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Abstract 

Single image matting refers to the problem of accurately estimating the 

foreground object given only one input image. It is a fundamental technique in 

many image editing applications and has been extensively studied in the literature. 

Various matting techniques and systems have been proposed and impressive 

advances have been achieved in efficiently extracting high quality mattes. 

However, existing matting methods usually perform well for relatively uniform 

and smooth images only but generate noisy alpha mattes for complex images. The 

main motivation of this thesis is to develop a new matting approach that can 

handle complex images. We examine the color sampling and alpha propagation 

techniques in detail, which are two popular techniques employed by many state-

of-the-art matting methods, to understand the reasons why the performance of 

these methods degrade significantly for complex images. The main contribution 

of this thesis is the development of two novel matting algorithms that can handle 

images with complex texture patterns. The first proposed matting method is aimed 

at complex images with homogeneous texture pattern background. A novel 

texture synthesis scheme is developed to utilize the known texture information to 

infer the texture information in the unknown region and thus alleviate the 

problems introduced by textured background. The second proposed matting 

algorithm is for complex images with heterogeneous texture patterns. A new 

foreground and background pixels identification algorithm is used to identify the 

pure foreground and background pixels in the unknown region and thus 

effectively handle the challenges of large color variation introduced by complex 

images. Our experimental results show that the proposed matting methods can 
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effectively handle images with complex background and generate cleaner alpha 

mattes than existing matting methods.  
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Chapter 1: Introduction 

Single image matting refers to the problem of accurately estimating the 

foreground object given only one input image. It is a fundamental technique in 

many image editing applications and has been extensively studied for more than 

two decades. The first formal introduction of the matting problem was by Porter 

and Duff in 1984 [1]. The original purpose of their work is to introduce the alpha 

channel as the way to blend the foreground and background images. 

Mathematically, a given image I is considered to be a linear combination of a 

background image B and a foreground image F using the compositing equation: 

 

 𝐼 = 𝛼𝐹 +  1 − 𝛼 𝐵 (1.1) 

 

where the alpha matte α  takes on values in the range [0,1]. The pixel with 

corresponding 𝛼 = 1 𝑜𝑟 0 is said to be a pure foreground or definite background 

pixel, respectively.  Otherwise, it is a mixed pixel.  The task of single image 

matting is to accurately estimate α, F and B, given only the input image 𝐼. For an 

image with three color channels, there are three equations and seven unknowns at 

each pixel. Hence, single image matting is inherently an under-constrained 

problem.  Most existing matting approaches require the user to provide some prior 

knowledge about the image foreground and background and also make different 

assumptions about the image statistics to constrain the ill-posed problem to be 

tractable. Once the alpha matte is estimated, the foreground image F can then be 

reconstructed and composited with a new background using Equation 1.1. A 

matting example is shown in Figure 1-1. The alpha matte is estimated using the 
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robust matting algorithm [2]. We can see that with the accurately estimated alpha 

matte, the girl is well extracted from the input image and blended with a different 

background image.  

                

     

 Figure 1-1: A matting example, generated by robust matting [2]. 

    User input plays an important role in almost all of the existing matting methods. 

If a given image is interpreted according to the compositing Equation 1.1 only, 

then infinite solutions exist. An obvious solution is 𝛼 = 1, that is 𝐼 = 𝐹 which 

means that whole image is foreground or 𝛼 = 0, that is 𝐼 = 𝐵 which means that 

the whole image is background. Using user input is to take advantage of the user’s 
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perception of what is background and foreground and hence, can reduce the 

solution space. The most common way of user input is to let the user divide the 

input image into three regions: definite foreground region, definite background 

region and unknown region. This user specified three-level pixel map is called the 

trimap. One example of a trimap is shown in               Figure 1-2. The trimap for 

the input image in the first row of               Figure 1-2(b) is shown in the first row 

of               Figure 1-2(a), where the black region denotes the definite background 

region, the white region the definite foreground region and the grey region the 

unknown region. Starting with the trimap, the matting problem is simplified to 

estimating 𝛼 , F and B for pixels only in the unknown region based on the 

information of known foreground and background pixels. The matting result 

shown in the second row of Figure 1-2(a) is generated by an iterative matting 

algorithm [3]. 

Generally speaking, better matting results can be achieved with more accurate 

trimap since less unknown pixels are needed to be estimated and more known 

information about the background and foreground are available. A desirable 

trimap is thus the one that covers as many as possible the definite foreground and 

background pixels. On the other hand, providing an accurate trimap is a time-

consuming process especially when the foreground object has a large number of 

semi-transparent regions or holes. So a good and practical matting algorithm 

should take into account the balance between the accuracy of the matte result and 

the amount of user effort required. Some recently proposed matting methods 

allow the user to specify only a few foreground and background scribbles which 

can be considered as a very coarse trimap. Closed-form matting [4] is such an 

example. As shown in the first row of Figure 1-2(b), the white scribbles specify 

the definite foreground and the black scribbles specify the definite background 

and the matting result of closed-form matting is shown in the second row of 

Figure 1-2(b).  
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              Figure 1-2: Different matting algorithms with different user input. 

 Starting with the user specified trimap, different matting methods have 

different ways of utilizing the known foreground and background information and 

make different assumptions of the image statistics to solve the matting problem. 

In general, existing matting methods can be roughly divided into three categories: 

the color sampling based methods [2, 5-8], the alpha propagation based methods 

[4, 9-12] and the optimization based methods [2-3, 13] which combine both the 
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alpha propagation and color sampling methods. The color sampling based matting 

methods, which assume color smoothness in a small neighbourhood and sample 

nearby definite foreground and background pixels to interpolate the alpha value of 

an unknown pixel. Alpha propagation based matting methods assume that the 

alpha values of neighbouring pixels are correlated with some local image statistics 

and propagate the known alpha values into the unknown region. There are also 

some recently proposed optimization based matting methods which combine both 

color sampling and alpha propagation techniques.  

Current matting methods can achieve good results on relatively uniform and 

smooth images. However, for complex images, for example if the background 

contains highly textured regions, the accuracy of these methods degrades 

significantly. The reason is because the large color variance in the complex 

background violates the underlying assumptions of both the color sampling and 

alpha propagation based methods. For the color sampling based methods, due to 

the large variation of pixel color in the background texture, a small number of 

background samples from a nearby definite background region may not be 

sufficient to capture the true background color of the unknown pixels. For the 

alpha propagation based methods, strong edges in the complex background, some 

of which may be even stronger than the edges separating the foreground and 

background will block the alpha values to propagate to the unknown region.  

The focus of this thesis is to address the difficulty introduced by complex 

images in single image matting. We give a detailed analysis of why existing 

matting methods cannot handle complex images and then propose two new 

algorithms that have better performance than existing matting methods in 

handling images with complex background, especially with textured background. 

To tackle the problem of complex single image matting, we first start with the 

case where the image background contains homogeneous texture patterns and 

develop a novel texture synthesis based matting method which can utilize the 

known texture information to infer the texture information in the unknown region 

and thus alleviate the problems introduced by textured background. Then for 
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matting with complex image which has heterogeneous texture patterns, we 

develop a new foreground and background pixels identification algorithm which 

can identify the pure foreground and background pixels in the unknown region 

and thus effectively handle the challenges of large color variation introduced by 

complex images. 

     Though this thesis is focused on single image matting, it is worth mentioning 

that there are some extensions of single image matting which use extra 

information other than the single input image. An example of an early matting 

system is called blue screen matting [14] which deals with input images that are 

shot against a constant-colored background. It is easy to infer from the 

compositing Equation 1.1 that knowing the true constant background color B 

simplifies the matting problem a lot. More recently, some special imaging systems 

are designed to use extra information in extracting an accurate matte, such as flash 

matting [15] in which the input is a pair of flash and non-flash images, matting 

using a camera array [16] to capture input images from different view-points, 

video matting [17] which pulls a high-quality alpha matte and foreground from a 

video sequence, defocus video matting [18] which is a specialized video matting 

technique using multiple synchronized video streams that share the same point of 

view but differ in their plane of focus. While utilizing additional information can 

lead to noticeable improvement of the matte quality, single image matting remains 

the foundation of all the matting systems. So the contributions made by this thesis 

to single complex image matting will benefit a broad range of existing matting 

applications.    
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Chapter 2:  

Background and Related Works 

As introduced in the previous chapter, single image matting itself is an ill-posed 

problem. Even with the user specified trimap, additional assumptions for the 

image are needed for estimating a high quality matte. Generally, existing matting 

methods can be divided into three categories according to the assumption they 

make for an image: color sampling based methods, alpha propagation based 

methods and the optimization based methods which combine both alpha 

propagation and color sampling methods.  Color sampling based matting methods, 

which assume color smoothness in a small neighbourhood and sample nearby 

definite foreground/background pixels to interpolate the alpha value of the 

unknown pixel, are discussed in section 2.1.  Alpha propagation based matting 

methods assume that the alpha values of neighbouring pixels are correlated with 

some local image statistics and use such correlation to propagate the known alpha 

values into the unknown region. Existing alpha propagation based matting 

methods are reviewed in section 2.2. While pure color sampling based methods 

and pure alpha propagation based methods each have their own weaknesses, 

combining these two approaches is expected to improve the matting result than 

using individual approach alone. Some recently proposed alpha optimization 

based methods which combine both color sampling and alpha propagation are 

briefly reviewed in section 2.3. 
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2.1 Color Sampling Based Matting Methods 

Color sampling based matting methods make the local smoothness assumption on 

image statistics that there exists local correlation between an unknown pixel 𝐼𝑧  

and its nearby known foreground and background pixels. Usually for each 

unknown pixel 𝐼𝑧 , a set of nearby known foreground and background pixels are 

sampled and the colors of these samples are assumed to be close to the true 

foreground and background colors (𝐹𝑧  and 𝐵𝑧) of 𝐼𝑧 . Hence, these color samples 

can be used to build color models to estimate 𝐹𝑧  and 𝐵𝑧  and compute the alpha       

value of Iz .  

The general idea of color sampling and color model building is quite intuitive; 

however, implementing a practical matting algorithm that works for general 

images requires several important questions to be answered. For example, how to 

define the “neighbourhood” of a pixel? How many samples should be collected 

for each unknown pixels? How to build reliable color models that can accurately 

estimate 𝐹𝑧  and 𝐵𝑧 ? Existing color sampling based methods deal with these 

questions in different ways and we give the details of them in the following 

sections. 

2.1.1 Mishima’s Method 

Mishima [7] developed a blue screen matting technique based on representative 

foreground and background samples. As shown Figure 2-1(a), since a blue screen 

is used as the controlled background, all the background pixels are assumed to 

form only one color cluster and are approximated in the color space by a 

polyhedron (triangular mesh). All the foreground pixels form another polyhedron 

outside the background one. Then for an unknown pixel, its alpha value is 

estimated by calculating its relative position to the two polyhedras as shown in 

Figure 2-1(e). 
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2.1.2 Knockout 

Unlike Mishima’s method, the Knockout system [5] works with unconstrained 

foreground and background. For an unknown pixel I, the system computes its 

foreground color 𝐹𝑧  by extrapolating nearby known foreground colors. As shown 

in Figure 2-1(b) & (f), 𝐹𝑧  is calculated as the weighted sum of nearby foreground 

color samples, and the weights are proportional to their spatial distances to I. The 

background color 𝐵𝑧   is first calculated in the same way and then refined by 

considering its relative position to I and 𝐹𝑧 . The alpha value for each color channel 

is estimated individually using the corresponding channel of 𝐹𝑧  and 𝐵𝑧 . Finally, 𝛼𝑧  

is estimated as the weighted sum of the three alpha values, where the weight is 

proportional to the foreground and background difference in the corresponding 

color channel. 

2.1.3 Ruzon and Tomasi’s Method 

While Mishima’s method and the Knockout system use non-parametric sampling 

scheme, Ruzon and Tomasi proposed a parametric sampling algorithm in 2000 

[8]. In their approach, the alpha values are measured along a manifold connecting 

the “frontiers” of each object’s color distribution. The way the “frontiers” is 

defined and the color model is built are summarized as follows: 

(1) A narrow band around the foreground boundary is considered as the skeleton 

of the unknown region. Some anchor points are selected along the skeleton to 

divide the unknown band into intervals, as shown in Figure 2-1(c). 

(2) A local spatial window is defined for each anchor point which covers a local 

unknown region, a local foreground region and a local background region. 

(3) Non-oriented Gaussian distribution is used as the local foreground and 

background color models and estimated based on the local foreground and 

background pixels for each window in the CIE-Lab color space [19]. 
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(4) For each local window, nearby foreground and background Gaussians 

candidates are connected while rejecting some connections according to certain 

“intersection” and “angle” criteria. 

(5) The observed color of an unknown pixel is assumed to be drawn from a 

Gaussian distribution, which is modeled as an intermediate distribution of a pair 

of foreground and background Gaussians. The mean and covariance of the 

intermediate distribution is linearly interpolated by a pair of foreground and 

background Gaussian distributions and the alpha value is estimated according to 

the linear weight, as shown in Figure 2-1(g). The best alpha value is defined as the 

one that corresponds to the intermediate distribution for which the observed color 

has the maximum probability. 

 

 

        Figure 2-1: Illustration of the color models of different matting methods.  

 

    The main drawback of Ruzon and Tomasi’s method is that using non-oriented 

Gaussians as a local color model works well only when the local region has small 

color variance. Local regions with large color variance will result in large fitting 

errors.  Also, the alpha value for each unknown pixel is estimated independently, 

which could make the final alpha matte not smooth enough. 
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2.1.4 Bayesian Matting 

Bayesian matting proposed by Chuang et al. in 2001 [6] uses a similar idea of  

using the Gaussian distribution as local color models as Ruzon and Tomasi’s 

algorithm, but also includes some improvements on the main drawbacks of Ruzon 

and Tomasi’s method discussed above.  First, a sliding window is used to collect 

neighbouring pixels for each unknown pixel as shown in Figure 2-1(d). Second, 

not only the pixels in the local foreground and background windows are used to 

estimate the Gaussian distributions, but also the estimated values of Fs, Bs and αs 

of the nearby pixels are used in the estimation of the current Gaussian 

distribution.  Finally, the alpha estimation is formulated as a maximum a posterior 

(MAP) problem which is a well studied technique under the Bayesian framework 

in statistics. Mathematically, for an unknown pixel 𝐼𝑧 , 𝛼𝑧 , 𝐹𝑧  and 𝐵𝑧  are estimated 

by 

            

 𝑎𝑟𝑔 max
𝐹𝑧 ,𝐵𝑧 ,𝛼𝑧

𝑃 𝐹𝑧 ,𝐵𝑧 ,𝛼𝑧  𝐼𝑧   

 = 𝑎𝑟𝑔max𝐹𝑧 ,𝐵𝑧 ,𝛼𝑧 𝐿(𝐼𝑧|𝐹𝑧 ,𝐵𝑧 ,𝛼𝑧) + 𝐿 𝐹𝑧 + 𝐿 𝐵𝑧 + 𝐿(𝛼𝑧)     (2.1) 

 

where 𝐿(∙) is the log likelihood 𝐿 ∙ = 𝑙𝑜𝑔𝑃(∙). The first term is measured as 

       

 𝐿 𝐼𝑧 𝐹𝑧 ,𝐵𝑧 ,𝛼𝑧 = − 𝐼𝑧 − 𝛼𝑧𝐹𝑧 − (1− 𝛼𝑧𝐵𝑧) 2/𝜎𝑧
2 (2.2) 

                                                 

where the color variance 𝜎𝑧  is computed in the local window. This term is simply 

the estimation residual according to the compositing equation and regularized 

with the local color variance. 𝐿 𝐹𝑧  is estimated as the probability of being drawn 

from a local foreground Gaussian distribution. The foreground pixels in the 

nearby definite foreground region are collected to estimate an oriented Gaussian 

with mean 𝐹  and covariance  𝐹. 𝐿 𝐹𝑧  is then defined as 
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 –  𝐹𝑧 − 𝐹  
𝑇Σ𝐹

−1(𝐹𝑧 − 𝐹 )/2 (2.3) 

 

𝐿 𝐵𝑧  is calculated in the same way by using background samples as shown in 

Figure 2-1 (h). 𝐿 𝛼𝑧  is treated as a constant. Equation 2.1 is solved by iteratively 

estimating 𝐹𝑧 , 𝐵𝑧  and 𝛼𝑧  using the following steps: 

(1)  Fix 𝛼𝑧  to solve for 𝐹𝑧  and 𝐵𝑧  as 

   

 
Σ𝐹
−1 + 𝐼𝛼𝑧

2/𝜎𝑧
2 𝐼𝛼𝑧(1− 𝛼𝑧)/𝜎𝑧

2

𝐼𝛼𝑧(1 − 𝛼𝑧)/𝜎𝑧
2 Σ𝐵

−1 + 𝐼(1− 𝛼𝑧)2/𝜎𝑧
2  

𝐹
𝐵
 =  

Σ𝐹
−1𝐹 + 𝐼𝑧𝛼𝑧/𝜎𝑧

2

Σ𝐵
−1𝐵 + 𝐼𝑧(1− 𝛼𝑧)/𝜎𝑧

2              (2.4) 

                 

 where  𝐼 is a 3*3 identity matrix. 

(2) Fix 𝐹𝑧  and 𝐵𝑧  to solve for 𝛼𝑧  as 

 

 
𝛼𝑧 =

 𝐼𝑧 − 𝐵𝑧 (𝐹𝑧 − 𝐵𝑧)

 𝐹𝑧 − 𝐵𝑧 2
 (2.5) 

 

      When there are multiple foreground or background clusters, this optimization 

is performed for each pair of foreground and background clusters and the pair 

which gives the maximum likelihood is chosen.  

      When the input image has a uniform background and a fine trimap is 

provided, Bayesian matting can generate quite accurate alpha mattes. However, 

for a complex image, the underlying assumption of Bayesian matting is violated 

and the results tend to be very noisy. For instance, if the input image has a highly 

textured background, using Gaussians distribution to model the local colors which 

has a large color variance is not suitable. Also, if the trimap is coarse, for the 

unknown region which is far away from the definite foreground and definite 

background regions, the correlations between the unknown pixels and the 

foreground and background samples are weak. Hence, large estimation errors will 

result for terms 𝐿 𝐹𝑧   and  𝐿 𝐵𝑧   in Equation 2.1. More detailed analysis is 

presented in section 3.1.               
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2.1.6 Optimized Color Sampling in Robust Matting 

All the color sampling methods discussed so far use all the pixels in a local 

window as color samples to build a local color model. However, when the image 

has complex foreground and/or background patterns, some local windows will 

have large color variance and it is more often the case than not that only a small 

number of pixels in the local window have strong relation with the unknown 

pixels. Selecting “good” samples to estimate the alpha values of the unknown 

pixels is then vital in getting high quality matte, which inspires an optimized color 

sampling procedure called robust matting [2]. 

The main idea of robust matting is to select “good” sample pairs which can 

explain the color of the unknown pixels as a linear combination of themselves. 

Specifically, as shown in Figure 2-2(b), for a foreground and background pixel 

pair (𝐹𝑖 ,𝐵𝑗 ), a distance ratio 𝑅𝑑(𝐹𝑖 ,𝐵𝑗 ) is defined as the ratio of between (1) the 

interpolation residue (that is the distance between the unknown pixel color, 𝐼𝑧  , 

and the color it would have, 𝐼 , predicted by the linear model in Equation 1.1), and 

(2) the distance between the foreground/background pair: 

 

 
𝑅𝑑 𝐹

𝑖 ,𝐵𝑗  =
 𝐼𝑧 − (𝛼𝑧 𝐹

𝑖 + (1− 𝛼𝑧 )𝐵𝑗 ) 

 𝐹𝑖 − 𝐵𝑗 
 (2.6) 

 

where 𝛼𝑧  is computed as in Equation 2.5. In the example shown in Figure 2-2(b), 

the distance ratio will be much higher for pair (𝐹1,𝐵1)  than for pair (𝐹2,𝐵2) 

indicating that the latter is a better choice for estimating the alpha value for 𝐼𝑧 . 

The distance ratio alone will favor sample pairs that are widely separated in the 

color space, in which case the denominator  𝐹𝑖 − 𝐵𝑗  will be large. Since most 

pixels are expected to  
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          Figure 2-2: Color sampling scheme for robust matting.  

be fully foreground or background, pixels with colors that lie nearby in color 

space to the foreground and background samples are more likely to be fully 

foreground or background themselves. Thus, for each individual sample two more 

weights 𝑤(𝐹𝑖)  and 𝑤(𝐵𝑗 )  are defined as 𝑤 𝐹𝑖 = 1.0− exp{− 𝐹𝑖 − 𝐼𝑧 
2

/𝐷𝐹
2} 

and 𝑤 𝐵𝑗  = 1.0− exp{− 𝐵𝑗 − 𝐼𝑧 
2

/𝐷𝐵
2} , where 𝐷𝐹

2  and 𝐷𝐵
2  are, respectively, 

the minimum distances between foreground/background sample and the current 

pixel, i.e., min𝑖 𝐹
𝑖 − 𝐼𝑧  and min𝑖 𝐵

𝑗 − 𝐼𝑧 . 

      Combining these factors, the final confidence value 𝑓(𝐹𝑖 ,𝐵𝑗 ) for a sample 

pair is defined as 

 

 
𝑓 𝐹𝑖 ,𝐵𝑗  = exp  −

𝑅𝑑(𝐹𝑖 ,𝐵𝑗 )2 ∙ 𝑤 𝐹𝑖 ∙ 𝑤 𝐵𝑗  

𝜎2
  

 

(2.7) 

where 𝜎 is fixed to be 0.1.  

For each unknown pixel, the confidence value for all the foreground and 

background sample pairs are computed as in Equation 2.7. The estimated alpha 

values of the three pairs with the highest confidence are selected and the average 

alpha value is used as the initial guess of the alpha value for the unknown pixel, 

which will be further adjusted by an optimization process. To effectively 

accommodate for the high color variances in the background and foreground 

regions, a relatively large number of foreground and background pixels are 
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sparsely selected along the boundary of the unknown region to form the sample 

set, as shown in Figure 2-2(a). 

2.1.5 Global Color Models 

All the color sampling schemes introduced above can be considered as local color 

sampling in the sense that they assume that the unknown region is a narrow band 

between the definite foreground and definite background boundaries and collect 

nearby samples to approximate local color models. This assumption will not hold 

if the trimap provided by the user is very coarse or consists of just a few paint 

strokes, where the majority of unknown pixels are very far away from the known 

foreground and background samples and have very weak correlations with them. 

To tackle this problem, some global color sampling methods are proposed 

recently which can estimate relatively good mattes with roughly specified trimaps. 

For example, the iterative matting approach [3] estimates the global Gaussian 

Mixture Models (GMMs) for definite foreground and background colors, and for 

an unknown pixel, samples are drawn from all the Gaussians in the hope to cover 

all the possibilities that its foreground/background color could have. The geodesic 

matting approach [9] also uses a mixture of Gaussians to model the global 

foreground and background color distributions in the CIE-Luv space, and fast 

kernel density estimation methods [20] are used to reduce the computational 

complexity of constructing PDFs.  However, using the GMMs as the global color 

models for complex foreground and background suffers from the problems of 

insufficient samples and large estimation errors and the performance of these 

global color sampling methods are not significantly better than the local color 

sampling methods.  
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2.1.7 Summary 

Exploiting the local smoothness characteristic of natural images by sampling 

nearby definite foreground and background pixels to estimate the alpha values of 

unknown pixels is intuitive and proves to be quite effective for solving the 

otherwise ill-posed matting problem. For those color sampling based methods 

introduced in this chapter to work well, their assumption on the local smoothness 

must hold and the trimap provided should be of sufficient details. However, as is 

discussed in Chapter 3, when the input image becomes complex, the large color 

variance presented in the image violates the smoothness assumptions of these 

methods and their performance will degrade significantly. 

2.2 Alpha Propagation Based Matting Methods 

As discussed in the previous section, in color sampling based methods, the 

information provided by nearby foreground and background samples becomes 

less reliable in a complex scene where the color variance is large. To avoid this 

problem some recently proposed matting approaches have taken a different way 

than estimating the true background and foreground of unknown pixels. Instead, 

these methods directly model the affinities between the alpha values of 

neighbouring unknown pixels by using some intrinsic local image statistics. The 

alpha values of the unknown pixels are then solved by propagating the known 

alpha values into the unknown regions using these alpha affinities. 

    The alpha propagation based approaches have two major advantages when    

compared with color sampling-based approaches. First, affinities are always 

defined in a small neighbourhood, usually between immediately connected pixels 

or pixels in a 3 × 3 window. In such a small window, the correlations among 

pixels are usually strong and thus the local smoothness assumption typically holds, 

even for moderately complex images. On the contrary, when the input trimap is 

coarse, in sampling-based approaches, samples which are collected far from the 
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target pixel, may or may not be useful at all. Also, the defined affinities enforce 

the resulting matte to be locally smooth, and thus fundamentally can avoid matte 

discontinuities from which sampling-based approaches suffer. 

2.2.1 Poisson Matting 

With the assumption that the intensity of image foreground and background are 

locally smooth, Poisson matting [12] employs a simple linear relation between the 

change of image intensity and the change of alpha value. The derivation is briefly 

described as following. By taking the partial derivatives on both sides of the 

matting equation 1.1, one gets 

 

 ∇𝐼𝑧 = (𝐹𝑧 − 𝐵𝑧)∇𝛼𝑧 + 𝛼𝑧∇𝐹𝑧 + (1 − 𝛼𝑧) ∇𝐵𝑧  (2.8) 

 

where ∇=  
∂

∂x
,
∂

∂y
  is the gradient operator. By assuming that 𝐹𝑧  and 𝐵𝑧  are locally 

smooth, 𝛼𝑧∇𝐹𝑧 + (1− 𝛼𝑧) ∇𝐵𝑧  is relatively small compared with (𝐹𝑧 − 𝐵𝑧)∇𝛼𝑧 , 

and can be omitted in Equation 2.8. Then the matte gradient can be approximated 

as 

 

 
∇𝛼𝑧 =

1

𝐹𝑧 − 𝐵𝑧
∇𝐼𝑧  (2.9) 

 

It simply means that the matte gradient is proportional to the gradient of image 

intensity. To estimate the absolute gradient value, 𝐹𝑧 − 𝐵𝑧  needs to be estimated 

first. In the system, 𝐹𝑧  and 𝐵𝑧  are simply chosen as the nearest foreground and 

background colors for the unknown pixel. 

     The final matte is then constructed by solving Poisson equations on the image 

lattice as: 
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𝛼∗ = 𝑎𝑟𝑔min

𝛼
   ∇𝛼𝑧 −

1

𝐹𝑧 − 𝐵𝑧
∇𝐼𝑧 

2

𝑑𝑧
𝑧∈Ω

 (2.10) 

 

with the Dirichlet boundary condition which is consistent with the user provided 

trimap. Ω is the unknown region in the trimap. Solving the Poisson equation is a 

well studied problem and in the original paper, a solver using Gauss-Seidel 

iteration with over-relaxation is used.  

   If local smoothness assumption made for the image holds, then transforming 

and simplifying the matting problem into solving the Poisson equation is 

technically sound. However, once the image consists of complex scenes and the 

local smoothness assumption is violated, the neglected term 𝛼𝑧∇𝐹𝑧 + (1−

𝛼𝑧) ∇𝐵𝑧  is no longer negligible and sampling nearest known foreground and 

background pixels to estimate 𝐹𝑧  and 𝐵𝑧  will also introduce large errors in the 

whole derivation and hence, noticeable noise and errors in the final matte result 

are commonly observed. To alleviate the above mentioned problems a set of local 

filters and operations are defined in the proposed system, which enables the user 

to manually correct the final matte by solving the local Poisson equation. 

Although good results can be achieved in this way, it is often a time-consuming 

process for the user and the desired results are not always easy to achieve. 

2.2.2 Random Walk Matting 

A common smoothness term, also known as affinity, used in many spectral image 

segmentation approaches [21] is defined as: 

 

 
wij = exp(−

 𝐼𝑖 − 𝐼𝑗 
2

𝜎2
) (2.11) 

 

where 𝜎 is a free parameter which is set by the user according to experience or is 

adjusted automatically based on some local image statistics. The random walk 

matting system [10] uses a generalized form of the affinity defined in Equation 



28 

 

2.11 with the modification that color distances are not measured in the original 

RGB space, but in the channels created by using Local Preserving Projections 

(LPP) techniques [22]. The projections defined by the LPP algorithm are given by 

solving the following generalized eigenvector problem: 

 

 ZL𝑍𝑇𝑥 = 𝜆𝑍𝐷𝑍𝑇𝑥 (2.12) 

 

where Z is the 3×N matrix with each 𝐼𝑖  as a column, D is the diagonal matrix 

defined by 𝐷𝑖𝑖 = 𝑑𝑖  and L is the graph Laplacian matrix given by 

 

 
𝐿𝑖𝑗 =  

𝑑𝑖
−𝑊𝑖𝑗

0

:
:
:

   𝑖𝑓  𝑖 = 𝑗
   𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑠

𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  (2.13) 

 

The solution of the generalized eigenvector problem of (2.12) is denoted as Q, 

where each eigenvector is a row of Q. The final alpha affinity then is defined as 

 

 
𝑤𝑖𝑗
∗ = exp −

 𝐼𝑖 − 𝐼𝑗  
𝑇
𝑄𝑇𝑄(𝐼𝑖 − 𝐼𝑗 )

𝜎2
  (2.14) 

 

It is shown in the original paper that the alpha propagation works better in the 

LPP-projected space than in the original RGB color space in discriminating the 

boundaries between foreground and background regions. This work is the first to 

bring up the question of which color space is more suitable for the matting 

problem, since most of the existing approaches apply their analysis in the RGB 

space. 

    With the alpha affinity defined in Equation 2.14 and the specified alpha value 

for the definite foreground and background pixels according to the trimap, the 

final alpha values of unknown pixels can then be solved by a random walk 

algorithm. Given an unknown pixel, its alpha value is defined to be the probability 
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that a random walker starting from this location will reach a pixel in the 

foreground before reaching the background, when biased to avoid crossing the 

foreground boundary. It is shown that these probabilities can be calculated exactly 

by solving a system of linear equations.  

 

2.2.3 Geodesic Matting 

Instead of calculating the probability that a random walker will reach the 

foreground first starting from an unknown pixel, the geodesic matting approach [9] 

measures the weighted geodesic distance that a random walker will travel from its 

origin to reach the foreground. In this approach the geodesic distance computation 

is linear in time and has minimal memory requirements. Hence, it allows the 

system to achieve fast and high-quality segmentation and matting using a few user 

scribbles, when the affinities between pixels are assigned properly. 

Mathematically, the geodesic distance 𝑑(𝑖, 𝑧) is simply the smallest integral of 

a weighted function over all the paths on the image lattice from pixel 𝐼𝑖  to pixel 𝐼𝑧 ,  

defined as 

 

 

 
𝑑 𝑖, 𝑧 = 𝑚𝑖𝑛

𝐶𝑖 ,𝑧
 |𝑊 ∙ 𝐶 𝑖 ,𝑧(𝑝)|𝑑𝑝

1

0

 (2.15) 

 

where 𝐶 𝑖 ,𝑧(𝑝) is a path connecting the pixels i, z (for p = 0 and p = 1 respectively). 

The weight W is set to be the gradient of the likelihood that a pixel belongs to the 

foreground i.e., 𝑊 =  𝛻𝑃𝐹(𝑥) . To compute this likelihood, the user-specified 

foreground and background pixels are used to train a mixture of Gaussians using 

fast kernel density estimation methods [20], resulting in the foreground 

probability distribution function (PDF) P(x/F) and background PDF P(x/B), and 

𝑃𝐹(𝑥) is set to be 
𝑃(𝑥|𝐹)

𝑃 𝑥 𝐹 +𝑃(𝑥|𝐵)
. 
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The geodesic distance from an unknown pixel 𝐼𝑧  to the foreground is defined as 

𝐷𝐹 𝑧 = min𝑖∈ΩF
𝑑(𝑖, 𝑧), and its distance to the background is defined in a similar 

way. 

Finally, the alpha value is estimated as: 

 

 𝛼𝑧 =
𝑊𝐹(𝑧)

𝑊𝐹 𝑧 +𝑊𝐵 (𝑧)
  (2.16) 

 

where 𝑊𝐹 𝑧 = 𝐷𝐹 𝑧 
−𝑟 ∙ 𝑃𝐹(𝑧), is the locally adjusted foreground weight. The 

idea is to combine the geodesic distance 𝐷𝐹 𝑧  with the locally recomputed 

foreground probability. The parameter r controls the smoothness of the edges. The 

background weight 𝑊𝐵 𝑧  is computed in a similar way. 

     The major advantage of this approach is that the formulation is based on 

weighted distance functions (geodesics), which can be solved as a first order 

geometric Hamilton-Jacobi equation in computationally optimal linear time. This 

is particularly favorable for video matting where computational complexity 

remains to be a serious issue. 

     The disadvantage of the proposed system is that the weight W is set in a rather 

simple way, and will not work well when the foreground and background color 

distributions have large overlaps, where the PDFs P(x/F) and P(x/B) cannot be 

estimated properly. However, the proposed geodesic-distance-based matting 

framework is quite general. Hence, the PDF estimation step could be potentially 

improved by using more sophisticated discriminate models when dealing with 

complex scenes. 

 

2.2.4 Closed-form Matting 

As shown in the previous sections, Poisson matting uses nearest known 

foreground background pixels to estimate 𝐹𝑧 − 𝐵𝑧  in Equation 2.9, and geodesic 

matting uses user-specified foreground and background pixels to train global 
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color models, both of which are similar in the spirit to the color sampling scheme 

and thus have the same inherent problem of color sampling based methods that 

the sampling based estimation may not be accurate and robust. The recently 

proposed closed-form matting approach [4] can be considered to be a “pure” 

alpha propagation method that avoids the sampling and estimation step by 

explicitly deriving a cost function from local smoothness assumptions on 

foreground and background colors F and B, and show that in the resulting 

expression it is possible to analytically eliminate F and B, yielding a quadratic 

cost function only in α, which can be easily solved as a sparse linear system of 

equations. 

The underlying assumption made in closed-form matting is the color line model 

[23], which assumes that the true foreground and background colors of each pixel 

is a linear mixture of two constant foreground and background colors F and B 

over a small window (typically 3 ×3 or 5× 5) centered at that pixel. Under this 

assumption it is then shown that the alpha values in a small window 𝑤 can be 

expressed as  

 

 𝛼𝑖 =  𝑎𝑐𝐼𝑖
𝑐

𝑐

+ 𝑏,∀𝑖 ∈ 𝑤 (2.17) 

 

where 𝑐 refers to the color channels, and 𝑎𝑐  and 𝑏 are constants in the window. 

The matting cost function is then defined as  

 

 𝐽 𝛼,𝑎, 𝑏 =  ( (𝛼𝑖 − 𝑎𝑗
𝑐𝐼𝑖
𝑐

𝑐

− 𝑏𝑗 )2 + 𝜖 𝑎𝑗
𝑐2

𝑐𝑖∈𝑤𝑗

)

𝑗 ∈𝐼

 (2.18) 

 

which is the overall prediction error of the color line model plus a regularization 

term. Furthermore, 𝑎𝑐  and 𝑏 can be eliminated from the cost function, yielding a 

quadratic cost in 𝛼 alone:  
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 𝐽 𝛼 = 𝛼𝑇𝐿𝛼 (2.19) 

 

where L is an N × N matrix, whose (i, j)-th element is: 

 

 
 (𝛿𝑖𝑗 −

1

 𝑤𝑘  
(1 + (𝐼𝑖 − 𝜇𝑘)(Σk +

𝜖

 𝑤𝑘  
𝐼3)−1(𝐼𝑗 − 𝜇𝑘)))

𝑘|(𝑖 ,𝑗 )∈𝑤𝑘

 (2.20) 

 

where Σk  is a 3×3 covariance matrix, 𝜇𝑘  is a 3×1 mean vector of the colors in a 

window 𝑤𝑘 , and 𝐼3 is the 3 × 3 identity matrix.  

The matrix L, which is called the matting Laplacian, is the most important 

analytic result from this approach. The optimal alpha values are then computed as 

 

 𝛼 = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝛼𝑇𝐿𝛼, 𝑠. 𝑡.  𝛼𝑖 = 1 𝑜𝑟 0, ∀𝑖 ∈ 𝜕Ω  (2.21) 

 

which is essentially a problem of minimizing a quadratic error score, and thus can 

be obtained by solving a linear system. 

    By comparing the affinity defined in Equation 2.20 with the one defined in 

Equation 2.11 we can see that they both have the same property that nearby pixels 

with similar colors tend to have higher affinity values, while nearby pixels with 

larger color differences tend to have smaller affinity values. However, the matting 

affinity in Equation 2.20 is more powerful than the one defined in Equation 2.11 

because in Equation 2.11 the scaling parameter σ is a global constant while in 

Equation 2.20 more localized parameters (the covariance Σk  and mean μk ) are 

used. As a result, this localized adaptive setting leads to a significant 

improvement in performance, as demonstrated in [4]. 

2.2.5 Spectral Matting 

Further analysis has been conducted on the proposed matting Laplacian in 

Equation 2.20, resulting in an automatic matting approach called spectral matting 
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[11]. This is the only approach that tries to pull out a foreground matte in a 

completely automatic fashion. 

     In this approach the input image is modeled as a convex combination of K 

image layers as 

 

 

𝐼𝑧 =  𝛼𝑧
𝑘

𝐾

𝑘=1

𝐹𝑧
𝑘   (2.22) 

 

where 𝐹𝑧
𝑘  is the kth matting component of the image. The most important 

conclusion from this approach is that the smallest eigenvectors of the matting 

Laplacian L span the individual matting components of the image, thus recovering 

the matting components of an image is equivalent to finding a linear 

transformation of the eigenvectors. Detailed steps are as follows: 

(1) Compute the eigenvectors of L as 𝐸 = [𝑒1,… , 𝑒𝐾], so E is a N × K matrix (N 

is the total number of pixels); 

(2) Initialize 𝑎𝑘  by applying a k-means algorithm on the smallest eigenvectors, 

and project the indicator vectors of the resulting clusters onto the span of the 

eigenvectors E: 

 

 𝛼𝑘 = 𝐸𝐸𝑇𝑚𝑐𝑘  (2.23) 

 

 (3) Compute the matting components by minimizing an energy function defined 

as 

 

  |𝛼𝑧
𝑘 |𝑟 + |1 − 𝛼𝑧

𝑘 |𝑟𝑧 ,𝑘 , where 𝛼𝑘 = 𝐸𝑦𝑘  (2.24) 

 

 

subject to  𝛼𝑧
𝑘

𝑘 = 1. 𝛾 is chosen to be 0.9 for a robust measure. 
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(4) Group components into the final foreground matte by testing various 

combinations of matting components and computing the corresponding cost as 

𝐽 𝛼 = 𝛼𝑇𝐿𝛼. To do this more efficiently the correlations between the matting 

components via L are pre-computed as 

 

 Φ 𝑘, 𝑙 = (𝛼𝑘)𝑇𝐿𝛼𝑙  (2.25) 

 

 

and the matting cost can be computed as 𝐽 𝛼 = 𝑏𝑇Φ𝑏 , where b is a K-

dimensional binary vector indicating the selected components. 

(5) When user’s input is provided, the grouping process can take advantage of it 

by solving a graph-labeling problem using the min-cut algorithm. Details can be 

found in [11]. 

      The spectral matting approach derives an analogy between hard spectral 

image segmentation and image matting, and thus provides a very interesting 

theoretical result. This work is a milestone in theoretic matting research. However, 

in practice, this approach is limited to images that consist of a modest number of 

visually distinct components, as pointed out by the authors. For these images, 

many other approaches can be used to generate higher quality mattes, although 

more user inputs are required. Furthermore, given the fact that the size of E is N 

×K, the memory consumption of this approach is very high, and hence, the 

practical application range of this approach is limited. 

2.2.6 Summary 

Alpha propagation based methods generally produce smoother alpha matte and 

are more robust compared to color sampling based methods because the local 

smoothness assumption is usually satisfied in a small window, though the 

performance of different alpha propagation methods vary with their specific 

derivation of the alpha affinities. Poisson matting makes strong assumptions on 
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the smoothness of foreground and background colors, and will introduce 

significant errors when dealing with complex scenes. The closed-form matting 

derives the affinity by conducting very insightful analysis on the theoretical 

aspects of the matting problem, and has significantly better performance than 

other alpha propagation based approaches. 

    There are also some drawbacks of alpha propagation based methods. First, 

unlike sampling-based approaches, most approaches focus on first estimating the 

alpha values, and only then estimate true foreground colors for unknown pixels 

based on pre-computed alphas, rather than estimating them jointly for an optimal 

solution. Secondly, the alpha matte is estimated in a propagation fashion, from 

known pixels to unknown ones, thus small errors could be propagated and 

accumulated to produce bigger errors. And when there are strong edges in the 

unmarked background or foreground region, the propagation will be blocked 

because of the local smoothness assumption is violated, which is demonstrated in 

Chapter 3.  

 

2.3 Alpha Optimization by Combining Color Sampling 

and Alpha Propagation 

The Markov Random Fields (MRFs) [24-25] style energy function are quite 

popular in many recently proposed optimization-based computer vision and 

graphics systems [21, 26-28], which is defined by two terms: 

 

 𝐸 = 𝐸𝑑 +  𝜆𝐸𝑠 (2.26) 

 

The first term on the right side 𝐸𝑑  is usually called the data term, which represents 

the semantic goal of the optimization problem. For example, in the object 

segmentation problem, this term might enforce that pixels whose colors are closer 
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to the known object colors and further away from background colors should be 

classified as foreground. The data term is usually the sum of a set of per-pixel 

data costs 𝑑𝑝 𝑙 , 𝐸𝑑 =  𝑑𝑝 𝑙 𝑝 , where 𝑙 is a possible label that the pixel 𝑝 can be 

assigned to. The second term 𝐸𝑠 is called the smoothness term, which encourages 

the preservation of smoothness of some image statistics between neighbouring 

pixels. Usually 𝐸𝑠  is defined as the sum of spatially varying horizontal and 

vertical nearest-neighbour smoothness costs, 𝑉𝑝𝑞 (𝑙𝑝 , 𝑙𝑞), 𝐸𝑠 =  𝑉𝑝𝑞 (𝑙𝑝 , 𝑙𝑞){𝑝 ,𝑞}∈𝜘 , 

where 𝜘  denote all the neighbouring pixels pair according to a predefined 

neighbouring system. Once the energy function is defined, a variety of 

optimization tools can be employed to minimize it in closed-from or 

approximately.  

    For the matting task, the form of the MRFs energy provides a natural way of 

unifying the color sampling approaches and the alpha-propagation approaches 

into an optimization framework. Intuitively, the sampling techniques discussed in 

Chapter 2.1 are capable of analyzing the distances between an unknown pixel and 

the known foreground and background colors. Hence, they can be used to assign 

data costs to pixels as the semantic constraint. The affinities defined in Chapter 

2.2 represent the relationships between nearby pixels, which can be employed to 

set smoothness costs for neighbouring pixel pairs. By combining different 

sampling methods and affinities in a single optimization process, more accurate 

and robust matting solutions are expected. 

 

2.3.1 Iterative Matting 

The iterative matting approach [3] is the first to formulate the matting task as a 

MRFs style optimization problem. Starting with sparse user inputs such as a few 

foreground and background paint scribbles, the alpha values of those unknown 

pixels in a narrow band around the frontier of the definite foreground region is 

estimated by solving an optimization problem and by iteratively extending the 



37 

 

foreground frontier the alpha values are gradually propagated from the known 

pixels to the unknown ones. In each iteration, the energy function to be minimized 

is defined as 

 

 𝐸 =  𝐸𝑑 𝛼𝑧 + 

𝑧∈𝜓

𝜆 ∙  𝐸𝑠 𝛼𝑧 ,𝛼𝑣 

𝑧 ,𝑣∈𝜓

 (2.27) 

 

    The data cost 𝐸𝑑 𝛼𝑧  is constructed using the color sampling method. The 

alpha values are discretized into K levels and the likelihood 𝐿𝑘(𝑧), which is the 

probability of pixel 𝑧 with alpha level 𝑘, is estimated based on nearby known and 

previously estimated alphas. The data cost is then defined for each of the possible 

states 𝛼𝑧
𝑘  as 

 

 
𝐸𝑑 𝛼𝑧

𝑘 = 1 −
𝐿𝑘(𝑧)

 𝐿𝑘(𝑧)𝐾
𝑘=1

 (2.28) 

 

The neighbourhood cost 𝐸𝑠 𝛼𝑧 ,𝛼𝑣  is defined using the classic affinity in 

Equation 2.11, as 

 

 𝐸𝑠 𝛼𝑧 ,𝛼𝑣 = 1− exp(−(𝛼𝑧 − 𝛼𝑣)/σs
2) (2.29) 

 

where 𝜎𝑠 is set to be 0.2 empirically. 

     With the MRF defined above, finding a labeling, which means computing the 

α level for each pixel with minimum energy corresponds to the MAP estimation 

problem, is solved by using the loopy belief propagation (BP) algorithm [29]. 

     This approach opens a new avenue for matting research to exploring ways to 

significantly reduce user’s efforts that are traditionally required for creating 

accurate trimaps, especially for images with large portions of semi-transparent 

foreground where the trimap is difficult, if not impossible, to create accurately. 
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However, it also presents two major limitations. The global color sampling 

scheme is used to guide the matte propagation, which requires the foreground and 

background to have distinct, well separable color distributions. Furthermore, the 

expensive non-linear belief propagation optimization process is employed 

multiple times to create a matte, which could converge to undesirable local 

minima. The required processing time of this approach is usually very long, which 

is undesirable in an interactive setting. 

2.3.2 Easy Matting 

In the easy matting system [13], the energy function to be minimized is defined as: 

 

 

𝐸 =   
1

𝑁2
  

 𝐼𝑧 − 𝐼𝑧  
2

σz
2

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝜆 ∙  
(𝛼𝑧 − 𝛼𝑣)2

 𝐼𝑧 − 𝐼𝑣 
𝑧∈ℕ(𝑧)

 

𝑧∈𝜓

 (2.30) 

 

where N is the number of pixels, ℕ(𝑧)  defines the neighbourhood of z, and 

 𝐼𝑧 − 𝐼𝑧  
2

 is the estimation residue for pixel 𝑧  according to the compositing 

equation. Both the data term and the neighbourhood term are designed in a similar 

way as in the iterative matting approach [3], except that no exponential mappings 

are employed. This greatly simplifies the optimization process because Equation 

2.30 is a quadratic function, and the energy function can be easily minimized by 

solving a set of linear equations using the conjugate gradient method. 

     Another improvement made in this approach over previous ones is that the 

weight λ in Equation 2.30 is dynamically adjusted rather than manually fixed, as 

 

 𝜆 = 𝑒−(𝑘−𝛽)3
 (2.31) 

 

where k is the iteration count and β is an pre-defined constant which is set to be 

3.4 in the system. In early iteration, the value of λ is large, which emphasizes 

more on the neighbourhood term, and hence encourages the alpha values in the 



39 

 

foreground and background regions to smoothly spread out. Later on when the 

propagation of alpha encounter the object boundary where discontinuity exists, 

the iteration count has increased so that the value of λ is decreased, in which case 

the data term plays a more important role in estimating the alpha values. This 

dynamic weight setting helps the iterative algorithm avoid stepping into bad local 

minima in early stages. 

2.3.3 Robust Matting 

The robust matting method [2] uses the optimized color sampling scheme 

described in Section 2.1.6 as the data term and the matting Laplacian derived in 

closed-form matting as the smoothness term, resulting in a well-balanced system 

capable of generating high quality results while maintaining a reasonable degree 

of robustness against different user inputs. The energy function to be minimized 

in this approach is defined as 

 

𝐸 =   𝑓𝑧 (𝛼𝑧 − 𝛼𝑧 )2 + (1− 𝑓𝑧 )(𝛼𝑧 − 𝛿(𝛼𝑧 > 0.5))2 

𝑧∈𝜓

+ 𝜆 ∙  𝐽 𝛼, 𝑎, 𝑏  (2.32) 

 

where 𝛼𝑧  and 𝑓𝑧  are, respectively, the estimated alpha and the confidence value in 

the color sampling step as described in Section 2.1.6, and 𝐽 𝛼,𝑎, 𝑏 is the 

neighbourhood energy defined in Equation 2.18, where the parameters a and b 

can be analytically eliminated in the optimization process. 

   In [2], minimizing the energy function defined in Equation 2.32 is interpreted as 

solving a corresponding graph labeling problem as shown in Figure 2-3, where 𝛺𝐹  

and 𝛺𝐵 are virtual nodes representing pure foreground and pure background. The 

white nodes represent unknown pixels on the image lattice. The light red nodes 

represent the foreground pixels and light blue nodes the background pixels 

marked by the user. A data weight is defined between each pixel and a virtual 
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node to enforce the data constraint, and an edge weight is defined between two 

neighbouring pixels to enforce the neighbourhood constraint. 

   Numerically, similar to the closed-form matting approach [4], the energy 

function to be minimized is defined as a quadratic function in 𝛼𝑧 , and can be 

solved using a linear system solver. The Laplacian matrix in the linear system is 

defined as 

 

 
𝐿𝑖𝑗 =  

𝑊𝑖𝑖

−𝑊𝑖𝑗

0

:
:
:

   𝑖𝑓  𝑖 = 𝑗
   𝑖𝑓 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑠

𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  (2.33) 

 

where 𝑊𝑖𝑖 =  𝑊𝑖𝑗𝑗 . L is a sparse, symmetric, positive-definite matrix with 

dimension N × N, where N is the number of nodes in the graph, including all the 

pixels in the image plus two virtual nodes 𝛺𝐵 and 𝛺𝐹  . 𝑊𝑖𝑗  is exactly the same as 

the one defined in Equation 2.20 if i and j are neighbouring pixels; otherwise 𝑊𝑖𝑗  

is equal to the data cost 𝑊𝑖 ,𝐹 or 𝑊𝑖,𝐵  if j is a virtual node. 

 

                           

Figure 2-3: Matting is formulated as solving a graph labeling problem in robust 

matting. 

 

    Note that the confidence value 𝑓𝑧  plays an important role in balancing the data 

cost and the neighbourhood cost in Equation 2.32. This is motivated by the fact 
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that color sampling will not be always reliable for every pixel and bad estimations 

are typically associated with low confidence values. Hence, using the confidence 

value to tone down incorrect data costs and let neighbourhood costs take over for 

those pixels will produce better mattes with less noise. 

2.3.4 Summary 

Both color sampling based methods and alpha propagation based methods have 

their own advantages and disadvantages. Color sampling based methods work 

better when the foreground and background color distribution have less overlap in 

the color space and tightly specified trimaps are provided, but generate noisy 

mattes if the underlying assumption is violated. On the other hand, alpha 

propagation based methods are more robust to coarsely specified trimaps and 

generate smoother mattes, but may not be as accurate as color sampling based 

methods when the local color variation is large even with distinct foreground and 

background color distributions. By combining these two methodologies into a 

unified optimization framework, the advantages of these two methodologies are 

utilized and a good balance between accuracy and robustness is achieved. 

However, when the image is complex, even the state-of-the-art combined matting 

methods give poor quality results because the underlying assumptions are 

severely compromised due to the large color variation of the complex foreground 

and background, which are discussed in the next chapter. 
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Chapter 3:  

Complex Image Matting 

3.1 Motivation 

Though current matting methods can get good results on relatively uniform and 

smooth images, the accuracy of these methods degrades significantly when the 

images are more complex. Figure 3-1 shows one such example. The input image 

is a composite image with textured background. Three powerful matting methods 

are tested and none of them can generate a satisfactory alpha matte. Figure 3-2 

shows another example which is taken from [30]. In the image the doll is taken 

against a real background scene which contains complex texture patterns. The 

matting results of four top ranking matting methods in [30] are shown in Figure 3-

2 and we can see that the alpha mattes generated are very noisy.  

The reason for the poor matting result shown in Figure 3-1 and Figure 3-2 is 

because the highly textured background violates the underlying assumptions of 

both the color sampling and alpha propagation based methods. For the color 

sampling based methods, due to the large variation of pixel color in the 

background texture, a small number of background samples from a nearby 

definite background region may not be sufficient to capture the true background 

color of the unknown pixels. For the alpha propagation based methods, strong 

edges in the complex background, some of which may be even stronger than the 

edges separating the foreground and background, will block the alpha values to 

propagate to the unknown region.  
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         Figure 3-1: Poor alpha estimated due to textured background. 

 

     Figure 3-2: Poor alpha estimated due to complex background. 

In order to gain better understanding of the challenges posed by complex 
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background, we present in this section a detailed analysis of the failure cases of 

some existing matting methods for complex images as shown in Figure 3-1 and 

Figure 3-2. We use two popular matting methods as illustration in our analysis: 

robust matting [2] and closed-form matting [4], which are, respectively, the 

representatives of the color sampling based matting methods and alpha 

propagation based matting methods discussed in Chapter 2, and are recognized in 

the research community to produce high quality matting results. Hence, we 

believe that our analysis is general enough to reveal the fundamental difficulties 

of most, if not all, matting methods when dealing with complex background.  

Color sampling based matting approaches collect nearby foreground and 

background sample pixels to interpolate pixels in the unknown region. When the 

background is uniform and smooth, a small number of samples are sufficient to 

capture the variation of the background color. If the background is complex and, 

in particular, has large color variation, there is a higher chance that the 

background samples may not include the desired true background samples for the 

unknown pixels. The “color interpolation” part of Figure 3-3 shows an example of 

such failure of robust matting due to insufficient number of samples.  For an 

 

 

Figure 3-3: Demonstration of the failure of robust matting due to insufficient 

background samples. 
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unmarked background pixel in the unknown region, the background samples are 

collected from nearby pixels along the boundaries of definite background regions. 

We can see that in this example none of the background samples can serve as a 

good estimation of the background for the unknown pixel (in this case the correct 

result is to identify the unknown pixel as a pure background pixel). The 

consequence of inaccurate background estimation is two-fold: 1) Unmarked 

background pixels in the unknown region may be misclassified as composite 

pixels and incorrect alpha values will be computed; 2) Inaccurate alpha values are 

estimated for composite pixels in the unknown region due to the lack of proper 

background samples. Simply increasing the number of samples is not a feasible or 

a good solution for robust matting. In robust matting, every background sample is 

combined with every foreground sample to find the foreground-background pair 

which has the minimum interpolation residue. A large number of background 

samples will incur an unaffordable computation cost. Furthermore, blindly 

increasing the number of samples does not guarantee the inclusion of appropriate 

background samples. 

Alpha propagation based matting approaches also fail with textured background. 

Generally, the alpha values are supposed to propagate within the foreground and 

the background regions and stopped by the strong edges at the boundary between 

the foreground and background. The challenge of textured background is that the 

background itself may contain many strong edges which will prevent the alpha 

values from propagating even among the unmarked background pixels in the 

unknown region. Figure 3-4 shows an example of how alpha propagation is 

blocked in closed-form matting. The multiplication signs indicate the strong edges 

where the alpha propagation into the diamond shaped region is blocked, though 

the whole region is actually unmarked background. Using a color model to 

eliminate such unwanted blockage of alpha propagation is suggested by the 

authors of closed-form matting. However, building an accurate color model in the 

presence of texture is also a difficult problem.  
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Figure 3-4: Demonstration of the blockage of alpha propagation using closed-

form matting. 

The same analysis also applies to the doll example in Figure 3-2. While the 

texture pattern in the horse example is regular and homogeneous, the background 

in the doll example is more complex and contains heterogeneous texture patterns. 

From the matting results of existing methods we can see that the main difficulty 

arises from the background flag and book regions, where the strong edges of the 

texture patterns prevent the effectiveness of alpha propagation and the large color 

variation  makes it very difficult for the color sampling scheme to get good 

samples as illustrated in Figure 3-5.  

The motivation of this thesis is to address the above mentioned problems 

introduced by complex image. We first start with the case where the image 

background contains homogeneous texture patterns as the one shown in Figure 

3-1 and develop a novel texture synthesis based matting method which can utilize 
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the known texture information to infer the texture information in the unknown 

region and thus alleviate the problems introduced by textured background. Then 

for matting with complex image which has heterogeneous texture patterns as 

shown in Figure 3-2, we develop a new foreground/background pixels 

identification algorithm which can identify the pure foreground/background pixels 

in the unknown region and thus effectively handle the challenges of large color 

variation introduced by complex images. 

 

 

Figure 3-5: Demonstration of the failure case of robust matting and closed-form 

matting due complex background for the doll example used in Figure 3-2. 

 

3.2 Complex Image Matting by Texture Synthesis  

In this section we propose a new texture synthesis based color sampling scheme 

which can effectively handle the challenges introduced by textured background. 
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The basic idea of our method is to leverage the texture information of the definite 

background region to provide good background samples for the unknown pixels. 

Our method works by first applying texture synthesis in the unknown region, with 

the definite background as the source texture and the unknown region as the target 

texture. Notice that recently there is a similar inpainting scheme proposed in [31] 

to solve matting problem, their method is designed only for non-texture images. 

After synthesis, for those unmarked background pixels in the unknown region, the 

synthesized background pixels will serve as good background samples for them 

since the synthesized pixels are controlled to have similar values as the observed 

values of those unmarked background pixels. For the composite pixels in the 

unknown region, though the corresponding synthesized background pixels are not 

suitable background samples for them, their coherent relation with neighbouring 

synthesized pixels can be utilized to find appropriate background samples in the 

definite background texture.  

In the following, first a brief review of the optimization based controllable 

texture synthesis technique is given in section 3.2.1. Then in section 3.2.2, we 

demonstrate how the controllable texture synthesis technique can be used to solve 

the textured background matting problem. Adapted alpha estimation and 

optimization framework for textured background is discussed in section 3.2.3. 

Finally the implementation details are discussed in section 3.2.4. 

3.2.1 Controllable texture synthesis 

Given an input texture example, the goal of texture synthesis is to create a new 

output texture which looks similar but not identical to the input texture. In [32], 

the texture synthesis procedure is modelled as the optimization of an energy 

function which measures the similarity between the input and output textures. 

Given an input texture 𝑍, the texture energy of the output texture 𝑋 is formulated 

as: 
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 𝐸𝑡 x;  z𝑝  =   x𝑝 − z𝑝 
2

𝑝∈𝑋𝜑

 (3.1) 

   

where 𝑋𝜑 is a subset of 𝑋 over which we want to accumulate the texture energy, 

x𝑝 is a vector formed by concatenating the pixels in the neighbourhood centered 

on pixel p with a predefined neighbourhood width w and z𝑝 is a similarly 

constructed neighbourhood in 𝑍 whose appearance is most similar to x𝑝  using the 

Euclidean norm. Informally, the texture synthesis procedure works as follows: for 

each neighbourhood x𝑝  in the output texture, sampling in the source texture the 

most similar neighbourhood  z𝑝  to replace x𝑝 . When two or more sampled 

neighbourhoods overlap, the synthesized value of the overlapped pixel is 

computed to be the average value of all the sampled pixels. The sum of square 

differences between the synthesized pixel value and the sampled pixel value is 

defined as the texture energy of the synthesized pixel. Iteratively minimizing the 

accumulated texture energy over a set of designated pixels in the output texture 

will gradually evolve the output texture to become similar to the input texture.  

Additional desired properties of the output texture can be fulfilled by 

augmenting the texture energy function with constraints, e.g., 

 

 𝐸 x = 𝐸𝑡 x;  z𝑝  + 𝜆𝐸𝑐(x; u) (3.2) 

   

where u is the control variable and 𝜆 is the relative weighting coefficient. This is 

called controllable texture synthesis. The optimization of this energy function can 

be done through an EM-like algorithm which alternates the optimization over one 

of x and  z𝑝  while fixing the other. More details can be found in [32]. 

3.2.2 Texture synthesis based color sampling 

Our goal is to extend the above texture synthesis technique to provide good 

background samples for the unknown pixels. Using the definite background 
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region as source texture to perform unconstrained texture synthesis in the 

unknown region works well only when the background texture is regular.  To 

handle background with near-regular or irregular texture, we need to constrain the 

texture synthesis process in the unknown region. Usually a large portion of the 

unknown pixels are just unmarked background and foreground pixels with 

relatively few boundary pixels that are true composite pixels. In fact, only those 

unmarked background pixels are what we want to synthesize. Hence, we can 

apply the controllable texture synthesis method in the unknown region with the 

additional control of using the observed pixel values of the unknown region as the 

target values for the synthesized background pixels. So we define the controlled 

texture energy as:  

 

 𝐸 x = 𝐸𝑡 x;  z𝑝  + 𝜆𝐸𝑐 x; u             (3.3) 

                             =   x𝑝 − z𝑝 
2

𝑝∈𝑋

+ 𝜆 (x(𝑝) − u(𝑝))2

𝑝∈𝑋

  

 

where  x(𝑝) is the synthesized colour of pixel p, u(𝑝) is the observed colour of 

pixel p and other terms are defined before.  

The function of the controlled energy term is to match the texture pattern of the 

unknown region using texture samples from the definite background region. So 

after synthesis, there will be a high chance for the unmarked background pixels to 

be consistent with or similar to their corresponding synthesized background pixels. 

Then for the unmarked background pixels, the corresponding synthesized pixels 

will serve as good background samples. To find good background samples for the 

composite pixels in the unknown region is a more challenging problem. Since 

composite pixels do not have the same texture pattern as the background texture, 

usually we cannot find suitable texture samples in the definite background region 

to match the texture pattern of composite pixels. In this case, we use the 

coherence property of texture to find good background samples for the composite 

pixels.  
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Figure 3-6: Using coherence property to find background samples. 

We use the example in Figure 3-6 to illustrate the concept of texture coherence. 

In the synthesized background image X, the neighbourhoods centered at pixels 

p_x and q_x are sampled from neighbourhoods centered at pixels p_z and q_z, 

respectively, in the source texture Z. The purple square in the input image is a 

composite region and we want to find good background samples for it. In the 

synthesized background, we denote the offsets between the purple square region 

and pixels p_x and q_x as o𝑝  and o𝑞 , respectively. Then in the source texture 

image if we shift the pixels p_z and q_z by the same offset o𝑝  and o𝑞 , 

respectively, we can get two background samples for the purple square region 

(shown as small red square and blue square in the source texture image), which 
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are very close to the true background of the purple square region because of the 

texture coherence property. 

In summary, to find good background samples for pixels in the unknown region, 

we first do the controlled texture synthesis in the unknown region using the 

definite background as the source texture and the observed color of the unknown 

pixels as the target color for synthesizing background pixels. After synthesis, for 

each synthesized pixel p_x, we will have a corresponding pixel p_z in the source 

texture where p_x is sampled from. Then with a pre-defined set of offsets 

𝑂 = {𝟎, 𝑜1,𝑜2,𝑜3…𝑜𝑁}, pixel p_z + 𝑜𝑖  in the source texture becomes a background 

sample for pixel p_x + 𝑜𝑖  in the unknown region. Notice that the zero offset 𝟎 

means using the corresponding synthesized background pixel as the background 

sample which is designated for the unmarked background pixels.  

Though we have only discussed how to find background samples so far, the 

same texture synthesis based scheme can be used to find foreground samples as 

well by synthesizing foreground texture in the unknown region. So in the 

following discussion, we assume that both background and foreground samples 

are obtained using the texture synthesis based scheme. 

3.2.3 Alpha estimation and optimization 

After the background and foreground samples for the unknown pixels are 

collected, the next step is alpha estimation and optimization. In this section we 

show how to adapt the alpha estimation and optimization framework used in 

robust matting to handle textured background. 

Given a pixel in the unknown region with observed value 𝐶 and its background 

samples 𝐵 = {𝐵1,𝐵2 …𝐵𝑚}and foreground samples 𝐹 = {𝐹1,𝐹2 …𝐹𝑛}, we want 

to select a pair of foreground sample and background sample {𝐹𝑖 ,𝐵𝑗 } that can 

best explain the value of 𝐶 . In [2] a distance ratio 𝑅𝑑(𝐹𝑖 ,𝐵𝑗 )  is defined to 

measure the fitness of using a linear combination of foreground and background 

samples to interpolate the unknown pixel 𝐶: 
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 𝑅𝑑 𝐹
𝑖 ,𝐵𝑗  =

 𝐶 − (𝛼 ′𝐹𝑖 + (1− 𝛼 ′)𝐵𝑗 ) 

 𝐹𝑖 − 𝐵𝑗 
 (3.4) 

 

where 𝛼 ′ is the estimated alpha: 

          

 𝛼 ′ =
 𝐶 − 𝐵𝑗  (𝐹𝑖 − 𝐵𝑗 )

 𝐹𝑖 − 𝐵𝑗 2
 (3.5) 

                  

To incorporate the fact that most unknown pixels are just unmarked foreground 

or background pixels, each individual sample is associated with additional 

weights 𝜔(𝐹𝑖) and 𝜔(𝐵𝑗 ) defined as 

 

 𝜔 𝐹𝑖 = exp  −  𝐹𝑖 − 𝐶 
2

/𝑚𝑖𝑛𝑘( 𝐹𝑘 − 𝐶 2)  (3.6) 

 𝜔 𝐵𝑗  = exp  − 𝐵𝑗 − 𝐶 
2

/𝑚𝑖𝑛𝑘( 𝐵𝑘 − 𝐶 2)  (3.7) 

 

Finally, a confidence value  𝑓(𝐹𝑖 ,𝐵𝑗 ) for the sample pair {𝐹𝑖 ,𝐵𝑗 } is defined as 

 

 𝑓(𝐹𝑖 ,𝐵𝑗 ) = 𝑒𝑥𝑝  −
𝑅𝑑(𝐹𝑖 ,𝐵𝑗 )2 ∙ 𝜔 𝐹𝑖 ∙ 𝜔 𝐵𝑗  

𝜎2
  (3.8) 

 

where 𝜎 is fixed to be 0.1. 

    In robust matting, the highest confidence value 𝑓′(𝐹𝑖 ,𝐵𝑗 ) for an unknown pixel 

𝐶  is used as its final confidence value and serves as an indicator of how to 

compute the alpha value for the unknown pixel: a high confidence value means 

that the estimated alpha value using colour samples is more reliable, while a low 

confidence value means that no good sample pair is found to interpolate the 

unknown pixel or the unknown pixel is a potential unmarked background or 

foreground pixel, in which case the method resorts to using alpha propagation to 



54 

 

compute the alpha value for the unknown pixel.  

    As discussed in section 3.1, textured background tends to block the alpha 

propagation. The way that robust matting defines the confidence value cannot 

resolve this issue: potential unmarked background and foreground pixels are 

assigned low confidence so that their alpha values are obtained through alpha 

propagation, which suffers from the problem of blocked alpha propagation when 

the background and/or foreground are textured. 

    When the potential unmarked background and foreground pixels are identified, 

they can serve as the “alpha seeds” to facilitate the alpha propagation through 

unmarked background and foreground regions. Assigning high confidence value 

to potential unmarked background and foreground pixels can achieve this goal. 

We follow [33] to define new weights 𝜔′(𝐹𝑖) and 𝜔′(𝐵𝑗 ) as (though the original 

motivation in [33] is not to handle textured background/foreground) 

 

 𝜔′ 𝐹𝑖 = exp  − 𝑚𝑎𝑥𝑘( 𝐹𝑘 − 𝐶 2)/ 𝐹𝑖 − 𝐶 
2
  (3.9) 

 𝜔′ 𝐵𝑗  = exp  −𝑚𝑎𝑥𝑘( 𝐵𝑘 − 𝐶 2)/ 𝐵𝑗 − 𝐶 
2
  (3.10) 

 

which will result in assigning high confidence values for potential unmarked 

background and foreground pixels. 

    For each unknown pixel 𝐶, the highest confidence value 𝑓  of all the sample 

pairs {𝐹𝑖 ,𝐵𝑗 }  is used as the final confidence value and the corresponding 

estimated alpha is denoted as 𝛼 . We follow [4] to do alpha optimization using the 

estimated alpha values as soft constraints and using the matting Laplacian 𝐿 as the 

smoothness term. The optimization problem is formulated as  

 

 𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛  𝛼𝑇𝐿 𝛼 + (𝛼 − 𝛼 )𝑇Γ (𝛼 − 𝛼 )                   (3.11) 

   

where the diagonal matrix Γ  is defined as in [33] with each diagonal element 𝛾 𝑧  

regularized with 𝛼 𝑧’s corresponding confidence value  𝑓 𝑧 : 
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 𝛾 𝑧 = 𝛾 ∙ 𝑓 𝑧                   (3.12) 

 

where 𝛾 is set to be 10−3. Optimal alpha values can be computed by solving a 

sparse linear system obtained by differentiating Equation 3.11 and setting the 

derivatives to zero. 

3.2.4 Implementation details 

The width 𝑤 of the sampling neighbourhood in texture synthesis is an important 

parameter that should be large enough to capture the structure information of the 

source texture. The setting of 𝑤  is usually ad hoc for unconstrained texture 

synthesis. For our controlled texture synthesis, however, a small neighbourhood 

size is enough since we have the target texture to guide the synthesis. In our 

implementation 𝑤 is set to be 5.  

The weighting coefficient 𝜆  in Equation 3.3 is set to be the number of 

neighbourhoods that can overlap at the same pixel, which in our case 𝑤 ∙ 𝑤 = 25, 

so that the sampled neighbourhoods and the observed pixel value will have equal 

influence on the synthesized value. 

The dominant computation cost in the texture synthesis is the nearest neighbour 

search in the source texture for each neighbourhood in the output texture. When 

the definite background region (the source texture) is large, the time cost for 

direct searching becomes unaffordable even with a small neighbourhood size. We 

follow [34-35] to use the parallel k-coherence search to do the nearest neighbour 

search. The accelerated texture synthesis poses negligible overhead on the whole 

matting process.  

The design of offset set 𝑂 decides the number of samples in the foreground and 

background regions to be collected for an unknown pixel. While more foreground 

and background samples give more robust alpha estimation for the unknown pixel, 

the time complexity for alpha estimation is 𝑂(𝑛2) when the number of foreground 
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and background samples is 𝑂(𝑛) . In our implementation we set that each 

unknown pixel 𝐶 gets background samples from all the synthesized background 

pixels within a 5 by 5 neighbourhood centered at 𝐶 and the same for foreground 

samples. So for each unknown pixel 𝐶 a total of 25 background pixels and 25 

foreground pixels are collected. 

3.2.5 Experimental results and discussion 

Figure 3-7 shows the matting result of our method and the comparison with 

other matting methods on the input image and trimap shown in Figure 3-1. The 

matte result for robust matting is generated by “EZ Mask” [36]. For closed-form 

matting we use its authors’ original implementation and for Bayesian matting we 

use our own implementation.  We can see that our method achieves significant 

improvement over the three matting methods and comparison with the ground 

truth image shows that our matting result is quite accurate qualitatively.  

 

 

 Figure 3-7: Comparison of different matting methods for input image in Fig. 3-1. 
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                Figure 3-8: Comparison with flash matting. 

The example in Figure 3-8 is used in flash matting [15] to demonstrate that how 

no-flash and flash image pair can be combined to generate more accurate alpha 

matte for challenging matting problem. The texture background in the no-flash 

input image confuses most existing matting methods. With an additional flash 

input image, flash matting can generate quite impressive matting result, while our 

method using only one no-flash input image can generate matting result that is 

comparable to that of flash matting. 

To quantitatively measure the performance of our proposed method, we run the 

experiments using data set in [37] along with the other three matting methods to 

do the comparison. The same experimental methodology as in [37] is used. There 

are a total of 6 test images with known ground truth as shown in Figure 3-9. Each 

input image is tested using different matting algorithms on 10 different trimaps 

from coarse to fine in accuracy. The Mean Squared Error (MSE) with respect to 

the ground truth is used as a quantitative measurement. Table 1 shows the 

experimental results. T1-T6 are six test images. X:Y in each cell represents 

minimum MSE : maximum MSE on the corresponding test image. We can see 

that the results of our method are comparable with the best results of the other 

three methods. Notice that for image T5, which has complex texture background, 
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our result is significantly better than other matting methods, validating the 

effectiveness of  our method in handling with complex texture background. 

  

 

       Figure 3-9: Test images with ground truth taken from [37]. 

            

                 Table 1: MSE of different matting algorithms. 

 

 

 

 

    Though we have achieved satisfactory matting results on images with 

homogeneous textured background, the challenge of natural image matting is that 

the background can be arbitrarily complex and can exhibit inhomogeneous, 

globally varying texture. Our observation is that if the texture patterns in the 

background are relatively regular and sufficient representative texture samples are 

specified as definite background, e.g. T5, then our method can generate much 

 
Bayesian 

matting 

Closed-form 

matting 

Robust 

matting 
Our method 

T1 356: 873 86:102 53:88 50:83 

T2 380:1374 110:264 48:132 54:105 

T3 150:820 58:82 40:73 45:65 

T4 312:786 95:321 102:250 98:202 

T5 460:940 176:426 203:452 34:82 

T6 50:97 32:62 30:53 35:48 
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better matte results than existing methods. In other cases, our method generates 

results that are comparable to that by other methods. The input image in Figure 

3-10 shows an example of such complex background with different but relatively 

regular textures. The blurred trees, grass and halos in the background all show 

some texture patterns. By utilizing the texture information, such as the halo 

texture pattern in the red rectangle region and the tree texture pattern in the yellow 

rectangle region, our method creates cleaner alpha matte than existing methods. 

     However, when the complex image background contains relatively irregular or 

random texture patterns, it is more difficult for the texture synthesis process to 

collect sufficient texture samples for synthesising the unknown region.  As shown 

in     Figure 3-11, the background region of the image contains irregular texture 

patterns like the flag and the cover of the book. Upon close observation of the 

input image and the trimap, we can see that the definite background region 

actually cannot provide enough texture samples to synthesis the texture patterns in 

the unknown region. As a result, the matting result of our texture synthesis based 

method is quite noisy. So to handle the case of complex image with arbitrary 

texture patterns, especially random and irregular texture patterns with insufficient 

samples, we develop another matting method which is based on identifying 

unmarked foreground and background pixels. Details are given in the following 

section. 
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 Figure 3-10: Complex image background with relatively regular textures. 
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    Figure 3-11: Example image with complex background. 

3.3 Complex Image Matting by Unmarked Foreground 

and Background Pixels Identification 

In this section we propose a new matting method based on identifying unmarked 

foreground/background pixels which can effectively handle the challenges of 

large color variation introduced by complex images. The main idea of our method 

is to identify pure foreground and background pixels in the unknown region as 

shown in Figure 3-12(d). The turquoise pixels are identified background pixels 

and the pink pixels are identified foreground pixels. These identified foreground 

and background pixels can serve as “alpha seeds” to overcome the alpha blockage 

issue discussed in section 3 and facilitate the alpha propagation through unmarked 

background and foreground regions. This unmarked foreground and background 

pixels identification based matting method is called UFBPI matting. We present 

in the following sections several heuristics designed to select the pure foreground 

and background pixels with high confidence.   
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3.3.1 Interpolation error thresholding 

           

Figure 3-12: Candidates of pure foreground/background pixels after different 

selecting steps of our proposed method. 

In robust matting, for each unknown pixel, a set of foreground and background 

samples are collected and all the possible foreground/background sample pixel 

pairs are tried to find the best interpolation for the unknown pixel. We follow the 

same sampling scheme as in robust matting, however, with the purpose of 

screening out those unknown pixels with large interpolation errors as candidates 

for pure foreground and background pixels. In particular, the foreground and 

background samples are collected along the boundaries of known foreground and 

background regions. For each unknown pixel 𝐶, all the sample pairs {𝐹𝑖 ,𝐵𝑗 } are 

tried to estimate 𝛼 : 
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𝛼 =

 𝐶 − 𝐵𝑗  (𝐹𝑖 − 𝐵𝑗 )

 𝐹𝑖 − 𝐵𝑗 2
 (3.13) 

 

and the interpolation error for the pair {𝐹𝑖 ,𝐵𝑗 } is defined as: 

 

 𝐸 𝐹𝑖 ,𝐵𝑗  =  𝐶 − (𝛼 𝐹𝑖 +  1−  𝛼  𝐵𝑗 )  (3.14) 

 

   We denote the minimal interpolation error for the unknown pixel 𝐶 as 𝐸𝐶 . A 

smaller interpolation error 𝐸𝐶  indicates that there is a higher chance that the 

unknown pixel 𝐶  is a composite pixel. Since our purpose is to identify pure 

foreground/background pixels, we can use the interpolation error to first filter out 

true composite pixels. So only the unknown pixels with interpolation error 𝐸𝐶  

larger than a threshold value 𝑇𝐸  are selected for further analysis. The setting of the 

threshold value 𝑇𝐸  is discussed in section 3.3.3. One example of the result of 

interpolation error thresholding is shown in Figure 3-12(b) with yellow pixels 

denoting selected pixels. 

 

3.3.2 Adaptive foreground/background distance thresholding 

The main criterion we use to decide whether an unknown pixel is a pure 

foreground/background pixel or a composite pixel is its colour distance to the 

definite foreground and background regions. In robust matting, each unknown 

pixel 𝐶 is compared with its foreground and background samples and the colour 

distance is used as an indication of whether or not 𝐶  is a pure foreground or 

background pixel. As discussed in section 3, when the image is complex, the 

foreground and background samples collected from the boundaries of the definite 

foreground and background regions may not be sufficient to capture the large 

variation of the foreground and background colour. So we propose that, in order 

to find good foreground and background samples for the unknown pixel 𝐶 , a 
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direct search for similar pixels in the definite foreground and background regions 

is used. Denote a 5 by 5 window centered at the unknown pixel 𝐶 as 𝑊𝑐 . Then the 

most similar window 𝑊𝑐−𝑏𝑔  in the definite background region is found based on 

the accumulated colour distance over all the pixels in the window. The same 

search is conducted for the definite foreground region and the best matching 

window 𝑊𝑐−𝑓𝑔  is found. For each unknown pixel 𝑃 in the window 𝑊𝑐 ,  all the 

pixels in the background matching window 𝑊𝑐−𝑏𝑔  are added to the set of 𝑃’s 

background samples 𝐵𝑃  and all the pixels in the foreground matching window 

𝑊𝑐−𝑓𝑔  are added to the set of 𝑃’s foreground samples 𝐹𝑃 . Now for an unknown 

pixel 𝐶, its distance to the background and foreground is defined as the minimum 

colour distance to its background and foreground samples 𝐵𝑐  and 𝐹𝑐 , respectively:  

 

 𝐷𝐵 𝐶 = 𝑚𝑖𝑛𝑖  𝐵𝐶
𝑖 − 𝐶  , 𝐵𝐶

𝑖 ∈ 𝐵𝑐  (3.15) 

  𝐷𝐹 𝐶 = 𝑚𝑖𝑛𝑖  𝐹𝐶
𝑖 − 𝐶  , 𝐹𝐶

𝑖 ∈ 𝐹𝑐  (3.16) 

 

A smaller background distance 𝐷𝐵 𝐶  indicates a higher chance that the unknown 

pixel 𝐶  is a pure background pixel and the same inference applies to the 

foreground distance 𝐷𝐹 𝐶 . Our goal is to set the threshold values 𝑇𝐹 𝐶  and 

𝑇𝐵 𝐶  for each unknown pixel 𝐶 adaptively so that we consider 𝐶 as a candidate 

of pure background pixel if 

 

 𝐷𝐵 𝐶 ≤ 𝑇𝐵 𝐶  (3.17) 

 

and a candidate of pure foreground pixel if  

 

 𝐷𝐹 𝐶 ≤ 𝑇𝐹 𝐶  (3.18) 

     

   The threshold value 𝑇𝐵 𝐶  for the unknown pixel 𝐶 is computed as follows. The 

definite background region specified in the trimap is first dilated using a 3 by 3 
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square structuring element. We denote the set of pixels which are in the dilated 

background region but not in the original background region as 𝐵𝑑𝑖𝑙𝑎𝑡𝑒 . Since 

pixels in 𝐵𝑑𝑖𝑙𝑎𝑡𝑒  are near the boundary of the definite background region, they are 

most likely pure background pixels and their distance to the background are quite 

informative for defining the threshold value for the background distance of 

unknown pixels. Again, for a 5 by 5 window 𝑊𝑐  centered at an unknown pixel 𝐶, 

we search for the most similar window 𝑊𝑐−𝑏𝑔  whose center pixel is in 𝐵𝑑𝑖𝑙𝑎𝑡𝑒  

based on the accumulated colour distance over all the pixels in the window. The 

threshold value 𝑇𝐵 𝐶  is then defined as: 

 

 
𝑇𝐵 𝐶 =  

1

#𝑊𝑐−𝑏𝑔
 𝐷𝐵(𝑊𝑐−𝑏𝑔

𝑖 )

𝑖

 (3.19) 

 

where pixel 𝑊𝑐−𝑏𝑔
𝑖  is an unknown pixel in window  𝑊𝑐−𝑏𝑔  and #𝑊𝑐−𝑏𝑔  is the 

total number of such pixels (which is at least 1 since the center pixel of 𝑊𝑐−𝑏𝑔  is 

always an unknown pixel by definition). The rationale behind the design of 

𝑇𝐵 𝐶  is that if 𝐶  is a composite pixel or pure foreground pixel, then its 

background distance should be larger than the background distance of those pixels 

in the matching window 𝑊𝑐−𝑏𝑔 , most of which are assumed to be pure 

background pixels. And if 𝐶 is a pure background pixel, its background distance 

will be similar to those pixels in the matching window 𝑊𝑐−𝑏𝑔 , which makes 

𝑇𝐵 𝐶 , the average background distance of the pixels in the matching window, a 

good candidate of the threshold value. The foreground distance threshold value 

𝑇𝐹 𝐶  is defined using the foreground matching window 𝑊𝑐−𝑓𝑔  with a similar 

definition as 𝑇𝐵 𝐶 . 

     After applying the foreground/background distance thresholding, candidates of 

pure foreground/background pixels for the doll example are shown in Figure 

3-12(c), with the turquoise pixels denoting candidates of pure background pixels 

and pink pixels denoting candidates of pure foreground pixels. Unknown pixels 
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with both foreground and background distance smaller than its corresponding 

foreground and background threshold values are not selected due to their 

ambiguities. From the thresholded results, we can see that many unknown pixels 

are identified correctly as pure foreground and background candidates, but some 

unknown pixels are obviously misclassified. We refine the results by imposing a 

smoothness constraint that an identified background candidate is declared as a 

pure background pixel only when the number of identified background candidates 

in its neighbourhood is larger than a threshold value 𝑇𝑛𝑏𝑟 . In our implementation, 

we set the neighbourhood to be a 3 by 3 square and 𝑇𝑛𝑏𝑟  to be 7. The same 

constraint is applied to the foreground candidates. Unknown pixels declared as 

pure foreground and background pixels after applying the smoothness constraint 

are shown in Figure 3-12(d).  

   After the unmarked background and foreground pixels are identified, they can 

serve as the “alpha seeds” to facilitate the alpha propagation through unmarked 

background and foreground regions. We follow [4] to do alpha optimization using 

the user specified trimap together with the identified background and foreground 

pixels. The final matting result is shown in Figure 3-14. We can see that the 

matting result has significant improvement over the three existing popular matting 

methods. 

3.3.3 Setting of interpolation error threshold value 

The threshold value 𝑇𝐸  for interpolation error introduced in section 3.3.1 

controls how many unknown pixels can enter the next step of foreground and 

background distance thresholding. We show in Figure 3-13 how the choice of 

different 𝑇𝐸  values can affect the final matting result of the doll example. We can 

see that a larger value of 𝑇𝐸  will filter out more unknown pixels and fewer 

foreground and background pxiels are identified. Hence the complex background 

may not be handled effectively as shown in the case of  𝑇𝐸 = 100. On the other 
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hand, a smaller value of 𝑇𝐸  allows more unknown pixels to proceed to the next   

thresholding      

 

    

Figure 3-13:  The matting results of choosing different threshold values for 

interpolation error.   

step which also increases the chance of introducing false positves of identified 

foreground and background pixels, as shown in the case of 𝑇𝐸 = 1 that on the 

right side of the doll there are some semi-transparent hair pixels identified as pure 

foreground pixels. The general rule based on our experience is that a large value 
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of 𝑇𝐸  is suitable for images with relatively smooth background and foreground 

and a small value of 𝑇𝐸  for images with relatively complex background and 

foreground.  

 

3.3.4 Experimental results and discussion 

The final matting result of the proposed method (with 𝑇𝐸  = 1) for the doll 

example is shown in Figure 3-14. We can see that with the help of the identified 

foreground and background pixels, the background with complex texture patterns 

is effectively handled and the matting result of our proposed method is much 

cleaner than the four popular matting methods. Other than the doll example, we 

also conduct several qualitative and quantitative experiments to verify the 

effectiveness of our methods in handling complex images.  

  The test case in Figure 3-15 is taken from [30]. The challenge of this image is 

that in the upper right part of the image, the bridge in the background is cluttered 

by the hair of the toy. From the trimap we can see that there is no suitable 

background samples in the nearby definite background boundary for the cluttered 

region. Hence, the color sampling scheme used in robust matting fails in this case 

and misclassifies the bridge as foreground. In closed-form matting, the bridge in 

the upper right part of the image is cut off from the bridge in the lower right part 

of the image by the hair of the toy, so the known alpha values from the lower right 

part of the bridge cannot propagate to the upper right part of the bridge. That is 

why closed-from matting also fails in this case. In the bottom left figure of Figure 

3-15, we zoom in to the upper right part of the image and show the pure 

background pixels in turquoise and pure foreground pixels in pink identified by 

our proposed method.  It can be seen from the matting result of our proposed 

method (with 𝑇𝐸= 100) that these identified background pixels are quite helpful in 

correctly recognizing the background bridge.   
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Figure 3-14: Matting result of the proposed method for the doll example.      

The lion example in Figure 3-16 is taken from [37]. We can see that the texture 

patterns in the background caused the existing matting methods to generate 

obvious artefacts while our method (with 𝑇𝐸  = 1) handles the textured background 

very well and generates very clean matte results.  
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       Figure 3-15: Comparison of different matting methods on the troll example. 
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         Figure 3-16: Lion example with complex background. 
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      We also quantitatively compare the UFBPI matting with existing matting 

methods. Figure 3.17 – Figure 3.20 show the comparison of UFBPI matting with 

three other matting methods on 4 testing images taken from [30] using the average 

of the Sum of Absolute Difference (SAD) between the generated alpha matte and 

the ground truth as the error measure. The SAD value for each method is shown 

in the bracket associated with the name of each method in the figures. 𝑇𝐸  is set to 

1 in all the 4 test cases.  We can see that for these quite challenging test images 

with complex background, UFBPI matting performs consistently better than the 

other 3 matting methods. 

 

                                        Figure 3-17: Donkey example 



73 

 

 

            

                          Figure 3-18: Elephant example 
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                           Figure 3-19: Pineapple example 
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                                Figure 3-20: Plant example 
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Chapter 4:  

Conclusion  

In this thesis, two novel matting algorithms are presented that can better handle 

complex images than the existing state-of-the-art matting methods. While the 

natural image can be complex in arbitrary ways, we mainly focus on complex 

images with highly textured background. The main challenge introduced by 

textured background is the large color variance and strong color discontinuity.  

Large color variance makes the popular color sampling scheme less reliable since 

nearby definite foreground and definite background pixels may no longer serve as 

good samples for the true foreground and background pixels of the unknown 

pixels. Strong color discontinuity within pure foreground and background regions 

may even be stronger than the real foreground/background edges, which confuses 

most alpha propagation based matting methods.  Our understanding is that almost 

all the existing matting methods rely on making assumptions on local image 

statistics to develop local color models for color sampling, or build local alpha 

relationship for alpha propagation. In complex images, those local assumptions 

are frequently violated, that is the local color models built are no longer accurate 

due to high sample variance, and neighbouring pixels with negatively related 

alpha values are no longer a reliable indication of foreground/background edge.  

   Generally speaking, the algorithms we developed to tackle the challenges of 

complex images rely on seeking help from global image statistics. In the proposed 

texture-synthesis based matting method, we rely on the global texture model to 

provide good foreground and background samples for the unknown pixels, and in 
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the proposed UFBPI matting method, we use a direct global search scheme to 

locate unmarked foreground and background pixels with high confidence. 

Actually global models and local models can be considered as different ways of 

answering a fundamental question when solving the matting problem: what is 

foreground and/or background? Local color models used in color sampling based 

matting algorithms consider an unknown pixel as foreground or background 

according to its similarity to nearby definite foreground and background pixels. 

Local alpha models used in alpha propagation methods models the boundary 

between foreground and background instead. Global models used in our proposed 

methods consider an unknown pixel as foreground or background according to 

whether or not there is a similar pixel --- in terms of texture similarity or patch 

similarity --- in the whole definite foreground or background regions that can be 

found. The advantage of using global models over local models is that in complex 

image global information is more informative and reliable than local information 

in finding the identity of unknown pixels. 

   Still, the global models we employed are far from perfect. For the texture 

synthesis based matting method to perform well, several requirements need to be 

satisfied. For example, the background texture pattern is better to be homogenous 

and regular and the definite background regions should provide enough texture 

samples for synthesizing the textures in the unknown regions.  As for the UFBPI 

matting, if the foreground and background colors are not well separable in the 

color space, then the thresholding scheme may fail and a lot of noise may be 

introduced in the final alpha matte.  

  The ultimate goal of matting research is to develop user-friendly matting 

systems that have the ability comparable to human perception in differentiating 

between foreground and background pixels and extracting an accurate alpha matte 

for mixed pixels. To achieve this goal, there is much more to be done. Some 

possible direction for the future work would be the refinement of existing local 

color models and local alpha models, more robust global color model and more 

intelligent way of combining local and global image models.   
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