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Abstract

One of the features that distinguishes eukaryotes from prokaryotes is the
membrane trafficking system. This system underpins much of the functionality of
the eukaryotic cell, and is necessary for feeding, motility and communication.
Analyses aimed at addressing the evolution of this system have revealed
tremendous complexity in the Last Eukaryotic Common Ancestor, pointing to an
even earlier origin. However, the events giving rise to this system and its
subsequent diversification are poorly understood.

Comparative genomic and phylogenetic analyses aimed at addressing the
evolution of the membrane trafficking system have focused largely on the
machinery of vesicle fusion. Here, I examine the evolution of machinery involved in
vesicle formation. Comparative genomic and phylogenetic analyses were used to
assess the conservation and evolution of protein families involved in the regulation
of vesicle coat formation. ArfGAPs and ArfGEFs are regulatory proteins for the small
GTPase Arf, a key regulator of vesicle coat formation. I found that five of ten
previously identified ArfGAP subfamilies were present in the LECA, and I identify a
previously unreported ArfGAP subfamily that is absent from humans and yeast. I
also report that the LECA possessed three of the six described ArfGEF subfamilies.

COPII is a heteromeric coat complex necessary for the transport of cargo
from the endoplasmic reticulum to the Golgi apparatus. I found that all seven
components were present in the LECA, five of which are ubiquitously conserved
across eukaryotes. The other two are frequently missing.

TSET is a newly identified adaptin-like coat complex with a likely role in

endocytosis. | found that this complex is broadly distributed, indicating its presence
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in the LECA. However, it has been frequently lost from multiple eukaryotic lineages,
including that giving rise to humans and fungi.

Analysis of these gene families revealed multiple patterns of protein
conservation, including ubiquitous and lineage-specific patterns, but also
components with a “patchy” distribution that had previously been
underappreciated. That some of these are missing from traditional cell biological
systems such as humans and yeast, suggests the need to consider other eukaryotes
as model organisms in order to fully comprehend the diversity of eukaryotic cell
biology. Analysis of these components also revealed some of the earliest events that
may have occurred during the evolution of the trafficking system, in addition to

convergent roles of multiple coat complexes in membrane trafficking.
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Chapter 1: Introduction



1.1 Introduction

The evolution of the eukaryotic cell represented a monumental transition in
the history of life on Earth. This landmark was a key point in the evolution of the
largest, most terrifying, and most beautifully complex organisms to move about the
planet. The transition from prokaryote to eukaryote has been described as “the
most well-known fundamental dichotomy in biology” (Sapp, 2005). However, the
nature of this transition remains largely enigmatic.

Eukaryotes are structurally distinct from their prokaryotic counterparts
through the possession of discrete, membrane-bound compartments (Chatton,
1938; Stanier and van Niel, 1962). The most prominent of these is the eukaryotic
namesake, the nucleus. Myriad other organelles with specific biochemical
capabilities are also present. A subset of these constitutes the endomembrane
system, a network of interconnected organelles responsible for the distribution of
proteins and lipids throughout the cell and for communication with the extracellular
environment. This membrane trafficking system is involved in cell motility and
would have allowed early eukaryotes to export proteins and remodel their cell
surface (Cavalier-Smith, 2002). Exocytosis would have allowed the modification of
their extracellular environment, while endocytosis would have allowed the uptake
of material from the environment, ultimately allowing the occupation of novel
ecological niches (Cavalier-Smith, 1975; de Duve, 2007; De Duve and Wattiaux,
1966; Stanier, 1970).

Cell biological analyses in humans and yeast have been tremendously

important for establishing the machinery responsible for membrane trafficking,



identifying numerous coats (Barlowe et al.,, 1994; Kamiguchi et al., 1998; Zhu et al,,
1999), GTPases (Cukierman et al., 1995; Kahn and Gilman, 1986), SNAREs (soluble
N-ethylmaleimide sensitive factor attachment protein receptor; Weber et al., 1998),
and other machinery necessary for this system (Andag and Schmitt, 2003; Conibear
and Stevens, 2000; TerBush et al., 1996; Whyte and Munro, 2001). However, the
recognition of at least 5 other major lineages of eukaryotes prompted the search for
a novel understanding of which aspects of membrane trafficking are broadly
conserved across eukaryotes and which are unique characteristics of human and
yeast systems.

Evolutionary biology has long been searching for the origin of eukaryotic
organelles. For some, their connection to the prokaryotic world has already been
made clear: mitochondria and chloroplasts are vestiges of ancient endosymbioses
(Bonen et al,, 1977; Doolittle and Bonen, 1981; Gray and Doolitle, 1982 inter alia;
Margulis, 1970), as genes encoded by organellar genomes show phylogenetic
affinity to a-proteobacteria and cyanobacteria, respectively. For organelles of the
membrane trafficking system the situation is much less clear. Tracking the evolution
of organelles involved in membrane trafficking is much more difficult. Genes that
encode important trafficking factors are located in the nucleus, not in organellar
genomes. However, the identification of genes whose products act at or localize to
specific organelles has been used to identify equivalent structures in different
organisms. Comparative genomics (i.e, the identification of equivalent genes in
different genomes) has been used to determine the presence or absence of

membrane trafficking pathways and organelles in silico by searching for markers of



different trafficking steps in diverse eukaryotic genomes. Early comparative
genomic analyses revealed that the major protein families involved in membrane
trafficking are present across the diversity of eukaryotes (Dacks and Doolittle, 2002;
Dacks and Field, 2004; Leung et al., 2008; Schledzewski et al., 1999). Subsequently,
more detailed analysis of specific subfamilies revealed that many of these are also
broadly conserved (Dacks and Doolittle, 2002; Dacks and Doolittle, 2004; De
Franceschi et al,, 2014; Elias et al., 2012; Gabernet-Castello et al., 2013; Koumandou
et al,, 2007; Koumandou et al., 2011; Murungi et al., 2014; Sanderfoot, 2007). This
observation, paired with functional studies revealing largely conserved function and
localization of many of these proteins (Chong et al., 2010; De Craene et al., 2014;
Koumandou et al,, 2011; Manna et al,, 2015; Sauer et al.,, 2013; Skruzny et al., 2015;
Turkewitz and Bright, 2011), suggested that by analyzing the distribution and
evolution of organelle-specific members of different protein families, we can track
the evolution of the organelles of the membrane trafficking system. Furthermore,
homologues (i.e, genes that share a common ancestor) of multiple protein families
important for membrane trafficking such as small GTPases of the Ran, Rab, Rho, and
Arf families have been identified in prokaryotes (Dong et al.,, 2007; Jékely, 2003;
Wuichet and Sogaard-Andersen, 2014; Yutin et al, 2009), indicating that links
between prokaryotes and the eukaryotic membrane trafficking system may, in fact,
exist.

In this introductory chapter, I outline background information necessary for
exploring the evolution of the membrane trafficking system. I provide an overview

of eukaryote diversity, relevant for understanding the comparative genomic and



evolutionary aspects of this study. I then provide an overview of membrane
trafficking, necessary to understand the system under investigation, after which
follows discussion of major hypotheses concerning the origin of the eukaryotic

endomembrane system. Lastly, I specify the questions addressed in this thesis.

1.2 Eukaryotic diversity

The availability of sequenced eukaryotic genomes and the tools to accurately
identify common genes between organisms has allowed inquiry into the
evolutionary history of the membrane trafficking system, with the ultimate goal of
reconstructing the trafficking system of the Last Eukaryotic Common Ancestor
(LECA); the hypothetical ancestor that gave rise to all lineages of eukaryotes. The
conceptual basis for reconstructing the LECA is essentially a parsimony argument; if
the majority of descendants of a single ancestor possess a specific trait, such as a
gene, a pathway, or an organelle, then the most likely explanation is that the trait in
question was also present in the ancestor of those organisms. The alternative
explanation would either be Horizontal Gene Transfer (HGT) or convergent
evolution. HGT can be ruled out using phylogenetic analysis to deduce the
evolutionary history of the protein in question (Ku et al.,, 2015), while convergent
evolution can be ruled on the basis that comparative genomic techniques should
only identify related proteins, and that proteins that have evolved the same function
independently should not identify one another using these techniques. The LECA is
a tremendously valuable point of reconstruction as it acts as a point of reference to

understand when various biological processes evolved, and provides historical



context for subsequent evolution in diverse eukaryotic lineages. The presence of
broadly conserved cellular machinery can set in place expectations of function; if the
homologue of a characterized protein is identified in a distantly related organism,
we can use what is known about the function of that protein in one system as a
working hypothesis for what it might be doing in other systems. This is especially
helpful in species where in vivo analyses cannot be carried out, as knowing which
members of a protein complex or pathway are present can provide insight into the
basic biology of that species. For example, the broad conservation of nuclear pore
subunits (Nups) across eukaryotes sets in place an expectation of nuclear pore
function in these organisms (Field et al., 2014). Similarly, the identification of
midbody proteins, a transient structure that bridges the two daughter cells at then
end of cytokinesis, in diverse eukaryotes (Eggert et al., 2006; Eme et al., 2009) sets
in place functional hypotheses of how cytokinesis occurs in these organisms. By
identifying broadly conserved biological pathways, we can begin to reconstruct the
pathways that were present in the LECA and begin to understand some of its
biology.

Large-scale comparative genomic analyses have identified the major protein
families involved in membrane trafficking (e.g. syntaxins, Rabs, coats, etc.) in all
major eukaryotic lineages, indicating that they would also have been present in the
LECA (Dacks and Doolittle, 2001; Dacks and Field, 2004). More detailed analyses of
organelle-specific trafficking pathways and machinery also identified near complete
systems that would have been present in the LECA (Field et al., 2007b; Koumandou

et al., 2013; Leung et al.,, 2008). For example, major coat complexes (COPI, COPI],



adaptins, clathrin, retromer), small GTPases (Arfs, Sar, Rabs), syntaxins, EpsinR, and
ESCRTs (Endosomal Sorting Complex Required for Transport) are all found across
the diversity of eukaryotes, indicating that they were also present in the LECA.
Moreover, analyses of paralogous protein families, such as, adaptins (Hirst et al,,
2011), syntaxins (Dacks and Doolittle, 2002; Dacks and Doolittle, 2004), Rabs (Elias
et al,, 2012), and TBC ( Tre-2/Bub2/Cdc16; Gabernet-Castello et al., 2013) proteins,
showed the conservation of organelle-specific paralogues across eukaryotes and by
extension, their presence in the LECA.

In order to reconstruct the LECA, we first need an accurate picture of
eukaryote diversity. Understanding how different eukaryotic lineages are related
allows us to map the distribution of membrane trafficking genes across these
lineages and infer points of origin, loss, and duplication. For example, identifying
genes that are found across all eukaryotic lineages would suggest that these genes
were present in the LECA. By contrast, genes that are present only in a few closely
related lineages would likely have arisen in the ancestor of those few lineages, and
therefore evolved much more recently.

Large phylogenomic analyses concatenating (ie, stringing together)
hundreds of genes supported the division of eukaryotes into six major eukaryotic
supergroups, as well as an array of additional lineages that do not belong to any one
supergroup, or whose phylogenetic affinities are not yet clear (Adl et al., 2005 inter
alia; Adl et al., 2012 inter alia; Bapteste et al., 2002; Burki et al., 2007; Burki et al,,
2008; Burki et al., 2009; Hampl et al,, 2009; Parfrey et al., 2010; Rodriguez-Ezpeleta

et al,, 2005). The classification and resolution of diverse eukaryotic lineages has



been enormously informative for dissecting the relative timing and the order of
major evolutionary transitions, such as the acquisition of primary plastids, the
multiple origins of multicellularity, and for placing parasitic or pathogenic
organisms in an evolutionary context with free-living relatives (Parfrey and Lahr,
2013; Walker et al,, 2011). Although a perfectly resolved tree of eukaryotes has yet
to be produced, efforts have been greatly helped by the steady increase in the
number of sequenced eukaryotic genomes from taxa spanning the diversity of
eukaryotes. To give greater context to the sequenced genomes sampled the analyses
presented in this thesis, each of the six eukaryotic supergroups is described here.
Formal taxonomic names will be provided when taxa are introduced and are
capitalized (eg, Metazoa, Opisthokonta) and will subsequently be used

interchangeably with informal taxonomic names (e.g., metazoans, opisthokonts).

1.2.1 Opisthokonta

Opisthokonta comprise Metazoa (animals), Choanozoa (choanoflagellates,
Capsapora owczarzaki, Sphaeroforma arctica), and Fungi (Figure 1-1, dark blue).
Choanoflagellates include Monosiga brevicollis and Salpingoeca rosetta, and along
with C. owczarzaki and S. arctica, represent the most closely related single-celled
organisms to Metazoa. Comparative genomic and transcriptomic analyses of these
organisms have revealed that they all possess proteins and domains identified as
important for multicellularity in animals, such as integrins (Sebé-pedros et al,
2010), fibronectin (Sebé-Pedros et al, 2013), and cadherin (Suga et al, 2013).

Opisthokonta was originally supported by multiple morphological and genomic



Figure 1-1. Overview of eukaryote diversity. Supergroups are colour coded, with
internal branches representing major lineages sampled in subsequent chapters. The
Apusozoa is a distinct lineage from all other supergroups, but is often associated
with Opisthokonta. Lineage names and relationships are based on names and
definitions from Adl et al, (2005, 2012), Walker et al,, (2011) and the Origins of
multicellularity sequencing project (Broad institute of Harvard and MIT,

www.broadinstitute.org).
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features including: a single posteriorly directed flagellum (Cavalier-Smith, 1988), a
pair of centrioles (Cavalier-Smith, 1987a), flat mitochondrial cristae (Cavalier-
Smith, 1987a), and a unique 12 amino acid insertion in the elongation factor 1-alpha
gene (Baldauf and Palmer, 1993). Opisthokonta is also supported by phylogenomic
evidence (Baldauf, 2000; Hampl et al., 2009; Torruella et al., 2012). Opisthokonta is
the source of the majority of our understanding of cellular function as it contains the
vast majority of model organisms, including Homo sapiens and S. cerevisiae, in
addition to other animal and fungal systems such as Mus musculus, Rattus
norvegicus, Drosophila melanogaster, Caenorhabditis elegans, Neurospora crassa, and
Pichia pastoris. Sequenced genomes include: H. sapiens, S. cerevisiae, M. musculus, D.
melanogaster, C. elegans, and C. owczarzaki, among many others. Phylogenetic
analyses have placed Thecamonas trahens as the closest outgroup to opisthokonts
and is often grouped with them even though it does not satisfy the morphological
characteristics that define the Opisthokonta. Specifically, T. trahens possesses two
flagella, one anterior and one posterior (Vickerman et al, 1974) and tubular
mitochondrial cristae (Karpoff and Zhukov, 1986; Molina and Nerad, 1991; Figure 1-

1, light blue).

1.2.2 Amoebozoa
The Amoebozoa is a group of primarily single-celled organisms with variable
cellular structure (Figure 1-1, brown; Adl et al., 2005; Page, 1987; Shadwick et al,,

2009). Members of the Amoebozoa include pathogenic organisms such as
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Entamoeba histolytica and Acanthamoeba castellanii the causative agents of amoebic
dysentery and amoebic encephalitis, respectively (Dart et al., 2009; Stanley, 2003).
The internal branching of this clade has not entirely been resolved. Major groups
include Entamoebida, Acanthamoebae, and Dictyostelids (Adl et al., 2005; Bapteste
et al., 2002; Walker et al,, 2011). Amoebozoans typically possess branched, tubular
mitochondrial cristae, and when flagellated possess a flagellum supported by a
single basal body (Cavalier-Smith, 1998). The monophyly of Amoebozoa is also
supported by phylogenomic evidence (Baldauf, 2000; Hampl et al, 2009).
Organisms from this supegroup in which tagging and knockouts can be carried out
include: Dictyostelium discoideum and E. histolytica. Genome sequences for the
above organisms, as well as Polysphondylium pallidum have been completed (Clarke
et al., 2013; Eichinger et al., 2005; Heidel et al., 2011; Loftus et al., 2005; Sucgang et

al, 2011).

1.2.3 Excavata

The Excavata is home to a diverse group of eukaryotes, many of which are
resident to oxygen-deficient environments and may possess hydrogenosomes or
mitosomes, anaerobic mitochondria that have undergone reductive evolution
(Figure 1-1, purple; Walker et al,, 2011). Hydrogenosomes produce iron-sulphur
clusters for incorporation into nascent proteins and they produce molecular
hydrogen as a by-product of ATP production. By contrast mitosomes are only
involved in the production of iron-sulphur clusters (For reviews of hydrogenosomes

and mitosomes, see Hjort et al., 2010; Makiuchi and Nozaki, 2014). Most excavates
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were originally united by the presence of a ventral feeding groove, into which food
particles are directed by a posteriorly directed flagellum (Simpson et al., 2002). The
monophyly of the Excavata is somewhat contentious, as phylogenomic support for
this group is relatively weak compared to other supergroups (Hampl et al., 2009).
Nonetheless, two major lineages have been recognized in the Excavata:
Metamonada, which includes the human parasites Giardia lamblia and Trichomonas
vaginalis (Cavalier-Smith, 2003), and Discoba, which includes free-living organisms
such as Naegleria gruberi, and the human parasites Trypanosoma brucei and
Leishmania major (Hampl et al.,, 2009). Organisms from this supergroup in which
tagging, knockouts, RNAi can be carried out include: L. major, T. brucei, and G.
lamblia. Sequenced genomes available for this supergroup include the organisms
listed here, in addition to Naegleria gruberi, Bodo saltans, and many others, mostly

from the Discoba (Kinetoplastida).

1.2.4 Archaeplastida

Archaeplastida is a group of photosynthetic organisms united by the
presence of a primary plastid, resulting from an endosymbiotic event with a
cyanobacterium (Figure 1-1, green; Delwiche et al., 1995; Mereschkowsky, 1905).
The monophyly of the Archaeplastida is supported by morphological evidence,
including the possession of flat mitochondrial cristae and a primary photosynthetic
plastid, in addition to multiple lines of phylogenomic evidence (Adl et al., 2005, inter
alia; Price et al.,, 2012; Rodriguez-Ezpeleta et al.,, 2005). Archaeplastida includes

green algae (e.g, Chlamydomonas reinhardtii), land plants (e.g., Physcomitrella
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patens, Arabidopsis thaliana), red algae (e.g., Cyanidioschyzon merolae), and
glaucophytes (e.g., Cyanophora paradoxa). Organisms from this supergroup in which
tagging and knockouts can carried out include: A. thaliana, P. patens, and V. carteri.
At least 50 genomes are available for this group in addition to the species mentioned

here.

1.2.5 The SAR clade

The SAR clade is composed of three major lineages: Stramenopiles,
Alveolates, and Rhizarians and are supported by phylogenomic evidence (Figure 1-
1, red; Burki et al,, 2007; Burki et al,, 2008; Cavalier-Smith, 2010). Stramenopiles
include multicellular and unicellular brown algae, (e.g.,, Ectocarpus siliculosus and
Nannochloropsis gaditana, respectively), diatoms (e.g., Thalassiosira pseudonana),
and sloomycetes (e.g, Phytophthora sojae). Alveolates include ciliates, (e.g.,
Paramecium tetraurelia), and apicomplexans, (e.g., Plasmodium falciparum, the
causative agent of malaria; Walker et al, 2011). Rhizaria includes an array of
photosynthetic, (e.g., Bigelowiella natans), and non-photosynthetic (Reticulomyxa
filosa) species. Organisms from this supergroup in which tagging and knockouts can
be carried out include: P. falciparum, Toxoplasma gondii, Tetrahymena thermophila,
and P. tetraurelia. Genome sequences are available for all of the organisms
mentioned above, as well as at least 40 additional alveolate and stramenopile

species.
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1.2.6 The CCTH group

The CCTH clade is composed of cryptophytes, centrohelids, telonemids, and
haptophytes (Figure 1-1, orange; Burki et al., 2008; Burki et al., 2009). However,
recent evidence suggests that these lineages may not form a single taxonomic unit,
but rather are independent lineages (Burki et al.,, 2012). Despite this uncertainty, it
is clear that they are closely related to the SAR group and to the Archaeplastida. No
protocols for tagging or knockouts have been developed for any organisms in this
supergroup. Sequenced genomes are available for the haptophyte Emiliania huxleyi

and the cryptomonad Guillardia theta (Curtis et al., 2012; Read et al., 2013).

1.2.7 Incertae sedis taxa

Some eukaryotes have been identified whose position on the eukaryotic tree
is currently uncertain. Examples of these groups include Breviatea (e.g., Breviata
anathema; Cavalier-Smith et al, 2004), Collodictyonidae (e.g, Collodyction
tricilliatum; Brugerolle et al, 2002), and Malawimonads (e.g, Malawimonas
jakobiformis; O’Kelly and Nerad, 1999). The difficulty in placing these species on the
tree of eukaryotes often stems from inconsistency between morphological and
phylogenetic analyses. For example, M. jakobiforms possesses features, that would
suggest it is related to excavates, notably a ventral suspension-feeding groove
(O’Kelly and Nerad, 1999); however, recent phylogenetic analyses have suggested
that it lies elsewhere on the eukaryote tree (Derelle et al., 2015; Katz and Grant,

2015). Although these lineages may be small compared to the other supergroups,
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identifying their place on the eukaryotic tree can have enormous ramifications. For
example, finding that the putatively bikont B. anathema along with T. trahens
branches within the unikonts, help to over turn the bikont-unikont hypothesis
(Minge et al., 2009). Therefore, placing these taxa on the eukaryotic tree will greatly
aid our understanding of eukaryote evolution. At present, no genomes have been
sequenced for these organisms, nor have any protocols for tagging or knockdowns

been developed.

1.2.8 Rooting the tree of eukaryotes

One of the major outstanding questions in evolutionary biology is the
position of the root of the eukaryotic tree. The root represents the first bifurcation
after the LECA and would have produced two lineages from which all supergroups
would have evolved. Pinpointing the location of the root of the eukaryotic tree
would not only provide a clearer understanding of eukaryote evolution, but would
also allow us to polarize transitions in all eukaryotic lineages.

One of the earliest rooting hypotheses for the tree of eukaryotes was the
‘Archezoa hypothesis’ (Cavalier-Smith, 1987b). The Archezoa hypothesis suggested
that some lineages of eukaryotes, such as microsporidians (e.g., Encephalitozoon),
Giardia, and Trichomonas are direct descendants of pre-mitochondriate eukaryotes
because they lacked detectable mitochondria, as well as Golgi bodies and
peroxisomes (Figure 1-2A). These lineages also appeared to possess a bacterial-like

70S ribosome with 16S and 23S subunits rather than the eukaryotic-like 80S
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Figure 1-2. Three rooting hypotheses for the tree of eukaryotes. A) Archezoa
hypothesis (Cavalier-Smith, 1987b). Early branching eukaryotes such as
Diplomonads (Giardia), Parabasalids (Trichomonas), and Microsporidia are
descendants of pre-mitochondriate eukaryotes. Phylogenetic trees supporting this
hypothesis are characterized by the laddered branching of protist groups along the
stem of the tree followed by a large radiation of eukaryotic groups giving rise to
opisthokonts, archaeplastids, stramenopiles, and alveolates. Tree is a summary of
inferences made by Sogin (1989), Vossbrinck et al. (1987). Arrow labelled
“Mitochondria” denotes the acquisition of the mitochondrion B) Bikont-Unikont
rooting of the eukaryotic tree proposed by Stechmann and Cavalier-Smith (2002)
that divides eukaryotes into SAR + CCTH + Archaeplastida + Excavata on one side,
and Amoebozoa + Opisthokonta on the other. Black dots indicates the presence of a
gene in the Excavata, Amoebozoa, and Opisthokonta. This gene likely appeared in
the ancestor of these lineages (the LECA, arrow) as they span the backbone of the
tree. Line indicates loss of the gene from the ancestor of Archaeplastida, SAR, and
CCTH. C) Alternative rooting of the eukaryotic tree. The same gene with the same
distribution as in (B) is now interpreted as having evolved in the ancestor of
Excavata, Amoebozoa, and Opisthokonta (arrow), and not present in the LECA, as its

distribution does not span the entire backbone of the tree.
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ribosome that contains 18S and 28S subunits (Vossbrinck and Woese, 1986).
Additional support for this hypothesis came from phylogenetic analysis of the small
subunit ribosomal DNA (SSU rDNA) gene that placed the Archezoa basal to the rest
of eukaryotes (Sogin, 1989; Vossbrinck et al., 1987). The Archezoa hypothesis was
eventually refuted on two lines of evidence. First, the discovery that all Archezoans
possessed either hydrogenosomes or mitosomes indicated that they were not pre-
mitochondriate eukaryotes, but are highly derived eukaryotes with mitochondria
Second, the SSU rDNA sequences were shown to be highly divergent sequences
(Arisue et al., 2004; Shirakura et al., 2001); the clustering of these sequences at the
base of eukaryotes was the shown to be the result of Long Branch Attraction (LBA),
the artificial grouping of rapidly evolving sequences (Dacks et al., 2002; Philippe and
Germot, 2000). These findings indicated that all eukaryotes are descendants of a
mitochondrion-bearing ancestor.

Many attempts have since been made to root the tree of eukaryotes (Derelle
and Lang, 2012; Katz et al,, 2012; Pusnik et al.,, 2011; Richards and Cavalier-Smith,
2005; Rogozin et al., 2009; Serfontein et al., 2010; Stechmann and Cavalier-Smith,
2002). One of the most prominent of these rooting hypotheses is the Bikont-Unikont
root (Figure 1-2B; Stechmann and Cavalier-Smith, 2002). Unikonts (ie,
Opisthokonta and Amoebozoa) possess the ancestral condition of a single basal
body supporting the flagellar root, whereas bikonts (i.e, Excavata, Archaeplastida,

SAR, and CCTH) possess the derived state of two basal bodies (Stechmann and
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Cavalier-Smith, 2002). Additional support for this bifurcation came in the form of
rare genomic changes. Specifically, unikonts possess separate DHFR (dihydrofolate
reductase) and TS (thymidylate synthase) genes whereas these genes are fused in
bikonts (DHFR-TS; Stechmann and Cavalier-Smith, 2002). Unikonts were also
thought to possess a unique glycine insertion in the Myosin II gene (Richards and
Cavalier-Smith, 2005). The Bikont-Unikont root was subsequently rejected by
phylogenomic evidence that placed the Apusozoa and the protist Breviata anathema
in the unikont clade; however, both of these organisms possess bikont flagellar
structures (Kim et al., 2006; Minge et al., 2009). Apusozoans were also found to
possess the fused DHFR-TS gene thought to only be found in bikonts (Kim et al,,
2006). Finally, the genome sequence of the bikont N. gruberi revealed the presence
of the unikont-type Myosin II gene indicating that these supposedly rare genomic
changes were insufficient to pinpoint the eukaryotic root (Fritz-Laylin et al., 2010).
A similar rooting to the Bikont-Unikont hypothesis has recently been
proposed (Derelle et al, 2015), that places the root between Opisthokonta,
Amoebozoa, Malawimonads, and Collodictyonids on one side, and Discoba,
Archaeplastida, SAR, and CCTH on the other. This root is base on concatenated
phylogeny of two previously used datasets (Derelle and Lang, 2012; He et al,, 2014),
both of which use bacteria as outgroups. Although this rooting may appear to be
topologically similar to the bikont-unikont rooting, it is distinct, especially with
respect to the monophyly of the Excavata. In this analysis, the Discoba is supported
as a monophyletic group, but Malawimonas, typically thought of as an excavate,

branches with the opisthokont - Amoebozoa clade, suggesting that it is either not a
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true excavate, or that the Excavata is a polyphyletic group. The uncertainty in this
interpretation is further compounded by the exclusion of any metamonads from the
analysis. The exclusion of this group was the result of the gene selection process
which resulted in a dataset with a large proportion of metabolic genes associated
with the mitochondrion (Derelle and Lang, 2012; He et al.,, 2014), often lost from the
highly reduced mitochondrion-related organelles of metamonads.

Although no consensus has been reached on the location of the root of the
eukaryotic tree, it is generally agreed that the root most likely lies between
Opisthokonta + Amoebozoa and Archaeplastida + SAR + CCTH, with the position of
the Excavata lying on one side other the other, or with the root lying within the
Excavata (Derelle and Lang, 2012; Derelle et al., 2015; Pusnik et al,, 2011; Wideman
et al, 2013). The position of the Excavata, and thus the root, has the potential to
alter our interpretation of when eukaryotic genes evolved. For example, if a gene is
found in most or all supergroups, then it was likely present in the LECA. If a gene is
found in the Opisthokonta, Amoebozoa, and Excavata it could have been present in
the LECA if a Bikont-Unikont root is considered (Figure 1-2B). In this case, the gene
would have been lost from the ancestor of Archaeplastida + SAR + CCTH.
Alternatively, if the root lies between Opisthokonta + Amoebozoa + Excavata and
Archaeplastida + SAR + CCTH (Figure 1-2C) then parsimony would dictate that the
gene was not present in the LECA, but arose in the ancestor of Opisthokonta +
Amoebozoa + Excavata. Thus, in the absence of a definitive root of eukaryotes broad
sampling of genomes across the eukaryote tree is necessary to understand how and

when genes and pathways evolved.
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1.3 Overview of the membrane trafficking system

Now that we have an understanding of eukaryotic diversity, we can being to
discuss our cellular system of interest: the membrane trafficking system, a network
of internal compartments found in all eukaryotes. Although this system has been
subject to lineage-specific evolution (Adung’a et al, 2013; Klinger et al., 2013;
Sanderfoot, 2007), in vivo analyses and comparative genomic analyses suggest that
the organelles, transport steps, and protein families that govern transport through
this system are largely conserved across the diversity of eukaryotes (Brady et al,,
2008; El-Kasmi et al,, 2011; Field et al,, 2007a; Hall et al., 2004; Langhans et al,,
2008; Turkewitz and Bright, 2011; Veltman et al, 2011). Therefore, in order to
understand how this system evolved, an understanding of how this system works is

required.

1.3.1 Organelles of the membrane trafficking system

The first organelle involved in membrane trafficking, the ER, is a reticulating
network of membranes continuous with the nuclear envelope (Figure 1-3; for a
recent review, see Lynes and Simmen, 2011). The ER can be divided into multiple
subdomains. The rough ER is covered in ribosomes actively translating proteins as
they are inserted into the ER lumen or the ER membrane (Blobel and Dobberstein,
1975), the smooth ER is devoid of ribosomes and is responsible for the synthesis of
lipids and is important for Ca?* signalling (Bell et al., 1981; Rizzuto et al., 2009), and

the transitional ER which marks the site of vesicle formation (ER exit sites) for
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Figure 1-3. Overview of the eukaryotic membrane trafficking system. Generic
eukaryotic cell depicting a generalization of organelles typically present, along with

trafficking pathways (denoted by arrows), and the location of action for major

proteins and complexes in the membrane trafficking system. Colour code: blue

coats, red = Rabs, green = tethering complexes, orange = SM proteins, brown
SNAREs. Abbreviations: Syn = syntaxin, Syb = synaptobrevin. Modified from

Schlacht et al,, 2014.
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transport of cargo to the Golgi complex (Bannykh et al, 1996; Orci et al, 1991;
Palade, 1975).

In mammalian cells, vesicles budding from the ER accumulate, and fuse at the
cis-face of the Golgi complex. The classical view of the Golgi structure is as a stack of
membrane compartments (Warren and Mellman, 2007). Although this Golgi
organization has been observed in many eukaryotes (e.g., Dictyostelium discoideum,
Tetrahymena thermophila; Kurz and Tiedtke, 1993; Schneider et al.,, 2000), other
morphologies, including unstacked (punctate), as in some fungi (Franzusoff et al,,
1991), or ribbons (laterally connected stacks), as in metazoans have also been
reported (Ladinsky et al.,, 1999). Transport through the Golgi is typically described
by one of two classic models, although neither is sufficient to account for all
experimental observations (Jackson, 2009, inter alia). The forward vesicular-
trafficking model proposes that cargo proteins are transported between permanent
cisternae by transport vesicles in a cis to trans direction (Palade, 1975). The
cisternal maturation model proposes that new cisternae form at the cis-Golgi that
progress through the Golgi while Golgi processing enzymes undergo retrograde
vesicular transport to earlier cisterna (Bonfanti et al., 1998; Morre and Mollenhauer,
2007).

Once modified in the Golgi, proteins accumulate at the trans-Golgi network
(TGN) where they are sorted and transported to their final destinations. Plasma
membrane and secretory proteins (e.g. glycosylphosphatidylinositol (GPI)-anchored
proteins; Paladino et al., 2004) are transported to the cell surface where they are

incorporated into the plasma membrane or are released into the extracellular
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environment, respectively (Figure 1-3). Alternatively, TGN-derived vesicles fuse
with endocytic vesicles from the plasma membrane, generating early endosomes, or
are transported to late endosomes or lysosomes (Burgos et al., 2010; Hirst et al,,
1999). Late endosomes subsequently fuse with lysosomes, resulting in degradation
of endosomal cargo.

The endosomal system generally displays more plasticity than earlier steps
in the membrane trafficking pathway. The overview here is broadly what is thought
to occur in mammalian and yeast cells; however, the endocytic system has been
modified extensively in some lineages. For example, secretory granules in
mammalian cells are thought to be specialized lysosome-related organelles, similar
to mucocysts or trichocysts in ciliates, also thought to be derived from lysosomes

(Elde etal., 2007).

1.3.2 Mechanisms of trafficking
1.3.2.1 Vesicle formation

The principles and process of vesicle formation and fusion are largely the
same at each step in transport pathway; membrane trafficking is mediated by a
limited set of protein families, with organelle-specific members carrying out
essentially the same function at each trafficking step (Figure 1-4; Bonifacino and
Glick, 2004). Nucleation of vesicle formation occurs when an Arf GTPase is recruited
to the donor membrane (Spang et al., 1998). Arfs cycle between activated GTP-
bound, and inactivated GDP-bound states. Arf activation is mediated by guanine-

nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP
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Figure 1-4. Overview of steps involved in vesicle formation and fusion. Vesicle
formation: First, cargo is concentrated at the donor membrane through recognition
by a variety of adaptor proteins. An activated GTPase of the Arf family (Arf, Sar)
then recruits coat proteins from the cytosol (COPI, COPII, APs, clathrin) to the donor
membrane in order to bind and concentrate cargo (Bi et al., 2002; Owen and Evans,
1998). Polymerization of the coat complex induces membrane deformation,
resulting in the budding of a nascent vesicle. Coat polymerization continues until the
vesicle has completely budded and has pinched off of the donor membrane,
completing vesicle formation. Arf is released after hydrolyzing GTP. Finally, the coat
disassembles and is reused in another round of vesicle formation. Vesicle fusion:
Fusion begins when the approaching vesicle is tethered to the target membrane by a
multisubunit-tethering complex (Hughson and Reinisch, 2010; Jackson et al., 2012).
Interaction with tethers and activated Rab GTPases apposes the vesicle and target
membranes, allowing the interaction of SNARE proteins on either membrane to
interact. Dissociation of SM proteins from syntaxin frees the requisite SNAREs on
the target membrane, allowing interaction with SNAREs on the vesicle to form a
trans-SNARE complex. Formation of this complex overcomes the energetic barrier
required for membrane mixing (Nickel et al, 1999; Weber et al,, 1998) allowing
delivery of the vesicle contents to the target organelle. The action of the AAA ATPase
NSF untwists the SNARE complex, priming the membrane for another round of

fusion.
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(D’Souza-Schorey and Chavrier, 2006). Arf-GTP binds membranes through insertion
of an N-terminal amphipathic a-helix and a myristate group into the donor
membrane (D’Souza-Schorey and Stahl, 1995; Franco et al,, 1996). At the ER, the
Sarl protein, a member of the Arf family, also binds the membrane through the
insertion of an N-terminal amphipathic a-helix (Lee et al., 2005).

At the membrane, activated Arf/Sarl recruit subunits of membrane
deforming coat complexes and contribute to the stabilization of the forming vesicle
(Figure 1-4). Coats are generally recruited in two stages: first, cargo-binding
subunits bind signals in the cytosolic portion of membrane proteins, or cargo
receptors, and is followed by the recruitment of the outer coat resulting in
membrane deformation and budding of the nascent vesicle (Bonifacino and Glick,
2004). At the ER, the Sec23/Sec24 complex binds Sarl and cargo and is followed by
binding of Sec13/Sec31 (Barlowe et al., 1994; Fromme et al., 2007; Shaywitz et al,,
1997). All of these components are thought to contribute to membrane deformation
in nascent COPII coats (Bi et al., 2002; Lee et al., 2005; Stagg et al., 2006; Stagg et al.,
2008). Retrograde transport from the Golgi, as well as intra-Golgi transport is
mediated by the COPI complex, whose seven subunits are recruited en-bloc to the
Golgi membrane. Similarly, at both the plasma membrane and endolysosomal
organelles, adaptor protein (AP) complexes are recruited by Arf GTPases, recognize
cargo proteins, and in some cases, recruit clathrin to trigger membrane deformation
(Cocuccietal,, 2012).

During the vesicle formation process, Sarl/Arf dissociate from vesicle as the

result of GTP hydrolysis. Arf family proteins possess low intrinsic GTPase activity
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and are activated by GTPase Activating Proteins (GAPs) to stimulate hydrolysis
(Cukierman et al.,, 1995; Kahn and Gilman, 1986). GTP hydrolysis is stimulated by
the insertion of an arginine-finger into the active site of the GTPase, as is the case for
other Ras GTPases (Scheffzek et al.,, 1998). ArfGAP proteins provide the necessary
arginine residue for Arfs (Cukierman et al., 1995; Ismail et al., 2010), whereas Sec23
carries out this function for Sarl (Bi et al., 2002; Yoshihisa et al., 1993). However,
the Sec13/31 complex also accelerates GTP hydrolysis by Sarl upon recruitment
(Antonny et al., 2001). Finally, the membrane deforming coat is shed, freeing the

vesicle to fuse with the target membrane (Figure 1-4).

1.3.2.2 Vesicle fusion

Fusion of vesicles at different target membranes is also dependent on a set of
highly paralogous protein families and occurs in multiple steps. First, vesicles are
recognized and tethered to the target membrane through the interaction with a
multisubunit-tethering complex (MTC; Figure 1-3; Cai et al, 2007, inter alia).
Different MTCs localize to different organelles to mediate specific transport steps.
The Dsl1 (Dependence on SLY1-20) complex recognizes COPI coats at the ER (Andag
and Schmitt, 2003), the COG (Conserved Oligomeric Golgi) complex functions within
the Golgi (Whyte and Munro, 2001), the GARP (Golgi Associated Retrograde
Protein) complex tethers endosome-derived vesicles to the TGN (Conibear and
Stevens, 2000), whereas the exocyst complex tethers secretory vesicles to the
plasma membrane (TerBush et al.,, 1996). The HOPS (Homotypic Vacuole Fusion and

Protein Sorting) and CORVET (Class C Core Vacuole/Endosome Tethering)
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complexes share a core set of subunits, but also possess subunits unique to each
complex (Nakamura et al., 1997; Peplowska et al., 2007; Radisky et al., 1997). HOPS
and CORVET are responsible for tethering vesicles at the lysosome/vacuole and at
endosomes, respectively (Chen and Stevens, 1996; Nakamura et al., 1997; Ostrowicz
et al., 2010). The TRAPP (Transport Protein Particle) complex is primarily involved
in fusion of vesicles at the Golgi (Sacher et al., 1998; Sacher et al., 2001). Interaction
with MTCs and the target membrane is partially mediated by the small GTPase Rab,
which, like other protein families involved in membrane trafficking, possess
organelle-specific family members (Stenmark, 2009).

Finally, as the MTCs bind the approaching vesicle, SNARE proteins on the
vesicle interact with SNAREs on the target membrane by interacting with Rab
GTPases (Figure 1-4; for review, see Hong and Lev, 2014). The interaction of
multiple SNARE proteins forms a trans-SNARE complex which is necessary to
overcome the energetic barrier required for membrane fusion (Nickel et al., 1999;
Weber et al., 1998). Similar to the MTCs and the Rabs, the interaction between
SNARE:s is specific; certain SNAREs will only interact with particular sets of other
SNARE:s to mediate fusion (Sutton et al., 1998). Following cargo delivery, the SNARE
complex is disassembled, by the action of the ATPase NSF and its partner a-SNAP
(Mayer et al., 1996; Rice and Brunger, 1999), priming the SNAREs for another round

of vesicle fusion (Figure 1-4).
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1.4 Evolution of the membrane trafficking system
1.4.1 Endosymbiosis as an origin of organelles

We have seen that the LECA was a highly complex organism with multiple
cellular pathways and organelles, but the question remains, how did these
organelles evolve? Mitochondria and chloroplasts are the result of endosymbiotic
events between the proto-eukaryote and an a-proteobacterium and
cyanobacterium, respectively (Gray and Doolittle, 1982, inter alia). However, the
origin of the compartments involved in membrane trafficking is less clear.
Endosymbiosis has been proposed as a possible mechanism giving rise to the
membrane trafficking system (Martin and Miiller, 1998); the lack of a double
membrane and organellar genomes, traits characteristic of endosymbiotically
derived organelles, argues against such an origin (Gray and Doolittle, 1982), leaving
open the question of how and when the eukaryote membrane trafficking system

evolved.

1.4.2 Autogenous origins of organelles

Many theories that attempt to explain the evolution of the membrane
trafficking system have been proposed, often associating the earliest
endomembrane compartments with origins of the eukaryotic cell itself. One of the
earliest hypotheses concerning the evolution of eukaryotes was the Archezoa
hypothesis. As mentioned earlier, the Archezoa hypothesis proposed that ‘primitive
eukaryotes’ (Giardia, Trichomonas, and Microsporidia), called Archezoa, represent

the transition state between ‘higher eukaryotes’ (animals, plants, fungi) and an early
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nucleus-containing eukaryotic ancestor (Cavalier-Smith, 1987b). Archezoans were
characterized primarily by the absence of detectable mitochondria, Golgi apparatus,
and peroxisomes. Although not explicitly stated, it was presumed that the
membrane trafficking system evolved autogenously prior to the endocytic event
that gave rise to the mitochondrion. However, with the fall of the Archezoa
hypothesis, a new class of hypotheses that linked eukaryogenesis with appearance

of the membrane trafficking system were proposed.

1.4.3 Fusion hypotheses and the origin of the endomembrane system

The fall of the Archezoa hypothesis suggested that features thought to be
present only in higher eukaryotes are in fact present in diverse eukaryotic lineages,
and therefore arose prior to the LECA. Detailed microscopic analyses identified
stacked Golgi complexes in the majority of eukaryotes, with some sporadic lineages,
including some Archezoans, possessing unstacked Golgi complexes (Mowbrey and
Dacks, 2009). The pervasive nature of stacked Golgi suggests that the ancestor of
eukaryotes also possessed a stacked Golgi, implying that the divergent Golgi
structures observed in these putatively ancient eukaryotes are secondarily derived.

Hypotheses for the origin of the membrane trafficking system that followed
continued to equate the formation of the trafficking system with eukaryogenesis. In
these hypotheses eukaryotes are the product of the fusion of an archaeon with a
bacterium to produce a chimeric cell, giving rise to eukaryotes. In these scenarios,
the bacterium would have acquired the ability to undergo phagocytosis, taking up

an archaeon, which would then give rise to the eukaryotic nucleus (Forterre, 2011;
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Gupta and Golding, 1996). These hypotheses were largely based on the observation
that eukaryotic informational genes (i.e, transcription, translation, replication) are
generally of archaeal origin, whereas membrane phospholipids and metabolic genes
are generally derived from bacteria (Gribaldo et al., 2010; Poole and Penny, 2007).
These hypotheses account for an origin of the endoplasmic reticulum, as a by-
product of engulfing the archaeon, forming the nucleus through endosymbiosis.
They then require that the membrane trafficking system evolve beyond the ER
through some unstated mechanism.

One recent, and more plausible fusion hypothesis postulates the origin of
eukaryotes as the result of the fusion of a bacterium from the PVC (Planctomycete -
Verrucomicrobia - Chlamydiae) superphylum with an archaeum from the phylum
Thaumarchaeota (Forterre, 2011). The combination of these two lineages would
account for the major genetic contributions that make up the eukaryotic genome.
Additionally, the PVC bacteria possess proteins structurally similar to the f-
propeller-a-solenoid proteins pervasive throughout the eukaryotic membrane
deformation machinery (Santarella-Mellwig et al., 2010), providing a hypothesis for
the origin of the eukaryotic coat proteins and nuclear pore complex. Additionally,
these bacteria also possess an intracytoplasmic membrane (ICM) that surrounds the
bacterial nucleoid (Fuerst and Webb, 1991). The thaumarchaeon would have
provided eukaryotic features such as eukaryote-like histones and members of the
ESCRT complex (Cubonova et al., 2005; Makarova et al.,, 2010).

In this scenario, viruses provided the pressure driving eukaryotes towards

complexity and to produce proteins and processes not found in the other two
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domains of life. New proteins and protein folds may have been introduced into the
genomes of early eukaryotes through the integration of existing viral genomes.
Forterre argues that the co-option of viral proteins by early eukaryotes may explain
the origin of major eukaryotic structures such as the nucleus. Some viruses, such as
Mimiviruses, recruit perinuclear organelles to build large viral factories (Novoa et
al., 2005; Suzan-Monti et al., 2007, inter alia). Forterre imagines a scenario where
the PVC bacterium uses the viral factory machinery provided by integrated viruses
to build a nucleus from the ICM to protect its genome from further viral invasion
(Forterre, 2011).

Although this hypothesis is intriguing to consider, major flaws have been
pointed out that apply to this hypothesis and to fusion hypotheses generally. The
first concerns the apparent loss of the archaeal membrane that is characterized by
the presence of isoprenoid lipids (Langworthy and Pond, 1986). Secondly, of the
known endosymbiotically derived organelles, loss of the endosymbiont membrane
has not occurred, raising the question of what happened to the archaeal-derived
lipids (Forterre, 2011). Third, is that ribosomal phylogenies reconstruct three
domains: bacteria, archaea, and eukaryotes (Woese and Fox, 1977). Forterre himself
stated that it would be difficult to explain why the ribosomal subunit from the
archaeal symbiont was retained over that of the bacterial host, and why the new
eukaryotic ribosome underwent accelerated sequence evolution from the archaeal

version as to be recognized as a different domain of life (Forterre, 2011).
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1.4.4 Autogenous origins of the membrane trafficking system

A more recent take on the evolution of the eukaryotic cell and by extension,
the membrane trafficking system removes the phagocytic event from
eukaryogenesis, and instead postulates an autogenous origin (ie, not
endosymbiotic in origin) of the nucleus. Called the ‘inside-out’ hypothesis (Baum
and Baum, 2014), the authors propose that membrane deforming complexes related
to those found in the nuclear pore complex and coat proteins, induced membrane
deformation at the plasma membrane, resulting in outward membrane blebbing
(Figure 1-5A, B). In this hypothesis, the outward growth gave rise to different
regions of the eukaryotic cytoplasm, with the original sites of deformation
eventually giving rise to nuclear pores (Figure 1-5C). The outward membrane blebs
would have greatly increased the surface area of the cell, allowing increased contact
and association with ectosymbiotic bacteria (i.e, symbiotic bacteria that adhere to
the surface of their symbiotic partners) that would eventually give rise to the
mitochondria by being surrounded by the growing membrane blebs, incorporating
it into the host cell. The space between the fusing blebs would give rise to the ER
and other compartments of the membrane trafficking system, with the separation of
the inter-bleb space from the outside world mediated by dynamin acting at plasma
membrane, resulting in the formation of the ER (Figure 1-5D).

Although an interesting thought experiment, it is somewhat unwieldy, as it
begins with an archaeon possessing isoprenoid lipids, and invokes a shift to

bacterial-like lipid membrane contributed by the ectosymbiont. This model would
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Figure 1-5. Inside-out hypothesis for the origin of eukaryotes and of the
membrane trafficking system. A) An archaeon (light circle) interacts with
ectosymbiotic bacteria (dark circles). B) Membrane blebs form as the result of
membrane deformation by an early protocoatomer complex (curved lines inside
blebs). These protrusions would have facilitated the exchange of metabolites
between the archaeon and the bacterium. C) Expansion of the membrane blebs
would have enclosed the ectosymbiont, giving rise to the mitochondrion. The
ancestral protocoatomer complex gives rise to a full nuclear pore complex (semi-
circles). D) Fusion of the blebs would have created a continuous plasma membrane,
isolated the primordial mitochondria from the outside world, and would have

generated precursors to the organelles of the membrane trafficking system.
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also require that the membrane deformation machinery is either pre-adapted, or

undergoes a shift from binding archaeal membranes to bacterial lipids.

1.4.5 Organelle Paralogy Hypothesis

One recent proposal for the evolution and diversification of autogenously
derived organelles of the membrane trafficking system is the Organelle Paralogy
Hypothesis (OPH; Dacks and Field, 2007). The OPH is based on two primary
observations: first, as above, that the majority of protein families involved in
membrane trafficking [GTPases, SNAREs, syntaxins, SM (Secl/Munc18-like)
proteins, coats] were present in the LECA, indicating that they evolved in an even
earlier eukaryotic ancestor (Dacks and Doolittle, 2002; Dacks and Doolittle, 2004;
Devos et al., 2004; Field et al., 2007b; Jékely, 2003; Koumandou et al,, 2007).
Second, these protein families contain multiple members that carry out similar
functions at different subcellular locations (i.e, paralogues; Bonifacino and Glick,
2004). Based on sequence similarity, and in some cases structural similarity, it is
determined that different proteins share a common ancestor, i.e, are homologous
(Fitch, 1970). Homologues can be of two types: paralogues, which arise through
gene-duplication events and orthologues, which arise through speciation events
(Fitch, 1970). Evidence points to the presence of different paralogues from each
family in the LECA (Dacks and Doolittle, 2002; Dacks and Doolittle, 2004; Elias et al,,
2012; Gabernet-Castello et al,, 2013; Hirst et al., 2011; Vedovato et al., 2009). If we

assume that the function of each paralogue has been conserved in extant
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eukaryotes, we can then infer that the LECA possessed a complex membrane
trafficking system, similar to that observed in living eukaryotes. In phylogenetic
analyses, these ancient paralogues should assemble into groups containing the full
range of eukaryotic taxa, indicating that they descended from a single ancestor (e.g.,
paralogues A, B, and C from Figure 1-6), and by extension, the organelles at which
these paralogues act should also have been present in the LECA. By contrast,
paralogues resulting from lineage-specific expansions should assemble into a clade
only containing sequences from that lineage (Figure 1-6). Loss of an ancient
paralogue can only be inferred if a clade contains a broad, but incomplete array of
supergroups representing eukaryote diversity (Figure 1-6).

Ancient duplication and lineage-specific expansion were shown to be major
drivers of the evolution of membrane trafficking, where phylogenetic analysis of
SynE (endosomal syntaxins), Rab5, and the shared B-subunit of AP-1 and AP-2
identified sequences that grouped by taxonomic lineage, revealing multiple
independent expansions within each of these protein subfamilies (Dacks et al,
2008). Phylogenies of SM proteins (Koumandou et al.,, 2007), and more recently
analyses of the TBC (RabGAPs; Gabernet-Castello et al,, 2013) and the Rab families
(Elias et al,, 2012), revealed sequences grouping by subfamily rather than by
taxonomic lineage, indicating that they are the product of multiple ancient gene
duplications that occurred prior to the LECA.

The OPH predicts that, since these gene families arose by gene duplication,
sequence divergence, and co-evolution, an ancestral organelle should have existed

that possessed the ancestor of each protein family (e.g., the ancestral coat complex,
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Figure 1-6. Example of a gene family with ancient and lineage-specific gene
duplications. Hypothetical gene family with ancient and lineage-specific gene
duplications. Three ancient eukaryotic paralogues (A, B, C) of this family are
depicted here. They are considered ancient because all three are found in multiple,
diverse eukaryotic lineages. They are considered paralogues because
representatives of nearly every supergroup are found within each clade, indicating
these groups are the result of an ancient gene duplication event (left-most star).
Lineage-specific gene duplications have occurred for the SAR+CCTH clade and
opisthokonts of paralogue A. These are viewed as independent duplications and not
loss from Amoebozoa, Archaeplastida, and Excavata because they group separately
from each other. It is also more parsimonious than the alternative, three
independent losses in Amoebozoa, Excavata, and Archaeplastida. If the opisthokont
sequences grouped with each of the SAR+CCTH clades, then loss in the other
supergroups would be a more likely scenario because the clade contains multiple
supergroups from across the eukaryotic tree. Lineage-specific expansion of
paralogue B has also occurred in the Excavata . Paralogue C would be interpreted as
having undergone loss in the Excavata and Amoebozoa because the rest of the
diversity of eukaryotes are represented. Asterisks (*) indicate gene duplication

events.
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the ancestor of all Rabs, the ancestor of all SNAREs, etc.) in the proto-eukaryote
(Figure 1-7). Novel organelles would then arise via gene duplication of the ancestral
homologues. Sequence divergence of the newly evolved paralogues would result in
multiple subpopulations that are only able to interact with paralogues of other
protein families that have co-evolved with those paralogues, resulting in
exclusionary interactions between sets of proteins. These exclusionary interactions
would define different membrane-bound compartments, producing novel
organelles. [terations of gene duplication and sequence divergence would eventually
produce a large array of membrane bound organelles differentiated from one
another by specific combinations of paralogues of trafficking factors (Figure 1-4).
This hypothesis has been supported by computer simulations; a simple system
consisting of a coat, a SNARE, and a single membrane-bound compartment could
give rise to a complex endomembrane system through gene duplication and
divergence (Ramadas and Thattai, 2013). While gene duplication-divergence was
sufficient to generate novel organelles in this simulation, increasing specificity
between interactions of coats and SNAREs across the system was required to
maintain a large number of distinct organelles.

Conceivably, elucidating the order in which organelle-specific paralogues of
different membrane trafficking families emerged would allow the deduction of the
order of organelle evolution (Dacks and Field, 2007). One major limitation of the
OPH is that most of the members of protein families encoding specificity in the

membrane trafficking system are made up of relatively short sequences. Combined
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Figure 1-7. The Organelle Paralogy Hypothesis for the evolution of
autogenously derived organelles. A) Assembly and disassembly of a hypothetical
protein complex, or set of interacting proteins, composed of two distinct members
(upper and lower). B) Evolution of the single primordial complex/interacting
proteins into multiple complexes with different cellular locations. The primordial
complex (black) undergoes a gene duplication event, represented by the bifurcating
arrows. The Black arrow represents the evolution of the upper subunit. The grey
arrow represents the evolution of the lower subunit. The primary sequence of the
subunits acquired mutations resulting in two types of complexes, pink and light
green. Some mutations, represented by stars, fix specific interactions such as the
pink upper subunit with the pink lower subunit or the light green upper subunit
with the light green lower subunit, resulting in two distinct subpopulations of
complexes. These subpopulations are only able to interact with members of the
same subpopulation, but that are unable to interact with members of the other
subpopulation (i.e, pink only interacts with pink, but not with light green) If these
complexes associate with membrane bound organelles, then, by extension, the
evolution of these two distinct complexes would also produce two novel organelles.
[terations of this process would result in a large number of distinct, but
evolutionarily related membrane bound compartments whose evolutionary
histories can be traced by elucidating the evolutionary relationships between the

subunits of the various complexes.
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with large numbers of paralogues, this renders obtaining phylogenetic resolution
problematic. Nonetheless, recent developments in phylogenetic approaches have
begun to resolve some of the earliest events in the evolution of the membrane
trafficking system. Analyses using a novel phylogenetic approach, called Scrollsaw,
have been able to determine the order of gene duplications that occurred to produce
the set of Rab and TBC paralogues that were present in the LECA (Elias et al., 2012;
Gabernet-Castello et al.,, 2013). Thus, these gene duplications would presumably
have occurred in an earlier eukaryotic ancestor than the LECA. In particular,
analysis of the Rab GTPases identified 19-23 Rab subfamilies in the LECA
(Diekmann et al,, 2011; Elias et al,, 2012), which correspond broadly to two large
groups containing endocytic and exocytic functions, respectively (Elias et al., 2012).
Additionally, phylogenetic analysis stringing together multiple genes through
concatenation of the subunits of COPI and the adaptin complexes resolved the
internal branching order of these coats (Hirst et al.,, 2011). An earlier analysis had
suggested that the first bifurcation, which produced COPI and the adaptin clade,
would have correlated with the evolution of a Golgi and a TGN-like organelle,
effectively bridging the endocytic and secretory systems (Dacks et al., 2008). Hirst et
al, (2011) took this further and suggested that the TGN-like organelle was a
TGN/endosome hybrid, based on the observation that AP-3 and AP-5, the two
earliest branching AP complexes, are both involved endocytic trafficking (Hirst et al.,
2011; Peden et al., 2002). AP-4 branches after AP-3 and AP-5 and is involved in

trafficking from the TGN (Dell’Angelica et al., 1999a; Hirst et al., 2011). Hirst et al,,

46



(2011) also suggested that the evolution of the AP-4 complex coincided with the
evolution of distinct TGN and endosomes.

Thus far, analyses testing the OPH have produced largely consistent results.
With the exception of the analysis of COPI and the AP complexes, analyses testing
the OPH have focused primarily on protein families involved in membrane fusion
(Dacks and Doolittle, 2002; Dacks and Doolittle, 2004; Dacks et al., 2008; Elias et al.,
2012; Field et al.,, 2007b; Gabernet-Castello et al.,, 2013; Koumandou et al., 2007;
Sanderfoot, 2007; Vedovato et al,, 2009); it remains uncertain whether machinery
involved in vesicle formation display the same pattern. Analysis of proteins involved
in this step of membrane trafficking should provide further insight into the origin

and evolution of the trafficking system.

1.4.6 Protocoatomer hypothesis

The OPH itself does not propose an origin for the first endomembrane
compartment, but rather a mechanism for organelle diversification. However, a
specific example of the OPH, the protocoatomer hypothesis, posits a common origin
for the nuclear pore complex (NPC) and the various vesicle coats and is based on the
observation of shared structural elements, namely f-propeller/oa-solenoid domain-
containing proteins (Devos et al, 2004). Structural analysis of the S. cerevisiae
Nup84 subcomplex revealed that each of its components, Sehl1, Sec13, Nup84,
Nup85, Nup120, Nup133, and Nup145C consist of an a-solenoid, a $-propeller, or
both (Berke et al., 2004; Boehmer et al., 2008; Brohawn et al., 2008; Devos et al,,

2004; Fath et al., 2007; Hsia et al., 2007; Leksa et al., 2009; Nagy et al., 2009).
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Similarly, elements of each major vesicle coat complex possess the same
architecture: the trunk domains of the large subunits of COPI and the adaptin
complexes are a-solenoids (Hoffman et al., 2003; Owen et al., 1999; Traub et al,,
1999; Watson et al, 2004), whereas clathrin and o/f’-COPI, the membrane
deformation complexes, are composed of one or two $-propellers, followed by an a-
solenoid domain, respectively (Devos et al., 2004; Lee and Goldberg, 2010; ter Haar
et al, 1998). The COPIl complex also shares this organization, with Sec31
comprising the B-propeller/a-solenoid configuration (Fath et al., 2007). Sec13, a
subunit of the Nup84 compley, is also a member of the COPII coat complex. Sec13
binds Sec31 and Nup145C through a conserved mechanism, involving the insertion
of a seventh blade, completing the propeller structure of Secl3 (Brohawn and
Schwartz, 2009), and is consistent with reports of common ancestry between Sec31
and Nup145 as well as Nup84 and Nup85 (Brohawn et al., 2008). Other cellular
complexes have also recently been shown to possess this ‘protocoatomer’ type
structure, such as the intraflagellar transport system (IFT; van Dam et al., 2013), and
the recently described SEA (Sehl-associated) complex, a vacuole associated
complex that modulates TOR (Target of Rapamycin) signalling (Algret et al.,, 2014;
Dokudovskaya et al., 2011), and that shares Seh1 with the nuclear pore complex,
and Secl13 with COPII and the NPC. Additionally, the SEA complex possesses
subunits thought to be structurally similar to Sec31, providing another link between
this novel complex, vesicle coats, and the nuclear pore (Algret et al., 2014). Subunits
of the HOPS/CORVET MTCs such as Vps3, Vps8, Vps11, Vps16, Vps18, Vps33, Vps39,

and Vps41l are also predicted to contain the p-propeller/a-solenoid domain
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composition (Plemel et al., 2011). However, crystal structures have yet to be
determined for these proteins. Some may argue that these structural similarities
may be the result of convergent evolution. If this were the case, we would not expect
that all of the B-propeller/a-solenoid domain-containing proteins would possess
these structural elements in the same order; the a-solenoid should precede the 3-
propeller in some cases. We would also not expect subunits to be shared among the
different complexes, but rather, multiple proteins with analogous functions should
have evolved in each complex. Similarly, binding mechanisms such Sec13 with
Sec31 or Nup145 are not expected to have occurred if these proteins are of separate

evolutionary origins.

1.5 Focus of this thesis

Past analyses have shown that the LECA was a highly complex ancestor, that
possessed much of the known membrane trafficking machinery (Koumandou et al.,
2013, inter alia). However, these analyses focused extensively on the machinery of
vesicle fusion such a SNAREs (Dacks and Doolittle, 2002; Dacks and Doolittle, 2004;
Dacks et al,, 2008), tethering complexes, SM proteins (Koumandou et al., 2011), or
Rabs (Diekmann et al, 2011; Elias et al., 2012; Gabernet-Castello et al., 2013;
Pereira-Leal and Seabra, 2001). These analyses indicated that much of the
membrane fusion machinery observed in extant eukaryotes was also present the
LECA. However, the extent to which the machinery involved vesicle formation is
conserved is much less clear. These observations raise the question of whether or

not machinery involved in vesicle formation are equally well conserved. To address
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this question, three separate analyses have been carried out: a comparative analysis
of the ArfGAP and ArfGEF proteins, a detailed comparative genomic and
phylogenetic analysis of the COPII coat complex, and a comparative genomic and
phylogenetic analysis leading to the discovery of a novel ancient coat complex:

TSET.

1.5.1 Comparative genomic analysis Arf GTPase regulators

Arfs are small GTPases of the Ras superfamily, and are involved in regulating
membrane trafficking, phospholipid biosynthesis, and cytoskeletal remodelling
(Brown et al.,, 1993; Cockcroft et al., 1994; Honda et al, 1999; Ooi et al, 1998;
Paleotti et al., 2005). Up to six Arf proteins are found in mammalian cells, but only
one is found in most other eukaryotes. Additionally, current evidence points to the
presence of a single Arf protein in the LECA (Berriman et al.,, 2005; Li et al., 2004),
suggesting that regulatory proteins may have provided functional diversity and
encoded specificity in Arf signalling. As mentioned in section 1.3.2.1, the transition
between the active and inactive state of Arf is mediated by GEFs and GAPs,
respectively. ArfGEFs are defined by the presence of Sec7 domain and in humans are
subdivided into six subfamilies (Cox et al, 2004). ArfGAPs are defined by the
presence of the catalytic ArfGAP domain and are divided into ten subfamilies in
humans (Kahn et al,, 2008). I carried out comparative genomic and phylogenetic
analyses in order to determine the extent to which each subfamily is conserved and
to identify gene duplications in different eukaryotic lineages. By analyzing the

patterns of gene duplications, I have generated hypotheses regarding the
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complement of ArfGAPs and ArfGEFs that were present in the LECA. Analysis of
accessory domains also provided insight into the functional complexity of ArfGAP
and GEF proteins in the LECA and its descendant lineages. Overall, this analysis will
fill a hole in our current understanding of the evolution of the Arf regulatory system

as it relates to the OPH.

1.5.2 Comparative genomic analysis of the COPII coat complex

The COPII coat complex is responsible for trafficking cargo and membranes
from the ER to the Golgi (Barlowe et al., 1994; Fromme et al., 2007; Gershlick et al,,
2014; Jones et al,, 2003; Miller et al.,, 2003; Roberg et al., 1999; Venditti et al., 2012;
Wendeler et al,, 2007). A previous comparative genomic analysis assessing the
presence or absence of the nuclear pore and related complexes identified
components of the COPII coat in all major eukaryotic lineages, suggesting their
presence in the LECA (Neumann et al.,, 2010). Although core members of the coat
(Sarl, Sec23, Sec24, Sec13, and Sec31) are ubiquitously conserved, both Sec16 and
the S. cerevisiae Sec24-like protein, Sfb3, were found to be frequently missing. In
order to determine the extent to which these two coat components are absent, I
carried out an extended comparative genomic analysis. I increased the sampling of
non-opisthokont representatives and included recently sequenced, key taxonomic
sampling points to determine if these patchy distributions are the result of multiple
lineage-specific losses or are the result of taxon selection. The Sarl GEF Sec12 was
excluded from the analysis by Neumann et al., (2010) and therefore I included it

here. Extensive phylogenetic analysis of each component identified lineage-specific
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expansions and determined the number of paralogues of each subunit present in the
LECA. This was be especially exciting for the phylogeny of Sec24, where multiple
ancient paralogues have been proposed, but never conclusively demonstrated using

phylogenetic methods (Pagano et al., 1999; Tang et al., 1999).

1.5.3 Comparative genomic analysis of the TSET complex

Chapter 5 analyzes the evolution of the recently discovered TSET coat
complex (Gadeyne et al, 2014). TSET was identified as an archaeplastid-specific
coat complex (Gadeyne et al.,, 2014). However, our collaborators identified putative
TSET subunits in representatives of two other supergroups, suggesting that this
novel coat complex may be more broadly distributed than previously thought.
Therefore, 1 carried out a comparative genomic analysis to determine the
distribution of the TSET complex among a set of representative eukaryotic genomes.
The TSET complex is thought to possess a high degree of sequence similarity to the
heterotetrameric coat complexes (APs and F-COPI; Gadeyne et al, 2014). To
determine the relationship of TSET, the APs, and COPI, phylogenetic analysis of
these coat complexes was carried out. Understanding the relationship between
TSET, the APs, and COPI will provide a more detailed understanding of the order in

which their associated organelles evolved.
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Chapter 2: Materials and Methods
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2.1 Overview

A combination of computational methods was used to identify and analyze
the evolution of genes involved in membrane trafficking. The specific tools, criteria,
and their implementation apply equally to all analyses discussed hereafter, unless
otherwise indicated. Modifications of these criteria (e.g., changes in phylogenetic
methodologies and approaches to comparative genomic analyses) and the rationale
for those modifications will be addressed in their respective chapters.

Comparative genomics is the process of identifying homologues in the
genomes of different organisms. Comparative genomics is a powerful approach for
identifying and analyzing biological pathways in diverse organisms by making use of
publicly available genome sequencing projects and advanced computational
methodologies. The main advantage of these approaches is that they do not depend
on the availability of genetically tractable systems in diverse eukaryotic lineages to
be available for the study of a cell biological system. Nonetheless, there are two
major limitations for this approach. First, is the sensitivity and selectivity of the
methodologies used to identify homologous sequences. In the past, analyses have
relied solely on sequence-sequence comparisons (e.g., FASTA, BLAST; Altschul et al,,
1990; Pearson and Lipman, 1988), which are informative so long as they share
sufficient similarity as to be recognized by the algorithm. The advent of profile-
based searches (eg., PSI-BLAST, HMMER; Altschul et al, 1997; Eddy, 1998;
http://hmmer.org) that incorporate information from multiple sequences into a
statistical model, have dramatically increased the power of comparative genomic

approaches in their ability to detect distant homologues. The second limitation is
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the availability of sequenced genomes and associated genomic databases. Compared
to the known diversity of eukaryotes, a relatively small number of fully sequenced
genomes are available for analysis. However, the available databases are broadly
representative of eukaryote diversity, allowing a proper sampling of major
eukaryotic lineages. Additionally, the number of fully sequenced genomes
representing diverse lineages is continuing to increase, permitting a deeper
sampling of these lineages.

Phylogenetic analysis reconstructs the evolutionary relationships of
homologous genes and is able to discriminate between orthologues and paralogues.
Importantly, these analyses are able to discriminate between different types of
paralogues, such as ancient paralogues that predate the LECA, paralogues found
within a specific taxonomic range (i.e, supergroup or genus), or genome-specific
paralogues. A clear picture of when these gene duplications occurred allows us to
hypothesize when particular functions or pathways evolved, clarifies which aspects
of cellular function are homologous between organisms, and which pathways may
have arisen through convergent evolution. The results of these methods can be used
as hypotheses to be tested in genetically tractable systems, allowing in silico
methods to inform functional analyses just as functional analyses are able to provide

queries for comparative genomics.

2.2 Comparative Genomics
Comparative genomic analyses were carried out to identify homologues of

selected genes in representative sets of eukaryotic genomes. The most
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representative set of eukaryotic genomes available at the time each study was
conducted were selected for analysis. The genomic databases sampled are displayed

in Figures 3-3, 3-4, 4-2, and 5-1.

2.2.1 BLAST

Basic Local Alignment Search Tool (BLAST; Altschul et al., 1997) was used to
identify protein homologues in selected genomes. Amino acid sequences were used
for analyses as 20 states are possible for each position compared to four states for
nucleic acids. This reduces the likelihood that codon bias or differences in GC
(guanine-cytosine) content will impact BLAST results (Steel et al., 1993). As our
understanding of membrane trafficking stems largely from studies of humans and
yeast, each analysis addressed whether components of the trafficking systems of
those organisms are broadly conserved or not. Therefore, protein sequences from H.
sapiens or S. cerevisiae were used as queries in BLASTp searches (i.e, protein query
against a protein database; Figure 2-1). Forward BLAST searches (i.e., into genomes
of interest) generated a list of candidate sequences that required confirmation of
homology. Sequences with E-values less than or equal to 0.05 were retained for
verification. This cut-off was used to remove false positive sequences that were
retrieved due to the presence of shared accessory domains or because of random
sequence similarity. Homology was assessed using the reciprocal best-hit method
(Bork et al.,, 1998; Tatusov, 1997), whereby the candidate sequences must retrieve
the original query with an E-value at least two orders of magnitude smaller than the

next best hit (Figure 2-1). In the event that no homologues were confidently
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Figure 2-1. The comparative genomic workflow. Query sequences are used to
search for homologues in target genomes. ‘Forward BLAST’ experiments produce a
list of candidate sequences that contain some similarity to the original query
sequence. Homology is confirmed if upon ‘reciprocal BLAST’ against the genome of
the original query, candidate sequences retrieve the query as the best BLAST-hit
with an E-value at least two orders of magnitude better than the next best sequence.
Similar criteria were implemented for searches using HMMs. An additional level of
stringency required candidate sequences to retrieve the query with an E-value five
orders of magnitude better than the next best hit was also considered for the

analysis of ArfGAP and ArfGEF proteins (see chapter 3).
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identified using the human or yeast queries, then ‘taxon-jumping’ was carried out. In
this approach, if no homologues were identified in a particular genome, then the
homologues of a closely related organism were used as queries (Figure 2-2). This
approach is based on the assumption that if a sequence, X, is considered homologous
to the H. sapiens or S. cerevisiae query sequence, then if another sequence, Y, is found
to be homologous to X, then by extension it is also homologous to the original query

(Figure 2-2).

2.2.2 HMMER

Although most sequences were identified using BLAST, sequence-sequence
comparison is not always able to detect extremely divergent homologues. Protein
databases were searched using Hidden Markov Models (HMM) implemented
through the HMMER suite (http://hmmer.org) to identify homologues missed due
to sequence divergence. HMMER take a multiple sequence alignment and generate a
statistical model (HMM) of the alignment that describes position-specific
information about the conservation of each column in the alignment and the
probability of finding specific amino acids at specific positions (Eddy, 1996; Eddy,
1998; Krogh et al., 1994). The model is then used to search sequence databases for
sequences that fit the model (Eddy, 2009; Eddy, 2011). Multiple sequence
alignments were generated using MUSCLE (Multiple Sequence Comparison by Log-
Expectation; Edgar, 2004) by aligning homologues identified by BLAST. HMMs were
generated using the HMMbuild program, and used to search protein databases with
the HMMsearch program. Candidate sequences identified by HMMsearch with E-

values below HMMER'’s inclusion threshold (0.01), which indicates that the
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Figure 2-2. Illustration of taxon jumping. The query sequence from Genome A
identified and confirmed Sequence X from Genome B as a homologue of the query
through forward and reciprocal BLAST experiments. The confirmed homologue can
then be used to confirm homology of divergent sequences, or identify additional
sequences missed by the original query (Sequence Y from Genome C). Successful
reciprocal BLAST of Sequence Y against Genome B can then confirm the homology of

Sequence Y to Sequence X, and by extension, the original query.
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sequence’s fit to the model is not likely to be the result of random similarity, were
retained for reciprocal confirmation, maintaining the 2-orders criterion using either
BLASTp or phmmer. phmmer is a BLAST-like program implemented in the HMMER
package and was used for reciprocal analyses for the analysis of ArfGEFs (chapter 3)
and COPII (chapter 4). The HMMER package uses a different approach to calculating
E-values than BLAST (Eddy, 2008; Karlin and Altschul, 1990; Karlin and Altschul,
1993), therefore, using phmmer for the reciprocal analyses maintained consistency
and comparability between forward and reverse searches. phmmer was not
implemented in the other analyses as it was not available at the time they were

performed.

2.2.3 Nucleotide searches

If neither BLAST nor HMMer succeeded in identifying homologues, genomic
nucleotide databases (e.g.,, contigs, scaffolds, etc.) were searched for the missing
sequences in the event that poor gene models or missing open reading frames
resulted in false negatives. An algorithm entitled tBLASTn (i.e., protein query against
a translated nucleotide database) was used to identify sequences that may have
been excluded from the protein databases. As above, sequences with an E-value less
than or equal to 0.05 were used as queries in reciprocal BLASTx searches (ie,
translated nucleotide sequence against protein database) to confirm homology. If at
this step homologous sequences could not be identified, these sequences were
considered ‘not identified’. It should be noted that definitive absences (or losses)

cannot be unambiguously proven by these methods. The possibility remains that
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some sequence may have evolved beyond detection by our methods but may exist
and function in the organisms in question. Additionally, one can never state with
100 percent confidence that an entire genome has been sequenced; it is always
possible that a small fragment has been missed and that this may account for the
‘missing’ gene. Nonetheless, exhausting organismal databases (i.e, protein, nucleic
acids), in combination with searches carried out using multiple methods, and
including multiple genomes from closely related lineages into the analyses provides

some confidence to suggest that these sequences may have indeed been lost.

2.2.4 Deducing presence in the LECA

Individual genes or subfamilies of proteins were considered present in the
LECA based on their presence in at least four supergroups. This is a parsimony
argument based on observations from the literature. First, multiple phylogenomic
analyses using multiple methods and datasets consistently recover similar
relationships between eukaryotic supergroups. Two eukaryotic “Megagroups” have
recently been recognized (Adl et al,, 2012, inter alia): Amorphea, which comprises
Opisthokonta, Amoebozoa, and Apusomonada, and Diaphoretickes, which is an
amalgamation of Archaeplastida, SAR, and the CCTH group. The Excavata forms a
clade unto itself between the Amorphea and Diaphoretickes. Therefore, a gene or
subfamily present in at least four supergroups would overcome the need to rely on a
rooted tree of eukaryotes since the gene in question would be present in all three
major lineages. Parsimony would argue that the gene most likely arose in the

ancestor of those lineages, the LECA.
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The second observation is that recent rooting hypotheses suggest that the
eukaryotic root lies either between Amorphea and Excavata, between
Diaphoretickes and the Excavata, or in the Excavata (Cavalier-Smith, 2010; Derelle
et al., 2015; Wideman et al., 2013). Therefore, proteins with distributions that span
the backbone of the eukaryotic tree can be considered to have been present in the
LECA, whereas proteins with distributions restricted to specific taxonomic groups
can be considered to have arisen more recently. For example, proteins identified in
three supergroups could also be considered to have been present in the LECA, if
they are broadly distributed. If a gene family is found in Opisthokonta, Amoebozoa,
and Archaeplastida, it would likely have been present in the LECA because the
distribution spans the backbone of the eukaryotic tree. By contrast, proteins found
in Opisthokonta, Amoebozoa, and Excavata (or Archaeplastida, SAR, and CCTH),
could either have been present in the LECA, depending on the placement of the root
of eukaryotes, or maybe the result of lineage-specific expansion (see section 1.2.7).
Proteins present in two supergroups could be ancient proteins that have undergone
substantial loss or could be the result of convergent evolution and are therefore
analyzed more deeply using phylogenetic methods. Proteins present in one

supergroup is considered to be a lineage-specific expansion.

2.2.5 Methodology used only in Chapter 3
2.2.5.1 Comparative genomics and identification of ArfGEF homologues
With the advent of high quality genomes and more sensitive homology

searching tools, the comparative genomic analysis of ArfGEFs was approached
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differently than for the other analyses presented here. Identification of candidate
Sec7  domain-containing  proteins was  performed using HMMER
(http://hmmer.org). An HMM was constructed using the Sec7 domains, which are
approximately 200 amino acids in length, from all ArfGEFs identified in H. sapiens
and S. cerevisiaze and was used to search a close relative of H. sapiens (Rattus
norvegicus). Candidate sequences were confirmed as GEFs by the identification of a
Sec7 domain by InterProScan at the European Molecular Biology Laboratory (EMBL;
Hunter et al., 2009; Mitchell et al., 2014). In addition, reciprocal BLAST against the
H. sapiens genome was performed in order to assess membership to a particular
subfamily (see section 2.2.1). The Sec7 domains of all identified sequences were
then incorporated into the existing HMM, by aligning the new sequences to the
existing multiple sequence alignment and using the new alignment to build a new
HMM resulting in a more accurate model. This iterative searching and incorporation
of new sequences continued from genomes most closely related to H. sapiens to
those most distantly related, at which point, a final search of all genomes was
carried out using an HMM built from all of the identified sequences in order to

identify any highly divergent sequences that may have been missed.

2.3 Phylogenetic Analysis

Phylogenetic analysis was carried out to confirm statements of orthology
made by BLAST. Generally, the results from the phylogenetic analyses did not
contradict the BLAST assignments; however, in many cases, phylogenies were able

to classify sequences that were not classified by BLAST. Phylogenetic analysis can
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also clarify patterns of gene expansion. For example, it can identify paralogous
genes resulting from recent gene duplications (limited to one or a few genomes)
versus paralogous genes that arose from more ancient gene duplications and are
present across multiple supergroups.

Phylogenetic analysis of protein sequences was used rather than nucleotide
sequences because each position has 20 states instead of four, and is potentially
more informative, especially over the time scales being examined, whereas
nucleotides often do not retain enough phylogenetic signal to be informative.
Moreover, protein sequences are less prone to convergent or parallel substitutions,
and are not affected by differences in GC content, reducing the probability of artefact
being introduced into the analysis by these evolutionary processes (Steel et al.,
1993). Multiple sequence alignments were generated using MUSCLE (Edgar, 2004).
Alignments were viewed using either MacClade (Maddison and Maddison, 2005) or
Mesquite (Maddison and Maddison, 2015), and adjusted manually as necessary to
correct any obvious misalignments made by the program. Alignments were masked
and trimmed manually. This allowed a greater degree of control over which
segments of the alignment to include in the analysis than is normally available with
automated masking and trimming programs. One risk of masking alignments
manually is the introduction of subjectivity into the analysis; it raises the question of
‘what is a conserved site?’ To maintain consistency between analyses and reduce the
amount of subjectivity introduced into the analysis, the following guideline was
followed to determine whether or not to retain or exclude sites from the analysis.

Constant or invariant sites in the alignment were identified and were used as
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reference points, signalling that the region of the alighment in question was
properly aligned. These reference points, along with any intervening sequence, were
retained for the analysis, while excluding any insertion-deletions. Regions of the
alignment not anchored by an invariant or constant site and that appeared to be
randomly aligned sequence were not included in the mask. All alignments can be
found at the following link: http://www.ualberta.ca/~aschlach.

To determine which model of sequence evolution best fit the data and the
parameters associated with it, model testing of trimmed alignments was carried out
using ProtTest (Abascal et al, 2005). ProtTest analyzes the input alighment and
identifies an empirically determined substitution matrix that best represents the
data. Available substitution matrices are: WAG (Whelan and Goldman, 2001),
Dayhoff (Dayhoff et al, 1978), JTT (Jones et al, 1992), mtREV (Adachi and
Hasegawa, 1996), mtMam (Cao et al., 1998), mtArt (Abascal et al,, 2007), VT (Miiller
and Vingron, 2000), RtREV (Dimmic et al., 2002), CpREV (Adachi et al., 2000),
Blosum62 (Henikoff and Henikoff, 1992), LG (Le and Gascuel, 2008), DCmut (Kosiol
and Goldman, 2005), HIVw/HIVb (Nickle et al., 2007), and FLU (Dang et al., 2010).
These substitution matrices provide the probability that one amino acid (e.g., lysine)
is replaced by another (e.g. glutamate), in every pairwise combination. While this
does not represent an exhaustive list, it encompasses the most commonly used
substitution matrices not designed for a specific protein type (e.g., coiled-coil
proteins, transmembrane proteins, etc.). In addition, ProtTest determines whether
or not all sites in the alignment evolve at the same rate. It does so to account for a

proportion of invariant sites (+I), gamma rate categories (+G), the observed
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frequency of amino acids (+F), or a combination of these parameters. These latter
parameters inform the phylogenetic program how to account for differences in the
rate of evolution of different sites in the alignment. The +I parameter indicates that
some proportion of columns in the alignment do not change, and the +G parameter
follows a gamma distribution and essentially bins all of the columns in the
alignment into a pre-set number of rate categories to reduce the complexity of the
dataset and the computational load (Hasegawa et al., 1985; Yang, 1994). Typically
four rate categories provide an optimal trade off between fitting the data and
approximating all of the rates in the alignment (Yang, 1994). An alternative to the
gamma model is the CAT model (named as such because it classifies sites into
categories), which evaluates the data and determines the best number of rate
categories (Lartillot and Philippe, 2004; Le et al, 2008). However, this model
requires very large alignments (i.e, 100’s of taxa and 1000’s of positions, typically
larger than most membrane trafficking proteins) for the calculation to be accurate.
The +F parameter assess the amino acid content (i.e, frequency of each amino acid)
of the input alignment and compares it with the amino acid content of the data set
used to generate the substitution matrix (Cao et al., 1994). If sufficiently different,
the +F option indicates that the phylogeny program should use the observed
frequencies of amino acids found in the alignment, rather than the frequencies used
to generate the empirical model (Cao et al, 1994). For a model to be chosen, it
needed to be deemed the best fit by at least two selection criteria, i.e., negative log-
likelihood, Akaike Information Criteria, or Bayesian Information Criteria. If no

consensus was reached, the simplest model (least number of parameters) was
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chosen. This process was implemented, as not all phylogeny programs (i.e, PhyML
and RAXML) are able to incorporate model selection as part of the tree building
process. Additionally, this maintained parameter consistency across each method.
Exceptions to this process occurred for earlier versions of MrBayes and RAxML, for
which a limited repertoire of substitution matrices were available. If the best model
determined by ProtTest was unavailable for MrBayes, then the ‘mixed’ model
parameter was used which incorporates model selection into the tree building
process. If the chosen model was unavailable for RAxML, then the WAG model was
selected.

Phylogenetic trees were generated using multiple methods including:
bayesian analysis (MrBayes and Phylobayes; Lartillot et al, 2009; Ronquist and
Huelsenbeck, 2003), and maximume-likelihood analysis (PhyML and RAXML;Guindon
and Gascuel, 2003; Stamatakis, 2006). In bayesian analysis, the program generates
multiple randomized starting trees. A change is made to each tree (a generation)
that alter the branching order or branch length, resulting in a different topology.
The new tree is compared against the previous one and if it is a better tree, then it is
kept, if not then it is rejected and the previous tree is kept. Multiple chains are run to
increase the probability that the single best tree will be found. The best tree is found
when all off the chains converge on the same phylogenetic tree. The program
monitors the different chains through a statistical measure, the splits frequency,
which measures the similarity of tree samples of the independent runs by

evaluating all aspects of tree topology including branching order and branch length.
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The program requires that the analysis reach a minimum threshold regardless of the
number of generations.

MrBayes analyses were carried out using the model specified by ProtTest
(see above), using 4 Gamma rate categories, and accounting for invariant sites when
necessary. Analyses were run for a minimum of 1,000,000 generations and until
convergence, measured by a splits frequency of 0.01 or smaller. Phylobayes analyses
were carried out in a similar fashion, but rather than specifying a minimum number
of generations, analyses were run until convergence (splits frequency of 0.1) and
minimum sample size of 100 trees.

In maximum-likelihood analysis, the program generates a ‘best-tree’ using
the maximum-likelihood calculation (Guindon and Gascuel, 2003; Stamatakis,
2006). Support for each branching point, or node, is determined by bootstrapping
where the program takes the input alignment and randomly samples positions with
replacement generating a subsample of the same length as the original alignment
(Felsenstein, 1985). A maximum-likelihood tree is then built from the subsampled
alignment and compared to the best likelihood tree. If the trees are in agreement
then this is bootstrap support for the entire tree. If only some relationships are in
agreement, then this sampling is support for those relationships only. Each iteration
is called a ‘pseudoreplicate’, because each bootstrap is constructed from a
subsample of the original dataset. The number of times a specific relationship (or
node) is reconstructed is displayed on the tree as a percentage of the total number
of bootstraps conducted. The underlying assumption in bootstrapping is that if the

best maximume-likelihood tree is the best representative for the data, then any
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subsampling of the input alignment should produce the same tree. By contrast, a
tree that is biased by a few strongly conserved residues (positions in the alignment)
and poor conservation in the remainder of the alignment, would receive low
bootstrap support because the majority of the positions would not support the
maximum-likelihood tree.

PhyML and RAxML analyses were run, accounting for the model specified by
ProtTest, and bootstrapping using 100 pseudoreplicates. Large phylogenetic
analyses were performed using the Cyberinfrastructure for Phylogenetic Research
(CIPRES) webserver (Miller et al., 2010). The remaining analyses were performed
on local computing clusters. Support values generated by each method were
mapped onto either the best MrBayes or Phylobayes tree generated from the

original alignment.

2.4 Tertiary Structure Prediction

Structural analyses can provide information that cannot be gleaned from
linear sequence comparisons. For example, the presence of some domains, eg., a-
solenoid, is difficult to predict from primary sequence alone, but is easily
identifiable from the tertiary structure. Therefore, to predict the tertiary structures
of potential a-solenoid and f-propeller domain-containing proteins homology
modeling was carried out using the Phyre2.0 server (Kelley and Sternberg, 2009;
Kelley et al,, 2015).

Phyre2.0 generates predicted tertiary structures by first identifying

homologues of the query sequence by searching a specially curated database using
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the HHblits program. HHblits is a sequence-profile search program (ie, searches a
single sequence against a database of HMMs; Remmert et al.,, 2011). At the same
time, the secondary structure of the query is predicted using PSIPRED (PSI-BLAST -
based secondary structure prediction; Jones, 1999). An HMM is built using the
query, its homologues, and its secondary structure and is then used to search a
library of experimentally determined structures using HHsearch (Séding, 2005).
Indels are modelled using a library of fragments of known protein structures. Side
chains are fit to the backbone using a side chain rotamer library and the R3 library
(Xie and Sahinidis, 2006).

[ predicted the tertiary structure of Sed4 (homologue of Sec12) suspecting a
B-propeller fold, and the subunits of TSET (homologues of the AP complexes and
COPI) suspecting a-solenoids, fB-propellers, and longin domains. Homology
modeling was carried out using default settings (Kelley and Sternberg, 2009; Kelley
et al, 2015). The resulting structures were visualized using MacPymol

(www.pymol.org).
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Chapter 3: Comparative genomic and phylogenetic analysis of ArfGAP and

ArfGEF proteins identifies a complex Arf regulatory system present in the

LECA

A portion of this chapter has been published as:

Schlacht, A., Mowbrey, K., Elias, M., Kahn, R.A., Dacks, ].B. 2013. Ancient complexity,

opisthokont plasticity, and discovery of the 11t subfamily of ArfGAP proteins.
Traffic 14: 636-649
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3.1 Overview
ADP-ribosylation factor (Arf) GTPases are important regulators of membrane

trafficking, remodelling of the actin cytoskeleton, and the synthesis of phospholipids
(for review, see D’Souza-Schorey and Chavrier, 2006). Comparative genomic and
phylogenetic analyses have suggested that the LECA possessed as single Arf
sequence, as most extant eukaryotic taxa only possess one Arf (Berriman et al,
2005; Li et al, 2004). Because Arfs do not appear to have undergone large
paralogous expansions prior to the LECA, they are unable to provide evidence for, or
against, autogenous organelle evolution. Two different protein families regulate Arf
GTPases: GEFs and GAPs, both are highly paralogous and contain members that are
broadly distributed across eukaryotes. These regulators may be able to provide
insight into the evolution of the Arf system, as has a recent analysis of the RabGAPs
(TBCs: Gabernet-Castello et al., 2013).

In this chapter, | use comparative genomics to determine which ArfGAPs and
ArfGEFs are conserved across eukaryotic diversity, and by extension, which were
present in the LECA. I also use phylogenetic analysis to elucidate the order of gene
duplications giving rise to the diverse paralogues, especially those found in humans.
These analyses will also reveal the number of paralogues of each GAP and GEF
subfamily present in the LECA, helping us to understand how specificity may be

encoded in the Arf system.

3.2 Introduction
Arfs are small, ~21kDa GTPases within the Ras superfamily (Kahn and

Gilman, 1984; Kahn and Gilman, 1986). Arfs act as molecular switches to regulate a
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variety of cellular activities including membrane trafficking, remodelling of the actin
cytoskeleton, the synthesis of phosphoinositides, and are able to activate
phospholipase D (Brown et al.,, 1993; Cockcroft et al., 1994; D’Souza-Schorey and
Chavrier, 2006, inter alia; Donaldson and Jackson, 2011, inter alia; Honda et al.,
1999; Ooi et al,, 1998; Paleotti et al., 2005; Yorimitsu et al., 2014, inter alia). Arfs
cycle between an active GTP-bound state, in which Arf is able to interact with
effector proteins, and an inactive GDP-bound state, where Arf signalling is
terminated (East and Kahn, 2011; Wright et al.,, 2014).

Six genes encoding different Arf paralogues have been identified in
vertebrates and are divided into three classes: class I (Arfl, Arf2, and Arf3), class II
(Arf4 and Arf5), and class III (Arf6; Tsuchiya et al., 1991). Each Arf paralogue has
been shown to act at distinct compartments within the endomembrane system or at
the plasma membrane (Chun et al., 2008; Paleotti et al., 2005; Volpicelli-Daley et al,,
2005). The division between these classes is based on sequence similarity and
shared evolutionary histories. Arfl, Arf2, and Arf3 are the product of multiple gene
duplications of the invertebrate class I Arf near the vertebrate transition (Figure 3-
1; Manolea et al, 2010). The same is thought for the gene duplication of the
invertebrate class Il Arf giving rise to Arf4 and Arf5; however, resolution at the
relevant nodes has not yet been obtained (Figure 3-1; Li et al., 2004). Moreover, the

progenitor of class I and of class II Arfs arose from the duplication of a single gene
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Figure 3-1. Overview of Arf evolution in opisthokonts. A) Multiple gene
duplications (grey bars) in opisthokonts produced the six mammalian Arf
paralogues. The first duplication is thought to have occurred in the ancestor of
Holozoa and Fungi resulting in the class Il Arf (H. sapiens Arf6 and S. cerevisiae
Arf3) and the progenitor of the class I and Il Arf proteins. The second gene
duplication occurred near the base of Metazoa, producing the class I and class II
Arfs. Subsequent gene duplications of the class I Arf near the vertebrate transition
produced Arfl, Arf2, and Arf3. Duplication of the class II Arf produced Arf4 and Arf5
is also thought to have occurred at or near the base of vertebrates. B) Information
from panel A is reconfigured as the hypothetical Arf gene tree. Data used to generate
this figure is from Li et al, (2004) and Manolea et al, (2010). *It should be noted

that the order in which class [ Arfs evolved has not yet been confidently determined.
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prior to the divergence of animals (Figure 3-1). The class IlI/Arf6 is thought to have
arisen from a single Arf gene in the ancestor of opisthokonts that also gave rise to
the progenitor of the class I and class II Arfs (Figure 3-1; Li et al.,, 2004).

This scenario of iterative gene duplication giving rise to the complexity of
Arfs observed in mammals, in combination with the observation that the LECA likely
only possesses a single Arf (Berriman et al,, 2005; Li et al.,, 2004), suggests that
organisms with multiple Arfs arose convergently via lineage-specific expansion of
the single Arf ancestor. This observation prompted the question: how was
specificity encoded if the LECA only possessed a single Arf?

In order to generate a suitable hypothesis, one must examine how Arfs are
regulated. Arfs are unable to efficiently exchange GDP for GTP or to hydrolyze GTP
in the absence of other factors (D’Souza-Schorey and Chavrier, 2006). Arf activation
depends on the action of GEFs, defined by the presence of the Sec7 domain, to
promote the exchange of GDP for GTP (Cox et al., 2004). Similarly, hydrolysis of GTP
to GDP depends on the interaction with GAPs, defined by the presence of the ArfGAP
domain, to stimulate hydrolysis (Kahn et al., 2008). Both ArfGAPs and GEFs are
thought to act as Arf effectors, as well as Arf regulators (East and Kahn, 2011;
Padovani et al,, 2014). For example, the S. cerevisiae Sec7 protein, the orthologue of
the H. sapiens BIGs, is both an activator of the yeast Arfl and an effector (Richardson
et al., 2012). Arfl binding to the HDS1 (Homology Downstream of Sec7 1) region of
Sec7p relieves the autoinhibitory effect of HDS1 and targets Sec7p to the TGN
(Richardson et al., 2012). Richardson et al,, also found that this activation occurs

though a positive feedback loop, as the addition of increasing amounts of Arf-GTP
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accelerated the rate of GDP-GTP exchange (Richardson et al,, 2012). Arf6-GTP is
able to negatively regulate GTP exchange by EFA6 (exchange factor for Arf6)
through an interaction with the PH domain and C-terminal region of EFA6
(Padovani et al., 2014). This not only allows EFA6 to be regulated by its own
product, Arf6-GTP, but also by other Arf6 GEFs such as, cytohesin and BRAG
(Brefeldin A-resistant Arf guanine nucleotide exchange factor) that also activates
Arf6 (Frank et al., 1998; Someya et al.,, 2001).

The human ArfGAP2 and ArfGAP3 proteins and their yeast orthologue, Glo3p,
are thought to act downstream of Arfl. ArfGAP2 and ArfGAP3 are recruited to Golgi
membranes in a COPI-dependent manner through an interaction with y- and 3’-COPI
(Eugster et al.,, 2000; Frigerio et al.,, 2007; Weimer et al., 2008). In yeast, binding of
one of the SNAREs Betl1p, Bos1p, or Sec22p to Glo3p is necessary for the formation
of a priming complex with Arfl to recruit COPI (Rein et al., 2002). In this in vitro
analysis, addition of Glo3 to the reaction mixture prior to COPI was required for the
incorporation of SNAREs into the budding vesicle, indicating that binding of the
SNAREs to Glo3p occurs before binding to COPI. These analyses suggest that
ArfGAP2 and ArfGAP3 and the yeast orthologue Glo3 not only act as terminators of
Arf signalling, but also as Arf effectors.

Ten subfamilies of ArfGAP domain-containing proteins and six subfamilies of
Sec7 domain-containing proteins have been identified in animals, each with
different subcellular functions and locations (Figure 3-2; Casanova, 2007; Kahn et

al,, 2008). It is worth noting that, even in organisms such as humans that possess
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Figure 3-2. Subcellular localization of ArfGAP and GEF subfamilies. Overview of
the membrane trafficking system with the location of action of each ArfGAP and GEF
subfamily indicated in red and green, respectively. ArfGAPs: ArfGAP1, ArfGAP2, and
ArfGAP3 localize to the Golgi complex and are primarily involved in COPI-dependent
transport. SMAP is involved in endocytosis and transport between the TGN and
endosomes. ADAP is involved in secretion of regulated secretory vesicles. AGAP
regulates trafficking between the TGN and endosomes. ASAP is responsible for
regulating specialized plasma membrane structures (e.g., focal adhesions) and
endocytosis. GIT is involved in signal integration with Rho proteins at focal
adhesions. ARAP is also involved in the integration of Arf and Rho signalling
pathways. ArfGEFs: GBF is primarily found at the cis-Golgi and is responsible for
regulation of COPI vesicle formation. BIG is primarily found at the TGN and interacts
with AP-1 and GGAs. EFA6 regulates endocytosis and cytoskeletal dynamics at the
plasma membrane. Cytohesin is involved in both exo- and endocytosis, in addition
to regulating cell motility. BRAG is plasma membrane localized and selectively
regulates endocytosis. FBX8 is set to the side as its function and localization are

currently unknown.
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multiple Arf paralogues, the number of GAPs and GEFs both outnumber the Arfs
(Casanova, 2007; Kahn et al.,, 2008), prompting the question of how many ArfGAPs
and GEFs were present in the LECA? To addresses this question, I analyzed the
conservation of each ArfGAP and ArfGEF subfamily across a representative set of
eukaryotic taxa. [ found that six ArfGAP and three ArfGEF subfamilies were present
in the LECA, likely as single paralogues, indicating that the LECA possessed a much
smaller Arf system than that observed in extant eukaryotes such as D. discoideum, N.

gruberi, and trypanosomes.

3.3 Abbreviated materials and methods
3.3.1 ArfGAPs

Comparative genomic analyses carried out as described in section 2.2 using
the genomes illustrated in Figures 3-3 and 3-4. Phylogenetic analyses were carried
out as described in section 2.3. The details of each phylogenetic analysis, including:
number of taxa, length of masked alignment, and model parameters for each method

can be found in Table 3-1.
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Table 3-1. Parameters of phylogenetic analysis, corresponding dataset, and figure

number for each ArfGAP subfamily

Figure Dataset Name Number  Length of Evolutionary Model Used
oftaxa  alignment MrBayes PhyML RAXML
(a.a.)

3-7 ACGSAP 118 565 WAG+G WAG+G PROTCATWAG
3-10 ArfGAPC2 35 107 WAG+G WAG+G PROTCATWAG
3-12 ArfGAP1 28 111 WAG+G WAG+G PROTCATWAG
3-13 ArfGAP2/3 41 191 WAG+I+G ~ WAG+I+G  PROTCATWAG
3-14  ArfGAP23.holozoa.R2 21 443 mixed+I+G JTT+I+G PROTCATWAG
3-15 ACAP 54 212 WAG+G WAG+G PROTCATWAG
3-16 ACAP_holozoa 21 197 WAG+G WAG+G PROTCATWAG
3-17 AGFG 38 288 WAG+G WAG+G PROTCATWAG
3-18 AGFG_holozoa 16 254 mixed+G JTT+G PROTCATWAG
3-19 ADAP 20 347 WAG+G WAG+G PROTCATWAG
3-20 ASAP 27 658 mixed+G JTT+G PROTCATWAG
3-21 SMAP 53 110 WAG+I+G ~ WAG+I+G  PROTCATWAG
3-22 SMAP_holozoa 17 264 mixed+I+G JTT+I+G PROTCATWAG
3-23 AGAP_holozoa 28 661 JTT+I+G JTT+I+G PROTCATWAG
3-24 GIT 18 427 mixed+G JTT+G PROTCATWAG
3-25 ARAP 19 861 mixed+I+G JTT+I+G PROTCATWAG

3.3.2 ArfGEFs

Comparative genomic analyses were performed as described in section 2.2

using the genomes illustrated in Figures 3-3 and 3-4. Phylogenetic analyses were

carried out as described in section 2.3. Details of each phylogenetic analysis,
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including: number of taxa, length of masked alignment, and model parameters for

each method can be found in Table 3-2.

Table 3-2. Parameters of phylogenetic analysis, corresponding dataset, and figure

number for each ArfGEF subfamily

Figure Dataset name Number of Length of Evolutionary model used
taxa alignment Phylobayes RAxML
(a.a.)
3-29 GBF.r1 72 1062 LG+CAT+I+G LG+CAT+F
3-30 BlG.euk.rl 125 1219 LG+CAT+I+G" LG+CAT+F
3-31 BRAG.r1 36 572 LG+CAT+I+G LG+CAT+F
3-32 CYTH.rl.euks 74 339 LG+CAT+I+G" LG+CAT+F
3-33 CYTH.holozoa.r2 45 387 LG+CAT+I+G LG+CAT+F
3-34 EFA6.r2 47 459 LG+CAT+I+G LG+CAT+F
3-35 FBX8.r1 13 318 LG+CAT+I+G LG+CAT+F

“Denotes that Phylobayes analyses did not converge are therefore not displayed.

3.4 Results
3.4.1.1 Multiple levels of stringency and validation of the comparative genomic
approach

Comparative genomic analyses were carried out to assess the evolution of
the ArfGAP domain-containing proteins. To identify ArfGAP homologues, homology
searching using BLAST and HMMer was performed on the genomes of 38 organisms
spanning the diversity of eukaryotes (Figure 3-3, 3-4), using the human and S.

cerevisiae sequences as queries. 446 candidate sequences were identified, of which
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Figure 3-3. Relative relationships of sequenced genomes used in the analysis
of ArfGAP and ArfGEF evolution. 75 eukaryotic genomes were analyzed, 4
genomes are specific to the survey of ArfGAPs (marked by *) and 40 are specific to
the ArfGEF study (marked by $). 31 genomes are common to both. The difference in
the number of genomes sampled in both analyses is the result of substantially more
genomes available during the ArfGEF study as compared to when the ArfGAPs were
analyzed. Due to spatial constraints and to the large number of opisthokont
genomes sampled, the relative relationships of these organisms is depicted in Figure

3-4.
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Figure 3-4. Relative relationships of sequenced opisthokont genomes used in
the analysis of ArfGAP and ArfGEF evolution. Illustration of the relationships of
taxa sampled. Genomes specific to the ArfGAP analysis are denoted by an *, whereas

those specific to the ArfGEF analysis are denoted by a $.
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410 were classified into one of the ten previously identified ArfGAP subfamilies,
leaving 36 sequences unclassified (i.e, rogues). Our inability to classify all of the
ArfGAP domain-containing sequences may stem from the presence of additional
domains in ArfGAP proteins (e.g, PH domains, ankyrin repeats, etc.), which may
increase the probability of misclassification. Therefore, additional criteria were
applied to the reciprocal best hits to increase the stringency of these analyses.
Assignment to a specific subfamily required that candidate sequences to retrieve the
initial query with E-values 5-orders of magnitude better (i.e, smaller) than those of
the representatives of the next best-scoring ArfGAP subfamily, henceforth referred
to as the ‘5-orders criterion’. At this criterion 334 sequences were unambiguously
classified as a member of one of the ten ArfGAP subfamilies, leaving 112 rogue
sequences (Figure 3-5).

Assignments of orthology at this criterion were regarded with high
confidence and formed the basis upon which evolutionary inferences were made.
Candidate sequences that did not satisfy this criterion were assessed at a less
stringent 2-orders of magnitude better than the representatives of the next best
subfamily (2-orders criterion), providing a set of more weakly supported
hypotheses that are reported nonetheless.

Although the above criteria greatly increased the confidence of the sequence
classification, the 2- and 5-orders criteria are arbitrary. Therefore, their accuracy
was assessed, with the assumption that consistency of assignment corresponds to
successful assignment. BLAST experiments were carried out using the ArfGAPs from

primarily non-model organisms in order to assess homology. This served as a
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Figure 3-5. Distribution of ArfGAP subfamilies across eukaryotic taxa. Five
ArfGAP subfamilies, SMAP, ArfGAP1, ArfGAP2, ACAP, AGFG, and the newly identified
ArfGAPC2, are found broadly across the diversity of eukaryotes suggesting their
presence in the LECA. AGAP is likely present in the opisthokont and amoebozoan
ancestor, and is ancient, if not necessarily in the LECA. GIT and ARAP are specific to
the Filozoa (Holozoa without S. arctica), while ASAP is found in opisthokonts and
apusomonads. Large taxonomic groupings are color coded, with taxonomic key
below. Numbers in brackets indicate the total number of ArfGAPs identified in the
corresponding genome. Sectors with solid colors indicate those homologues
identified using the 5-orders criterion. The pale coloured sectors indicate those
identified using the 2-orders criterion. Grey sectors indicate that no orthologue was
found in the genome of the organism in question, but an orthologue was found in the
genome of a closely related organism through nr-BLAST at the 2-orders criterion
(see methods). Open sectors indicate that no orthologue was found using BLAST,
HMMer or nr-BLASTSs. For the ArfGAPC2 row (boxed), the solid colours represent
the presence of at least one orthologue meeting a criterion of a bi-directional
retrieval of another ArfGAPC2 orthologue at the 5-orders criterion. Purple star
indicates the identification of ArfGAPC2 in Naegleria gruberi and in Naegleria fowleri

after completion of this analysis (E. Herman, personal communication).
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Vertebrates

Hs = Homo sapiens (31)

Rn = Rattus norvegicus (21)
Mm = Mus musculus (24)
Gg = Gallus gallus (15)

XI = Xenopus laevis (18)

Dr = Danio rerio (30)

Choanozoa

Mb = Monosiga brevicollis (12)
Co = Capsaspora owczarzaki (14)
Sa = Sphaeroforma arctica (18)

Fungi

Rd = Rhizopus delemar (9)

Bd = Batrachochytrium dendrobatidis (5)
Cn = Cryptococcus neoformans (5)

Um = Ustilago maydis (4)

Nc = Neurospora crassa (5)

Sc = Saccharomyces cerevisiae (6)

Sp = Schizosaccharomyces pombe (6)

Invertebrates

Ce = Caenorhabditis elegans (6)
Dm = Drosophila melanogaster (8)
Ci = Ciona intestinalis (10)

Nv = Nematostella vectensis (14)

Apusozoa
Ttr = Thecamonas trahens (15)

Amoebozoa

Dd = Dictyostelium discoideum (11)
Ac = Acanthamoeba castellanii (14)

Excavata

Tv = Trichomonas vaginalis (21)
Gl = Giardia lamblia (4)

Tc = Trypanosoma cruzi (7)

Ng = Naegleria gruberi (6)

Archaeplastida

At = Arabidopsis thaliana (21)

Ot = Ostreococcus tauri (5)

Cm = Cyanidioschyzon merolae (3)
Cr = Chlamydomonas reinhardtii (5)
Ppat = Physcomitrella patens (18)

SAR

Pf = Plasmodium falciparum (2)
Tg = Toxoplasma gondii (6)

Ehux = Emiliania huxleyi (16)

Ps = Phythophthora sojae (9)

Tp = Thalassiosira pseudonana (8)
Tt = Tetrahymena thermophila (6)
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control to determine whether or not the reciprocal BLAST experiments against the
H. sapiens and S. cerevisiae genomes were able to correctly classify ArfGAP proteins
from all eukaryotes. The assumption is that if the subfamily assignments obtained
using the methodology described in section 2.2.1 is correct, then these assignments
should not change if a different eukaryotic genome is used for reciprocal BLAST
experiments. In order to test this assumption bidirectional BLAST searches were
performed using the following pairs of organisms: N. gruberi and D. discoideum, T.
pseudonana and A. thaliana, P. sojae and T. vaginalis, and C. reinhardtii and A.
thaliana. Sequences meeting both the 5-orders and 2-orders criteria were used.
Positive and negative results were tallied for each experiment. A positive result
required that the query retrieve the correspondingly assigned orthologue in the
target genome at the relevant criterion, (e.g. the N. gruberi ADAP homologue
retrieved the equivalent D. discoideum sequence). Of the sequences identified using
the 5-orders criterion, 42 of 45 ArfGAP sequences tested (93%) returned a sequence
at the 5-orders criterion that was originally classified as the same subfamily using H.
sapiens. The remaining three sequences assessed did return the appropriate
orthologue, but at the 2-orders criterion. All 13 additional sequences identified at
the 2-orders criterion retrieved the appropriate orthologue at that criterion. As
these criteria were robust and successful for the classification of ArfGAP sequences,
they were carried over to the ArfGEF analysis (see section 3.4.2.1).

A phylogenetic analysis of all ArfGAP domain-containing proteins was

undertaken in an attempt to classify the remaining sequences. No resolution was
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obtained, therefore attempts to classify the rogue sequences were abandoned, and

these sequences were left as unclassified.

3.4.1.2 BLAST against the NCBI non-redundant database to avoid false negatives in the
search for ArfGAP homologues and the identification of five ancient ArfGAP subfamilies

Comparative genomic analysis identified the presence of five of the ten
previously identified human ArfGAP subfamilies [SMAP (Small ArfGAP), ArfGAP1,
ArfGAP2, ACAP (ArfGAP and coiled-coil domain-containing protein), and AGFG
(ArfGAP domain and FG repeat-containing protein)] in four or more supergroups at
the 5-orders criterion indicating that they were present in the LECA (Figure 3-5,
Figure 3-6). To determine whether our inability to detect certain ArfGAP subfamilies
in different eukaryotic genomes was the result of taxon selection, i.e, whether we
chose divergent genomes or genomes that have undergone accelerated loss
compared to other closely related organisms, we searched for ArfGAP proteins in
the NCBI non-redundant (nr)-database at GenBank. BLASTp searches were carried
out using H. sapiens and S. cerevisiae sequences as queries. The NCBI nr-database
was restricted to the broadest taxonomic grouping without overlapping with that of
another organism already included in the study. Orthology was considered using the
2-orders criterion. By searching this database, we were able to search all of the
sequenced genomes available at NCBI. In some cases, orthologues of ArfGAP
subfamilies missing from taxa included in our study were found in closely related
organisms of the same lineage (grey sectors, Figure 3-5). This identified orthologues

of broadly distributed ArfGAP subfamilies in taxa where they were previously
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Figure 3-6. Gain and loss of ArfGAP subfamilies and domains in eukaryotes. A)
Tree of eukaryotes depicting domains and ArfGAP subfamilies present in the LECA,
as well as gains or losses of additional domains and subfamilies throughout
eukaryotes. Losses are only proposed when the deduction is based on absence in
two genomes of the relevant lineage. The origins of AGAP and ADAP are represented
as boxes with dashed lines denoting the minimal distribution of these proteins as
comparative genomic analysis suggests that they may be more broadly distributed,
as the 2- and 5-orders criteria gave inconsistent results. B) Gain and loss of ArfGAP
subfamilies and domains in Holozoa. Symbol legend for both panels is inset in B and
the subfamily in which the domain was gained or lost is indicated in brackets. PH =
Pleckstrin Homology domain; ANK = Ankyrin Repeat; BAR = Bin/Amphiphysin/Rvs;
C2 =calcium dependent membrane-targeting domain; SAM = Sterile alpha motif;
SH3 = Src homology-3 domain; GIT = G protein-coupled receptor kinase-interacting
protein domain; UBA = ubiquitin associated/translation elongation factor EF1B N-

terminal domain (definitions are taken from InterProScan results).
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missing, providing additional support for the broad distribution and ancient nature
of the SMAP, ArfGAP1, ArfGAP2, ACAP, and AGFG. The distribution of ASAP, ARAP,
and GIT did not change after searching the nr-database, indicating that ARAP and
GIT are restricted to the Filozoa (C. owczarzaki, M. brevicollis, and Metazoa), while
ASAP is found only in Holozoa (Filozoa + S. arctica) and the apusomonad T. trahens,
but is absent from fungi (Figure 3-5). The narrow distribution of these three
subfamilies suggests that they evolved much more recently and were not present in
the LECA.

Several sequences from T. vaginalis retrieved ASAP as their top reciprocal
BLAST hit in humans, followed by ACAP and AGAP as second and third best hits. To
determine whether these sequences are bona fide ASAP sequences or whether they
are misclassified ACAP or AGAP sequences, phylogenetic analysis of these three
subfamilies was undertaken. If these T. vaginalis sequences are indeed members of
the ASAP subfamily, then they should group with other ASAP sequences with strong
support. Similarly, if these are the result of Horizontal Gene Transfer (HGT), then
they should group within the ASAP clade next to ASAP sequences from the donor
organism with strong support. However, in the phylogenetic analysis, these putative
ASAP sequences group with the T. vaginalis ACAP sequences with strong support in
two of the three methods (Figure 3-7). This result is inconsistent with what has
previously been observed for horizontally transferred genes (Archibald et al., 2003;
Bergthorsson et al,, 2003; discussed in Keeling and Palmer, 2008), indicating that
these are ACAP sequences that were mis-classified by BLAST. Because ACAP is an

ancient subfamily, and T. vaginalis is known to have highly divergent protein
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Figure 3-7. Phylogenetic analysis reveals T. vaginalis ASAP sequences are
divergent ACAPs. In order to determine whether the T. vaginalis ASAP sequences
are bona fide ASAPs, phylogenetic analysis of ACAP, ASAP, and AGAP was carried
out. As with other phylogenetic analyses, sequences that meet the 5-orders criterion
were used. The T. vaginalis ASAP sequences form a moderately supported clade
with T. vaginalis ACAP. Importantly, the T. vaginalis sequences are also excluded
from the ASAP clade. Together, this suggests that these are divergent ACAP
sequences, not ASAPs. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95/95, closed light circles = 0.95/75/75, open

circles 2 0.8/50/50.
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sequences, ASAP is presumed to be a recently diverged subfamily with a likely
origin in the ancestor of apusomonads and opisthokonts.

ADAP and AGAP had distributions that prevented the proposal of specific
origins. Orthologues of AGAP were identified in two supergroups (Opisthokonta and
Amoebozoa), suggesting an origin in an ancient ancestor, that may or may not
represent the LECA, depending on the position of the eukaryotic root. Additional
sequences were identified from at least two other supergroups (Archaeplastida and
SAR/CCTH), but at the 2-orders criterion (Figure 3-5). Although AGAP clearly has an
ancient origin, it does not meet the requirements to be considered present in the
LECA. The final subfamily, ADAP, had orthologues that satisfied the 5-orders
criterion only in some members of the Opisthokonta (Figure 3-5). If the 2-orders
criterion is applied, then putative ADAP sequences are also found in the Amoebozoa
and the Excavata. However, there is insufficient data to confidently assign origins for
the ADAP and AGAP subfamilies.

Lineage-specific loss is apparent in many ArfGAP subfamilies, and is
especially prevalent in fungi, where AGFG is only present in the basal fungus
Batrachochytrium dendrobatidis, and AGAP is only present in the zygomycete
Rhizopus delemar. Orthologues were not detected for either ASAP or ADAP.
Similarly, failure to identify ADAP homologues in C. elegans or D. melanogaster also
likely reflects independent loss, even though ADAPs were identified in closely

related organisms (grey sectors, Figure 3-5).
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3.4.1.3 Identification of ArfGAPCZ2, an undescribed ancient ArfGAP subfamily

Finding that many ArfGAP sequences (i.e., rogues) could not be classified into
one of the ten previously described subfamilies was a surprising result. One
explanation for the large number of rogue sequences could be a problem of
asymmetry; some of the rogues may be representative of additional subfamilies not
present in humans, and therefore have no single best hit in the human genome. To
assess this possibility, each rogue sequence was used as a query to search other
genomes containing at least one rogue. It would be expected that sequences
belonging to an undescribed ArfGAP subfamily would preferentially retrieve one
another as their top BLAST hits. For the majority of rogue ArfGAP sequences, no
best hits meeting either RBH criteria were found. However, for six rogue sequences,
reciprocal best hits were other rogues, satisfying the 5-orders criterion (Figure 3-8).
Analysis of domain composition identified shared architectures: an ArfGAP domain
followed by a Ca?*-dependent membrane-targeting (C2) domain, strongly
suggesting orthology (Figure 3-9). Based on the domain composition, this new
subfamily was designated ArfGAPC2.

Reciprocal BLAST of some ArfGAPC2 sequences into A. thaliana retrieved
four SMAP sequences in addition to the A. thaliana ArfGAPC2 sequence. Upon
further examination, these SMAP sequences also possessed the C-terminal C2
domain. When taken as a group, these sequences not only meet the 5-orders
criterion, but are 23 orders of magnitude better than sequences of any other
subfamily. Re-examination of the domain composition of all ArfGAP sequences

identified one SMAP sequence from P. patens, two ACAP sequences from E. huxleyi,
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Figure 3-8. Reciprocal retrieval of putative ArfGAPC2 orthologues by BLASTDp.
ArfGAPC2 sequences are grouped by species. Delta E-value symbols indicate the
difference in orders of magnitude between the top hit (the sequence pointed to by
the arrow) and the first non-rogue (non-ArfGAPC2) sequence. Thick lines indicate a
difference of five orders of magnitude or greater; the dashed lines indicate a
difference of less than five orders of magnitude, but that still retrieved another
ArfGAPC2 as the top hit. AGC2 = ArfGAPC2; At = A. thaliana; Eh = E. huxleyi; Pp = P.

patens; Ps = Phytophthora sojae; Ttr = T. trahens.
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Figure 3-9. Domain composition of the ArfGAPC2 subfamily. Domain
organization of each ArfGAPC2 subfamily member is illustrated as determined by
InterProScan. Each sequence contains an ArfGAP domain followed by a C2 domain.

Sequences are drawn to scale. ArfGAP = ArfGAP domain; C2 = Calcium Dependent

Membrane-Targeting; PH Pleckstrin Homology; AGC2 = ArfGAPC2; At = A

thaliana; Eh = E. huxleyi; Pp = P. patens; Ps = P. sojae; Ttr = T. trahens.
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and one additional rogue sequence from A. thaliana all containing the ArfGAPC2
domain architecture. BLAST analysis of these sequences confirmed that they did in
fact retrieve ArfGAPC2 as their best hit at the 5-orders criterion. Moreover,
phylogenetic analysis of all SMAP, ACAP, and ArfGAPC2 sequences from the taxa in
question revealed moderate support for the unification of plant ArfGAPC2 clade
(0.80/61/50), as well as for the clade formed by the three E. huxleyi sequences
(0.96/66/59; Figure 3-10). The presence of sequences satisfying the 5-orders
criterion present in four major lineages (archaeplastids, apusomonads,
stramenopiles, and haptophytes), combined with the recent identification of
ArfGAPC2 homologues in the genome of N. gruberi and N. fowleri (E. Herman,
personal communication) strongly points to the presence of this subfamily in the

LECA, making it the sixth ancient ArfGAP subfamily.

3.4.1.4 Domain evolution: ArfGAPs reflect plasticity and lineage-specific tailoring

In addition to the catalytic domains, ArfGAPs possess a variety of accessory
domains that are important for functionality. For example, the PH domain of ASAP
has been shown to be a positive regulator of the ArfGAP domain, as its deletion
results in reduced GAP activity (Kam et al., 2000). The PH domains of ADAP are
necessary for association with specific membrane lipids such as
phosphatidylinositol (3,4,5)-trisphosphate (Venkateswarlu and Cullen, 1999;
Venkateswarlu et al.,, 2004). The RhoGAP domain of ARAP is the basis for interaction

with Rho proteins, providing crosstalk between Arf and Rho signalling cascades
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Figure 3-10. ArfGAPC2 forms distinct clades from SMAP and ACAP. To
determine whether all ArfGAPC2 sequences form a single subfamily, phylogenetic
analysis of SMAP, ACAP, and all ArfGAP proteins containing a C2 domain was carried
out. The analysis reveals that the C2 domain containing sequences from
Archaeplastida (A. thaliana and P. patens) and E. huxleyi cluster with other
ArfGAPC2 subfamily members. Although they do not form a single group to the
exclusion of all other sequences, this topology cannot be ruled out because of the
general lack of node support across the tree. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities (MrBayes)/Maximum-
Likelihood bootstrap values (PhyML)/Maximum-Likelihood bootstrap values
(RAxML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95/95, closed light circles =

0.95/75/75, open circles 2 0.8/50/50.
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(Krugmann et al., 2004; Yoon et al.,, 2006). Overall, accessory domains are important
for the function and regulation of ArfGAPs.

To assess the evolution of accessory domains in ArfGAP proteins, diagnostic
domain structures were established using sequences classified at the 5-orders
criterion. Domain profiles were created for each subfamily by identifying the
domains present in each sequence using InterProScan (Figure 3-11; Hunter et al,,
2009; Mitchell et al.,, 2014) with all 14 algorithms available for domain recognition
selected. Presence of a domain in at least 85% of a given subfamily was set as a
criterion for that domain to be conserved in that subfamily. This was found to be the
most stringent criterion that still retained a complete ArfGAP domain.

After bioinformatic identification, domain profiles emerged for each
subfamily. Surprisingly, only BAR, PH, ankyrin repeats, and the C2 domains are
conserved across eukaryotes suggesting that these domains became associated with
the ArfGAP domain prior to the LECA (Figure 3-6, 3-9, 3-11). Assessing the domain
architecture of ArfGAPs at different evolutionary time points allows us to
reconstruct the stepwise acquisition of domain complexity found in humans (Figure
3-6). Many of the domains that define the human subfamilies are not widely
conserved, and only appear relatively recently. For example, the GTPase domain of
AGAP does not appear until the divergence of Holozoa from fungi (Figure 3-6; Xia et
al, 2003), even though AGAP appears in the ancestor of opisthokonts and
Amoebozoa (Figure 3-5). Similarly, the SH3 domain that defines the ASAP subfamily

(Brown et al.,, 1998) does not appear until after the divergence of S. arctica from the
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Figure 3-11. Conservation of ArfGAP accessory domains. Conserved domains of
each ArfGAP subfamily as defined by this study are shown in color. These represent
the configurations likely found in the ancestral sequence of each subfamily. Domains
identified in humans as defined by Kahn et al, (2008), but not conserved are shown
in grey and bound by a dashed outline. Only the BAR domains, PH domains, the
ArfGAP domain and ankyrin repeats are conserved across eukaryotes. The RhoGAP
domain of ARAP is highly conserved in all ARAP sequences but the ARAP subfamily
is only present in the Holozoa. Therefore, the RhoGAP domain is a defining feature
of ARAP sequences, although it is present in only a limited set of eukaryotic
organisms. ArfGAP = ArfGAP domain; ALPS = Amphipathic Lipid Packing Sensor; CB
= Clathrin-Box; CALM = CALM binding domain; SHD = Spa-homology domain; CC =
Coiled-coil; PBS = Paxillin Binding Site; BAR = Bin/Amphiphysin/Rvs; PH =
Pleckstrin Homology; Pro = Proline rich regions (motifs and number of repeats are
indicated below each region); SH3 = Src homology-3 domain; GLD = GTPase-like
domain; SAM = Sterile alpha motif; RhoGAP = RhoGAP domain; RA = Ras-

association. Modified from Kahn et al,, (2008).
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rest of the Holozoa (Figure 3-6), even though ASAP was present in the ancestor of

opisthokonts and apusomonads (Figure 3-5).

3.4.1.5 Phylogenetic analysis of ArfGAP subfamilies suggests the presence of six ArfGAP
domain-containing proteins in the LECA, and reveals coordinated duplication with Arf
GTPase expansion

The analysis above identified the presence of at least six ArfGAP subfamilies
in the LECA. However, it does not answer the question of how many paralogues of
each subfamily were present, nor does it bring to light the evolutionary histories of
each subfamily. In humans, most ArfGAP subfamilies possess multiple paralogues; it
remains unknown exactly when these duplication occurred. To address these
questions, phylogenetic analysis of each of the ten previously described ArfGAP
subfamilies was carried out.

The analyses revealed expansions in non-opisthokont lineages, notably of
ArfGAP2, ACAP, and AGFG in archaeplastids (see below). None of the analyses
performed suggested the presence of multiple paralogues in the LECA, as judged by
the presence of multiple clades of more than one supergroup. The most striking
result was that, with the exception of ArfGAP1, all ArfGAP subfamilies have
undergone one or more gene duplications near the vertebrate transition, giving rise
to two or more paralogues. Below is a description of the results of the phylogenetic

analysis for each subfamily.
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3.4.1.5.1 ArfGAP1

ArfGAP1 localizes to the Golgi apparatus and regulates Golgi-to-ER
retrograde trafficking of COP]I, intra-Golgi trafficking, and interacts with AP-1 and
AP-2 (Rawet et al,, 2010). ArfGAP1 does not possess any functional domains outside
of the central ArfGAP domain (Kahn et al, 2008). ArfGAP1 possesses two ALPS
motifs that recognize membrane curvature and are necessary for its recruitment to
the Golgi (Bigay et al., 2005; Mesmin et al., 2007). ArfGAP1 was originally thought to
be the founding member of the ArfGAP family, and therefore likely to be
ubiquitously distributed (Kahn et al., 2008). A single ArfGAP1 paralogue is found in
humans. The ArfGAP1 tree is likely the simplest and most straightforward to
interpret: no duplications have occurred in any taxa satisfying the 5-orders
criterion, indicating that only a single paralogue was likely to have been present in

the LECA (Figure 3-12).

3.4.1.5.2 ArfGAP2

Two members of this subfamily, ArfGAP2 and ArfGAP3, also function in the
regulation of COPI coat formation in humans (Kartberg et al., 2010). Neither
ArfGAP2, nor ArfGAP3 possess any additional functional domains, and neither
possesses ALPS motifs. Rather than being recruited to Golgi membranes by lipid
curvature, as is the case for ArfGAP1, ArfGAP2 and ArfGAP3 are recruited via
interaction with the COPI complex (Weimer et al,, 2008). Although ArfGAP2 and
ArfGAP3 appear to play redundant roles in COPI trafficking, ArfGAP3 has recently

been shown to play a role in trafficking from early to late endosomes (Shiba et al.,
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Figure 3-12. Phylogenetic analysis of ArfGAP1 identifies a single paralogue
present in the LECA. A single clade from each supergroup was reconstructed,
indicating that no major gene duplications have occurred for ArfGAP1 and that a
single ArfGAP1 sequence was present in the LECA. No lineage-specific duplications
are apparent in the sequences classified at the 5-orders criterion. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (PhyML)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles = 1.00/95/95, closed light

circles 2 0.95/75/75, open circles = 0.8/50/50.

113



Emiliania huxleyi ArfGAP1_A
Phytophthora sojae ArfGAP1_A

Cyanidioschyzon merolae ArfGAP1
Arabidopsis thaliana ArfGAP1_A

Cryptococcus neoformans ArfGAP1

Dictyostelium discoideum ArfGAP1

Batrachochytrium dendrobatidis ArfGAP1

— Rhizopus delemar ArfGAP1
Tetrahymena thermophila ArfGAP1
Emiliania huxleyi ArfGAP1_B

Plasmodium falciparum ArfGAP1_A

Schizosaccharomyces pombe ArfGAP1

Saccharomyces cerevisiae ArfGAP1_B

Neurospora crassa ArfGAP1

Saccharomyces cerevisiae ArfGAP1_A

Thecamonas trahens ArfGAP1
Caenorhabditis elegans ArfGAP1
Danio rerio ArfGAP1

Xenopus laevis ArfGAP1

0.9\ L Gailus gallus ArfGAP1
184

L_{ /51 Homo sapiens ArfGAP1
Mus musculus ArfGAP1

Rattus norvegicus ArfGAP1

Drosophila melanogaster ArfGAP1

MrBayes/PhyML/RAxXML
@ > 1.00/95/95

O =20.95/75/75
(0 20.80/50/50

Sphaeroforma arctica ArfGAP1

Monosiga brevicollis ArfGAP1

Nematostella vectensis ArfGAP1

Capsaspora owczarzaki ArfGAP1

0.2

114



2013). Like ArfGAP1, the ArfGAP2 subfamily is predicted to be broadly distributed.
Pan-eukaryotic phylogenetic analysis of ArfGAP2 sequences shows an expansion in
archaeplastids (Figure 3-13), as denoted by the sequences of P. patens and A.
thaliana. Two paralogues of ArfGAP2, ArfGAP2 and ArfGAP3, are present in
vertebrates, indicated by a well-supported ArfGAP2 clade and a weakly supported
ArfGAP3 clade, both nested within a moderately supported vertebrate clade. To
increase the signal to noise ratio, the analysis was repeated only using sequences
from the Filozoa. This analysis more clearly resolves the gene duplication in

vertebrates that gave rise to ArfGAP2 and ArfGAP3 (Figure 3-14).

3.4.1.5.3 ACAP

Three ACAP paralogues are found in humans. ACAPs possess an N-terminal
BAR domain, followed by a PH domain, the ArfGAP domain, and ankyrin repeats
(Jackson et al., 2000). ACAPs were identified as plasma membrane localized Arf6
GAPs that regulate actin remodelling, cell movement, and clathrin-dependent
endocytosis (Dias et al., 2013; Li et al., 2007). ACAP homologues have previously
been identified in metazoans and amoebozoans, indicating that they are found in at
least two supergroups (Kahn et al., 2008). Pan-eukaryotic phylogenetic analysis of
ACAP sequences reveals multiple expansions of ACAP in archaeplastids (Figure 3-
15). Three well-supported paralogous clades are present in vertebrates, indicating
that at least two gene duplications occurred in this lineage. An additional sequence
from Danio rerio (DrACAP_C) grouped basal to the rest of vertebrates. Removal of all

non-metazoan sequences did not result in relocation of the D. rerio sequence, but
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Figure 3-13. Phylogenetic analysis of ArfGAP2 identifies a single paralogue
present in the LECA. A single clade of each supergroup is reconstructed indicating
that a single ArfGAP2 sequence was present in the LECA. A well-supported
vertebrate clade encompassing ArfGAP2 and ArfGAP3 indicates that ArfGAP3 is a
vertebrate-specific ArfGAP (lower grey box). A moderately supported expansion in
P. patens and A. thaliana is also observed (upper grey box). The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (PhyML)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles = 1.00/95/95, closed light

circles 2 0.95/75/75, open circles = 0.8/50/50.
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Figure 3-14. Phylogenetic analysis of ArfGAP2 in the Filozoa reveals
vertebrate origin of ArfGAP3. In order to confirm that the gene duplication
producing ArfGAP2 and ArfGAP3 is vertebrate-specific, all non-filozoan sequences
from Figure 3-12 were removed. Overall support increased for the vertebrate
ArfGAP2 clade, the ArfGAP3 clade, and for the node grouping these to the exclusion
of the other sequences. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95/95, closed light circles = 0.95/75/75, open

circles 2 0.8/50/50.
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Figure 3-15. Phylogenetic analysis of ACAP identifies a single paralogue in the
LECA. Largely, a single clade of each supergroup is reconstructed, indicating that
only one ACAP sequence was present in the LECA. Three vertebrate ACAP clades are
moderately supported (lower three grey boxes). Independent expansions of ACAP
have occurred in Archaeplastida (middle grey box) and S. arctica (upper grey box). *
Denotes T. gondii sequences that we list here but note may be database
contamination due to their lack of transcriptional support and failure to be included
in a contig in the EuPath database. The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95/95, closed light circles = 0.95/75/75, open

circles 2 0.8/50/50.
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rather strengthened the support for its exclusion from the rest of the vertebrates
(Figure 3-16). The simplest explanation is to disregard this paralogue as a highly
divergent sequence whose exclusion from vertebrates as a phylogenetic artefact.
Alternatively, this represents an additional paralogue that emerged early in

vertebrates and was lost from all other taxa sampled.

3.4.1.5.4 AGFG

Two paralogues of AGFG are known in humans. AGFG, also known as Hrb, is
an essential HIV cofactor, necessary for the release of HIV RNAs from the peri-
nuclear region (Sanchez-Velar et al, 2004). More recently, it has also been
implicated in the retrieval of VAMP7 from the plasma membrane and can therefore
act as a cargo adaptor for clathrin-mediated endocytosis (Pryor et al, 2008),
consistent with its localization to the plasma membrane, and interaction with AP-2
and clathrin (Chaineau et al, 2008). AGFG is named for the presence of
phenylalanine-glycine repeats (Kahn et al., 2008; Pryor et al, 2008). AGFG is
thought to be an ancient ArfGAP subfamily and therefore likely broadly distributed
(Kahn et al,, 2008). Phylogenetic reconstruction of AGFG sequences (Figure 3-17)
revealed expansion in the archaeplastids, as well as two paralogues in vertebrates,
the result of a single gene duplication. Notably, the clade marked by the human
AGFG2 appears to have undergone loss from Xenopus laevis and from Gallus gallus.
Node support for each of these clades increased when all non-filozoan sequences

were removed for the analysis (Figure 3-18).
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Figure 3-16. Phylogenetic analysis of metazoan ACAP sequences identifies an
expansion in vertebrates. In order gain better node support to resolve the order of
gene duplications giving rise to the three vertebrate ACAP clades, only the metazoan
sequences from Figure 3-15 were analyzed. ACAP has undergone at least two gene
duplication events resulting in at least three paralogues in vertebrates. The first
duplication produced ACAP3 and the second duplication produced ACAP1 and
ACAP2. An extra D. rerio sequence, ACAP_C, branches at the base of the vertebrate
clade (see text for interpretation). The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95/95, closed light circles = 0.95/75/75, open

circles 2 0.8/50/50.
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Figure 3-17. Phylogenetic analysis of AGFG identifies a single paralogue in the
LECA. Absence of support for multiple clades of supergroups indicates that a single
AGFG sequence was present in the LECA. A weakly supported duplication event at
the base of vertebrates has produced two clades of AGFG paralogues (lower grey
boxes). Additional expansions have occurred in the Archaeplastida: one in A
thaliana and one in P. patens (upper grey box). The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities (MrBayes)/Maximum-
Likelihood bootstrap values (PhyML)/Maximum-Likelihood bootstrap values
(RAxXML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95/95, closed light circles =

0.95/75/75, open circles 2 0.8/50/50.
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Figure 3-18. Phylogenetic analysis of filozoan AGFG identifies two vertebrate
paralogues. In order to increase support resolving the gene duplication event at the
base of vertebrates producing AGFG1 and AGFG2, all non-filozoan sequences were
removed from the analysis. Two well-supported clades, AGFG1 and AGFG2, are
reconstructed (grey boxes). Node support uniting these clades also increased,
confirming that this duplication is vertebrate-specific. The best Bayesian topology is
shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (PhyML)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles = 1.00/95/95, closed light

circles 2 0.95/75/75, open circles = 0.8/50/50.
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3.4.1.5.5 ADAP

ADAP1 and ADAP2 contain an ArfGAP domain and two PH domains
(Venkateswarlu and Cullen, 1999), which have been shown to bind
phosphoinositides PI(3,4,5)P3 and Ins(1,3,4,5)P4 with high affinity (Venkateswarlu
et al,, 2004). In humans, ADAP has been localized to dendrites, spines, and synapses
of neurons and has a role in the traffic of regulated secretory vesicles (Thacker et al.,
2004). Phylogenetic analysis of ADAP was limited to the Metazoa and
choanoflagellates (Figure 3-19). Like ACAP, ADAP requires a more involved
explanation, with at least two gene duplications and two major losses needing to be
invoked. D. rerio would need to have lost its paralogue of ADAP1 and the entire
mammalian clade would have lost the paralogue marked by DrADAP_A. It should be
noted that neither the ADAP1 clade, nor the DrADAP_A clade is fully supported, and
therefore, poor gene models or methodological artefact cannot be completely ruled

out as causes for the observed topology.

3.4.1.5.6 ASAP

Three ASAP paralogues have been identified in humans. ASAPs possess an N-
terminal BAR domain, followed by a PH domain, the ArfGAP domain, two proline-
rich domains that are only present in ASAP1, and a C-terminal SH3 domain that is
missing from ASAP3 (Brown et al, 1998). ASAPs localize to specialized plasma
membrane structures (e.g., focal adhesions; Randazzo et al., 2007), and are generally
responsible for regulating endocytosis and actin remodelling (Inoue and Randazzo,

2007; Nie and Randazzo, 2006; Randazzo et al., 2007). ASAPs were previously
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Figure 3-19. Phylogenetic analysis of metazoan and M. brevicollis ADAP
sequences identified two vertebrate paralogues. Phylogenetic analysis
reconstructs two strongly supported ADAP clades in vertebrates (grey boxes). The
best Bayesian topology is shown. Numerical values represent Bayesian posterior
probabilities (MrBayes)/Maximum-Likelihood bootstrap values
(PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed dark

circles 2 1.00/95/95, closed light circles = 0.95/75/75, open circles = 0.8/50/50.

130



Nematostella vectensis ADAP

Danio rerio ADAP_B
Danio rerio ADAP_C
1/99
195 Gallus gallus ADAP_C
Homo sapiens ADAP2
Mus musculus ADAP_B
1/100 Rattus norvegicus ADAP_B
187
Danio rerio ADAP_A
—— Xenopus laevis ADAP_C
L Gallus gallus ADAP_B
0.96/88 Xenopus laevis ADAP_A
167

Xenopus laevis ADAP_B

Gallus gallus ADAP_A

Homo sapiens ADAP1

MrBayes/PhyML/RAxXML
@ = 1.00/95/95

Mus musculus ADAP_A
- O =20.95/75/75

Rattus norvegicus ADAP_A (O=0.80/50/50
Ciona intestinalis ADAP_C
N Ciona
intestinalis

Ciona intestinalis ADAP_B  ADAP_A

Monosiga brevicollis ADAP

0.2

131



thought to be metazoan-specific ArfGAPs (Kahn et al., 2008). The phylogeny of ASAP
also requires further explanation, necessitating at least two duplications and loss of
the clade marked by DrASAP_B from mammals, and independent loss of ASAP3 from
D. rerio and G. gallus (Figure 3-20). Again, poor gene models, incomplete genomic
databases, phylogenetic artefact, or insufficient taxon sampling could also explain

these results.

3.4.1.5.7 SMAP

Two paralogues of SMAP are found in humans. SMAP1 is recruited to the
plasma membrane and is involved in endocytosis while SMAP2 is involved in
retrograde transport from early endosomes to the TGN (Natsume et al., 2006).
SMAP1 and SMAP?2 differ slightly in their domain compositions; both have a clathrin
box, but SMAP2 additionally contains a CALM binding domain. The SMAP phylogeny
(Figure 3-21) is straightforward to interpret, with one gene duplication at the base
of vertebrates giving rise to two well supported paralogues. However, this
duplication was only resolved in the analysis of metazoan sequences (Figure 3-22),
as the analysis encompassing all sequences satisfying the 5-orders criterion did not
exhibit a clear dichotomy between the two sets of paralogues. It also revealed a
small, but unresolved expansion in archaeplastids possibly correlating with the

evolution of multicellularity in this lineage (Figure 3-21).
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Figure 3-20. Phylogenetic analysis of metazoan ASAP sequences identifies
three vertebrate paralogues. Phylogenetic analysis has reconstructed three well-
supported vertebrate-specific ASAP paralogues (grey boxes). The first gene
duplication produced ASAP1, while the second produced ASAP2 and ASAP3. An
independent expansion has also occurred in N. vectensis. The best Bayesian topology
is shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (PhyML)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles = 1.00/95/95, closed light

circles 2 0.95/75/75, open circles = 0.8/50/50.
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Figure 3-21. Phylogenetic analysis of SMAP identifies a single paralogue in the
LECA. Multiple clades for some major lineages are reconstructed (e.g., fungi and
stramenopiles) although the phylogenetic tree is largely unsupported, indicating
that this topology is no better than any other (i.e, single clade of each supergroup).
SMAP appears to have undergone one gene duplication event in vertebrates;
however, it is unresolved using this dataset. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities (MrBayes)/Maximum-
Likelihood bootstrap values (PhyML)/Maximum-Likelihood bootstrap values
(RAxML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95/95, closed light circles =

0.95/75/75, open circles = 0.8/50/50.
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Figure 3-22. Phylogenetic analysis of metazoan SMAP sequences identifies two
vertebrate paralogues. In order to resolve the potentially vertebrate gene
duplication, all non-metazoan SMAP sequences were removed from the analysis.
Strong support for SMAP1 and SMAP2 are recovered, and for the node unifying the
two. The best Bayesian topology is shown. Numerical values represent Bayesian
posterior  probabilities (MrBayes)/Maximum-Likelihood bootstrap values
(PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed dark

circles 2 1.00/95/95, closed light circles 2 0.95/75/75, open circles = 0.8/50/50.
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3.4.1.5.8 AGAP

Eleven AGAP genes have been identified in humans. AGAPs possess an N-
terminal GTPase-like domain, followed by a PH domain, the ArfGAP domain, and
ankyrin repeats (Nie et al,, 2002; Xia et al., 2003). AGAP1 and AGAP2 both act in the
endosomal system and regulate AP-3 and AP-1 trafficking pathways, respectively
(Nie et al., 2003; Nie et al.,, 2005). Previous analysis has suggested that AGAP is only
found in Metazoa (Kahn et al., 2008). Phylogenetic analysis of the holozoan AGAP
sequences revealed that two duplications produced three paralogues in vertebrates
(Figure 3-23). X. laevis appears to have lost AGAP2 along with D. rerio, which also
appears to have lost AGAP3. This analysis also shows that AGAPs 4-11 are the result
of multiple duplications of the human AGAP1 gene, and are not found in any of the

other organisms sampled.

3.4.1.5.9 GIT

Two GIT paralogues are present in humans, both with N-terminal ArfGAP
domains followed by ankyrin repeats, an SH domain, a coiled-coil domain, and a
paxilin binding site (Mazaki et al., 2001; Premont et al., 1998; Turner et al., 1999).
Unlike other ArfGAPs, GITs bind specifically to PIX/Cool proteins (Feng et al., 2002;
Loo et al.,, 2004; Manser et al.,, 1998), which act as GEFs for the Rho GTPases Racl
and Cdc42. Collectively, this complex acts as a site for signal integration at the
plasma membrane (Hoefen and Berk, 2006). Like ASAPs, GITs were also predicted
to be metazoan-specific (Kahn et al., 2008). The most parsimonious interpretation

for the GIT phylogeny (Figure 3-24) is a gene duplication at the base of vertebrates
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Figure 3-23. Phylogenetic analysis of holozoan AGAP sequences identifies
three vertebrate paralogues. Phylogenetic analysis was carried out to determine
whether the duplications producing the multiple mammalian AGAP paralogues
occurred before or after the vertebrate transition. Two gene duplications in
vertebrates produced the three paralogues as outlined by the grey boxes. AGAP2
was the first to diverge, followed by AGAP1 and AGAP3. The H. sapiens AGAPs 4-11
are the result of an expansion of AGAP1. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities (MrBayes)/Maximum-
Likelihood bootstrap values (PhyML)/Maximum-Likelihood bootstrap values
(RAxML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95/95, closed light circles =

0.95/75/75, open circles = 0.8/50/50.
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Figure 3-24. Phylogenetic analysis of GIT sequences identifies two vertebrate
paralogues. Phylogenetic analysis was carried out to determine whether the gene
duplication giving rise to GIT1 and GIT2Z occurred before or after the vertebrate
transition. Analysis strongly indicates that the duplication event occurred near the
base of vertebrates. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95/95, closed light circles = 0.95/75/75, open

circles 2 0.8/50/50.
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that produced the two paralogues found in humans. However, X. laevis appears to

have lost the GIT1 paralogue.

3.4.1.5.10 ARAP

Three ARAP paralogues are present in the human genome. ARAPs have N-
terminal sterile a-motifs, followed by two PH domains, the ArfGAP domain, ankyrin
repeats, two additional PH domains, a RhoGAP domain, a Ras association domain,
and a C-terminal PH domain (Krugmann et al., 2002; Miura et al., 2002). ARAPs are
important for signal coordination between Arf and Rho GTPase pathways
(Krugmann et al,, 2002; Krugmann et al., 2004; Miura et al., 2002; Stacey et al., 2004;
Yoon et al, 2006) and are predicted to be chordate specific (Kahn et al.,, 2008).
Phylogenetic analysis of ARAP suggests that two gene duplications near the base of
vertebrates produced the three paralogues observed in H. sapiens (Figure 3-25).
However, an additional D. rerio sequence (ARAP_C) branches basal to the rest of
vertebrates with strong support. Parsimony would suggest that the position of this
sequence is likely the result of phylogenetic artefact (LBA), as this sequence and all
of the invertebrate sequences are quite long. Alternatively, this could represent an
additional gene duplication at the base of vertebrates that was subsequently lost in
all other taxa. Revisiting this question in the future with a deeper sampling of
metazoan genomes should resolve this question. Nonetheless, the three human

paralogues of ARAP are clearly the result of a vertebrate-specific expansion.
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Figure 3-25. Phylogenetic analysis of ARAP sequences identifies three
vertebrate paralogues. To determine the order of gene duplications and when
these duplications occurred relative to the vertebrate transition, phylogenetic
analysis was carried out. The two duplications occurred near the base of
vertebrates, with ARAP1 diverging first, followed by ARAP2 and ARAP3. An extra D.
rerio sequence, ARAP_C, branches prior to the three ARAP paralogues (see text for
interpretation). The best Bayesian topology is shown. Numerical values represent
Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood bootstrap values
(PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed dark

circles 2 1.00/95/95, closed light circles 2 0.95/75/75, open circles = 0.8/50/50.
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3.4.2.1 Comparative genomic analysis of ArfGEF proteins identifies three subfamilies
present in the LECA

Having established the distribution of the human ArfGAP proteins across the
major eukaryotic lineages, I moved on to examine their counter parts, the ArfGEFs.
Similar to the GAPs, comparative genomic analysis was used to assess the
distribution of the known ArfGEF subfamilies described in humans. A similar
methodology was used to search 71 eukaryotic genomes (Figure 3-3, 3-4). The large
difference in the number of genomes sampled between the two analyses reflects the
number of newly sequenced genomes between the dates the studies were
conducted. 451 Sec7 domain-containing sequences were identified, of which 353
were classified into one of the 6 human ArfGEF subfamilies at the 5-orders criterion.
If the 2-orders criterion is used, an additional 43 sequences can be classified. The
remaining 55 Sec7 domain-containing sequences could not be classified. BLAST of
rogue sequences against genomes containing rogues (as done for ArfGAPC2) did not
yield any significant results, suggesting that these rogues represent divergent
members of known subfamilies, or represent lineage-specific subfamilies not
present in opisthokont systems as opposed to broadly distributed unidentified
subfamilies. These results could point to the acquisition of novel functions for some
ArfGEFs in other eukaryotic lineages.

Although the taxon sampling of the ArfGEF analysis is nearly twice that of the
ArfGAP analysis, we only identified five more GEFs than GAPs. Considering only the
taxa used in the ArfGAP analysis, 264 ArfGEF sequences were identified, 218 of

which were classified into an ArfGEF subfamily at the 5-orders criterion. An
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additional 18 can be classified at the 2-orders criterion, leaving 28 rogue sequences.
This translates to roughly 30% fewer GEFs than GAPs. While the full biological
implications of this difference are not yet clear, it suggests that many more
expansions of ArfGAP proteins have occurred than for the ArfGEFs. As with the
ArfGAPs, phylogenetic analysis of all Sec7 domain-containing proteins did not
classify any additional ArfGEF sequences.

BLASTp experiments against the nr-database were not carried out for the
ArfGEFs because a larger number of genomes were used (as more had become
available), therefore, redundancy was inherent in the taxon sampling of the analysis,
reducing the likelihood of false negatives resulting from genome selection. This
latter rationale was also carried over to the other analyses (ie, chapter 4 and
chapter 5). Nonetheless, comparative genomic analysis of ArfGEFs identified three
of the six subfamilies (BIG, GBF, cytohesin) present in at least four supergroups at
the 5-orders criterion (Figure 3-26, Figure 3-27). BIG and GBF are broadly and
frequently found in all eukaryotic lineages, whereas cytohesin is broadly but
patchily distributed. If the 2-orders criterion is applied, then cytohesin is found in
nearly every major lineage sampled. The broad distribution, even at the 5-orders
criterion, suggests that these three ArfGEF subfamilies were present in the LECA. In
contrast, EFA6 and FBX8 have narrower distributions, indicating more recent
origins for these subfamilies. EFA6 is present in Holozoa and some fungi, but is
absent from S. arctica and Amphimedon queenslandica. FBX8 is restricted to Metazoa
and, is missing from Trichoplax adhaerens, A. queenslandica, C. elegans, and D.

melanogaster (Figure 3-26). Absence from C. elegans and D. melanogaster could
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Figure 3-26. Distribution of ArfGEF subfamilies across eukaryotic taxa. Three
ArfGEF subfamilies are present in at least four eukaryotic supergroups at the 5-
orders criterion, indicating they were present in the LECA. BRAG is present in
opisthokonts and Amoebozoa, suggesting that it was present in the opisthokont and
amoebozoan ancestor. Based on its presence in ciliates and B. natans at the 2-orders
criterion, it may have been present in the LECA. EFA6 is only found in the Holozoa
and Fungi, but appears to have been frequently lost from the latter group. FBX8 is
specific to the Metazoa, but is missing from some early animals. Large taxonomic
groups are colour coded. Sectors with solid colours indicate that at least one
homologue satisfying the 5-orders criterion was identified. Sectors with pale colours
indicate that all homologues identified only satisfy the 2-orders criterion. The key
for species name abbreviations is boxed. The total number of Sec7 domain-

containing proteins identified in each organism is indicated in brackets.
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Figure 3-27. Gain and loss of ArfGEF domains and subfamilies in eukaryotes.
A) Tree of eukaryotes depicting the ArfGEF subfamilies and domains present in the
LECA, as well as gains and losses of additional domains and subfamilies. To ensure
confidence in the predictions, losses are only proposed when two instances of loss
have occurred in the relevant lineage. The origin of BRAG is represented as box with
dashed lines denoting the minimal distribution of this subfamily, as comparative
genomic analysis suggests that it may be more broadly distributed. B) Gain and loss
of ArfGEF subfamilies and domains in opisthokonts. Symbol legend is inset in B. DCB
= Dimerization and Cyclophilin Binding; HUS = Homology Upstream of Sec7; HDS =

Homology Downstream of Sec7; PH = Pleckstrin Homology. Abbreviations for taxa

Allomyces macrogynus, Ar

are as follows: Af = Aspergillus fumigatus, Am
Amorphotheca resinae, Bd = B. dendrobatidis, Bf = Branchiostoma floridae, Ca =

Catenaria anguillulae, Cc = Conidiobolus coronatus, Ccin = Coprinopsis cinerea, Ce = C.

elegans, Cg = Cladonia grayi, Ci = Ciona intestinalis, Co = C. owczarzaki, Crev

Coemansia reversa, Dm = D. melanogaster, Dr = D. rerio, Ec = E. cuniculi, Gg = G.

gallus, Gp = Gonapodya prolifera, Hs = H. sapiens, Mb = M. brevicollis, Md

Monodelphis domestica, Mg = Magnaporthe grisea, Mm = M. musculus, Mv

Mortierella verticillata, Nc = Neurospora crassa, Nce = Nosema ceranae, Nv

Nematostella vectensis, Oa = Ornithorhynchus anatinus, Pg = Puccinia graminis, Pir

Piromyces sp., Rd = R. delemar, Rn = Rattus norvegicus, Sa = S. arctica, Sc = S.

cerevisiae, Sn = Stagonosporum nodorum, Sp = Schizosaccharomyces pombe, Spu
Spizellomyces punctatus, Sr = S. rosetta, Ta = Trichoplax adhaerens, Tm = Tuber

melanosporum, Ttr = T. trahens, Um = Ustilago maydis, Xt = X. tropicalis.
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reflect instances of secondary loss, whereas absence from T. adhaerens could either
be the product of secondary loss, or, given the contentiousness of the branching
order in early animals, could represent the ancestral state depending on the
phylogenetic position of T. adhaerens relative to Nematostella vectensis on the
metazoan tree. Poor gene models or incomplete databases are also possible
explanations for these absences.

Like the distributions of ADAP and AGAP, the distribution of BRAG is slightly
more perplexing; sequences satisfying the 5-orders criterion are found in Metazoa,
choanoflagellates, and A. castellanii, indicating that BRAG could have been present in
the LECA, depending on the position of the root of the eukaryotic tree. If the 2-
orders criterion is used, then homologues are also found in Fungi, ciliates, and
Rhizaria, indicating that BRAG may have been present in the LECA. Nonetheless, it is
clear that BRAG has an origin coinciding with the divergence of the Choanozoa at
least, if not in the ancestor of opisthokonts and Amoebozoa.

Loss also appears to be quite prevalent within the ArfGEFs: cytohesin and
EFA6 appear to have been lost multiple times from fungi, and BRAG is only present
in fungi if the 2-orders criterion is considered. Moreover, cytohesin appears to have
been nearly completely lost from Archaeplastida, and multiple losses of cytohesin
and GBF appear to have occurred throughout the SAR clade (Figure 3-26).

Overall, comparative genomics of ArfGAPs and GEFs has identified three
patterns of conservation: i) well-conserved subfamilies that are found broadly and
frequently (e.g, SMAP, ArfGAP1, ArfGAP2, ACAP, AGFG, BIG, and GBF), ii) lineage-

specific subfamilies, that are only found in a specific taxonomic group (e.g., ARAP,
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GIT, ASAP, FBX8, EFA6), and iii) patchy subfamilies, that are broadly distributed
across eukaryotes, but are frequently missing (e.g, AGAP, ADAP, cytohesin, and
BRAG). The distributions of these subfamilies may hint at the type of processes in
which they are involved. Well-conserved subfamilies are likely to be involved in
ancient, fundamental cell biological process, given their broad distribution and near
ubiquity. Patchy subfamilies may also be involved in ancient cellular process, but
given the frequent loss of these subfamilies, these pathways may also be
dispensable. In contrast, lineage-specific subfamilies are more likely to be involved

in lineage-specific processes.

3.4.2.2 Domain analysis of ArfGEFs reveals a highly conserved domain complement

In contrast to the GAPs, ArfGEFs display a smaller array of accessory domains
and much less domain plasticity. Domain profiles were created for each ArfGEF
subfamily using the same methods and criteria used to create domain profiles for
the ArfGAPs (see section 3.4.1.3). All domains characteristic of the human ArfGEF
subfamilies are conserved across the distribution of their respective subfamilies
(Figure 3-28). Also unlike the ArfGAPs, only a few instances of domain loss are
apparent: the 1Q motif of BRAG is missing from both N. vectensis and T. adhaerens,
and the HUS domain has been lost from GBF in excavates and at least once in fungi.
These few instances of domain loss notwithstanding, the broad conservation of the
ArfGEF domain architectures suggests that the origin of these confirmations
coincided with the origins of the subfamilies themselves, and that perhaps the

apparent
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Figure 3-28. Ancestral configuration of ArfGEF accessory domains. Conserved
domains of each ArfGEF subfamily as defined by this study are shown in color.
These represent the configurations likely found in the ancestral sequence of each
subfamily. Unlike the ArfGAP domain configurations reported here (Figure 3-11),
the human domain organization of ArfGEF proteins is conserved across the entire
distribution of each subfamily and represents the domains present in the earliest
ancestor of each subfamily. Less overall diversity in domain composition is

observed than compared to the ArfGAP proteins. DCB = Dimerization and

Cyclophilin-binding domain; HUS = Homology Upstream of Sec7; Sec7

Sec7/ArfGEF catalytic domain; HDS1 = Homology Downstream of Sec7 1; HDS2
Homology Downstream of Sec7 2; HDS3 = Homology Downstream of Sec7 3; PH =

Pleckstrin Homology domain; I1Q = IQ motif; F-box = F-box domain.
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lack of plasticity is indicative of functionality integral to the function of the GEFs

themselves.

3.4.2.3 Phylogenetic analysis of ArfGEFs suggests the presence of three Sec7 domain-
containing proteins in the LECA, and coordinated duplications with Arfs and ArfGAPs
The comparative genomic analysis of ArfGEFs revealed that three GEF
subfamilies were present in the LECA. However, it did not identify the number of
paralogues from each subfamily that was present. The phylogenetic analyses
presented here attempts to address this question. Largely, only one clade from each
supergroup was present, suggesting that only one paralogue from each of the
ancient subfamilies was present in the LECA. These analyses did identify expansions
of nearly all ArfGEF subfamilies, indicating that lineage-specific evolution has
occurred. Below is a description of the results of the phylogenetic analysis for each

subfamily.

3.4.2.3.1 GBF

A single paralogue of GBF has been identified in humans. GBF possesses five
additional domains, which it shares with BIGs (Mouratou et al, 2005). The N-
terminal DCB domain is necessary for dimerization and interaction with cyclophilin
in A. thaliana (Grebe et al.,, 2000). Following the DCB domain is the HUS domain
(Homology Upstream of Sec7), the Sec7 domain, then the HDS1 (Homology
Downstream of Sec7), HDS2, and HDS3. These domains are required for the

interaction with a variety of effector proteins (Garcia-Mata and Sztul, 2003; Saeki et
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al., 2005). The HDS1 and HDS2 domains confer lipid binding to the Golgi and lipid
droplets, while the DCB domain is likely important for specifically targeting GBF to
the Golgi (Bouvet et al., 2013; Jackson, 2014). GBF is involved in the Arf dependent
recruitment of COPI to the cis-Golgi and the ERGIC and is able to interact with both
class I and class Il Arfs (Zhao et al., 2006). In A. thaliana, the GBF homologue GNOM
localizes to endosomes to carry out GEF activity. No such localization has been
observed for human GBF. Previous phylogenetic analysis identified GBF in diverse
eukaryotic lineages, suggesting its presence in the LECA (Bui et al., 2009; Cox et al,,
2004). Phylogenetic analysis of GBF did not uncover any vertebrate expansions of
this subfamily, with only a single paralogue identified in vertebrates (Figure 3-29).
At least one small expansion is apparent in archaeplastids, in addition to multiple

lineage-specific expansions.

3.4.2.3.2 BIG

Two BIG paralogues are present in humans. BIGs possess the same five
accessory domains as GBF (DCB, HUS, HDS1-3), in addition to an extra HDS domain
(HDS4), which has been shown to play an important regulatory role during BIG
activation (McDonold and Fromme, 2014; Mouratou et al., 2005). Along with GBF,
BIG is sensitive to the fungal toxin Brefeldin A (BFA; Casanova, 2007). BIGs act at the
TGN and at recycling endosomes and have been implicated in regulating the
trafficking of AP-1 and GGAs (Shinotsuka et al., 2002a; Shinotsuka et al., 2002b).
BIGs have also been identified in diverse eukaryotic lineages, suggesting its

presence in the LECA (Bui et al,, 2009; Cox et al., 2004). Multiple expansions of BIG
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Figure 3-29. Phylogenetic analysis of GBF sequences identifies that a single
paralogue was present in the LECA. In order to determine the number of
paralogues of GBF present in the LECA, phylogenetic analysis was undertaken.
Generally, a single clade of each supergroup is reconstructed, suggesting that a
single GBF sequence was present in the LECA. The GBF phylogeny reveals no
vertebrate expansions (lower grey box). At least one expansion in archaeplastids
(upper grey box) has occurred. Other lineage-specific expansions are visible (e.g.,
Allomyces macrogynus, T. vaginalis). The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles =2 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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have occurred throughout eukaryotes (Figure 3-30). A gene duplication at the base
of vertebrates has occurred producing the two paralogues observed in mammalian
cell systems. Five BIGs have previously been identified in multicellular plants (Cox
et al.,, 2004; Mouratou et al,, 2005). Consistent with this finding, both multicellular
plants included in this analysis, A. thaliana and P. patens, possess five BIG proteins
(Figure 3-30). However, this is likely due to convergent evolution. A single gene
duplication event in the ancestor of Viridiplantae appears to have produced two BIG
paralogues. One lineage (labeled 'I' in Figure 3-30) contains a single A. thaliana BIG
paralogue and three P. patens BIG paralogues. In the second lineage (labeled 'Il' in
Figure 3-30) there are four A. thaliana paralogues and two P. patens paralogues. In
both lineages, it would seem that increases in paralogue number is likely the result
of lineage-specific expansion, not multiple ancient duplications again, suggesting
convergent evolution. This will be important to bear in mind when translating
functional information between species, as closely related sequences may possess
different functions, resulting from multiple instances of sub- or neo-
functionalization of paralogues in these two species. Other lineage-specific
expansions have also produced multiple paralogues for example, ciliates (with
subsequent expansions in Paramecium tetraurelia), dictyostelids, and fungi. This

analysis nonetheless suggests that a single BIG paralogue was present in the LECA.

3.4.2.3.3 BRAG
Three BRAG paralogues are found in humans, each containing an 1Q-motif, a Sec7

domain, a PH domain, and at least one coiled-coil domain (Someya et al., 2001).
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Figure 3-30. Phylogenetic analysis of BIGs identifies a single paralogue
present in the LECA. Phylogenetic analysis of BIG sequences from all supergroups
was carried out to determine the number of BIG paralogues in the LECA. This
analysis reconstructed a single clade for each supergroup, indicating that only one
BIG sequence was present in the LECA. Multiple lineage-specific expansions were
also reconstructed (grey boxes), indicating that lineage-specific expansion has
occurred multiple times. Notably, major expansions have occurred in Fungi,
Dictyostelids, Ciliates, and Vertebrates. Duplication in Viridiplantae has produced
two clades labelled I and II that have further expanded, giving rise to the five BIGs
found in multicellular plants. Only the RAXML tree is shown, as the Phylobayes
analysis did not reach convergence. All nodes with bootstrap values of at least 50%

are shown.
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Similar to EFA6 and cytohesin, BRAGs are BFA resistant GEFs and have preferential
activity towards Arf6 (Franco et al., 1999; Meacci et al,, 1997; Someya et al., 2001).
BRAGs are located at the cell periphery, at post-synaptic densities in neuronal cells,
and at the plasma membrane in non-neuronal cells where they selectively regulate
the endocytosis of specific cargoes (e.g., p-integrins; Dunphy et al., 2006). To date
BRAGs have only been identified in animals (Cox et al., 2004). The BRAG phylogeny
revealed an expansion of this subfamily in vertebrates; at least two gene
duplications have produced three vertebrate paralogues (Figure 3-31). However,
Ornithorhynchus anatinus appears to have lost BRAG2 and BRAG3. R. norvegicus and
G. gallus also appear to have lost BRAG2. Independent duplications can also be seen
for N. vectensis and S. rosetta. The duplication in S. rosetta did not resolve, likely due

to the long branch of the A. castellanii BRAG homologue.

3.4.2.3.4 Cytohesin

Four cytohesin paralogues are present in humans, each with a coiled-coil
domain, a Sec7 domain, and a PH domain (Ogasawara et al., 2000). Cytohesins are
primarily located at the cell periphery, where they are recruited to the plasma
membrane by the interaction of their PH domain with either PI(3,4,5)P3 or
PI(4,5)P2, where they act preferentially as Arf6 GEFs (Klarlund et al, 1997).
Cytohesins have been shown to regulate both the docking and fusion of secretory
granules, and the endocytosis of G-protein coupled receptors (Claing et al., 2001; Liu

et al.,, 2005a). They also play an important role in integrin-mediated adhesion and
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Figure 3-31. Phylogenetic analysis of BRAG identifies an expansion in
vertebrates. Phylogenetic analysis of BRAG was carried out to determine when the
duplication events producing the three vertebrate paralogues occurred. The
analysis reveals two duplications at the base of vertebrates, resulting in three
paralogues with BRAG3 diverging first, followed by BRAG1 and BRAG2 (grey boxes).
Duplications have also occurred in N. vectensis and S. rosetta. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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cell movement (Geiger et al, 2000). Cytohesins were previously identified as
metazoan-specific ArfGEFs (Cox et al., 2004). Phylogenetic analysis of cytohesin
identified multiple expansions including the Amoebozoa (Figure 3-32) and in
vertebrates (Figure 3-32, 3-33). Secondary loss does seem to have occurred multiple
times as O. anatinus is missing all but cytohesinl. Monodelphis domestica and G.

gallus are also missing cytohesin2.

3.4.2.3.5 EFA6

Four EFA6 paralogues are present in humans, each possessing a Sec7
domain, followed by a PH domain, and are reported to possess a coiled-coil domain
C-terminal to the PH domain, along with proline rich regions distributed throughout
the protein (Franco et al., 1999). EFA6 is a plasma membrane localized ArfGEF that
has been shown to interact with both Arfl and Arf6 (Macia et al., 2001; Padovani et
al, 2014). EFA6 is involved in the coordination of endocytosis, actin and
microtubule dynamics, and the maintenance of cellular junctions (Franco et al,
1999; Klein et al., 2008). Previous analyses have proposed that EFA6 is present only
in animals (Cox et al.,, 2004), although the yeast proteins Sytl and Syt2 are quite
similar to EFA6. Both possess a central Sec7 domain followed by a PH domain and a
region of high sequence similarity to EFA6 (Cox et al., 2004; Gillingham and Munro,
2007a), suggesting that these subfamilies are fungal-specific expansions of the EFA6
subfamily. Sytlp is an Arf2p GEF and has been shown to possess GEF activity
towards the Arf-like protein Arllp both in vitro and in vivo (Chen et al., 2010). Yellp

is an Arf3p (S. cerevisiae orthologue of Arf6) GEF that targets the GTPase to the
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Figure 3-32. Phylogenetic analysis of cytohesin identifies a single paralogue in
the LECA. Phylogenetic analysis of cytohesin sequences from all eukaryotic
supergroups was carried out to determine the number of paralogues present in the
LECA. The analysis reconstructed a single clade for each supergroup, indicating that

a single paralogue was present in the LECA. The vertebrate expansion is weakly
supported here (lower four grey boxes). An unsupported expansion has occurred in
Amoebozoa (upper grey box). Additional genome-specific expansions have also
occurred (e.g., T. trahens and A. macrogynus). Only the RAXML tree is shown, as the
Phylobayes analysis did not reach convergence. All nodes with bootstrap values of

at least 50% are shown.
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Figure 3-33. Phylogenetic analysis of cytohesin identifies four paralogues in
vertebrates. Phylogenetic analysis of filozoan cytohesin sequences was carried out
to determine the order and the timing of paralogue divergence relative to the
vertebrate transition. The analysis supports three gene duplications producing four
paralogues in vertebrates (grey boxes). Cytohesin4 diverged first, then cytohesin3,
followed by cytohesinl and cytohesin2. Lineage-specific expansions in other
organisms (N. vectensis, A. queenslandica, choanoflagellates, and B. floridae) have
also occurred. The best Bayesian topology is shown. Numerical values represent
Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap
values (RAXML). Nodes of interest are in bold. Values for other supported nodes
have been replaced by symbols: closed dark circles = 1.00/95, closed light circles =

0.95/75, open circles = 0.8/50.
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plasma membrane where it regulates the polymerization of actin patches and
polarized cell growth (Gillingham and Munro, 2007a). Phylogenetic analysis of the
EFA6 subfamily revealed a major expansion in vertebrates resulting in four
paralogues (Figure 3-34); however, secondary loss of some of these paralogues
appears to have occurred, particularly in O. anatinus, which only possess EFA6D.
Additionally, Xenopus tropicalis is missing EFA6C, and both G. gallus and M.

domestica lack EFA6B.

3.4.2.3.6 FBX8

Little is known about FBX8; humans possess only one paralogue that
contains an N-terminal F-box domain and a C-terminal Sec7 domain (Cox et al,
2004). F-box domains incorporate proteins into multisubunit ubiquitin-ligase
complexes, resulting in their degradation (Kipreos and Pagano, 2000). FBX8 is
thought to suppress the activity of Arf6 thorough ubiquitination (Yano et al., 2008).
FBX8 has previously only been found in vertebrates (Cox et al, 2004). The
phylogeny for FBX8 is much simpler than that of the other subfamilies as no
vertebrate duplications have occurred. However, independent duplications are

observed for N. vectensis and for Branchiostoma floridae (Figure 3-35).

3.5 Discussion
The analyses presented in this chapter revealed the evolutionary patterns of
the previously identified ArfGAP and ArfGEF proteins. These analyses updated the

timing of the origin for four of ten ArfGAP subfamilies (Kahn et al., 2008) and
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Figure 3-34. Phylogenetic analysis of EFA6 subfamily identifies four
paralogues in vertebrates. Phylogenetic analysis of EFA6 was carried out to
determine the order and timing of gene duplication relative to the vertebrate
transition. The EFA6 phylogeny reveals three gene duplications resulting in four
vertebrate paralogues (grey boxes) with EFA6B diverging first, followed by EFA6A,
then by EFA6C and EFA6D. Other lineage-specific duplications have also occurred,
such as in R. delemar and A. macrogynus. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 3-35. Phylogenetic analysis of FBX8 reveals a single paralogue in
vertebrates. Phylogenetic analysis of FBX8 was carried out to determine whether
or not any gene duplications had occurred. The FBX8 phylogeny reveals no
vertebrate expansions; however, independent duplications in B. floridae and N.
vectensis were observed. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles 2 1.00/95, closed light

circles 2 0.95/75, open circles = 0.8/50.

175



{— Ornithorhynchus anatinus FBX8

Monodelphis domestica FBX8

Phylobayes/RAXML Rattus norvegicus FBX8

@=1.0095 #
©20.95/75 — ! Mus musculus FBX8
(0)20.80/50

L Homo sapiens FBX8

i Gallus gallus FBX8
Xenopus tropicalis FBX8
O O
L Danio rerio FBX8
@ Ciona intestinalis FBX8

Branchiostoma floridae FBX8a
[Branchiostoma floridae FBX8b

r Nematostella vectensis FBXb

|-Nemaz‘ostella vectensis FBX8a

0.2

176



identified a previously undescribed ArfGAP subfamily, ArfGAPC2, which is broadly
distributed across eukaryotes. Similarly, novel hypotheses concerning the timing of
the origin for four of six human ArfGEF subfamilies (Cox et al., 2004) were
generated. These results indicate that at least six ArfGAPs and three ArfGEFs were
present in the LECA, with additional subfamilies emerging in various lineages.

The discovery of ArfGAPC2 increases the total number of ArfGAP subfamilies
to eleven. Members of this subfamily fulfilled the 5-orders RBH criterion, and share
common domain architectures: a central ArfGAP domain and a C-terminal C2
domain (Figure 3-9). Extensive in vivo characterization of this subfamily will be
required in multiple model systems in order to thoroughly dissect the role of this
novel subfamily in membrane trafficking. However, it is predicted that ArfGAPC2
does possess GAP activity; we showed previously that that 18 residues are highly
conserved in all ArfGAP domains of all members of all subfamilies (Schlacht et al,,
2013). Of these 18 residues, ArfGAPC2 possess 17, including the catalytic arginine.
Functional characterization of ArfGAPC2 will be an important step in understanding
the functional diversity of ArfGAPs, as ArfGAPC2 may be involved in processes not
found in other model organisms, or may act at locations not typical of other ArfGAP
proteins. Comparative genomic and phylogenetic analyses indicated that this is an
ancient subfamily, present in the LECA, but that has been frequently lost (ie,
patchy), yet another example of this novel class of proteins.

Five of the six recently arising ArfGAP and GEF subfamilies (ASAP, ARAP, GIT,
BRAG, and EFA6) are regulators of the cytoskeleton, cell-cell communication, or cell

adhesion (see Casanova, 2007; Kahn et al.,, 2008 and inter alia). The increase in the
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number of GAP and GEF proteins involved in adhesion and motility processes is
highly correlated with the evolution of cellular adhesion in opisthokonts. GIT
controls cell migration and focal adhesion dynamics through interactions with PIX
and pacxillin, respectively (Hoefen and Berk, 2006; Mazaki et al.,, 2001; Premont et
al, 2004), while ARAP regulates focal adhesion dynamics and lamellipodia
formation (Inoue and Randazzo, 2007; Krugmann et al., 2006; Miura et al., 2002).
The distribution of ASAP, a regulator of actin remodelling and invadopodia
formation (Brown et al., 1998; Liu et al., 2002; Randazzo et al., 2007), is even more
intriguing as it is found in Holozoa and the apusomonad T. trahens, but appears to
have been lost from Fungi. EFA6, present in opisthokonts but not T. trahens, is also
involved in regulating the actin cytoskeleton, and like ASAP is located at the plasma
membrane. Both ASAP and EFA6 display preference towards class III Arfs; it would
not be surprising if these two subfamilies regulate the activation and termination of
the same Arf-dependent process. Additionally, M. brevicollis possesses the ability to
attach to substrate via extracellular matrix proteins homologous to those found in
humans (e.g., laminin, reeler, and ependymin domains; King et al.,, 2008) and C.
owczarzaki is able to form cellular aggregates using integrin-mediated adhesion,
previously thought to only be present in metazoans (Sebé-pedrds et al., 2010; Suga
et al, 2013). A comparative genomic analysis assessing the distribution of core
integrin adhesion machinery identified the stepwise acquisition of components that
produced the adhesion complexes seen in mammalian cells (Figure 3-36; Sebé-
pedrds et al,, 2010). They defined the core machinery to include: a and {3 integrins

(Hynes, 2002), a-actinin (Sjoblom et al., 2008), talin (Wegener et al., 2007), paxillin
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Figure 3-36. Correlated evolution of the integrin adhesion complex and
ArfGAP and ArfGEF proteins. Upper: metazoan-type integrin adhesion complex.
Colours correspond to the acquisitions and losses in the eukaryotic tree (lower).
Circles and stars represent the gain of integrin adhesion machinery and ArfGAPs
and ArfGEFs, respectively. Colour coding of circles and dashes correspond to the
integrin adhesion machinery in the upper panel. Proteins in red (Pinch, Talin,
Paxillin, and Vinculin) in the ancestor of the Amoebozoa, apusomonads, and
Opisthokonta. Proteins in green (ILK, Parvin, and integrins a and ) evolved in the
ancestor of apusomonads and Opisthokonta. Proteins in blue (c-Src and FAK)
evolved in the ancestor of the Holozoa. Dashes indicate losses of the indicated

machinery. Redrawn and modified from Sébé-Pedros et al (2010).
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(Deakin and Turner, 2008), vinculin (Ziegler et al., 2006), the IPP complex [ILK,
(integrin linked kinase), PINCH (particularly interesting Cys-His-rich protein), and
parvin (Legate et al,, 2006; Nikolopoulos and Turner, 2001)], and the kinases c-Src
(Arias-Salgado et al., 2003) and FAK (Parsons et al., 2000). These proteins appear to
have evolved over the same time frame as the opisthokont-specific ArfGAPs and
GEFs (Figure 3-36). PINCH, talin, paxillin, and vinculin appear to have evolved in the
ancestor of Amoebozoa and Opisthokonta, while integrins a and f, ILK, and parvin
evolved in the ancestor of Opisthokonta and apusomonads, whereas c-Src and FAK
evolved in the ancestor of the Holozoa. a-actinin was found throughout eukaryotes.
GIT evolved at roughly the same time as c-Src and FAK (Figure 3-36). GIT was
originally identified as regulatory protein involved in the endocytosis of the ;-
adrenergic receptor (Premont et al., 1998). GIT is also often found in complex with
PIX proteins which are GEFs for Rac, Cdc42, and Rho (Feng et al,, 2002; Loo et al,,
2004; Manser et al, 1998), and is phosphorylated by FAK, which results in its
recruitment to focal adhesions and its interaction with paxillin (Turner et al., 1999).
This association allows GIT to negatively regulate Racl, which is able to regulate
actin polymerization and the formation of lamellipodia during cell movement in an
ArfGAP-dependent manner, although the mechanism through which this occurs is as
yet unclear (Nishiya et al., 2005; West et al., 2001). ASAP appears to have evolved
around the same time as integrins, ILK, and parvin; however, ASAP has been
reported to interact with paxillin, c-Src, FAK (Brown et al., 1998; Kondo et al., 2000;

Liu et al, 2002). Paxillin localization to focal adhesions was shown to be Arfl
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dependent (Norman et al., 1998). Similarly, overexpression of ASAP results in a
reduction of paxillin and FAK at focal adhesions and reduced cellular motility
(Kondo et al, 2000; Liu et al, 2002). This suggests that ASAP was involved in
regulating the localization of paxillin and perhaps extended this function to other
components as they evolved. BRAG is involved in the endocytosis of p-integrins
(Dunphy et al,, 2006; Manavski et al., 2014; Moravec et al., 2012). Knockdown of
BRAG reduces the mobility of endothelial cells, suggesting increased adhesion to
substrate (Manavski et al.,, 2014). This is somewhat surprising since BRAG evolved
prior to integrins (Figure 3-36). This may suggest that BRAG was originally involved
in endocytosis and was subsequently recruited to focal adhesions after the evolution
of integrins. This would be consistent with reports that BRAG interacts with AP-2
and clathrin during endocytosis (Moravec et al., 2012). By contrast, EFA6 and ARAP
do not seem to be directly involved in regulating or interacting with members of the
integrin adhesion complex. However, they both contribute to the regulation of the
actin cytoskeleton, and therefore, may indirectly impact the stability of focal
adhesions (Kanamarlapudi, 2014; Yoon et al., 2006). The overlap in timing between
the evolution of integrins and their associated machinery, and the expansions of the
ArfGAP and GEF proteins is highly suggestive of co-evolution between these two
systems, and perhaps preadaptive to a role in multicellularity.

No additional ArfGEF subfamilies were identified, despite finding many rogue
sequences (Figure 3-26), suggesting that either these rogues represent highly
divergent sequences or, more likely and perhaps more interestingly, that these

sequences represent multiple subfamilies that are not broadly distributed, that are
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the result of lineage-specific expansion and customization in these groups. For
example, in the Amoebozoa, D. discoideum, P. pallidum, and A. castellanii all possess
at least one rogue sequence containing 6-8 ankyrin repeats, a Sec7 domain, a PH
domain and a variable C-terminal domain. This common domain structure is
suggestive of common ancestry, and perhaps functions in a process not present in
other eukaryotes. However, phylogenetic tools more powerful than those used here,
and classification methods not dependent on a reference genome (i.e.,, not BLASTing
against human or yeast) will be required in order to elucidate this and any other
cryptic subfamilies that may lie within the ArfGAP and GEF rogue sequences.
Although comparative genomics identified the distribution of each subfamily
and revealed the stepwise acquisition of most GAPs and GEFs, the point of origin of
some subfamilies was more ambiguous. The restricted distribution at the 5-orders
criterion for ADAP, AGAP, and BRAG would suggest that they were not present in
the LECA; however, their sparse, but broad distribution at the 2-orders criterion
would suggest that they are ancient. If these subfamilies were present in the LECA,
then their sparse distribution is the result of frequent secondary loss (Figure 3-5, 3-
6, 3-26, 3-27). Why would these subfamilies be lost? These subfamilies share at least
partially overlapping functions with other subfamilies: AGAP regulates trafficking
between the TGN and endosomes (Nie and Randazzo, 2006), which is also partially
carried out by SMAP (Natsume et al, 2006); ADAP is involved in cytoskeletal
regulation (Venkateswarlu et al, 2004), as is ACAP; BRAGs are involved in
endocytosis, a function also carried out by cytohesin (Claing et al.,, 2001; Dunphy et

al,, 2006). Even if they are ancient, these patchy subfamilies evolved more recently
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than other ArfGAPs/GEF subfamilies and were therefore redundant and less fixed
into the mechanistic landscape of cellular function, meaning that loss during various
stages of eukaryotic diversification was less detrimental than losing the other more
entrenched subfamily.

In addition to their catalytic domains, ArfGAPs and ArfGEFs are both
characterized by a broad array of accessory domains. These domains are predicted
to regulate the protein’s cellular functions by controlling catalytic activity, cellular
location, and interaction with other proteins (Jian et al., 2009). The comparative
genomic analysis and re-definition of the domain structure of each GAP and GEF
subfamily provided a clear path of domain evolution from a simpler ArfGAP/GEF
toolkit to the complex set of human ArfGAP and GEF proteins, particularly within
the GAPs. Addition of peripheral domains would have increased the ability of GAPs
to act as effectors in parallel biological pathways, by increasing the potential for
these regulators to receive signals, aiding in the integration of cellular systems as
eukaryotes explored novel ecological niches or evolved into more complex forms
(i.e, multicellular). In stark contrast to the GAPs, the domain composition of the
human GEF proteins is identical to what is expected to have been present in the
ancestor of those sequences; that is, the domain complement of the ArfGEFs has not
changed since their origin, indicating that addition of accessory domains is not a
driver of complexity for these proteins, although individual cases of domain
acquisition can be observed by some paralogues in some lineages. The drastic
change in ArfGAP domain composition may suggest that perhaps the GAPs have

evolved towards signal integration and crosstalk with other signalling pathways. By
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contrast, the consistency in domain composition of the GEFs suggests that their
integration with other signalling pathways occurred early in ArfGEF evolution.
Simpler complements of accessory domains in the LECA have also been observed for
other GTPase regulatory families. Analysis of the RasGAP family identified
unexpected complexity in the LECA, but with a restricted complement of domains
limited to the RasGAP_C, CH, and C2 domains (van Dam et al., 2011), indicating that
the acquisition of additional domains as a mechanism of increasing signalling
complexity is not limited to the ArfGAPs.

Despite the finding that the total domain complement present in the Arf
regulators was smaller in the LECA than seen in the human complement, it consisted
of several functionally distinctive modules including the catalytic domains (ArfGAP
and Sec7), ANK repeats, BAR, PH, and C2 domains for the ArfGAPs (Figure 3-9, 3-
11), and PH domains, DCB, HUS, HDS1, HDS2, and HDS3 domains for the ArfGEFs
(Figure 3-28). These domains may provide insight into the functionality of the
ancient ArfGAP and GEF proteins. ANK repeats function in protein-protein
interactions (Bork, 1993), thus the acquisition of ANK repeats would have greatly
increased the number of binding partners for ArfGAPs, providing potential for novel
mechanisms of regulation or localization. PH domains are more commonly involved
in membrane association by binding specific phosphoinositides. This is certainly the
case for some ArfGEFs; targeting of cytohesin to the plasma membrane is dependent
on the presence of its PH domain (Macia et al., 2001). The same has been shown for
the PH domain of EFA6 (Franco et al., 1999). PH domains are also important for the

ArfGAPs, in some cases reducing GAP activity when removed (Kam et al., 2000). BAR
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domains have been shown to play a role in sensing and producing membrane
curvature (Field et al., 2011, inter alia; Masuda and Mochizuki, 2010, inter alia), and
in some ArfGAPs suggests a role in sensing or contributing to membrane curvature
during vesicle formation, similar to the ALPS motifs of H. sapiens ArfGAP1 (Bigay et
al, 2005; Mesmin et al, 2007). C2 domains are Ca?* dependent lipid binding
domains, suggesting the interaction of GAPs with specific lipid subdomains
(Davletov and Sudhof, 1993). The PH domain of cytohesin aside, the only ArfGEF
accessory domains found in the LECA are the DCB, HUS and HDS domains found in
BIGs and GBFs, and have been shown to interact with a variety of partners including
p115, Ex070, myosinlXb (Gillingham and Munro, 2007b; Mouratou et al., 2005;
Wright et al,, 2014), and have recently been shown to act as regulatory regions,

controlling Sec7 GEF activity (McDonold and Fromme, 2014).

3.5.1 Evolution of ArfGAPs and ArfGEFs in vertebrates mimics the evolution of Arfs

The patterns of ArfGAP and ArfGEF duplication, observed in vertebrates are
quite similar to the pattern of duplications seen for the Arfs. Manolea et al., (2010)
demonstrated that the ancestral opisthokont possessed two Arf proteins,
progenitors of the class [/II Arfs and a class III Arf (Manolea et al., 2010). The class
[/Il progenitor duplicated near the ancestor of Metazoa and choanoflagellates to
produce distinct class 1 and II Arfs. Near the base of vertebrates, these Arfs
duplicated again; the class I Arf duplicated twice, producing Arfs 1-3 and while the
class II Arf underwent a single duplication, producing Arfs 4 and 5. Although the

pattern of ArfGAP subfamilies is more complex, the overall patterns are strikingly
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similar, with all subfamilies, except for ArfGAP1, undergoing one or two gene
duplications in the vertebrate ancestor (Figure 3-37). Although the correlation is
less strong, a similar pattern is observed for the ArfGEFs: BRAG has undergone two
duplications at the base of vertebrates, EFA6 and cytohesin have undergone three
gene duplications, and BIG has duplicated only once in vertebrates (Figure 3-37).
While, in the case of the GEFs, this correlation does not align perfectly with
experimentally established substrate preferences, it should be remembered that the
majority of Arf-ArfGEF interactions are analyzed from the perspective of their
interactions with Arfl and Arf6. The exception would be the interaction of GBF with
Arf4 and Arf5 at the ERGIC; however, this may be a special case, as GBF has also
been shown to localize to the TGN through interactions with Arfl (Wright et al,,
2014).

[t is curious to note that, while some ArfGAP subfamilies (ACAP and ARAP)
possess additional D. rerio sequences that appeared to branch basal to the other
vertebrate sequences, no ArfGEF subfamilies displayed such a pattern. However,
cytohesin and EFA6 both have four paralogues in vertebrates, unlike the two or
three paralogues found in most other GAP and GEF subfamilies. These patterns
correlate with the identification of additional class I Arfs in D. rerio (P. Melancon,
unpublished). Although these subfamilies typically act on other Arf isoforms, it is an
interesting correlation to pursue in vivo.

The above statements are not meant to suggest that functional relationships
have been identified, but rather, should be considered as hypotheses for further

dissection of the interactions of this regulatory system. ArfGAPs and ArfGEFs may
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Figure 3-37. The evolution of vertebrate ArfGAPs and ArfGEFs mimics the
evolution of class I and class II Arfs. Arfs (black line): the pre-duplicate of the
class I and class Il Arfs duplicated once near the base of vertebrates, producing the
class I and class II Arfs (also see Figure 3-1). Each of these lineages duplicated near
the base of vertebrates, the class I Arf duplicating twice, producing Arfs 1, 2, and 3,
whereas the class II Arf duplicated once, producing Arf 4 and 5. Upper: Some
ArfGAPs display the same evolutionary patterns as the class I and class II Arfs.
ADAP, ACAP, AGAP, ARAP, and ASAP have undergone two gene duplications near
the base of vertebrates, mimicking the class I Arfs. ArfGAP2, SMAP, AGFG, and GIT
have undergone two gene duplications near the base of vertebrates, mimicking the
class II Arfs. Lower: Some ArfGEFs display similar evolutionary patterns to the class
[ and class II Arfs. Cytohesin, EFA6, and BRAG have each undergone at least two
gene duplications, similar to class [ Arfs. BIG is the only ArfGEF to have undergone a
single gene duplication. ArfGAP1 and GBF are not shown, as neither has undergone

any gene duplications in Metazoa.
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also act on other proteins, the most obvious would be the Arls; this has certainly
been suggested to be the case for the S. cerevisiae GEF Sytlp, which is able to
mediate GDP-GTP exchange on Arllp in vivo and Gcslp (S. cerevisiae ArfGAP1) is
able to mediate GAP activity on Arllp in the in vitro (Chen et al.,, 2010; Liu et al,,
2005b). However, further analysis will be required to assess the physiological
implications of these interactions, and to determine if these represent solitary cases

of ArfGAPs and GEFs able to regulate non-Arf GTPases.

3.5.2 Predicting the evolutionary origins of ArfGAP and GEF subfamilies

The phylogenetic analyses presented here were unable to resolve the order
in which each GAP and GEF subfamily arose, or which subfamilies gave rise to the
lineage-specific forms. The reconstruction of domain structures does shed some
light onto the likely possibilities. It has been previously suggested that BIG and GBF
share a common ancestor and are the products of an ancient gene duplication,
evidenced by the extensive conservation of the DCB, HUS, and HDS domains
(Mouratou et al., 2005). Our finding that cytohesin was also present in the LECA
suggests another duplication predating that giving rise to BIG and GBF. The
duplication of this ancestral lineage would have given rise to one lineage that then
gained the DCB, HUS, and HDS domains and gave rise to BIG and GBF (Figure 3-38).
The second lineage would have instead gained a PH domain, giving rise to cytohesin.
Given their conserved architectures, it is likely that cytohesin then gave rise to both

BRAG and EFA6. Because of the lack of shared domains other than Sec7, the origin of
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Figure 3-38. Predicted relationships between ArfGAP and ArfGEF subfamilies.
Predicted relationships between subfamilies based on domain composition and
BLAST analysis A) All ArfGEFs are derived from an ancestral Sec7 domain-
containing protein. BIG and GBF form a clade based on reciprocal best hits and
domain conservation. Domain composition and BLAST results suggest that BRAG
and EFA6 are derived from cytohesin, with FBX8 arising from a gene duplication of
BRAG. B) All ArfGAP proteins are derived from an ancestral ArfGAP domain-
containing protein. ArfGAP1 and ArfGAP2 subfamilies preferentially retrieve each
other during BLAST experiments suggesting that they may be each other’s closest
relatives. ACAP, SMAP, and AGFG preferentially retrieve each other over ArfGAP1,
ArfGAP2, or ArfGAP3, suggesting that these three may form a separate group. Based
on domain analysis, I propose that ASAP and AGAP arose via gene duplication from
ACAP, with GIT and ADAP arising by gene duplication of AGAP. ArfGAPC2 retrieves
SMAP as its second best hit, hinting that they may share a recent common ancestor.
BLAST results indicate that ACAP is ARAP’s closest homologue in terms of

sequences similarity, suggesting a shared ancestor.
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FBX8 is more difficult to predict. However, BLAST analysis of the Sec7 domain from
the human FBX8 protein retrieves BRAG as the best hit (after itself), nearly
satisfying the 5-orders criterion, suggesting an origin for this later emerging
subfamily (Figure 3-38).

Owing to the variability in their domain structures, the ArfGAPs are much
harder to predict. However, based on the shared presence of triple ANK repeats C-
terminal to the ArfGAP domains, it is worth speculating that GIT was derived from a
gene duplication of either ASAP or ACAP. Similarly, it is possible that ARAP is
derived from AGAP. In BLAST experiments using the human ArfGAPs to search the
human genome, most ArfGAP subfamilies retrieve either ACAP or SMAP. All AGAP,
ASAP, and SMAP paralogues retrieve ACAP as the top subfamily after themselves.
The ACAP subfamily retrieved ASAP. AGFG retrieved SMAP. ArfGAP1 and ArfGAP2
retrieved each other, while ADAP and ARAP subfamilies retrieved a mix of AGAP,
SMAP, ACAP, and ASAP. Thus, it appears that many ArfGAP subfamilies are derived
from an ancestral ACAP sequence (Figure 3-38). BLAST of A. thaliana ArfGAPC2
sequences against its own protein database identified SMAP as the next best ArfGAP
subfamily, consistent with the misclassification of multiple ArfGAPC2 sequences as
SMAPs. However, these hypotheses are highly speculative, and require further
testing using highly advanced phylogenetic methods, such as an in depth Scrollsaw

analysis, to resolve.
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3.5.3 Reconstructing the Arf regulatory system in the LECA

The above analyses allow, for the first time, a holistic view of the evolution of
an entire GAP - GEF - GTPase system, and its reconstruction in the LECA. While
previous analyses have pointed to the presence of a single Arf GTPase in the LECA
(Berriman et al, 2005; Li et al., 2004) the data presented here indicates the
presence of six ArfGAPs and three ArfGEFs, suggesting a much simpler cellular
configuration of this system in the LECA, as compared to conventionally studied
systems (Cox et al., 2004; Kahn et al., 2008). The finding that the GAPs greatly
outnumber both the GEFs and the GTPase suggests that it is the GAPs that drive the
complexity within this system. Multiple GAPs would greatly increase the potential
for cross talk and integration of signals between parallel pathways, but cannot be
responsible for the specific targeting of Arfs to membranes, as their association with
the GTPase requires the GTP-bound form. Although we cannot say with certainty
whether the GAPs or the GEFs expanded first, it is tempting to speculate that the
GAPs were the first components in this system to expand, followed by the GEFs, and
eventually the Arfs themselves. This scenario would indicate a period where early
eukaryotes possess multiple GAPs, a single GEF, and a single GTPase. This scenario
would invoke the necessity of additional upstream regulatory components in order
to recruit the GEF and the Arf to the appropriate membrane. Hints to this type of
regulation have already been observed; it has recently been shown that the
recruitment and activation of the S. cerevisiae Sec7 requires interaction with Arl1l,
Yptl, Ypt31, and Arfl (McDonold and Fromme, 2014). Further analyses are required

to confirm the conservation of this regulation in other systems, and to identify
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upstream mechanisms of this nature for other ArfGEFs, but could nonetheless
provide a basis for the targeting of a single GEF to different membranes in early
eukaryotes.

It is accepted that the LECA possessed the full array of vesicular trafficking
pathways necessary for transport between the organelles of the endomembrane
system most of which are Arf dependent (D’Souza-Schorey and Chavrier, 2006). The
LECA is proposed to have possessed a single Arf protein, as is the case for most
extant eukaryotes (Li et al., 2004). The presence of a single Arf GTPase would
indicate that this ancestral homologue would have been able to act at each
organelle, a task that has been divided between up to six Arf proteins in mammals
(Volpicelli-Daley et al., 2005). This would imply that Arf specificity is not encoded in
the Arfs themselves, but rather by the Arf effectors (GAPs and GEFs). This may still
be the case in extant organisms even with larger numbers of GAPs, GEFs, and
GTPases. Alternatively, any organelle specificity encoded by Arfs in extant
organisms, such as mammals, may be the result of lineage-specific evolution.

Identifying the site of action and the function of ArfGAPC2 in vivo will greatly
enhance our understanding of the range of functions carried out by these Arf
regulators. Similarly, further characterization of ArfGEFs in non-standard model
systems will identify both novel functionality and conserved roles for ArfGEFs in
membrane traffic. It is worth noting that when mapping the localization of the
ancient ArfGAPs and GEFs onto the trafficking system, most major Arf-dependent
transport pathway are represented (Figure 3-2) and provides a set of hypotheses

for which GAPs and GEFs may interact with which coat complexes as these
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functional interactions are not yet completely characterized. Testing these
hypotheses in vivo will greatly expand our understanding of how these proteins

function in the living cell.
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Chapter 4: Comparative genomic and phylogenetic analysis reveals ancient

complexity of the COPII coat

This chapter has been published as:

Schlacht, A., Dacks, J.B. 2015. Unexpected ancient paralogues and an evolutionary
model for the COPII coat complex. Genome Biology and Evolution 7: 1098-1109
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4.1 Overview

The previous chapter examined the evolution of ArfGAPs and ArfGEFs,
important regulators of membrane traffic that represent an early step in the
formation of transport vesicles. This analysis identified the presence of multiple
GAPs and GEFs in the LECA, including a previously unreported ArfGAP subfamily,
ArfGAPC2, found in diverse eukaryotes, but that has frequently been lost from some
lineages, including opisthokonts. The conservation of multiple ArfGAP and ArfGEF
subfamilies is suggestive of a high degree of specificity for the Arf system during
coat formation. As we will see in this chapter, the next step in vesicle formation is
the recruitment of cytosolic coat components to the donor membrane. While many
complexes have been the subject of thorough comparative genomic and
phylogenetic analysis (see chapter 5), the COPII complex is one of the only coat
complexes not previously analyzed by both comparative genomic and phylogenetic
methods. This chapter will describe an evolutionary analysis of the COPII complex,
providing insight into the evolution of the COPII coat and its functionality in diverse

eukaryotic organisms.

4.2 Assembly of the COPII complex is an important early step in membrane trafficking
The COPII complex is responsible for the exit of proteins and lipids
synthesized in ER and their subsequent transport to the Golgi (Figure 4-1A; Barlowe
et al,, 1994). Seven interacting components are required to form a COPII vesicle.
First, an ER localized GEF, Sec12, activates the small GTPase Sarl, by exchanging

GDP for GTP (Barlowe and Schekman, 1993; Weissman et al., 2001; Figure 4-1Bi).
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Figure 4-1. Overview of COPII coat formation. A) The COPII complex is
responsible for anterograde transport from the ER to the Golgi complex. B)
Overview of COPII coat formation. (i) The small GTPase Sar1l is bound by its GEF,
Sec12, which catalyzes the exchange of GDP for GTP, activating Sarl which then
binds the ER membrane. (ii) Recruitment of Sarl stimulates recruitment of the
Sec23/Sec24 complex, through interaction with Sec16. Sec23 binds Sar1 and Sec24
recognizes cargo. (iii) Recruitment of Sec23/Sec24 stimulates Sec13/Sec31 complex
formation. Sec31 binds the Sec23/Sec24 pre-budding complex. Together,

Sec23/Sec24 and Sec13/Sec31 deform the ER membrane (iv).
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Activated Sarl then binds the ER membrane and recruits the heterodimeric
Sec23/24 adaptor complex which constitutes the Sarl-GAP and primary cargo
binding subunit, respectively (Bi et al., 2002; Lee et al., 2005; Miller et al., 2003;
Wendeler et al,, 2007; Yoshihisa et al., 1993; Figure 4-1Bii). Recruitment of the
Sec23/24 complex results in the recruitment and binding of the heterotetrameric
Sec13/31 cage complex, which along with Sec23/24, are responsible for membrane
deformation (Bi et al., 2002; Fromme et al., 2007; Stagg et al.,, 2006; Stagg et al,,
2008). Figure 4-1Biii Sec16 is a multifunctional protein, implicated in the negative
regulation of Sarl, controlling the timing of GTP hydrolysis (Kung et al., 2012), and
acts as a scaffold, aiding the recruitment of the other COPII subunits (Espenshade et
al, 1995; Gimeno et al,, 1995; Gimeno et al., 1996; Shaywitz et al., 1997). Neither
Sec12 nor Sec16 is included into the budding vesicle.

The COPII coat belongs to a larger family of membrane deforming complexes,
including other coat complexes (COPI, AP1-5), the IFT, the SEA complex, the
HOPS/CORVET tethering complex, and the NPC. As mentioned in chapter 1, these
seemingly different gene families are linked through the ‘protocoatomer domain
architecture’, a protein fold composed of a B-propeller followed by an a-solenoid
that is common to all of these complexes (Devos et al., 2004; section 1.4.8). These
complexes are thought be derived from an ancient membrane-deformation complex,
far predating the LECA. Understanding the relationship between these complexes
would, in turn, help us to understand how a highly complex membrane trafficking

system evolved from an ancestor with no internal membrane compartments.
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Although the COPII complex has been studied in many different organisms,
including P. pastoris (Payne et al.,, 2000), T. brucei (Demmel et al., 2011; Sealey-
Cardona et al,, 2014), A. thaliana (De Craene et al., 2014), H. sapiens (linuma et al,,
2007), and S. cerevisiae (Barlowe et al., 1994; Gimeno et al., 1996; Kung et al,, 2012),
relatively little is known about this complex outside of the latter two. In an effort to
expand the understanding of nuclear pore complexes and related coat forming
complexes in a variety of protistan lineages, a previous comparative genomic
analysis identified components of the COPII complex in a set of diverse eukaryotic
taxa (Neumann et al., 2010). Their analysis revealed that Sar1, Sec13, Sec31, Sec23,
Sec24, and Sec16 are found in nearly all eukaryotes, and were therefore likely
present in the LECA. This is consistent with previous large-scale analyses of the
eukaryotic endomembrane machinery that found both Sarl and Sec31 are highly
conserved markers of the COPII coat across broad eukaryotic lineages (Dacks and
Field, 2004). The analysis presented here extends these findings by deriving an
evolutionary model describing the progression of the COPII complex from an early
representative of the eukaryotic lineage to the LECA. This was done by examining
two additional proteins (Sec12 and Sed4), including recently sequenced key taxa,
and using in depth phylogenetic analysis to assess the evolution of each COPII
component. This analysis also uncovered previously undescribed ancient
paralogues of some COPII components and permitted the reconstruction of the
COPII complex that was likely present in the LECA, gleaning insight into the

evolution of this critical trafficking complex.
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4.3 Abbreviated materials and methods

Comparative genomic analyses were carried out as described in section 2.2,
using 74 genomes spanning the diversity of eukaryotes (Figure 4-2). Phylogenetic
analysis was carried out as in section 2.3. The details of each phylogenetic analysis,
including the number of taxa, length of masked alignment, and model parameters
for each method is in Table 4-1. Phylogenetic analyses were carried out using the
CIPRES web server (Miller et al., 2010). Tertiary structure predictions were carried

out as described in section 2.4

Table 4-1. Parameters of phylogenetic analysis, corresponding dataset, and figure

number for each COPII component.

Figure Dataset Name Number Length of Evolutionary model used

of taxa alignment (a.a.) Phylobayes RAxML

4-4 Sarl_R1 120 190 LG+CAT+G LG+CAT
4-5 Secl12_R1 51 327 LG+CAT+G+F LG+CAT+F

4-6 Sec13_R4 87 279 LG+CAT+G LG+CAT
4-7 Secl6_R1 72 330 LG+CAT+G+F LG+CAT+F
4-8 Sec23_R1 123 714 LG+CAT+G+F LG+CAT+F
4-9 Sec24_R1 223 656 LG+CAT+G+F LG+CAT+F
4-10 Sec31_R1 90 767 LG+CAT+G+F LG+CAT+F
4-11 Plant_Sar1_R3 108 192 LG+CAT+G+F LG+CAT+F
4-12 Plant_Sec12 43 336 LG+CAT+G+F LG+CAT+F
4-13 Plant_Sec13 64 299 LG+CAT+G+F LG+CAT+F
4-14 Plant_Sec16 46 1014 LG+CAT+G+F LG+CAT+F
4-15 Plant_Sec23_R2 129 680 LG+CAT+G+F LG+CAT+F
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4-16 Plant_Sec24 128 687 LG+CAT+G+F LG+CAT+F

4-17 Plant_Sec31 41 940 LG+CAT+G+F LG+CAT+F
4-18 Sec23_R4 217 671 LG+CAT+G+F LG+CAT+F
4-19A Sed4_R3 31 387 LG+CAT+G+F LG+CAT+F
4-20 Opisthokonta_R3 128 583 LG+CAT+G+F LG+CAT+F
4-21 Amoebozoa_R1 18 583 LG+CAT+G+F LG+CAT+F
4-22 Excavata_R5 18 583 LG+CAT+G+F LG+CAT+F
4-23 Archaeplastida_R1 56 583 LG+CAT+G+F LG+CAT+F
4-24 SAR_R3 56 583 LG+CAT+G+F LG+CAT+F
4-25 Ubertree_R2 30 583 LG+CAT+G+F LG+CAT+F
4-26 Ubertree_R3 20 583 LG+CAT+G+F LG+CAT+F
4-27 Sec24111 87 581 LG+CAT+G+F LG+CAT+F
4-28 Ubertree_R13 40 583 LG+CAT+G+F LG+CAT+F
4-29 Ubertree_R14 26 583 LG+CAT+G+F LG+CAT+F
4-30 Ubertree_R15 20 583 LG+CAT+G+F LG+CAT+F
4.4 Results

4.4.1 The COPII coat complex has sparsely and ubiquitously distributed components
Comparative genomic analysis was used to assess the distribution of each
component of the COPII coat. BLAST and HMMer were used to identify homologues
of each component of the coat in a broad, representative distribution of eukaryotic
genomes (Figure 4-2). Consistent with the results from Neumann et al, (2010) at
least one copy of Sarl, Sec23, Sec24, Sec13, and Sec31 was identified in every
eukaryotic genome analyzed (Figure 4-3), providing strong evidence that these
subunits were present in the LECA. The pervasiveness of these proteins in diverse

eukaryotic taxa highlights the key role that Sar1, Sec23, Sec24, Sec13, and Sec31
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Figure 4-2. Summary of all taxa sampled by analyses presented in this chapter
and their relative phylogenetic positions. Taxa searched during comparative
genomic analysis are coloured by supergroup. The secondary set of taxa in
Archaeplastida (dark green) was only used to examine expansions of the COPII
machinery in plants. The secondary set of Fungi (dark blue) was only used to
analyze the evolution of Sed4. All other taxa were used to search for all other COPII

components.
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Figure 4-3. Comparative genomic analysis reveals presence of COPII coat
components across the diversity of eukaryotes. At least one orthologue of each
Sarl, Sec23, Sec24, Sec13, and Sec31 has been identified in all taxa sampled,
whereas Sec12 and Sec16 are missing from multiple eukaryotic taxa, but are found
in every eukaryotic supergroup. These distributions indicate that all seven
components were present in the LECA. Black dots indicate the presence of at least
one orthologue of the indicated protein (column) in the corresponding organism
(row), open dots represent additional Sec24 sequences that did not fall into any
clade during phylogenetic analysis and are classified based on best BLAST hit.
Empty space indicates that no orthologue was identified. Orthologous sequences

were identified using BLAST and HMMer.
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play in forming the COPII coat as seen in in vitro analyses, which have identified
these five components as necessary and sufficient to bud vesicles from synthetic
liposomes (Barlowe et al., 1994; Salama et al., 1993).

In contrast to the above machinery, Sec12 and Sec16 were unidentifiable in
multiple taxa. Absences were not limited to one particular group of organisms, but
were distributed across the six supergroups (Figure 4-3). Sec12 was missing more
frequently than Sec16, and in only eight instances are they both missing from the
same organism. Of these, four (i.e, Encephalitozoon cuniculi, Nosema ceranae, E.
histolytica, and G. lamblia) are parasites and are known for high levels of sequence
divergence or cellular reduction, possibly accounting for our inability to detect these
proteins. Cyanidioschyzon merolae is an extremophile with a minimal membrane
trafficking system (Matsuzaki et al, 2004) and Nannochloropsis gaditana is a
Eustigmatophycean microalga with a reduced cellular system (Lubian, 1982;
Radakovits et al.,, 2012). These reduced cellular configurations likely resulted in a
stripping down and loss of non-essential cellular machinery. By contrast, Fonticula
alba and Reticulomyxa filosa are both free-living heterotrophs; sequence divergence
is the most likely explanation for the absence from these two organisms, and may
also be the case for the other putative absences. In Sec16, the central conserved
domain is the only region that is strongly conserved between taxa; therefore,
sequence divergence in the flanking regions drastically increases the likelihood of
false-negatives. This is also likely the case for Sec12; low sequence conservation and
the presence of multiple WD40 repeats makes it difficult to distinguish from other

WD40 repeat containing proteins. This was especially apparent when trying to
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identify the S. cerevisiae Sec12 using the H. sapiens sequence; multiple rounds of psi-
BLAST were required to show that they are indeed homologues, as BLASTp did not

provide enough sensitivity to do so.

4.4.2 Lineage-specific expansions and an ancient Sec23 duplication

Phylogenetic analyses were carried out to determine the number of
paralogues of each COPII component present in the LECA, and to find expansions
and reductions in various eukaryotic lineages. Sequences obtained from the
comparative genomic analyses were used to construct phylogenetic datasets. Our
analyses indicated that for six of the seven components analyzed, only one
paralogue was present in the LECA (Figures 4-4 - 4-10). These trees are
characterized by one clade per supergroup, along with weak backbone support. Five
subunits (Sarl, Sec23, Sec24, Sec31, and Sec16) have undergone expansions in
vertebrates, correlating with increasing organismal complexity, possibly the result
of selection for additional paralogues permitting tissue specificity or differential
regulation in these organisms. All seven subunits have undergone expansions in A.
thaliana and P. patens. To determine whether these additional paralogues are
lineage-specific, or if they represent gene duplications that occurred earlier in the
plant lineage, additional archaeplastid genomes were sampled and individual
protein trees were re-run using only the archaeplastid taxa (Figures 4-11 - 4-17).
Similar to other protein families, clear expansions have occurred in individual
species and in higher archaeplastid orders, roughly correlating with the evolution of

multicellularity in plants (Rutherford and Moore, 2002; Sanderfoot, 2007).
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Figure 4-4. Phylogenetic analysis of Sar1 identifies a single paralogue in the
LECA. Phylogenetic analysis was carried out to determine the number of Sarl
paralogues present in the LECA and to identify lineage-specific expansions. Although
many lineage-specific expansions have occurred, such as in multicellular plants and
vertebrates (upper and lower grey boxes, respectively), the majority of taxa possess
a single Sarl paralogue. Additionally, only one clade of each supergroup is visible,
pointing to a single Sarl protein in the LECA. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-5. Phylogenetic analysis of Secl2 sequences identifies a single
paralogue in the LECA. Phylogenetic analysis was carried out to determine the
number of Sec12 paralogues present in the LECA. By and large, a single clade for
each supergroup was reconstructed. Additionally, the majority of taxa possess only
a single Sec12 sequence indicating that only one Sec12 sequence was present in the
LECA. Lineage-specific expansions have also occurred in multicellular plants and A.
macrogynus (upper and lower grey boxes, respectively). The best Bayesian topology
is shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-6. Phylogenetic analysis of Secl3 sequences identifies a single
paralogue in the LECA. To determine the number of Sec13 paralogues present in
the LECA, phylogenetic analysis was carried out. The majority of taxa possess one
Sec13 paralogue indicating that only one Sec13 sequence was present in the LECA.
Multiple instances of lineage-specific expansion are apparent, most notably in
multicellular plants (grey box). By contrast, vertebrates have not undergone any
expansion. The best Bayesian topology is shown. Numerical values represent
Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap
values (RAxXML). Nodes of interest are in bold. Values for other supported nodes
have been replaced by symbols: closed dark circles = 1.00/95, closed light circles =

0.95/75, open circles = 0.8/50.
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Figure 4-7. Phylogenetic analysis points to a single Sec16 paralogue in the
LECA. Phylogenetic analysis was carried out to determine the number of Sec16
paralogues present in the LECA. The majority of taxa sampled possess a single Sec16
paralogue, indicating that a single Sec16 sequence was present in the LECA. Lineage
specific expansions have occurred such as in metazoans and Archaeplastida (lower
and upper grey boxes, respectively), as well as G. theta, T. pseudonana, and C.
neoformans. The best Bayesian topology is shown. Numerical values represent
Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap
values (RAXML). Nodes of interest are in bold. Values for other supported nodes
have been replaced by symbols: closed dark circles = 1.00/95, closed light circles =

0.95/75, open circles = 0.8/50.
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Figure 4-8. Phylogenetic analysis identifies a single Sec23 sequence in the
LECA. Phylogenetic analysis was carried out to determine the number of Sec23
paralogues present in the LECA. By and large, a single clade for each supergroup
appears to have been reconstructed. The exception is the Archaeplastida, where two
A. thaliana, P. patens, and M. pusilla containing clades are present (upper and middle
grey boxes). Nonetheless, the data suggest the presence of a single Sec23 paralogue
in the LECA. Major expansions of Sec23 can be seen in vertebrates and in
multicellular plants (grey boxes). Smaller, species-specific expansions are also
visible in other lineages. Although likely an artefact, a sequence from G. lamblia also
grouped with the A. thaliana clade (upper grey box). The best Bayesian topology is
shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-9. Phylogenetic analysis of Sec24 sequences suggests the presence of
multiple paralogues in the LECA. To determine the number of ancient Sec24
paralogues, phylogenetic analysis was carried out. Multiple clades of some major
eukaryotic lineages (Fungi, Holozoa, Archaeplastida, and SAR/CCTH) were
reconstructed suggesting that multiple paralogues of Sec24 may have been present
in the LECA, although backbone nodes are largely unresolved. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed
dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50. For

enlarged clades see Appendix.
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Figure 4-10. Phylogenetic analysis indicates that a single Sec31 paralogue was
present in the LECA. Phylogenetic analysis was carried out to determine the
number of Sec31 paralogues present in the LECA. Generally, a single clade is
reconstructed for most major eukaryotic lineages, suggesting that only one Sec31
sequence was present in the LECA. Expansion has occurred in many eukaryotic
lineages independently, notably in vertebrates and in multicellular plants (grey
boxes). The best Bayesian topology is shown. Numerical values represent Bayesian
posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap values
(RAxML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95, closed light circles = 0.95/75,

open circles = 0.8/50.
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Figure 4-11. Phylogenetic analysis identifies multiple expansions of Sarl in
Archaeplastida. To determine whether the expansions of Sarl observed in P.
patens and A. thaliana (Figure 4-4) were limited to those two taxa or whether
expansions have also occurred in other plant lineages, an expanded phylogenetic
analysis of archaeplastid Sar1l sequences was carried out. Multiple lineage-specific
expansions can be observed in the Grasses (Zea mays, Oryzia sativa, Setaria italica),
Papilionoidae (Medicago truncatula, Glycine max), Rosales-Cucurbitales (Prunus
persica, Fragaria vesca, Cucumis sativus), and Brassicaceae (A. thaliana, Capsella
rubella, and Brassica rapa) (grey boxes). Species-specific expansions are also
prevalent, indicating that multiple expansions of Sarl have occurred during
archaeplastid evolution. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles 2 1.00/95, closed light

circles 2 0.95/75, open circles = 0.8/50.
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Figure 4-12. Phylogenetic analysis identifies an early duplication of Sec12 in
embryophytes. To determine the relative timing of the gene duplication giving rise
to the two archaeplastid Sec12 paralogues observed in Figure 4-5, an expanded
phylogenetic analysis of archaeplastid Secl2 sequences was carried out. The
analysis identified a gene duplication early in embryophytes (grey box), followed by
multiple instances of species-specific expansion. The best Bayesian topology is
shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-13. Phylogenetic analysis identifies multiple expansions of Sec13 in
embryophytes. To determine whether the expansions of Sec13 in A. thaliana and P.
patens (Figure 4-6) are found broadly across the Archaeplastida, phylogenetic
analysis using an expanded archaeplastid dataset was carried out. Two instances of
lineage-specific expansion were reconstructed; gene duplications in the
Brassicaceae (A. thaliana, C. rubella, and B. rapa, lower grey box) and in the Grass
lineage (Z mays, O. sativa, and S. italica. upper grey box) have occurred
independently. Multiple instances of genome-specific expansion have also occurred
(P. patens, F. vesca, G. max). The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles 2 1.00/95, closed light

circles 2 0.95/75, open circles = 0.8/50.
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Figure 4-14. Phylogenetic analysis identifies multiple expansions of Sec16 in
embryophytes. To determine whether the expansions of Secl6 observed in A.
thaliana and P. patens is limited to these two taxa or found broadly across
Archaeplastida, an expanded phylogenetic analysis of plant Sec16 sequences was
carried out. Two instances of lineage-specific expansion have occurred, one in the
Brassicaceae (A. thaliana, C. rubella, and B. rapa, lower grey box), and in the Grass
lineage (Z. mays, O. sativa, and S. italica, upper grey box). Multiple instances of
genome-specific expansion have also occurred (eg., G. max and Solanum
lycopersicum). All expansions are contained within the embryophyte clade. The best
Bayesian topology is shown. Numerical values represent Bayesian posterior
probabilities (Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95, closed light circles = 0.95/75, open circles =

0.8/50.
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Figure 4-15. Phylogenetic analysis of archaeplastid Sec23 sequences identifies
three major clades of Sec23. To determine whether the archaeplastid Sec23 clades
observed in Figure 4-8 are the result of an ancient gene duplication or phylogenetic
artefact, an expanded analysis of plant Sec23 sequences was carried out. Three
clades of Sec23 were reconstructed (grey boxes). Only two paralogues were found
in the glaucophyta Cyanophora paradoxa (middle and lower grey boxes), suggesting
that the ancestral archaeplastid possessed two Sec23 paralogues. A second
duplication then occurred in the ancestor of Viridiplantae (upper grey box).
Duplication in spermatophytes has also occurred in one of the clades (vertical lines,
middle grey box). Multiple instances of species-specific expansions have also
occurred in each of the three clades. Together, this suggests that the archaeplastid
ancestor likely possessed two Sec23 paralogues. The best Bayesian topology is
shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-16. Phylogenetic analysis of archaeplastid Sec24 sequences identifies
three paralogues in an early archaeplastid ancestor. In order to gain a better
understanding of the relationship between the three Archaeplastid clades observed
in Figure 4-9, an expanded analysis of plant Sec24 sequences was carried out. Three
Sec24 clades were reconstructed, indicating that multiple gene duplications
occurred in an early archaeplastid ancestor. These duplications likely occurred after
the divergence of glaucophytes, because both C. paradoxa sequences group to the
exclusion of the other Sec24 sequences. Two instances of lineage-specific expansion
have occurred in addition to multiple occurrences of species-specific expansion
within these larger clades (grey boxes). The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-17. Phylogenetic analysis identifies independent expansions of Sec31
in embryophytes. To determine whether or not the expansion of archaeplastid
Sec31 sequences is limited to P. patens and A. thaliana, an expanded analysis of
plant Sec31 sequences was carried out. A single instance of lineage-specific
expansion has occurred in the Brassicaceae (grey box). Multiple species-specific
expansions within embryophytes were also reconstructed. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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A potentially ancient duplication of Sec23 was also observed, possibly pre-
dating the LECA (Figures 4-8, 4-15). To address this question, the pan-eukaryotic
and expanded Archaeplastida datasets were combined and analyzed. Two distinct
Sec23 clades from the Archaeplastida were uncovered, one of which is embedded in
a group containing sequences from all other supergroups except the Excavata
(Figure 4-18). Although all of the sequences that make up this clade are long
branches, possibly contributing to phylogenetic artefact, at a minimum, the two
archaeplastid clades are the product of an ancient duplication that predates the

archaeplastid lineage.

4.4.3 Sed4 is a lineage-specific component present in a subset of the Saccharomycotina

In addition to Sec12, S. cerevisiae possesses an additional Sec12-like protein,
Sed4. Originally identified as a multicopy suppressor of Aerd2 (encodes HDEL
receptor; Hardwick et al,, 1992), Sed4 is thought to aid in the recruitment of COPII
components to the ER membrane by interacting with Sec16 (Gimeno et al., 1995)
and act as a positive regulator of Sarl, likely by inhibiting the GTPase activity of
Sec23 (Saito-Nakano and Nakano, 2000). Other analyses suggest that Sed4
possesses GAP activity and is able to stimulate GTP hydrolysis on Sarl when Bet1 is
not bound to Sarl, suggesting a method for aborting COPII vesicles with low cargo
density (Kodera et al., 2011). As S. cerevisiae is a major model organism for the
study of COPII function, it is important to address whether Sed4 is a general and
ancient component of the COPII complex.

The initial survey did not identify any Sed4 orthologues, indicating that the
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Figure 4-18. Phylogenetic analysis identifies two ancient Sec23 paralogues in
the ancestor of Archaeplastida. To determine whether or not other eukaryotes
possess orthologues of the Sec23 paralogues identified in Archaeplastida, the data
sets from Figure 4-8 and Figure 4-15 were combined and analyzed. Although there
is only moderate evidence to suggest the presence of a second ancient pan-
eukaryotic Sec23 paralogue, the analysis confirms the presence of two Sec23
paralogues in the ancestor of Archaeplastida. Two major groups of archaeplastid
sequences are visible (grey boxes). One has multiple expansions in land plants
(lower grey box). The presence of C. paradoxa in, or near the base of each clade is
suggestive that the duplication producing the two paralogues occurred prior to the
differentiation of the archaeplastid lineages. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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taxonomic distribution of this complex is limited compared to the other COPII
subunits. In order to identify the origin and distribution of Sed4, the fungal taxon
sampling was expanded. BLAST results suggested that some fungi had either Sec12
or Sed4, and very few species appeared to possess both. However, phylogenetic
analysis revealed that most of these sequences are bona fide Sec12 orthologues,
with Sed4 orthologues only present in Saccharomyces bayanus, Saccharomyces
paradoxus, Saccharomyces mikatae, and Candida glabrata, suggesting that the gene
duplication generating Sed4 occurred in the ancestor of the Saccharomyces spp. and
Candida glabrata (Figure 4-19A).

In order to gain some additional insight into the biology of Sed4, its tertiary
structure was predicted. Homology modeling is generally reliable when the query
and the primary sequence of a solved structure share at least 30% sequence identity
(Kelley and Sternberg, 2009; Xiang, 2006). The high level of sequence identity
between Sed4 and Sec12 (45%; Hardwick et al.,, 1992) combined with the recently
solved structure of the cytosolic portion of Sec12 (McMahon et al.,, 2012) should
provide a reliable structural prediction for Sed4. The Phyre2.0 server was used to
model the structure of Sed4 (Kelley and Sternberg, 2009). As predicted, the
structure of Sec12 was identified as the best homologue from which to model Sed4.
Phyre2.0 modeled 32% of Sed4 (corresponding to the cytosolic portion) with 100%
confidence. The low coverage is the result of homology limited to the cytosolic
portions of Sec12 and Sed4, whereas, the extended luminal domain of Sed4 does not
seem to share any sequence similarity to the luminal domain of Sec12. Although

Sed4 has lost the ability to act as a Sar1l GEF (Saito-Nakano and Nakano, 2000), it
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Figure 4-19. Sed4 is a f-propeller protein with limited taxonomic distribution
within Fungi. Phylogenetic analysis shows that Sed4 is only present in a subset of
the Saccharomycotina, and homology modelling predicts a tertiary structure similar
to Sec12. A) Phylogenetic analysis of Sec12 and Sed4 sequences from representative
fungal genomes shows that Sed4 is the product of a gene duplication in the ancestor
of Candida glabrata and Saccharomyces spp., not an ancient component of the COPII
complex. The best Bayesian topology is shown. Numerical values represent
Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap
values (RAXML). Nodes of interest are in bold. Values for other supported nodes
have been replaced by symbols: closed dark circles = 1.00/95, closed light circles =
0.95/75, open circles = 0.8/50. B) Homology modeling of Sed4 using the Phyre2.0
server predicts that Sed4 is a 3-propeller protein with a similar tertiary structure to
Sec12. C) Crystal structure of the cytosolic portion of the S. cerevisiae Sec12 for

comparison (PDB: 4H5I; McMahon et al, 2012).
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has retained significant structural similarity to Sec12 (Figure 4-19B, C). Sed4 is a 8-
propeller protein, as has been proposed previously (Chardin and Callebaut, 2002),
and possesses a predicted K-loop, a short loop at the N-terminal propeller that binds
a K* thought to be important for the interaction of Sec12 (Figure 4-19C) with Sarl1,
suggesting that Sed4 may interact with Sar1 by a similar mechanism. In sum, Sed4 is
not an ancient, widespread COPII component, but rather is a recently added

regulatory component found in a subset of fungi.

4.4.4 Multiple paralogues of Sec24 were present in the LECA

The phylogenetic analysis of the Sec24 tree (Figure 4-9) failed to show
backbone resolution between potentially ancient paralogues. However, recurring
clades were apparent (Holozoa, Fungi, SAR/CCTH, and Archaeplastida), suggesting
that more than one paralogue of Sec24 may have been present in the LECA. To test
this hypothesis, the Scrollsaw approach was used. Scrollsaw is a phylogenetic
approach capable of gaining resolution between paralogues of large gene families
where only short regions of sequence homology are available, by breaking large
datasets into lineage-specific datasets and analyzed. Short branches are identified to
act as surrogates for larger clades. These short branches are then combined in order
to resolve the larger tree (Elias et al., 2012; Gabernet-Castello et al., 2013). The
extensive structural (Bi et al,, 2002) and sequence similarity (Yoshihisa et al., 1993)
between Sec23 and Sec24 suggest a common ancestor for these two coat subunits
(Tang et al., 1999). Therefore, Sec23 sequences were included in the analysis as an

outgroup for Sec24. An alignment of all Sec24 and Sec23 sequences was
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constructed, and was then broken into supergroup-specific datasets and analyzed
(Figures 4-20 - 4-24).

Previous analyses of Sec24 have suggested ancient duplication events in the
history of this component (Pagano et al., 1999; Tang et al.,, 1999); alignments and
phylogenetic analyses showed that the human Sec24A, Sec24B, and S. cerevisiae
Sec24p are more similar and group separately from the human Sec24C, Sec24D, and
S. cerevisiae Stb2 and Sfb3 sequences. This suggested that there were likely at least
two paralogues of Sec24 in opisthokonts, and that these groups of paralogues
represent the descendants of those lineages. In each phylogenetic analysis, the
Sec24 sequences were largely resolved into two major clades. Based on the
reciprocal best hit against the human genome, these corresponded to those that
preferentially retrieved H. sapiens Sec24A and B, and those that retrieved Sec24C
and D. To differentiate the two clades, they have been named: Sec24l, which
corresponds to the group containing H. sapiens Sec24A and Sec24B, and Sec24l],
which corresponds to the group containing H. sapiens Sec24C and Sec24D.

Next, the two shortest branches from each clade, including Sec23, were
retained for use in a pan-eukaryotic phylogenetic analysis, with the selected
sequences acting as surrogates for the rest of the supergroup (Figure 4-25). Most
supergroups possessed two Sec24 clades along with additional unclassified Sec24
sequences. Rooting with Sec23 resulted in a paraphyletic Sec24I cluster, which was
suspected to be a misplacement of the root. Removal of all Sec23 sequences from the

analysis (Figure 4-26) clearly shows two distinct Sec24 clades.
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Figure 4-20. Phylogenetic analysis identifies one Sec23 paralogue and two
Sec24 paralogues in Opisthokonta. Phylogenetic analysis was carried out to
determine the number of opisthokont Sec24 clades, and the shortest branches
therein, for use in the Scrollsaw analysis. Two well-supported clades of Sec24 were
reconstructed (grey boxes), labelled Sec24l which corresponds to the clade
containing the human Sec24A and Sec24B sequences, and Sec24Il which
corresponds to the clade containing the human Sec24C and Sec24D sequences. A
single strongly supported Sec23 clade was also reconstructed. Taxa used for
Scrollsaw analysis are indicated in bold. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-21. Phylogenetic analysis identifies one Sec23 paralogue and three
Sec24 paralogues in Amoebozoa. Phylogenetic analysis was carried out to
determine the number of Sec24 paralogues in the Amoebozoa and to identify the
shortest branches for incorporation into the Scrollsaw analysis. Three clades of
Sec24 were reconstructed (grey boxes). The clade labelled Sec24I corresponds to
sequences that preferentially retrieved either the human Sec24A or Sec24B
sequences during reciprocal BLAST analysis, while the clade labelled Sec24Il
corresponds to sequences that retrieved the human Sec24C and Sec24D sequences
during reciprocal BLAST analysis. The clade labelled Sec24IIl contains sequences
that retrieved a mix of the human Sec24A, Sec24B, Sec24(C, and Sec24D sequences.
Sec24l and Sec24lIl are strongly supported clades, whereas Sec24Il only received
moderate support. Only a single clade of Sec23 is recovered. Taxa used for Scrollsaw
analysis are indicated in bold. The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (Phylobayes)/Maximum-
Likelihood bootstrap values (RAxML). Nodes of interest are in bold. Values for other
supported nodes have been replaced by symbols: closed dark circles = 1.00/95,

closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-22. Phylogenetic analysis identifies one Sec23 paralogue and two
Sec24 paralogues in the Excavata. Phylogenetic analysis of excavate sequences
was carried out to determine the number of Sec24 paralogues and to identify the
shortest branches for inclusion in the Scrollsaw analysis. Two Sec24 clades are
discernable (grey boxes). The G. lamblia Sec24 sequences remain unresolved;
therefore, they were unable to be classified into one of the two paralogous clades.
Sec23 forms a single strongly supported clade with an expansion in T. brucei and L.
major. Taxa used for Scrollsaw analysis are indicated in bold. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-23. Phylogenetic analysis identifies two Sec23 paralogues and three
Sec24 paralogues in the Archaeplastida. Phylogenetic analysis was carried out
determine the number of Sec24 paralogues in the Archaeplastida and to identify the
shortest branches in each clade for use in the Scrollsaw analysis. Sec241 and Sec24I1
are weakly recovered, while Sec24lIl is strongly supported (grey boxes). Two clades
of Sec23 were also resolved, labelled Sec23I and Sec23Il. Taxa used for Scrollsaw
analysis are indicated in bold. The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (Phylobayes)/Maximum-
Likelihood bootstrap values (RAxML). Nodes of interest are in bold. Values for other
supported nodes have been replaced by symbols: closed dark circles = 1.00/95,

closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-24. Phylogenetic analysis identifies one Sec23 paralogue and three
Sec24 paralogues in the SAR and CCTH. Phylogenetic analysis was carried out to
determine the number of Sec24 paralogues in this supergroup and to identify the
shortest branches in each clade. Sec24] was moderately supported while Sec24III
was weakly recovered. Sec24Il is paraphyletic. One clade of Sec23 was recovered.
All clades were weakly to moderately supported. Taxa used for Scrollsaw analysis
are indicated in bold. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (Phylobayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles 2 1.00/95, closed light

circles 2 0.95/75, open circles = 0.8/50.
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Figure 4-25. Round one of Scrollsaw analysis identifies one Sec23 and at least
two Sec24 paralogues in the LECA. To reconstruct the number of Sec24
paralogues in the LECA, surrogate (bolded) taxa were incorporated into a single
data set for analysis. One clade of Sec23 is reconstructed. At least one paralogue of
Sec24 was present in the LECA, as Sec24Il is reconstructed with moderate support
whereas Sec24l is paraphyletic. The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (Phylobayes)/Maximum-
Likelihood bootstrap values (RAxML). Nodes of interest are in bold. Values for other
supported nodes have been replaced by symbols: closed dark circles = 1.00/95,

closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 4-26. Round two of Scrollsaw identifies two clades of Sec24 in the LECA.
To reduce any phylogenetic artefact contributing to the paraphyly of Sec24I, all
Sec23 sequences were removed from the analysis. Both Sec24l and Sec24Il are
reconstructed as strongly supported groups. This result indicates that at least two
Sec24 paralogues were present in the LECA. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities
(Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest
are in bold. Values for other supported nodes have been replaced by symbols: closed

dark circles = 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Upon analyzing the supergroup-specific dataset for the Archaeplastida, a
third clade of Sec24 sequences that did not correspond to one of the paralogous sets
found in opisthokonts became apparent. Each of the other supergroup-specific
datasets was re-examined (Figures 4-20 - 4-24) to determine if they also possessed
extra clades of Sec24 paralogues. Additional clades were identified in both the
SAR/CCTH and Amoebozoa datasets. Results from BLAST searches indicate that
these paralogues retrieve each other as top BLAST hits rather than paralogues from
Sec24l or Sec24ll, suggesting that these sequences may represent a third ancient
Sec24 paralogue. To confirm that these sequences do not represent multiple
convergent, lineage-specific expansions, a phylogenetic analysis of Sec24 sequences
from only these taxa was carried out (Figure 4-27). These sequences formed a group
to the exclusion of all other Sec24s, indicating that they represent a third paralogue.
This clade was labelled Sec24IIl. Given that the taxa in this clade span the diversity
of the eukaryotic tree, this group likely represents yet another Sec24 paralogue that
was present in the LECA.

The two shortest branches from each Sec24III clade of each supergroup were
added into the Scrollsaw dataset. This analysis recovered a weakly supported
Sec24II clade and paraphyletic Sec241 and Sec24IIl clades (Figure 4-28). To avoid
any impact of LBA resulting from large evolutionary distances between Sec23 and
Sec24, all Sec23 sequences were removed from the analysis (Figure 4-29). In doing
so, a moderately supported Sec24IIl clade was recovered, but with no resolution
between Sec24l and Sec24Il. This analysis confirmed the presence of three Sec24

paralogues present in the LECA. However, the lack of backbone support in outgroup
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Figure 4-27. Phylogenetic analysis of archaeplastid, amoebozoan, and
SAR/CCTH Sec24 sequences identifies a third ancient Sec24 paralogue. To
determine whether the additional Sec24Illl clades identified in the Amoebozoa,
Archaeplastida, and SAR/CCTH represent a third ancient Sec24 paralogue or are
independent lineage-specific expansions, a phylogenetic analysis combining the
Sec24 sequences from these supergroups was carried out. The analysis
reconstructed a single clade containing all of the extra Sec24 sequences, labelled
Sec24Ill, suggesting that a third Sec24 paralogue was present in the LECA. The best
Bayesian topology is shown. Numerical values represent Bayesian posterior
probabilities (Phylobayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes
of interest are in bold. Values for other supported nodes have been replaced by
symbols: closed dark circles = 1.00/95, closed light circles = 0.95/75, open circles =

0.8/50.
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Figure 4-28. Round three of Scrollsaw identifies one Sec23 paralogue and
multiple Sec24 paralogues. In order to determine the relationship between the
three ancient Sec24 paralogues the Sec24IIl sequences were incorporated into the
original Scrollsaw data set (Figure 4-25). Although Sec24lIl is paraphyletic, it
diverges before Sec24l and Sec24Il. Sec24l is also paraphyletic but groups with
Sec24II to the exclusion of Sec24IIl. Only Sec24lI is recovered as a single supported
clade. The best Bayesian topology is shown. Numerical values represent Bayesian
posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap values
(RAxXML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95, closed light circles = 0.95/75,

open circles = 0.8/50.
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Figure 4-29. Round four of Scrollsaw shows that Sec24III forms a distinct clade
from Sec24I and Sec24Il. In order to remove any phylogenetic artefact and to
increase the signal-to-noise ratio in the data set, all Sec23 sequences were removed.
Re-analyzing the data set resulted in the reconstruction of a monophyletic Sec24III
clade. Sec241l was reconstructed, but unsupported, and Sec24] was paraphyletic.
The best Bayesian topology is shown. Numerical values represent Bayesian
posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap values
(RAxML). Nodes of interest are in bold. Values for other supported nodes have been
replaced by symbols: closed dark circles = 1.00/95, closed light circles = 0.95/75,

open circles = 0.8/50.
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rooted analyses prevented the recovery of branching order between the three

paralogues (Figure 4-28).

4.5 Discussion

The COPII complex was one of the last coat complexes not characterized by
comparative genomic and phylogenetic methods, and represents one of the last
members of the protocoatomer fold-containing proteins for which these data were
not available. The COPII coat is also one of the only membrane deformation
complexes strictly involved in secretion, representing an important sampling point
in order to gain a complete understanding of the evolution of the vesicle formation
machinery. Therefore, comparative genomic and phylogenetic analyses were carried
out in order to assess the distribution and evolution of subunits belonging to the

COPII coat complex.

4.5.1 COPII and the evolution of a non-heterotetrameric coat complex

Comparative genomic analyses revealed that the machinery involved in the
formation of COPII coats are all broadly conserved across eukaryotes with Sarl,
Sec23, Sec24, Sec13, and Sec31 found in all organisms analyzed, while Sec12 and
Sec16 are missing from multiple lineages. The broad distribution of these subunits
suggests that this form of the COPII complex was present in LECA (Neumann et al,,
2010). Phylogenetic analysis also allowed the reconstruction of paralogue numbers
for each subunit present at that time. With the exception of three paralogues of

Sec24, only one copy of each subunit was present, suggesting that Sec24 may have
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been one of the first drivers of complexity in this coat system. Sec24 is the primary
cargo binding subunit of the complex; therefore, multiple paralogues would have
allowed for a greater diversity and specificity of cargo to be transported by COPIL. It
has been observed that some Sec24 paralogues have multiple binding sites each
with specificity for different sorting signals or cargoes (Miller et al, 2003;
Mossessova et al., 2003; Sucic et al., 2011; Wendeler et al., 2007), suggesting that the
cargo specificity of Sec24 paralogues evolved early on in the eukaryotic lineage.
Multiple paralogues, each with multiple binding sites, would have drastically
increased the number of different cargo molecules capable of binding and would
have permitted fine tuning of cargo specificity. The LECA is thought to have been a
biflagellated organism (Cavalier-Smith et al.,, 2014); however, it remains unclear
what other lifecycle stages (i.e., amoeboid, etc.) it may have had. Should it be the
case that the LECA underwent multiple lifecycle stages, encoding multiple
differentially expressed forms of Sec24 would have enabled tighter regulation of the
coat complex, as well as provide an additional regulatory mechanism for the various
cargoes to be exported. This additional ancient Sec24 paralogue is yet another
example of ancient, patchy proteins that are found in diverse eukaryotic taxa, but
that have been lost from opisthokonts (Elias et al., 2012; Gabernet-Castello et al,,
2013; Herman et al., 2011; Schlacht et al., 2013; Schlacht et al., 2014). The apparent
asymmetry in the distribution of these proteins is suggestive of novel cell biology
not found in typical model systems (i.e, mammals, yeast). As Sec24lIl is found in
stramenopiles, plants, and amoebozoans, taxa with ecological, agricultural, and

medical importance, this protein may represent a useful target for exploitation.
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4.5.2 Sec12 and Sec16 are frequently missing

The observation that both Secl6 and Secl2 are widely distributed, but
seemingly missing from a variety of organisms, requires some reconciling with the
literature. Sec12 is a Sarl GEF and is responsible for activating Sarl by swapping
GDP for GTP, recruiting it to the ER membrane (Barlowe and Schekman, 1993;
Weissman et al., 2001). Sec16 on the other hand, is a multifunctional scaffolding
protein involved in both the recruitment of COPII subunits and has been implicated
in regulating GTP hydrolysis (Kung et al., 2012). However variability in its precise
function, and when and how Sec16 is incorporated into COPII vesicles has been
observed (linuma et al,, 2007; Ivan et al., 2008). The most likely explanation is that
many of the observed absences of Sec12 and Secl6 represent cases of extreme
sequence divergence and that in vivo analyses will likely identify divergent
orthologues of these proteins.

On the other hand, if these absences are in fact gene losses, then they have
occurred multiple times independently, with Sec12 being lost much more frequently
than Sec16. This is surprising since Secl2 essentially acts to initiate COPII coat
formation. However, Sec16 has been shown to be essential for vesicle formation in S.
cerevisiae (Kaiser and Schekman, 1990). Very few organisms are missing both
subunits, which could suggest that lower levels of ER to Golgi trafficking are
necessary in these organisms or that, given the appropriate cellular conditions,
these factors are not necessary for the formation of COPII coated vesicles.
Alternatively, other GEFs or scaffold proteins may have functionally replaced Sec12

or Secl6. Promiscuity between GAPs and their GTPases has previously been
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observed in vitro, with ELMOD2, an Arf-like protein GAP, being able to replace

ArfGAPs and stimulate GTP hydrolysis on Arf (East et al., 2012).

4.5.3 Model for the evolution of the COPII complex

Phylogenetic analysis and reconstruction of the COPII coat complex in the
LECA allows us to propose a model for the evolution of the coat from its state in
early eukaryotes to its current incarnation in extant lineages; however, this model
does not intend to imply any precise stoichiometry or quaternary structure, but
simply propose a set of steps that may have occurred to give rise to this trafficking
complex. The earliest form of COPII was likely made up of Sar1, Sec13, Sec31, and a
preduplicate of Sec23 and Sec24 (preSec23/24; Figure 4-30Ai, Aii) that worked as a
heteromeric complex. The preSec23/24 may have possessed both the Sarl-
binding/GAP activity of Sec23 and the cargo binding capability of Sec24, suggesting
that the preSec23/24 could bind both Sarl and cargo. Alternatively, the
preSec23/24 may have bound either Sar1 or cargo if these binding sites overlapped.
Sar1 is also capable of binding cargo and may also have contributed to cargo binding
in this ancient complex (Springer and Schekman, 1998). Eventually, Sec12 and
Sec16 would be added to the coat-forming process (Figure 4-30Bi). Next, Sarl-
binding/GAP activity and cargo binding were separated by the duplication of the
preSec23/24 producing distinct Sec23 and Sec24 subunits (Figure 4-30Ci), possibly
fixing their functions as the GAP and cargo binding subunits through

subfunctionalization. Finally, iterative gene duplications would increase the cargo
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specificity and capacity of COPII by giving rise to the three paralogues of Sec24

present in the LECA (Figure 4-30D).
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Figure 4-30. Model for the evolution of the COPII complex from its earliest
beginnings to the LECA. The left column represents the evolving complement of
COPII coat components present in the eukaryotic lineage up to the LECA. The right
column represents the evolution and hypothetical pre-budding complex across the
same timeline. Note: this model is not meant to represent the stoichiometry or
quaternary structure of individual subunits of the complex, but rather, is a
hypothesis for the evolution of the complex itself. (Left column, Subunits Present)
The earliest COPII coat was composed of Sarl, Sec13, Sec31, and a preduplicate of
Sec23 and Sec24 (preSec23/24; Ai). Next, Secl2 and Secl6 would appear (Bi).
Following this, a gene duplication of the preSec23/24 would have given rise to
distinct Sec23 and Sec24 subunits (Ci). Finally, Sec24 would have undergone
sequential gene duplications producing the three paralogues present in the LECA
(D). (Right column, Pre-budding Complex) Two copies of preSec23/24 likely
interacted during coat formation with two possibilities for protein binding: both
copies of preSec23/24 may have been able to bind both Sarl and cargo (Aii).
Alternatively, one bound Sarl and the other bound cargo (Bii). The precise
configuration would have depended on the location of Sarl and cargo binding sites
in the preSec23/24 subunit. From here, the duplication of preSec23/24 produced
Sec23 and Sec24, resulting in the subfunctionalization and fixation of GAP activity

and cargo binding into two distinct subunits (Cii).
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Chapter 5: Comparative genomic and phylogenetic analysis of the newly

discovered TSET complex

This chapter has been published as:
Hirst, ].*, Schlacht, A.*, Norcott, ].P., Traynor, D., Bloomfield, G., Antrobus, R., Kay,
R.R,, Dacks, ].B., Robinson, M.S. 2014. Characterization of TSET, an ancient and

widespread membrane trafficking complex. eLife 3: e02866

*These authors contributed equally to this work
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5.1 Overview

In the previous chapter, we examined the evolution of the COPII complex,
important for trafficking in the early secretory system, and its strong conservation
throughout eukaryotes. Chapter 5 similarly describes a novel coat complex from a
comparative genomic and phylogenetic perspective. Although current evidence
points to a function in the endocytic system, the TSET complex represents another
example of a “patchy protein,” proteins with a broad distribution across eukaryotes,
but that are frequently lost. It should be noted that initial identification and all
functional characterization of the complex was carried out by collaborators at the
University of Cambridge, namely Dr. Jennifer Hirst and Dr. Margaret Robinson, who
approached the Dacks lab to characterize this complex from an evolutionary
perspective. This chapter will describe an evolutionary analysis of the newly
identified TSET complex. Comparative genomics will be used to determine its
distribution across eukaryotes and phylogenetic analysis will determine its

relationship to other coat proteins, providing a model for its evolution.

5.2 The adaptins, heterotetrameric coat complexes

Post-TGN transport, both to the plasma membrane and within the
endolysosomal system, is carried out by a related set of coat proteins called adaptor
protein (AP) complexes. The endolysosomal system is responsible for a variety of
functions, including degradation of proteins and lipids from within the cell, in
addition to material brought into the cell either through endocytosis or through

phagocytosis. This arm of the membrane trafficking system is also important for the
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genesis of regulated secretory granules, such as dense core granules found in animal
cells, or mucocysts and trichocysts found in ciliates (Elde et al., 2007).

Five distinct AP complexes have been identified, each of which is found
across the diversity of eukaryotes and were present in the LECA (Hirst et al,, 2011).
Each complex is made up of two large (f1-5 and y/0/8/¢/C, respectively), one
medium (u), and one small (o) subunit (Boehm and Bonifacino, 2001). Both large
subunits are primarily composed of a-solenoids, and are the result of an ancient
pre-LECA gene duplication producing the  and yadeC clades (Duden et al., 1991;
Schledzewski et al, 1999). The w subunit is composed of an N-terminal longin
domain and a C-terminal Mu-homology domain, and is primarily responsible for
binding cargo (Owen and Evans, 1998). The o subunit is a solitary longin domain
(Rossi et al., 2004). The four subunits form a complex with the N-terminal regions of
the large subunits, and the medium and small subunits forming the core of the
complex, and the linker and ear domains of the large subunits extending beyond the
rest of the complex (Robinson and Bonifacino, 2001).

The AP-1 complex is primarily localized to the TGN, and is responsible for
bidirectional clathrin-dependent trafficking between the TGN and endosomes (Ren
et al., 2013; Zhu et al,, 1999). Localization to the TGN is the result of its interaction
with Arfl and phosphatidylinositol 4-phosphate (PI14P; Wang et al., 2003). AP-1 has
also been shown to traffic cargo to the cell surface (Folsch et al., 1999). Studies in
mice have shown AP-1 knockouts to be embryonic lethal (Meyer et al., 2000; Zizioli

etal,, 1999).
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The AP-2 complex mediates clathrin-dependent endocytosis at the plasma
membrane of a variety of cargoes, including cell surface receptors and adhesion
molecules, as well as their transport to early endosomes (Kamiguchi et al., 1998;
Rappoport and Simon, 2009; Usami et al., 2014). Unlike the other AP complexes, AP-
2 is primarily recruited by the presence of specific phosphoinositides, PI1(4,5)P,
rather than an activated GTPase (Gaidarov and Keen, 1999; Jackson et al., 2010).
Knockout of AP-2 has also been shown to be embryonic lethal.

The AP-3 complex is involved in endolysosomal trafficking that may or may
not depend on clathrin (Peden et al., 2002). Although initially identified as clathrin
independent (Simpson et al., 1997), the potential for clathrin binding does exist, as
the B-subunit possesses a clathrin-binding motif that is able to interact with clathrin
in vitro (Dell’Angelica et al.,, 1998). However, mutation or deletion of the clathrin
binding site does not impact complex formation, trafficking of Lamp1 to lysosomes,
or the localization of AP-3 with respect to clathrin, suggesting that, even if an
interaction with clathrin is possible, it is not necessary for trafficking of cargo
(Peden et al,, 2002). Instead, AP-3 has been proposed to interact with Vps41, a p-
propeller/a-solenoid containing member of the HOPS multisubunit tethering
complex (Asensio et al., 2013; Plemel et al., 2011; Rehling et al., 1999). AP-3 is also
involved in the biogenesis of lysosome-related organelles, evidenced by its role in
Hermansky Pudlak Syndrome type 2, a disorder characterized by oculocutaneous
albinism and platelet abnormalities, resulting in excessive bleeding, generally
resulting from the malformation of lysosome-related organelles (Dell’Angelica et al.,

1999b).
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The AP-4 complex appears to be a clathrin independent AP complex that
localizes primarily to the TGN (Dell’Angelica et al., 1999a; Hirst et al., 1999). There
are conflicting reports concerning the acceptor compartment of AP-4 coated
transport intermediates. In polarized epithelial cells, AP-4 is important for sorting
cargo to basolateral membranes (Simmen et al, 2002). In HeLa cells, amyloid
precursor protein (APP) is distributed between the Golgi complex, endosomes and
the plasma membrane (Caporaso et al,, 1994; Haass et al., 1992). Depletion of AP-4
results in the redistribution of APP to the TGN from endosomes, suggesting a
trafficking route to endosomes (Burgos et al, 2010). This conflicting evidence
suggests that AP-4 may be involved in trafficking cargo to both endosomes and the
plasma membrane (Hirst et al,, 2013a).

Less is known about the more recently discovered AP-5 complex (Hirst et al,,
2011). AP-5 is thought to play a role in endosomal trafficking, likely at the late
endosome or lysosome. The available evidence suggests that AP-5 does not interact
with clathrin; immunoprecipitation experiments using AP-5p did not identify
clathrin as an interaction partner (Hirst et al,, 2011), moreover B5 also lacks the
clathrin binding box normally located in the linker region of the B-subunit. The
secondary clathrin binding motifs, LLDLL and YQW (Dell’Angelica et al., 1998),
generally present in the $-subunit are also missing (Hirst et al., 2011). Instead, AP-5
is thought to interact with SPG11 and SPG15, two proteins involved in hereditary
spastic paraplegia, of which SPG11 shares structural similarity to both clathrin

heavy chain and ’-COPI and a-COPI (Hirst et al., 2011), suggesting that they may act
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as an additional membrane deformation complex (Hirst et al.,, 2013a; Hirst et al,,
2013b).

Multiple groups have analyzed the evolution of the AP complexes. The
earliest analysis, carried out by Duden et al, (1991) showed COPI-f branching
earlier than all other adaptin large-subunit sequences. As more adaptin-relate
sequences were identified in more species, phylogenetic analyses carried out by
Schledzewski et al, (1999), identified an early branching order for the APs and the
related COPI complex. As it was known that the large subunits [ and yod (AP-4 and
AP-5 had not yet been discovered)] were part of a large multigene family (Simpson
et al., 1997), likely having evolved from ancient gene duplications, they combined
the datasets for both subunits. This would allow the § subunits to root the yod tree,
and vice versa. Similarly, it was known that the N-terminal domain of the medium
subunits and the entirety of the small subunits show clear sequence similarity
(Cosson et al., 1996), and were therefore included in the same analysis in order to
root the other subunit. Each subunit revealed the same branching order of COPI,
followed by AP-3, then AP-1, and AP-2. The exception was the $-subunit of AP-1 and
AP-2, which formed a single group, revealing that the f1 and B2 subunits found in
humans are the result of a gene duplication after the divergence of arthropods (D.
melanogaster). This was also observed by Dacks et al, (2008); using a more
expansive set of taxa, at least three duplications producing independent 1 and (32
subunits have occurred throughout eukaryotes. More recently, an additional gene
duplication of the § subunit in Fungi has been identified (Barlow et al., 2014). A

recent concatenated phylogenetic analysis incorporating AP-4 and AP-5 revealed a
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similar topology as Schledzewski et al., (1999); Hirst et al,, (2011) showed that AP-3
is the earliest branching AP, followed by AP-5, AP-4, AP-1, and AP-2, with COPI
branching outside of the AP clade.

In this chapter, I will carry out a comparative genomic and phylogenetic
analysis of the recently discovered TSET complex. TSET is thought to be related to
the AP complexes and COPI. Therefore, phylogenetic analysis will be carried out to
determine the relationships between these three sets of coats. TSET will also be
incorporated into an existing framework for the evolution of AP and COPI
complexes in order to determine how these complexes, and the membrane

trafficking system more broadly, evolved.

5.3 Abbreviated materials and methods

As the initial protein sequences of TSET were identified using an HHpred-
based approach that incorporates structural information into HMMs, the forward
BLAST step in comparative genomics was forgone in favour of HMM-based
searching using HMMer. Taxa sampled are shown in Figure 5-1. HMMER searches
were carried out as in section 2.2.2, with reciprocal BLAST experiments for
validation of orthology carried out against the A. thaliana, D. discoideum, and N.
gruberi genome databases. Phylogenetic analyses were carried out as in section 2.3.
Table 5-1 contains details of each phylogenetic analysis, including: number of taxa,
length of masked alignment, and model parameters for each method. Phylogenetic

analyses were carried out using the CIPRES web server (Miller et al., 2010).
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Figure 5-1. Eukaryotic taxa used in comparative genomic analysis. Summary of
all taxa used to search for subunits of TSET and their relative phylogenetic positions.

Taxa are coloured by supergroup.
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Structural modeling was carried out using the Phyre2.0 server as described in

section 2.4.

Table 5-1. Parameters of phylogenetic analysis, corresponding dataset, and figure

number for each TSET subunit. Phylobayes and PhyML were only implemented for

the concatenated phylogenetic analysis.

Figure Dataset Number Length of Evolutionary model used
name of taxa alignment MrBayes RAxXML Phylobayes PhyML
(a.a)
5-5 mixed +
TPLATE.R2 121 560 gamma LG+CAT+F - -
5-6 mixed +
TPLATE.R4 91 402 gamma LG+CAT+F - -
5-7 mixed +
TSAUCER.R2 154 562 gamma LG+CAT+F - -
5-8 mixed +
TSAUCER.R4 123 284 gamma LG+CAT+F - -
5-9 mixed +
TCUP.R2 159 379 gamma LG+CAT+F - -
5-10 mixed +
TCUP.R4 133 187 gamma LG+CAT+F - -
5-11 mixed +
TSPOON.R2 139 141 gamma LG+CAT+F - -
5-12 mixed +
Concat.R6 112 1466 gamma LG+CAT+F LG+CAT LG+I+G+F
5-13 mixed +
TTRAY.R4 60 437 gamma LG+CAT+F - -
5-14 mixed +
TTRAY.R5 28 376 gamma LG+CAT+F - -
5.4 Results

5.4.1 Identification of TSET, a novel heterotetrameric coat complex

Following on their discovery of AP5, Dr. Hirst and Dr. Robinson set out to

determine if additional undetected AP-like coat complexes exist. They constructed

and validated a new approach to identify highly divergent sequences. They initially
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identified four sequences corresponding to subunits of an AP complex in three
unrelated organisms: A. thaliana, D. discoideum, and N. gruberi, suggesting the
presence of a previously unreported coat complex (Hirst et al., 2014). However, the
mere presence of four subunits does not guarantee complex formation;
immunoprecipitation in the model organism D. discoideum and mass spectrometry
were carried out in an attempt to show interaction. As expected, each subunit
precipitated at roughly equimolar ratios (Figure 5-2), indicating that these subunits
do indeed form a complex in vivo (Hirst et al., 2014). In addition, they identified two
additional subunits that bind the AP-like core to form the complete coat (Hirst et al.,
2014). The p-adaptin-like subunit had previously been identified in A. thaliana by
screening for mutants in cell plate formation during cell division, and was named
TPLATE (Van Damme et al,, 2011). The other subunits were named using the same
pattern: the y-like is called “TSAUCER’, the u-like is called “‘TCUP’, the o-like is called
‘TSPOON’, and the outer components identified by immunoprecipitation were
named ‘TTRAY1' and ‘TTRAY?2’, respectively. The analyses represented by Figure 5-
2 were carried out by Dr. Hirst, but are shown here as they represent an important

step in the validation of the TSET complex.

5.4.2 Structural predictions indicate that TSET is structurally similar to the AP
complexes

To confirm that the sequences identified by Dr. Hirst and Dr. Robinson are
indeed structurally similar to other known adaptin and COPI subunits, tertiary

structure predictions were carried out using the Phyre2.0 server on the sequences
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Figure 5-2. TSET subunits interact to form a complex. Immunoprecipiation using
GFP-tagged TSPOON expressed in D. discoideum was carried out in order to
determine whether the four TSET subunits interact in vivo. Shown are iBAQ ratios
(an estimate of molar ratios) for proteins that consistently precipitate with GFP-
TSPOON. All subunits appear to be equimolar. Higher ratios of GFP and GFP-

TSPOON are the result of overexpression.
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from A. thaliana, D. discoideum, and N. gruberi. Members of the TSET complex are
predicted to have structures similar to those predicted for the corresponding
AP/COPI subunit (Figure 5-3). All three TPLATE sequences are predicted as a-
solenoid proteins, consistent with known AP structures (Heldwein et al., 2004).
Similarly, TSAUCER is also predicted to be an a-solenoid protein, based on modeling
against the structures of clathrin adaptor (AP) proteins. However, the A. thaliana
structure was poorly predicted, likely the result of a C-terminal SH3 domain
confounding the signal during the PSI-BLAST step of the Phyre search, resulting in
the inclusion of unrelated SH3-domain-containing proteins. Removal of the SH3
domain resulted in a coiled-coil structure modeled from an alpha helicoidal repeat
protein; however, the second best template was AP-1y, suggesting that the A.
thaliana TSAUCER does indeed form an a-solenoid. The medium subunit of AP/COPI
complexes is composed of an N-terminal longin domain, and a C-terminal Mu-
homology domain (Rossi et al.,, 2004). None of the structures predicted a complete
medium subunit-like fold for any TCUP sequence; however, elements of that fold
were recovered in each sequence analyzed. The A. thaliana and N. gruberi sequences
were modeled from S. cerevisiae Syplp protein, a mu-homology domain-containing
protein not known to be part of any extant coat complex. Neither of these two
sequences were modeled as possessing the N-terminal longin domain, but the mu-
homology domain of the A. thaliana sequences was much better predicted than that
of the N. gruberi sequence. By contrast, the D. discoideum TCUP sequence was
modeled as possessing the N-terminal longin domain, but not the C-terminal mu-

homology domain. Finally, for all three organisms, the small subunit, TSPOON, was
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Figure 5-3. Predicted tertiary structures of TSET subunits from A. thaliana, D.
discoideum, and N. gruberi. Structural predictions for each TSET subunit from A.
thaliana, D. discoideum, and N. gruberi were carried out using the Phyre2.0 server
(see section 2.4), with the model selected by the program to predict the structure in
parentheses above each panel. Structural predictions are consistent with known
structures of AP subunits. The TPLATE and TSAUCER sequences are modelled as a-
solenoids. The TCUP sequences are modelled as a combination of longin and mu-
homology domain-containing proteins. The three TSPOONs are all modelled as
longin domains and the TTRAYs are modelled as (-propeller/a-solenoid domain-
containing proteins. In all but two cases, a homologous protein was used for
structural modeling. The A. thaliana TSAUCER was modeled without the C-terminal
SH3 domain because it resulted in the use of an SH2 domain containing protein,
creating a poor quality prediction. The D. discoideum TCUP was modeled using COPI-
C rather than 9§, likely because of an extremely divergent, or missing, mu-homology

domain. No model is shown for N. gruberi TTRAY1 as no homologue was identified.
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A. thaliana TPLATE (AP1y)

D. discoideum TPLATE (AP1 y)

N. gruberi TPLATE
(Clathrin adaptor core protein)

A. thaliana TSAUCER (alpharep-4)

D. discoideum TSAUCER
(Clathrin adaptor core protein)
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»

N. gruberi TSAUCER
Clathrin adaptor core protein

D. discoideum TCUP (COPI ©)

A. thaliana TSPOON (AP1 o)

D. discoideum TSPOON (AP1 o)

N. gruberi TSPOON (COPI ©)

D. discoideum TTRAY1 (8’-COP)

N.gruberi TTRAY2 (8-COP)
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modeled as a longin domain, as would be predicted from structures of the
o subunits of APs or the T subunit of COPI.

As mentioned above, TTRAY1 and TTRAYZ are not part of the
heterotetrameric core, but do interact with it. Homology modeling of these subunits
revealed identical folds: two B-propeller domains, followed by an a-solenoid (Figure
5-3), very similar to the structures of - and a-COPI on which they were modeled,

suggesting a likely common ancestry of these two sets of subunits.

5.4.3 Comparative genomics indicates that TSET is a broadly distributed, but patchy
complex

Starting HMMs were built for each subunit using the sequences from A.
thaliana, D. discoideum, and N. gruberi, and were used to search the genomes
indicated in Figure 5-1. Candidate sequences identified using HMMER were verified
by reciprocal BLAST against the A. thaliana, D. discoideum, and N. gruberi genomes,
and were considered positive hits if the candidate retrieved the appropriate
orthologue as the top hit with an E-value at least two orders of magnitude smaller
than the next best sequence in at least one of the three reciprocal BLAST
experiments. Newly identified sequences were incorporated into the HMM to
increase the specificity and selectivity of the model, prior to searching the next
genome.

TSET displays a broad but patchy distribution; it is found in diverse

eukaryotes, but is frequently missing (Figure 5-4). However, the broad distribution
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Figure 5-4. TSET is broadly, but sparsely distributed. Summary of comparative
genomic analyses indicate that TSET is found in a diverse set of representative
eukaryotes. Presence of the complete complex in at least four supergroups suggests
its presence in the LECA with frequent secondary loss. Solid sectors indicate
sequences identified and classified using BLAST and HMMER. Empty sectors
indicate taxa in which no significant orthologues were identified. Solid sectors in the
Holozoa and Fungi represent F-BAR domain-containing FCHo and Sypl,
respectively. The key to taxon name abbreviations is inset. Names in bold indicate

taxa with all six subunits.
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suggests that this complex was present in the LECA. Complete complexes (all six
subunits) are identifiable in representatives of four supergroups (bold in Figure 5-
4): T. trahens (Opisthokonta); D. discoideum, Dictyostelium purpureum, and
Polysphondylium pallidum (Amoebozoa); N. fowleri (Excavata); C. reinhardtii, V.
carterli, P. patens, and A. thaliana (Archaeplastida). Most other eukaryotes sampled
have either a partial TSET complex, explained as the product of extreme sequence
divergence, rendering homologues unidentifiable by bioinformatics, or explained
through secondary loss. The latter explanation is most likely the case for the
opisthokont lineage, where only homologues of TCUP were identified, or in the
alveolates, where ciliates only possess TTRAY1 and TTRAY2 (Figure 5-4).
Surprisingly, homology searching revealed that the opisthokont TCUP orthologues
belong to a previously known family of proteins collectively known as the
muniscins, mu-homology domain-containing proteins that possess an N-terminal F-
BAR domain in place of a longin domain (Reider et al., 2009). Muniscins include
FCHo and SGIP in H. sapiens, and Syp1 in S. cerevisiae. FCHo and Syp1 are thought to
be involved in the formation of AP2-clathrin vesicles by inducing membrane
curvature (Henne et al,, 2010), and promoting the growth of AP-2 by stabilizing the
open conformation, freeing the cargo-binding site (Hollopeter et al, 2014;
Umasankar et al., 2014). It is worthwhile noting that since this analysis was carried
out, subunits of TSET have been identified by lab mates in comparative genomic
analyses of other eukaryotes: Ms. L. Lee has identified TCUP in the transcriptomes of
the haptophytes Isochrysis galbana, Gephyrocapsa oceanica, and three additional

strains of Emiliania huxleyi. Additionally, Mr. L. Barlow has identified TPLATE,
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TTRAY1, and TTRAY2 in the genome of the amoebozoan Mastigamoeba balamuthii
and TPLATE, TSPOON, and TTRAY1 in the genome of Monocercomonoides sp.

(personal communications).

5.4.4 Phylogenetic analysis of TSET

Phylogenetic analysis of individual TSET subunits were carried out to
determine whether these sequences represent an additional AP complex, a
duplication of the COPI complex, or an additional complex distinct from both the
APs and COPIL. Single-gene trees were generated as detailed in section 2.3, using the
phylogenetic dataset generated by Hirst et al., (2011) to analyze the position AP-5 to
relative to the other AP complexes. Past analyses have shown generally poor
resolution for single gene trees of AP complexes (Hirst et al, 2011). Resolution
between these complexes is generally obtained by stringing together the gene
sequences of the four subunits into a supergene or ‘concatenated gene’ that utilizes
the phylogenetic signal from all four subunits in a single analysis (Hirst et al., 2011).
One requirement for concatenation is that all genes being incorporated into the
analysis must have largely the same phylogenetic signal; there can be no strong
dissonance between the trees of the individual genes being strung together.
Therefore, phylogenetic analyses of single genes (subunits) were carried out.

As only the AP - and u-subunits were used for concatenation (COPI-f and -9,
respectively) by Hirst et al., (2011), the analysis was supplemented by searching for
the y- and C-subunits of COPI in the relevant taxa for inclusion into both single-gene

trees and the concatenated analysis (see below). For each single-gene analysis,
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multiple rounds of phylogenetic analysis were carried out, but only the tree with the
strongest support for the node of interest is shown. Previous rounds were used to
identify exceedingly long branches, and to identify instances of species-specific
duplication. In the case of long branches, sequences were removed, and in the case
of multiple paralogues, only the paralogue with the shortest branch length was
retained. Both actions were carried out to mitigate the potential effects of LBA, and

to reduce the complexity of the data set.

5.4.4.1 TPLATE

As mentioned above, TPLATE was previously identified as a B-adaptin like
protein important for the formation of the cell plate after division (Van Damme et
al, 2011). Comparative genomic analysis suggested that TPLATE is most similar to
the B-APs and p-COP, and was therefore included into the f-subunit dataset.
Phylogenetic analysis identified a weakly supported albeit monophyletic TPLATE
clade, a strongly monophyletic COPI-f clade, and a polyphyletic AP-f clade (Figure
5-5). Because TPLATE was clearly excluded from the COPI clade, all COPI-}
sequences were removed, assuming that reducing the size and complexity of the
alignment would help resolve the relative position of TPLATE and the AP complexes.
Although still very weak, support for distinctly monophyletic TPLATE and AP clades
increased, suggesting that TPLATE likely does not branch within the clade of known

AP complexes (Figure 5-6).
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Figure 5-5. Phylogenetic analysis of TPLATE indicates that TSET is distinct
from COPI. Phylogenetic analysis of TPLATE, -APs, and COPI-3 was carried out to
determine the relationships between these subunits. Phylogenetic analysis resulted
in a very strongly supported COPI clade, excluding a weakly monophyletic TPLATE
clade, nested within the APs, although with no backbone support. The results
indicate that TPLATE does not branch within the COPI-f3 clade. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (RAXxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed dark

circles 2 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 5-6. Phylogenetic analysis suggests that TPLATE is distinct from the AP-
B subunits. To determine whether TPLATE branches within the AP clade, all COPI-f3
sequences were removed from the data set in Figure 5-5. Phylogenetic analysis
reconstructed a weakly monophyletic TPLATE clade branching separately from the
AP-f sequences, suggesting that TSET likely branches outside of the clade
containing the AP complexes. The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles 2 1.00/95, closed light

circles 2 0.95/75, open circles = 0.8/50.
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5.4.4.2 TSAUCER

Comparative genomic analysis identified TSAUCER as a homologue of the y-
COPI/y0deC-AP subunits, confirming the results obtained through homology
modeling. Similar to TPLATE, TSAUCER was strongly excluded from the y-COPI
clade, but only weakly excluded from clade containing the AP-yodeT subunits
(Figure 5-7), and was nearly monophyletic, with the Micromonas pusilla TSAUCER
branching outside of the TSAUCER group. Removal of the COPI-y clade resulted in a
tree topology similar to TPLATE with a weakly monophyletic TSAUCER clade that is

weakly excluded from the AP-yadeC clade (Figure 5-8).

5.4.4.3 TCUP

TCUP is most similar to AP-u and COPI-0 subunits, as confirmed by both
structural prediction and comparative genomics. Phylogenetic analysis recovered
TCUP as a paraphyletic clade, but was strongly excluded from the COPI-0 clade, and
weakly excluded from the AP-u clade (Figure 5-9). Removal of all COPI-0 sequences
did not result in the formation of a single TCUP clade, as some TCUP sequences (i.e.,
M. brevicollis, D. discoideum, and D. purpureum) grouped within the AP5-u clade, and
the C. reinhardtii TCUP groups with AP4-u, although with no support in either case
(Figure 5-10). The curious topology reflected by these sequences is likely the result
of low sequence conservation paired with LBA as TCUP and AP5-u represent the

longest branches in the analysis.
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Figure 5-7. Phylogenetic analysis of TSAUCER indicates that TSET is distinct
from COPI. Phylogenetic analysis of TSAUCER, ya0eC-APs, and COPI-y was carried
out to determine the relationships between these subunits. The analysis identified a
strongly supported COPI-y clade that excludes TSAUCER and the APs. The APs are
weakly monophyletic and exclude TSAUCER. TSAUCER sequences are weakly
monophyletic except for the M. pusilla sequence which branches outside of the
TSAUCER-AP clade. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed dark circles = 1.00/95, closed light

circles 2 0.95/75, open circles = 0.8/50.
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Figure 5-8. Phylogenetic analysis suggests that TSAUCER is excluded from the
AP clade. To determine if TSAUCER and the y00eC-APs form mutually exclusive
monophyletic groups, all COPI-y sequences were removed from the data set in
Figure 5-7. Re-analyzing the data set increased the support for a monophyletic
TSAUCER and yodeT-AP clades, although node support was still very weak for both
groups. The best Bayesian topology is shown. Numerical values represent Bayesian
posterior probabilities (MrBayes)/Maximum-Likelihood bootstrap values (RAXML).
Nodes of interest are in bold. Values for other supported nodes have been replaced
by symbols: closed dark circles = 1.00/95, closed light circles = 0.95/75, open circles

> 0.8/50.
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Figure 5-9. Phylogenetic analysis of TCUP suggests that TSET is distinct from
COPIL. To determine the relationship between TCUP, COPI-§, and AP-u subunits,
phylogenetic analysis was undertaken. Phylogenetic analysis shows a very strong
COPI-0 clade and an unsupported AP-u clade. TCUP is not unified, with two separate
groups and some TCUP sequences branching within the AP-u clade. The results
indicate that TCUP does not group within the COPI-6 clade. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (RAXxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed dark

circles 2 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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Figure 5-10. Phylogenetic analysis weakly suggests that TCUP may be
excluded from the AP clade. To determine if TCUP and the AP-u sequences formed
mutually exclusive clades, all COPI-0 sequences were removed from the data set
used to generate Figure 5-9. Removal of the COPI-0 sequences resulted in most
TCUP sequences forming a single group, with some outliers still branching with AP-
u sequences (C. reinhardtii TCUP, M. brevicollis TCUP), although this topology is
unsupported. This topology is at least partially the product of LBA, as these
sequences represent some of the longest branches in the analysis. The best Bayesian
topology is shown. Numerical values represent Bayesian posterior probabilities
(MrBayes)/Maximum-Likelihood bootstrap values (RAXxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed dark

circles 2 1.00/95, closed light circles = 0.95/75, open circles = 0.8/50.
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5.4.4.4 TSPOON

Comparative genomics and structural prediction indicated that the closest
homologues of TSPOON are the o and C subunits of APs and COPI, respectively.
Unlike the other TSET subunits, the TSPOON tree resolved at nearly every major
node (Figure 5-11). TSPOON was clearly excluded from both the COPI and AP clades,

suggesting that it might be a distinct lineage from these other coat complexes.

5.4.4.5 Concatenated Phylogeny

Phylogenetic analysis of individual subunits displayed generally the same
pattern, with TSET excluded from both COPI and the AP clades but with little node
support. An analysis providing stronger, more robust phylogenetic signal was
desired to fully tease out the relationships between TSET, COPI, and the APs.
Therefore, the four subunits of the heterotetramer were concatenated in order to
utilize all of the sequence information possible. Alignments from the analyses above
were concatenated and used for phylogenetic inference. The resulting tree was
exceptionally well resolved, and consistent with the phylogenetic signal observed
for the individual subunits; TSET was excluded from both the COPI and the AP
clades (Figure 5-12). The phylogeny in Figure 5-12 is unrooted, therefore we cannot
determine the branching order of COPI, TSET and the APs. However, a recent
analysis of longin domain-containing proteins suggests a root with COPI and TSET
together on one side and the Adaptins on the other side, (C. Klinger, personal
communication) although further analyses are required to confirm this topology.

Nevertheless, the tree does indicate that TSET is an ancient complex distinct from
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Figure 5-11. Phylogenetic analysis indicates that TSPOON branches separately
from both COPI and the APs. To determine the relationship between TSPOON,
COPI-C, and AP-o, these sequences were analyzed using phylogenetic methods.
Analysis recovers a moderately supported, monophyletic TSPOON clade that is
excluded from moderately supported COPI and AP clades, indicating that it neither
branches within the COPI-C clade, nor does it branch with in the AP-o clade. The
best Bayesian topology is shown. Numerical values represent Bayesian posterior
probabilities (MrBayes)/Maximum-Likelihood bootstrap values (RAxML). Nodes of
interest are in bold. Values for other supported nodes have been replaced by
symbols: closed, dark circles = 1.00/95; closed, light circles = 0.95/75; open circles =

0.8/50.
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Figure 5-12. TSET is a distinct lineage from the F-COPI and the AP complexes.
Concatenated phylogenetic analysis of heterotetrameric complexes F-COPI (orange),
TSET (purple), and APs (AP-5 is magenta, AP-3 is blue, AP-1 is red, AP-2 is green,
and AP-4 is yellow), shows strong support for COPI, weak support for TSET, and
strong support for the entire AP clade, indicating that TSET does not branch with in
the COPI clade nor does it branch within the APs. This analysis also resolved the
branching order of each AP complex. The best Bayesian topology is shown.
Numerical values represent Bayesian posterior probabilities (MrBayes)/ Bayesian
posterior probabilities (Phylobayes)/Maximum-Likelihood bootstrap values
(PhyML)/Maximum-Likelihood bootstrap values (RAxML). Nodes of interest are in
bold. Values for other supported nodes have been replaced by symbols: closed, dark
circles =2 1.00/1.00/0.95/95; closed, light circles = 0.95/0.95/75/75; open circles =

0.80/0.80/50/50.

313



En;a Tancao va%a%f COPI

men7 ermo $§
ofm”,"‘?'lc”?ané”g{a%z éruce/ copl

e Ierg rul)erl C%PI

=L c';g:a’/'cme g (Elstﬁrs COPI

N:
Dictyosi

s/fé&gfudonana COPI

SIILC
oo E I A
%v}am domD(v ardtii COPI
/SC! mrlre la

Ph) g ?
rabidopsis halrana COPI

0.94/0.97/59/55

1/100/100

| S — PPy Naepi e eEY
ch! os!:eh,um d/scogeetb% TT%ETF
-, Colyphonylum fa//a d ;ié’ e
— *»asyz,;mpﬁe

A
e o=

reinhardtii TSET

Cyanophora paradoxa TSET

L O alvorlaita] T%S;]e"s Miggomonas pusill TSET

T

i iella natans AP5
7 K 9;;"’?% eba i APS
yscomme// tens
@1 = feiyiis

di: sculde m

— @ Toxoplasma gondii AP3 )
Trichomonas, vaginalis AP3 & s
Entamoeba histolylioa Aé &

Qﬁalrana AP5

1/1/97/99

MrBayes/Phylobayes/PhyML/RAxML

@ = 1.00/1.00/95/95

Streo. OCCH
Phgyscoml el a‘%’f's [ﬁﬁéana APS

_Bigelowiells
halassiosira pseudonana AP3
Eclogarpus silcylg LS MBSO P
0!

Dict asteﬂ%"%ﬁ’é’c{m B A
anosoma, fUCSI
Lels mania maj .
axae\lsfma gondii AP2

Plasmodium falopaii AP, 4/ ococous tauri AP1
Arabldz)Spsls {hallan AP'\

Physcomiirdla patens A
%/;[" g; An f’rernhardtn AP1

gg’nalt N3 ana AP1
ctocar us s:llcu ;%ﬁ ‘}\%{'
ytop/g 0rg sojae

Emiliania”hux! g
111/ T T

Di ium discoideum AP1
100i0g Naggleria grube Trypanseama bk Ak
PlasVad;jm ?6 ‘#32”5 &3{"0pm!a AP1

Bt e Dagoela A2
Eenu?"mxﬁbza histolytica AP2

ictyostelium disc

lers uberi
L

P2
AP2
1/0.51/85/ 92| SR ’?i:i:mzzzzavagmahs 2

major AP2
L eP g i ™,
Vaﬁ/o cé)’tme%niﬁfemhardtu AP2

anosoma brucei AP4
Nae Ierla ruberi
ctyostelium d| scoldeu

@ 20.95/0.95/75/75
(020.80/0.80/50/50

AP4
/asmod um fal i AP4
enaqzﬂermopmla AP4

Feccand! EP P

(hora sgjae
owiella najans A4 -
streococcus tauri
ydomoﬁ; remhardm AP4

\/(:7/
fabidon: fé‘”?/ﬁ' ajt?ﬂ?ﬁ
hysconfifisiialpaion i
richomonas vaginalis AP4

1/1/100/100

0.5

314



these other families of transporters. Resolution was also obtained between the
different AP complexes, except for one problematic node separating AP-1 and AP-2.
This is likely because of incongruent signal between the [-subunits of these
complexes; in most taxa, one f-subunit is shared between the two complexes, but
has duplicated multiple times in distantly related taxa, giving a slightly different
evolutionary signal than that observed for the other subunits (Dacks et al,
2008).The concatenated phylogeny also indicates a slightly different branching
order for the AP complexes than has previously been reported (Hirst et al.,, 2011). In
particular, AP-3 was proposed to have been the deepest branching AP complex,
followed by AP-5, then AP-4, then AP-1 and AP-2. Hirst et al, proposed that the
initial duplication of COPI and the APs represented the evolution of a Golgi
compartment and a TGN/endosome-like compartment because of the involvement
of AP-3 and AP-5 in endosomal transport (Hirst et al.,, 2011; Peden et al,, 2002). The
separation of the TGN and endosomes would have co-occurred with the evolution of
AP-4 which is predominantly TGN localized (Dell’Angelica et al.,, 1999a). Finding
here that AP-5 is the earliest emerging AP complex does not refute this hypothesis,
but is consistent with their argument since the endosomal APs are still the first to
diverge. The argument of Hirst et al, would suggest that the ancestor of
heterotetrameric complexes would likely have acted at a single type of intracellular
compartment in the cell, and its duplication would have produced a Golgi and

TGN/endosome-like compartment.
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5.4.4.6 TTRAY1/2

Predicted structures and comparative genomics indicated that the closest relative of
TTRAY1 and TTRAY2Z are COPI-a and -p’, members of the B-COP subcomplex
(Schledzewski et al., 1999). The question addressed with this analysis differed from
the one asked for the subunits above; COPI-a, COPI-f’, TTRAY1, and TTRAYZ2 are all
found across the diversity of eukaryotes, and therefore presumed to have been
present in the LECA. Therefore, all four of these subunits would have arisen prior to
the LECA. What then, is the internal relationship between TTRAY1/2 and COPI-
a/f’? In other words, are the COPI subunits more closely related to each other, or
are they each sister to a different TTRAY? Phylogenetic analysis showed that COPI-a
and -f’ are each other’s closest relative, as are TTRAY1 and TTRAY2, indicating that
the duplications producing two outer coat subunits in COPI and TSET occurred
convergently (Figure 5-13). This analysis was able to resolve the pre-LECA
duplication producing COPI-a and COPI-f’. It was unable to pinpoint the timing of
the duplication producing TTRAY1 and TTRAY2, although the presence of
redundant clades suggests that the duplication is ancient and occurred prior to the
LECA, given its presence in two of the three major lineages. An attempt to resolve
the duplication of TTRAY1 and TTRAYZ was carried out by removing the COPI
sequences (Figure 5-14). No significant backbone resolution was obtained; however,
TTRAY1 and TTRAY2 sequences from the same organism did not group together,

suggesting that an ancient duplication generated these two subunits.
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Figure 5-13. Phylogenetic analysis indicates that dual outer coat subunits
arose via independent gene duplications. Phylogenetic analysis of TTRAY1,
TTRAY2, COPI-a, and COPI-f’ was carried out to determine whether the gene
duplication giving rise to TTRAY and COPI occurred before or after the gene
duplication giving rise to TTRAY1 and TTRAY?2 (i.e, are TTRAY1 and 2 each other’s
closest relative or are they each more closely related to a different COPI subunit?).
Phylogenetic analysis indicates that an ancestral gene duplication gave rise to the
ancestral COPI and the TTRAY subunits. Independent duplications in both lineages
then gave rise to TTRAY1 and TTRAY2 and COPI-a and COPI-f’, respectively. This
result indicates that the conformation of two different outer coat subunits arose
convergently in the two complexes. The best Bayesian topology is shown. Numerical
values represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed, dark circles = 1.00/95; closed, light

circles 2 0.95/75; open circles = 0.8/50.
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Figure 5-14. Phylogenetic analysis suggests that TTRAY1 and TTRAY2 are the
result of an ancient duplication. COPI-a and ° sequences were removed to
determine whether a single gene duplication event gave rise to TTRAY1 and
TTRAY2, or if this occurred independently in multiple lineages. Original queries
from A. thaliana, D. discoideum, and N. gruberi are in bold to illustrate separate,
although unsupported, positions on the tree. Other taxa with both subunits do not
group together, indicating that TTRAY1 and TTRAYZ likely arose from a single
ancestral gene duplication. The best Bayesian topology is shown. Numerical values
represent Bayesian posterior probabilities (MrBayes)/Maximum-Likelihood
bootstrap values (RAxML). Nodes of interest are in bold. Values for other supported
nodes have been replaced by symbols: closed, dark circles = 1.00/95; closed, light

circles 2 0.95/75; open circles = 0.8/50.
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5.5 Discussion

In this chapter, we have characterized a novel adaptin-like coat complex,
composed of six subunits: TPLATE, TSAUCER, TCUP, TSPOON, TTRAY1, and
TTRAY?2, collectively called TSET. Structural predictions indicated that each subunit
of TSET shares extensive structural similarity to AP complexes and COPI suggesting
an evolutionary relationship. Comparative genomics identified a complete complex
in four different supergroups, indicating that TSET was present in the LECA.
Phylogenetic analysis indicated that it is distinct from both COPI and the AP
complexes.

Functional analyses in D. discoideum carried out by ]. Hirst, D. Traynor, G.
Bloomfield, R. Antrobus, R.R. Kay, and M.S. Robinson identified a role for TSET at the
plasma membrane. Disruption of complex formation through knockout of TSPOON
did not affect cell viability, nor did it affect the ability of D. discoideum to form
fruiting bodies (Hirst et al, 2014). Fluid-phase endocytosis was not affected in
TSPOON-knockout cells. However, membrane turnover as measured by uptake of
the membrane marker FM1-43 was slower than control cells, indicating a role in
plasma membrane turnover.

At the same time as this analysis, another group independently identified
TSET in A. thaliana, calling it the TPLATE complex (TPC), after the previously
identified TPLATE subunit (Gadeyne et al., 2014). In A. thaliana the TPC is composed
of eight subunits: the six found in TSET as well as two Eps15 homology domain-
containing proteins, AtEH1 and AtEH2. The TPC was also found to colocalize with

clathrin at the plasma membrane. Tandem affinity purification experiments
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identified clathrin and AP-2 as interacting partners for the TPC, which further points
to a role in endocytosis at the plasma membrane. Unlike D. discoideum, mutations in
TPC subunits in A. thaliana resulted in pollen lethality and its down regulation
results in seedling lethality, indicating that the TPC is essential for plant

development (Gadeyne et al., 2014).

5.5.1 Model for the evolution of TSET and heterotetrameric complexes

The discovery and evolutionary analysis of the TSET complex allows its
integration into the evolutionary model of heterotetrameric coat complexes. The
original versions of the model (Boehm and Bonifacino, 2001; Schledzewski et al.,
1999) proposed that a heterodimeric complex composed of one large and one small
subunit dimerized to form a homodimer. This gene set duplicated, producing two
large and two small subunits that diverged over time with one of the small subunits
gaining a mu-homology domain. This heterotetramer then duplicated multiple times
to give rise to COPI and the AP complexes.

With the discovery of TSET, not only does this newly identified complex need
to be incorporated into the model, but so too does the outer coat configuration
represented by TTRAY1 & 2 and COPI-a and -f’. A new hypothesis would suggest
that, rather than simply one large and one small subunit, one outer coat unit was
present as well, producing a heterotrimer (Figure 5-15). This heterotrimer
homodimerized to form a dimer of trimers, generating a complete coat with both
inner and outer coat complexes. Gene duplications of the large and small subunits,

followed by sequence divergence and the gain of a mu-homology domain in one of
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Figure 5-15. Model for the evolution of heterotetrameric complexes. All
heterotetrameric complexes evolved from a common ancestor composed of one
small, one large, and one outer coat component that form a heterotrimer, which
forms a homodimer during vesicle formation. Duplication and sequence divergence
of the large and small subunits gives rise to the heterotetramer, with one small
subunit gaining a mu-homology domain. Multiple duplications of the entire complex
gave rise to TSET, the APs, and COPI, with the outer component of TSET and COPI
duplicating independently, and the APs losing the outer coat. In opisthokonts, the
medium subunits of TSET and AP-2 acquire additional domains, giving rise to the

muniscins and stonins, respectively. Modified from Hirst et al,, 2014.
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the small subunits, would produce the four subunits that make up the
heterotetrameric core. Multiple coordinated duplications of all five subunits would
have given rise to each lineage of trafficking complex, with independent duplications
of the outer components in TSET and COPI giving rise to TTRAY1 & 2 and COPI-a/-
', respectively, and loss of the outer component entirely in the AP complexes.
Finally, coordinated loss of the entire TSET complex except for TCUP, and the
swapping of the N-terminal longin domain for an F-BAR domain would have given

rise to the muniscins in opisthokonts (Figure 5-15).

5.5.2 Endocytosis has evolved separately multiple times
The available data suggest that TSET is involved in endocytosis at the plasma

membrane, at least in A. thaliana and D. discoideum (Gadeyne et al., 2014; Hirst et al.,
2014). It therefore appears that coat-based endocytosis (as opposed to
phagocytosis) has evolved multiple times independently. In mammalian cells, where
complete TSET complexes are not present, knockout of AP-2 is embryonic lethal,
underpinning the importance of this trafficking complex in this lineage (Mitsunari et
al, 2005). Moreover, FCHo plays a role in AP-2 vesicle biogenesis (Henne et al,,
2010; Hollopeter et al., 2014; Umasankar et al,, 2014). In A. thaliana, knockout of
TSET, rather than AP-2, causes major growth defects, whereas loss of AP-2 imposes
minor growth defects, but none so severe that plant development is dramatically
impacted (Gadeyne et al., 2014). The role of TSET in endocytosis is made even more
clear by studies in D. discoideum. However, disruption of this complex in this system

carried a much milder phenotype (Hirst et al, 2014). Similarly, knockout of
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individual AP-2 subunits in D. discoideum resulted in viable cells, capable of
endocytosis (Macro etal.,, 2012).

Clearly TSET and AP-2 both have roles in endocytosis but the evidence for
the independent gain of function at the plasma membrane is presented here,
illustrated by the concatenated analysis of COPI, TSET, and the AP complexes
(Figure 5-12). There is no support for TSET branching within the clade containing
the AP complexes, let alone as sister to AP-2. This separation supports the
hypothesis of functional convergence in endocytosis for TSET and AP-2. The
alternative is for the ancestor of TSET and of all AP complexes to have functioned at
the plasma membrane, with APs 1, 3, 4, and 5 (and perhaps even COPI) having
gained new functions. While technically possible, it is far less parsimonious, leaving

the two origins scenario as the most likely explanation.

5.5.3 Muniscins and stonins are examples of convergent evolution in the membrane
trafficking system

It is interesting to note that the two complexes involved in endocytosis in the
LECA have spawned additional adaptor molecules that continue to be involved in
that process. TSET, although lost in the lineage leading to the ancestor of
opisthokonts, passed on the mu-homology domain present in TCUP, forming the
muniscins: FCHo1/2 and SGIP in Metazoa, and Syp1l in Fungi. Functional analyses
suggest that FCHo is involved in stabilizing the formation of nascent AP-2 vesicles
while also aiding in the incorporation of cargo into budding vesicles (Henne et al,,

2010; McMahon and Boucrot, 2011). Stonins are metazoan-specific mu-homology
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domain containing proteins thought to be derived from AP-2u, have been shown to
act as adaptors for synaptotagmin 1, and are required for its endocytosis in
neuronal cells (Diril et al., 2006; Jung et al., 2007; Martina et al., 2001). Both of these
proteins increase the diversity of cargoes able to be taken up by the AP-2 complex.
In the case of FCHo, it is conceivable that the cargo that it binds were at one point
incorporated into vesicles formed by TSET. Stochastic mutation or gene loss may
have rendered the TSET complex non-functional resulting in the selection for
interaction between TCUP and the AP-2 complex, or perhaps TCUP was
promiscuous and was already being incorporated into AP-2 vesicles. Alternatively, a
single gene duplication of TCUP, followed by the exchange of the longin domain for
an F-BAR domain, may have simplified the endocytic system rendering TSET
redundant and was subsequently lost, either through negative selection, or through
genetic drift. A similar argument may be made for the evolution of stonins; a gene
duplication or domain swap generated a protein capable of binding additional cargo,
opening the door for a more complicated endocytic system. As a whole, FCHo and
the stonins are examples of how complexity can evolve within a system: in one case,
a change in binding specificity from one complex to another, and in the other case,
the generation of a new subunit altogether. However, both carry out similar

functions to achieve the same goal.

5.5.4 TSET and the evolution of the early membrane trafficking system
The discovery of TSET adds an additional step before the evolution of the

TGN/endosome-like structure proposed by Hirst et al., (2011). In their hypothesis,
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the gene duplication that produced COPI and the ancestral AP complex also gave
rise to a Golgi and a TGN/endosome-like compartment (Figure 5-16A). The role for
TSET in endocytosis suggests an additional step that connected this early
compartment with the plasma membrane. An earlier duplication event likely gave
rise to ancestors of TSET/COPI and the APs and, produced two coats, one acting at
the plasma membrane during endocytosis, and another possibly involved in
communication with the early secretory system, or transport to the plasma
membrane, or both (Figure 5-16B). TSET and COPI are assumed to branch together
based on recent evidence from phylogenetic analyses of longin domain-containing
proteins that suggest that TSET and COPI share a more recent common ancestor
with each other than either do with the AP complexes (C. Klinger, personal
communication).

Evidence presented in chapter 3 and by others (Elias et al,, 2012) point to an
early gene duplication producing machinery involved in endocytosis and machinery
involved in exocytosis. The role of TSET in endocytosis suggests that it may have
gained this function early in eukaryote evolution. The alternative complex would be
AP-2. However, it is clear that the evolution of AP-2 occurred after the membrane
trafficking system was much more established. Duplication of one AP complex
would generate the Golgi complex and the endosomes/TGN, as proposed by Hirst et
al, (2011; Figure 5-16). Subsequent duplications would then produce additional
compartments, eventually segregating endosomal and TGN functions into distinct
compartments (Figure 5-16), allowing for further modification and tailoring of this

arm of the membrane trafficking system.
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Figure 5-16. Hypothesis for the early evolution of the heterotetrameric
complexes and the membrane trafficking system. A) Model for the evolution of
the endosomal system as put forth by Hirst et al,, (2011). Ai) Evolutionary tree of
the heterotetrameric coat complexes. Aii) Organelle evolution based on tree in Ai.
Early duplication giving rise to COPI and the ancestor of the AP complexes produced
a Golgi and endosome/TGN-like organelle, uniting the membrane trafficking system
with the phagocytic system. Duplications of AP-3 and AP-5 then gave rise to
endosomal compartments, separating the endosome from the TGN. Grey circle and
question mark represents the early secretory system, as they are explicitly ignored
here (see Figure 6-3). B) Incorporation of TSET into the Hirst et al., model. Bi) Tree
of the evolution of heterotetrameric complexes rooted on the APs (see text for
rationale). Bii) An early duplication of the ancestral complex produced the ancestors
of the TSET/COPI complexes and the ancestor of the AP complexes. These early coat
complexes could have carried out basic endocytic and exocytic trafficking.
Subsequent duplications of the complex would then give rise to the organelles as in
Aii. G = Golgi, Endo. = Endosomes, TGN = trans-Golgi Network. Grey ‘AP’ represents

the remaining AP complexes (AP-1, AP-2, and AP3).
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Chapter 6: Perspectives

A portion of this chapter has been published as:

Schlacht, A, Herman, E.K,, Klute, M., Field, M.C., Dacks, ].B. 2014. Missing pieces of
an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. In Cold
Spring Harbor Perspectives: The Origin and Evolution of Eukaryotes (eds. Keeling, P.J.,
Koonin, E.V.) Cold Spring Harbor Press
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6.1 Synopsis

Early analyses of membrane trafficking pointed toward a LECA with a
tremendously complex membrane trafficking system, not unlike that observed in
modern eukaryotes (Koumandou et al, 2013, inter alia). These studies focused
primarily on membrane trafficking machinery involved in vesicle fusion, as it was
thought that this machinery was responsible for encoding organelle identity. To
determine whether or not the machinery involved in vesicle formation is similarly
conserved, I carried out comparative genomic analyses of regulatory elements of
vesicle formation (ArfGAPs and ArfGEFs), and coat proteins (COPII, TSET). We saw
that ArfGAPs, ArfGEFs, COPII, and TSET are broadly conserved across eukaryotes,
indicating their presence in the LECA and solidifying their importance in general
models of membrane trafficking. However, it became apparent that not all
subfamilies, coats, or subunits thereof, are equally well conserved, pointing to
examples of where evolution has shaped biological process in different eukaryotic
lineages. Specifically, three patterns of conservation were consistently observed;
ubiquitous and lineage-specific patterns had been observed previously. However,
patchy distributions had previously been written off as either sampling error or
misidentification of homologues as the product of fast evolving genomes. Work in
this thesis makes it abundantly clear that this latter pattern of conservation is far
more pervasive than previously thought, and suggests that patchy proteins may
have, or may still, be playing a major role in shaping the cellular landscape of

eukaryotic cells. The analyses also allow the integration of important membrane
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trafficking subfamilies into the OPH, solidifying hypotheses about the early

evolution of the membrane trafficking system.

6.2 Multiple patterns of protein conservation

While the comparative genomic analyses presented in chapters 3, 4, and 5
identified ancient membrane trafficking protein families and coat complexes, each
protein family or complex appeared to have members with ubiquitous, lineage-
specific, and patchy distributions. Independent analyses of Rabs and TBCs have
identified protein subfamilies with similar patterns of conservation, indicating that
these patterns are not limited to the proteins analyzed here or to components of
vesicle formation, but rather, are prominently distributed throughout the

membrane trafficking system.

6.2.1 Ubiquitously conserved proteins

Proteins that are distributed across the diversity of eukaryotes and that are
seldom lost characterize the first pattern of protein conservation, ubiquitously
conserved proteins. This pattern suggests that these proteins are necessary to
maintain basic cellular function. Examples from previous chapters include the
ArfGAPs: SMAP, ArfGAP1, ArfGAP2, ACAP, and AGFG; the ArfGEFs: BIG and GBF; and
the majority of COPII coat components: Sarl, Sec23, Sec24, Secl3, and Sec31.
Finding proteins conserved in this manner provides support to established models
of cell biology. For example, that the five core COPII coat components are

ubiquitous, lends support to the importance of its function in exit of cargo from the
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ER (Barlowe et al, 1994). The conservation of ArfGAP1 and GBF supports the
importance of Arf regulation at the cis-Golgi (Casanova, 2007; Kahn et al,, 2008). The
ubiquity of these proteins also points to their presence in the LECA.

Other protein families in the membrane trafficking system also share this
distribution. This was the pattern of conservation originally suggesting a complex
trafficking system in the LECA (Dacks and Doolittle, 2001; Dacks and Field, 2004).
This pattern is generally found when analyzing key trafficking complexes, such as
ESCRTs (Leung et al., 2008), the MTCs (Klinger et al., 2013; Koumandou et al., 2007),
and membrane deformation machinery (Dacks and Field, 2004; Neumann et al,,
2010). More recently, this pattern has been identified in highly paralogous protein
families with functions spanning the trafficking system. Analysis of the Rab proteins
suggested the presence of up to 23 Rab paralogues in the LECA, of which nine (1, 2,
4,5,6,7,8, 11, and 18) are seldom lost (Elias et al., 2012). The conservation of this
machinery across trafficking pathways or paralogous protein families is additional

support for a functionally complex LECA.

6.2.2 Lineage-specific proteins

The second pattern of protein conservation is lineage specificity. In contrast
to the broadly conserved proteins above, these proteins are limited in their
taxonomic distribution, indicative of recent paralogous duplication. Although these
proteins may have important functions for the lineage in which they are found, they
should not be incorporated into general models of the eukaryotic membrane traffic

as they are not broadly distributed. Examples of proteins from previous chapters
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include the opisthokont and holozoan ArfGAPs: ASAP, ARAP, and GIT, and the
opisthokont ArfGEFs: EFA6 and FBX8, and the COPII subunit Sed4. However, the
identification of proteins with this distribution can provide insight into organism-
specific biology. For example, the regulation of focal adhesions by ASAP in metazoan
cells (Randazzo et al., 2007) or the additional regulatory mechanism imposed on
forming COPII coats by Sed4 (Kodera et al., 2011) are both novel additions to the
cell biology of Metazoa and Fungi, respectively.

Proteins with lineage-specific distributions were also identified in early
comparative genomic analyses, examples include caveolin, stonins, GGAs, and novel
paralogues of highly conserved subfamilies, such as Rabs and Arfs (Boehm and
Bonifacino, 2001; Diekmann et al,, 2011; Field et al., 2007b; Manolea et al., 2010).
Most of our understanding of membrane trafficking, and cell biological processes in
general, stem from studies carried out in mammalian and yeast model systems. This
has resulted in a wealth of opisthokont-specific machinery and fewer examples
elsewhere on the eukaryotic tree. This asymmetry results in bias towards searching
for machinery characterized in opisthokont systems, rendering lineage-specific
machinery in other taxa unidentified or missing. Recognition of this bias has begun
to rectify this problem; early phylogenetic analyses identified independent
duplications giving rise to the 3-subunit of AP 1 and 2 (Boehm and Bonifacino, 2001;
Dacks et al.,, 2008; Schledzewski et al., 1999). Multiple expansions of Rabs and
SNAREs in plants have also been well established (Rutherford and Moore, 2002;
Sanderfoot, 2007). Moreover, the development of phylogenetic pipelines such as

Scrollsaw, in order to identify both ancient and lineage-specific paralogues of large
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protein families that have otherwise gone unidentified (e.g., TBC-EXA in excavates,
TBC-PIA, TBC-PIB in plants, and the archaeplastid-specific Sec23 paralogue
described here; Elias et al., 2012; Gabernet-Castello et al., 2013; Schlacht and Dacks,
2015).

The development of genetically tractable systems outside of opisthokonts
has also begun to rectify this problem. One such example are the trypanosomes,
pathogens found in the supergroup Excavata, evade the immune system by
constantly recycling surface antigens (Allen et al, 2003), a process greatly
dependent on endocytosis. Novel adaptations of endocytic function have been
identified in trypanosomes, including the loss of AP-2 and the presence of
trypanosome-specific clathrin associated machinery that mediates endocytosis at
the plasma membrane (Adung’a et al, 2013; Manna et al, 2015). Although
functional characterization is still required, this machinery represents a novel
mechanism for regulating endocytosis not present in other eukaryotes and likely
would not have been identified by bioinformatics, highlighting the importance of
studying these processes in other eukaryotes.

A second example is found in the ciliate T. thermophila. It has been proposed
that mucocysts, secretory granule-like organelles, may have arisen convergently in
ciliates and Metazoa (Elde et al.,, 2007). Transport of cargo to these organelles is
dependent on the cargo receptor sortillin/Vps10, of which four paralogues are
present in T. thermophila versus five in humans (Koumandou et al.,, 2011). These

expansions occurred independently in vertebrates and in ciliates (Briguglio et al,,
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2013), suggesting either functional convergence in these lineages or divergence in

trafficking processes of cargo to lysosome-related organelles.

6.2.3 Patchy proteins

The third pattern of protein conservation is the “patchy” distribution. These
proteins are broadly conserved, and were likely to have been present in the LECA;
however, they are frequently missing. In some cases, these proteins are missing
from animals and fungi, resulting in omission from general models of membrane
trafficking. Examples of patchy proteins in previous chapters include AGAP, and
ArfGAPC2, Sec241l], and the entire TSET complex. The identification of proteins with
this distribution is somewhat perplexing; these proteins are sufficiently necessary
to have been retained in some lineages since the LECA, but are clearly disposable
given appropriate cellular contexts.

Patchy distributions of proteins were observed in early comparative genomic
analyses (Field et al., 2007b), and persist, even with substantially more sequenced
genomes and greater depth of analyses of protein families. One example is from the
ESCRTs, endosomal proteins responsible for budding vesicles into the
multivesicular body (Henne et al, 2011). ESCRT subcomplexes I-IV are well
conserved, whereas ESCRT-0 is opisthokont-specific (Herman et al., 2011; Leung et
al, 2008). The protein Toml-esc has been suggested to possess overlapping
functionality with ESCRT-0, such as binding ubiquitin and interacting with ESCRT-1
(Blanc et al.,, 2009; Puertollano, 2005). Tom1-esc has a much broader distribution

than ESCRT-O0, but is frequently missing. Another example is DSCR3, a paralogue of
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the Vps26 subunit that is involved in recycling vacuolar receptors from early
endosomes to the TGN as part of the retromer complex (Seaman, 2012). The
function of DSCR3 is not known beyond an association with Down’s Syndrome.
While Vps26 is very well conserved, DSCR3 is found broadly, but not frequently
(Koumandou etal., 2011).

Other examples of patchy proteins have been identified in large protein
families. As mentioned in chapter 5, AP complexes mediate trafficking in the late
secretory and endolysosomal systems and are differentially conserved across
eukaryotes, with AP-1 and AP-5 being the best and least conserved, respectively
(Hirst et al.,, 2011). Members of the TBC family (TBC-F through -N) are broadly, but
sparsely found. Surprisingly, subfamilies of Rabs and TBCs, RabTitan and TBC-
RootA respectively, have been identified that while broadly conserved, have been
lost multiple times including from humans. These paralogues are expected to have
important roles in other taxa, but are missing from our biology. There is a paucity of
functional information regarding these paralogues, and it will be interesting to
determine if they represent ancient functionality not present in opisthokonts, or if

they possess redundant or convergent functions to other cellular factors.

6.3 Patchy proteins may be redundant to other cellular factors

Important functional and evolutionary information can be gained from
lineage-specific and well-conserved proteins. They clarify which components can be
generalized to models of cell biological processes in all eukaryotes, and indicate that

many of the basic biological processes occurring in animals and fungi also occur in
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other eukaryotic organisms. These similarities provide a starting point from which
we can study differences between organisms to understand how natural selection
affects different taxonomic lineages. By contrast, proteins with a limited distribution
inform how organisms differ from the general model.

At present it is unclear what information can be gleaned from proteins
displaying patchy distributions. This is largely due to the absence of functional data
for many of these proteins. At the very least, it is reasonable to assume that they
play a role consistent with the catalytic domain present in the protein, i.e, RabTitan
likely acts as a Rab GTPase, and ArfGAPC2 likely acts as an ArfGAP protein.
However, this is merely pointing out the obvious. Some patchy protein are likely
redundant with other cellular factors. For example, Sec24IIl is very likely a cargo
binding subunit at ER exit sites as no other function has yet been identified for
Sec24. Sec24I1l may possess a unique repertoire of cargo molecules in some taxa, or
it may bind overlapping cargo with other Sec24 paralogues.

The best candidate for a patchy protein with functional redundancy is TSET.
The TSET complex is involved in plasma membrane turnover in the amoebae D.
discoideum and clathrin-mediated endocytosis in the flowering plant A. thaliana
(Gadeyne et al., 2014; Hirst et al., 2014), a function canonically carried out by the
AP-2 complex in mammalian cells (Cocucci et al., 2012). The ancient functional
redundancy of these two complexes may have permitted tailoring of endocytic
processes in different lineages. In mammalian cells, AP-2-clathrin vesicles largely
carry out endocytosis, as the TSET complex is not present (Hirst et al, 2014).

Knockout of AP-2 in mammalian cells is embryonic lethal (Mitsunari et al., 2005),
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likely because no compensatory mechanism exists. By contrast, knockout of AP-2 in
A. thaliana does not result in lethality, rather, plants display developmental defects
but are viable (Zhang et al., 2015). However, mutation of TSET subunits results in
pollen lethality and loss of viability indicating that TSET, not AP-2, is essential in
plants (Gadeyne et al.,, 2014; Van Damme et al.,, 2011). In A. thaliana, clathrin has
been shown to bind both AP-2 and TSET. Multiple subpopulations of nascent
clathrin vesicles have been reported, the majority of which include both complexes
(Gadeyne et al., 2014), although vesicle nucleation sites uniquely containing AP-2 or
TSET have also been observed. These findings suggest that clathrin vesicles with
heterogeneous adaptor complexes can form. In D. discoideum, neither knockout of
AP-2, nor TSET results in loss of viability (Hirst et al.,, 2014; Macro et al,, 2012).
Moreover, clathrin does not appear to interact with the D. discoideum TSET complex,
suggesting that its interaction with clathrin is unique to plants (Hirst et al., 2014). It
should be kept in mind that this is based on limited functional data, and as TSET,
and clathrin-dependent endocytosis generally, are studied in organisms from
different supergroups, the roles that these two coat complexes play will become

much more clear.

6.4 Patchy proteins may have permitted fine-tuning of the membrane trafficking
system

There is clear functional redundancy provided by at least some patchy
proteins. What benefit would redundancy provide to a cellular system? One

argument has been made suggesting that cellular complexity may be selected for
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under conditions with low selective pressures, as systemic redundancy would
reduce the impact of mutations that would otherwise disrupt a complicated system
(Schlacht etal., 2014).

Another hypothesis is that they permitted fine-tuning of the membrane
trafficking system. Early in the evolution of the endomembrane system, particular
biochemical functions such as GTPase activity, regulation of GTPases by GAPs and
GEFs, coat proteins, etc., would have been required. The incorporation of proteins
able to fill these vacant functional roles would have occurred, regardless of their
catalytic efficiency. The subsequent evolution of more efficient paralogues may have
functionally replaced some of these patchy proteins, allowing for more efficient or
precise modes of regulation, resulting in their loss. This process may be continuing
in extant eukaryotes; patchy proteins may be replaced by lineage-specific
expansions that are better adapted to more specialized cellular contexts than the
ancient paralogues, similar to birth and death processes that take place during
organismal evolution. For example, A. castellanii has lost the patchy Rab RTW (Elias
et al., 2012). It is possible that expansion of the A. castellanii Rab32 clade, which is
largely associated with the ER, but has also been found in the endosomal system
(Bultema et al,, 2012; Friedman et al., 2011), has compensated for the missing RTW,
suggesting a role for this protein at both locations.

Alternatively, loss of RTW may be the result of loss of other cellular
processes or complexes, as is likely the case for the Rab IFT27, whose loss
corresponds to losses of the intraflagellar transport complex (Elias et al., 2012; van

Dam et al.,, 2013). Nonetheless, further functional characterization of these patchy
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proteins in a variety of organisms will be required to fully understand the roles of
these proteins in extant eukaryotes, and what their contributions to the evolution of

the membrane trafficking system may have been.

6.5 Integration into the Organelle Paralogy Hypothesis
6.5.1 ArfGAPs and ArfGEFs

The presence of a single Arf homologue in the LECA excludes its
incorporation into the organelle paralogy hypothesis, because a single paralogue is
unable to provide information about the evolution of multiple organelles. However,
Arfs are regulated by ArfGAPs and ArfGEFs, both of which are paralogous protein
families with organelle-specific paralogues, some of which were previously
proposed to have been present in the LECA (Cox et al, 2004; Kahn et al.,, 2008).
Therefore, the evolution of the ArfGAP and ArfGEF subfamilies were analyzed in the
context of the OPH.

Although no protein family has yet been able to provide a complete
accounting for the order in which the organelles of the membrane trafficking system
evolved, analyses carried out thus far are consistent in suggesting what may have
been the earliest events in the evolution of this system. Scrollsaw analysis of Rab
proteins resolved an early split into endocytic and exocytic Rabs (Elias et al., 2012).
The ArfGAP proteins present in the LECA suggest a similar event. ArfGAP1 and
ArfGAP2 are both active in the early secretory pathway (Bigay et al., 2005; Weimer
et al, 2008), and are each other’s best reciprocal BLAST hit after themselves,

suggesting an ancient pre-LECA duplication that gave rise to these two subfamilies

342



(Figure 6-1). SMAP, ACAP, and AGFG act in the endocytic system (Li et al., 2007;
Natsume et al., 2006; Pryor et al., 2008). BLAST experiments against the human
genome for these latter four subfamilies retrieve each other before retrieving either
ArfGAP1 or ArfGAP2, suggesting a more recent common ancestor. BLAST results
suggest that ArfGAPC2 should also be placed in this clade although its function is
presently unknown. Taken together, this suggests an ancient duplication of an
ancestral ArfGAP domain that gave rise to one lineage involved in secretion and the
other in endocytosis (Figure 6-1). It should be made clear that is by no means a
definitive relationship among ancient ArfGAP subfamilies, but rather a hypothesis to
be tested in future analyses.

The ArfGEF proteins suggest a similar duplication (Figure 6-1). The analyses
presented in chapter 4 indicate that only three ArfGEFs were present in the LECA:
cytohesin, BIG, and GBF. Cytohesin primarily acts at the plasma membrane,
regulating endocytic events and membrane remodelling (Geiger et al., 2000). GBF
and BIG are primarily localized to the cis- and trans-Golgi network (Shinotsuka et al,,
2002a; Zhao et al.,, 2006), respectively, indicative of a role in the secretory pathway.
It should be noted that BIGZ has been observed to function at endosomal
compartments in mammalian cells (Shinotsuka et al., 2002b). Similar reports have
been made for some paralogues of GBF in A. thaliana (Teh and Moore, 2007).
However, given that these represent independent, lineage-specific expansions, these
secondary locations of function are likely the result of convergence, rather than a

shared ancestral function of both BIG and GBF, similar to the expansions and
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Figure 6-1. Hypothesis for the early evolution of ArfGAPs and ArfGEFs. A)
Predicted relationships between ancient ArfGAPs results in their clustering into
secretory and endolysosomal clades. ArfGAP1 and ArfGAP2 both act in the early
secretory system during COPI coat formation, and retrieve each other as their next-
best hit when BLASTed against the human genome. SMAP, ACAP, and AGFG act in
the endolysosomal system and retrieve each other when BLASTed against the
human genome, before hitting ArfGAP1 or ArfGAP2. These observations suggest an
ancient duplication of an ancestral ArfGAP domain-containing protein, generating
secretory and endolysosomal clades of ArfGAPs. ArfGAPC2 retrieves SMAP as its
best hit when BLASTed against the human genome, but is not coloured as the
cellular location at which it acts is currently unknown. B) ArfGEFs also segregate
into secretory and endolysosomal clades. BIG and GBF are unified by the presence of
the DCB, HUS, and HDS domains (purple bar), forming a distinct clade from
cytohesin. These two lineages are likely the products of an ancient duplication of the

ancestral Sec7 domain-containing protein.
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functional convergence of endosomal syntaxins in animals and plants (Dacks et al,,
2008). This is especially likely in A. thaliana, as only BIG and GBF are present,
requiring paralogues of these proteins to fill functional roles carried out by other
subfamilies in mammalian cells.

Previous reports have suggested a common origin for BIG and GBF as the
result of a pre-LECA gene duplication. This was based on the extreme overlap in
domain conservation along the length of their sequences (Mouratou et al., 2005).
Cytohesin would then have either emerged prior to the duplication giving rise to BIG
and GBF, or would have arisen from BIG or from GBF. I propose that cytohesin arose
from an earlier gene duplication that also gave rise to the ancestor of BIG and GBF.
The rationale is as follows: first, the two scenarios presented above are equally
parsimonious, indicating that either scenario is equally probable. Second, if
cytohesin diverged from either BIG or GBF, one would expect conservation of at
least a portion the HUS or HDS domains to be present in cytohesin as well.
Therefore, it is most likely that the first duplication of the Sec7 domain gave rise to
one lineage involved in secretion and one lineage involved in endocytosis.
Nonetheless, early duplications of ArfGAPs and ArfGEFs into secretory and
endosomal clades is consistent with the model proposed in Figure 5-13, where the
duplication of the ancestral heterotetramer gave rise to secretory and endocytic
forms. This, along with the early duplication of Rabs into largely endo- and exocytic
clades, helps to solidify one of the earliest steps in the evolution of the membrane

trafficking system.
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6.5.2 Placing TSET and COPII on the protocoatomer tree

The analysis of the COPII complex, and the discovery and characterization of
TSET, requires an assessment of their relationship with the other protocoatomer
domain-containing complexes. The protocoatomer hypothesis postulates a common
origin for cellular complexes such as the NPC, COPI, COPII, and AP complexes, based
on a shared domain composition consisting of a B-propeller/a-solenoid domain
composition, combined with a conserved role in membrane deformation (Devos et
al.,, 2004).

Since the original proposal of the hypothesis, new complexes possessing this
domain architecture have been identified. One such complex, the IFT, is responsible
for bidirectional transport of cargo along the length of the cilium (Kee and Verhey,
2013). The eukaryotic cilium was originally thought to be derived from the
symbiosis of eukaryotic ancestor with a spirochete bacterium (Margulis, 1981), but
it has since been shown that no homologues of the IFT can be uniquely identified as
spirochete derived, and neither does it posses a double membrane structure as do
mitochondria and chloroplasts, nor does it possess an organellar genome,
suggesting an autogenous origin. Moreover, structural analyses have identified
strong similarity of IFT subunits to a/B’-COP]I, clathrin and, more recently, e-COPI
(Avidor-Reiss et al., 2004; Jékely and Arendt, 2006; van Dam et al., 2013). There is
also evidence for a role of some nucleoporins in the ciliary pore complex, selectively
controlling the entry and exit, like at the nuclear pore. Additionally, a Ran-GTP
gradient is also though to mediate dissociation of cargo from importins as they cross

the ciliary pore, similar to the mechanism used during nucleocytoplasmic transport
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(Kee and Verhey, 2013). Overall, the cilium clearly shares an ancestor with the
nucleus, as they share similar pore structures, and subunits thereof, and are also
linked through the presence of protocoatomer derived complexes, requiring the
incorporation of this organelle typically involved in cellular motility, into models of
the origin of the endomembrane system.

More recently, the SEA complex has been identified as a novel protocoatomer
fold-containing complex (Dokudovskaya et al., 2011). The SEA complex is localized
to the vacuole in S. cerevisiae and is composed of Seal-4, Seh1, Sec13, Npr2, and
Npr3, and have been shown to play a role in intracellular trafficking, amino acid
biogenesis, and regulation of TORC1 (Algret et al., 2014). Incorporation of Sec13 and
Sehl, in addition to the structural similarity of Sea4 (p-propeller-a-solenoid) to
Sec31 and members of the Vps-C core complex of the HOPS and CORVET tethering
complexes (notably Vps39), connects the SEA complex to the protocoatomer lineage
(Dokudovskaya et al,, 2011; Nickerson et al., 2009).

Hypothetically, deducing the relationships between these complexes would
uncover the relationships between the organelles of the endomembrane system
itself. Therefore, determining the relationships between each of these complexes is
integral to a complete understanding of the evolution of the membrane trafficking
system. It had previously been suggested that the NPC and COPII are derived from a
recent common ancestor based on the shared Sec13 subunit (Devos et al., 2004;
Field and Dacks, 2009). More recently, it has been discovered that the yeast
nucleoporin Nup145C is similar structurally to Sec31 and in its mechanism of

binding to Secl3 (Brohawn and Schwartz, 2009). This finding tightens the

348



connection between these two membrane deformation complexes. The observation
that the NPC, COPII, and the SEA complex share Sec13, and that the NPC and the SEA
complex share Seh1, combined with the structural similarity of Nup145C, Sec31,
Sea4, and Vps39 unifies these complexes, along with HOPS/CORVET, as a single
group.

Similarly, TSET is clearly related to the COPI-AP complexes, forming another
group based on the structural and phylogenetic analyses discussed in chapter 5.
However, the placement of the last complex, the IFT, is less clear. Comparative
genomic and phylogenetic analysis suggested that some members of the IFT
complex are distant relatives of the a-, f’- and &-COPI subunits (van Dam et al,
2013), whereas physical and structural similarities suggest that it is more closely
related to the NPC (Kee and Verhey, 2013). However, further analysis will be
required to determine the precise phylogenetic position of this important cellular
complex. Nonetheless, this analysis suggests the presence of two distinct clades that
make up the protocoatomer tree (Figure 6-2), one composed of TSET, COPI, and the
AP complexes, unified by the heterotetrameric core. The second clade comprises the
NPC, COPII, the SEA complex, and HOPS/CORVET, all unified by the presence of
Sec13, Sehl, and an interacting protein structurally similar to Sec31. The IFT
complex could be a part of either group. This speculation by no means represents a
definitive analysis of the protocoatomer domain-containing proteins; a thorough
phylogenetic analysis of these proteins remains to be completed. However, this
does provide a set of hypotheses to be tested once the phylogenetic tools and

datasets become available.
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Figure 6-2. Hypothesized relationships of known protocoatomer domain-
containing complexes. COPII, the NPC, the SEA complex, and HOPS/CORVET likely
form a single group based on both the shared presence of Sec13 and the presence of
subunits that share similar structures to Sec31. COPI, TSET, and the APs form a
distinct group based on their shared tetrameric structure. It is currently unclear
where the IFT complex is placed, with some suggesting that it is sister to COPI,
whereas others suggest that it may share a more recent common ancestor with the
COPII-containing clade. Clades can be subdivided into complexes acting in
endolysosomal and secretory transport steps. The relationship between the
secretory complexes and endolysosomal complexes is suggestive that coat

complexes involved in these processes evolved convergently.
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6.5.3 Different steps in the secretory system arose independently from different
endolysosomal transport pathways

Segregating the protocoatomer-derived lineages into two groups has
interesting implications for the evolution of the membrane trafficking system. Most
importantly, secretory and endolysosomal trafficking appears to have evolved
independently multiple times. Roles in endolysosomal trafficking have been shown
for the AP complexes and for TSET (Gadeyne et al, 2014; Hirst et al, 2014).
Functions in secretion have been shown for AP-1 and AP-4; however, given their
positions in the AP phylogeny (Figure 6-2), and their role in endosomal transport,
these functions are likely to be secondarily derived. By contrast, COPI is the only
complex in the heterotetrameric clade (blue, Figure 6-2) that is only involved in a
secretory pathway. Regardless of the branching order between the APs, TSET, and
COPI], this represents at least one independent acquisition of function in secretion, if
not several.

Similarly, the function of the COPII complex also likely represents an
independent origin of secretion. In this clade (purple, Figure 6-2), both the SEA
complex and HOPS/CORVET complex are both involved in the endolysosomal
system, whereas the NPC plays a structural role in maintaining membrane curvature
at the NPC. A parsimony based analysis would reason that the ancestor of this clade
would also likely have been involved in the endolysosomal system and/or play a
structural role in the early membrane trafficking system, indicating that the
secretory function of COPII is the result of an acquisition of function, rather than

descent from an ancestral state.
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It is tempting to speculate ‘why’ or ‘how’ this convergence to secretion
occurred. One explanation could be the necessity to connect the early secretory
system with the endolysosomal system, and could have centered on translation. In
prokaryotes, the signal recognition particle (SRP) directs nascent proteins destined
for the extracellular space, to the SecYEG translocon. SecYEG is the prokaryote
homologue of the eukaryote Sec61 translocon found at the ER (Gorlich et al., 1992;
Stirling et al., 1992). In early eukaryotes, it is possible that the Sec61 translocon was
still located at the plasma membrane. This would have allowed the evolution of
phagocytosis without a developed membrane trafficking system, as Sec61
translocons would have been incorporated into phagosomal membranes allowing
the translation of hydrolytic enzymes directly into the phagosome producing a
primordial phagosome/lysosome hybrid (Figure 6-3i). At this stage, an early
protocoatomer domain-containing protein was likely associated with the primordial
phagosome/lysosome, contributing either to membrane deformation during
phagocytosis or to tethering of phagosome/lysosome membranes during exocytosis.

Duplication of this complex would have produced a second protocoatomer
complex able to induce membrane curvature, resulting in the production of
membrane invaginations (Figure 6-3ii). Eventually, these invaginations would have
given rise to a stable organelle (Figure 6-3iii). In addition to possessing Sec61-like
translocons, this compartment may also have associated with the cell’'s DNA,

eventually giving rise to the nuclear envelope and the ER (Figure 6-3iii). Additional
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Figure 6-3. Integration of the evolution of the early secretory system and
endolysosomal system. i) Early eukaryotic cell able to undergo phagocytosis,
incorporating the Sec61 translocon into the phagosomal membrane (grey
rectangle). An early protocoatomer element (dark blue) associates with the
phagosome/lysosome, either as a membrane-deforming complex during
phagocytosis or as a tethering complex facilitating membrane fusion. ii) Duplication
of the protocoatomer ancestor gives rise to a lineage able to generate membrane
invaginations. iii) Membrane invaginations give rise to a stable organelle containing
the Sec61 translocon and formed an early association with the cell’s DNA. iv) The
early protocoatomer element gives rise to multiple coats and a novel organelle,
forming an early endolysosomal system. Additional duplications of the
phagosomal/lysosomal protocoatomer complex gives rise to tethering complexes
(i.e, HOPS/CORVET) and the SEA complex. v) Loss of the Sec61 translocon from the
plasma membrane, resulting in its relocation to the ER. vi) Additional gene
duplications give rise to COPI, COPII, and additional AP complexes, bridging the gap
between the ER, the endolysosomal system, and the phagosome. vii) Further
diversification of the endolysosomal system. Double grey arrow represents multiple
steps, the order of which remains uncertain. Coloured, rounded edges represent
distinct protocoatomer complexes. ER = endoplasmic reticulum, NE = nuclear

envelope, G = Golgi, Endo = endosomes, TGN = trans-Golgi Network.
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gene duplications would allow the endolysosomal system to evolve, mediating
trafficking to and from the plasma membrane (Figure 6-3iv).

These independent pathways would be able to continue so long as the Sec61
translocon remains in the plasma membrane. Loss of plasma membrane localized
translocons, perhaps the result of selection for individuals that utilize translocons
that are closer in proximity to the cell’s DNA, would result in the cell’s reliance on
ER localized translocons (Figure 6-3v), selecting for cells able to undergo
anterograde transport from the ER to the Golgi, and subsequent trafficking to the
phagosome (Figure 6-3vi). In this scenario, COPIl would have evolved as a
mechanism to transport lytic enzymes from the ER to phagosomes, whereas COPI
would have evolved as a mechanism to return lipids and other proteins necessary
for transport, back to the ER. From here, expansion of the endolysosomal system
would continue, concurrent with the evolution of additional AP complexes (Figure
6-3vii).

Although this hypothesis is highly speculative, it is consistent with the data at
hand, and represents an attempt to retrace the steps taken by our eukaryotic

forebears during the construction of an important cellular system.

6.6 Conclusion

It is clear from the analyses presented here that the machinery involved in
vesicle formation is also very well conserved much like the machinery involved in
vesicle fusion. These analyses have permitted speculation on events that occurred in

the early evolution of the membrane trafficking system, which can be further tested
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through analysis of additional protein families involved in membrane trafficking.
This may have been expected, as the formation of vesicles is a requisite step for
their fusion. The use of ever increasingly powerful comparative genomic and
phylogenetic tools to study the membrane trafficking system in diverse eukaryotes
will shed further light onto the origin and evolution of this network of organelles
and the eukaryotic cell itself. We are beginning to understand how such
complexities arose and that there is an answer to these questions lying in wait. As

frequently reminded by Fox Mulder: “The truth is out there” (Carter).
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The following images are a supplement to Figure 4-9. The large number of
sequences included in Figure 4-9 renders it difficult to read the labels attributed to
each sequence in the phylogenetic tree. In order to clarify the branching order of
sequences in major lineages, each of the major clades were isolated from the image
and enlarged here. The order of the clades presented here is from top to bottom of
Figure 4-9. Labels are given to clades here (i.e, upper or lower) to denote the

relative position of the clade in Figure 4-9.
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Lower Fungi
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Lower Holozoa
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