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Abstract 

Database-driven Websites and the amount of data stored in their databases are 

enormously growing. Web databases retrieve relevant information in response to users’ 

queries; the retrieved information is encoded in dynamically generated Web pages in the 

form of structured data records. Identifying and extracting retrieved data records is a 

fundamental task for many applications, such as competitive intelligence and comparison 

shopping. This task is challenging due to the complex underlying structure of such Web 

pages and the existence of irrelevant information. Numerous approaches have been 

introduced to address this problem, but most of them are HTML-dependent solutions 

which may no longer be functional with the continuous development of HTML. Although, 

few vision-based techniques have been built upon the visual presentation of Web page 

objects, various issues exist that inhibit their performance. To overcome this, we propose 

a novel visual approach, i.e., programming-language-independent, for automatically 

extracting structured Web data. The proposed approach makes full use of the natural 

human tendency of visual object perception and the Gestalt laws of grouping. The 

extraction system consists of two tasks: (1) data record extraction where we apply three 

of the Gestalt laws (i.e., laws of continuity, proximity, and similarity) which are used to 

group the adjacently aligned visually similar data records on a Web page; and (2) data 

item extraction and alignment where we employ the Gestalt law of similarity which is 

utilized to group the visually identical data items. Our experiments upon large-scale test 

sets show that the proposed system is highly effective, and outperforms the two state-of-

art vision-based approaches, ViDE and rExtractor. The experiments produce an average 

F-1 score of 86.68%, which is approximately 57% and 37% better than that of ViDE and 

rExtractor, respectively; and an average F-1 score of 86.21%, which is approximately 

38% better than that of ViDE, for data record extraction and data item extraction, 

respectively. 
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1.  Introduction 

Nowadays, the massive growth of the Internet requires a considerable amount of web 

data to be stored in huge networked databases. The prevalence of these databases 

online has significantly deepened the web and their stored data are referred to as the 

hidden web (or the deep web) (He, 2007).  

In surface web, static Uniform Resource Locator (URL) links are used to access static 

web pages (Su, 2012). These pages are characterized by having a fixed content 

structure that does not change upon multiple user requests. On the other hand, dynamic 

URL links are used to invoke deep web pages. A dynamic URL is a combination of: the 

web page’s static URL, and user-selected parameters. Deep web pages are mostly 

accessible through the query interface of the underlying database (Saissi, 2014). A web 

database dynamically generates a deep web page when it receives a parameterized 

query from a user who submits a Hyper Text Markup Language (HTML) search form (Su, 

2012); the retrieved data (i.e., query results) are assembled and displayed in the 

generated query result page. HTML tags are used to encode the retrieved information 

into semi-structured data objects called data records (Shi, 2015), each of which is a 

collection of data items (i.e., attributes) describing an entity such as a car or a book.  

While billions of static web pages are linked in the surface web, the number of database-

driven websites is rapidly increasing, and it is believed that the amount of available 

information in the hidden web is several hundred times larger than what users can 

access through the surface web (He, 2007). In addition, the structured databases that are 

contained in the deep web are three times more than the unstructured databases, and 

they are of greater interest to the database and data mining community (Saissi, 2014). 

These structured databases store relational records with attribute-value pairs. A high 

level of organization is presented in the structured databases which raises their 

significance and the demand for exploring the deep web (Liakos, 2016).  
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Identifying and extracting the retrieved data, which are wrapped in deep web pages as 

data records, is an essential task known as web information extraction system (Sleiman, 

2013). Organizing the extracted data in a structured format, such as tables, XML, or CSV, 

is also a part of a web information extractor (Sleiman, 2013), where all data values of the 

same attribute are aligned together, such as arranging them in a single table column (Su, 

2012).  

Mining data records is fundamental for a wide range of applications, particularly in the 

business domain (Ferrara, 2014). Database building is one of the procedures that greatly 

benefit from web data extraction, where the extracted data are used to automatically 

populate the DBMS (Ferrara, 2014). Many applications in the web marketing sector, such 

as real estate and e-commerce companies, utilize web data extraction techniques in 

competitive intelligence (Ferrara, 2014). The extracted marketing information of 

competitors is used to improve decision-making activities of business managers. 

From a customer-centric perspective, web data extraction techniques can be applied in 

Comparison shopping (Su, 2012). A customer can compare features of similar items from 

different online stores.  

Based on customer shopping activities, companies aim to enhance their marketing and 

sales capabilities via context-aware advertising (Ferrara, 2014). Web data extraction 

techniques identify relevant shopping data, from which useful shopping-related ads can 

be matched to customer preferences and placed on the web page. Other examples of 

web applications that take advantage of web data extraction are data integration, meta-

querying (Su, 2012), news aggregation services, music and movie recommendations 

(Varlamov, 2016), mashup applications, user opinion mining, and citation database 

building (Ferrara, 2014). 

Extracting data records from query result web pages has become a research area that 

attracts a lot of interest recently in which new methodologies are still emerging (Sleiman, 
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2013). The problem of extracting data records is challenging due to the existence of 

irrelevant information such as; navigation panels, menu buttons, search forms, 

advertisements, information about the website, etc. (Su, 2012). The automation degree of 

the extraction method is another challenge; manual and semi-automatic approaches that 

require human interference are labor-intensive and less effective than the automatic 

methods. Analyzing the structure of HTML web pages (i.e., DOM tree) is the main 

technique that most existing proposals depend on (Fan, 2014). Identifying the repeated 

patterns in a web page’s DOM tree as data records is not sufficient, because the visual 

layout of the page and the corresponding DOM tree may have different representation 

hierarchies (Xu, 2016). This inconsistency is due to the usage of different runtime tools 

(e.g., JavaScript) that can dynamically modify the displayed web page (Anderson, 2013). 

In other words, DOM nodes adjacency does not necessarily indicate the adjacency of 

corresponding elements on the web page. Additionally, a web page’s DOM tree may 

contain many invisible elements that users can’t read, which make them useless (Xu, 

2016). Directly accessing the tag tree to get the tag names of its nodes for the purpose of 

similarity calculation (Fan, 2014) or for obtaining the data types (Su, 2012) makes the 

solution fully dependent on a specific programming language (e.g., HTML). HTML-

dependent solutions may no longer be functional with the continuous developing of the 

HTML language and the emergence of new tags (Liu, 2010). Moreover, segmenting the 

tag tree into similar data records based on the observation that the subtrees of these 

records share one parent node (Bing, 2011), fails when the retrieved data records are 

displayed on the web page as groups, where each group of records is encoded in a 

separate block. 

As HTML is still evolving, superior approaches must be independent of using the HTML 

tag names to identify data types or to calculate the similarity between web page 

elements. Tag trees are utilized by web browsers to display web pages; visitors are only 

interested in seeing what is rendered by the browsers and they are not aware of the 
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underlying HTML code. The same visual presentation can be expressed by two different 

pieces of HTML code (Alpuente, 2009). Consider the two web page fragments in Figure 1 

(a) and Figure 1 (b). Although, the two fragments are visually similar, their corresponding 

HTML codes are very different. 

Figure 1: Example of similar visual presentation of two different HTML codes 

 

The solution is to utilize the fact that a website’s layout is built around the natural human 

tendencies of visual object perception. According to the Gestalt laws of grouping (Xu, 

2016), human beings tend to perceive web page objects as a single group if they are: 

aligned (i.e., law of continuity), close to each other (i.e., law of proximity), or similar in 

their appearance (i.e., law of similarity). Thus, data records displayed on a query result 

web page should follow these rules to be perceived as one group. Furthermore, the main 

content of a typical web page is placed on the center of the page (Ahmadi, 2012); hence, 

the retrieved data records are centrally located since they are considered the essential 

subject of a query result web page. 

Accordingly, we propose a matching algorithm that traverses a web page’s tree searching 

for nodes that satisfy the above-mentioned specifications regarding: alignment, proximity, 

visual similarity, and central layout.  
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Instead of analyzing the DOM tree, our matching algorithm runs on a simpler and 

accurate representation of a web page’s tree which is the visual semantic block tree that 

simulates human perception and whose hierarchy is identical to the page’s visual layout 

(Xu, 2016). Also, we employ the extended sub tree similarity model (EST) (Shahbazi, 

2014) to match the visual features of the subtrees of the data records blocks. 

According to the mentioned principle of similarity, which suggests that similar elements 

tend to be grouped together (Xu, 2016); the data items of the same attribute (e.g., price) 

within different data records should have identical presentation style. So, we utilize this 

feature to align the data items of the extracted data records. Finally, the result is 

constructed in the form of a table holding all the extracted data records; whose each row 

contains all the data fields of a single record, and columns hold the semantically aligned 

data items.  

In addition, we notice that the majority of the web data extraction proposals use the 

popular TestBed for information extraction from Deep Web
1
 (TBDW) version 1.02 

(Yamada, 2004) in their experimental work. TBDW is out-of-date because it has not been 

maintained since 2004. Hence, we propose a new testbed dataset for deep web data 

record extraction that surpasses TBDW in two aspects; (1) the categorization of the 

included websites, and (2) the number of the corresponding web pages. 

The proposed system provides a novel programming-language-independent solution to 

the problem of automatic data records extraction and alignment. We outperform the 

state-of-art vision-based algorithms, ViDE (Liu, 2010) and rExtractor (Anderson, 2013) on 

all of the benchmark datasets available, and prove that our algorithm: 

 Is HTML-independent, i.e., analyzing HTML tags is not required. 

 Is able to identify data records arranged in one column (i.e., list view). It identifies 

85% and 79% records in our dataset and TBDW, respectively; compared to 

                                                           
1
 http://daisen.cc.kyushu-u.ac.jp/TBDW/ 
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rExtractor that identifies 63% and 38% records, and ViDE that identifies 38% and 

21% records, respectively. 

 Can identify data records arranged in multiple columns (i.e., grid view). It 

identifies 88% and 99% records in our dataset and TBDW, respectively; 

compared to rExtractor that identifies 50% and 97% records, and ViDE that 

identifies 23% records in our dataset and cannot identify any of the records 

arranged as a grid in TBDW. 

 Has the ability to extract data records displayed as groups on a web page. It 

identifies 83% and 77% records in our dataset and TBDW, respectively; 

compared to rExtractor that identifies 82% and 11% records, and ViDE that 

identifies 68% and 10% records, respectively. 

 Can obtain a higher F1-score for data record extraction than ViDE and rExtractor 

on the introduced dataset (89.43% compared to 31.99% and 55.41%, 

respectively); and on TBDW (83.92% compared to 27.57% and 44.55, 

respectively).  

 Can achieve a higher F1-score for data item extraction than ViDE on the 

introduced dataset (89.70% compared to 54.99%); and on TBDW (82.72% 

compared to 42.07%).  

The remainder of the thesis is organized as follows: Chapter 2 covers background 

concepts and relevant definitions; Chapter 3 categorizes the existing data record 

extraction techniques; Chapter 4 discusses the related vision-based extraction 

approaches; Chapter 5 demonstrates our solution for data record extraction and 

alignment; Chapter 6 conducts experiments on the proposed algorithm, evaluates the 

results of the Data Record Extraction (DRE) and Data Item Extraction (DIE), and 

compares their performance with ViDE and rExtractor; and finally, Chapter 7 draws a 

conclusion from the experimental results and provides pointers to potential future work. 
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2.  Background 

2.1   Tree Representation of Web Pages 

Each web document has an embedded tree structure whose elements are described as 

parents, children, siblings, ancestors, and descendants. A web page’s tree representation 

is primarily revealed in its HTML tag tree. A tag tree is simply constructed by arranging 

the nested tag structure of the HTML code (Zhai, 2005). However, the HTML code may 

not be well-organized because of some missing and ill-formatted tags.  

The Document Object Model (DOM) is an application programming interface (API) that 

specifies the logical tree structure for HTML, XHTML, and XML documents (Le Hégaret, 

2000). Nodes of each document are represented as a group of objects organized in a 

tree structure called the DOM tree (Siddharthjn, 2017). The DOM tree hierarchy allows 

developers to navigate through a web document searching for particular information. 

Moreover, DOM tree objects are characterized by having properties and methods. A 

DOM property is a value that can be set, whereas a DOM method is an action that can be 

performed. DOM properties and methods establish a programming interface that allows 

scripting languages (e.g., JavaScript) to dynamically access documents and modify their 

structure, style, and content (Le Hégaret P. a., 2005). The processing results are 

reflected on the displayed web page. 

However, the DOM tree may contain invisible elements that are not drawn by the web 

browser. These elements are considered as noise since they are not seen by the reader 

(Xu, 2016). Accordingly, the DOM tree cannot be considered the ideal representative of a 

web page despite the fact that it is a fast, traversable, and dynamic technique to access 

the visual and structural information of the web page. 
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To better represent a web page, an alternative data structure must be employed. The 

semantic block tree (Xu, 2016) solves the DOM hierarchy issues and groups nodes that 

are semantically related. 

2.1.1 Block Tree Representation of Web Pages 

Web page segmentation is an essential pre-processing task for web data mining 

applications; it aims to divide a web page into smaller segments. Some of these 

segments have immaterial content from a data mining perspective and must be 

disregarded. Other sections contain valuable information that can be utilized for different 

objectives by different data mining methods (Zeleny, 2017). The accuracy and 

performance of data mining can be improved when the web page is divided into distinct 

blocks (Xu, 2016). 

Many proposals have been introduced to address the problem of Web page block 

identification. Some of them are DOM-based techniques that utilize DOM-level features 

with trained classifiers (Uzun, 2013). Although these techniques are generally fast, their 

accuracy relies on the employed heuristics since the DOM tree does not accurately 

reflect the visual features of the page elements (Zeleny, 2017). Other approaches are 

text-based which rely on textual content attributes (e.g., density) neglecting the page 

layout properties. However, the effectiveness of these approaches is very low when 

dealing with rich-format modern Web pages (Xu, 2016). 

In addition to the DOM-based and text-based approaches, vision-based methods are 

proposed to consider the visual clues of rendered web page elements as they are 

perceived by human readers (Zeleny, 2017). They examine various visual attributes such 

as layout and location on the page, styling, images sizes, background colors, and font 

size and type (Eldirdiery, 2015). Computing these features of the displayed elements 

requires accessing the browser’s rendering engine. In spite of the fact that vision-based 
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approaches are believed to be independent of the HTML-related heuristics or any 

implementation language specifics (Zeleny, 2017), some of these approaches are not 

purely vision-based as they use different combinations of code and visual features 

(Cormier, 2016).  

Visual Page Segmentation (VIPS) algorithm (Cai, 2003) is one of the earliest and 

influential vision-based segmentation algorithms which have been used as a starting step 

by other projects, including template detection algorithms, web adaptation, and 

information extraction and retrieval. Some data records extraction proposals, such as 

ViDE (Liu, 2010), and VSDR (Li, 2007), are built on VIPS which is used to obtain a deep 

web page’s visual block tree. VIPS simulates users' visual perception of understanding 

web layout structure. It segments a web page into visual blocks by utilizing the page’s 

layout features, and detects visual separators among these blocks by following a 

repetitive top-down manner (Cai, 2003). The visual separators are the horizontal and 

vertical lines that do not intersect with the detected blocks on the page. Although VIPS 

has been a dominant work in this area, it still relies on limited segmenting heuristics that 

are manually inferred by the researchers who analyze the page’s rendering style (Xu, 

2016). Additionally, VIPS mostly depends on identifying visual separators to extract web 

page’s blocks; these separators are much less apparent in modern web pages that have 

more advanced layout. Thus, VIPS performance efficiency on modern web pages is 

lower than traditional web pages. 

To solve the issues of the previous methodologies, the Gestalt Layer Merging (GLM) 

model (Xu, 2016) was proposed. It simulates human perception by utilizing Gestalt laws 

of grouping to detect a web page’s visual semantic block tree, where each node (i.e., 

block) of the block tree represents a group of semantically related elements. The GLM 

model involves the following three main tasks: 
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1. Layer tree constructor: a web page’s DOM tree is utilized as a prototype to construct 

its layer tree. The visual features of all the rendered DOM elements are retrieved. 

These features include both explicit CSS properties (e.g., text and background styles) 

and geometric attributes (i.e., location and size). Each node (i.e., layer) in the layer 

tree corresponds to a visible node in the DOM tree, and all the layer tree nodes follow 

the visual hierarchy of the web page layout; the hierarchy indicates the overlapping 

relationship of web page elements. Thus, the constructor includes two procedures: 

 Eliminating the invisible DOM elements: a DOM element is considered to be 

invisible if: (1) its area (i.e., height or width) equals 0; (2) its HTML tag is hidden; 

(3) it is empty (i.e., it has no displayed content); or (4) it is transparent (i.e., it is 

hidden by its visible child elements). 

 Adjusting the tree hierarchy: during building up the layer tree, each DOM element 

is initially added up to the tree with the same hierarchical position. Consequently, 

a modification may be applied according to the calculated geometrical features of 

the node. For instance, node A may be moved downward to become a child of 

node B if A is totally placed inside B on the page.  

2. Gestalt laws translator: web page’s tree structure details are simplified by applying 

Gestalt laws of grouping. These laws are interpreted into machine process-able rules 

to resemble the human manner of recognizing objects. Two of the interpreted Gestalt 

laws (i.e., law of simplicity and law of closure) are applied in the layer tree building 

step, while the other four are used for web page blocks identification.  

 Gestalt law of simplicity: this law states that people tend to perceive web page 

contents in their simplest form. Accordingly, the GLM model defines DOM 

elements to be the smallest entities and that each layer represents an entire 

DOM node without additional division. 

 Gestalt law of closure: this law indicates that an uncompleted web page object 

(i.e., an object that is partially hidden by the upper content) is seen as complete. 



11 
 

People are likely to ignore gaps and complete shape lines. Thus, each layer tree 

node is considered as a complete rectangle in the GLM model. 

 Gestalt law of proximity: this law states that objects that are close to each other 

on a web page are likely to be perceived as one group, while distant objects are 

assigned into separate groups. Accordingly, the GLM model groups the adjacent 

elements on a web page in a single block if their proximities are the same, and 

places them in distinct blocks otherwise. To calculate the distance between two 

layers, the GLM model employs the Hausdorff distance (HD) with a normalization 

factor to remove any inconsistency generated by the size of the web page 

objects which are represented as rectangles. The calculation of the normalized 

Hausdorff distance (NHD) between two layers    and   , is shown in Equation 

(1): 

               
     
    

 
     

    
  

(1) 

where       is the HD from    to   ;       is the HD from    to   ;     and      

are the relevant lengths of    and   , respectively; the relevant length of the layer 

can be either its height, width, or both (the diagonal length), depending on the 

relative location of the two layers.   

The calculations of       and       are shown in Equation (2) and (3), 

respectively: 

          
     

   
     

        
(2) 

          
     

   
     

        
(3) 

Where         and         calculate the Euclidean distance between two 

points    in    and    in   ;     and     are the supremum (i.e., maximum) and 

infimum (i.e., minimum) of a given set of distances, respectively.  
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 Gestalt law of similarity: this law reveals that objects that appear similarly on a 

web page are more likely to be organized together. Thus, the GLM model 

compares the similarity of layer tree nodes by evaluating their visual features 

which are represented by a series of CSS attributes. The three main aspects that 

GLM takes into account for comparing the similarity are: size similarity, 

foreground similarity, and background similarity. 

 For size similarity, GLM checks if two web page objects have the same width 

and height. 

 For foreground similarity, GLM examines the textual style attributes of the 

layer tree nodes. These attributes are directly obtained from the related CSS 

properties. 

 For background similarity, GLM inspects both the background color and 

background image. Color evaluation is carried out in CIE-Lab color space 

rather than RGB color space because CIE-Lab has a larger range that 

includes all RGB colors, and it is also designed to imitate human visual 

perception. Hence, GLM converts RGB colors that are retrieved from CSS 

into CIE-Lab colors, and     
   is utilized as the color difference metric. The 

calculation of     
   is shown in Equation (4) : 

 

    
     

   

    
 
 

  
   

    
 
 

  
   

    
 
 

    
   

    
  

   

    
  

(4) 

The parameters of (4) are not listed in (Xu, 2016); they are explained in 

details in (Luo, 2001). The specified threshold for     
   is set to 3.30 by 

GLM. Two colors are considered to be different if     
   is greater than this 

value. On the other hand, GLM evaluates the similarity between two images 

using the Structural Similarity (SSIM) index which is designed to measure the 
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perceptual similarity between two digital images based on the visible 

structures of the images. The calculation of SSIM is shown in Equation (5): 

 

            
                  

   
    

       
    

    
 

(5) 

where    and    are the two images, each represented as an array of color 

pixels;    and    are the means of    and   , respectively;   
  and   

  are the 

variances of    and   , respectively;      is the covariance of    and   ; and,   

and   are two factors to stabilize the division with weak denominator. The 

value of SSIM is 1.0 for two identical images, and 0 for two completely 

different images. GLM considers two images are the same if their SSIM is 

above the empirical threshold which is 0.48 (Xu, 2016). 

 Gestalt law of continuity: this law expresses that elements on a web page are 

visually grouped by a human reader if they are aligned with each other. 

Accordingly, GLM groups continuous web page objects in a single block. Two 

objects are continuous on a web page if one of the four coordinates (i.e., left, top, 

right, and bottom) is the same in both objects. 

  Gestalt law of common fate: this law indicates that web page elements that 

move together in the same direction are likely to be observed as related. 

Therefore, GLM places two web page objects in one block if their motion trends 

are the same. In particular, GLM checks the “static” trend attribute of the objects. 

3. Web page blocks identifier: the translated Gestalt laws from the previous step are 

merged using a classifier. The trained classifier inspects the sibling layers of the 

constructed layer tree, applies the integrated laws, and assigns the layers into one of 

the two classes: “merge” or “not merge”. The merged layers are placed in one group 

which represents a semantic block. Ultimately, all the blocks are arranged 

hierarchically to create the web page’s block tree.  
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2.2   Tree Distance and Tree Similarity 

Tree similarity (or distance) functions are applied to compare trees and obtain the degree 

of how similar (or dissimilar) the trees are (Shahbazi, 2014). The larger the similarity 

value, the more similar the two trees are. On the other hand, the larger the distance 

value, the less similar the two trees are. 

For any rooted, ordered, and labeled tree  , let     be the number of nodes of  ,      the 

set of nodes of  ,    the  th node of   (in post order formatting), and    the subtree of   

whose root is   . For any two trees   ,   , let          be the similarity between the 

trees,           the normalized similarity between the trees ranging between 0 and 1 

(i.e., 1 means that the trees are identical; while 0 means that the trees are completely 

different),          the distance between the trees, and           the normalized 

distance between the trees ranging between 0 and 1 (i.e., 1 means that the trees are 

totally distinct; while 0 means that the trees are identical). As previously mentioned, tree 

similarity and tree distance are opposite of each other; thus, the relation between 

normalized similarity and normalized distance is shown in Equation (6) (Shahbazi, 2014):  

                       (6) 

A tree with a single root node is called a rooted tree. Also, when the horizontal order 

between the siblings in a tree is essential, the tree is referred to as ordered. Finally, a 

tree is called a labeled tree if each node of the tree has a specified label. 

The numerous applications of tree comparison lead to introducing a variety of 

approaches to address the problem of tree distance, where each approach has particular 

advantages and limitations in terms of the calculated distance score and the cost of 

calculation (Cohen, 2014). A recent proposed similarity function, called Extended Subtree 

(EST) (Shahbazi, 2014), introduces new rules for subtree mapping to overcome the 

issues of the previous methods. 
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2.2.1 Extended Subtree 

Extended Subtree (EST) (Shahbazi, 2014) measures the distance/similarity between two 

trees. EST considers that subtrees are more significant than single nodes because 

similar subtrees of two trees have a larger weight in determining the similarity between 

the two trees in contrast with their disjoint mapped nodes. Moreover, a similar 

substructure between two trees can be recognized when there are identical mapped 

subtrees among the two trees, while it cannot be represented by the disjoint mapped 

nodes of the trees. This observation can be applied in web mining because the 

descendants of each web page block are arranged on top of the block. Thus, a user 

reads the subtree of each block instead of the details of the single block. 

Mapping in EST is carried out according to a set of defined mapping rules: 

1. Subtree mapping rule: both subtrees and single nodes can be mapped by EST. 

2. One-time mapping rule: common subtrees of any two mapped subtrees are not 

allowed to be mapped together. 

3. One-to-many mapping rule: a subtree of one tree is allowed to be mapped to more 

than a subtree of another tree. 

4. Mapping weight assignment: the mean value of the two mapped subtrees’ weights is 

considered as the weight of the mapping. For any two mapped subtrees     and     

in    and     the weight of their mapping    is calculated as shown in Equation (7):  

       
             

 
  

(7) 

A subtree weight is the sum of its nodes’ weights as shown in Equation (8): 
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(8) 

where a node’s weight,     
   , is equal to one for the largest subtree that the node 

is part of, and zero otherwise. 

Ultimately, EST utilizes the weights of all the potential valid mappings to calculate the 

similarity between    and    as shown in Equation (9):  

                           
  

    

 
    

(9) 

Where       is the weight of a mapping   .  ,     , is a factor that magnifies the 

weight of large subtrees. More significance is put on larger subtrees as the value of   

gets higher.   ,       , is a factor that increases the weight of the same depth 

subtrees. As    gets lower, a less emphasis is placed on subtrees with different structural 

position (level).    ,       , is a factor that amplifies the weight of subtrees with 

smaller depth in their original trees. As    grows larger, a more weight is assigned to 

subtrees closer to root nodes.  

EST normalizes the calculated similarity as shown in Equation (10): 

          
        

               
 

(10) 

Where      and      represent the number of nodes in    and   , respectively. The 

normalized similarity ranges from zero to one regardless of the size of the two trees. 

Specifically, one and zero represent two identical or two completely different trees, 

respectively. 
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2.3   Data Records Extraction and Alignment 

The source of the greatest part of deep web data is the back-end structured databases 

which are referred to as web databases (Lu, 2013). By submitting HTML query forms, the 

hidden information stored in the web databases is accessible to users (Anderson, 2013). 

Web databases respond to users’ queries and return the requested information organized 

in dynamically generated web pages called query result web pages (or deep web pages) 

(Liu, 2010).  

The retrieved data (i.e., query results) are enwrapped in the query result pages as semi-

structured data objects called data records (or search result records) (Shi, 2015). A data 

record is “an element of the class of data that is of interest for the user” (Varlamov, 2016) 

where each data record represents an object of a specific class (e.g., book or car). Data 

records displayed on a query result page usually belong to the same class since they are 

produced from the same query.  

Every data record consists of a group of attributes which called data items (or data units) 

(Lu, 2013), where each data item describes a characteristic of the object it belongs to.  

For example, Figure 2 shows a sample query result web page from Wiley.com (note that 

only the first three records from the results are shown as an example). On this page, 

multiple books are retrieved as a result of searching for Java books. The books are 

displayed in the form of data records where each displayed data record represents a 

book. A set of data items is included in each data record describing some attributes of the 

book that it corresponds to. As shown in the figure, these attributes include: book title, 

authors, publication date, type, E-book availability, and price.  

However, some data attributes may not have corresponding values in a number of data 

records. These attributes are called optional attributes compared with the mandatory 
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attributes that have corresponding values in all the data records; for instance, the E-book 

availability attribute, in the example shown in Figure 2, is an optional attribute. 

In addition, data records are displayed on query result web pages in one of two forms 

(Liu, 2010):  

1. List View: the data records are organized in one column as in the page fragment 

shown in Figure 3 (a). Although, they might have dissimilar width and height, they 

are left aligned. This observation is found to be true in 98% of the web pages of the 

two utilized datasets. 

2. Grid View: the data records are organized in multiple columns as in the page 

fragment shown in Figure 3 (b). The data records in each column are considered to 

be a list which follows the same observation mentioned above. 
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Figure 2: Example of query result page from Wiley.com 
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Figure 3: Example of the two layout forms of data records on deep web pages 

 

In general, query result data records are arranged in one or more dynamically generated 

data regions (Shi, 2015). A data region is defined as the minimal area of the web page 

surrounding a set of retrieved data records (Varlamov, 2016). Based on the utilized 

approach, a data region can be a portion of the HTML code, one or multiple DOM 

subtrees, or a visual block. However, a search result page contains ancillary regions in 

addition to the data regions, including headers, footers, sidebars, and other navigation 

menus (Sleiman, 2013). These ancillary regions contain similar elements which are not 

data records. Differentiating between these similar elements and the actual data records 

is not straightforward for automatic single-page-based approaches (Shi, 2015). 

For example, Figure 4 illustrates the visual blocks identified by the GLM model in the 

running example from Wiley.com. A total of 99 blocks have been identified. Only one 

block that contains the three retrieved data records is considered the data region, while 
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the remaining blocks are either part of the records or other ancillary regions. 

Distinguishing between the regions of a web page is a primary procedure of a web 

information extraction system which becomes more complex with the dynamic layout of 

modern web pages (Varlamov, 2016).  

Figure 4: Blocks identified by GLM in a query result page from Wiley.com 
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The problem of automatically identifying, extracting, and aligning data records and data 

items they include, has received a lot of attention and many proposals have been 

introduced to address this problem (Sleiman, 2013). Two main steps are included in the 

data extraction system: 

1. Data record detection: this step involves analyzing the tree representation of a 

query result web page searching for segments (i.e., DOM subtrees or visual 

blocks) that satisfy specific conditions based on the utilized approach. The 

identified data records are then pinpointed and saved for the next step. 

2. Data items alignment: this step organizes the extracted data records in a structured 

format, such as table, XML, or CSV. Data items of all the identified data records 

are aligned by placing the data values of the same attribute in one group (e.g., 

arranging the data values of the price attribute in a single table column).  

For example, the three books records of the previous example which are illustrated in 

Figure 2 are extracted and aligned as shown in Table 1. 

Table 1: Extracted and aligned data from Wiley.com example 

Java For Dummies, 7th 

Edition 

Barry A. Burd March 2017 Paperback  (E-book also 

available) 

CDN $35.99 

OCA / OCP Java SE 8 

Programmer Practice Tests 

Scott Selikoff, 

Jeanne Boyarsky 

March 2017 Paperback - CDN $48.00 

Java All-in-One For 

Dummies, 5th Edition 

Doug Lowe April 2017 Paperback  (E-book also 

available) 

- 

Other works propose approaches for a complementary phase, called annotation or 

attribute labelling. This phase seeks to assign a semantic label for each group (i.e., 

column) of data items of all the extracted data records (Lu, 2013). For instance, the 

semantic labels of the aligned data items from Wiley.com example are: Book Title, 
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Authors, Publication Date, Type, E-book availability, and Price. These labels can be 

respectively employed as the column headings for Table 1. Indeed, assigning semantic 

labels for the aligned data items is usually carried out in a supervised manner, where a 

user has to provide some annotated examples (Murolo, 2016). 

3.  Categorization of Extraction Systems 

The problem of extracting data records from deep web pages has been studied 

extensively; numerous approaches have been proposed to address the problem in the 

last two decades. Some approaches, including the algorithms proposed in (Shi, 2015), 

(Bing, 2011), (Anderson, 2013), (Thamviset, 2014), (Jimenez, 2015), (Bing L. a.-L., 

2013), and (Pouramini, 2015), work on just identifying data records. Other approaches, 

such as the algorithms proposed in (Liu, 2010), (Murolo, 2016), (Grigalis, 2014), (Chang, 

2016), (Fan, 2014), and (Su, 2012), work further to align the data items of the identified 

data records and present them to the user in an appropriate format.  

Comparisons between the existing proposals are provided in a number of surveys that 

classify these proposals from different aspects (e.g., the main features used, the 

automation degree, the technique, and the extent of application) (Chang, 2016). Some of 

these surveys can be found in (Sleiman, 2013), (Ferrara, 2014), (Varlamov, 2016) 

(Devika, 2013). In the following, we present more recent examples for each 

categorization framework. 

3.1   The Degree of Automation Criterion  

The main aspect that has been used to classify web data extraction techniques is their 

degree of automation. Based on this criterion, the existing techniques can be mainly 

divided into two classes: (1) semi-automatic (i.e., supervised) approaches, and (2) fully-

automatic (i.e., unsupervised) approaches. 
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The Semi-automatic approaches require human intervention to deduce the extraction 

rules. A user has to manually label data on some sample web pages which are utilized as 

training examples to learn the extraction rules (Grigalis, 2014). Some of these systems 

provide users with a Graphical User Interface (GUI) to facilitate the labelling procedure 

(Varlamov, 2016). For example, the DeepDesign system (Murolo, 2016) is a supervised 

method that provides users with a control panel, allowing them to annotate fields of 

example data records on a web page. The annotated fields are then used to learn rules 

for matching the other data records. The method proposed in (Jimenez, 2015) is also 

supervised; it requires a training set that consists of positive and negative examples 

annotated by the user. The system learns the extraction rules based on an open 

catalogue of features along with the features of the annotated examples. Although, some 

supervised learning approaches try to minimize the amount of human effort needed for 

the system to work, they still have limitations on extensive web applications. These 

approaches are time consuming, and their extraction rules have to be distinctively 

learned for each specific website (Grigalis, 2014). 

The fully automatic approaches have been developed to overcome the above-mentioned 

limitations. The manual labour is entirely reduced in these systems, and they can be 

efficiently utilized in large-scale web applications (Shi, 2015). Examples of the 

unsupervised approaches are the methods proposed in (Grigalis, 2014), (Chang, 2016), 

(Su, 2012), (Thamviset, 2014), (Fan, 2014), (Shi, 2015), (Liu, 2010), and (Anderson, 

2013), The input to these systems can be either a single web page or multiple web 

pages; hence, they are further classified based on their input. Indeed, the automatic 

approaches are the dominant techniques in the area of web data extraction (Varlamov, 

2016).  
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3.2   The Level of Extraction Criterion 

Based on the level at which the extraction process is carried out, the unsupervised 

systems are classified into two categories: (1) page-level (i.e., multi-pages based) 

approaches, and (2) record-level (i.e., single-page based) approaches.  

The page-level approaches examine several search result web pages generated from the 

same template, and attempt to derive a shared pattern that can be used to extract the 

data records from these pages (Murolo, 2016). The UWIDE system (Chang, 2016) is an 

example of a multi-pages based approach. It identifies repeated leaf nodes patterns in all 

the input pages where every leaf node is encoded by its tag path and content type. A 

possible data region is detected by searching for the youngest common ancestor (YCA) 

of all the occurrences of a leaf node in a repeated pattern. The data records subtrees are 

then formed by clustering the subtrees under the YCA based on the edit distance of the 

leaf nodes’ code strings, and assembling the subtrees from different clusters based on 

the order of these clusters in the input pages. Although, page-level approaches are 

capable of distinguishing between the template and the dynamically generated data, the 

major drawback of these approaches is that their input could be enormous for large-scale 

applications since they require multiple pages as input. 

On the other hand, the record-level approaches inspect individual web pages separately 

in order to identify frequent patterns in each web page; the identified patterns are then 

utilized to extract data records from that page (Murolo, 2016). Examples of these 

methods are presented in (Grigalis, 2014), (Su, 2012), (Thamviset, 2014), (Fan, 2014), 

(Shi, 2015), (Liu, 2010), and (Anderson, 2013),  

In general, the page-level and the record-level methods employ various features of the 

HTML source code, the DOM tree, or the block tree of a web page to identify repetitive 

patterns. Hence, they are further classified based on the utilized approach. 
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3.3   The Utilized Approach Criterion 

Based on the applied technique and the utilized features, the automatic approaches are 

classified into five categories (Shi, 2015): (1) String-based approaches, (2) DOM-tree-

based approaches, (3) Vision-based approaches, (4) Ontology-based approaches, and 

(5) Hybrid approaches. 

A string-based approach works by mining repetitive patterns from constructed tag strings. 

The ClustVX algorithm (Grigalis, 2014) is an example of a string-based approach. It first 

translates the rendered HTML code into XML. The rendered visual features are 

embedded into the HTML elements as attributes. An XString is then created for each 

visible web page element; the XString is composed of the element XPath and its font 

features. All the indexes are removed from the XPaths and only the tag names are left. 

The ClustVX system clusters the created XStrings, so that the visually similar elements 

are grouped in one cluster. The data region is then identified by finding the longest 

common tag path of all the elements in each cluster, and the data records are then 

segmented based on two heuristics depending on whether each record has its own 

parent or all the records have the same parent. Ultimately, the ClustVX system assumes 

that the data items of the same semantics have the same tag path in all the data records. 

A key limitation of this approach is that it considers that all data records have the same 

number of data items neglecting the existence of optional attributes. 

The DOM-tree-based methods have defined diverse similarity measurements that are 

applied on a web page’s DOM tree (Fang, 2017). A recent DOM-tree-based approach is 

the AutoRM algorithm (Shi, 2015). AutoRM first constructs the DOM tree of the web 

page. Starting from the root node of the DOM tree, the algorithm inspects each set of 

adjacent sibling nodes to obtain groups of similar elements; the trees rooted at these 

nodes are inspected to acquire their similarity. Tree similarity is determined based on the 

similarity of the trees’ leaf nodes which is in turn computed according to various features 
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(i.e., structural, visual, content, and data type features). AutoRM merges the identified 

sets of similar nodes that have intersected index intervals to define a possible data 

region. Sets of adjacent similar Candidate Records (C-Records) are mined from each 

data region; a C-Record set is chosen if it covers a large area and has a high cohesion 

(i.e., a highly cohesive C-Record set has a high similarity between its C-Records and a 

low similarity between the nodes of each C-Record). Based on the existence of separator 

nodes between the C-Records, AutoRM proposes two different methods (i.e., separator-

based and head-order-based algorithms) for C-Records mining. Ultimately, the system 

recursively mines actual data records from each set of identified similar C-Records. 

However, AutoRM is an HTML-dependent approach which mainly relies on comparing 

the HTML tag names of the nodes to judge their similarity. Another limitation of AutoRM 

that it always considers data records as adjacent sibling nodes. Thus, it fails when there 

are multiple groups of data records where each group has its own parent (19.60% of the 

data records in our testbed datasets are organized as groups). 

As mentioned earlier, data records that are retrieved from the same query are similarly 

presented on the web page. Consequently, visual features of data records have been 

exploited by several extraction systems (Fang, 2017). The visual features have been 

utilized in the above referred techniques (i.e., ClustVX and AutoRM) as auxiliary 

information to identify repetitive patterns in a web page; however, the vision pattern is not 

the basic conception that these approaches are built upon. To the best of our knowledge, 

ViDE (Liu, 2010) and rExtractor (Anderson, 2013) are the most two recent vision-based 

techniques that are mainly built upon the visual presentation of web page objects. They 

will be discussed in details in the  Related Work chapter. Indeed, our algorithm falls in 

this category; precisely, it is a purely-visual automatic single-page approach. 

Some approaches employ the domain ontology as part of their extraction and alignment 

process; an automatically generated ontology or a predefined ontology of the domain of 



28 
 
interest is used to extract data from the same domain web pages (Bing L. a.-L., 2013). 

For instance, WordNet
2
, which is a lexical database for the English language, has been 

used in (Hong, 2011) as a predefined ontology to check the similarity of data records. 

Another recent ontology-based approach is the OntoExtract system (Hong, 2013). 

OntoExtract first inspects the web page’s DOM tree searching for specific Block Tags 

(e.g., Table and Div). A detected Block Tag is then considered a possible data region if 

its area is above a specified threshold. Three ontological tools (WordNet, CYC, and 

Wikitology) are then used to select the relevant region (i.e., the region which contains the 

search results) among all the identified ones. WordNet matches the keywords within a 

region according to their semantic similarity. Then, CYC forms relations between these 

keywords. Finally, Wikitology determines how much the provided information is related to 

each other. A data region is selected as the relevant region if its semantic similarity is 

above a predefined threshold. However, requiring the availability of additional sources to 

access these ontologies is a limitation of the ontology-based approaches (Su, 2012). 

Also, the extraction process mainly relies on the completeness and accuracy of the 

utilized ontology database. Indeed, integrating many ontological tools as it has been 

introduced in the OntoExtract system leads to a slow speed performance (Hong, 2013).  

Lastly, the hybrid approaches combine the HTML tag features and the visual features to 

build a data record extractor (Fang, 2017). An example of these approaches is the 

algorithm presented in (Fan, 2014). The algorithm accesses the rendering engine and 

considers the production of the web page’s tag tree and the CSS attributes as the web 

page’s block tree. The data region block is first identified based on the proportion of its 

area to the area of the whole page. All the child blocks of the data region are then 

clustered using Jaccard similarity where two blocks are considered to be similar only if 

their tags and all of their visual properties are the same. The algorithm then regroups the 

blocks from different clusters to form data records. The regrouping step is carried out 

                                                           
2
 https://wordnet.princeton.edu/ 
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based on the assumption that the first mandatory block of each data record is contained 

in the cluster that has the maximum number of blocks. Ultimately, the data item alignment 

is performed using simple tree matching and partial tree alignment. The nodes of each 

record’s tree are mapped against the nodes of the seed tree (i.e., a seed tree is the tree 

of the record that has the maximum number of data items). However, the algorithm 

considers that the blocks of each cluster always belong to distinct data records; this leads 

to incorrect regrouping when the data records themselves consist of similar sub-blocks 

which will be clustered together. Indeed, 43% of the data records in our testbed datasets 

contain visually similar sub-blocks. 

4.  Related Work 

The ViDE algorithm (Liu, 2010) is built upon the assumption that all the retrieved data 

records are contained in a unique data region, and that all the data records are left-

aligned, contiguous, consistently separated, and visually similar. It first employs the VIPS 

algorithm (Cai, 2003) to create the web page’s visual block tree. It then locates the data 

region by searching for the block that is horizontally centered and relatively large 

compared with the size of the whole page. ViDE defines noise blocks (e.g., statistical 

information) as the blocks that are located at the top or bottom of the selected data region 

and are not aligned to the left. The noise blocks have to be discarded from the data 

region. Each of the remaining blocks in the data region is first classified into one of three 

data types (i.e., image, plain text, and link text), ViDE then uses the size of the images 

and the shared fonts of the plain texts and link texts to cluster the remaining blocks based 

on their appearance similarity. A bounding rectangle is created for each cluster to 

surround all the blocks in the cluster; the positional arrangements of these rectangles are 

then utilized to regroup the blocks and form data records. The cluster that has the 

maximum number of blocks is selected as the base of the regrouping step; the blocks in 

the maximum cluster are considered to be the initial data records for the regrouping. The 
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initial data records are grown with the blocks from the other clusters whose bounding 

rectangles overlap the bounding rectangle of the maximum cluster. ViDE then segments 

each data record into data items by finding the sequence of the leaf nodes that each 

record subtree is composed of; the left-to-right order of the data items in each record is 

preserved. ViDE assumes that data items of the same semantic in different data records 

are presented similarly. Thus, ViDE matches the data items from different data records 

based on their font and position attributes. Ultimately, a multi-alignment algorithm is 

carried out to align all the data items according to their order in their corresponding data 

records; the data items of the same semantic are arranged under a single column and 

the optional data items in some records are assigned predefined blank items. However, 

ViDE takes into account data records that are arranged in one column (i.e., list view) 

only, and disregards data records that are organized in multiple columns (i.e., grid view) 

on the web page. Furthermore, when ViDE fails to locate a data region block among all 

the blocks generated by VIPS, then there is no data record that can be extracted; in fact, 

ViDE fails to identify data regions in 18% of the web pages in our testbed datasets. Also, 

ViDE considers that the similar sub-blocks in a data region are parts of different data 

records; however, it may cluster sub-blocks that belong to a single record which then 

leads to an incorrect regrouping. In spite of the fact that ViDE mainly relies on the visual 

features of the web page elements, a portion of it is still HTML-dependent; ViDE inspects 

the HTML elements’ tag names to determine their data types (e.g., <img> tags for 

images). Lastly, the assumption that the noise blocks are not aligned to the left as the 

other data records fails in a large number of web pages (the noise blocks in 62% of the 

web pages in our testbed datasets are aligned similarly with the data records on the 

page). 

The rExtractor system (Anderson, 2013) is built on the human intuition of understanding 

the visual presentation of objects on query result web pages. A human reader utilizes the 
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visual regularity of the displayed data records to derive semantic relations among the 

data items that can be grouped into data records. rExtractor accesses the layout engine 

to obtain the web page’s visual block tree which is defined as the outcome of the tag tree 

and the CSS of the page. The visual block tree consists of two types of visual blocks (i.e., 

container blocks and basic blocks). The rExtractor algorithm assumes that the highest 

priority region (i.e., the region that contains the main content) of a web page is located 

between the center and the top left of the page. Thus, the algorithm employs a clockwise 

Ulam Spiral
3
 to select a seed block which is a single basic block that belongs to one of 

the data records. The spiral starts from the center of the page and proceeds towards the 

top left corner to scan the largest possible area of the page’s main region. The container 

blocks that contain the seed block are considered candidate record blocks. Hence, 

rExtractor selects all the container blocks on the page whose widths are the same as the 

widths of the candidate record blocks. The selected container blocks are then clustered 

based on their widths. The algorithm then groups the child blocks of each container block 

where each group contains visually similar child blocks (i.e., two child blocks are visually 

similar if all of their visual properties are the same). The content similarity between the 

candidate record blocks in each cluster is then calculated (i.e., container blocks have 

similar content if the similarity index between their corresponding multi-sets of child 

blocks is above a predefined threshold). Ultimately, the candidate record block that has 

content similarity to the maximum number of container blocks is selected to represent the 

actual container blocks of all the data records. However, rExtractor assumes that all the 

data record blocks on a query result page have similar width. By investigating the web 

pages in our testbed datasets, we found that almost 21% of the pages contain data 

records with dissimilar widths. Moreover, rExtractor only identifies data records without 

proceeding to the next process which is extracting and aligning their data items.  

                                                           
3
 http://mathworld.wolfram.com/PrimeSpiral.html 
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As HTML is still evolving, superior approaches must be independent of using the HTML 

tag names to identify data types. Tag trees are used by web browsers to display web 

pages; visitors are only interested in seeing what is rendered by the browsers. A superior 

approach must also take into account the structural inconsistency that may occur 

between the web page’s underlying tag tree and the dynamically displayed elements on 

the page. Furthermore, web sites’ designers try to improve their users’ experience by 

imitating human mechanisms of perceiving objects. Utilizing this feature can be helpful in 

identifying sections that contain information of interest on web pages.  

The proposed algorithm in this thesis is a purely visual approach. The none-visual 

approaches are beyond the scope of the thesis. Therefore, the extraction efficiency of the 

proposed algorithm is compared against the efficiency of the two current state-of-the-art 

vision-based systems (i.e., ViDE and rExtractor). Indeed, the whole extraction system 

consists of two procedures (i.e., data records detection and data items alignment). ViDE 

is composed of two components (i.e., Vision-based Data Record extractor (ViDRE) and 

Vision-based Data Item extractor (ViDIE)) to perform each procedure. Thus, the 

comparison against ViDE is carried out for each of the two components, separately. On 

the other hand, the rExtractor system implements the first step only (i.e., data records 

detection). Hence, the comparison against rExtractor is carried out just for the data 

records detection step. 
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5.  The proposed Extraction and Alignment System 

In the following, we demonstrate the proposed strategy for data record extraction and 

alignment. A prerequisite procedure (i.e., obtaining the web page’s block tree) and a 

definition (i.e., visual similarity of the semantic blocks) are first introduced. 

5.1   Acquiring the Web Page’s Block Tree 

Our extraction system is a single-page-based approach; the system processes the 

displayed web page which is of interest to the user. Specifically, the input to the system is 

the block tree of the target web page. We utilize the GLM (Xu, 2016) model to obtain the 

web page’s block tree. In the following, we summarize the constructing procedure as the 

details can be found in  2.1.1 and (Xu, 2016). We also show some statistical information 

regarding to the utilization of block trees. 

The web page’s layer tree is utilized as a prototype to construct its block tree. To obtain 

the layer tree of the web page, the visible DOM nodes are first extracted into layer nodes, 

and the hierarchical inconsistency that may exist in the DOM tree is fixed while building 

the layer tree with nodes.  

Each of the six Gestalt laws of grouping is translated into a machine process-able rule. 

The Gestalt laws of simplicity and closure are translated into layer definition rules and are 

taken into account while constructing the layer tree. The other four Gestalt laws (i.e., 

proximity, similarity, continuity, and common fate) are translated into evaluation metrics to 

assess the layer tree nodes and merge them into semantic blocks.  

The semantic blocks identifier traverses the web page’s layer tree starting from the root 

node, and applies the four Gestalt laws of grouping on each sibling layer. Instead of 

combining the four metrics into a unified rule as it is implemented in (Xu, 2016), each 



34 
 
metric is applied separately on each pair of sibling layers. The two layers are merged into 

one semantic block if one of the following conditions is met: 

1. The proximity of the two sibling layers is the same as the proximity of all pairs in 

the same series of sibling layers (law of proximity). The proximity between two 

layers is calculated using the Normalized Hausdorff Distance (NHD) shown in 

Equation (1). 

2. The two sibling layers have similar appearance in terms of the size (i.e., width and 

height), background content (i.e., background color and background image), and 

foreground content (i.e., textual styles) (law of similarity). Color similarity is 

calculated using Equation (4), while image similarity is calculated using the 

Structural Similarity (SSIM) index shown in Equation (5). The other visual features 

are assessed by directly comparing the related text and paragraph CSS properties. 

3. The two sibling layers are left, top, right, or bottom aligned (law of continuity). 

4. The two sibling layers share the same position property (law of common fate). 

 

If none of the four previous conditions is met, the two layers are placed in distinct 

semantic blocks. The entire block tree building-up procedure is illustrated in Figure 5. 
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Figure 5: Working Procedure of Block Tree Building-up 
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In addition to fixing the visual and hierarchical inconsistency, utilizing the semantic block 

trees to represent search result web pages in the extraction process is important for the 

two following main reasons: 

1. The displayed data records are more accessible and comparable when each single 

data record is represented by a distinct subtree (i.e., all the subtrees that constitute 

the data record are arranged under a separate root node). For example, Figure 6 (b) 

shows the DOM tree representation of the HTML page fragment shown in Figure 6 

(a); the subtrees of the displayed data records are not well-separated (i.e., the data 

records do not have discrete head nodes). 

Figure 6: Example of data record trees that are not well-separated 
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In general, an excellent web page layout simulates the human natural way of 

observing objects. Humans observe objects that are close to each other as one 

group, while distant objects are perceived as different groups (i.e., law of proximity). 

Thus, designers tend to leave an obvious space between every two successive data 

records and smaller spaces among the data items that constitute each individual 

record. Therefore, GLM fixes the issue of the underlying tree structure that exist in 

(some) web pages by grouping all the sub-parts of a data record under a distinct 

block. Figure 7 shows the result of applying the GLM model to get the semantic 

blocks of the previous example shown in Figure 6. 

Figure 7: Semantic blocks of the three data records from the previous example 
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By analyzing the web pages in our testbed datasets, we found that the GLM model 

successfully identifies a single semantic block for each data record in 86% of the total 

data records.  

2. The semantic block tree of a web page is a simplified representation of the web page. 

The DOM tree may contain a large number of invisible nodes which makes traversing  

web page a complex and a time-consuming task. These invisible nodes are 

discarded in the block tree. Moreover, the semantic block tree groups the 

semantically related elements; thus, the number of nodes in a web page’s tree is 

considerably reduced. In the previous example, the number of nodes in the DOM tree 

(Figure 6 (b)) is minimized by almost 40% in the semantic block tree (Figure 7 (b)). 

By inspecting the web pages in our testbed datasets, we found that the number of 

nodes in the DOM trees is minimized by an average of 79% in the semantic block 

trees of the web pages.  

5.2   Defining Visual Similarity of Two Blocks 

Each block of a web page’s block tree, except the leaf blocks, comprises a tree of sub-

blocks. Hence, calculating the visual similarity among the blocks is carried out using a 

tree similarity function. We employ the EST (Shahbazi, 2014) model to obtain the 

similarity of a pair of blocks. The implementation details of EST can be found in  2.2.1 and 

(Shahbazi, 2014).  

EST determines the sub tree mapping relationship first before assigning weights to each 

mapping and a mapping is created between two nodes (i.e., sub-blocks) if they are 

similar. Figure 8 demonstrates an example of the similarity estimation between two trees 

   and    using the EST method: 
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Figure 8: Example of the similarity estimation using the EST method 

 

 The nodes of the two trees    and    are shown in Figure 8(a) stored and numbered 

in a post-order formatting as shown in Figure 8(b). The nodes    ,    ,    ,     in tree 

   are denoted as   ,   ,    and   ; and the nodes    ,    ,     in tree    are 

denoted as   ,   , and   , respectively. 

 All the possible mapping relationships between the two trees are first identified before 

further analysis. The following three mappings are first located:              

(marked by the blue dotted curve),               (marked by the green dotted 

curve),               (marked by the red dotted curve). 

 Because subtrees are considered more important than single nodes, subtrees are 

mapped together instead of single nodes by EST. Thus,    is updated to map the 

two subtrees of a-c as follows:                   . 
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 The mapping results are saved in the     mapping matrix     shown in Figure 

8(c), where        and       . Each cell in the matrix stores the mapping 

relationship between the corresponding nodes. For instance, the cell in 2nd row and 

1st column of     stores the mapping    which is between the 2nd and 1st nodes of  

   and   , respectively. If there is no mapping between nodes, then an empty set is 

stored in the corresponding cell. 

 To construct the largest subtree mapping, EST applies the one-time mapping rule by 

avoiding mapping common subtrees of    and   . Figure 8(d) shows the constructed 

largest mappings,     and    , for both trees,    and   , respectively. Of all the 

mapped subtrees,    does not belong to any mapping relationship, so the first 

element of     stores an empty set.     and    only belong to   , so this mapping 

relationship is stored in the 2nd and 1st elements of     and    , respectively. 

Ultimately, both    and    in    (also    and    in   ) belong to   , and thus, the 3rd 

and 4th elements of     (and the 2nd and 3rd elements of    ) store this mapping 

relationship. 

 Each node in    and    is assigned a weight by comparing the mapping matrix     

with both largest mappings     and    .     has 1 of   , 0 of   , and 2 of   . 

Hence, the weight matrix    has the weights of     ,     , and         as 1, 0, and 2, 

respectively. Similarly, the weight matrix    has the weights of     ,     , and         

as 1, 0, and 2, respectively. Therefore, the mapping weights can be computed as 

       ,        , and        . 

 Following the recommendation in (Shahbazi, 2014),   and   are set to 2 and 0.5, 

respectively. The depth of the nodes     and     in    and    are not the same; thus, 

  is utilized to reduce the weight of   , The calculation of the similarity between    

and    is shown in Figure 8(f) which equals to 0.53. 
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In this thesis, the similarity is assessed based on the visual properties of the two nodes. 

We employ 53 visual features which can be directly retrieved from each obtained 

semantic block. Some of these features are related to the textual content of a block, while 

the remaining features are general aspects of the block. Table 2 shows the utilized visual 

properties. 

If the values of all of these properties are identical in both of the comparable sub-blocks, 

then the sub-blocks are considered to be visually similar and a mapping is created 

between them during the EST similarity calculation process. The weight of each mapping 

is calculated using Equation (7) and the similarity of the two block trees is calculated 

using Equation (9). Ultimately, Equation (10) is employed to obtain the normalized 

similarity (i.e., ranging from zero to one) between the two block trees. 

Table 2: The utilized properties to assess the visual similarity 

General Properties Textual Properties List Properties 

background color and image text (writing) direction list style-image 

left/top/right/bottom borders color letter spacing list style- position 

left/top/right/bottom borders style line height list style-type 

left/top/right/bottom borders width text alignment  

outline color, style, and width text decoration  

bottom-left/ bottom-right/ top-left/ 

top-right radius of the border 
text indentation  

box shadow text capitalization  

vertical alignment white-space and word-spacing  

position text overflow  

 text shadow  

 Line-breaking and word-wrapping  

 count, gap, and width of text columns  

 
rule-color, rule-style, and rule-width 

of text columns 
 

 
font family, size, weight, style, 

variant, and color 
 

 



42 
 
The following experiments are conducted in order to evaluate the validity of the EST 

metric and to find out the optimal similarity threshold. We asked 5 volunteers to manually 

classify a number of web page portions according to their visual appearance. A total of 

2500 different web pages are randomly retrieved from the world's 500 top Websites as 

defined from statistics produced by Alexa
4
, and a pair of blocks is randomly selected from 

each web page. Every volunteer is given 500 web pages and asked to compare the pair 

of blocks of each page to assess whether they are similar or different.  500 EST records 

are produced for the blocks compared by each volunteer. As shown in Figure 9, these 

records are displayed in two boxplots, where the EST values of visually similar block 

pairs are illustrated by the first plot, while the EST values of visually different block pairs 

are denoted by the second plot. 

Figure 9: Boxplots of EST values of two groups of similar and different blocks 

 

According to the above displayed boxplots, the boxplots of the first group (i.e., the similar 

block pairs) demonstrate larger EST values than of the second group (i.e., the different 

block pairs) for all the 5 volunteers. The Wilcoxon rank sum test is conducted to analyze 

the EST records and verify the quantitative difference of the EST values between the two 

groups; the test is conducted with a Significance level of 5% (i.e., alpha=0.05). The null 

hypothesis of the test states that there is no difference between the ranks of the groups 

                                                           
4
 https://www.alexa.com/topsites. The top sites were retrieved on February, 2017 

https://www.alexa.com/topsites
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and that they have equal medians. According to the results in Table 3, all the  -values of 

the 5 experiments are smaller than 0.05 which indicates that the test rejects the null 

hypothesis and concludes that there is difference between the two groups of EST 

records. 

Table 3: Results of Wilcoxon rank sum test 

Experiment Volunteer(1) Volunteer(2) Volunteer(3) Volunteer(4) Volunteer(5) 

 -value 3.19E-81 2.23E-83 1.58E-71 2.23E-83 1.09E-80 

 

Furthermore, we compute the effect size based on two measures: Cohen's   (Cohen J. , 

1988) and Cliff's       (Cliff, 1993). Cohen's   reveals the standardised difference 

between the means of the two distributions, and Cliff's       demonstrates how often the 

values in the first distribution are larger than the values in the second distribution. 

According to the results in Table 4, all the Cohen's   values are categorized as “huge” 

(Sawilowsky, 2009) and all the Cliff's       values are categorized as “large” (Romano, 

2006). This verifies that the EST values between visually similar block pairs are higher 

than those between different pairs; accordingly, we conclude that this metric is able to 

identify the visual similarity among web page blocks. 

Table 4: Results of Cohen's d and Cliff's delta effect size estimation 

Experiment Volunteer(1) Volunteer(2) Volunteer(3) Volunteer(4) Volunteer(5) 

Cohen's   3.0149 4.4428 2.5546 3.8381 2.9189 

Cliff's       0.9867 0.9979 0.9244 0.9979 0.9834 

 

To identify the optimal similarity threshold of the EST similarity metric, all the EST scores 

(i.e., 2500 scores) of the 5 experiments are categorized into the following four categories: 



44 
 

 True Positive (  ): two similar blocks are identified as similar correctly; 

 True Negative (  ): two different blocks are identified as different correctly; 

 False Positive (  ): two different blocks are identified as similar incorrectly; and 

 False Negative (  ): two similar blocks are identified as different incorrectly. 

Figure 10 displays a plot of these four categories versus the corresponding EST 

thresholds. It can be seen that EST=0.40 is a turning point of all the four metrics.    

increases and    decreases noticeably prior to this turning point, while    decreases 

and    increases prominently after this point. 

Figure 10: TP, TN, FP, and FN of the empirical metric (EST) on different thresholds 

 

Further investigation is carried out in order to find out the optimal similarity threshold. Five 

additional metrics are calculated based on the above mentioned categories (i.e.,   ,   , 

  , and   ). These five metrics include: precision or positive predictive value (PPV); 

negative predictive value (NPV); recall or true positive rate (TPR); specificity or true 

negative rate (TNR); and accuracy (ACC). 

Figure 11 shows a plot of these five metrics against the corresponding EST thresholds. A 

similar pattern can be inferred from the plots where EST=0.40 is the crucial threshold that 
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noticeably turns the values of    ,    ,    ,    , and    . This indicates that 0.40 is 

a best point for a threshold. 

Figure 11: ACC, PPV, NPV, TPR, and TNR of the EST metric on different thresholds 

 

5.3   Locating the Main Data Region 

The data extractor targets a specific block (i.e., the main data region) of the web page or 

works directly on the whole page. In this thesis, we compare the extraction efficiency of 

the two cases (i.e., extracting data records from the main region and extracting from the 

full web page).  

The data region of a search result web page is defined as the block that contains all the 

displayed data records, i.e., the data region holds the main content of a particular search 

result web page. In general, a web page is divided into a number of main common 

sections including: the top section, the bottom section, the left (right) menu section, and 

the main content (Ahmadi, 2012). The main content is located in the center of the web 

page and covers a relative large area of the whole page. However, more than a block can 

satisfy these specifications; hence, we identify all candidate data region blocks; among all 

the candidate blocks, we select the block whose horizontal center is the closest to the 
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horizontal center of the entire web page’s block as the data region. We define a 

candidate data region as the block that satisfies the following conditions: 

1. Its top border is below the top border of the entire web page’s block. 

2. Its bottom border is above the bottom border of the entire web page’s block. 

3. Its area is larger than a specified threshold. Since web pages areas are not fixed, the 

threshold is proportional to the target web page’s total area.  The ratio of the data 

region area is set to be greater than or equal to 0.4 (i.e., 40% of the whole web 

page’s area) by ViDE (Liu, 2010).  

We conducted an experiment in order to find out the optimal threshold for the area 

ratio. A total of 1000 different web pages are randomly crawled from the world's 500 

top Websites as defined from statistics produced by Alexa (the web pages were 

retrieved on February, 2017), For each web page, the data region was located based 

on a set of thresholds ranging from 0.10-0.90 (i.e., 10%-90% of the whole web 

page’s area). Four types of results are defined: 

 True Positive (  ): data region is identified as data region correctly; 

 True Negative (  ): none-data region is identified as none-data region correctly; 

 False Positive (  ): none-data region is identified as data region incorrectly; and 

 False Negative (  ): data region is identified as none-data region incorrectly. 

Four metrics based on the above four types are examined to find out the optimal 

threshold. These four metrics include: recall or true positive rate (TPR); precision or 

positive predictive value (PPV); negative predictive value (NPV); and accuracy 

(ACC). 

Figure 12 demonstrates how these metrics change according to the alteration of the 

threshold. It can be noticed that the ratio of 0.20 has the highest values for all of the 

four metrics. After this point, PPV has a slight decrease, while TPR, NPV, and ACC 
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decrease significantly. This indicates that 0.20 is the best point for a ratio threshold. 

However, we compare between the extraction results based on this threshold (i.e., 

0.20) and the threshold utilized in ViDE (i.e., 0.40); we found that setting the ratio of 

the main region area to 0.20 improves the results in almost 37% of the web pages 

that fail when setting the ratio to 0.40. 

Figure 12: TPR, PPV, NPV, and ACC of the main region proportional area thresholds 

 

5.4   Extracting the Data Records 

Based on the user’s choice, the extractor system inspects the block tree of the main data 

region or of the whole web page. The targeted block tree is first traversed, and its blocks 

are sorted in ascending order by their top and left attributes to be utilized as the input for 

the data record extractor. The proposed data record extractor mainly depends on Gestalt 

laws of similarity, continuity, and proximity to identify data record blocks on a search 

result web page; retrieved data records are visually similar and aligned with each other to 

be recognized as a whole by human readers. The working procedure of the data record 

extractor is explained as follows. 
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5.4.1 Matching the Visually Similar Aligned Blocks 

A human reader groups elements that are aligned with each other on a web page (i.e., 

law of continuity). Web page designers arrange data records to be left-aligned as a 

vertical list or top-aligned as a horizontal list. This observation is empirically found to be 

true in 98% of the web pages in our testbed data sets. Blocks of adjacent and similar 

data records are siblings because they are semantically grouped by the GLM model (i.e., 

laws of proximity and similarity). Accordingly, the data record extractor starts by locating 

and matching the aligned similar blocks; two blocks are matched to each other if they are: 

1. Siblings (i.e., they are grouped in one parent block). 

2. Visually similar (i.e., their normalized EST similarity is above the threshold). 

3. Vertically aligned (i.e., the distances from the left edge of the page to their left 

edges are the same) or horizontally aligned (i.e., the distances from the upper 

edge of the page to their upper edges are the same). 

4. Separate (i.e., do not overlap). 

Matching only sibling blocks to each other ensures that data item blocks from different 

data records are not matched. However, this condition will not be true when groups of 

categorized data records are displayed apart from each other with a separate parent 

block encompassing each group of adjacent records. Although, a separate set of 

matched blocks is created for each group of data records, they still can be merged with 

each other according to the similarity and continuity of their data record blocks, Two 

created sets of matched blocks are merged together if any of their two blocks are found 

to be visually similar, and vertically/horizontally aligned. Methods, such as (Shi, 2015) 

and (Bing L. a., 2011), that consider data records as just adjacent sibling nodes fail in this 

case. We match these blocks to each other according to their visual appearance 

regardless of their hierarchical organization in the web pages’ tree. 
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5.4.2 Discarding the non-Candidate Data Records 

Other aligned similar blocks are matched to each other in addition to matching the actual 

data record blocks. These additional blocks are referred to as non-candidate data records 

which have to be removed from the created sets of the matched blocks. The non-

candidate data records could be one of the following two types: 

 Type (1): data item blocks of a single data record that are aligned and visually 

similar 

 Type (2): parent blocks of grouped data records that are aligned and visually 

similar when they contain similar numbers of data records.  

Data record blocks are displayed on a web page with similar visual features to be 

perceived as a whole, while adjacent data items that describe the same entity have 

distinct visual features to be distinguished by human readers (according to Gestalt law of 

similarity). However, some non-contiguous data items inside a data record block may 

have similar visual features; accordingly, they are matched to each other while they 

cannot be matched to the dissimilar data items in the same record. On the contrary, all 

data record blocks that are grouped inside a single parent block are matched to each 

other according to their visual similarity. 

Therefore, to identify blocks of non-candidate data records, parent-child relations are set 

up between all the blocks that are stored during the matching process; each block must 

be located inside its parent as they visually appear on the web page. For each identified 

parent block and its set of child blocks, the parent block is excluded as a non-candidate 

data record if all of its child blocks are matched to each other (i.e., Type (2)). Otherwise, 

the child blocks are excluded as non-candidate data records, while their parent is saved 

as a candidate data record (i.e., Type (1)). 
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5.4.3 Filtering the Noise Blocks 

In addition to the retrieved data records, a web page contains search/filter/sort/navigation 

elements that are utilized by users to: (1) initiate a new search by entering a new search 

keyword; (2) refine and sort the search results by some selected options; or (3) navigate 

between the retrieved data records. A search result web page may also contain blocks 

that display some statistical information related to the current query (e.g., total number of 

retrieved/displayed data records). All of these blocks are referred to as noise blocks that 

have to be excluded. Designers tend to place these blocks above and below the retrieved 

data records, i.e. the noise blocks enclose the main data region from the top and bottom 

boundaries. By examining the web pages in our testbed data sets, we found that the 

noise blocks in 79% of the web pages are located above and below the retrieved data 

records. These noise blocks will be matched to each other if they are aligned and visually 

similar as previously explained. In this case, both of the created set of the actual data 

record blocks and the created set of the noise blocks have similar relative positions on 

the web page which makes distinguishing between them not straightforward. Thus, they 

have to be removed from all the identified sets of candidate data record blocks.  

ViDE (Liu, 2010) assumes that the noise blocks are the blocks that are not aligned to the 

left with the actual data records. This assumption is not always true (the noise blocks in 

62% of the web pages in our datasets are found to be aligned with the data record 

blocks). Therefore, we follow a different strategy by calculating the distance between the 

noise blocks that are located above and below the data records. The set of the noise 

blocks is removed if the distance between any two of its blocks is large relative to the 

height of the entire web page; i.e. large enough to encompass the main data region that 

contains the retrieved data records. Hence, we utilize the threshold discussed in  5.3. 
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5.4.4 Identifying the Actual Data Record Blocks 

Among all the identified sets of candidate data record blocks, only one set represents the 

actual retrieved data records. Distinguishing between them is carried out based on the 

relative position of each set on the web page. Thus, we first create a representative block 

to enclose all the blocks in each set. The left (right, top, bottom) margin for each created 

block is equal to the left (right, top, bottom) margin of the block that has the smallest 

distance from its left (right, top, bottom) edge to the left (right, top, bottom) edge of the 

page. 

The main content of a typical web page is centrally located (Ahmadi, 2012); retrieved 

data records are placed on the center of the page because they are considered the main 

subject of the query result. Therefore, for each created representative block, we calculate 

the Hausdorff distance from its center to the center of the entire web page (or the main 

data region). Calculation of the normalised Hausdorff distance is carried out using 

Equation (2). Ultimately, the actual retrieved data record blocks are the closest to the 

center of the web page. 

For instance, Figure 13 shows the identified sets of the candidate data record blocks on a 

search result web page from Bestbuy.com where a distinct color is selected to illustrate 

each set of candidate record blocks. Set (3) in the figure represents the noise blocks 

which are displayed above and below the retrieved data record blocks, while Set (5) 

represents the actual retrieved data record blocks. 
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Figure 13: Example of the sets of the candidate data record blocks 

 



53 
 

5.5   Extracting and Aligning the Data Items 

Each identified data record consists of data items that describe specific attributes of a 

particular object. The goal of the following steps is to extract these data values from all 

the retrieved data records, and align together those that belong to the same attribute.  

According to the law of similarity, elements that appear similarly on a web page are more 

likely to be organized together by a human reader. Web page designers assign identical 

visual features to data items that describe the same attribute and distinguish adjacent 

data items within a single data record with distinct visual features. However, two data 

items of different attributes may appear visually similar; thus, the arrangement of the data 

items should be taken into account in addition to their visual similarity. Data items in each 

data record follow a consistent order within all of the retrieved data records; this 

consistent order makes these data records appear similarly on a web page. This 

observation is empirically found to be true in all the web pages in our datasets. However, 

the number of data items in each record may vary when some of the data items are 

optional. Our proposed data item extractor considers the data record blocks with the 

maximum number of data items as the records that have the minimum probability of 

missing any data item and considers them as the basis for matching the data items to 

each other. The matching process is carried out using the EST similarity method taking 

into account both all the available visual features and the order of the data items. The 

data item extractor works as follows. 

5.5.1 Segmenting each Data Record into Data Items 

A data record block is a rooted tree which is composed of a root block, internal blocks, 

and leaf blocks. The leaf blocks represent the minimum semantic units that cannot be 

further divided up (Liu, 2010); thus, each data item corresponds to a leaf block in the data 

record block that it belongs to.  



54 
 
However, some leaf blocks have to be merged together to form a complete data item. 

HTML text formatting tags (e.g., <strong>, <em>, <strike>, <b>, <i>, etc.), which are used 

to format text on a web page, lead to segment the block that belongs to a single attribute 

into sub-blocks. For instance, web page designers tend to highlight the existence of the 

search keywords in the displayed data records by assigning them a distinct format (e.g., 

bold or italic). During the segmentation, the block that contains the highlighted text is 

selected because it is a leaf block, while the remaining unformatted text is missing. 

To solve this problem, approaches, such as  (Grigalis, 2014), inspect the tag tree of the 

web page to remove the formatting tags. This manner is HTML-dependent because it is 

restricted to a limited number of HTML tags. A new set of formatting tags may be 

introduced as HTML is still evolving and these methods will not be longer effective. 

Therefore, we choose a different mechanism by checking the existence of text nodes as 

siblings of the detected leaf blocks. In this case, the textual content of the missing text 

nodes will be combined with the textual content of the leaf blocks according to their order.  

5.5.2 Selecting the Basic Data Items 

In this step, we select the set of the visually identical data record blocks with the 

maximum number of data items as the basic data records. The basic data records have 

the minimum probability of missing any data item compared to the other retrieved data 

records, and they are considered as the basis for matching the data items to each other. 

All the identified data record blocks are clustered into groups where each group contains 

visually identical data record blocks. Two data records are visually identical if they have 

the same number of leaf blocks and the normalized EST similarity between them is equal 

to 1. For each created cluster, the data item blocks of the stored data records are also 

clustered. Two data items are clustered together if they belong to different data records 
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and they are visually identical. Among all the formed clusters of data records, the cluster 

with the maximum number of data item clusters is selected as the basic data records. 

The previous example web page from Bestbuy.com has six clusters of data records and 

each cluster has a set of data item clusters as shown in Figure 14; the distinct colors 

represent either a data record cluster or a data item cluster. As can be seen from the 

figure, the first data record cluster has a total of seven data item clusters which are 

selected to be the base for the matching process. 

Figure 14: Example of clustering the data items of each data record cluster 
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5.5.3 Matching all Data Items with the Base Data Items 

In this step, all the created clusters of data items are utilized to extend the basic data item 

clusters by either merging them with visually matched clusters or inserting them as new 

clusters. The goal is to group together all the data values of the same attribute taking into 

account the existence of the optional attributes. 

Each cluster of data items is compared against all the basic data item clusters and 

matched only to the first detected visually identical cluster that have not been matched 

before to any cluster from the same set. Since each cluster groups visually identical 

blocks, the first stored data item is chosen as a representative of that cluster. 

Accordingly, two clusters are matched to each other if their first stored data items are 

visually identical (i.e., the normalized EST similarity between them is equal to 1). To 

maintain the consistent order of the data items within all the retrieved data records, we 

ensure that they are traversed and compared against each other in the same order as 

they visually appear on the web page. If the cluster could not be matched to any of the 

basic data item clusters, this indicates the existence of an optional attribute. The cluster 

is then added as a new cluster to the set of the basic data item clusters. Ultimately, the 

basic data item clusters are expanded where each cluster is a group of data items that 

belong to the same attribute. 

5.5.4 Aligning the Data Items in a Table 

A table is created to align and store all the extracted data items. Data items that belong to 

the same attribute are placed in one column according to the order of the data records 

that they belong to. The total number of the identified data records on a web page 

represents the number of the table rows, while the total number of the identified attributes 

represents the number of the table columns. Table 5 shows how the extracted data items 

from the previous example web page from Bestbuy.com are aligned. 
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Table 5: Example of aligning the extracted data items in a table 

 $29.99 
Save 

$20 

Sale 

ends: 

February 

14, 2017 

Caseco AutoTune - 

Wireless In-car FM 

Transmitter Radio 

Adapter 

 

Available 

online 

only 

 

Sold and 

shipped by 

Caseco 

Compare 

$34.99    

Sony AM/FM Dual 

Alarm Clock Radio 

(ICFC1TB) - Black 

(34) 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$27.99    

Sony AM/FM Radio 

with Built-In Speaker 

(ICFP26) 

 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$52.99    

Electrohome USB 

Charging LED Alarm 

Clock Radio with Time 

Projection, Battery 

Backup, Auto Time 

Set, Dual Alarm 

(EAAC475) 

(1) 

Available 

online 

only 

 

Sold and 

shipped by 

ShopTronics 

Compare 

$149.99    

iHome Dual Alarm 

Clock Radio 

(IDL44GC) 

(82) 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$79.99    

iHome iBT29 

Bluetooth Clock Radio 

- Colour Changing 

(443) 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$45.99    

Electrohome 

Projection Alarm Clock 

with AM/FM Radio, 

Battery Backup, Auto 

Time Set, Dual Alarm 

& 3.5mm Audio Input 

 

Available 

online 

only 

 

Sold and 

shipped by 

ShopTronics 

Compare 

$45.99    

Electrohome Retro 

Alarm Clock Radio 

with Motion Activated 

Night Light and 

Snooze 

(1) 

Available 

online 

only 

 

Sold and 

shipped by 

ShopTronics 

Compare 

$39.99    
SiriusXM Stratus 6 

Radio With Vehicle Kit 
 

Available 

online 

Sold out 
in nearby 
stores 

 Compare 

$169.99    

iHome Bluetooth Clock 

Radio with Apple 

Watch and Lightning 

Charging Dock 

(IPLWBT5BC) - Black 

(2) 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$175.99    

Electrohome Vinyl 

Record Player Classic 

Turntable Wood 

Stereo System, 

AM/FM Radio, CD, 

and AUX  Input for 

Smartphones 

 

Available 

online 

only 

 

Sold and 

shipped by 

ShopTronics 

Compare 

$29.99    

Sony AM/FM Clock 

Radio (ICFC1B) - 

Black 

(9) 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$69.98    
Midland 2-Way Radios 

(LXT600VP3) 
 

Available 

online 

only 

  Compare 

$43.98    
Midland 2-Way Radios 

(LXT118VP) 
 

Available 

online 

only 

  Compare 

$64.99    

iHome iBT230 

Bluetooth Clock Radio 

- Black 

(214) 
Available 

online 

Available 
at nearby 
stores 

 Compare 

$99.99    

iHome iPhone 5 & Up 

Clock Radio - 

Gunmetal 

(114) 
Available 

online 

Available 
at nearby 
stores 

 Compare 
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6.  Experimental Work 

In this section, we present our experimental results to show the effectiveness of our 

approach. We first describe the two datasets utilized in our experiments, and then 

introduce the employed performance measures. The entire extraction system consists of 

two procedures: Data Record Extraction (DRE) and Data Item Extraction (DIE); thus, we 

present the experimental results of each part separately. The efficiency of the system is 

compared against ViDE (Liu, 2010) and rExtractor (Anderson, 2013), which are the two 

current state-of-the-art vision-based approaches that automatically mine data records 

from individual Web pages. The proposed system is implemented in JavaScript as a 

Mozilla Firefox extension; the extracted record blocks are visually reflected on the 

processed Web page and the extracted data are saved to the user’s system. The 

experiments were conducted on an Intel Core i7-4770, 3.40 GHz PC with 8GB memory. 

The average running time for the system to process a Web page is about 7 sec including 

building up the block tree. 

6.1   Datasets 

We have conducted experiments based on the following two datasets: 

1. TBDW (TestBed for information extraction from Deep Web) version 1.02: this is a 

public third-party dataset which is collected by (Yamada, 2004) and is available at 

http://daisen.cc.kyushu-u.ac.jp/TBDW/. TBDW consists of 253 Web pages that are 

queried from 51 Websites randomly selected from 114,540 Web pages with search 

forms of various search engines. Among all the Websites, three same-template Web 

pages are queried from the 43rd Website, while five same-template Web pages are 

queried from each of the other 50 Websites. TBDW can be considered as a 

benchmark dataset that has been utilized for evaluation by many proposed data 

extraction systems, including (Shi, 2015), (Bing L. a.-L., 2013), (Su, 2012), (Bing L. 

http://daisen.cc.kyushu-u.ac.jp/TBDW/


59 
 

a., 2011), (Liu, 2010). The collectors of this dataset have provided annotations of the 

first data record displayed on each Web page as a sample of the other data records 

on the same page. All the works that have utilized this dataset, have presented their 

experimental results based on the identification of the first retrieved data record only; 

the other extracted data records have no weight on determining the entire extraction 

result. Therefore, we provide annotations for the remaining data records in all the 

Web pages in this dataset by following the provided annotation templates, then we 

evaluate the extraction efficiency based on the identification of all the data records. In 

our experiments, four Websites (i.e., twenty Web pages) are excluded because of the 

ambiguous record annotations or the distorted codes of their Web pages. Hence, the 

remaining 47 Websites, including 233 Web pages and 4297 data records in total, are 

used in our experiments. 

2. Our dataset: In addition to the fact that the number of the Websites included in 

TBDW version 1.02 is limited for experimental comparison, TBDW is out-of-date 

because it has not been maintained since 2004. Web page design has enormously 

evolved in the last decade; the design and the layout of the Web pages involved in 

TBDW are much different than the design and the layout of current Web pages. 

Consequently, we created our own dataset, which includes 450 Web pages queried 

from 150 Websites selected from the world's 500 top Websites as defined from 

statistics produced by Alexa
5
. Specifically, the 150 Websites span the 15 different 

categories defined in Alexa. For each category, we visited the top 10 Websites, and 

three Web pages were queried from each visited Website. During the selection of the 

top Websites, we disregarded "inappropriate" samples of Websites, such as sites that 

do not have any search form to run a query, duplicate sites (e.g., "amazon.in" and 

"amazon.ca", etc), temporarily unavailable sites, and sites that contain inappropriate 

content. The 450 keywords that have been utilized to initiate the queries, are 

                                                           
5
 https://www.alexa.com/topsites. The top sites were retrieved on February, 2017. 

https://www.alexa.com/topsites
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selected from the most popular search keywords defined by WordStream
6
. For each 

of the 15 categories, we randomly select 30 keywords from the list of 10000 popular 

search keywords provided by WordStream for each category. Indeed, our dataset 

includes the total of 9865 data records retrieved from all of the generated queries. In 

the experiments, the data records extracted by the algorithm are compared against 

the actual retrieved data records. Thus, we manually extracted the actual data 

records by creating a data table for each Web page in the dataset; the cells of each 

table row are all the data items of a single data record, and the cells of each table 

column are the data items that belong to the same attribute from all the data records. 

General statistics about the two utilized datasets (i.e., TBDW, and our dataset) are shown 

in Table 6: 

Table 6: General statistics about the two utilized datasets 

Feature TBDW version 1.02 Our Dataset 

Number of Websites 47 150 

Number of Web pages 233 450 

Total number of data records 4297 9865 

Minimum number of data records per page 1 2 

Maximum number of data records per page 160 147 

Average number of data records per page 18 22 

Total number of data items 17808 56117 

Minimum number of data items per record 1 1 

Maximum number of data items per record 17 49 

Average number of data items per record 4 5 

                                                           
6
 http://www.wordstream.com/popular-keywords/ 

http://www.wordstream.com/popular-keywords/
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6.2   Performance Measures 

Most of the existing proposals employ precision, recall, and F-measure to evaluate the 

performance of their extraction systems. Here, we also use the three measures as the 

evaluation metrics. Because the whole extraction system is composed of two parts (i.e., 

data record extraction and data item extraction), the performance measures are defined 

for them separately as follows: 

 For data record extraction, precision    , is the fraction of the total number of 

correctly extracted data records,    , out of the total number of data records 

extracted,    . This corresponds to the following equation:  

 

    
   

   

 (11) 

 

Recall    , is the fraction of the total number of correctly extracted data records,    , 

out of the total number of the actual data records in the query result pages,    . This 

is shown in the following equation: 

 

    
   

   

 (12) 

The third measure,    score or F-measure, is a derived metric that uses both 

precision and recall to give a single value that acts as a summary of the performance. 

The F-measure employed to evaluate the performance of the data record extraction 

can be calculated from above-mentioned results of     and     as shown in the 

following equation: 
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 (13) 

Also, we employ an additional metric, i.e. accuracy, for evaluating the performance of 

the data record extractor. The calculation of accuracy      , is shown in Equation 

(14) . 

      
        

            

 
(14) 

Where     is the total number of correctly extracted data records;     is the total 

number of correctly rejected none data records;     is the total number of the actual 

data records on the web page; and     is the total number of incorrectly extracted 

none data records. 

 For data item extraction, precision    , is the fraction of the total number of correctly 

extracted data items,    , out of the total number of data items extracted,    . The 

precision,    , is given by the following equation:  

 

    
   
   

 (15) 
 

Recall    , is the fraction of the total number of correctly extracted data items,    , 

out of the total number of the actual data items in the query result pages,    . This 

corresponds to the following equation:  

 

    
   
   

 
(16) 

The    score or F-measure used to evaluate the performance of the data item 

extraction can be calculated as shown in the following equation: 
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 (17) 

In addition to the above mentioned performance measures, we introduce a new metric, 

accuracy of alignment, to measure the accuracy of aligning the correctly extracted data 

items. Specifically, this measure checks if the extracted data items that belong to the 

same attribute are aligned together (e.g., are all the extracted ‘prices’ aligned in one 

column?). We define this metric,     , as the fraction of the correctly aligned data items, 

    , out of the total number of all the aligned data items by the algorithm,     . This is 

shown in the following equation: 

     
    
    

 
(18) 

6.3   Experimental Design 

The first step of the experiment is the data retrieval. We develop a Mozilla Firefox 

extension to implement the proposed data extractor that enables users to extract search 

result data records. The APIs provided by Mozilla Firefox for manipulating DOM elements 

facilitate building up the layer tree which is in turn utilized to build up the block tree. Also, 

users can see (in real-time) any modifications of the web page’s DOM tree which are 

applied immediately by Mozilla Firefox (Xu, 2016). The result of running the extraction 

extension on a web page containing query results is a table of data that is saved to the 

user’s system where each row represents the data items of a single data record. 

Furthermore, the identified data record blocks are visually marked by assigning a special 

background color to the corresponding DOM element of each data record block; the 

updates are displayed immediately on the original web page. However, a user can 

choose between extracting the data from the main data region of the web page or from 

the whole page by selecting one of the two options available by the extension. Hence, to 
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test the two cases, we apply the extractor on all the web pages of the two datasets 

described in  6.1 to obtain two tables of data for each web page. 

The second step is data comparison. The actual targeted data on each web page in the 

two utilized datasets are already collected and organized in a table to be compared 

against the data extracted by the algorithm. Accordingly, the experiment evaluates the 

extraction efficiency by comparing the data table created by the algorithm for each web 

page and the already saved data table. Each row (i.e., a data record) from the first table 

is matched to a single row from the second table with the maximum number of similar 

cells (i.e., data items). Comparing the data items of two data records is addressed as a 

string similarity problem. We employ the Jaccard index as a string similarity metric; it 

compares the similarity/distance of two finite sets by computing the size of their 

intersection to the size of their union (Niwattanakul, 2013). However, any other string 

similarity metric can be used to assess the similarity between two data items.  

As explained in section  6.2, number of correctly extracted data records determines the 

results of the data record extraction (DRE), while the results of the data item extraction 

(DIE) depends on the number of correctly extracted data items. Only correct extracted 

data records from DRE are used to evaluate the efficiency of DIE. In the experiments, we 

consider a correct extracted data record as an extracted data record that contains at least 

half of the exact data items in the actual matched data record. However, failure of 

extracting the remaining data items is reflected in the results of DIE. If only the extracted 

records that contain the full number of the original data items are considered as correct 

when evaluating DRE, then both precision and recall of DIE will be always 100% which 

does not accurately reveal the extraction performance of the algorithm. 

The last step of the experimental work is comparing the proposed algorithm against the 

two current state-of-the-art vision-based systems which are ViDE (Liu, 2010) and 

rExtractor (Anderson, 2013). The executable versions of the two systems are not publicly 
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available and we could not obtain them from the authors. Consequently, we re-

implemented the two algorithms according to the explanation provided in both references. 

Experiments on ViDE are conducted in a similar manner as our proposed system. 

However, rExtractor works only on identifying data record blocks without further 

extracting their data items. Hence, experiments on rExtractor are conducted by counting 

the visually marked detected data record blocks on each web page.  

6.4   Experimental Results of Data Record Extraction (DRE) 

In this section, we evaluate the first part of the proposed system (i.e., Data Record 

Extraction (DRE)) and compare it with the extraction performance of ViDE and rExtractor. 

Table 7 and Table 8 show the experimental results of the proposed visual system, ViDE 

and rExtractor on our dataset and TBDW version 1.02, respectively. For each dataset, we 

provide a comparison between the two cases (i.e., extracting data records from the main 

data region of a web page, and extracting data records from a full web page).  

Table 7: DRE results on our dataset 

Method Target Precision Recall F measure accuracy 

The Visual 
System 

Data Region 92.85% 82.51% 87.38% 95.97% 

Full Page 93.97% 85.30% 89.43% 96.59% 

ViDE 

Data Region 30.42% 15.61% 20.63% 79.88% 

Full Page 31.48% 32.51% 31.99% 76.77% 

rExtractor 

Data Region 53.30% 56.14% 54.68% 84.29% 

Full Page 53.41% 57.63% 55.44% 84.36% 
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Table 8: DRE results on TBDW version 1.02 

Method Target Precision Recall F measure accuracy 

The Visual 
System 

Data Region 88.29% 74.46% 80.79% 88.82% 

Full Page 89.04% 79.36% 83.92% 90.40% 

ViDE 

Data Region 36.78% 11.53% 17.56% 66.04% 

Full Page 42.56% 20.37% 27.55% 66.54% 

rExtractor 

Data Region 44.66% 39.61% 41.98% 68.55% 

Full Page 46.37% 42.87% 44.55% 69.36% 

 

From both Table 7 and Table 8, we can make the following observations. First, DRE 

results are slightly higher when the extractor targets a full web page than the main data 

region of a web page for both datasets. This is due to the failure in identifying the blocks 

of the main data regions for some web pages. Specifically, the visual system, ViDE, and 

rExtractor miss the data region blocks in 5%, 20%, and 7% of the web pages in our 

dataset, respectively. For TBDW, the visual system, ViDE, and rExtractor fail in locating 

the data region blocks in 4%, 13%, and 5% of the web pages, respectively. The 

specifications indicated in  5.3 for locating the data region block are equally employed in 

the three comparable algorithms; however, the input for each algorithm is different. The 

proposed visual system utilizes the GLM (Xu, 2016) visual block tree as the input; ViDE 

utilizes the VIPS (Cai, 2003) visual block tree; rExtractor uses the visual block model (i.e., 

the product of the tag tree and the CSS of the page). VIPS identifies a limited number of 

blocks; some big blocks are identified by VIPS while smaller blocks are missed (Xu, 

2016). Also, VIPS performance efficiency on modern web pages is extremely low 

because the visual separators that VIPS uses to segment web pages are much less 

apparent in modern pages than traditional ones. Accordingly, the failure rate in locating 

the data region blocks in ViDE is higher than the visual system and rExtractor on both 

datasets which interprets the low recall result value of ViDE. 
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The second observation is that the proposed visual system performs significantly better 

than ViDE and rExtractor on both datasets and the two cases (i.e., data region and full 

page). As mentioned above, the type of the input tree has an influence on the extraction 

results. However, the technique that the algorithm applies to analyze a web page’s tree to 

detect data record blocks has the major influence. Our analysis observes that the 

clustering and regrouping technique of ViDE is the main cause for its low efficiency. ViDE 

clusters the visually similar data item blocks on a web page and assumes that the blocks 

of each cluster belong to distinct data records. Consequently, regrouping the clustered 

blocks by ViDE creates erroneous data record boundaries when each of these records 

contains visually similar data item blocks. In contrast, the visual system employs the GLM 

model (Xu, 2016) which simulates human perception by utilizing the Gestalt laws of 

grouping to segment a web page into visual semantic blocks. Applying the law of 

proximity groups the adjacent data item blocks of each data record into a single node of 

the block tree as explained in  5.1. This creates a significantly better representation of 

data records than the faulty regrouping mechanism of ViDE.  

Furthermore, ViDE assumes that all data record blocks have the same distance to the left 

boundary of the page; thus, it is only able to address data record blocks that are arranged 

in a single column and discards the other blocks of a displayed grid. Conversely, the 

visual system follows the Gestalt law of continuity to address both vertically and 

horizontally aligned blocks to identify all the data records arranged as a grid (ViDE 

identifies only 22.54% of the data records displayed in multiple columns compared to the 

visual system that identifies 87.18%). 

Our analysis of rExtractor observes that its clustering mechanism is the main cause of its 

errors. rExtractor clusters blocks based on their visual appearance and widths; it 

assumes that all the data record blocks on a web pages are visually similar and have the 

same width. In fact, the size of the data items of a single data record determines its width; 
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thus, assuming that all the displayed data records have the same width is not always true 

(we found that almost 21% of the web pages in our testbed datasets contain data records 

with different width). In addition, rExtractor does not distinguish between the similar sub-

blocks inside a single data record block and the similar blocks of the actual data records. 

For instance, if a web page contains 10 data records and each record is composed of two 

visually similar sub-blocks with the same width, rExtractor mistakenly identifies these 

sub-blocks as the actual data records and, thus, the number of extracted data records will 

be duplicated to 20. On the contrary, we take into account the parent-child relations 

between the identified similar blocks to detect the two types of non-candidate data 

records as explained in  5.4.2. 

By analyzing the results of the visual system on the two datasets, we could classify the 

web pages that have low recall values as follows: 

 59% of the web pages have block trees that are inaccurately constructed in 

accordance to the substandard design of those pages. For instance, an obvious 

space is usually left between every two successive data records and smaller 

spaces among the data items that constitute each single record. If the web 

page’s design does not comply with the Gestalt law of proximity, then an 

inaccurate block representation is created by the GLM model (Xu, 2016) for the 

displayed data records. 

 17% of the web pages contain other blocks that are closer to center of the page 

than the retrieved data record blocks; these additional blocks are mistakenly 

identified as data records. 

 9% of the web pages do not comply with the Gestalt law of continuity; they 

contain data records that are not displayed as a list or grid (i.e., not 

vertically/horizontally aligned with each other). 
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 8% of the web pages contain only a single data record on each page. Our 

algorithm works on matching the visually similar blocks on a web page; thus, it 

fails to detect the correct data record when the query retrieves only one data 

record. However, we noticed that the web pages that contain one data record all 

belong to TBDW dataset. 

 Lastly, 7% of the web pages contain groups of data records and each group is 

displayed visually different from the other. For instance, a group contains product 

data records resulted from the query, while another group has news data records 

related to the query. In this case, our algorithm is able to identify the data records 

in one group which is the closest to the center of the page.  

The last observation that can be seen from Table 7 and Table 8 is that the performance 

of the three algorithms on our dataset is better than their performance on TBDW. First, 

TBDW is out-of-date because it has not been maintained since 2004; web page design 

and layout have enormously evolved in the last decade. Second, all the web pages of 

TBDW are just stored as HTML files without any CSS files or images. It can be noticed 

that the decline in the results on TBDW is more obvious for the visual system and 

rExtractor (about 6% and 11% respectively). These two recent algorithms are built on 

simulating the human intuition of understanding the visual presentation of web page 

objects. This indicates that human mechanisms of perceiving objects are more imitated in 

the design of modern web pages. 

As mentioned in  6.1, our dataset is composed of 15 categories of web pages. In the 

following, we demonstrate the extraction results for each category and compare the 

performance of the three algorithms on those categories. 
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Figure 15: DRE results by category – Our algorithm 

 

Figure 16: DRE results by category – ViDE 

 

Figure 17: DRE results by category – rExtractor 
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Figure 15 shows the DRE results (precision and recall) of the visual system on each 

category. According to the chart, web pages of Reference and Games have the highest 

precision (100% and 99.9%, respectively); the extreme precision values indicate that the 

false positives on these two categories are very improbable. Reference category has also 

the highest recall (98.6% of correct data records on Reference web pages have been 

identified). However, the chart shows that Science and News categories have the lowest 

precision (67.3% and 85.6%, respectively) and recall (68.5% and 62.1%, respectively). 

The low precision value on Science web pages is due to the high false positives (i.e., 

none-data records are mistakenly extracted), while the low recall value on both Science 

and News pages is resulting from the low true positives (i.e., many of the correct data 

record blocks have been missed). Overall, the best performance of the visual system can 

be observed on Reference and Shopping categories where the values of both precision 

and recall are noticeably high and very close to each other (100%, 98.6% and 94.8%, 

94.6%, respectively); this indicates that the Gestalt laws of grouping are more applicable 

on the web pages of these two categories. 

Figure 16 and Figure 17 show the DRE results of ViDE and rExtractor on each category, 

respectively. The charts show that the extraction efficiency of the two algorithms on 

Science and News web pages is low while their results on Society web pages are high 

comparative to the visual system. Although, web pages of Home and Shopping present 

high results for the visual system, the lowest performance of ViDE and rExtractor can be 

observed on these two categories, respectively. Generally, the performance of rExtractor 

is noticeably higher than ViDE on each category and it is more similar to our system. 
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6.5   Experimental Results of Data Item Extraction (DIE) 

In this section, we evaluate the second part of the proposed system (i.e., Data Item 

Extraction (DIE)) and compare it with the extraction performance of ViDE (rExtractor 

cannot perform this task.). The experimental results of the visual system and ViDE on our 

dataset and TBDW are shown in Table 9 and Table 10, respectively. For each dataset, 

we again compare between the two cases (i.e., extracting data items from main data 

regions, and extracting data items from full web pages). Only correctly extracted data 

records by the visual system and ViDE are used to evaluate DIE; for instance, the results 

of the visual system displayed below for our dataset are on the 82.51% and 85.30% 

correct data records (as shown in Table 7 and Table 8). 

Table 9: DIE results on our dataset 

Method Target Precision Recall F measure Accuracy of alignment 

The Visual 
System 

Data Region 90.69% 89.33% 90.00% 95.23% 

Full Page 90.06% 89.34% 89.70% 95.33% 

ViDE 

Data Region 46.25% 54.61% 50.09% 74.45% 

Full Page 51.96% 58.40% 54.99% 74.80% 

 

Table 10: DIE results on TBDW version 1.02 

Method Target Precision Recall F measure Accuracy of alignment 

The Visual 
System 

Data Region 86.18% 79.45% 82.68% 97.94% 

Full Page 86.59% 79.18% 82.72% 97.61% 

ViDE 

Data Region 35.45% 57.98% 43.99% 80.32% 

Full Page 34.51% 53.88% 42.07% 75.42% 
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The first observation that can be made from Table 9 and Table 10 is that the extraction 

results of the proposed visual system are significantly higher than ViDE on both datasets 

and the two cases (i.e., data region and full page). As mentioned in  6.4, the regrouping 

and clustering technique of ViDE tends to create wrong data record boundaries. Thus, 

ViDE has a high possibility of mistakenly including additional data items from other blocks 

to a created data record block which increases the number of the incorrectly extracted 

data items (i.e., false positives) for some records. In addition, ViDE utilizes VIPS to obtain 

a web page’s block tree; we found that 31% of the missed data items by ViDE are 

according to the misrepresentation in the created VIPS block trees. 

Second, we can observe that the DIE results of the proposed system are fixed among the 

two cases (i.e., data region and full page) for each dataset. DIE performance is evaluated 

on the correctly extracted data records obtained from the previous step (i.e., DRE). As 

explained in  6.4, the number of correctly extracted data records is higher when 

addressing a full web page than a main data region; hence, the number of relevant data 

items (i.e., targeted data items that must be extracted) is also higher. However, the 

number of the extracted data items by an algorithm should be proportional to the number 

of the relevant data items; this makes the DIE results for both data regions and full pages 

constant. On the other hand, we can notice that the DIE results of ViDE are irregular 

among the two cases for each dataset (the results are higher when addressing full web 

pages of our dataset, while they are higher when addressing data regions of TBDW). 

The third observation that can be made is that the extraction results (specifically F1 

score) of the proposed system and ViDE on the first dataset are higher than their results 

on TBDW. Although, the two algorithms apply different alignment strategies, they both 

consider that adjacent data items of different attributes in a single data record block have 

different presentation style. By analyzing the web pages in the two datasets, we found 

that this feature is not valid in only 3% of the web pages of our dataset, while it fails in 
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almost 17% of the web pages of TBDW. Accordingly, the DIE results of the visual system 

on TBDW slightly declined (by almost 7%) because GLM merges the adjacent visually 

similar data item blocks and considers them as one data item. 

Lastly, we can notice that the alignment results of the visual system and ViDE on TBDW 

are slightly higher than their results on our dataset. Our analysis of the two datasets 

found that web page designers tend to highlight the existence of the search keywords in 

the retrieved data records by assigning them distinct text styles. If the search keyword 

does not appear in some of the displayed data records, then the highlighted data items 

will appear visually different from the un-highlighted data items in those records. 

Accordingly, they will not be aligned in the same column even though they belong to the 

same semantic concept. This issue found to be slightly more in our dataset than in 

TBDW. 

As mentioned above, the input block tree is different for each of the three algorithms (i.e., 

the visual system, ViDE, and rExtractor). In addition to the fact that the size of the GLM 

(Xu, 2016) block tree, the VIPS (Cai, 2003) block tree, and the visual block model is 

different for the same web page, the time required to build each tree also differs. This, in 

turn, has a great effect on the total execution time of each algorithm. Figure 18 and 

Figure 19 demonstrate the execution time of the proposed visual system, ViDE, and 

rExtractor on our dataset and TBDW version 1.02, respectively, including the time of 

building up the block trees. The plots show that the visual system has the fastest 

performance among the three algorithms on both datasets. The average running time for 

the visual system to process a web page is about 10 sec and 3 sec, respectively, while 

the average running time for ViDE is about 249 sec and 32 sec. rExtractor has the 

slowest execution time with an average of 133 sec and 369 sec, respectively. 
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Figure 18: The execution time of our system, ViDE, and rExtractor on our dataset 

 

Figure 19: The execution time of our system, ViDE, and rExtractor on TBDW 
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7.  Conclusion and Future Work 

In this thesis, we propose a novel purely visual approach that is programming-language-

independent for automatically extracting structured web data. Numerous approaches 

have been introduced to address this problem but most of them are HTML-dependent 

solutions with limited functionality. The proposed system overcomes the limitation of the 

previous work by making a full use of the natural human tendencies of visual object 

perception. Specifically, the system consists of two steps: (1) data record extraction 

where we apply three of the Gestalt laws of grouping (i.e., laws of continuity, proximity, 

and similarity) which are used by humans to group data record blocks on a web page; 

and (2) data item extraction and alignment where we employ the Gestalt law of similarity 

which is utilized to group the visually identical data item blocks.  

Our approach first builds up the web page’s visual block tree using the GLM model. It 

then locates the centrally located main data region and matches the visually similar 

blocks that are adjacent and aligned with each other; it employs the EST model to obtain 

the similarity of block pairs based on their visual properties. The extractor sets up parent-

child relations between the matched blocks to discard the non-candidate data records 

and then filters out any existing noise blocks. It finally pinpoints the actual retrieved data 

records based on their relative position on the page among all the other matched blocks. 

To carry out data item extraction and alignment, our approach selects visually identical 

data record blocks, with the maximum number of data items, as the basis for matching 

the visually similar data items to each other. The matching process is carried out again 

using the EST similarity method considering the actual order of the data items. Finally, 

the visually identical data items that belong to the same attribute are aligned together in 

one column. 
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Our approach addresses both data records arranged as lists and grids. It is also able to 

identify visually similar data records displayed apart as groups on a web page despite 

their underlying tree structure. We have conducted extensive experiments based on 

human experience to find out the optimal similarity threshold of the EST empirical metric 

to match data records with optional data items. Furthermore, we propose a new testbed 

dataset for web data extraction that surpasses the widely used public dataset, TBDW 

version 1.02. Our experimental results on the introduced dataset and TBDW demonstrate 

that our approach outperforms the two state-of-art vision-based algorithms, ViDE and 

rExtractor: 

 our approach has significantly higher precision, recall, F-1 score, and accuracy 

than ViDE and rExtractor for the data record extraction task; 

  our approach has notably higher precision, recall, F-1 score, and accuracy of 

alignment than  ViDE for the data item extraction and alignment task; 

 our approach provides steadier and higher distributions of precisions and recalls 

on all of fifteen categories that our dataset is composed of; and 

 our approach is able to achieve approximately 96% and 93% better processing 

time than ViDE and rExtractor on our dataset, respectively; and approximately 

91% and 98% better processing time on TBDW version 1.02, respectively. 

In our future research, we intend to work on the next phase of the extraction system 

which is attribute labelling or annotating. In this stage, we aim to automatically assign a 

semantic label for each aligned group (i.e., column) of data items using the vocabulary 

provided by Schema.org (schema.org). Although, few methods have been proposed to 

address this problem, they follow a supervised manner where users have to provide 

annotated examples. 
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