit. Though this gives only an
approximate result, such an analysis is quite instructive. Indeed, the large-Nc limit
catches the qualitative behavior of real QCD and very often gives reasonable quan-
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titative estimates of the perturbative coefficients. At the same time, the Abelian
gauge group includes all-order non-factorizable corrections and therefore represents
the general case for the mass-suppressed amplitudes at the NNLP.

4.4.1 The large-Nc limit

The large number of colors limit is defined as Nc →∞ with simultaneously g → 0

such that the product λ ≡ g2Nc ≈ αsNc remains constant [66]. The coefficient of the
function j in this approximation vanishes since

x2(CA − 2CF ) ∼ α2
s

(
Nc −

N2
c − 1

Nc

)
= α2

s

1

Nc

→ 0. (4.28)

While the same for the function h reads

x2CF ∼ α2
s

(
N2

c − 1

2Nc

)
≈ α2

sNc → 0. (4.29)

Thus, in this limit the dependence of the coefficient M (1)
ggH reduces to the function g

with z = (CA − CF )x ≈ Ncx/2;

M
(1)
ggH ≈ −4 ln2 ρ g

(
Ncx

2

)
. (4.30)

Next, we consider the Abelian limit.

4.4.2 The Abelian limit

In this limit, the self-interactions between the gluons are absent, but the analysis
of the function j(z) is still highly non-trivial. We consider the case of n soft gluon
exchanges. Contribution from which is generated by a diagram with m′ leading soft
gluon exchanges with the topology of fig. 4.6(a), and m = n−m′ exchanges with the
topology of fig. 4.6(b); all possible permutations of the n vertices are along the upper
eikonal quark line. We denote the momenta of these gluons by k′i and ki respectively.
All n gluon exchanges result in a factor of l−1 from the upper eikonal quark propagator
similar to eqs. (4.22) and (4.25). After the sum over all the permutations of the n
vertices on the upper eikonal line, the integral over k′+1 and k+1 factorizes. Similarly, the
sum over m′!m! permutations of vertices on the lower eikonal line, the integrals over
k′−1 and k−1 also factorize within each group. This results in n-loop soft contribution
of

n
(2zη1ξ2)

m′

m′!

(2zη1ξ1)
m

m!
, (4.31)
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Figure 4.7: An example of a higher order Abelian diagram with multiple soft gluon
exchanges on the fig. 4.5(a) topology. In this scenario m′ = 5, and m = 4. As
outlined in the text, the momenta ki for i = 1, 2, . . . ,m are labelled from the eikonal
gluon vertex (eikonal gluon represented by the wavy line) to the Higgs vertex and
are labelled at the vertices of the second group on the lower eikonal line. Here,
f1 = 4, f2 = 3, f3 = 6, and f4 = 1. The numbers from 1 to 9 enumerate the vertices
on the upper eikonal quark line, resulting in j′ = 4 for the vertices 1, 2, 3, 4, and j = 3
due to the vertices 1, 3, 4.

where z = −CFx since CA = 0 in the Abelian approximation. When all n exchanges
are of type fig. 4.6(a) i.e., m = 0 and n = m′, eq. (4.31) reduces to

(2zη1ξ2)
m′

(m′ − 1)!
. (4.32)

Analysis of the l−1 terms originating from the denominator of the lower eikonal quark
propagators similar to eq. (4.24) is more involved. Only soft gluons from the sec-
ond group, fig. 4.6(b), can generate this factor from the expansion of the following
expression

f1k
−
1 + · · ·+ fmk

−
m

(k−1 + l−1 ) . . . (k
−
1 + · · ·+ l−1 )

; (4.33)

the gluon momenta are labelled from eikonal gluon to the Higgs boson vertex as shown
in fig. 4.7. fi is the number of the eikonal propagators carrying the momentum ki on
the upper quark line for a given diagram. Rewriting the numerator of eq. (4.33) as

fm(k
−
1 + · · ·+ k−m + l−1 )+

(fm−1 − fm)(k−1 + · · ·+ k−m−1 + l−1 )+

(f1 − f2)(k−1 + l−1 )− f1l−1 ,

(4.34)

results in the cancellation of one of the terms in the denominator of eq. (4.33) by each
term except for the last one. The cancellation removes the necessary scaling to obtain
the double-logarithms; thus we only need to consider the f1l−1 term which corresponds
to the soft gluon next to the eikonal gluon vertex. To obtain the total result, the
coefficients f1 must be summed over the diagrams with all possible permutations of
the remaining vertices. Let us perform the convenient double-logarithmic integrals
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over k′i and ki first. Recall that in the logarithmic region, the Sudakov parameters are
ordered along the eikonal lines, thus the n-fold integral for each diagram over w′

i and
wi gives ηn1 /n!; while m and m′-fold integral over ri and r′i gives ξm1 /m! and ξm

′
2 /m′!

respectively. The combined n-loop factor is

(2zη1ξ2)
m′
(2zη1ξ1)

m

n!m′!m!
. (4.35)

Summation over the permutations of the m′ and (m − 1) remaining vertices within
each group on the lower quark line can be performed as f1 only depends on the routing
of k1, and is independent of all other soft gluon momenta; this results in

m′!(m− 1)! (4.36)

for m > 0. Now let j′ and j be the number of vertex with momentum k1 in a sequence
of all n and m vertices on the upper quark line respectively, counted from the Higgs
boson vertex. Then f1 = j′ for a given diagram, and the sum over all gives

m∑
j=1

j+m′∑
j′=j

(j′ − 1)!

(j − 1)!(j′ − j)!
(n− j′)!

(m− j)!(m′ + j − j′)!
j′ =

(−1)m′+1m(m+ 1)(n+ 1)Pochhammer [−n,m′ − 1]

2m′!
, (4.37)

where the combinatorial factors in eq. (4.37) corresponds to the number of ways m′

ordered vertices from the first group, and m − 1 vertices from the second group for
given j′ and j can be arranged. The Pochhammer function is defined as

Pochhammer [n,m] = n(n+ 1)(n+ 2) · · · (n+m− 1) (4.38)

Plugging this definition in eq. (4.37) gives

Pochhammer [−n,m′ − 1] = (−n)(−n+ 1) · · · (−n+m′ − 2)

= (−1)m′−1n(n− 1) · · · (n−m′ + 2)

= (−1)m′−1 n!

(n−m′ + 1)!
= (−1)m′−1 n!

(m+ 1)!
. (4.39)

We have used n = m′+m and the fact that all m, m′, and n are non-negative integers.
Substituting eq. (4.39) back into eq. (4.37) gives

m∑
j=1

j+m′∑
j′=j

(j′ − 1)!

(j − 1)!(j′ − j)!
(n− j′)!

(m− j)!(m′ + j − j′)!
j′ =

n!

m!m′!

m(n+ 1)

2
. (4.40)
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Bringing the factors together from eqs. (4.34) to (4.36) and (4.40) results in

− (2zη1ξ2)
m′
(2zη1ξ1)

m

n!m′!m!
m′!(m− 1)!

n!

m!m′!

m(n+ 1)

2
= − n+ 1

2m′!m!
(2zη1ξ2)

m′
(2zη1ξ1)

m.

(4.41)
Adding eqs. (4.31) and (4.41) gives

m+m′ − 1

2m′!m!
(2zη1ξ2)

m′
(2zη1ξ1)

m, (4.42)

the total for m > 0. The dependence on m and m′ factorizes, allowing the direct
summation over the number of soft gluons in each group;

∞∑
m′=0

(2zη1ξ2)
m′

m′!

[
∞∑

m=0

{
m+m′ − 1

2m!
(2zη1ξ1)

m

}
+
m′ + 1

2

]
(4.43)

where the last term is added to obtain correct m = 0 contribution, eq. (4.32). It is
simpler to sum over each term in the above equation individually; these sums are

∞∑
m′=0

[
(2zη1ξ2)

m′

m′!

] ∞∑
m=0

[ m
2m!

(2zη1ξ1)
m
]
= e2zη1ξ2

[
0 +

1

2

∞∑
m=1

(2zη1ξ1)
m−1

(m− 1)!
(2zη1ξ1)

]

=
e2zη1ξ2e2zη1ξ1

2
(2zη1ξ1), (4.44)

∞∑
m′=0

[
(2zη1ξ2)

m′

m′!
m′
] ∞∑

m=0

[
(2zη1ξ1)

m

2m!

]
=
e2zη1ξ2e2zη1ξ1

2
(2zη1ξ2), (4.45)

∞∑
m′=0

[
(2zη1ξ2)

m′

m′!

] ∞∑
m=0

[
−(2zη1ξ1)

m

2m!

]
= −e

2zη1ξ2e2zη1ξ1

2
, (4.46)

∞∑
m′=0

[
(2zη1ξ2)

m′

m′!

m′

2

]
=
e2zη1ξ2

2
(2zη1ξ2), (4.47)

and
∞∑

m′=0

[
(2zη1ξ2)

m′

m′!

1

2

]
=
e2zη1ξ2

2
. (4.48)

Putting factors from eqs. (4.44) to (4.48) together, we obtain,

eq. (4.43) = e2zη1(ξ1+ξ2)

2

[(
e−2zη1ξ1 − 1 + 2zη1ξ1

)
+ (2zη1ξ2)

(
1 + e−2zη1ξ1

)]
= (2zη1ξ2)e

2zη1(ξ1+ξ2)

[
1 +

e−2zη1ξ1 − 1

2
+
e−2zη1ξ1 − 1 + 2zη1ξ1

4zη1ξ2

]
. (4.49)

It is important to note that the contribution of soft gluon exchanges from both groups
factorizes and exponentiates in the final result. After factoring out the leading soft
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gluon contribution 2zη1ξ2, we obtain following form for the integral representation of
j(z) in the absence of gluon self-coupling

jab(z) = 72

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

0

dη2

∫ 1−η2−ξ1

0

dξ2
[
η1ξ2e

2zη1(ξ1+ξ2)
]

[
1 +

e−2zη1ξ1 − 1

2
+
e−2zη1ξ1 − 1 + 2zη1ξ1

4zη1ξ2

]
, (4.50)

with z = −CFx. First six coefficients of the Taylor expansion jab(z) = 1+
∑∞

n=1 j
ab
n z

n

are given in table 4.1.

4.4.3 Discussion

In this section, we compare our analysis to the available results obtained by dif-
ferent methods and discuss the phenomenological applications to the Higgs boson
physics at the LHC. Loop by loop perturbative expansion of the full coefficient in
eq. (4.27) is

M
(1)
ggH = ln2 ρ

[
−4− 2

3
(CA − CF )x

]
+

ln2 ρ

[
x2

45

(
TFCF − 14C2

F + 23CFCA − 9C2
A

)
+ c3x

3 + · · ·
]
,

(4.51)

with the exact result up to three-loops given by terms O(x2) in the double-logarithmic
region of the high-energy or small mass approximation. The four-loop coefficient
c3 = −N3

c /840 in the large-Nc approximation, and in the Abelian approximation
c3 =

TFC2
F

210
+

13C3
F

90
. The expansion of the exact analytic result at two-loops from ref. [67]

agrees with the two-loop term in eq. (4.51). Numerical result for ggH amplitude in the
high-energy approximation was obtained in ref. [58]. 0.0005738811728 is the numeric
coefficient of the double-logarithmic term L6

s/z
2 in eq. (C.1) of [58]; where the authors

of [58] define the scale ratio as “z”, which is equivalent to 1/(4ρ) as per the notations
used in our calculation. Extracting the coefficient from eqs. (4.1) and (4.51) for L6

s/z
2

term results in
1

23040
(−TFCF + 14C2

F − 23CFCA + 9C2
A); (4.52)

this agrees with the numerical value from [58]. The gluon fusion to Higgs boson result
can be transformed into the Higgs boson to two photon decay by changing the color
factor of the external lines from CA to zero. Thus CA − CF → −CF replacement
is required in eq. (4.26), and in the definition of the variable z in eq. (4.27). Using
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similar notations, for the Higgs decay FF we get

M
(1)
Hγγ = ln2 ρ

[
−4 + 2

3
CFx+

x2

45

(
TFCF − 14C2

F + 5CFCA

)
+ · · ·

]
. (4.53)

Numerical result for Hγγ amplitude obtained in ref. [59] has 0.001099537037 as the
coefficient of the L6

s/z
2 term in eq. (C.1); where z is the same scale ratio as that

in [58]. Extracting the coefficient from eqs. (4.1) and (4.53) for L6
s/z

2 term results in

1

3840
(−TFCF + 14C2

F − 5CFCA), (4.54)

and agrees with the numerical value from [59].
Finally, let us consider the asymptotic behavior of the all-order result for the

Higgs production FF in the high-energy or small mass approximation. As mentioned
earlier, in QCD with large-Nc approximation, eq. (4.27) reduces to

M
(1)
ggH = −4 ln2 ρ g

(
Ncx

2

)
. (4.55)

Since the argument of the function g is positive, the asymptotic behavior is determined
by eq. (2.81) i.e., the amplitude is exponentially enhanced. Note that we take the
Nc →∞ limit first, and in general, this limit may not commute with the kinematical
limit of z →∞. Similarly, in the Abelian approximation the asymptotic behavior of
the functions in eq. (4.27) as z → −∞ are

g(−z) ∼ ln 2z + γE
z

, h(−z) = O(1/z3), jab(−z) ∼ 9

2z2
. (4.56)

With CF = 1 and CA = 0 in the Abelian approximation, the coefficient, eq. (4.27),
asympotically approaches the value M (1)

ggH = − ln2 ρ. Thus, the double-logarithmic
corrections effectively reduce the LO coefficient, eq. (4.14), by factor four.

To estimate the effect of the high order term we have computed, for physical
values of the parameter; let us rewrite the coefficient M (1)

ggH with respect to M (0)
ggH ,

1 + ρ

[
−4 +

{
TFCF

45
h(z)− (CA − CF )(CA − 2CF )

9
j(z)

}
x2

g(z)

]
. (4.57)

In the large-Nc approximation the above equation reduces to 1−4ρ with ρ ≈ 1.6×10−3

for bottom quark, which amounts to approximately 0.64% negative correction to the
O(m) contribution. In this limit, the dependence of eq. (4.57) on x disappears and
it becomes valid for both gluon and photon external lines. Thus, we get a universal
all-order estimate of the NNLP contribution to the production and decay processes.
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Chapter 5

Summary

In this thesis, we have addressed one of the challenging problems of the modern
quantum field theory: the high-energy asymptotic behavior of the power-suppressed
scattering amplitudes. We focused on the massive quark scattering, and the light
quark loop mediated Higgs boson production and decays in the double-logarithmic
approximation.

5.1 Massive quark FF

The quark scattering has been studied through the second order of the small
quark mass expansion. The asymptotic behavior of the corresponding FF at the NLP
is determined by the non-Sudakov double-logarithmic corrections resulting from the
eikonal color charge non-conservation in the process with the exchange of the soft vir-
tual quark pair. They are described by a universal function that shows exponential
growth for the large values of the double-logarithmic variable in QED and a loga-
rithmic scaling in QCD. We have presented for the first time the complete analytic
asymptotic results for this function (eqs. (3.20) and (3.29)). At O(α3

s) the result has
been recently confirmed through the direct evaluation of the three-loop vector, axial,
scalar, and pseudoscalar FF [68].

5.2 Higgs production via gluon fusion

The Higgs boson amplitude has been studied through the third order of the small
quark mass expansion. To our knowledge, this is the first example of the renor-
malization group analysis at the NNLP. The double-logarithmic corrections to the
O(m3) Higgs boson production and decay amplitudes are induced by single and triple
soft quark exchanges. This is the first example where the mass suppression of the
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double-logarithmic contribution is not entirely associated with the chirality flip on a
fermion line. Starting with three-loops a new source of the double-logarithmic cor-
rections opens up with the emission of an additional virtual eikonal gluon by the
soft quark. Our analytic result agrees with the previous numerical evaluation of the
three-loop QCD corrections to the Higgs boson production [58] and two photon de-
cay [59]. Beyond three-loops the all-order double-logarithmic asymptotic behavior
of the amplitudes has been derived in two complementary approximations. In the
large-Nc limit, which is supposed to catch the qualitative behavior of real QCD, the
structure of the double-logarithmic corrections significantly simplifies and becomes
identical to the one of the leading O(m) contribution, which is exponentially en-
hanced for the large values of the double-logarithmic variable. The Abelian limit
with CA = 0, though less phenomenologically relevant, reveals a more complex struc-
ture of the double-logarithmic contributions and represents the general case for the
mass-suppressed amplitudes at the NNLP.

We have also presented a quantitative estimate of the accuracy of the high-order
calculations based on the small mass expansion for the Higgs boson production and
decays mediated by the bottom quark loop, which may become relevant with the
permanently increasing accuracy of the QCD predictions [69]. Based on the double-
logarithmic analysis we conclude that neglecting the terms suppressed by the mass
ratiom2

b/m
2
H in such a calculation introduces a relative error at the scale of one percent

in every order of the perturbative expansion. Our result can also be generalized to
estimate the high-order subleading top quark mass effects on the double Higgs boson
production in the high-energy limit [70, 71], where the role of the NNLP terms could
be significant.
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Appendix A

Gamma matrix identities

Here we list the most useful gamma matrix identities from Dirac algebra, which
are used throughout the calculations presented in this thesis.

{γµ, γν} = 2gµν (A.1)

/a = aµγ
µ = aνγµgµν = aµγµ = aνγµg

µν (A.2)

/a/b + /b/a = 2(a · b) (A.3)

gµνgµν = d (A.4)

γµγµ = d (A.5)

γµγνγµ = (2− d)γν (A.6)

γµ/aγµ = (2− d)/a (A.7)

γµγαγβγµ = 4gαβ + (d− 4)γαγβ (A.8)

γµ/a/bγµ = 4(a · b) + (d− 4)/a/b (A.9)

γµγαγβγνγµ = −2γνγβγα − (d− 4)γαγβγν (A.10)

γµ/a/b/cγµ = −2/c/b/a− (d− 4)/a/b/c (A.11)

γµγαγβγνγσγµ = 2γαγσγνγβ + 2γβγνγσγα + (d− 4)γαγβγνγσ (A.12)

γµ/a/b/c/dγµ = 2/a/d/c/b + 2/b/c/d/a+ (d− 4)/a/b/c/d (A.13)

tr [Odd Number of Gamma Matrices] = 0 (A.14)

tr (γµγν) = 4gµν (A.15)

tr
(
/a/b
)
= 4(a · b) (A.16)

tr
(
γµγνγαγβ

)
= 4

(
gµνgαβ − gµαgνβ + gµβgνα

)
(A.17)
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tr
(
/a/b/c/d

)
= 4
[
(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)

]
(A.18)

tr (γαγβγµγνγργσ) = 4
[
gαβ (gµνgρσ − gµρgνσ + gµσgνρ)

− gαµ
(
gβνgρσ − gβρgνσ + gβσgνρ

)
+ gαν

(
gµβgρσ − gµσgβρ + gβσgµρ

)
− gαρ

(
gβµgνσ − gνβgµσ + gβσgµν

)
+ gασ

(
gµνgρβ − gµρgνβ + gµβgνρ

) ]
(A.19)
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Appendix B

Evaluation of quark scalar FF

In this appendix, we provide the technical details of the evaluation of the scalar FF
for the one and two-loop diagrams. While we already know that the one-loop diagram
can only contribute to the LP Sudakov logarithms, it is included as it provides a simple
and interesting insight into these calculations.

B.1 The 1-loop diagram

For the one-loop diagram shown in fig. 3.1, we can write down the amplitude as

iM =

∫
d4l

(2π)4
q̄(p2)

(
igsγ

αT a
jk

) i(/p2 − /l +m
)

(p2 − l)2 −m2
yq

i
(
/p1 − /l +m

)
(p1 − l)2 −m2

(
igsγ

βT b
ki

) (−igαβδab)
l2

q(p1)

= −i(4παs)CF δijyq

∫
d4l

(2π)4
q̄(p2)N1L q(p1)

l2{(p1 − l)2 −m2}{(p2 − l)2 −m2}
, (B.1)

where we have used eq. (2.14) for the generator matrices, and omitted the trivial
Kronecker deltas related to the quark propagators in the numerator. With the help
of gamma matrix identities of appendix A, the numerator can be simplified in the
following manner:

N1L = γα
(
/p2 − /l +m

) (
/p1 − /l +m

)
γα,

N1L ≈ γα
(
/p2 +m

) (
/p1 +m

)
γα, (B.2)

N1L = 4p2p1 + (d− 4)/p2/p1 + (2− d)m(/p2 + /p1) +m2d,

N1L = 4p2p1 +m2
(
d− 4 + 2− d+ 2− d+ d

)
,
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Figure B.1: The 1-loop diagram. The momentum conventions are shown in fig. 3.1.
The Greek letters represent the vector indices, while color indices are denoted by the
Latin letters.

N1L = 4p2p1, (B.3)

where we have ignored the loop momentum as terms with higher powers of loop
momentum in the numerator cannot generate double-logarithms, and utilized the
equation of motion, eq. (2.12), once there are no gamma matrices in between the
spinor and corresponding external momentum. It is from the Dirac algebra that the
terms proportional to the quark mass vanish but one must be careful and work in d-
dimensions. As previously mentioned, the remaining integral is the standard Sudakov
integral of eq. (2.38) which factors out into the function Z2

q of eq. (3.3).

B.2 The 2-loop diagrams

All the non-trivial two-loop diagrams for the quark scattering by Higgs boson are
shown in fig. 3.2. To show that fig. 3.2(a), redrawn here with the momentum con-
figuration in fig. B.2(a), does not generate the power-suppressed double-logarithmic
contribution to O(ρ) coefficient of the scalar FF in the high-energy asymptotic series,
we focus on the Dirac chain in the numerator

N3.2a = γα(/l 1 +m)γρ(/l 1 + /l 2 − /p1 +m)(/l 1 + /l 2 − /p2 +m)γα(/l 2 +m)γρ. (B.4)

In the double-logarithmic region with negligible loop momenta, this reduces to

N3.2a ≈ m2γαγρ(m− /p1)(m− /p2)γαγρ,

N3.2a = m2γαγρ(m2 −m/p1 −m/p2 + /p1/p2)γαγρ,

N3.2a = m2γα
[
(2− d)m2γα − 4mp1,α − (d− 4)m/p1γα − 4mp2,α

− (d− 4)m/p2γα − 2γα/p2/p1 − (d− 4)/p1/p2γα
]
,
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Figure B.2: The momentum configurations for fig. 3.2(a) and (c). The dark vertex
represents the Higgs boson with momentum q = p2 − p1 coming into the vertex.

N3.2a = m2
[
d(2− d)m2 − 4m/p1 − (d− 4)(2− d)m/p1 − 4m/p2

− (d− 4)(2− d)m/p2 − 2d/p2/p1 − 4(d− 4)p2p1 − (d− 4)2/p1/p2
]
,

N3.2a = m2
[
d2(2m2 − 2p2p1) + d(12p2p1 − 20m2) + 24m2 − 16p2p1

]
. (B.5)

We can now plug in d = 4− 2ε with ε→ 0 to get

N3.2a = −24m4. (B.6)

Thus, fig. 3.2(a) cannot generate contribution to F (1)
S in the double-logarithmic region.

We leave the calculation of fig. 3.2(b) for last and tackle the remaining diagrams first,
starting with fig. 3.2(c), shown with momentum configuration in fig. B.2(b). For this
diagram also, it is sufficient to focus on the Dirac chain in the numerator and simplify
it for the small loop momenta in the double-logarithmic region:

N3.2c = γα(/p2 − /l 1 +m)γρ(/p2 − /l 1 − /l 2 +m)(/p1 − /l 1 − /l 2 +m)γρ(/p1 − /l 1 +m)γα,

N3.2c = γα(m+ /p2)γ
ρ(m+ /p2)(m+ /p1)γρ(m+ /p1)γα. (B.7)

Further evaluation is simpler if we focus on parts of the numerator rather than the
entire Dirac chain. Let us look at nρ

1 ≡ (m+ /p2)γ
ρ(m+ /p2):

nρ
1 = m2γρ +mγρ/p2 +m/p2γ

ρ + /p2γ
ρ
/p2,

nρ
1 = m2γρ +mp2,σ (γ

ργσ + γσγρ) + /p2γ
ργσp2,σ,

nρ
1 = m2γρ +mp2,σ (2g

σρ) + /p2 (2g
σρ − γσγρ) p2,σ,

nρ
1 = m2γρ + 2mpρ2 + 2/p2p

ρ
2 − /p2/p2γ

ρ,

nρ
1 = 2pρ2(m+ /p2), (B.8)
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Figure B.3: The momentum configurations for fig. 3.2(d) and (e). The dark vertex
represents the Higgs boson with momentum q = p2 − p1 coming into the vertex.

where we have used the on-shell condition /p22 = p22 = m2 for the external particle.
Identically, n2,ρ = (m + /p1)γρ(m + /p1) reduces to 2p1,ρ(m + /p1). Plugging this and
eq. (B.8) back into eq. (B.7) leads to

N3.2c = (4p2p1)γ
α(m+ /p2)(m+ /p1)γα. (B.9)

The remaining part of the Dirac chain is identical to eq. (B.2), the one-loop Dirac
chain in the double-logarithmic region, resulting in N3.2c = (4p2p1)

2. As expected,
this cannot generate the power-suppressed logarithms but rather contributes to the
next order, O(α2

s), at the LP in the mass expansion i.e., to the second term in the
expansion of the universal Sudakov function Z2

q . For fig. 3.2(d) and (e), we need to
inspect the denominators of the propagators to see why double-logarithms are not
generated when a soft particle is emitted and absorbed by the same external line
and there is no exchange. For convenience, fig. B.3 shows these diagrams with their
momentum configuration.

D3.2d ∝ {(p1 − l1)2 −m2}{(p2 − l1)2 −m2}

{(p2 − l1 − l2)2 −m2}{(p2 − l2)2 −m2}l22l21, (B.10)

and

D3.2e ∝ {(p1 − l1)2 −m2}{(p2 − l1)2 −m2}

(p2 − l1 − l2)2(p2 − l2)2(l22 −m2)l21 (B.11)

are the denominators. The propagators l21, l22, and l22 −m2 are soft and go on-shell,
and can be replaced by the the residue at the pole. With the standard Sudakov
parameterization, the remaining propagators in the eikonal approximation reduce to,

(p1 − l1)2 −m2 ≈ −v1(2p2p1), (B.12)
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Figure B.4: The momentum configurations for fig. 3.2(b) and its symmetric coun-
terpart. The dark vertex represents the Higgs boson with momentum q = p2 − p1
coming into the vertex.

(p2 − l1)2 −m2 ≈ −u1(2p2p1), (B.13)

(p2 − l1 − l2)2 − χm2 ≈ −(u1 + u2)(2p2p1), (B.14)

(p2 − l2)2 − χm2 ≈ −u2(2p2p1); (B.15)

where χ = 1 and 0 for fig. B.3(a) and (b) respectively. It is clear that the Sudakov
parameter v2 does not appear in both cases, while u2 appears twice for l1 < l2; thus
the loop momentum l2 cannot generate double-logarithm as expected. Only fig. 3.2(b)
remains, fig. B.4 shows this diagram along with the diagram with opposite particle
flow for the closed loop, with their momentum configuration. The color for these
diagrams is

c3.2b = T a
jkT

r
ki tr [T aT r] = TF δ

arT a
jkT

r
ki = TFCF δij. (B.16)

The rest of the numerators are

NB.4a = γβ(/l 2 +m)γσ tr
[
γσ(/l 1 + /l 2 − /p1 +m)

(/l 1 + /l 2 − /p2 +m)γβ(/l 1 +m)
]
, (B.17)

and

NB.4b = γβ(/l 2 +m)γσ tr
[
γσ(/l 1 +m)γβ

(/p2 +
/l 1 − /l 2 +m)(/p1 +

/l 1 − /l 2 +m)
]
. (B.18)

Since the main difference between these two diagrams is only in the particle flow
inside the closed loop, we can focus on the trace over the loop. For fig. B.4(a) with
the negligible loop momenta in the double-logarithmic approximation, the trace in
eq. (B.17) reduces to,

nβσ
B.4a = (m) tr

[
γβγσ(m− /p1)(m− /p2)

]
,
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nβσ
B.4a = (4m)

[
m2gβσ − 0− 0 + gβσ(p2p1)− pβ1pσ2 + pβ2p

σ
1

]
. (B.19)

Similarly, for fig. B.4(b) it is

nβσ
B.4b = (m) tr

[
γβ(m+ /p2)(m+ /p1)γ

σ
]
,

nβσ
B.4b = (4m)

[
m2gβσ + 0 + 0 + pβ2p

σ
1 − p

β
1p

σ
2 + gβσ(p2p1)

]
. (B.20)

The traces are equal in both cases as seen from eqs. (B.19) and (B.20). Thus, for the
remainder, we can focus only on one of the diagrams. The full numerator can now be
simplified as

NB.4a = γβ(/l 2 +m)γσn
βσ
B.4a

NB.4a ≈ (4m2)
[
m2d+ d(p2p1)− /p1/p2 + /p2/p1

]
NB.4a = (4m2)

[
m2d+ d(p2p1)− (2p2p1) + /p2/p1 +m2

]
NB.4a = (4m2)

[
(d+ 2)m2d+ (d− 2)(p2p1)

]
NB.4a ≈ (4m2)(2p2p1) (B.21)

where we have only kept the leading term in the last step after letting ε→ 0 for d =

4−2ε. Only the integrals over loop momenta remain. We now introduce the standard
Sudakov parameterization li = uip1 + vip2 + l2i⊥. While not necessary, applying l1 →
−l1 variable change in fig. B.4(b) makes the denominator for both diagrams identical.
In the soft loop momenta region, the denominators reduce to

l2i −m2 ≈
[
−2πiδ(2uivip2p1 −m2 + l2i⊥)

]−1
, (B.22)

(p1 − l2)2 ≈ −2p1l2 ≈ −q2v2, (B.23)

(p2 − l2)2 ≈ −2p2l2 ≈ −q2u2, (B.24)

(l1 + l2 − p1)2 −m2 ≈ −2p1(l1 + l2) ≈ −q2(v1 + v2), (B.25)

(l1 + l2 − p2)2 −m2 ≈ −2p2(l1 + l2) ≈ −q2(u1 + u2). (B.26)

This is double-logarithmic for p1l2 < p1l1 and p2l2 < p2l1, corresponding to Sudakov
parameters ordering of v2 < v1 and u2 < u1; along with the additional constraint
uivi > ρ. The integral can be evaluated now:

IB.4a =

∫
d4l1

(l21 −m2){(l1 + l2 − p1)2 −m2}{(l1 + l2 − p2)2 −m2}

× d4l2
(l22 −m2)(p1 − l2)2(p2 − l2)2
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IB.4a ≈ −
π4

q4

∫ 1

ρ

dv1
v1 + v2

∫ 1

ρ/v1

du1
u1 + u2

∫ v1

ρ/u1

dv2
v2

∫ u1

ρ/v2

du2
u2

IB.4a ≈ −
π4

q4
ln4 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2

IB.4a = −
π4

q4
ln4 ρ

24
(B.27)

Putting all the factors together, for amplitude we get

iM =
4α2

s

(2π)6
yqTFCFNcq̄(p2)NB.4aIB.4aq(p1), (B.28)

from which we can easily read off the FF.

FS,B.4a =
4α2

s

(2π)6
TFCFNB.4aIB.4a,

FS,B.4a =
(αs

4π

)2 TFCF

π4
(4m2q2)

(
−π

4

q4
ln4 ρ

24

)
,

FS,B.4a =

(
−x2TFCF

6

)
ρ, (B.29)

with x = αs

4π
ln2 ρ. Multiplying eq. (B.29) by 2 for fig. B.4(b) results in the two-

loop scalar FF which is equivalent to eq. (3.5) for the n = 1 coefficient in the series
expansion of the scalar FF.

The three-loop diagrams of fig. 3.3 are obtained by an additional leading gluon
exchange on fig. 3.2(b). Thus, in the double-logarithmic approximation, it can be
easily shown that the numerators of the three-loop diagrams reduce to that of the
two-loop substructure. Since the required factors of m2 for F (1)

S come directly from
the chirality flip on the soft quark lines, the additional parts of the numerator can
only contribute a factor of (p2p1). Let us consider fig. 3.3(d) first, the numerator of
this diagram in the double-logarithmic region reduces to,

N3.3d = γν(/p2 − /l 3 +m)γβ(/l 2 +m)γσ tr
[
γσ(/l 1 + /l 2 − /p1 +m)

γν(/l 1 + /l 2 + /l 3 − /p1 +m)(/l 1 + /l 2 + /l 3 − /p2 +m)γβ(/l 1 +m)
]
,

N3.3d ≈ γν(/p2 +m)γβ(m)γσ tr
[
γσ(m− /p1)γ

ν(m− /p1)(m− /p2)γ
β(m)

]
. (B.30)

It helps to focus on the part of the numerator around the soft gluon emission vertices.
For the vertex near the external line carrying the momentum p2 we get,

nν = γν(/p2 +m) = γν(γµp
µ
2 +m),
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nν =
[
(2gµν − γµγν)pµ2 +mγν

]
,

nν =
[
2p2,ν − /p2γν +mγν

]
,

nν = (2p2,ν), (B.31)

where in the last line we have used eq. (2.12). The factor around soft gluon vertex
along the upper eikonal line (m− /p1)γ

ν(m− /p1) reduces to 2pν1(m− /p1) similarly to
eqs. (B.7) and (B.8). Plugging these back into eq. (B.30) gives

N3.3d ≈ m2(4p2p1)γβγσ tr
[
γσ(m− /p1)(m− /p2)γ

β
]
, (B.32)

which has indeed reduced to the two-loop numerator eq. (B.17) with negligible loop
momenta and a factor of (4p2p1). Next, we consider fig. 3.3(g), the numerator for
which reduces to

N3.3g = γα(/l 2 +m)γσ tr
[
γσ(/l 1 + /l 2 − /p1 +m)(/l 1 + /l 2 − /p2 +m)

γβ(/l 1 − /l 3 +m)γµ(/l 1 +m)
] [
gαβ(l2 − p2 − p2 + l2 + l3)µ+

gβµ(p2 − l2 − l3 − l3)α + gµα(l3 − l2 + p2)β
]
,

N3.3g = γα(m)γσ tr
[
γσ(m− /p1)(m− /p2)γ

β(/l 1 +m)γµ(/l 1 +m)
][

gαβ(−2p2,µ) + gβµ(p2,α) + gµα(p2,β)
]
. (B.33)

Again, focusing on the propagators near the soft gluon vertices, (/l 1 +m)γµ(/l 1 +m)

reduces to 2lµ1 (/l 1+m) ≈ m(2lµ1 ) identically to eqs. (B.7) and (B.8) for the soft on-shell
loop momentum l21 = m2. While near the three gluon vertex, we have three terms as
seen in eq. (B.33). The p2,α in the gβµp2,α term contracts with γα to give /p2 which
would result in an additional factor of mass from the equation of motion, and can
be ignored. Next, the gµαp2,β term contracts with γαlµ1 to give /l 1. This part of the
numerator in eq. (B.33), along with the trace from eq. (B.19) gives

n3 = (8m2)/l 1(p2,β)γσ
[
m2gβσ + pσ1p

β
2 − pσ2p

β
1 + gσβ(p2p1)

]
,

n3 = (8m2)/l 1
[
m2

/p2 + /p1p
2
2 − /p2(p2p1) + /p2(p2p1)

]
,

n3 = (8m2)/l 1
[
m2

/p2 +m2
/p1
]
, (B.34)

which is proportional to m4 and cannot contribute to n = 1 coefficient. Only
gαβ(−2p2,µ) remains; this has the correct structure as it contracts with γα(2lµ1 ) to
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give γβ(−4p2l1). The numerator now reads

N3.3g ≈ m2(−4p2l1)γβγσ tr
[
γσ(m− /p1)(m− /p2)γ

β
]
, (B.35)

which is identical to eq. (B.17) up to the factor of (p2l1) which replaces the standard
(p2p1) factor as in this case, soft gluon is emitted by the soft quark line with mo-
mentum l1 which acts as “external” momentum instead of p1. We omit rest of the
details for the direct evaluation of the three-loop diagrams as the remaining numera-
tors reduce to the two-loop numerator in one of the ways shown above. The additional
integral over the soft gluon momentum and corresponding Sudakov parameters can be
performed straightforwardly, and do not provide any new insight. Only the diagrams
in which the soft gluon is emitted by one of the soft quark lines or both emitted and
absorbed by the on-shell external quark lines pose an additional challenge, similar to
that of fig. 2.3(a) and (b); and can be evaluated similarly, see section 2.3.2 or [12] for
reference.
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Appendix C

Evaluation of Higgs production FF

Complete technical details of the calculations of the Higgs production FF from
chapter 4 are provided in this appendix. Here we also go over how the symbolic
diagrams are generated with the help of the algorithm QGRAF [16–19], followed by
the evaluation of the trace with the help of FORM [20] for the example of the one-
loop single soft quark exchange diagram fig. 4.2(a). Before we do so, let us derive the
projector for this process.

A generic diagram for di-gluon to Higgs production is shown in fig. C.1; the
details of the loop are not relevant at the moment. As shown in the figure, gluons
have incoming momenta p1 and p2, and the Higgs boson is outgoing with momentum
q = (p1 + p2). The most general form amplitude for such a process can have is

Fµν ∝ Γµν = FggH(q
2)
[
Agµν(p2p1) + Bpµ1p

ν
2 + Cpν1p

µ
2

]
, (C.1)

where FggH denotes the FF, Γµν is the vertex function obtained from the relevant
Feynman diagram. The constants A,B and C can be obtained with help of the Ward
identity, p1,µΓµν = p2,νΓ

µν = 0.

p1,µΓ
µν = FggH(q

2)
[
Apν1(p2p1) + 0 + Cpν1(p2p1)

]
= 0⇒ A = −C, (C.2)

where we have used on-shell condition p21 = 0. Similarly, the second Ward identity
with p2,ν gives A = −B. We can now choose A = 1 = −B = −C, and write down the
form projector must have

Pµν ∝
[
gµν(p2p1)− p1,µp2,ν − p1,νp2,µ

]
. (C.3)
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Figure C.1: Generic diagram for Higgs production via massive particle loop medi-
ated gluon fusion. This diagram can also describe the Higgs boson to two photon
decay.

Multiplying the above equation on both sides of eq. (C.1),

[
gµν(p2p1)− p1,µp2,ν − p1,νp2,µ

]
Γµν
ggH =

FggH(q
2)
[
gµν(p2p1)− p1,µp2,ν − p1,νp2,µ

][
gµν(p2p1)− pµ1pν2 − pν1p

µ
2

]
[
gµν(p2p1)− p1,µp2,ν − p1,νp2,µ

]
Γµν
ggH = FggH(q

2)
[
(d− 2)(p2p1)

2
]

FggH(q
2) =

4

(d− 2)q4
[
gµν(p2p1)− p1,µ p2,ν − p1,ν p2,µ

]
Γµν
ggH , (C.4)

where we have used q2 = (p1 + p2)
2 = 2p2p1 in the final step. With that, we can now

write down the final form of the projector as

Pµν =
4

(d− 2)

1

q4
[
gµν(p2p1)− p1,µ p2,ν − p1,ν p2,µ

]
. (C.5)

C.1 Factorizable contribution with single soft quark
exchange

C.1.1 Diagram generation with QGRAF

The algorithm QGRAF is a tool that generates symbolic Feynman diagrams [17,
18]. The input that is written in the qgraf.dat file can be run on the Ubuntu terminal
which has QGRAF binaries installed. For a detailed look at all the available options
and ways to generate the diagrams within any field theory, please refer to the QGRAF
documentation [16]. The two important aspects required in the input are the model
file and the style file. The style file determines how the output is shown and the model
file contains the details of the theory; i.e., the particles, and their interactions. For
brevity, the style file is excluded from our discussion as it can be very easily customized
to convenience, and the specific details are not relevant to our calculations and can
be easily found in the documentation [16].

The model file shown in fig. C.3 is used in our calculation for the di-gluon to Higgs
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Figure C.2: The QGRAF model file that was used to generate all the Higgs produc-
tion diagrams. It defines a simplified QCD theory involving quark, antiquark, gluon,
Higgs boson, and their possible interaction vertices.

production process. The lines starting with the ∗ sign are comments and ignored by
the compilers. The section labelled “propagators” is used to let the compiler know
about all the particles in the theory. For this case, it includes a quark (fq) with
antiquark (fQ) as its anti-particle; and gluon and Higgs boson, both of which are their
own antiparticles. The signs declare the commutation rules followed by these particles
with the negative (positive) sign for the fermions (bosons). The word “external”
lets the compiler know that only the diagrams with the Higgs boson appearing as
an external particle are of interest, and diagrams with internal Higgs lines are not
generated. The next section labelled “vertices” is used to define all the possible or
relevant vertices for the theory and the calculation. As expected for simplified QCD,
there are the quark-antiquark-gluon and quark-antiquark-Higgs vertices. Other than
that, there is the purely non-Abelian three gluon self-interaction vertex.

The partial output generated by QGRAF at one-loop is shown in fig. C.3. The
first half of the picture with the lines starting with the # sign, is the input from
the qgraf.dat file and is commented. The output is stored in a file named “GGH
1L”, which can be read via any standard text editor; with the style described in
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Figure C.3: Partial QGRAF output showing the symbolic version of fig. 4.2(a), and
the initial code to generate all potential 1-loop diagrams for the theory defined by the
model shown in fig. C.2.

“q2e.sty” file, and the model described in “GGH.lag” file shown in fig. C.2. The next
lines define the incoming and outgoing particles, their momenta for the process of
interest, and the number of loops we’re interested in with the loop momentum. The
options “onepi” and “nosigma” restricts the number of diagrams generated to one
particle irreducible only, and diagrams with no self-energies insertions respectively.
As mentioned in section 4.1, there were a total of 2 diagrams generated at one-loop
with these restrictions. The graphical representation of the symbolic diagram shown
in fig. C.3 is given by fig. C.4 and is of course the same as fig. 4.2(a).

C.1.2 Trace evaluation in FORM

Now that fig. 4.2(a) has been produced by QGRAF, let us look at the FORM
code used to evaluate the numerator to get this diagram’s contribution to the FF. By
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Figure C.4: Graphical representation of the symbolic Feynman diagram generated
by QGRAF corresponding to fig. 4.2(a) in (a) the form of the symbolic output of
fig. C.3, and (b) the momentum configuration used for the calculation. The Greek
letters represent the vector indices, while color indices are denoted by the Latin letters
“i”, “j” and “k”.

looking at the momentum flow shown in fig. C.4(b), we can write

iMµν,mn = −
∫

d4l1
(2π)4

Nµν,mn
C.4b

DC.4b

, (C.6)

with
DC.4b = (l21 −m2){(p1 + l1)

2 −m2}{(l1 − p2)2 −m2}, (C.7)

and

Nµν,mn
C.4b = tr

[
i(/p1 +

/l 1 +m)δjj′(igsγ
µTm

ji )

i(/l 1 +m)δii′(igsγ
νT n

i′k′)i(/l 1 − /p2 +m)δkk′δkj′
]
, (C.8)

where we can separate the trace over spacetime indices and generating matrices i.e.,
color indices. For the color we get,

cC.4b = tr
[
δjj′(T

m
ji )δii′(T

n
i′k′)δkk′δkj′

]
,

cC.4b = tr
[
Tm
ji T

n
ij

]
,

cC.4b = TF δ
mn. (C.9)

The Kronecker deltas for the colored propagators will be left implicit for the rest of the
calculations. For the spacetime indices, the calculations can be performed manually
but it can get overwhelming quickly as the number of loops increases. Alternatively,
we can utilize an algorithm like FORM; fig. C.5 shows the FORM code for fig. C.4(b),
which was run in the Ubuntu terminal with the FORM binaries installed. The output
of FORM for the numerator before and after the projection can be seen in fig. C.6,
from which we can write

Nµν
C.4b ∝ (4m)

[
− pµ1pν2 + 2pµ1 l

ν
1 + pν1p

µ
2 − 2lµ1p

ν
2 + 4lµ1 l

ν
1 − gµν(p2p1)

]
(C.10)
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Figure C.5: Sample FORM code for fig. C.4(b) to reduce the numerator with the
help of the projector from eq. (C.5) to get the Higgs FF.
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Figure C.6: Output of the sample FORM code shown in fig. C.5. The result labelled
“loop1” is the trace over the closed quark loop in fig. C.4(b). The variable “pro” gives
the product of the projector and the 1-loop result.

and
Nµν

C.4bPµν ∝ (8m)
[
2m2(p2p1)− {(p2p1)2 + 4(p2l1)(p1l1)}

]
. (C.11)

Before moving further, as a cross-check, we reproduce the result of eqs. (C.10)
and (C.11) for the numerator starting from eq. (C.8) using the simple Dirac alge-
bra. Since eq. (C.9) already accounts for the trace over the color indices, only the
trace over the spacetime indices remains, which we now tackle.

Nµν
C.4b = (ig2s) tr

[
(/p1 +

/l 1 +m)γµ(/l 1 +m)γν(/l 1 − /p2 +m)
]
,

Nµν
C.4b = (4i g2sm)

[
{pµ1 lν1 − gµν(p1l1) + pν1l

µ
1}+ {p

µ
1 l

ν
1 + gµν(p1l1)− pν1l

µ
1}+

{−pµ1pν2 − gµν(p2p1) + pν1p
µ
2}+ {l

µ
1 l

ν
1 − gµνl21 + lν1 l

µ
1}+

{lµ1 lν1 + gµνl21 − lν1 l
µ
1}+ {−l

µ
1p

ν
2 − gµν(p2l1) + lν1p

µ
2}+

{lµ1 lν1 − gµνl21 + lν1 l
µ
1}+ {−l

µ
1p

ν
2 + gµν(p2l1)− lν1p

µ
2}+m2gµν

]
,
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Nµν
C.4b = (4i g2sm)

[
2pµ1 l

ν
1 + pν1p

µ
2 − p

µ
1p

ν
2 + 4lµ1 l

ν
1 − 2lµ1p

ν
2 + gµν{m2 − l21 − p2p1}

]
,

(C.12)
is identical to the output of FORM eq. (C.10) up to the factor of (ig2s), in the soft
on-shell quark momentum limit of l21 = m2. Next, we multiply the projector from
eq. (C.5) to further reduce the numerator for convenience.

Nµν
C.4bPµν = eq. (C.12)× eq. (C.5),

Nµν
C.4bPµν =

16ig2sm

(d− 2)q4
[
2(p2p1)(p1l1) + (p2p1)

2 − (p2p1)
2 + 4l21(p2p1)− 2(p2l1)(p2p1)

+ d(p2p1){m2 − l21 − p2p1} − (p2p1)
2 − 4(p1l1)(p2l1)− (p2p1){m2 − l21 − p2p1}

− 2(p2p1)(p1l1) + (p2p1)
2 − 4(p1l1)(p2l1) + 2(p2p1)(p2l1)− (p2p1){m2 − l21 − p2p1}

]
,

Nµν
C.4bPµν =

16ig2sm

(d− 2)q4
[
4l21(p2p1) + (d− 2)(p2p1){m2 − l21 − p2p1} − 8(p1l1)(p2l1)

]
,

Nµν
C.4bPµν =

16ig2sm

q4
[
2m2(p2p1)− (p2p1)

2 − 4(p1l1)(p2l1)
]
, (C.13)

where in the last line l21 = m2 and d → 4 are applied; eqs. (C.11) and (C.13) are
equivalent up to a factor of 2 as the projector is not properly normalized in the
FORM code. Putting all these factors back together, the amplitude reduces to

[
Mq

ggH

]
C.4b

= −
∫

d4l1
(2π)4

Nµν
C.4bPµν

DC.4b
. (C.14)

Only the integration over the Sudakov parameter remains, to which we turn our
attention.

C.1.3 Sudakov method for large double-logarithms

To perform the integral using the Sudakov’s method [1, 21], we introduce the
standard Sudakov parameterization for the loop momentum l1 = u1p1 + v1p2 + l1⊥.
For transverse direction with ρ1 = −l21⊥, the integration measure can be decomposed
as

d4l1 = d2l1∥d
2l1⊥ → π |p2p1| du1 dv1 dρ1 (C.15)

[1,21]. Each term in the denominator can be further simplified in accordance with the
Sudakov parameters when the soft quark momentum goes on-shell. As per Cauchy’s
residue theorem the soft quark propagator (l21 − m2) can be replaced by the Dirac
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delta function [72],

l21 −m2 ≈
[
−2iπδ(l21⊥ + 2(p2p1)u1v1 −m2)

]−1
=
[
−2iπδ(q2u1v1 − ρ1 −m2)

]−1
.

(C.16)
Similarly, the eikonal approximation for remaining propagators is

(p1 + l1)
2 −m2 ≈ 2p1l1 = 2v1(p2p1) = q2v1, (C.17)

(l1 − p2)2 −m2 ≈ −2p2l1 = −2u1(p2p1) = −q2u1. (C.18)

The validity of these approximations require |u1|, |v1| < 1 and u1v1 > ρ. The positive
and negative Sudakov parameter contributions are symmetric, so the total integral is
written in terms of the positive parameters. From eqs. (C.17) and (C.18) it is clear
that the (p1l1)(p2l1) term can be ignored as it cancels both the eikonal propagators
and the integral will not be singular enough to generate the logarithms. Thus, the
numerator further reduces to

Nµν
C.4bPµν =

64iπαsm

q4
(
m2q2 − q4/4

)
,

Nµν
C.4bPµν = −(16iπαsm)

(
1− 4ρ

)
, (C.19)

with ρ = m2/q2 = m2/(2p2p1). Only the integral

IC.4b =

∫
d4l1

(l21 −m2){(p1 + l1)2 −m2}{(l1 − p2)2 −m2}
(C.20)

remains. Applying the soft and eikonal approximations, the integral reduces to

IC.4b =

∫
du1dv1dρ1|p2p1|π

[−2iπδ(q2u1v1 − ρ1 −m2)]

(q2v1)(−q2u1)

IC.4b =
2iπ2|p2p1|

q4

∫ 1

ρ

dv1
v1

∫ 1

ρ/v1

du1
u1

IC.4b =
iπ2

q2
ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1 (C.21)

where in the last line we have introduced the normalized logarithmic variables η1 =

ln v1/ ln ρ and ξ1 = lnu1/ ln ρ. Plugging eq. (C.21) back into eq. (C.14) to obtain the
amplitude gives

[
Mq

ggH

]
C.4b
≈ −
−(16iπαsm)

(
1− 4ρ

)
16π4

TFyq
iπ2

q2
ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1
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[
Mq

ggH

]
C.4b

= −TF
αs

π

yqm

q2
(1− 4ρ)

2
ln2 ρ (C.22)

From this, we can simply read off the Higgs production FF at one-loop for single soft
quark exchange to be [

M q,1L
ggH

]
1q

= (1− 4ρ) ln2 ρ. (C.23)

The corresponding n = 0 and n = 1 coefficients are given by eqs. (4.13) and (4.14)
respectively.

C.1.4 Single quark exchange effective diagram

The effective diagram with additional leading gluon exchange at two-loops is
shown in fig. 4.2(b). The FF for this diagram is again dependent on the trace over
the closed quark loop,

Nµν,mn
4.2b = tr

[
(/p1 +

/l 1 + /l 2 +m)γαT a
ij(/p1 +

/l 1 +m)γµTm
jk

(/l 1 +m)γνT n
kf (/l 1 − /p2 +m)γαT

a
fi(/l 1 + /l 2 − /p2 +m)

]
, (C.24)

with l1 and l2 as soft quark and gluon momentum respectively. We can separate the
trace over the generators to get,

c4.2b = tr
[
T aTmT nT a

]
= tr

[
T aT aTmT n

]
c4.2b = CF tr [TmT n]

c4.2b = TFCF δ
mn. (C.25)

The factor of CF above must be modified to (CF − CA) due to the eikonal color
charge non-conservation and the presence of the effective coupling in fig. 4.2(b). The
remaining trace over the spacetime indices after being projected to the FF reduces to
∼ m(1− 4ρ) when all the same approximations as the one-loop diagram are applied.
Finally, the integration over the loop momenta is,

I4.2b =

∫
d4l1

(l21 −m2){(p1 + l1)2 −m2}{(p2 − l1)2 −m2}
×

d4l2
l22{(p1 + l1 + l2)2 −m2}{(p2 − l1 − l2)2 −m2}

. (C.26)

The soft and eikonal approximations involving just the momentum l1 are identical to
eqs. (C.16) to (C.18). For the soft gluon momentum l2,

l22 =
[
−2iπδ

(
u2v2(2p2p1) + l22⊥

)]−1
, (C.27)
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(p1 + l1 + l2)
2 −m2 ≈ 2p2p1(v1 + v2), (C.28)

(p2 − l1 − l2)2 −m2 ≈ −2p2p1(u1 + u2). (C.29)

The integral over l2 is double-logarithmic when u1 < u2, and v1 < v2. Then eq. (C.26)
reduces to,

I4.2b = −
π4

(2p2p1)2

∫ 1

ρ

dv1
v1

∫ 1

ρ/v1

du1
u1

∫ 1

v1

dv2
v2

∫ 1

u1

du2
u2

,

I4.2b = −
π4

(2p2p1)2
ln4 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2,

I4.2b = −
π4

(2p2p1)2
ln4 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1(ξ1η1). (C.30)

Putting all these factors together for the Higgs production FF of the effective diagram,

[
M q

ggH

]
4.2b

= −αs

π
(1− 4ρ)(CF − CA) ln4 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1(ξ1η1),

[
M q

ggH

]
4.2b

= (1− 4ρ) ln2 ρ

[
2

∫ 1

0

dη1

∫ 1−η1

0

dξ1(2zξ1η1)

]
. (C.31)

After exponentiating the integrand of eq. (C.31), we get the all-order result,

M
(0)
ggH = ln2 ρ g(z), (C.32)

and [
M

(1)
ggH

]
1q

= −4 ln2 ρ g(z), (C.33)

with g(z) defined in eqs. (2.75) and (2.76). The asymptotic form of g(z) is given by
eqs. (2.81) and (2.83) for large values of z.

C.2 Contribution from triple soft quark exchange

C.2.1 The 3-loop diagrams

Recall from section 4.2 that of the four diagrams in consideration, only fig. 4.3(a)
has contribution to O(m3) coefficient M (1)

ggH of the FF. The numerator for this diagram
is proportional to two traces,

Nµν,mn
4.3a = tr

[
(/p2 +

/l 1 + /l 2 + /l 3 +m)γρT
r
ji(/l 3 +m)γαT

a
ij(/l 1 + /l 2 + /l 3 − /p1 +m)

]
tr
[
γρT r

kf (/p2 +
/l 1 +m)γνT n

fd(/l 1 +m)γµTm
dh(/l 1 − /p1 +m)γαT a

hk(−/l 2 +m)
]
. (C.34)
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Let us first separate the color factor,

c4.3a = tr
[
T r
jiT

a
ij

]
tr
[
T r
kfT

n
fdT

m
dhT

a
hk

]
,

c4.3a = TF δ
ra tr

[
T r
kfT

n
fdT

m
dhT

a
hk

]
,

c4.3a = TF tr
[
T a
hkT

a
kfT

n
fdT

m
dh

]
,

c4.3a = TF tr [CFT
n
hdT

m
dh] ,

c4.3a = T 2
FCF δ

mn, (C.35)

where we have used the cyclic property of the traces in the second line. Letting the
soft quark momenta go on-shell l2i = m2, and only keeping the terms that are either
independent or quadratic in the loop momenta, the spacetime part of the eq. (C.34)
reduces to

Nµν
4.3a ≈ 8m3

[(
q2 − 12m2

) (
2pµ1p

ν
2 − 2pν1p

µ
2 + gµνq2

)]
+ 64m3

[
q2 (lµ1 l

ν
2 + lν1 l

µ
2 − l

µ
1 l

ν
1) + 12lµ1 l

ν
1

]
. (C.36)

Since we are only interested in O(m3), most of the terms above can be ignored as
they are either higher order or would cancel the eikonal factors in the denominator.
Applying the projector to eq. (C.36) gives

Nµν
4.3aPµν ≈ 16q2m3. (C.37)

Again we only have the integral over the loop momenta left,

I4.3a =

∫
d4l1

(l21 −m2){(l1 − p1)2 −m2}{(p2 + l1)2 −m2}
d4l2

(l22 −m2)(l1 + l2 − p1)2
×

1

(p2 + l1 + l2)2
d4l3

(l23 −m2){(l1 + l2 + l3 − p1)2 −m2}{(p2 + l1 + l2 + l3)2 −m2}
.

(C.38)

The soft and eikonal approximations not involving the momentum l3 are identical to
the one and two-loop cases of eqs. (C.16) to (C.18), (C.28) and (C.29); similarly the
remaining approximations involving l3 are,

l2i −m2 =
[
2πiδ(2uivip2p1 −m2 − ρi)

]−1 (C.39)

(l1 + l1 + l3 − p1)2 −m2 ≈ −2p2p1(v1 + v2 + v3), (C.40)

(p2 + l1 + l2 + l3)
2 −m2 ≈ 2p2p1(u1 + u2 + u3). (C.41)
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The integrals produce the double-logarithms when u1 < u2 < u3, and v1 < v2 < v3

with the additional constraint u1v1 > ρ. Triple integral of eq. (C.38) then reduces to,

I4.3a ≈ −
iπ6

(2p2p1)3

∫ 1

ρ

dv1
v1

∫ 1

ρ/v1

du1
u1

∫ 1

v1

dv2
v2

∫ 1

u1

du2
u2

∫ 1

v2

dv3
v3

∫ 1

u2

du3
u3

,

I4.3a = −
iπ6

(2p2p1)3
ln6 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2

∫ η2

0

dη3

∫ ξ2

0

dξ3, (C.42)

I4.3a = −
iπ6

720 q6
ln6 ρ. (C.43)

Putting the factors from eqs. (C.35), (C.37) and (C.43) together, along with a factor
of 4 for symmetric diagrams, to obtain the contribution to M

(1)
ggH coefficient of the

asymptotic expansion of the Higgs production FF gives,

[
M

(1)
ggH

]
4.3a

=
x2TFCF

45
ln2 ρ. (C.44)

We shift our attention to the remaining diagrams of fig. 4.3. The numerators of these
diagrams are:

Nµν
4.3b = tr

[
(/p2 +

/l 1 + /l 2 + /l 3 +m)γρ(/l 3 +m)γα(/l 1 + /l 2 + /l 3 − /p1 +m)
]

tr
[
γρ(/l 1 +m)γµ(/l 1 − /p1 +m)γα(−/l 2 +m)γν(−/p2 − /l 2 +m)

]
,

Nµν
4.3b ≈ 32m5

(
6pµ1p

ν
2 + 2pν1p

µ
2 − gµνq2

)
+ 8m

[
q4 (lν1 l

µ
2 − l

µ
1 l

ν
2) + 8m2q2 (2lµ1 l

ν
2 + lµ3 l

ν
3)− 96m4lµ1 l

ν
2

]
; (C.45)

Nµν
4.3c = tr

[
(/p2 +

/l 1 + /l 2 + /l 3 +m)γρ(/l 2 +m)γα(/p1 − /l 1 +m)

γµ(−/l 1 +m)γν(−/l 1 − /p2 +m)γρ(/l 3 +m)γα(/l 1 + /l 2 + /l 3 − /p1 +m)
]
,

Nµν
4.3c ≈ 48m5

(
2pµ1p

ν
2 − 2pν1p

µ
2 + gµνq2

)
− 8m

(
48m4lµ1 l

ν
1

)
+

8m
[
q4 (lν2 l

µ
3 − l

µ
2 l

ν
3)− 2m2q2 (3lµ1 l

ν
2 + 3lµ1 l

ν
3 + 3lν1 l

µ
2 + 3lν1 l

µ
3 − 4lµ2 l

ν
3 + 4lν2 l

µ
3 )
]
; (C.46)

and

Nµν
4.3d = tr

[
(/p2 +

/l 1 + /l 2 + /l 3 +m)γρ(/l 1 +m)γµ(/l 1 − /p1 +m)

γα(−/21 +m)γν(−/l 2 − /p2 +m)γρ(/l 3 +m)γα(/l 1 + /l 2 + /l 3 − /p1 +m)
]
,
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Nµν
4.3d ≈ 16m5

(
gµνq2 − 2pν1p

µ
1 − 6pµ1p

ν
2

)
+ 8m

(
48m4lµ1 l

ν
1

)
+ 8m

[
q4 (lµ2 l

ν
3 − lν2 l

µ
3 )

+ 2m2q2 (lµ1 l
ν
1 − 2lµ1 l

ν
2 + 3lµ1 l

ν
3 + 2lν1 l

µ
3 − l

µ
2 l

ν
2 − 2lµ2 l

ν
3 + 5lν2 l

µ
3 − 2lµ3 l

ν
3)
]
. (C.47)

All the terms are already at the order of m5. Applying the projector verifies that
PµνN

µν
4.3b = PµνN

µν
4.3c = PµνN

µν
4.3d = 0 at O(m3); and these diagrams start contributing

at N3LP. Thus, eq. (C.44) gives the full contribution to M (1)
ggH from triple soft quark

exchange diagrams at three-loops, as shown in eq. (4.17).

C.2.2 Effective diagrams

From the effective diagrams of the scalar FF and the single quark exchange Higgs
production; it is straightforward to see that fig. 4.4 are the effective diagrams for
triple soft quark exchange. We can simply focus on the integral over the soft gluon
momentum l4 as the integrals over the soft quark momenta are not affected and are
still given by eqs. (C.16) to (C.18), (C.28), (C.29) and (C.39) to (C.42). For fig. 4.4,
the contribution of the spacetime part of the numerator to the FF in the double-
logarithmic region at O(m3) reduces to

Nµν
4.3Pµν ≈ ±32m3q4; (C.48)

with positive answer for fig. 4.4(b), and negative for (a) and (c). Focusing on
fig. 4.4(a), the color factor for which is given by

c4.4a = tr [T rT a] tr
[
T rT dT nTmT dT a

]
c4.4a = TFCF tr [T aT nTmT a]

c4.4a = TFC
2
F tr [T nTm]

c4.4a = T 2
FC

2
F , (C.49)

with reduced color factor of CF , which must be modified to (CF −CA). Integral over
l4 is ∫

d4l4
l24{(l1 + l4 + p2)2 −m2}{(l1 + l4 − p1)2 −m2}

. (C.50)

The residue of soft gluon propagator can be taken identically to eq. (C.27), for all
three effective diagrams. Relevant eikonal approximations for fig. 4.4(a) with standard
Sukadov parameterization for l4 are

(l1 + l4 + p2)
2 −m2 ≈ 2p2p1(u1 + u4), (C.51)

(l1 + l4 − p1)2 −m2 ≈ 2p2p1(v1 + v4); (C.52)
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which are double-logarithmic when v1 < v4 < 1, and u1 < u4 < 1. Integral in
eq. (C.50) then reduces to,

2

∫ 1

v1

dv4
v4

∫ 1

u1

du4
u4

= 2 ln2 ρ

∫ η1

0

dη4

∫ ξ1

0

dξ4 = (2η1ξ1) ln2 ρ. (C.53)

Combining these factors with the modified color gives

[
M

(1)
ggH

]
4.4a

= 16x2TFCF ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2∫ η2

0

dη3

∫ ξ2

0

dξ3 (2zη1ξ1) . (C.54)

Next, for fig. 4.4(b) the color factor is,

c4.4b = tr
[
T dT g

]
tr
[
T bT nTmT a

]
fargf brd

c4.4b = TF tr
[
T bT nTmT a

]
fargf brg

c4.4b = TFCA tr [T aT nTmT a]

c4.4b = T 2
FCFCA. (C.55)

Eikonal color charge non-conservation implies that the reduced color factor CA must
be modified to (CA − CF ). Soft gluon momentum integral is∫

d4l4
l24(l1 + l2 + l4 + p2)2(l1 + l2 + l4 − p1)2

. (C.56)

Eikonal approximations for gluon propagators on the edges are

(l1 + l2 + l4 + p2)
2 ≈ 2p2p1(u1 + u2 + u4), (C.57)

(l1 + l2 + l4 − p1)2 ≈ 2p2p1(v1 + v2 + v4); (C.58)

which are double-logarithmic when v1 < v2 < v4 < 1, and u1 < u2 < u4 < 1. Integral
in eq. (C.56) then reduces to,

2

∫ 1

v2

dv4
v4

∫ 1

u2

du4
u4

= 2 ln2 ρ

∫ η2

0

dη4

∫ ξ2

0

dξ4 = (2η2ξ2) ln2 ρ. (C.59)
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Combining these factors with the modified color gives

[
M

(1)
ggH

]
4.4a

= 16x2TFCF ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2∫ η2

0

dη3

∫ ξ2

0

dξ3 (−2zη2ξ2) . (C.60)

Lastly for fig. 4.3(c),

c4.4c = tr
[
T dT aT rT d

]
tr [T rT nTmT a]

c4.4c = CF tr [T aT r] tr [T rT nTmT a]

c4.4c = TFCF tr [T aT nTmT a]

c4.4c = T 2
FC

2
F , (C.61)

which has reduced color factor CF changed to (CF − CA). Integral over l4∫
d4l4

l24{(l1 + l2 + l3 + l4 + p2)2 −m2}{(l1 + l2 + l3 + l4 − p1)2 −m2}
, (C.62)

with eikonal approximations given by

(l1 + l2 + l3 + l4 + p2)
2 −m2 ≈ 2p2p1(u1 + u2 + u3 + u4), (C.63)

(l1 + l2 + l3 + l4 − p1)2 −m2 ≈ 2p2p1(v1 + v2 + v3 + v4), (C.64)

is double-logarithmic when v1 < v2 < v3 < v4 < 1 and u1 < u2 < u3 < u4 < 1.
Integral in eq. (C.62) then reduces to,

2

∫ 1

v3

dv4
v4

∫ 1

u3

du4
u4

= 2 ln2 ρ

∫ η3

0

dη4

∫ ξ3

0

dξ4 = (2η3ξ3) ln2 ρ. (C.65)

The contribution of this last diagram is

[
M

(1)
ggH

]
4.4c

= 16x2TFCF ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ η1

0

dη2

∫ ξ1

0

dξ2∫ η2

0

dη3

∫ ξ2

0

dξ3 (2zη3ξ3) . (C.66)
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Exponentiating the answers of eqs. (C.54), (C.60) and (C.66) after summing them,
gives the all-order result for triple soft quark exchange diagrams

[
M

(1)
ggH

]
3q

= 16x2TFCF ln2 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1∫ η1

0

dη2

∫ ξ1

0

dξ2

∫ η2

0

dη3

∫ ξ2

0

dξ3
(
e2zη3ξ3e−2zη2ξ2e2zη1ξ1

)
, (C.67)

which when normalized to the three-loop result of eq. (4.17) reduces to the final
form of eqs. (4.19) and (4.20). While we have not analytically computed the large-
z asymptotic for the function h(z), coefficients of Taylor expansion, h(z) = 1 +∑∞

n=1 hnz
n, are given in table 4.1. From the asymptotic form of the functions g(z)

and f(z) given in eqs. (2.81), (2.83), (3.20) and (3.29), we can say that

h(z →∞) ∝ O(1/z7), (C.68)

and
h(−z →∞) ∝ O(1/z3). (C.69)

C.3 Non-factorizable contribution with single soft
quark exchange

Diagrams in consideration in this section at two and three-loops are given in
figs. 4.5 and 4.6. Starting with fig. 4.5(a), the two-loop diagram, the numerator is

Nµν
4.5a = tr

[
(/l 1+/p1+m)γµ(/l 1+m)γα(/l 2+m)γν(/l 2−/p2+m)γα(/l 1−/p2+m)

]
. (C.70)

Standard and modified Sudakov parameterization for l1 and l2 are l1 = u1p1+v1p2+l1⊥

and l2 = u2l1 + v2p2 + l2⊥. The denominator for this diagram is

D4.5a = {(p1+ l1)2−m2}(l21−m2)(l22−m2){(l2−p2)2−m2}{(l1−p2)2−m2}(l1− l2)2.
(C.71)

Propagators can be approximated as

l21 −m2 =
[
−2iπδ(2u1v1p2p1 + l21⊥ −m2)

]−1
, (C.72)

l22 −m2 =
[
−2iπδ(2u2v2p2l1 + l22⊥ −m2)

]−1
=
[
−2iπδ(2u2v2u1p2p1 + l22⊥ −m2)

]−1
,

(C.73)
(l1 − l2)2 ≈ −2l1l2 ≈ −v2(2p2l1), (C.74)

(p1 + l1)
2 −m2 ≈ 2pll1 ≈ v1(2p2p1), (C.75)
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(l2 − p2)2 −m2 ≈ −2p2l2 ≈ −u2(2p2l1) ≈ −u2u1(2p2p1), (C.76)

(l1 − p2)2 −m2 ≈ −2p2l1 ≈ −u1(2p2p1). (C.77)

As mentioned in section 4.3, the numerator must be proportional to p2l1 to cancel
one of the eikonal factors coming from eqs. (C.74) and (C.76). After projecting the
numerator to the FF, eq. (C.70) reduces to

Nµν
4.5aPµν ≈ 16p2l2 + 16ρ(p2p1 − 2p2l2). (C.78)

Since the Dirac chain of the numerator clearly cannot provide the required factor, the
contribution of this diagram in the large double-logarithmic region of the high-energy
approximation vanishes. Let us quickly evaluate the color factor as well:

c4.5a = tr [TmT aT nT a] = Tm
ji T

n
hkT

a
ihT

a
kj

c4.5a =
Tm
ji T

n
hk

2

(
δijδhk −

1

Nc

δihδkj

)
c4.5a =

1

2

(
Tm
jj T

n
kk −

1

Nc

Tm
jhT

n
hj

)
c4.5a = −

1

2Nc

tr [TmT n]

c4.5a = TF (CF − CA/2) δ
mn; (C.79)

where we have used the tracelessness of the generators.
Let us inspect the three-loop diagrams of fig. 4.6 in which there is an additional

soft gluon exchange on the two-loop topology of fig. 4.5(a). For fig. 4.6(a), we denote
the additional soft gluon momentum by k′1 with Sudakov parameterization k′1 = r′1p1+

w′
1p2 + k′1⊥. The numerator for this diagram

Nµν
4.6a = tr

[
(/p1 +

/l 1 − /k
′
1 +m)γρ(/p1 +

/l 1 +m)γµ(/l 1 +m)γα(/l 2 +m)γν

(/l 2 − /p2 +m)γρ(/l 2 − /k
′
1 − /p2 +m)γα(/l 1 − /k

′
1 − /p2 +m)

]
, (C.80)

reduces to
Nµν

4.6aPµν ≈ −32m3(p2l1 + p2p1), (C.81)

upon projection in the double-logarithmic approximation. The color factor for this
diagram is

c4.6a = tr [T rTmT aT nT rT a] = Tm
ji T

n
feT

r
cjT

r
edT

a
dcT

a
if

c4.6a =
Tm
ji T

n
fe

4

(
δcdδje −

1

Nc

δcjδed

)(
δciδfd −

1

Nc

δifδcd

)
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c4.6a =
Tm
ji T

n
fe

4N2
c

(δjeδif −Ncδijδef )

c4.6a = TF (CF − CA/2)
2 δmn; (C.82)

corresponding to the reduced factor c4.6a = (CF − CA/2). For the denominator

D4.6a = {(p1 + l1 − k′1)2 −m2}{(p1 + l1)
2 −m2}(l21 −m2)(l22 −m2)(l1 − l2)2

{(l2 − p2)2 −m2}{(l2 − k′1 − p2)2 −m2}{(l1 − k′1 − p2)2 −m2}k′21 , (C.83)

eikonal approximations of eqs. (C.72) to (C.76) still apply; for the remainder we have

(l1 − k′1 − p2)2 −m2 ≈ −2p2(l1 − k′1) ≈ (r′1 − u1)(2p2p1) ≈ −u1(2p2p1), (C.84)

(p1 + l1 − k′1)2 −m2 ≈ 2p1(l1 − k′1) ≈ (2p1p2)(v1 − w′
1) ≈ −w′

1(2p2p1), (C.85)

(l2 − k′1 − p2)2 −m2 ≈ 2p2(k
′
1 − l2) ≈ (2p1p2)(r

′
1 − u1u2) ≈ r′1(2p2p1). (C.86)

The integral over l1 is double-logarithmic when |u1|, |v1| < 1 with additional constraint
u1v1 > ρ. Similarly, integral over l2 is double-logarithmic when |u2|, |v2| < 1 with the
constraint u2v2u1 > ρ. Lastly, k′1 integral requires u1 > r′1 > u1u2, and 1 > w′

1 > v1.
The integral can be reduced as

I4.6a =

∫
d4l1d

4l2d
4k′1

Nµν
4.6aPµν

D4.6a

I4.6a ≈
−16im3π6

q4

∫ 1

ρ

dv1
v1

∫ 1

ρ/v1

du1
u1

∫ 1

ρ/u1

dv2
v2

∫ 1

ρ/(u1v2)

du2
u2

∫ 1

v1

dw′
1

w′
1

∫ u1

u1u2

dr′1
r′1

I4.6a ≈
−16im3π6

q4
ln6 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

0

dη2

∫ 1−ξ1−η2

0

dξ2

∫ η1

0

dη3

∫ ξ1+ξ2

ξ1

dξ3

I4.6a =
−8im3π6

q4
ln6 ρ

∫ 1

0

dη1

∫ 1−η1

0

dξ1

∫ 1−ξ1

0

dη2

∫ 1−ξ1−η2

0

dξ2(2η1ξ2)

I4.6a =
−2im3π6

9q4
ln6 ρ, (C.87)

where we have introduced similar normalized logarithmic variable over r′1 and w′
1 as

that of u3 and v3; and can see that double-logarithmic integral just over k′1 reduces to
(2η1ξ2). Putting all the factors together, the contribution of fig. 4.6(a) to the Higss
production FF at NNLP can be written as

[
M

(1)
ggH

]
4.6a

= −x
2

18
ln2 ρ (CF − CA/2)

2 . (C.88)

Next, for fig. 4.6(b), we first focus only on the integral over the soft gluon
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momentum denoted by k1 in fig. 4.6(b). With Sudakov parameterization k1 =

r1p1+w1p2+k1⊥, this integral is double-logarithmic for 1 > w1 > v1, and 1 > r1 > u1.
Then the integral over k1 reduces to

2

∫ 1

v1

dw1

w1

∫ 1

u1

dr1
r1

= 2 ln2 ρ

∫ η1

0

dη3

∫ ξ1

0

dξ3 = (2η1ξ1) ln2 ρ. (C.89)

The full denominator for this diagram is

D4.6b = {(p1 + l1 − k1)2 −m2}{(p1 + l1)
2 −m2}(l21 −m2)(l22 −m2)

{(l2 − p2)2 −m2}{(l1 − p2)2 −m2}{(l1 − k1 − p2)2 −m2}(l1 − l2)2k21. (C.90)

Integrals over l1 in the double-logarithmic region still require a factor of p2l1 in the
numerator, which for the planar diagram is generated in two different ways. Since the
double-logarithmic region over k1 required k1 > l1, the lower eikonal quark propagator
in the light-cone coordinates can be expanded as

S(l1 − k1 − p2) ∼
/l 1 − /k1 − /p2 +m

(l1 − k1 − p2)2 −m2

≈ −γ−p+2
2p+2 k

−
1 (1− l−1 /k−1 )

≈ − γ−

2k−1

(
1 +

l−1
k−1

)
. (C.91)

Similarly, for the upper eikonal quark propagator, we have

S(p1 − k1 + l1) ≈
/p1 − /k1 + /l 1 +m

(p1 − k1 + l1)2 −m2

≈ γ+(p1 − k1 + l1)
−

−2p−1 k+1

≈ − γ+

2k+1

(
1 +

l−1 − k−1
p−1

)
. (C.92)

Due to the cyclic property of the traces, we can rearrange the propagators such that
eqs. (C.91) and (C.92) are directly multiplied; resulting in

S(l1 − k1 − p2)S(p1 − k1 + l1) ∼
γ−

k−1

(
1 +

l−1
k−1

)
γ+

k+1

(
1 +

l−1 − k−1
p−1

)

≈ γ−

k−1

(
1 +

l−1
k−1

+
l−1
p−1
− k−1
p−1

+
l−1
k−1

l−1
p−1
− l−1
p−1

)
γ+

k+1
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≈ γ−

k−1

(
1 +

l−1
k−1
− k−1
p−1

+
l−1
k−1

l−1
p−1

)
γ+

k+1
. (C.93)

Since the relevant term l−1 /p
−
1 gets cancelled in the above equation, the three-loop

planar diagram of fig. 4.6(b) does not contribute to FF. This cancellation was not
present for the case of nonplanar diagram fig. 4.6(a) as for the propagator S(l1 −
k′1 − p2), the condition r′1 < u1 implies that k′1 < l1; this propagator in the light-cone
coordinates reduces to

S(l1 − k′1 − p2) ∼
/l 1 − /k

′
1 − /p2 +m

(l1 − k′1 − p2)2 −m2
≈ −p

+
2 γ

−

2p+2 l
−
1

= − γ
−

2l−1
. (C.94)

The required factor of l−1 for cancellation in 1/(p2l1) ≈ 1/(p+2 l
−
1 ) comes from the prop-

agator S(p1+ l1−k′1) as real (virtual) gluons have transversal (lightcone) polarization;
and the double-logarithmic condition, w′

1 > v1 implies k′1 > l1; the propagator reduces
to

S(p1 + l1 − k′1) ∼
/p1 +

/l 1 − /k
′
1 +m

(p1 + l1 − k′1)2 −m2
≈ (p1 + l1 − k′1)−γ+

2p−1 k
′+
1

=
γ+

2k′+1

(
1 +

l−1 − k′−1
p−1

)
.

(C.95)
Bringing the focus back to the planar diagram, the color factor for which is

c4.6b = tr [T rTmT aT nT aT r] = Tm
ji T

n
feT

r
cjT

r
dcT

a
edT

a
if

c4.6b =
Tm
ji T

n
fe

4

(
δccδjd −

1

Nc

δcjδcd

)(
δdiδfe −

1

Nc

δifδed

)
c4.6b =

Tm
ji T

n
fe

4

(
N2

c − 1

Nc

δjiδef −
N2

c − 1

N2
c

δifδej

)
c4.6b =

(2CF − CA)CF

2

(
Tm
jfT

n
fj −NcT

m
jj T

n
ff

)
c4.6b = TFCF (CA/2− CF ) δ

mn; (C.96)

with c4.6b = CF as the reduced factor.
Let us now demonstrate how after adding the non-Abelian diagrams fig. 4.6(c)

and (d) the Sudakov double-logarithmic corrections factors out into the external gluon
lines leaving the (CF −CA) structure of the non-Sudakov double-logarithms dictated
by the eikonal color non-conservation. The color factor for fig. 4.6(c) reads

c4.6c = fnrstr [T rTmT aT sT a] = fnrsTm
ji T

s
fdT

r
cjT

a
dcT

a
if

c4.6c =
fnrs

2

(
T r
ijT

m
ji T

s
ff −

1

Nc

T s
idT

r
djT

m
ji

)
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c4.6c =
(2CF − CA)

4
fnrs [T s, T r]ij T

m
ji

c4.6c = (CF − CA/2)
(−i)
2

fnrsf ersT e
ijT

m
ji

c4.6c = (CF − CA/2)
(−i)
2

CAδ
neTF δ

me

c4.6c = −iTF (CF − CA/2)
CA

2
δmn; (C.97)

giving the reduced factor of c4.5c = CA/2. The denominator for this diagram is

D4.6c = {(p1 + l1 − k1)2 −m2}{(p1 + l1)
2 −m2}(l21 −m2)(l22 −m2)

{(l2 − k1 − p2)2 −m2}{(l1 − k1 − p2)2 −m2}(l1 − l2)2(p2 + k1)
2k21. (C.98)

To see the eikonal factorization, we relabel the soft gluon momentum to k1 in fig. 4.6(a)
and add it to fig. 4.6(b), and (c) with common color factor CA/2. Note that since
c4.6b = CF , fig. 4.6(b) must be added manually with the required color. Similarly, the
color of fig. 4.6(a) should be modified from (CF − CA/2) to (CF − CA). The sum

CA

2

(
1

D4.6a

+
1

D4.6b

+
1

D4.6c

)
, (C.99)

after excluding the common factors, is proportional to

1

{(p2 − l2)2 −m2}{(p2 + k1 − l2)2 −m2}
+

1

{(p2 − l2)2 −m2}{(p2 − l1)2 −m2}

+
1

(p2 + k1)2{(p2 + k1 − l2)2 −m2}

≈ 1

(p2 + k1 − l2)2 −m2

[
1

2p2k1
+

1

−2p2l2

]
+

1

{(p2 − l2)2 −m2}{(p2 − l1)2 −m2}

≈ 1

2p2(k1 − l2)

[
2p2(k1 − l2)

(2p2k1)(−2p2l2)

]
+

1

(−2p2l2)(−2p2l1)

≈ 1

(−2p2l2)

[
2p2(k1 − l1)

(2p2k1)(−2p2l1)

]
. (C.100)

Plugging this back into eq. (C.99) with the remaining factors in the eikonal approxi-
mation, we obtain

CA

2

(
1

D4.6a

+
1

D4.6b

+
1

D4.6c

)
≈
(
CA

2

)
1

(l21 −m2)(l22 −m2)k21
1

(−2l1l2)
1

(2p1l1)

1

{2p1(l1 − k1)}
1

{(2p2(k1 − l1)}
× 2p2(k1 − l1)

(−2p2l2)(2p2k1)(−2p2l1)
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≈
(
CA

2

)
1

(l21 −m2)(l22 −m2)k21

1

(−2l1l2)
1

(2p1l1)

1

{2p1(l1 − k1)}
1

(−2p2l2)(2p2k1)(−2p2l1)
. (C.101)

This has resulted in factorization of the soft emission on the lower line.
Let us now tackle fig. 4.6(d). The color factor given by c4.6d = fmrsT rT aT nT aT s

is similar to the color factor of fig. 4.6(c), and identically reduces to eq. (C.97) with
c4.5d = CA/2. Denominator is

D4.6d = {(p1 + l1 − k1)2 −m2}(l21 −m2)(l22 −m2){(l2 − p2)2 −m2}

{(l1 − p2)2 −m2}{(l1 − k1 − p2)2 −m2}(l1 − l2)2(p1 − k1)2k21. (C.102)

Eikonal factorization happens when fig. 4.6(b) and (d) are added with the common
color factor of (−CA/2); cancelling the manual addition of fig. 4.6(b) for the factor-
ization of fig. 4.6(c). The minus sign for fig. 4.6(d) is a result of the loop momentum
insertion from the expansion of the lower eikonal line. The sum

−CA

2

(
1

D4.6b

+
1

D4.6d

)
∝ 1

(p1 + l1)2 −m2
+

1

(p1 − k1)2

∝ 1

(2p1l1)
+

1

(−2p1k1)

≈
(
−CA

2

)
1

(l21 −m2)(l22 −m2)k21

1

(−2p2l2)
1

(−2p2l1)
1

{2p2(k1 − l1)}
1

(−2l1l2)
1

{2p1(l1 − k1)}
×
[

2p1(l1 − k1)
(2p1l1)(−2p1k1)

]

≈
(
−CA

2

)
1

(l21 −m2)(l22 −m2)k21

1

(−2p2l2)
1

(−2p2l1)
1

{2p2(k1 − l1)}
1

(−2l1l2)
1

(2p1l1)

1

(−2p1k1)
, (C.103)

leads to factorization of the soft gluon on the upper line.
The factorization requires the final missing piece fig. C.7; adding this diagram with

eqs. (C.101) and (C.103) in the eikonal approximation leads to complete factorization
of the soft gluon. Total contribution at three-loops reduces to the effective diagram
fig. 4.5(b), same as fig. 4.6(a) with an effective soft exchange. The final contribution
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Figure C.7: The final diagram required for the eikonal factorization of the soft gluon
for the 3-loop diagrams fig. 4.6(c) and (d). The wavy line represents the exchange of
eikonal gluon between the soft and eikonal quark lines.

to the FF by three-loop non-factorizable diagrams is

[
M

(1),3L
ggH

]
NF

= −(CA − CF )(CA − 2CF )x
2

9
ln2 ρ; (C.104)

which is the same as eq. (4.26), and accounts for the symmetric diagrams.
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