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Abstract 

 Heart failure is a serious cardiovascular disease that develops following a 

variety of insults to the heart including hypertrophy and myocardial infarction. 

While it is clear that heart failure is associated with changes in cardiac energy 

metabolism, it remains unclear if, and how, such changes might contribute to left 

ventricular (LV) contractile dysfunction.  Two distinct hypotheses have been 

advanced to link changes in energy metabolism with heart failure: 1) there is a 

state of energetic crisis / starvation, where rates of energy metabolism decrease 

and thereby cause LV failure, or 2) there is inefficiency in energy utilization 

where more energy is required to produce external work.  Inefficiency may be due 

to mismatched rates of glycolysis and glucose oxidation that leads to intracellular 

proton accumulation resulting in Na
+
 and Ca

2+
 overload.  Recently, drug-induced 

modulation of rates of carbohydrate and fat metabolism has been proposed as a 

new approach for the treatment of LV dysfunction and heart failure.  Such 

metabolic modulation can also be achieved experimentally by the use of 

genetically-modified experimental animals. This thesis compared the metabolic 

profile of remodeled post-infarction mouse hearts with normal hearts, studied the 

response of these hearts to ex vivo ischemia reperfusion (IR) and the ability of 

metabolic modulation to limit the deterioration of metabolic efficiency and LV 

dysfunction following myocardial infarction. 

 Using coronary artery ligation, we created a mouse model of post-

infarction remodeled heart failure that we verified using in vivo echocardiographic 

examination. Using ex vivo heart perfusion in the isolated working mode, we 
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provided evidence that CAL hearts are metabolically inefficient rather than 

energy starved and that mismatched glucose metabolism is a possible contributor 

to metabolic inefficiency. 

 Using malonyl CoA decarboxylase deficient (MCD-KO) mice that are 

known to have better matching of glucose metabolism, we confirmed that this 

metabolic intervention improved glucose matching, metabolic efficiency and 

limited functional deterioration in CAL hearts. 

 We also studied the response of CAL hearts to ex vivo IR. We showed that 

CAL hearts have better functional recovery and limited functional deterioration 

following IR in comparison to SHAM hearts. This was associated with reduced 

ischemic glycogenolysis, lack of acceleration in fatty acid oxidation during 

reperfusion and increased triacylglycerol accumulation in reperfused CAL hearts. 

We provided evidence that mitochondrial mass, Ca
2+

 handling proteins and 

AMPK activity are unchanged and are unlikely to contribute to the observed 

response of CAL hearts to IR. 

 This thesis also studied the potential for further protection of CAL hearts 

after IR via pharmacologic improvement of the match of glucose oxidation using 

dichloroacetate (DCA). We showed that in presence of lactate, DCA did not 

stimulate glucose oxidation, improve functional recovery or improve the match of 

glucose metabolism. We also showed that in absence of lactate, DCA was able to 

stimulate glucose oxidation but this was not enough to improve the matching of 

glucose metabolism. This thesis also discussed differences between mouse and rat 
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heart metabolism that may explain the lack of response to DCA in mouse hearts.   

Similarly, we studied the possible improvement of metabolic efficiency in CAL 

hearts via acute ex vivo MCD inhibition but this acute intervention was not 

sufficient to produce benefit.  
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1.1 Heart failure 

1.1.1 Definition, different etiologies and 

compensatory mechanisms 

Heart failure is defined as failure of the heart to pump an adequate amount 

of blood to meet the peripheral needs of the body.  It develops following various 

insults to the heart including, but not limited to, ischemic insults, hypertrophy 

following longstanding untreated hypertension, genetic or acquired 

cardiomyopathies, glycogen storage diseases, or hyperdynamic circulation such as 

severe anemia or hyperthyroidism [1].   During the progression to heart failure 

adaptive changes occur in the heart, including structural and metabolic 

remodeling.  Systemic neurohumoral compensatory mechanisms develop to 

maintain adequate cardiac output. This includes activation of renin-angiotensin-

aldosterone system (RAAS) and sympathetic system [2].  However as heart 

failure progresses, these initially adaptive mechanisms become maladaptive 

leading to increased workloads and energy demand of the heart as well as energy 

cost of work ending in decompensation [3]. 

1.1.2 The frequently used animal models of heart failure 

The study of mechanisms contributing to heart failure is complicated by 

the many causes of heart failure.  However, numerous animal models of heart 

failure have been studied, with each mimicking a subtype such as pressure 

overload (e.g. transverse aortic constriction and abdominal aortic constriction), 
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volume overload (e.g. aortocaval shunt), stress overload (e.g. rapid ventricular 

pacing), genetic alterations (transgenic animals), or post-infarction (coronary 

artery ligation, CAL) (see [4] for excellent review).  As will be discussed, each of 

these experimental models, as well as complementary human studies, has 

provided valuable information as to how alterations in energy metabolism 

contribute to severity of heart failure.  

1.2 Cardiac metabolism  

 As mentioned above, development of heart failure is associated with 

changes in cardiac metabolism. To better understand these changes, it is 

warranted to shed light on the major metabolic pathways in the heart.  

1.2.1 Normal cardiac metabolism  

1.2.1.1 Cardiac energy demand 

 The heart is a continuously contracting organ with a great need for energy. 

This is illustrated by the high turnover rates of adenosine triphosphate (ATP) in 

the heart.  Although cardiac ATP content is very low (5 µmol/g wet wt), the heart 

has high ATP hydrolysis rates (~ 30 µmol/g wet wt/min). Thus, the heart has 

virtually no energy reserves and the ATP pool of the heart is essentially turned 

over every 10 beats [5-8].  To secure the energy needed to perform its tasks (such 

as mechanical work, ionic homeostasis, cardiac signaling, and synthetic function) 

the heart is flexible in which energy substrates it utilizes.  Many different energy 

substrates can be used, which include fatty acids, glucose, lactate, pyruvate, 
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ketone bodies, and amino acids.  The relative contribution of each of these energy 

substrates to overall cardiac ATP production depends on substrate availability, the 

workload of the heart, circulating hormones (such as insulin and catecholamines), 

age, oxygen availability, and pathophysiologic changes that accompany various 

diseases including heart failure [9, 10], hypertrophy [11], cardiomyopathy [12] 

and ischemia-reperfusion (IR) injuries [13].  However, under physiologic 

conditions, the adult heart normally derives most (80% in rats and 50% in mice) 

of its ATP from fatty acid oxidation, with the remainder primarily being derived 

from the oxidation of carbohydrates (glucose, lactate and pyruvate) [14-18]. 

1.2.1.2 Energy substrate utilization and generation of ATP 

The heart is a highly dynamic organ.  The human heart pumps about 10 

tons of blood on a daily basis and beats about 100,000 times a day [19].  To 

accomplish this task, the heart uses multiple energy substrates to generate the 

needed work.  In this regard, the heart is the highest energy substrate consumer in 

the body on a gram weight basis [19].  The process of energy substrate utilization 

in the heart involves several processes namely, energy substrate delivery, energy 

substrate utilization, mitochondrial oxidative phosphorylation (tricarboxylic acid 

(TCA) cycle) and electron transfer chain for ATP generation), and transfer of the 

high energy phosphates to the contracting myofilaments. In addition, ATP is used 

for work-unrelated housekeeping activities such as ionic homeostasis and 

regeneration of organelles. 
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1.2.1.2.1 Energy substrate delivery 

This process entails the uptake of various energy substrates by the 

cardiomyocytes followed by subsequent metabolism.  

1.2.1.2.1.1 Glucose delivery 

Glucose is delivered to cardiomyocytes via activity of insulin-dependent 

glucose transporter 4 (GLUT4) and insulin-independent glucose transporter 1 

(GLUT1). Through the activity of hexokinase (HK) enzyme, glucose is 

phosphorylated into glucose-6-phosphate (G-6-P) and is trapped in the cytosol. In 

states of energy abundance in the heart, G-6-P can be relatively partitioned 

towards glycogen synthesis for storage. In contrast, in conditions of increased 

energy demand, G-6-P preferentially undergoes glycolysis, where each mole of 

glucose yields 2 moles of pyruvate or lactate in aerobic or anaerobic conditions, 

respectively. This pathway yields 2 moles of ATP per each mole of glucose [20-

23]. Pyruvate is then transported into the mitochondria and activated into acetyl 

CoA via the activity pyruvate dehydrogenase (PDH) complex. Oxidation of acetyl 

CoA through activity of TCA cycle yields most of ATP (See Fig 1.1 for details of 

glucose metabolism). Normally, TCA cycle activity is coupled to oxidative 

phosphorylation for ATP production [19, 21].  

1.2.1.2.1.2 Fatty acid delivery 

Fatty acids are primarily delivered to the heart either as free fatty acids 

(FFA) bound to albumin, or as triacylglycerols (TGs) present in chylomicrons and 

very low density lipoproteins [5, 21, 24].  The free fatty acids are then activated 



6 
 

into fatty acyl CoA via the activity of fatty acyl CoA synthase (FACS). In the 

cytosol, acyl CoA molecules bound to acyl CoA binding protein (ACBP) undergo 

a number of different metabolic pathways including phospholipid and TG 

synthesis, signal transduction, or mitochondrial fatty acid β-oxidation [21]. Since 

the inner mitochondrial membrane is impermeable to fatty acyl CoA, 

mitochondrial uptake of fatty acyl CoAs is thus mediated by a complex of 

proteins utilizing carnitine as a shuttle mechanism [25-29]. Carnitine palmitoyl-

transferase 1 (CPT1) is localized to the outer mitochondrial membrane and 

converts fatty acyl-CoA molecules to their respective fatty acylcarnitine moieties 

[25, 29, 30], which are subsequently shuttled into the mitochondrial matrix space 

by carnitine translocase (CT), and reconverted back to a fatty acyl-CoA moiety by 

carnitine palmitoyl-transferase 2 (CPT2), which is localized to the inner leaflet of 

the inner mitochondrial membrane [31-35]. 

Similarly, other energy substrates such as ketone bodies and amino acids 

contribute to overall cardiac ATP generation and become of extreme importance 

in heart failure and during IR but they are out of the scope of this thesis (see 

references [36-39] for review). 

1.2.1.2.2  Energy substrate utilization 

 This includes glycolysis, glucose oxidation and fatty acid oxidation. 

Different types of fatty acid oxidation exist such as peroxisomal ω-oxidation [40, 

41] in brain [42], leucocytes [43] and liver [44] and peroxisomal α-oxidation [45, 

46] but this thesis will focus on mitochondrial β-oxidation.   
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1.2.1.2.2.1 Glycolysis 

 Once inside the cardiomyocytes, glucose is phosphorylated to G-6-P by 

the activity of HK, which will then be directed to either storage via glycogen 

synthesis pathway or catabolism via glycolysis to eventually produce pyruvate or 

lactate in aerobic or anaerobic conditions, respectively [20-23].  The advantage of 

glycolysis is that it produces ATP without the requirement for oxygen.  However, 

the amount of ATP generated is small in comparison to the amount produced by 

mitochondrial oxidative phosphorylation, and as a result, glycolysis normally 

produces less than 5% of the total ATP requirements of the heart [5].  However, 

as will be discussed below, this proportion can change in the failing heart and in 

conditions of IR. 

 Glycolysis is regulated via multiple check points. The enzyme 6-

phosphofructo-1-kinase (PFK1) is the first regulatory site that shuttles glucose to 

glycolysis [47] (see Fig 1.1). Flux through PFK1 is allosterically inhibited by 

ATP, citrate, and protons and is allosterically stimulated by fructose-2,6-

bisphosphate (F-2,6-bp), a product of PFK2  (Fig 1.1) [47]. Glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), the first enzyme of the ATP generating 

stage of glycolysis, controls the feed forward of glycolysis via the oxidation and 

phosphorylation of glyceraldehyde phosphate coupled to the production of 

reduced nicotinamide adenine dinucleotide (NADH) from oxidized NAD (NAD
+
) 

[20, 47, 48]. To ensure that flux through GAPDH is not limited, NADH must be 

continually reoxidized to NAD
+
, which can be accomplished by one of two 

routes. In the absence of oxygen (O2), NADH is reoxidized by the enzyme lactate 
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dehydrogenase (LDH), which converts pyruvate to lactate, whereas in the 

presence of O2, NADH is reoxidized by the malate/aspartate shuttle and 

mitochondrial electron transport chain. 

1.2.1.2.2.2 Fatty acid β-oxidation  

 Oxidation of fatty acids in the mitochondria via β-oxidation produces 

more ATP per mole of fatty acid than any other energy substrate (e.g. 104 moles 

of ATP per mole of palmitate). The sequential release of acetyl CoA moieties 

from fatty acids requires sequential carboxylation of the long fatty acid molecules 

through energy-consuming activation by fatty acid CoA synthase. Thus, fatty acid 

oxidation consumes more O2 as compared to glucose oxidation hence fatty acids 

are an inefficient source of energy (see section 1.2.2.1.1.1 for details). The 

contribution of fatty acid oxidation to cardiac energy generation varies from being 

a predominant source of energy to being a minimal source. This depends on fatty 

acid availability, energy demand, cardiac pathologic status and competition with 

the other energy substrates (see [21] for review). In addition, data from our lab 

indicate varying overall contribution of fatty acid oxidation to ATP production in 

different species. For example, in our hands, fatty acid oxidation contributes 

almost 80% of ATP production in rat heart versus 50% in a mouse heart. The 

section below describes details of fatty acid oxidation and different levels of its 

regulation. 

 As mentioned above, fatty acids are delivered to the heart as free fatty 

acids (FFAs) bound to albumin or liberated from TGs by the activity of 
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lipoprotein lipase [5, 20, 21, 24, 49]. In the cytosol, FFAs are esterified to fatty 

acyl CoA through an ATP utilizing process catalyzed by FACS. The portion of 

fatty acyl CoA that undergoes subsequent β-oxidation is transported to the 

mitochondria via the activity of CPT1 and CPT2 as mentioned above.  

 In the mitochondrial matrix, fatty acyl CoA molecules are progressively 

shortened by 2 carbons each cycle of β-oxidation by the sequential action of the 

enzymes acyl CoA dehydrogenase, enoyl-CoA hydratase, 3-L-hydroxyacyl CoA 

dehydrogenase and 3-ketoacyl CoA thiolase acting on the saturated skeleton of 

these fatty acids. Polyunsaturated and monounsaturated fatty acids (e.g. oleate) 

require auxiliary enzymes including 2,4-dienoyl-CoA reductase and enoyl CoA 

isomerase which facilitate the generation of a trans double-bond [20, 21, 49, 50], 

a prerequisite for fatty acid β-oxidation by the four major enzymes described 

above. Each cycle of β-oxidation liberates an acetyl CoA moiety that feeds into 

the TCA cycle. It also generates reducing equivalents (NADH and reduced flavine 

adenine dinucleotide (FADH2)) that act as electron donors in the electron 

transport chain that produces ATP in the final steps of oxidative phosphorylation.  

 The rate of β-oxidation is regulated by the level of plasma FFA, activity of 

the key enzymes of fatty acid oxidation and the intracellular level of malonyl CoA 

[51-54]. Plasma FFA concentration depends on both dietary intake and hormonal 

factors. Fasting increases circulating plasma FFA while feeding decreases FFA 

concentrations secondary to carbohydrate-induced insulin secretion which in turn 

exerts anabolic and anti-lipolytic effects [55-57]. Similarly, increased 

catecholamine release during stressful conditions such as surgeries, IR or during 
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early adaptive hormonal changes that accompany the developing heart failure also 

increase circulating FFA via increased lipolysis through stimulation of β3-

adrenoceptors in adipose tissue [58].  

 The second factor that regulates fatty acid oxidation is the activities of the 

enzymes of mitochondrial β-oxidation [20, 21, 49]. The acyl-CoA dehydrogenase 

and 3-hydroxyacyl-CoA dehydrogenase enzymes are both sensitive to the ratios 

of FAD/FADH2 and NAD
+
/NADH in the mitochondrial matrix, and the enzyme 

3-ketoacyl-CoA thiolase is sensitive to the mitochondrial acetyl-CoA/CoA ratio.  

 The third regulator of fatty acid oxidation is the malonyl-CoA level [51-

53, 59-69]. The intracellular levels of malonyl-CoA are determined by energy 

demand and its rates of synthesis and degradation. Malonyl-CoA is synthesized 

from cytosolic acetyl CoA via acetyl-CoA carboxylase (ACC). It is degraded via 

malonyl-CoA decarboxylase (MCD) [51-53, 59-69]. The activity of ACC is under 

phosphorylation control by 5′-AMP activated protein kinase (AMPK), a kinase 

that modifies the activity of a number of metabolic enzymes involved in 

regulating both fatty acid and glucose metabolism [70-86]. In addition, AMPK is 

also implicated in upregulating various energy producing processes, thus, is 

central in the regulation of energy substrate metabolism [84-90]. It is important to 

mention that regulation of fatty acid oxidation is multi-factorial. Thus, absence of 

one regulator might not be enough to sufficiently alter fatty acid oxidation. This 

can be illustrated by the finding that lack of AMPK-induced inhibitory 

phosphorylation of ACC that results in accumulation of malonyl CoA does not 

inhibit fatty acid oxidation [91]. Another regulatory factor is citrate which 
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influences malonyl CoA levels. A proportion of citrate that escapes oxidation in 

the mitochondrial matrix by the TCA cycle, can utilize the mitochondrial 

tricarboxylate transporter to translocate to the cytosolic compartment, where it 

can allosterically activate ACC or serve as a contributor to cytosolic acetyl-CoA 

synthesis via the ATP citrate lyase reaction [92, 93]. Malonyl CoA regulates fatty 

acid β-oxidation by inhibiting the activity of CPT1, the rate limiting enzyme of 

mitochondrial fatty acid uptake, thereby controlling the entry of fatty acids into 

the mitochondria for subsequent oxidation [51-53, 59-62, 64-68, 94-97] (Fig 1.1). 

1.2.1.2.2.3 Glucose oxidation 

 Glucose oxidation (oxidation of the 2 moles of pyruvate produced from 

each mole of glucose via glycolysis) requires pyruvate transport into the 

mitochondria via a monocarboxylate transporter (MCT) [98] (Fig 1.1) that is 

recently identified as mitochondrial pyruvate carrier (MPC) [99]. In the 

mitochondrial matrix, the majority of pyruvate undergoes oxidative 

decarboxylation by the pyruvate dehydrogenase (PDH) complex producing acetyl 

CoA [20, 100-102]. The PDH complex consists of PDH itself, PDH kinase 

(PDK), and PDH phosphatase (PDHP), and is regulated both by substrate/product 

ratio and by covalent modification [103-109]. Generally only a small fraction 

(~20%) of PDH is in the active form, and this proportion is increased in response 

to an increase in glycolytic flux (and hence an increased generation of pyruvate), 

or in response to increased cardiac workload or catecholamine stimulation. PDH 

is also sensitive to inhibition by its products, as an increase in either the ratio of 

NADH/NAD
+ 

 and/or acetyl-CoA/CoA decreases the rate of pyruvate 
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decarboxylation [103, 110-121]. With respect to covalent modification, PDHP 

dephosphorylates and activates PDH, whereas PDK, in response to acetyl-CoA 

and NADH phosphorylates and inhibits PDH, thereby restricting the oxidation of 

carbon units derived from glycolysis [103, 110-122]. 

 In addition to glycolysis-derived pyruvate, pyruvate can also be produced 

from lactate via the activity of LDH to feed into the TCA cycle as discussed 

above. Glucose oxidation produces less ATP per mole of glucose (36 moles) than 

fatty acid oxidation (108 moles of ATP per mole of palmitate). However, glucose 

oxidation consumes less O2 per mole of ATP generated; hence it is considered a 

more efficient energy substrate (see [6, 8, 15, 123] for review). 

1.2.1.2.2.4 Mutual regulation between fatty acid oxidation and glucose oxidation: 

The Randle cycle 

 Fatty acid oxidation and glucose oxidation exhibit a reciprocal 

relationship. That is to say when fatty acid oxidation increases, it causes glucose 

oxidation to decrease and vice versa. This is known as glucose/fatty acid or 

Randle cycle. It was originally described by Randle et al. in 1963 [57]. This 

reciprocal control occurs at various levels of both metabolic pathways. Acetyl 

CoA and NADH produced from fatty acid β-oxidation inhibit the PDH complex. 

Citrate derived from ß-oxidation-derived acetyl CoA can inhibit PFK1 which in 

turn can lead to an inhibition of HK by G-6-P [56]. However, as PDH inhibition 

by β-oxidation-derived acetyl CoA and NADH dominates over the inhibition of 

glycolysis, the overall effect of fatty acid oxidation stimulation is a mismatch 
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between glucose oxidation and glycolysis resulting in a relative accumulation of 

pyruvate. 

 Under normal conditions, the negatively-charged pyruvate requires co-

transport of protons in a 1:1 stoichiometric manner [124-126] to the mitochondrial 

matrix for subsequent activation by PDH complex. Thus, in conditions of 

mismatch, the relative accumulation of pyruvate is accompanied by accumulation 

of protons derived from hydrolysis of glycolysis-derived ATP resulting in 

intracellular acidosis [20, 127, 128]. Under conditions of low coronary flow such 

as ischemia or in low cardiac output heart failure, the limited clearing of 

metabolic byproducts results in intracellular acidosis, activation of the sodium- 

hydrogen exchanger (NHE) which exchanges intracellular protons with Na
+
. The 

accumulating Na
+
 stimulates the reverse mode Na

+
- Ca

2+
 exchanger (rmNCX) 

resulting in Ca
2+

 overlaod. These effects collectively result in a dysregulation of 

ionic homeostasis (See below and Fig 1.2, Fig 1.3). 

 In contrast, increasing the contribution of glucose oxidation to the 

generation of acetyl CoA inhibits fatty acid oxidation via feedback inhibition of 3-

ketoacyl CoA thiolase, while NADH derived from glucose oxidation can decrease 

fatty acid oxidation via feedback inhibition of both acyl CoA dehydrogenase and 

3-hydroxyacyl CoA dehydrogenase. Furthermore, an increase in glucose-derived 

acetyl CoA, via the actions of the enzymes carnitine acetyl transferase (CAT) [20, 

21, 49, 129, 130] and ACC can increase the synthesis of cytosolic malonyl-CoA. 

Also, increasing glucose oxidation improves the coupling of glucose metabolism, 

and hence decreases proton production (Fig 1.1). 
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1.2.1.2.3  Oxidative phosphorylation for ATP production 

Under aerobic conditions about 95% of the hearts ATP requirements are 

met through the mitochondrial oxidative phosphorylation of ADP.  The reducing 

equivalents produced in TCA cycle are transferred to the mitochondria via 

FADH2 and NADH, which are generated via dehydrogenase reactions in fatty 

acid β-oxidation, TCA cycle, the glycolytic pathway, and from the oxidation of 

pyruvate derived from glucose or lactate.  The relative contribution of the various 

energy substrates to ATP production is affected by many factors including the 

developmental stage of the heart, cardiac workload (pre- and afterload), heart rate 

and force of contraction, and the presence of various cardiac pathologies (e.g., 

hypertrophy, failure or ischemia-reperfusion injury) [19-21, 131].   

1.2.1.2.4  ATP transfer and phosphocreatine/creatine kinase 

shuttle 

Transfer of the high energy phosphate bond in ATP that is generated 

inside the mitochondria (via oxidative phosphorylation) to the site of ATPases 

(i.e. the myofibrils, sarcoplasmic reticulum, and sarcolemma) is facilitated by the 

creatine kinase shuttle system.  Creatine kinase (CK) is a reversible kinase that 

initially phosphorylates creatine to phosphocreatine (PCr) using the high energy 

phosphate bond in ATP [132].  The CK shuttle is facilitated by mitochondrial and 

cytoplasmic CKs, which eventually results in the rephosphorylation of ADP to 

ATP in the cytoplasm. 
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In cardiomyocytes, about two thirds of creatine are phosphorylated and act 

as a reservoir for ATP.  Thus, when energy production declines, PCr levels 

decline while ATP levels are initially maintained. This is accompanied by an 

increase in ADP levels [133, 134].  Because of this, total creatine levels and 

PCr/ATP ratio can be used as indices of cardiac energetic status.  In general, both 

indices decline in early phases of heart failure before an actual decline in total 

ATP levels occurs [132-134].  

Since creatine is not synthesized de novo in cardiac muscle [135], the 

activity of creatine transporters plays a regulatory role on the intracellular 

availability of creatine in cardiomyocytes. Reduction of creatine transporter 

expression and/or activity can be one of the contributing factors to the 

deterioration of PCr/CK shuttle observed in many cardiac diseases, including 

heart failure [132-134]. 

The association of various isoforms of CK with subcellular structures 

ensures adequate transfer of ATP-derived energy for adequate coupling of energy 

generation and utilization. For example, the tight association of myofibrillar CK 

(MM-CK) with sarco/endoplasmic reticulum ATPase (SERCA) is thought to 

enable efficient energy transfer for Ca
2+

 uptake [136].  Similarly, the 

mitochondrial CK (miCK) being located in the inner mitochondrial membrane 

near the adenine nucleotide translocase  is thought to help export the high energy 

phosphate of ATP through the formation of ADP and PCr thus maintaining 

mitochondrial respiration by prevention of intramitochondrial ATP accumulation 

[137] (for further review see [138]). 
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1.2.2 Metabolic phenotype in heart failure 

Heart failure is associated with a number of changes in energy metabolism 

[19, 21, 138-140].  Whether these changes contribute to the contractile failure of 

these hearts, hence considered as maladaptive and should be discouraged [141, 

142], or whether they represent an adaptive response that should be encouraged is 

not yet firmly established [143].  Moreover, there is no agreement regarding the 

actual nature of the energy metabolic changes that occur in heart failure and two 

main concepts have emerged (Fig. 1.2).  The first concept is that the failing heart 

is energetically starved, similar to an engine out of fuel [19, 144].  This implies 

lower rates of energy metabolism and lower rates of production of the energy 

currency; ATP.  The second concept is that the failing heart may not necessarily 

be energy starved, but rather is inefficient in its use of energy for contractile 

function [145]. 

1.2.2.1 Metabolic inefficiency in heart failure 

Cardiac energy stores are expended for mechanical work generation, ionic 

homeostasis and other vital cellular functions, such as synthesis and degradation 

of various intracellular molecules and their trafficking to various cellular 

compartments or to the extracellular compartment [146-148]. In 1949 Bing et al 

[149] defined cardiac mechanical efficiency as the “cardiac work generated per 

energy consumed”.   Since most of cardiac energy generated (about 95% under 

aerobic conditions) is derived from fatty acid and carbohydrate metabolism [123], 

and the fact that metabolic rates in cardiac muscle are tightly coupled with energy 
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demand [150, 151], oxygen consumption (MVO2) by the cardiac muscle can be 

used as a measure of energy production.  A decrease in cardiac efficiency occurs 

when more energy substrates are utilized without a corresponding increase in 

external work generation. A decrease in the efficiency in utilizing energy for 

mechanical function has the potential to be a major contributor to cardiac 

dysfunction in heart failure [123, 152-158].  This cardiac inefficiency can develop 

primarily at three different levels: 1) increased oxygen cost of acetyl CoA and 

ATP production, 2) increased ATP consumption for non-contractile homeostatic 

activities, and 3) impaired energy transfer to myofibrils. 

1.2.2.1.1  Contributors to metabolic inefficiency in heart failure 

1.2.2.1.1.1 Increased oxygen cost of ATP production due to an increased 

dependence on fatty acids 

As mentioned, under aerobic conditions the heart derives most of its 

energy requirements from fatty acids [123, 152-158].  Moreover, the activated 

neurohumoral mechanisms during early stages of heart failure favor lipolysis 

leading to increased circulating fatty acids and exposure of the cardiomyocytes to 

greater concentrations of fatty acids [2].  When one molecule of palmitate is fully 

metabolized, it yields 104 ATP molecules, compared to the metabolism of 

glucose where only 31 ATP molecules are produced.  However, despite this 

higher ATP yield of palmitate, a higher MVO2 is also needed [21].  This is 

because while the initial cytoplasmic metabolism of glucose (i.e. glycolysis) 

produces 2 ATP, the initial cytoplasmic metabolism of fatty acids (i.e. the 
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formation of long chain acyl CoA from fatty acids and CoA) actually consumes 

two high energy phosphates (i.e. ATP to AMP).  Also, the fact that palmitate 

oxidation yields both FADH2 and NADH, as compared to only NADH produced 

during glucose metabolism, contributes to palmitate being an inefficient source of 

energy.  Because FADH2 bypasses complex I of the electron transfer chain, it 

pumps less protons and generates less ATP than NADH (reviewed in [21]).  This 

means that a preferential dependence on fatty acids for energy generation in early 

stages of hearts failure could lead to more MVO2 for the same energy yield; hence 

causing inefficiency in ATP generation.  This effect was shown many years ago 

when increasing FFA supply to the heart secondary to adrenergic stimulation-

induced lipolysis was found to increase cardiac MVO2 without changing cardiac 

external work [155, 158].  In theory, a complete dependence on fatty acids for 

energy generation leads to 10-13% reduction in the calculated efficiency. 

However, the observed differences in efficiency are even higher; indicative of 

involvement of other mechanisms [20, 21].  

In heart failure, there is not a uniform consensus as to what happens to 

cardiac fatty acid oxidation rates.  Both human and experimental studies have 

shown an increase in fatty acid oxidation rates, a decrease in fatty acid oxidation 

rates, or no change in fatty acid oxidation rates (see references [15, 20, 21] for 

reviews).  As a result, it cannot be conclusively stated as to whether the heart is 

more inefficient due to an increased reliance on fatty acid as an energy source.  

Similarly, there are no consensus regarding whether inhibiting or stimulating fatty 

acid oxidation is beneficial in heart failure [15, 19-21]. This is probably 
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dependent on the stage of heart failure and the availability of other energy 

substrates.  

1.2.2.1.1.2 Uncoupled oxidation-phosphorylation at TCA cycle 

The mitochondrial electron transfer chain (also known as the 

mitochondrial respiratory chain) utilizes reducing equivalents in the mitochondrial 

matrix to generate ATP.  The electrochemical gradient of protons across the inner 

mitochondrial membrane is essential for this process.  This gradient is generated 

by the movement of protons from the mitochondrial matrix to the intermembrane 

space by complexes I, III and IV.  The protons then move down their 

electrochemical gradient to the mitochondrial matrix to provide the energy needed 

for ATP synthase activity, with the subsequent phosphorylation of ADP to ATP 

[21, 159, 160]. 

The uncoupling proteins (UCP) provide a potential alternative route for 

transport of protons across the inner mitochondrial membrane without the 

involvement in ATP synthesis [160]. These UCPs were originally discovered in 

brown adipose tissue where they help oxidatively-generated energy to dissipate in 

the form of heat, secondary to failure of coupling with phosphorylation of ADP 

for ATP generation [161, 162]. In the heart UCP2 and UCP3 are preferentially 

expressed [163]. UCP3 has been suggested to mediate fatty acid-induced 

uncoupling of oxidation-phosphorylation [164].  Moreover, high circulating fatty 

acid levels increase UCP3 expression in the heart [165]. The aforementioned 

observation provides a potential explanation why the reported difference in 



20 
 

efficiency due to dependence on fatty acid oxidation is higher than the 

theoretically-calculated difference.  Several reports from animal models of heart 

failure describe overexpression of UCPs (see [166] for review). In an abdominal 

aorta constriction model of heart failure in the rat, decreases in ATP, ADP, AMP 

and PCr contents in the failing heart were associated with a significant increase in 

UCP2 expression [167]. Adenovirus-mediated overexpression of UCP2 in 

neonatal cardiomyocytes was also found to increase basal oxygen consumption 

without affecting total ATP content [168], indicative of an increase in cardiac 

inefficiency.  Moreover, UCP2 overexpression disrupted mitochondrial 

membrane potential secondary to failure to control Ca
2+

-induced Ca
2+

 release 

from SERCA [168].  In cardiac mitochondria isolated 10 weeks following CAL 

surgery in rats, UPC3 was also shown to be up-regulated, mitochondria were less 

coupled (lower ADP/oxygen ratio), and a significant reduction of efficiency was 

observed [169].  Furthermore a positive correlation between UPC3 levels and 

circulating non-fasting fatty acid levels was observed, an observation which 

supports the regulatory role of circulating fatty acids on cardiac UPC3 expression 

and thus increased inefficiency [169]. 

1.2.2.1.1.3 Futile cycling in the heart 

Normally, the heart consumes generated ATP for mechanical work, ionic 

homeostasis and synthesis of various cellular molecules [146, 148, 170]. 

However, utilization of ATP can be preferentially directed to additional 

homeostatic activities leading to further deterioration of inefficiency in heart 

failure. 
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As fatty acid supply to the myocardium increases early in the disease 

progression secondary to increased sympathetic activity, excess fatty acyl CoA 

has the potential to accumulate in the mitochondrial matrix.  A mitochondrial 

thioesterase has been identified, which may cleave this unneeded fatty acyl CoA 

into fatty acid anion and free CoA [171, 172]. This process maintains the CoA 

pool in the mitochondria for further activation of fatty acids for β-oxidation.  

However, not only is the high energy CoA bond lost due to the thioesterase 

activity, the resulting fatty acid anions have been proposed to be exported to the 

cytosolic compartment via the activity of UCP3 [173, 174].  While this process 

prevents intramitochondrial accumulation of potentially harmful fatty acid anions, 

it increases the futile utilization of ATP for the subsequent esterification of these 

fatty anions prior to subsequent β-oxidation [20, 21]. 

Another source of futile ATP utilization is glycerolipid/TG cycling which 

is another fate for fatty acids taken up by the heart.  In this case, fatty acids cycle 

between the intracellular TG pool and the free fatty acid state.  Excess ATP is 

thus utilized at the esterification step prior to incorporation of fatty acids into the 

TG pool or prior to β-oxidation [175].  

Whether these two pathways of futile fatty acid cycling are involved in the 

cardiac inefficiency in heart failure is not yet clear. However, as indicated above, 

the increased sympathetic activity in heart failure is expected to mobilize fatty 

acids from adipose tissue increasing the circulating levels of fatty acids and 

increased exposure of the heart to fatty acids [3].  
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1.2.2.1.1.4 Reversion to fetal glycolytic metabolism favors mismatched 

glucose metabolism and the subsequent higher energy cost of 

ionic homeostasis 

It is known that the fetal heart is largely glycolytic [176].  Studies with 

newborn rabbit hearts have shown that after birth, the expression of fatty acid 

oxidation regulating enzymes such as peroxisome proliferator activated receptor α 

(PPARα) rapidly increases while those regulating glycolysis decline.  These 

changes mark the conversion from glycolysis to fatty acid oxidation as the main 

source of energy [21, 177-179]  

In experimental models of heart failure in which an initial pathologic 

hypertrophy develops (such as salt-sensitive hypertensive rats [180], pressure 

overload models such as transverse aortic constriction [181], and volume overload 

models such as aortocaval fistula [176, 182, 183]), reversion to a fetal glycolytic 

metabolism occurs. Proteomic analysis of mitochondrial proteins also confirms 

this shift to glycolytic metabolism in rats 8 weeks after CAL surgery [184].  

The reversion to glycolytic metabolism that is associated with a decline in 

mitochondrial oxidative capacity is thought to help produce energy from a 

substrate that utilizes less oxygen per ATP, hence efficiency is improved.  On the 

other hand, this increase in glycolysis without a parallel increase in glucose 

oxidation can favour mismatched glucose metabolism, whereby increased 

hydrolysis of glycolytically-derived ATP accelerates proton production with the 

development of intracellular acidosis [185].  This can subsequently lead to an 
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increase in Na
+
 and Ca

2+
 accumulation [185], resulting in an impaired 

contractility (Fig. 2).  Correction of intracellular accumulation of Na
+
 and Ca

2+
 

increases ATP utilization for ionic homeostasis, rather than for contractile activity 

(see below for mechanisms and consequences of disturbed ionic homeostasis 

during IR).  

Reversion to fetal glycolytic metabolism is associated with changes in the 

expression of gene and protein levels and activity of enzymes known to regulate 

glycolysis as well as fatty acid oxidation. Members of the PPAR family are 

specifically involved.  PPARα, which is predominantly expressed in the heart and 

skeletal muscles, is known to regulate fatty acid oxidation and thus its inhibition 

can be responsible for the reversion to fetal glycolytic metabolism [186].  In this 

regard, genetic deletion of PPARα results in hypertrophy and inhibition of fatty 

acid oxidation in mice exposed to transverse aortic constriction [187].  This is 

associated with decreased expression of fatty acid oxidation genes [188] and a 

decline of fatty acid oxidation rates accompanied by stimulation of glucose 

oxidation [189].   Previous findings led to the notion that stimulating PPARα in 

failing hearts could improve function through prevention of the development of 

fetal glycolytic metabolic profile via inhibition of the downregulation of fatty acid 

oxidation [190]. As a result, pharmacologic approaches to activate PPARα (e.g., 

with the use of fenofibrate) were used in an attempt to decrease the severity of 

heart failure. This was found to produce a uniform up-regulation of PPARα-

regulated genes but variable results regarding heart function [191, 192].  A 

worsening of ex vivo LV function was observed in hypertrophied hearts derived 
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from rats exposed to transverse aortic constriction [191]. In post-infarct rat hearts 

[192] and in dogs with heart failure due to pacing-induced tachycardia [193], 

there was no improvement of LV function and no reduction in chamber volume 

following chronic fenofibrate treatment. On the other hand, the use of fenofibrate 

in a porcine tachycardia model of heart failure resulted in less deterioration of LV 

function [194]. The variability in the reported functional consequences of PPARα 

activation hints at the lower likelihood of PPARα involvement in progression to 

heart failure. However, these findings should not concern heart failure patients 

who are already using fenofibrate to reduce cholesterol.  In fact, fenofibrate may 

possess cardioprotective effects mediated by non-metabolic pathways. For 

example, it was reported that fenofibrate lessens cardiac fibrosis and diastolic 

dysfunction in salt-sensitive hypertensive rats, probably via non-metabolic effects 

involving the suppression of inflammation via inhibiting nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) [195]. 

PPARβ/δ is another member of the PPAR family which may be involved 

in the reversion of the heart to a fetal glycolytic metabolism.  Although not 

specific for cardiac muscle, it is expressed in high amounts in the heart [196].  

The role of PPARβ/δ in cardiac metabolism has been studied by cardiac-specific 

deletion of PPARβ/δ in mice.  These mice develop severe cardiomyopathy ending 

in heart failure and premature death associated with decreased cardiac expression 

of genes responsible for fatty acid oxidation, decreased cardiac fatty acid 

oxidation rates, and increased cardiac lipid deposition [197].  In contrast, cardiac-

specific PPARβ/δ overexpression increases expression of genes involved in fatty 
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acid oxidation.  However, fatty acid oxidation rates in these mice are normal, 

indicative of possible post-translational modifications.  Neither genes involved in 

TG synthesis nor those involved in fatty acid uptake are increased.  Surprisingly, 

cardiac-specific overexpression of PPARβ/δ is associated with increased 

expression of genes involved in glucose uptake (such as GLUT4 and the key 

regulatory enzyme PFK), which is associated with an increase in cardiac glucose 

uptake and oxidation [186, 198-200].  Despite the fact that both PPARα and 

PPARβ/δ share overlapping pathways for control of fatty acid oxidation [186], 

cardiomyocyte PPARβ/δ restriction in PPARα null mice results in no further 

inhibition of fatty acid oxidation, but rather a pronounced inhibition of 

mitochondrial biogenesis [201].  Whether the reversion to fetal glycolytic 

phenotype is associated with increased PPARβ/δ expression in the failing heart is 

yet to be studied.  

1.2.2.1.1.5 Impaired energy transfer to myofibrils: consequences of 

compromised phosphocreatine/creatine kinase shuttle 

Failure of the PCr/CK shuttle may also be a contributing factor to the 

development of inefficiency in heart failure.   PCr acts as a reservoir to replenish 

ATP content via the activity of creatine kinase, a reaction that is capable of 

producing ATP 10 times faster than the rate of ATP synthesis from oxidative 

phosphorylation, under conditions of energy demand [202].  This fact is 

confirmed in various models of heart failure.  For example, Hearse et al [203] 

observed a rapid decline in myocardial PCr levels and contractility in isolated 

working rat hearts during post-ischemic reperfusion.  Similar results were 
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reported by Whitman et al [204] using isolated perfused rabbit hearts. The same 

concept was further confirmed in a porcine model of transverse aortic 

constriction-induced cardiac hypertrophy and failure [205].  

PCr/ATP ratio is usually used as an index of the energy status of the heart 

[206, 207], that can also predict possible protection against supervening ischemic 

insults and the subsequent development of heart failure.  Changes in PCr levels 

have been reported in many heart failure patient studies. Winter et al [208] 

reported an earlier decline in PCr levels in non-ischemic heart failure patients 

using magnetic resonance spectroscopy, where a significant reduction in cardiac 

creatine levels was shown by a significant reduction of water/creatine index.  This 

decrease in PCr was also reported early in patients with dilated cardiomyopathy 

[209].  These findings conform to the studies of Neubauer et al [210], who used 

31
P-NMR spectroscopy and found a 70% reduction in PCr levels in heart failure 

patients with dilated cardiomyopathy while ATP levels were unaltered.  The 

PCr/ATP ratio was thus markedly reduced in these patients.  The authors found 

that the decline of PCr/ATP ratio correlates with the severity of heart failure and 

that the ratio improves by recompensation.  The authors also found that PCr/ATP 

ratio is a valid predictor of mortality in these patients.  They found that patients 

with normal PCr/ATP (more than 1.6) had an all-cause mortality of 10% 

following a 2.5-year surveillance.  On the other hand, patients with low PCr/ATP 

ratio had 40% all-cause mortality [210]. 

Not only do PCr levels decline in heart failure, but the ability of the failing 

heart to maintain adequate ATP levels in response to exercise challenge is also 
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compromised to various degrees depending on heart failure etiology.  Using the 

hand grip exercise, Weiss et al [211] observed that PCr/ATP ratio in the left 

ventricular wall is maintained in non-ischemic heart failure patients, but is greatly 

reduced in patients with heart failure due to coronary artery disease.  Similar 

changes were also observed by Yabe et al [212] at the level of subendocardium. 

1.2.2.1.2 Proof of principle for cardiac metabolic inefficiency 

As mentioned below, supporters of the energy starvation theory refer to 

the generalized decline in metabolic rates seen in advanced cases of heart failure 

[9, 213].  They also refer to the observation that mechanical function in advanced 

heart failure can be improved by stimulating energy substrate metabolism.  The 

following few lines will summarize evidence commonly presented by supporters 

of energy starvation theory. First, stimulation of glucose oxidation (e.g., by 

dichloroacetate (DCA)), in patients with congestive heart failure was found to 

improve mechanical efficiency and hemodynamic parameters [214].  Also 

intracoronary infusion of pyruvate can induce a short-term functional 

improvement in heart failure patients [215].  Furthermore, cardiac-specific 

overexpression of GLUT1, expected to increase intracellular glucose transport for 

subsequent utilization, was found to prevent the development of LV dysfunction 

after transverse aortic banding [216]. Finally, induction of mitochondrial 

biogenesis can prevent cardiomyopathy in mice [144].  On the one hand, 

treatments that limit the energy demand of the failing heart by reducing 

mechanical work such as β-adrenoceptor antagonists are also known to be useful 

adjuncts to traditional heart failure therapy [217-220]. 
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Indeed, the aforementioned evidence supports the metabolic inefficiency 

theory. The observed improvement of mechanical function in patients with 

congestive heart failure with the use of glucose oxidation stimulators such as 

DCA [214] can be explained on basis of improved matching between glucose 

oxidation and the upregulated rates of glycolytic flux observed  in various stages 

of heart failure [9, 178, 179, 221]. In addition, this mismatch can be accentuated 

by a concurrent reduction of glucose oxidation despite increased glycolytic flux 

[9]. Thus, stimulation of glucose oxidation is expected to lessen the mismatch 

between glycolytic flux rates and glucose oxidation rates. 

Further support for cardiac metabolic inefficiency in heart failure is gained 

from the beneficial effect of fatty acid oxidation inhibitors, a fact that clearly 

contradicts the concept of energy starvation [see [15, 19, 21, 170] for reviews).  A 

number of approaches to inhibit fatty acid oxidation have been used, which 

include: 1)  reduction of circulating fatty acids levels with β-adrenoceptor 

antagonists such as nebivolol that inhibit lipolysis [218, 219], 2)  the use of 

PPARγ agonists such as thiazolidinediones that favor sequestration of fatty acids 

in adipose tissue [222-224], 3) inhibition of mitochondrial fatty acid uptake by 

etomoxir [225] or perhexiline [226-228], and 4) inhibition of mitochondrial β-

oxidation with agents such as trimetazidine [229-234]).  The resulting indirect 

stimulation of glucose oxidation as a consequence of lower rates of fatty acid 

oxidation (Randle cycle) improves the coupling of glycolysis to glucose oxidation 

leading to reduced proton production from the hydrolysis of glycolytically-

derived ATP (Fig. 1.2).  Also, shifting substrate preference from fatty acid 
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oxidation is expected to increase efficiency of energy production without changes 

in MVO2.   

Reports from Kolwicz et al [235] apparently contradict this approach 

where acetyl CoA carboxylase 2 knockout (ACC2 KO) mice, expected to exhibit 

increased fatty acid oxidation rates, were protected against metabolic remodeling 

following pressure overload. However, thorough interpretation of their results is, 

in fact, in support of metabolic inefficiency. Contrary to the authors’ assumption, 

ACC2 KO did not result in increased fatty acid oxidation possibly due to 

compensatory mechanisms arising from chronic ACC2 deficiency. Moreover, the 

authors did not show the actual metabolic rates. Rather, they expressed relative 

contribution to overall oxidation rates which makes it difficult to understand the 

actual change in metabolic rates. More importantly, they showed that ACC2 KO 

mice did not exhibit an increase in glycolytic rates, and in contrast to the common 

finding of accelerated gl;ycolysis in hypertrophied hearts following pressure 

overload [176, 179, 236]. The lack of upregulation of glycolytic rates in those 

mice indicates better matching with their unaltered glucose oxidation minimizing 

inefficiency of glucose metabolism, hence, the observed better function. It is thus 

very important to carefully interpret changes in metabolic rates and the metabolic 

efficiency consequences in studies that use stimulation of energy substrate 

metabolic to improve mechanical function in failing hearts as an evidence to 

support energy starvation theory. 
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1.2.2.2 Energy starvation in heart failure 

 The energy starvation theory was initially proposed by Hermann in 

1939 [237], who reviewed the chemical nature of heart failure and addressed the 

reduction of myocardial creatine in the heart. From this perspective, the failing 

heart can be described as an engine out of fuel [19]. This implies an ability to 

improve, or at least prevent further deterioration of, cardiac function by 

stimulating the various stages of high energy generation [144].  Because this 

theory gained much interest and is described in detail elsewhere, we will only 

briefly highlight this concept (refer to [19] for review) and the accumulating 

evidence against this theory.  

Energy starvation generally develops only in advanced cases of heart 

failure and may result from reduced oxygen and energy substrate supply to the 

heart, reduced energy substrate uptake and utilization and finally, reduced 

oxidative phosphorylation resulting in reduced ATP production. 

1.2.2.2.1 Reduced oxygen and energy substrate supply to the heart 

 As heart failure progresses, the pumping action of the heart declines. This 

is initially compensated by the neurohumoral responses (increased sympathetic 

tone and stimulation of the RAAS) that maintain near normal cardiac output. 

However, with further progression of heart failure, the compensatory responses 

fail to maintain adequate cardiac output and eventually cardiac output declines. 

This in turn, reduces blood supply to all organs including the heart itself. The 

reduced tissue perfusion leads to reduced oxygen and nutrient supply. This is 
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further complicated by the associated development of pulmonary congestion that 

reduces oxygen saturation leading to further deterioration of oxygen supply.  In 

general, reduced intracellular oxygen availability does not limit peak oxygen 

utilization. However, as heart failure progresses, the workload increases and 

cardiac MVO2 can reach a maximum and becomes limiting leading to subsequent 

deficiency of energy generation and utilization [238].  Moreover, as heart failure 

advances, the increasing afterload increases energy demand to maintain an 

acceptable cardiac output. This creates a state of relative energy starvation. 

1.2.2.2.2 Reduced energy substrate uptake and utilization 

 Supporters of the energy starvation theory believe that early in the 

development of heart failure, metabolic rates are not markedly changed. In fact 

fatty acid utilization is either unchanged or slightly increased [123, 221, 239, 

240]. This may be due to increased expression of fatty acid transport protein 

(CD36) and intracellular fatty acid binding protein (FABP) [241]. They report that 

as heart failure advances, fatty acid utilization declines significantly out of 

proportion with the decline in mechanical function [10, 21]. A similar trend is 

also observed for glucose utilization where rates of glucose oxidation are 

unchanged early in heart failure [221, 242] with a compensatory increase in the 

rates of glycolysis [240, 243]. Similarly, in hearts with advanced failure, there is a 

decline in glucose utilization [244-246]. The latter may be partially explained by 

the development of insulin resistance in advanced heart failure [247, 248] which 

may be a protective mechanism to protect the failing heart from the energy 

substrate overload induced by the upregulated sympathetic tone [249]. Moreover, 



32 
 

membrane expression of the insulin-sensitive glucose transporter GLUT4 is 

reduced in advanced heart failure [250] contributing to the observed reduction in 

glucose uptake and subsequent utilization.   

 In support of their hypothesis, some experimental models of severe end 

stage heart failure showed a depression in overall oxidative metabolism. For 

example, twenty weeks following pressure overload-induced heart failure, 

secondary to transverse aortic constriction in rats, there is a decrease in 

mitochondrial state 3 respiration, as well as a decrease in both fatty acid (i.e. 

oleate) and glucose oxidation [251-253]. These findings are not universal in 

different models of severe heart failure. In canine model of severe heart failure 

induced by rapid ventricular pacing, the rate of fatty acid oxidation is decreased 

while glucose oxidation rate increases [254, 255]. However, protein expression of 

PDH is decreased, while that of its negative regulator, PDK4 is increased, 

indicative of an inhibitory response [255]. Interestingly, the metabolic phenotype 

observed in pacing-induced heart failure is reversible, as the rates of fatty acid 

oxidation and glucose oxidation return to near baseline values during a recovery 

phase following discontinuation of rapid ventricular pacing [254]. 

 Support to the energy starvation theory comes also from the clinical 

setting. For example, rates of both fatty acid uptake and oxidation are decreased 

in patients with dilated cardiomyopathy (ejection fraction ~32%), while the rates 

of glucose uptake are increased [256]. Furthermore fatty acid uptake and glucose 

uptake do not increase in response to pacing stress, which contributes to their 

metabolic inefficiency [256]. Marked and acute reductions in circulating fatty 
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acid levels in response to acipimox (an inhibitor of lipolysis) treatment are 

accompanied by large reductions in fatty acid uptake, and decreased cardiac 

efficiency, although fractional fatty acid oxidation remains unchanged, indicative 

of the potential contribution to metabolic inefficiency in those hearts [257].  

 However, the metabolic alterations in heart failure are not homogeneous 

throughout different models and the various stages of heart failure development. 

Contrary to the aforementioned evidence of energy starvation in heart failure, 

ventricular homogenates obtained from hearts subjected to pressure overload with 

preserved ejection fraction had similar rates of fatty acid oxidation to 

homogenates obtained from normal hearts, whereas the rates of glycolysis are 

accelerated [258, 259]. Furthermore, as LV hypertrophy advances to congestive 

heart failure, glucose uptake increases even further and fatty acid uptake is 

decreased [259]. The authors in that study did not comment of the actual changes 

in glucose oxidation and fatty acid oxidation rates [256, 258, 259][256, 258, 258, 

259, 259][256, 258, 258, 259, 259]. Similar patterns are described in different 

models of heart failure. For example, fatty acid oxidation rates are also similar in 

ventricular homogenates obtained from hearts subjected to myocardial infarction 

and subsequent heart failure at a time point when there is a downregulation in 

genes encoding enzymes involved in fatty acid oxidation including acyl CoA 

synthase and CPT1 [260]. Similarly, whole heart fatty acid oxidation does not 

differ in acute heart failure secondary to aortic banding in rats [261], or in the 

canine microembolization model, where glucose uptake and oxidation are also 

preserved relative to the normal heart [239]. These animal findings can be 
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extrapolated to human patients. Previous studies indicate that patients with 

asymptomatic hypertrophic cardiomyopathy have decreased fatty acid uptake and 

exogenous glucose utilization, possibly due to flow limitations or regional 

differences in systolic function [262] but cardiac fatty acid oxidation remains 

normal [263]. Similarly, NYHA functional class III patients have enhanced fatty 

acid utilization secondary to enhanced lipolysis associated with elevated plasma 

lactate concentrations, indicative of fatty acid-induced mismatch of glucose 

oxidation with relatively higher glycolysis rates [264]. Interestingly, in clinically 

stable NYHA functional class II and III patients, cardiac fatty acid uptake [265, 

266] and fatty acid oxidation [265] were greater than healthy controls, while 

glucose uptake [266] and oxidation were lower [265]. The above animal and 

patient evidence is at least against a universal energy starvation in heart failure. 

1.2.2.2.3 Reduced oxidative phosphorylation 

Supporters of energy starvation claim that heart failure is associated with 

reduced mitochondrial oxidative phosphorylation [267].  This is due in part to 

reduced TCA activity [268]. In addition, the activity of electron transport chain 

and ATP synthase are reduced [269-271]. The increased expression of uncoupling 

proteins increases uncoupling of oxidation and phosphorylation resulting in 

reduced ATP generation [169, 272]. In addition, flexibility in substrate utilization 

is lost [273].  However, reduced glucose oxidation can be seen as a source of 

mismatched glucose metabolism especially when glycolysis rates are increased. 
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1.3 Cardiac ischemia reperfusion injury 

1.3.1 Definition, causes and mechanisms 

 Myocardial ischemia reperfusion (IR) injury involves a two-step 

myocardial injury. The first one is caused by ischemic insult and the second one 

accompanies the reperfusion. Myocardial ischemia occurs due to partial or 

complete derangement of coronary blood flow resulting in reduced oxygen and 

nutrient supply to the area supplied by this blocked coronary artery which 

becomes inadequate to maintain normal heart function. Myocardial ischemia 

results mostly from coronary thrombosis on top of atheromatous lesions [274]. 

Other causes include coronary artery embolic obstruction following bypass grafts 

[275], transient coronary spasm (vasospastic angina - Prinzmetal’s angina) [276] 

of coronary artery and anomalous left coronary artery originating from pulmonary 

artery which results in early onset angina or even infarction [277-279]. Currently, 

approaches to restore the disrupted coronary flow include medications that 

dissolve the occluding thrombus (thrombolytics, e.g., tissue plasminogen 

activator), procedural interventions that reopen the blocked segment of the artery 

(angioplasty ± stent placement) or urgent bypass grafting using venous graft (e.g., 

saphenous vein graft). However, restoration of the temporarily interrupted 

coronary flow can add further insult to the myocardium called reperfusion injury 

[280, 281]. Reperfusion injury is thought to due to the reintroduction of oxygen 

and blood to myocardium in the area at risk and which results in cell death above 

and beyond that due to the preceding ischemia [282]. Reperfusion injury has been 
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attributed to many factors including, but not limited to, oxidative stress causing 

cell death [283], metabolic inefficiency secondary to mismatched glucose 

metabolism and subsequent proton accumulation and Na
+
 and Ca

2+
 accumulation 

[284] and finally, uncontrolled opening of the mitochondrial permeability 

transition pore (mPTP) causing widespread depolarization of the inner 

mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual 

necrotic cell death [285]. 

1.3.2 Metabolic profile in IR 

1.3.2.1 Anaerobic glycolysis and disturbed intracellular ionic 

homeostasis 

 Ionic dysregulation during IR is initiated by events that occur during 

ischemia. This is then augmented by further events at the initiation of reperfusion. 

During ischemia, the decrease in glucose oxidation necessitates a rapid 

acceleration in the conversion of pyruvate to lactate via LDH in order to 

regenerate NAD
+
 under anaerobic conditions, which is required to maintain 

glycolytic flux through GAPDH (Fig 1.1). The increased dependence on 

anaerobic glycolysis leads to reduced ATP production rate and a buildup of 

intracellular acidosis due to accumulation of lactate and protons generated from 

hydrolysis of glycolysis-derived ATP. These events collectively result in 

dysregulation of ionic homeostasis.  

 In response to the decreasing pH  (acidosis), cardiomyocytes remove some 

of the accumulating protons generated during ischemia by extrusion of weak acids 
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such as lactic acid as well as via exchange of protons with Na
+
 and HCO3

-
 via the 

activity of NHE and Na
+
-HCO3

-
 cotransporter (NBC), respectively. This, in turn, 

acidifies the extracellular space and limits further removal of intracellular protons 

[286]. Assessment of cardiomyocyte intracellular and extracellular pH during 

ischemia confirms acidification to final pH values of 5.9 and 5.5, respectively 

[287].  Furthermore, depletion of ATP during ischemia impairs ATP-dependent 

ion transport machinery such as Na
+
-K

+
 ATPase thereby limiting its ability to 

transport Na
+
 to the extracellular space against its electrochemical gradient.   

 Meanwhile, influx of Na
+
 into cardiomyocytes increases during ischemia 

thus aggravating Na
+
 accumulation in the intracellular compartment. This inward 

movement of Na
+
 depolarizes the membrane resting potential of cardiomyocytes 

[284, 288]. Different mechanisms contribute to increased Na
+
 influx during 

ischemia. First, increased dependence on anaerobic glycolysis during ischemia 

and the hydrolysis of glycolytically-derived ATP increases intracellular proton 

concentration that activates Na
+
 influx in exchange with protons via activity of 

NHE [289] and neutralization of protons using HCO3
+
 via the activity of NBC 

[290]. Second, the activation of late Na
+
 current via voltage-gated Na

+
 channels 

during ischemia. During resting conditions, the rapid inactivation of voltage-gated 

Na
+
 channels limits Na

+
 influx. However, during ischemia, delayed inactivation of 

Na
+
 channels augments late Na

+
 current. Many factors collectively result in 

delayed Na
+
 channel activation including AMPK [291], reactive oxygen species 

[292-294] and ischemic metabolites [295]. The increased intracellular Na
+
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concentration, in turn, activates the rm-NCX to extrude 3 Na
+
 ions in exchange 

with 1 Ca
2+

 ion resulting in intracellular Ca
2+

 overload [296]. 

 Despite the fact that reperfusion aims at restoration of normal blood flow 

to the ischemic myocardium, the initiation of reperfusion adds further insult and 

contributes to ionic dysregulation. The rapid restoration of extracellular pH and 

the persistence of intracellular acid pH create a marked pH gradient that favours 

the sequential activation of NHE and rmNCX (see above) and ends in Na
+
 and 

Ca
2+

 accumulation [286, 288].   

 The ultimate result of increasing Ca
2+

 overload is the activation of 

detrimental pathways such as triggering of arrhythmia, activation of enzymes, 

opening of mPTP, myocardial stunning and eventually cardiomyocyte death 

[297].  

 Thus, it is evident that the accumulation of protons during IR is the 

initiating event is the detrimental cascade of events that ends in cardiomyocyte 

death. It is also known that metabolic changes during ischemia, namely reliance 

on anaerobic glycolytic flux, constitute a major source of protons generated from 

hydrolysis of glycolytically derived ATP. Similar consequences are expected 

during post-ischemic heart failure where the mismatched rates of glycolytic flux 

and glucose oxidation result in preferential accumulation of protons that stimulate 

similar detrimental cascades adding to the deterioration of myocardial function 

and the developing metabolic inefficiency. This thesis studies the possibility to 

halt the initiating events of proton accumulation through favouring a better match 
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between glycolytic flux and glucose oxidation using several approaches to prevent 

ionic dysregulation during the developing post-ischemic heart failure or during 

further IR insult in remodeled hearts. 

1.3.2.2 Mitochondrial oxidative metabolism 

 Increased catecholamine release is a known feature of the response to IR 

in vivo. Catecholamines favour insulin resistance, decrease insulin release and 

stimulate lipolysis [298-300]. Furthermore, the associated stress response involves 

increased corticosteroid hormone release which, in turn, induces insulin resistance 

and interferes with myocardial glucose utilization [301]. This response is usually 

transient but catecholamines can remain elevated up to 24 h depending on the 

severity of IR [302]. The overall response is increased circulating FFA and 

glucose levels. During reperfusion, the myocardium faces these increased levels 

resulting in increased glucose and FFA uptake. Since recovery of mitochondrial 

glucose oxidation is delayed relative to fatty acid oxidation [303], most of glucose 

undergoes glycolysis during reperfusion that is not matched to glucose oxidation 

rates resulting in further proton accumulation and subsequent deterioration of 

ionic homeostasis as mentioned above. Besides, fatty acid oxidation remains the 

predominant process for residual oxidative metabolism [303-308]. The increased 

dependence on fatty acid oxidation, being metabolically inefficient, adds to 

deterioration in mechanical function and metabolic inefficiency. 

 In the case of total ischemia, NADH, and FADH2 can accumulate [309], 

and inhibit the acyl CoA dehydrogenase and 3-hydroxyacyl CoA dehydrogenase 

enzyme reactions of fatty acid oxidation [5, 20, 310, 311]. Also, acylcarnitines 
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can accumulate in the mitochondrial matrix and cytosolic compartments, while 

acyl CoA species can accumulate primarily in the mitochondrial matrix [312]. 

The accumulation of acylcarnitine and acyl-CoAs lead to the disruption of 

mitochondrial cristae, and the formation of amorphous intramitochondrial 

densities. These changes in mitochondrial ultrastructure may ultimately disrupt 

mitochondrial function [20, 313]. 

1.3.2.3 Response of remodeled hearts to IR 

 Based on their metabolic inefficiency, it might be expected that remodeled 

hearts would be more susceptible to subsequent IR injury than normal healthy 

hearts.  However, several studies have provided evidence that remodeled hearts 

have a greater tolerance to ischemia [314-316].  In a comparison of normal and 

remodeled hearts perfused in the Langendorff mode, Kalkman et al [315] reported 

that remodeled hearts have a lower ischemia-induced release of lactate and 

purines.  Similar tolerance to ischemic injury in remodeled hearts was confirmed 

by Pantos et al [314] who showed that the lower release of LDH was 

accompanied by less ischemic contracture, a higher expression of heat shock 

protein 70, as well as an improved recovery of mechanical function during post-

ischemic reperfusion.  Both studies employed non-working Langendorff 

preparations so metabolic mechanisms were not investigated.  Less dysregulation 

of ion homeostasis has also been noted in remodeled hearts by Sharikabad and 

colleagues [316] who reported that cardiomyocytes derived from post-infarction 

remodeled rat hearts exhibit less Na
+ 

and Ca
2+

 accumulation than cells from 

normal hearts.  They also found lower release of LDH and less depletion of ATP 
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content during hypoxic challenge of remodeled cardiomyocytes, but the 

mechanistic basis of the increased tolerance has not yet been elucidated.  

 It is known that energy substrate metabolism and substrate preference 

during reperfusion affect recovery of LV mechanical function [13, 20, 317, 318].   

For example, acceleration of fatty acid oxidation during reperfusion inhibits 

glucose oxidation (Randle effect) and thereby increases the uncoupling of rates of 

glycolysis and glucose oxidation leading to increased proton production.  This 

slows the rate of recovery of intracellular pH and contributes to further 

accumulation of Na
+
 and Ca

2+
 overload [317].  On the other hand, inhibition of 

glycolysis during early reperfusion limits Ca
2+ 

overload and improves post-

ischemic recovery of LV function secondary to improved matching with glucose 

oxidation that limits the subsequent events that leads to dysregulation of ionic 

homeostasis [318]. Thus optimizing energy substrate metabolism during IR can 

be a useful tool to minimize IR injury and promote functional recovery.   

1.3.3 Pharmacologic metabolic interventions to improve 

cardiac metabolic inefficiency 

 As stated above, metabolic inefficiency is one of the two themes 

explaining metabolic changes in heart failure [19, 319]. Among the various 

contributors to metabolic inefficiency in heart failure (reviewed in Masoud et al 

[221], mismatched glucose oxidation is of particular importance due to 

availability of pharmacologic and genetic intervention tools to lessen it.  
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 One approach to restore a reasonable match between glycolytic flux rate 

and glucose oxidation rate is to stimulate glucose oxidation. This can be achieved 

either directly via PDH stimulation using metabolic modulators such as DCA or 

indirectly via inhibiting fatty acid oxidation (Randle cycle). In this regard, many 

approaches have been tried to inhibit fatty acid oxidation including trimetazidine, 

perhexiline and MCD inhibition [207, 226-228, 230, 232-234, 320-322]. While 

the other interventions have been reviewed in detail (Jaswal et al [20] and 

Fillmore et al [323]), MCD inhibition is an evolving promising approach to 

improve matching of glucose metabolism in models of heart failure, especially 

post-infarction heart failure [59].  

1.3.3.1 MCD inhibition limits metabolic inefficiency and 

functional deterioration in heart failure 

 A recent study by Wu et al [60] reported that cardiac-specific MCD 

deletion via microRNA limits functional deterioration and preserves energy stores 

in post-infraction remodeled rat hearts [60]. Similarly, other studies highlighted 

the importance of MCD inhibition in the setting of ischemia, heart failure and 

insulin resistance [66, 67, 96, 221, 322, 324]. The ability of MCD inhibition to 

improve the matching of glucose oxidation through indirect stimulation of glucose 

oxidation secondary to inhibition of fatty acid oxidation (Randle effect) was 

shown to reduce lactate production in ischemic pig hearts following demand- 

induced ischemia [66]. Furthermore, MCD inhibition was shown to improve post-

ischemic functional recovery in ex vivo perfused rat hearts [66, 67]. This was 
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associated with improved matching of glucose oxidation, due to stimulated 

glucose oxidation secondary to inhibition of fatty acid oxidation, resulting in less 

lactate production [66, 67].  

 It is known that genetic interventions such as MCD-KO can result in a 

myriad of compensatory mechanisms that can confound the results. In this regard, 

it was found that MCD-KO mouse hearts maintain comparable energy substrate 

metabolic rates under normal aerobic perfusion conditions despite an increase in 

malonyl CoA content [96]. The authors concluded that compensatory increase in 

the fatty acid carrier, CD36, uncoupling protein 3 (UCP3), creatine phosphate 

CPT1 or pyruvate PDK4 [96]. To dissect the effect of acute MCD inhibition in ex 

vivo perfused remodeled hearts from the confounding compensatory mechanisms 

seen in genetic MCD-KO hearts, we will study the consequences of ex vivo 

administration of an MCDi to remodeled hearts during post-ischemic perfusion. 

1.3.3.2 DCA as a protective agent against ischemia reperfusion 

injury and heart failure 

 It has been shown that deterioration of post-ischemic LV function is 

associated with increased proton load due to dependence on glycolytic flux for 

ATP production [325-331]. This initiates events that activate NHE [332-335] and 

NCX [336-338] ending in Na
+
 and Ca

2+
 accumulation and contractile function 

deterioration. The details of metabolic changes that occur in IR injury have been 

previously described [13, 317, 328, 329, 331, 339-342]. 



44 
 

 An approach to minimize IR injury is to minimize the mismatch between 

glycolytic flux and glucose oxidation at the start of reperfusion. This can be 

achieved by either inhibiting glycolytic flux rates, using exogenous adenosine 

[328, 331, 340] or by limiting glucose-6-phosphate availability via its partitioning 

to glycogen synthesis [318], or via stimulating glucose oxidation rates either 

directly using DCA or indirectly via inhibiting fatty acid oxidation using 

trimetazidine [234, 320, 321, 343-349], etomoxir [350] or an MCD inhibitor [61, 

64, 66, 322] (Randle cycle - Fig 1.1). The studies described in this thesis will 

examine the effect of DCA on remodeled hearts during post-ischemic reperfusion. 

 The reported protective effect of DCA against IR injury is due to its ability 

to rapidly reach the mitochondria after in vivo or ex vivo administration where it 

inhibits PDK. Thus, it prevents the inhibitory phosphorylation of PDH, the rate-

limiting enzyme for pyruvate activation into acetyl CoA which is a common step 

for glucose, lactate and pyruvate oxidation [351-356]. The stimulation of glucose 

oxidation improves matching with glycolytic flux rates which prevents proton 

accumulation and minimizes acidosis. Both contribute to functional deterioration 

in IR injury [329, 330, 357-361].  

 The protective effect of DCA has been shown in many ex vivo models of 

heart disease. For instance, in hearts isolated from rats exposed to experimental 

endotoxemia, DCA improves functional parameters, namely stroke volume, 

cardiac output and peak systolic pressure, over a wide range of left atrial filling 

pressures associated with increased ATP production and stimulation of PDH [356, 

362]. The metabolic effects of DCA that improve efficiency and limit proton 
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accumulation can explain the improvement of inotropic actions of amrinone and 

ouabain when given with DCA to hearts from rats exposed to experimental 

endotoxemia [363-365].  

 The response to DCA treatment varies significantly based on the timing of 

DCA addition. DCA added at reperfusion improves functional recovery in healthy 

hearts exposed to ex vivo IR [322, 329, 355, 366-370]. In contrast, addition of 

DCA to the perfusate before or at the start of reperfusion following global no-

flow ischemia in isolated perfused working rat hearts does not limit LV functional 

deterioration at reperfusion and results in more lactate accumulation [368]. This 

may be due to the ability of DCA to stimulate glucose uptake secondary to 

inhibition of fatty acid oxidation as a consequence of stimulating glucose 

oxidation (Randle cycle - Fig 1.1) [310, 371-376]. This results in lowering of 

intracellular citrate [372, 373, 375] which normally inhibits fructose 1,6 

bisphosphate kinase (PFK1), the rate limiting enzyme in glycolysis. 

Consequently, glycolytic rates increase and offset the benefit of stimulating 

glucose oxidation with increased proton and lactic acid accumulation during 

ischemia. Similar experiments conducted by Ussher et al used DCA at reperfusion 

of hearts exposed to ex vivo IR resulted in improved functional recovery and 

decreased reperfusion proton production per unit LV work [322]. 

 Similar protective effects of DCA have been described using in vivo 

models of IR and hearts failure. DCA administration to dogs 30 min before partial 

left anterior coronary (LAD) artery occlusion for 90 min reduced the depletion of 

myocardial ATP and creatine phosphate, prevented pH shift to acidic levels and 
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prevented rise in myocardial lactate [377]. Interestingly, DCA administration to 

open-chest dogs exposed to either partial or complete [374] LAD occlusion 

reduced the expected ST segment rise commonly seen in infarcted hearts without 

changing systemic hemodynamic parameters, coronary artery flow to the ischemic 

area, myocardial ATP or creatine phosphate content. The absence of changes in 

ATP or creatine phosphate contents can be explained on basis of a change in the 

source of ATP rather than a change in the amount of ATP produced. As stated 

above, DCA treatment improves matching of glucose oxidation and glycolytic 

rates secondary to stimulation of glucose oxidation. Consequently, fatty acid 

oxidation decreases (Randle cycle). Thus, total ATP production does not change 

but DCA enhances dependence on more efficient sources.  

 Results from clinical trials also support the experimental findings. DCA 

infusion in healthy male volunteers improved their cardiac index and reduced 

peripheral vascular resistance and blood lactate levels. These findings were not 

associated with increase in arterial oxygen saturation but cardiac output did 

increase, indicative of improved tissue oxygen delivery [378]. Similarly, 

intravenous DCA administration in normotensive patients with stable coronary 

artery disease [379] resulted in improvement of cardiac output, and stroke 

volume, decreased systemic lactate and peripheral vascular resistance while heart 

rate, coronary blood flow and MVO2 did not decrease. The latter indicates 

improved cardiac efficiency in treated patients since LV work increased in those 

patients without increase in MVO2. DCA was also shown to have superior effects 

to pharmacologic inotropic medications such as dobutamine. Patients with severe 
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congestive heart failure treated with intravenous DCA had similar hemodynamic 

benefits to those treated with dobutamine [214]. In addition, MVO2 increased in 

DCA-treated, but not dobutamine-treated, patients indicative of improvement of 

cardiac efficiency in the former. 

1.3.3.2.1 Linking DCA-induced glucose oxidation to changes in fatty acid 

oxidation and glycolytic flux rates 

 DCA localizes in the helix bundle in the N-terminal domain of PDK. 

Bound DCA promotes local conformational changes that are communicated to 

both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the 

inactivation of kinase activity [380]. Thus, PDK fails to phosphorylate and inhibit 

PDH. Consequently, increased acetyl CoA stimulates ACC to produce malonyl 

CoA. Malonyl CoA, in turn, inhibits CPT1 on the outer mitochondrial membrane 

reducing fatty acyl CoA uptake resulting in inhibition of fatty acid oxidation. 

Hence, intracellular citrate levels decrease and PFK1 is no longer allosterically 

inhibited by citrate leading to stimulation of glycolysis. The shift from fatty acid 

oxidation to glucose metabolism increases metabolic efficiency as glucose 

produces more ATP units per oxygen as compared to fatty acids. 

1.3.4 Conclusion 

Both cardiac energy starvation and cardiac inefficiency may contribute to 

the severity of heart failure.  These two contributing mechanisms are also not 

mutually exclusive, and may coexist.  However, it is likely that energy starvation 

occurs later in the course of heart failure, while inefficiency may be present 
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throughout the course of heart failure, including the very early stages where 

metabolic interventions are expected to yield maximum benefit. It would thus be 

desirable to consider cardiac inefficiency when designing metabolic modulators to 

treat heart failure, since stimulation of substrate utilization may not always be 

beneficial.  This is supported by reduced efficiency observed with acceleration of 

fatty acid oxidation or of glycolysis. 

 Cardiac inefficiency may be a contributor to the severity of ischemia 

reperfusion injury in remodeled hearts. However, many reports indicate that 

remodeled hearts have better tolerance to ischemia reperfusion injury. These 

observations included less release of lactate dehydrogenase, less buildup of 

intracellular pH and less accumulation of Na
+
 and Ca

2+
. None of these reports 

studies changes in metabolic efficiency before and after ischemia reperfusion 

injury in remodeled hearts as compared to normal hearts. 

Several metabolic interventions have been tried to lessen functional 

deterioration following IR and the subsequent development of heart failure. These 

interventions include fatty acid oxidation inhibition, inhibition of glycolysis and 

stimulation of glucose oxidation. This thesis studies two pharmacologic 

interventions. The first intervention is the pharmacologic MCD inhibition during 

aerobic perfusion of remodeled hearts. This helps to study the potential for 

improvement of their metabolic inefficiency in remodelled hearts. The second 

intervention is ex vivo administration of DCA in reperfused remodeled hearts 

following ex vivo IR to study the potential for improving functional recovery and 

limiting deterioration of metabolic inefficiency.  
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1.3.5 Hypothesis and Objectives 

 Heart failure is associated with metabolic change the nature of which is 

not well characterized. The main two themes that explain these metabolic changes 

are energy starvation and metabolic inefficiency. These metabolic changes are 

expected to affect recovery of remodeled heart following a second IR. However, 

whether remodeled hearts are more susceptible or more protected against IR is 

also not agreed upon. Metabolic interventions such as inhibiting fatty acid 

oxidation, inhibiting glycolysis or stimulating glucose oxidation have been 

proposed to improve functioning of remodeled hearts.  

1.3.5.1 Hypothesis 

 Post-infarction remodeled failing hearts are not energy starved. Rather 

they are metabolically inefficient and can benefit from interventions that aim to 

improve matching of glucose oxidation and glycolytic flux whether directly via 

stimulating glucose oxidation or indirectly via fatty acid oxidation inhibition 

(Randle cycle). These hearts are expected to suffer more deterioration in function 

and metabolic efficiency following ex vivo IR as compared to healthy 

unremodeled hearts. The state of metabolic inefficiency in remodeled hearts can 

be improved by metabolic interventions such MCD inhibition. Similarly, 

stimulating glucose oxidation during post-ischemic reperfusion in remodeled 

hearts is expected to improve their functional recovery secondary to lessened 

deterioration of metabolic inefficiency.  
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1.3.5.1.1 Specific Objectives 

1. To characterize energy substrate metabolic changes in remodeled post-

infarction hearts to study the nature of these changes and whether 

metabolic inefficiency or energy starvation dominates in our model. 

2. To test whether chronic MCD deficiency and the subsequent improvement 

of glucose metabolism matching can limit post-infarction deterioration in 

LV function and metabolic efficiency in mouse hearts 

3. To study response of post-infarction remodeled hearts to ex vivo IR and 

the associated changes in metabolic efficiency as compared to 

unremodeled mouse hearts. 

4. To study whether MCD is a target for pharmacologic inhibition to 

improve metabolic inefficiency in remodeled failing hearts via ex vivo 

exposure to an MCDi during aerobic perfusion. Also to study potential for 

improvement of functional recovery and metabolic efficiency of 

remodeled hearts following ex vivo IR using DCA applied at reperfusion. 
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 1.1 Relationship between glycolysis, glucose oxidation and fatty acid 

oxidation 

 Glucose is taken up by the cell via activity of glucose transporter 1 

(GLUT1) and the insulin-dependent glucose transporter 4 (GLUT4). Glycolysis 

occurs in the cytosol and is composed of 3 main steps (priming, splitting and 

energy trapping). Priming of glucose occurs via consecutive steps where hexose 

kinase (HK) phosphorylates glucose at carbon 6 to produce glucose-6-phosphate 

(G-6-P) that is then isomerized into fructose-6-phosphate (F-6-P) via the activity 

of phosphoglucose isomerase (PGI). The rate limiting enzyme of glycolysis, 

phosphofructokinase-1 (PFK1) adds another phosphate group to carbon 1 

producing fructose 1,6 bisphosphate (F-1,6 BP). The second stage of glycolysis is 

splitting of F-1,6 BP by aldolase into 2 molecules of glyceraldehydes 3 phosphate 

(G-3-P). The third stage is energy trapping where high energy molecules are 

produced. First each of G-3-P is converted into 1,3 bisphosphoglycerate (1,3 

BPG) via glyceraldehydes 3 phosphate dehydrogenase (GAPD). 

Phosphoglycerate kinase (PGK) converts 1,3 BPG into 3 phosphoglycerate (3PG) 

that is isomerized into 2 PG via phosphoglycerate mutase (PGM). Enolase 

removes a molecule of H2O to produce phosphoenol pyruvate (PEP) that is 

converted to pyruvate via pyruvate kinase (PK). Pyruvate can be reversibly 

converted into lactate via lactate dehydrogenase (LDH). For pyruvate to be 

oxidized in the mitochondria, it is transported into the mitochondria via pyruvate 

transporter (Monocarboxylate transporter 1 - MCT1). MCT cotransports protons 

with pyruvate inside the mitochondria. Pyruvate is then activated via pyruvate 
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dehydrogenase complex (PDH) into acetyl CoA which then enters tricarboxylic 

acid (TCA) cycle for pyruvate oxidation.  

Fatty acyl CoA is transported into the mitochondria via the activity of carnitine 

palmitoyl transferase 1 and 2 (CPT1 and CPT2) where it undergoes β-oxidation to 

produce acetyl CoA that feeds into TCA cycle. 

Glycolysis, glucose oxidation and fatty acid oxidation can alter the rate of each 

other in many ways such as: 

1. PFK1, the rate limiting enzyme of glycolysis, which is allosterically 

activated by the products of PFK2 is suppressed by the increasing 

cytosolic citrate concentration secondary to increased TCA activity due to 

increased glucose or fatty acid oxidation. 

2. PDH kinase (PDK) which inhibits PDH via phosphorylation, is activated 

by increased acetyl CoA production from either β-oxidation or pyruvate 

activation itself. Thus, glucose oxidation is inhibited. 

3. Acetyl CoA from pyruvate activation is transported to cytosol via carnitine 

acetyl transferase (CAT) where it produces malonyl CoA, via acetyl CoA 

carboxylase (ACC), that competes with fatty acyl CoA for mitochondrial 

uptake, thus fatty acid oxidation inhibition. 
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Figure 1.1 
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Figure  1.2 Energy metabolic changes in heart failure.  

The energy starvation theory describes the failing heart as an engine out of fuel 

with: a) reduction of oxygen and substrate delivery to the heart, b) reduction in 

energy substrate uptake and utilization, and c) reduced mitochondrial oxidative 

phosphorylation. The cardiac inefficiency theory considers the inefficient energy 

utilization for mechanical work due to: a) increased oxygen cost of ATP 

production which in turn can be due to the preferential dependence on fatty acids 

or uncoupling of oxidation phosphorylation. b) increased use of ATP for 

homeostatic activities that include futile cycling of fatty acids and ionic 

homeostasis secondary to increased Na
+
 and Ca

2+
 accumulation induced by 

mismatched glucose metabolism, c) reduced energy transfer to myofibrils due to 

impaired phosphocreatine/creatine kinase shuttle. 
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Figure 1.2 
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 1.3 Normal versus mismatched glucose metabolism.  

Intracellular proton production arises when the rate of glycolysis exceeds the rate 

of glucose oxidation.  If glycolysis increases and / or glucose oxidation decreases 

(mismatched rates of glucose metabolism), proton production from the hydrolysis 

and glycolytically-derived ATP accelerates and causes intracellular acidosis.  

Efflux of proton leads to Na
+
 overload (activity of sodium-hydrogen exchanger 

(NHE)) and ultimately Ca
2+

 overload (activity of reverse mode sodium-calcium 

exchanger (NCX)) that causes cardiac mechanical dysfunction and inefficiency. 
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Figure 1.3 
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2 Materials and Methods 

 

 

 

 

 

 

 

 

 

Part of this section is published in the online supplement of a paper in Cardiovasc Res; 

Masoud WG, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, et al. “Failing mouse 

hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and 

glucose oxidation”. 2014;101:30-38 
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2.1 Materials  

 Bovine serum albumin (BSA fraction V, free fatty acid free) was 

purchased from Equitech-Bio, Inc. (Kerrville, Texas). [U-
14

C]glucose, D-[5-

3
H]glucose, [U-

14
C]lactate and [9,10-

3
H]palmitate were purchased from Perkin 

Elmer (Boston, Massachusetts, USA). Insulin (Novolin® ge Toronto) was 

purchased through the University of Alberta Hospital stores from Novo Nordisk 

(Mississauga, Ontario, CA). Euthanyl (pentobarbital sodium) was purchased from 

Bimeda-MTC Animal Health Inc. (Cambridge, Ontario, CA). Hyamine hydroxide 

(1 M in methanol solution) was purchased from J.T Baker (Phillipsburg, New 

Jersey, USA). Ecolite
TM

 and Cytoscint
TM

 Aqueous Counting Scintillation fluids 

were purchased from MP Biomedicals (Solon, Ohio, USA). AG® 1-X4 anion 

exchange resin, chloride form, 4% cross linkage, 200-400 dry mesh size was 

obtained from Bio-Rad Laboratories, Inc (Hercules, California, USA). Glucose 

assay kits were purchased from Sigma Diagnostics (St. Louis, Missouri, USA). 

Protease inhibitor cocktail was purchased from Sigma-Aldrich, Inc. (St. Louis, 

Missouri, USA). Phosphatase inhibitor cocktails 2 and 3 were purchased from 

Sigma-Aldrich, Inc. (St. Louis, Missouri, USA). Bio-Rad protein assay dye 

reagent concentrate, nitrocellulose membranes (Trans-Blot® Transfer Medium, 

0.45 µm), Precision plus protein
TM

 dual color molecular weight marker and Mini-

Protean gel electrophoresis system were purchased from Bio-Rad Laboratories, 

Inc. (Hercules, California, USA). Kodak BioMax MR films were purchased from 

Care stream Health, Inc (Rochester, New York). Fuji medical X-ray films (Super 

RX) were purchased from FUJIFILM Europe Gmbh (Düsseldorf, Germany). 
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Amersham
TM

 ECL
TM

 prime Western Blotting Detection Reagent was purchased 

from GE Healthcare (Buckinghamshire, UK). Monoclonal and polyclonal 

antibodies for phosphorylated AMP-dependent kinase (p-AMPK
Thr172

), AMP-

dependent kinase (AMPK), PPAR gamma co-activator 1-alpha (PGC1-α), 

pyruvate dehydrogenase (PDH), hexokinase, voltage dependent anion channel 

(VDAC), glucose transporter 4 (GLUT4), acetyl CoA carboxylase (ACC), 

Phosphorylated ACC (p-ACC), peroxisome proliferator activated receptor alpha 

(PPARα), sarco/endoplasmic reticulum calcium ATPase-2 (SERCA2) and 

peroxidase-conjugated goat anti-rabbit secondary antibody were purchased from 

Cell Signaling Technology (Danvers, Massachusetts). Antibodies to 

Ca
2+

/calmodulin-dependent protein kinase II (CAMKII), phosphorylated 

CAMKII (p-CAMKII
Thr286

), long chain fatty acyl CoA dehydrogenase (LCAD), 

β-hydroxy acyl CoA dehydrogenase (β-HAD) and Complex I subunit (NADH 

dehydrogenase [ubiquinone] 1β subcomplex subunit 6 (NDUFB6)) were 

purchased from ABCAM, Inc. (Cambridge, Maryland, USA). Antibody to 

GLUT1 was purchased from FabGennix International, Inc. (Frisco, Texas, USA). 

ATX Ponceau S red staining solution and dichloroacetate were purchased from 

Sigma-Aldrich, Inc. (St. Louis, Missouri, USA). All other chemicals are 

purchased from Fischer Scientific, Inc. (New Jersey, USA).  

 Small animal intubation kit was purchased from Kent Scientific Co. 

(Connecticut, USA). Self-retaining chest retractor, dissecting forceps, surgical 

scissors (different sizes) and needle holders (different sizes) were purchased from 

Fine Science Tools, Inc. (California, USA). 7-0 non-absorbable sutures and 6-0 
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non-absorbable silk sutures were purchased from Ethicon Endo-Surgery, Inc. 

(Ohio, USA). C57/Bl6 mice were purchased from Charles River Laboratories, 

USA. The colony of MCD-KO mice was established by Dr. Lopaschuk’s lab and 

Chugai Pharmaceuticals.   

2.2 Methods  

2.2.1 Mouse model of post-infarction heart failure:  

 All experimental procedures were approved by the Animal Care and Use 

Committee, University of Alberta. They also conform to guidelines of the 

Canadian Council of Animal Care, Alberta and the Guide for the Care and Use of 

Laboratory Animals; published by the National Institutes of Health (NIH 

Publication No. 85-23, Revised 1996). Male C57BL/6 mice aged 12 week were 

subjected to either coronary artery ligation (CAL) or sham (SHAM) procedure, as 

described previously [381, 382]. Briefly, animals were anesthetized with 

intraperitoneal pentobarbital sodium (60 mg/kg) and intubated with a 20-gauge 

plastic cannula and ventilated with 100% oxygen. Once the animal reached 

surgical plane anesthesia, as indicated by loss of withdrawal reflex, a left 

thoracotomy incision was made to expose the left ventricle (LV). Using 7-0 

prolene threads, the left anterior descending coronary artery was permanently-

ligated. The chest wall, muscle and skin, was closed in layers using 6-0 silk 

threads. At the end of the procedure, a dose of buprinorphine (0.05 mg/kg. IM) 

was given. Animals were monitored for pain, as described before [383], during 

the first 3 postsurgical days as indicated by piloerection, hunched posture, 

reduced activity, reduced appetite and reduced drinking. A second dose of 
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pubrinorphine was given if needed. A 4 week-postsurgical period was allowed to 

guarantee the development of a mature scar prior to ex vivo functional and 

metabolic evaluation of the animals.  

2.2.2 In vivo evaluation of heart function by 

echocardiography:  

 LV wall thicknesses were measured using a modified version of the 

leading-edge method of the American Society for Echocardiography using three 

consecutive cycles of M-mode tracing[384, 385]. Myocardial peak velocities 

(systolic and diastolic) were derived at the mitral valve level and the ratio 

between early mitral inflow velocity and mitral annular early diastolic velocity 

(E/E`) ratio was used as an indicator of LV filling pressure [384, 385]. Other 

indicators of diastolic function included isovolumetric relaxation time (IVRT), 

mitral valve deceleration time (MV DT), ratio of early (E) and late (A) mitral 

inflow velocities (E/A) and Tei index (calculated as sum of isovolumetric 

relaxation and contraction times (IVRT+IVCT) divided by ejection time (ET) 

were also calculated. Simpson’s measurements were performed to obtain an 

averaged ejection fraction (%EF) and fractional area change (%FAC) of all CAL 

animals and representative samples of the SHAM group.  Only a representative 

sample of SHAM hearts was required since wall motions were observed to have 

synchronous motion, whereas infarcted groups had asynchronous wall motion. 

Since both MCD-KO CAL and WT CAL mice were expected to have infarcts and 
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asynchronous wall motion, the averaged %EF and %FAC were calculated using 

Simpson’s measurements. 

2.2.3 Ex vivo isolated working heart perfusions: 

 Three days after echocardiography, animals were deeply anesthetized 

(pentobarbital, 480 mg/kg, ip) and hearts were excised and immediately placed in 

ice-cold Krebs-Henseleit solution. The aorta was cannulated and perfusion 

initiated (60 mmHg pressure and 37°C) while the left atrium was cannulated.  

Hearts were then perfused aerobically in working mode [69, 340] (50 mmHg 

afterload and 11.5 mmHg preload) using a recirculating perfusate (100 ml) 

composed of (in mM) 1.2 KH2PO4, 1.2 MgSO4. 7H2O, 2.5 CaCl2.2H2O, 4.7 KCL, 

25 NaHCO3 and 118 NaCl.  Palmitate (1.2 mM, prebound to 3% fatty acid free 

bovine serum albumin), glucose (11 mM) and lactate (1 mM) were added as 

energy substrates, as well as insulin (100 µU/mL.  Thin film oxygenation of the 

perfusate was achieved using carbogen (95% O2 and 5% CO2) to maintain O2 

saturation and a pH of 7.4.  Times of perfusion protocol depended on the study 

and details are provided in each corresponding Chapter. Normal healthy hearts 

were perfused under the same perfusion conditions and with the same energy 

substrate concentrations. MCD-KO CAL and SHAM hearts were perfused using a 

perfusate that contained glucose (5 mM), lactate (1 mM) and palmitate (0.4 mM) 

in an attempt to replicate the perfusion conditions of Ussher et a l [322]. In that 

paper, the rate of proton production during reperfusion was shown to be lower in 

MCD-KO hearts due to improved matching of glucose metabolism.  An additional 

group of WT CAL hearts was added as an appropriate control.  Apart from the 
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change in energy substrate concentration, all other constituents of perfusate were 

comparable to that used in all other experiments. After perfusion, infarcts were 

excised and hearts were immediately frozen in liquid nitrogen (using 

Wollenberger clamps) and stored at -80°C. Infarct sizes were expressed as the 

percentage of infarct wet weight to total heart wet weight. 

2.2.4 Measurement of LV function 

 Systolic and diastolic aortic pressures were measured during working 

heart perfusions using a Gould P21 pressure transducer attached to the aortic 

outflow line. Cardiac output (mL/min) and aortic flow (mL/min) were measured 

via ultrasonic flow probes (Transonic T206) placed in the left atrial inflow line 

and the aortic outflow line, respectively. The difference between cardiac output 

and aortic flow was used to calculate coronary flow. The ratio of coronary flow 

and mean aortic pressure normalized to heart dry wt was used to calculate 

coronary vascular conductance (CVC, mL/min/mmHg/g dry wt). The product of 

cardiac output and LV developed pressure (systolic pressure – preload pressure 

(11.5 mmHg)) normalized to the heart dry weight was used as an index of LV 

mechanical function and was termed LV work (Joule/min/g dry wt). 



65 
 

2.2.5 Measurement of rates of energy substrate 

metabolism and calculation of ATP production 

rates: 

 Rates of glycolysis, glucose oxidation, fatty acid oxidation, and lactate 

oxidation were measured and expressed per gram viable tissue (µmol/min/g dry 

wt, where viable tissue in SHAM hearts is the whole ventricular tissue and in 

CAL is the ventricular tissue excluding the infarct) as described previously [386] 

using [5-
3
H]glucose and [U-

14
C]glucose to measure glycolysis and glucose 

oxidation, respectively. Another set of perfusions used [9,10-
3
H]palmitate, and 

[U-
14

C]lactate to measure palmitate oxidation and lactate oxidation, respectively.  

These substrates were added to the Krebs-Henseleit solution at the start of 

working mode perfusion. Glycolytic rates were measured by the quantitative 

determination of the accumulation of 
3
H2O liberated from [5-

3
H]glucose by the 

glycolytic enzyme, enolase catalyzing the conversion of 2 phosphoglycerate into 

phosphoenol pyruvate.. Separation of 
3
H2O from [5-

3
H]glucose in the perfusate 

samples is achieved by passing 100 µL of perfusate through AG® 1-X 4 anion 

exchange resin (200-400 mesh) columns as described previously [171]. 

Thereafter,  the columns were washed with 800 µL of distilled water. The eluted 

water was collected in 5 mL scintillation vials together with 4 mL of scintillation 

fluid (Ecolite, MP Biomedicals (Solon, Ohio)). This is followed by counting the 

radioactivity in a liquid scintillation counter. 
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Rates of glucose oxidation and lactate oxidation were determined by 

quantitative determination of 
14

CO2 liberated at the level of pyruvate 

dehydrogenase and in the TCA cycle from [
14

C]glucose and [
14

C]lactate, 

respectively. This accounted for both the TCA cycle end product; 
14

CO2 that is 

released during the experiment and captured in hyamine hydroxide trap as well as 

[
14

C]HCO3 retained in the perfusate and released as 
14

CO2 via reaction with 9N 

H2SO4 and then trapped on hyamine-soaked filter papers. The trapped 
14

CO2 is 

collected in 5 mL scintillation vials and 4 mL of scintillation fluid (Cytoscent, 

ICN) were added and the radioactivity was counted in a liquid scintillation 

counter [171].  

Palmitate oxidation rates were determined by quantitative determination of 

3
H2O liberated from [9,10- 

3
H]palmitate. A vapor transfer method was used to 

separate 
3
H2O from perfusate samples as described previously [387]. Briefly, 500 

µL of water was put in a 5 mL scintillation vial, and then a lidless 1.5 mL micro-

centrifuge tube containing 200 µL of the perfusate was placed inside the 

scintillation vial. The vials were then capped and stored overnight at 50 °C then 

stored at 4 °C for another 24 hours. After that, the micro-centrifuge tubes were 

removed, any water droplets on the outer surface of the micro-centrifuge tubes 

were wiped using filter papers (1 cm X 1 cm) that were placed inside the 

corresponding scintillation vials. Scintillation fluid was then added (Ecolite, MP 

Biomedicals (Solon, Ohio)) and the radioactivity was then counted using liquid 

scintillation counter. Perfusate samples were collected at the following time 

points: 5, 20, 35, 44, 60, 70, 80 and 90 min and metabolic rates (µmol/min/g dry 
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wt) were calculated and were averaged for each phase of the perfusion protocol 

(aerobic and reperfusion).  

 ATP production rates from each substrate were calculated for each energy 

substrate by multiplying the metabolic rates by the corresponding ATP molecular 

yield expected from each substrate as follows: 104 for palmitate oxidation, 31 for 

glucose oxidation, 17 for lactate oxidation and 2 for glycolysis.  

 Proton production from glucose metabolism is derived from hydrolysis of 

glycolysis-derived ATP (2 ATP per 1 glucose molecule produce 2 protons) while 

TCA cycle utilizes 1 proton for each pyruvate molecule (2 protons for each 

glucose molecule oxidized) at the pyruvate carboxylation step. Thus, if the rate of 

glycolysis and glucose oxidation are mismatched, there is a net proton production, 

the rate of which is 2 X (glycolysis rate − glucose oxidation rate) [369]. This 

method was previously validated and compared to pHi measurements using 
31

P 

NMR [317]. 

2.2.6 Measurements of glycogen content and turnover: 

 Myocardial glycogen content (µmol glucosyl unit/g dry wt) was measured 

as described previously [369] via measurement of glucose content in samples of 

frozen powdered heart tissue subjected to alkaline extraction by 30% KOH, 

ethanol precipitation and acid hydrolysis (2 N H2SO4). The rate of glycogen 

synthesis (µmol/min/g dry wt) was calculated as described previously [388] from 

the rate of incorporation of radiolabeled glucose into myocardial glycogen 

assuming that glycogen is made up of homogenous glucosyl moieties. The net 
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glycogen degradation rate was measured from the change in the unlabeled 

myocardial glycogen pool over the 45 minute aerobic perfusion protocol [388]. 

ATP production from glycogen degradation was calculated based on the 

assumption that all glycogen-derived G-6-P undergoes glycolysis. The ATP 

produced from subsequent glucose oxidation was calculated using the observed 

glycolysis to glucose oxidation ratio in respective groups and the same yield used 

for ATP production from exogenous energy substrates (see previous section).  

2.2.7 Measurements of TG content and turnover: 

 Frozen heart tissue (15-20 mg) was extracted in a 20-fold volume of 2:1 

chloroform-methanol, following which an 0.2 mL volume of methanol was added, 

and the extract was vortexed for 30 s. The mixture was then centrifuged at 

3500g for 10 min, and the supernatant was collected. A 0.2 volume of 0.04% 

CaCl2was added to the supernatant, which was then centrifuged at 2400g for 20 

min. The upper phase was removed and the interface was washed with pure 

solvent upper phase consisting of 1.5 mL chloroform, 24.0 mL methanol, and 

23.5 mL water. The previous step was repeated three times and the final wash was 

removed. After that, 50 μL of methanol was added to form one phase. The 

samples were then dried under N2 at 60 °C and re-dissolved in 50 μL of 3:2 tert-

butyl alcohol-Triton X-100/methyl alcohol.  Cardiac TG was then quantified 

colorimetrically with an enzymatic assay (Wako Pure Chemical Industries) [389]. 

Rates of degradation were calculated based on the changes of cold TG content 

between time zero and 45 min. Rates of synthesis were calculated based on the 

incorporation of radiolabelled palmitate over the 45-min period assuming that TG 
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is made up of homogenous palmitoyl moieties. ATP production from unlabelled 

TG was calculated based on the assumption that TG fatty acids undergo complete 

β-oxidation. 

2.2.8 Immunoblot analysis of protein expression: 

 Powdered heart tissue, maintained at the temperature of liquid nitrogen,  

was homogenized (10% w/v) in homogenization buffer that contains (mmol/L) 5 

sodium pyrophosphate, 50 NaCl, 20 Tris·HCl, 50 NaF, 250 sucrose, phosphatase 

inhibitor cocktail 2 and 3, protease inhibitor cocktail (Sigma- Aldrich, Inc., St. 

Louis, Missouri) and 1 DTT. Tissue homogenates were centrifuged at 1000g for 

10 min at 4 °C. The supernatant was aliquoted for storage at - 80 °C for further 

analysis. Protein levels in the supernatant were determined by Bio-Rad® protein 

assay. 30 μg of homogenate protein (20 μg in case of LDH-A and GAPDH) were 

run for SDS-polyacrylamide gel electrophoresis then transferred to nitrocellulose 

membranes as previously described [390]. After blocking (5% milk) for 1 hour at 

room temperature, membranes were incubated overnight with rabbit antibodies 

against phospho AMPK (p-AMPK
Thr172

), AMPK, peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC1-α), GLUT4, LDH, PDH, 

HK, GAPDH, voltage dependent anion channel (VDAC), glycogen synthase 

kinase-3β (GSK3β), phospho-glycogen synthase kinase-3β (pGSK3β) and PPARα 

( (1:1000 dilution - Cell Signaling Technology Inc., Danvers, Massachusetts, USA) 

and rabbit antibodies against phosphor CAMKII (p-CaMKII
Thr286

), CaMKII, long 

chain acyl CoA dehydrogenase (LCAD), β-HAD, NDUFB6 and mouse antibodies 

against phospholamban (1:1000 dilution - ABCAM Inc., Cambridge, Maryland, 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCgQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDanvers%2C_Massachusetts&ei=t2b6Uqq0MMWbrgH534GYBQ&usg=AFQjCNF6wUxgzaUzUrtU2uBThvUwc60iSA&bvm=bv.61190604,d.aWM
https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCsQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCa2%252B%2Fcalmodulin-dependent_protein_kinase&ei=oV76UprEJsiIqQGf4YCAAg&usg=AFQjCNHpsCw724U5dJPuxhd1ENx7CGD3yg&sig2=mwPDu0weS4tcISmu8TTOPw&bvm=bv.61190604,d.aWM
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USA) and GLUT1 (1:1000 dilution - FabGennix Inc, Frisco, Texas, USA )  in 5 

% BSA (wt/vol) in TBS. After the membranes were extensively washed, they 

were incubated with a peroxidase-conjugated goat anti-rabbit secondary antibody 

(1:2000 dilution - Cell Signaling Technology Inc. Danvers, Massachusetts, USA) 

or goat anti-mouse (1:5000 dilution - Bio-Rad) in 5% skim milk powder (wt/vol) 

in TBS when appropriate. After 3 times wash each of 5 min, antibodies were 

visualized using the Amersham ECL Prime Western blotting detection system 

(GE Healthcare, Buckinghamshire, UK). Densitometric analyses of immunoblots 

were performed using ImageJ software (National Institute of Health, Bethesda, 

Maryland). Ponceau staining (Ponceau S staining solution, Sigma -Aldrich, 

Missouri, USA) was used as loading control as described previously [391]. 

Values are presented relative to SHAM heart values. 

2.2.9 Measurement of adenine nucleotide and creatine 

content in frozen heart tissue: 

 Separation of nucleotides (ATP, ADP, AMP, GTP), inosine, creatine 

phosphate and creatine was achieved using ultra performance liquid 

chromatography (UPLC) as described previously [392], using a 2.1 × 100 mm 

ACQUITY UPLC HSS T3 column packed with 1.7 µm particles (Waters, 

Milford, MA, USA), by recording the optical density at 254 nm for adenine 

nucleotides and 210 nm for creatine and phosphocreatine. A 10 µL of each 

sample was injected using an autosampler. The mobile phase consisted of buffer 

A (mM) (3 tetrabutyl ammonium (TBA) bisulphate and 20 Na2HPO4) and buffer 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CCgQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FDanvers%2C_Massachusetts&ei=t2b6Uqq0MMWbrgH534GYBQ&usg=AFQjCNF6wUxgzaUzUrtU2uBThvUwc60iSA&bvm=bv.61190604,d.aWM
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B (10% (v/v) acetonitrile, 200 Na2HPO4 and 0.3 TBA bisulphate). The pH was 

adjusted to 5 using 2 M phosphoric acid. The elution was performed in buffer A 

for 2 min then 1:1 gradient elution with buffers A and B up to 8.5 min then with 

buffer B up to 10 min (all at a flow rate of 0.4 mL/min). After analysis, the 

column was re-equilibrated by washing for 1 min with water then 9 min with 

buffer A. Cleaning was done by washing with 80% methanol after every series of 

experiments. Calibration stock solution (0.1 M, pH 7) was prepared in 0.2 M 

Na2HPO4 and stored at - 40°C for a maximum of 3 days to minimize 

phosphocreatine and ATP degradation. 

2.2.10 Statistical analysis: 

 Normality of data distribution was tested using Shapiro-Wilk normality 

test. Normally distributed data are expressed as mean ± SEM for n independent 

experiments.  Unpaired Student’s t-test was used to compare differences between 

two groups and one way ANOVA was used to compare 3 or more groups. Two-

way repeated measures ANOVA was used to compare time-dependent 

measurements.  Bonferroni post-hoc test was used to provide comparison between 

selected pairs of data.  If data were not normally distributed, data were presented 

as median ± interquartile ranges (5% and 95%).  Statistical analysis of differences 

was then made using non-parametric methods (Mann-Whitney test to compare 2 

groups, or Kruskal-Wallis ANOVA to compare 3 or more groups followed by 

Dunn’s post-hoc test.  Differences were considered significant when P<0.05. 

Statistical analyses were performed using GraphPad Prism 5 (Graphpad Software 

Inc., La Jolla, California, USA).  
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Figure  2.1 Schematic representation of methods 

1. CAL or SHAM procedures were performed on 12-14 week old C57BL6 

mice. 

2. On the 25
th

-26
th

 day post-surgical day, in vivo function was evaluated 

using echocardiography. 

3. On the 28
th

 day, hearts were perfused in the working mode. This included 

45 min aerobic perfusion for aerobic perfusion protocol. In the ischemia 

reperfusion protocol, this was followed by 15 minute global no-flow 

ischemia (GI) followed by 30 minute aerobic reperfusion. Drugs, when 

used, were added at the start of aerobic perfusion (MCDi - Chapter 5-2) or 

aerobic reperfusion (DCA - Chapter 5-1). Assessment of mechanical 

function and collection of samples for measurement of metabolic rates 

were done at 5, 20, 35, 45, 60, 70, 80 and 90 min of the perfusion protocol 

as appropriate. 

4. Frozen hearts were powdered and were used for biochemical studies 

which included immunoblotting for protein expression, HPLC detection of 

nucleotide, nucleoside and creatine contents. Glycogen and triacylglycerol 

(TG) contents were also measured. 
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3 Failing mouse hearts utilize energy inefficiently 

and benefit from improved coupling of 

glycolysis and glucose oxidation 

 

 

 

 

 

HPLC analysis of nucleotides was performed by Ken Strynadka and echocardiographic 

examinations were performed by Donna Becker from the Cardiovascular Research Centre, 

University of Alberta. 

A version of this Chapter has been published in Cardiovascular Research. Masoud WG, 

Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, Lygate CA, Neubauer S, Clanachan 

AS, Lopaschuk GD. Failing mouse hearts utilize energy inefficiently and benefit from 

improved coupling of glycolysis and glucose oxidation.  2014 Jan;101:30-38. 
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3.1 Introduction 

 Heart failure develops following myocardial infarction (MI) [393] or 

following systemic diseases such as hypertension [394] or diabetes [395]. Heart 

failure is associated with changes in energy metabolism [139], but whether these 

contribute to contractile failure or whether they are adaptive is not established 

[143].  Currently there is no consensus on the nature of energy changes in heart 

failure. Two main concepts have emerged. One describes failing hearts as 

energetically-starved, comparable to an engine out of fuel [19]. This implies 

inadequate rates of energy substrate metabolism and ATP production.  A second 

concept considers failing hearts use energy inefficiently [145], potentially due to 

mismatched glucose metabolism (glycolysis uncoupled from glucose oxidation), 

that accelerates proton production, leading to acidosis, intracellular Na
+
 and Ca

2+
 

overload, and impaired contractility [396]. 

 Optimizing energy metabolism is a novel approach for heart failure 

pharmacotherapy, but knowledge of the relative contribution of inefficiency 

versus energy starvation to heart failure is key for development of optimal 

metabolic modulator therapy. If failing hearts are energetically-starved, then 

stimulation of mitochondrial oxidation [144] of fatty acids or carbohydrates is 

warranted.  However, if failing hearts are inefficient, then optimizing energy 

substrate preference (inhibition of glycolysis and/or stimulation of glucose 

oxidation) is desirable. This study characterized energy substrate metabolism in 

post-infarction remodeled mouse hearts with LV dysfunction to examine whether 

hearts are energetically-starved or energetically-inefficient.  We also examined 
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whether mechanical function and efficiency are affected by chronic deficiency of 

malonyl CoA decarboxylase (MCD), an enzyme that regulates fatty acid 

oxidation by producing malonyl CoA which slows fatty acid oxidation by 

inhibiting fatty acid uptake into mitochondria and whose inhibition is beneficial in 

ischemia-reperfusion (IR) [96, 397]. We hypothesize that: 1) post-MI remodeled 

hearts with LV dysfunction are not energetically starved but are inefficient, and 2) 

improved coupling of glycolysis and glucose oxidation via chronic deficiency of 

MCD lessens inefficiency and improves contractile function.  

3.2 Methods 

 Male C57BL/6 mice, age 12-14 weeks, were subjected to permanent 

coronary artery ligation (CAL, n=17) or sham operation (SHAM, n=18). Please 

refer to Chapter 2 for details about the surgery, in vivo functional evaluation, 

isolated perfused working heart protocol, assessment of metabolic rates and other 

biochemical measurements. 

3.3 Results 

3.3.1 CAL hearts have lower mechanical function 

 Compared to SHAM, CAL mice have impaired in vivo LV systolic 

function 4 weeks after surgery, as indicated by reduced LV % ejection fraction 

(%EF) and LV % fractional area change (%FAC). CAL hearts have coexistent 

diastolic dysfunction (higher Tei index and IVRT) and marked dilatation as 

indicated by the significant increases in LV diastolic and systolic volumes.  There 

is no difference in diastolic or systolic posterior wall or interventricular septal 
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thickness (LVPW and IVS - mm) (Table 3.1).  The similarity in wall thickness 

was confirmed in vitro from dry weights of CAL and SHAM hearts (Fig 3.1E).  In 

vitro function of CAL hearts (average LV work during perfusion, Joule/min/g dry 

wt), is 46% lower than SHAM hearts and confirms in vivo findings (Fig 3.1A-D).  

See Table 3.1 for other parameters. 

3.3.2 CAL hearts are not energetically starved 

 Compared to SHAM hearts, CAL hearts have similar rates (µmol/min/g 

dry wt) of glycolysis, glucose oxidation, proton production, a trend of lower fatty 

acid oxidation and lower lactate oxidation (Fig 3.2A-E).  In contrast to the marked 

reduction in mechanical function in CAL hearts, total ATP production rate from 

exogenous substrate oxidation and glycolysis indicates that CAL hearts have only 

25% reduction relative to SHAM hearts (Fig 3.3G). CAL and SHAM hearts have 

similar contents of ATP, ADP, AMP, GTP, creatine and creatine phosphate 

(Table 3.3), indicative of absence of energy starvation. 

 Compared to SHAM hearts, CAL hearts have similar rates of glycogen 

degradation (Fig 3.4B), glycogen synthesis (Fig 3.4C), TG degradation (Fig 3.4E) 

and TG synthesis (Fig 3.4F). Moreover, no differences in end-perfusion (µmol/g 

dry wt) glycogen content (Fig 3.4A) and TG fatty acid content (Fig 3.4D) were 

observed. 

Endogenous substrate metabolism from TG and glycogen contributes 29% 

of total ATP production for SHAM and 34% for CAL hearts (Fig 3.4G). Also, 

there is no difference in the % contribution of each energy substrate to the overall 
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ATP production (Fig 3.4H), or in the % contribution of fatty acid oxidation from 

both endogenous and exogenous sources (39 % in SHAM and 40% in CAL hearts 

- Fig 3.4H). 

The protein expression of markers of mitochondrial abundance (VDAC, β-

HAD, complex I subunit (NDUFB6)) as well as metabolic regulatory enzymes are 

similar in CAL and SHAM hearts (Table 3.4, details in Fig 4.7 and 4.8). 

3.3.3 CAL hearts are inefficient 

 To examine efficiency of exogenous substrate utilization, rates of energy 

substrate metabolism were normalized for LV work (µmol/Joule).   CAL hearts 

have higher glycolysis per unit LV work and higher glucose oxidation per unit LV 

work (Fig 3.3A-B).  However, since accelerated rates of glucose oxidation and 

glycolysis are unmatched to a greater extent, proton production is significantly 

higher in CAL vs SHAM hearts (Fig 3.3C).   Fatty acid oxidation per unit LV 

work is not different between groups (Fig 3.3D), and there is a trend of lower 

lactate oxidation per unit LV work (Fig 3.3E).  Efficiency of exogenous substrate 

utilization, calculated by dividing average LV work by the rate of ATP production 

from exogenous substrates, is lower in CAL hearts (Fig 3.3F). 

 Similarly, rates of endogenous energy substrate degradation and synthesis 

were expressed per unit LV work (µmol/Joule). Groups have similar glycogen 

degradation rates (Fig 3.5A), glycogen synthesis rates (Fig 3.5B) and TG 

synthesis rates (Fig 3.5D), but CAL hearts have higher TG degradation rates (Fig 

3.5C). The efficiency of endogenous substrate utilization, calculated by dividing 
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average LV work by ATP derived from endogenous sources, trended to be lower 

in CAL hearts but did not reach statistical significance (Fig 3.5E). 

3.3.4 MCD-KO CAL hearts have better function than 

WT CAL hearts  

 Hearts in MCD-KO CAL mice show less in vivo functional deterioration 

compared to WT CAL littermates. There is a trend of higher %EF and %FAC.  

MCD-KO CAL hearts have comparable pre-surgical and 1 week post-surgical 

LVPW thickness.  However, they show enhanced hypertrophic response 4 weeks 

post-surgery (Table 3.2). This was also evident following in vitro perfusion as 

MCD-KO CAL hearts have higher dry weights (Fig 3.6A).  Despite the enhanced 

hypertrophic response in MCD-KO CAL hearts, they tend to be less dilated 

(Table 3.2). Both groups developed comparable infarct weights (mg) (0.024 ± 

0.007, n=8 vs 0.019 ± 0.003, n=7, P=0.547) as were infarct weights as a 

percentage of total wet weight (13% vs 10% - Fig 3.6B).  However, LV work, 

expressed per g dry wt, is similar in MCD-KO CAL and WT CAL hearts (Fig 

3.6C-D), possibly due to the normalization of in vitro LV work to g dry weight, 

which masks any difference in work done by the whole heart. When LV work is 

expressed as Joule/min per whole heart, MCD-KO CAL hearts perform higher 

average work (Fig 3.6E-F). Hemodynamic parameters measured ex vivo and other 

in vivo echocardiographic parameters are shown in Table 3.2. 
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3.3.5 Inefficiency is lessened in MCD-KO CAL hearts 

 Since this subset of experiments was done under different perfusion 

conditions in an attempt to mimic conditions used by Ussher et al[322] where 

MCD-KO hearts had lower reperfusion proton production rates than WT 

littermates, we included an additional group of WT CAL hearts perfused under 

identical conditions to serve as controls. Thus, metabolic rates reported in this 

subset of experiments are not comparable to those reported in CAL and SHAM 

hearts due to the differences in energy substrate concentrations.  Compared to WT 

CAL hearts, MCD-KO CAL hearts have significantly lower rates of glycolysis 

and glucose oxidation (Fig 3.7A-B).  Thus, MCD-KO CAL hearts have an 

improved coupling of glucose metabolism and a lower proton production (Fig 

3.7C).  MCD-KO CAL hearts have comparable fatty acid oxidation rates to WT 

CAL hearts (Fig 3.7D), but decreased lactate oxidation rates (Fig 3.7E). The 

apparent increase in fatty acid oxidation contribution to total ATP is due to 

decreased contributions from glycolysis and glucose oxidation. ATP production 

from exogenous sources is significantly lower in MCD-KO CAL hearts (Fig 

3.7G-H). 

 When expressed per unit LV work, MCD-KO CAL hearts have lower 

rates of glycolysis compared to WT CAL hearts (Fig 3.8A), as well as lower 

glucose oxidation rates (Fig 3.8B).  However, the larger decrease in glycolysis 

versus glucose oxidation, results in lower proton production rates from glucose 

metabolism (Fig 3.8C). No difference between groups was observed in fatty acid 

oxidation normalized for LV work (Fig 3.8D), while lactate oxidation was 
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significantly lower in MCD-KO CAL hearts (Fig 3.8E).  A significant 

improvement in the efficiency of exogenous substrate utilization (Joule/μmole) in 

MCD-KO CAL hearts was observed (Fig 3.8F). 
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3.4 Discussion 

   The important finding of this study is that post-infarction failing mouse 

hearts are not energetically starved, but are inefficient in energy utilization for 

mechanical function.  The reduction in total ATP production rate in isolated 

failing mouse hearts (25%) is insufficient to account for the reduction in LV work 

(46%), and is clearly indicative of inefficient use of energy for external 

mechanical function.  Meanwhile, CAL hearts have similar adenine nucleotide, 

inosine, creatine and creatine phosphate contents to SHAM, negating energy 

starvation. The observed mismatch between rates of glycolysis and glucose 

oxidation in failing hearts, that accelerates proton production from glucose 

metabolism, may be a significant contributor to observed inefficiency, as 

accelerated proton production may cause Na
+
 and Ca

2+
 accumulation and a shift 

in ATP utilization from contractile function to ionic homeostasis [185, 396].  Our 

study also demonstrates that inefficient energy utilization post-infarction (causes 

reviewed in Introduction) is amenable to improvement by a metabolic 

intervention that reduces the uncoupling of glycolysis and glucose oxidation.  

 This study used a CAL model to mimic post-infarction LV dysfunction, as 

this is a common etiology of heart failure [382]. The demonstration by in vivo 

echocardiography that CAL hearts have lower %EF and %FAC clearly indicates 

LV dysfunction. This was confirmed ex vivo in isolated working hearts where 

total LV work, as well as LV work per g dry wt, is significantly depressed. 

Measurement of rates of energy substrate metabolism in SHAM and CAL hearts 

allowed direct assessment of efficiency of energy utilization for external work 
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(ratio of LV work per mol ATP produced from substrate oxidation and 

glycolysis).  CAL hearts maintained LVPW and IVS thickness in vivo, and dry 

weights ex vivo were identical despite conversion of a significant proportion of 

the LV into a fibrous infarct (removed before weighing).  This indicates that 

surviving viable tissue was hypertrophied [398].  These results are consistent with 

previous findings, where following myocardial infarction cardiac hypertrophy 

contributes to maintaining the non-infarcted area comparable to SHAM hearts 

[398]. It should be noted, that although echocardiographically-calculated LV mass 

increases in CAL hearts compared to SHAM hearts (based on LV volumes rather 

than actual mass), it reflects total LV mass, including the portions of the LV 

which are converted to scar, and is thus not indicative of viable LV mass.  Despite 

similar LV mass, total LV work decreased in CAL hearts, indicative of 

decompensation.  

 Energy starvation as an etiology of heart failure was introduced in 1939 

with a description of the failing heart as a “slapped retired horse” [399], 

suggesting that LV mechanical dysfunction is due to deterioration in energy 

substrate uptake and utilization [245, 246], oxidative phosphorylation for ATP 

production [270, 271], and/or transfer of high energy phosphate to creatine, via 

creatine kinase (CK) activity [400].    

 However, a generalized decline in energy substrate metabolism is not a 

uniform finding in all heart failure models [239, 401] and suggests that alternate 

etiologies are involved.  Our data indicate that CAL hearts do not have depressed 

rates of glycolysis, glucose oxidation or fatty acid oxidation.  While lactate 
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oxidation rates declined, total rates of ATP production were only 25% lower in 

CAL hearts, much less than the marked depression in LV work (46%).  Besides, 

CAL hearts have similar contents of ATP, AMP, creatine and creatine phosphate. 

These findings argue against energy starvation being the only contributing 

metabolic defect in CAL hearts, and support the notion that CAL hearts are 

inefficient in the utilization of energy for mechanical work.  These results are 

consistent with the demonstration that in the setting of hypertrophy there is a 

greater requirement of MVO2 for non-contractile purposes (e.g. excitation-

contraction coupling and Ca
2+

 handling) [402], which may divert ATP available 

from contraction itself, and thus decrease metabolic efficiency. Alterations in 

energy substrate preference occur in hearts following acute ischemia [403] and 

have the potential to decrease efficiency [21, 319], but based on similar 

percentage contributions of energy substrates to overall ATP production in 

SHAM and CAL hearts (Fig 3.4H), it appears that substrate preference is 

unaltered in the infarct-remodeled heart. 

 To avoid any confounding effect of different LV work levels in CAL and 

SHAM hearts, rates of energy substrate metabolism were also expressed per unit 

LV work.  Again, data do not support the concept of energy starvation as CAL 

hearts have higher rates of glycolysis and glucose oxidation, as well as unchanged 

rates of fatty acid oxidation and lactate oxidation. As the increase in glucose 

oxidation rate per unit LV work was insufficient to match the increase in 

glycolysis rate per unit LV work, this causes a significant increase in proton 

production per unit LV work and suggests that mismatched glucose metabolism 
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may be a contributor to inefficiency.  This mismatch has also been reported in 

other HF models [9, 236, 325, 404]. 

 To investigate potential differences in endogenous substrate metabolism, 

rates of synthesis and degradation of glycogen and TG were calculated. 

Endogenous substrates contributed a similar percentage to total ATP production 

(29% in SHAM and 34% in CAL hearts). Even after expression per unit LV work, 

glycogen degradation and synthesis rates were not different. TG synthesis 

expressed per unit LV work was also similar but TG degradation was higher in 

CAL. However, due to very low actual rates, no difference in total ATP 

production from endogenous sources was observed. CAL hearts trended to be 

inefficient in endogenous substrate utilization but this did not reach statistical 

significance (P=0.07).  

  Interestingly, evidence used to support the energy starvation theory can be 

subject to alternate interpretations that actually support the inefficiency concept. 

An inefficient heart uses more energy to perform an equivalent workload, so 

providing more ATP, whether via external supply of energy substrates, increasing 

rates of energy substrate metabolism, or enhancing ATP flux through CK, can 

improve contractility.  Improved mechanical function in rats with heart failure by 

dichloroacetate-induced stimulation of glucose oxidation [214]  reduces 

mismatched glucose metabolism. Thus, heart function improves, not only due to 

increased ATP generation, but also by less dysregulation of ionic homeostasis.     
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 Since the contribution of endogenous substrate metabolism to overall 

energy production was not different in CAL hearts, we determined the metabolic 

and functional consequences of CAL-induced remodeling in hearts from MCD-

KO mice. While these hearts have unaltered rates of glucose and fatty acid 

oxidation when perfused aerobically, when challenged by IR they show a 

preference for glucose oxidation over fatty acid oxidation.  This improves 

coupling between glycolysis and glucose oxidation, lessens intracellular acidosis 

and improves recovery of contractility [322].  Using this model, we determined 

whether enhanced mechanical function could be achieved via improvement in the 

efficiency of exogenous substrate utilization.  We studied the metabolic and 

functional consequences of CAL-induced remodeling in MCD-KO mice which 

was shown previously [322] to be protected from IR injury due to improved 

matching of glucose metabolism. As expected with the permanent CAL model, 

infarct weights (both actual and as % of whole heart weight) were similar in WT 

CAL and MCD-KO CAL hearts, and indicates that functional effects are due to 

actions on surviving viable tissue.  

 MCD-KO CAL hearts have improved cardiac function and have lower 

rates of glycolysis, glucose oxidation, lactate oxidation well as ATP production.  

Despite lower energy availability, function is improved, and clearly indicates 

improved efficiency.  These changes persisted after normalization for LV work. 

In accordance with the study by Dyck et al [96], MCD-KO CAL hearts have 

unaltered fatty acid oxidation rates.  The higher contribution of fatty acid 

oxidation to the overall ATP production appears to be due to reduced percentage 
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contribution from the other substrates.  Our understanding is that fatty acid 

oxidation regulating genes that code for fatty acid transporter (CD36), carnitine 

palmitoyl transferase 1, acyl CoA thioesterase, and uncoupling protein-3 are 

upregulated in MCD-KO healthy hearts [96] resulting in maintained aerobic fatty 

acid oxidation despite the lack of MCD. We speculate that the upregulated genes 

are also responsible for the lack of significant change in fatty acid oxidation rates 

in remodeled MCD-KO CAL hearts. The improved metabolic efficiency and 

maintained fatty acid oxidation rates in these hearts may explain why lower rates 

of glucose metabolism were observed. 

The demonstration that MCD-KO CAL hearts have improved coupling 

between glycolysis and glucose oxidation, lower proton production and improved 

total LV work, suggests that improvement in the matching of glucose metabolism 

has beneficial consequences in this model of heart failure. While this does not 

unequivocally prove a relationship between metabolic inefficiency and cardiac 

function, it is supportive of such a relationship.  

Conclusion 

 Our study shows that post-infarction remodeled failing mouse hearts are 

inefficient in the utilization of energy substrates for mechanical work.  

Mismatched glucose metabolism (glycolysis vs glucose oxidation) and the 

resulting accelerated proton production per unit LV work may be a contributor to 

inefficiency and the deterioration of LV mechanical function.  The prevention of 

inefficiency by a metabolic intervention (chronic MCD deficiency) that lessens 
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mismatched glucose metabolism and improves mechanical function supports the 

view that inefficiency is a major contributor to heart failure in the infarct-

remodeled heart and is amenable for improvement by metabolic interventions. 
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Figure  3.1 Assessment of mechanical function of CAL and SHAM hearts.   

The time-courses of LV work per g dry wt (A, SHAM=18, CAL=17) and total LV 

work per whole heart (C) is shown, as well as average values for LV work per g 

dry wt (B), total LV work per whole heart (D)and heart dry weights (mg, F). Data 

are expressed as mean ± SEM, N values represent independent hearts. * indicates 

P˂ 0.05.  
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Figure 3.1 
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Figure  3.2 Rates of exogenous energy substrate metabolism in SHAM and 

CAL hearts.   

Rates (µmol/min/g dry wt) are shown for glycolysis (A, SHAM=11, CAL=6), 

glucose oxidation (B, SHAM=11, CAL=6) proton production (C, SHAM=11, 

CAL=6), fatty acid oxidation (D, SHAM=7, CAL=11) and lactate oxidation (E, 

SHAM=7, CAL=11).  Data are expressed as mean ± SEM, N values represent 

independent hearts. * indicates P ˂ 0.05.  
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Figure 3.2 
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Figure  3.3 Rates of exogenous energy substrate metabolism in SHAM and 

CAL hearts normalized for LV work.   

Metabolic rates (expressed per unit LV work) are shown for glycolysis (A, 

SHAM=11, CAL=6), glucose oxidation (B, SHAM=11, CAL=6), proton 

production (C, SHAM=11, CAL=6), fatty acid oxidation (D, SHAM=7, CAL=11) 

and lactate oxidation (E, SHAM=7, CAL=7).  Cardiac efficiency, calculated as 

Joule per mole ATP (F, SHAM=7, CAL=6) and rates of ATP production (G, 

SHAM=7, CAL=6) are also shown. Data are expressed as mean ± SEM, N values 

represent independent hearts.  *indicates P ˂ 0.05.  
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Figure 3.3 
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Figure  3.4 Rates of endogenous energy substrate metabolism in SHAM and 

CAL hearts.   

Glycogen content at the end of perfusion (µmol/g dry wt) is shown (A) for SHAM 

(N=5) and CAL (N=5), as well as rates (µmol/min/g dry wt) of glycogen 

degradation (B) and glycogen synthesis (C).  TG fatty acid content at the end of 

perfusion (µmol/g dry wt) (D), TG degradation rate (µmol/min/g dry wt) (E), TG 

synthesis rate (F),ATP production rate from the endogenous energy substrates, 

glycogen and TG (G), and percentage contribution to ATP production of the 

metabolism of exogenous and endogenous energy substrates (H) are also shown.  

Data are expressed as mean ± SEM, N values represent independent hearts.  

*indicates P ˂ 0.05.  
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Figure 3.4 
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Figure  3.5 Rates of endogenous energy substrate metabolism in SHAM and 

CAL hearts normalized for LV work.   

Metabolic rates (expressed per unit LV work, SHAM N=5, CAL N=5) for 

glycogen degradation (A), glycogen synthesis (B), TG degradation (C) and TG 

synthesis (D) are shown as well as efficiency of endogenous substrate utilization 

(E), calculated as Joule/µmol by dividing LV work by ATP generated from 

glycogen and TG degradation.  Data are expressed as mean ± SEM, N values 

represent independent hearts.  * indicates P ˂ 0.05.  
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Figure 3.5 
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Figure  3.6 Assessment of cardiac function of WT CAL and MCD-KO CAL 

hearts.   

Dry weights (mg, A, WT CAL=17, MCD-KO CAL=11) are shown for perfused 

hearts. Infarct size, expressed as percentage of the whole heart weight (B, WT 

CAL=7, MCD-KO CAL=8), as well as the time-courses of LV work per g dry wt 

(C, WT CAL=17, MCD-KO CAL=11) and total LV work per whole heart (E, WT 

CAL=17, MCD-KO CAL=11) are presented.  Average values for LV work per g 

dry wt (D, WT CAL=17, MCD-KO CAL=11) and total LV work per whole heart 

(F, WT CAL=17, MCD-KO CAL=11) are also shown. Data are expressed as 

mean ± SEM, N values represent independent hearts. * indicates P˂ 0.05.  
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Figure 3.6 
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Figure  3.7 Rates of exogenous energy substrate metabolism in WT CAL and 

MCD-KO CAL hearts.   

Rates (µmol/min/g dry wt) are shown for glycolysis (A, WT CAL=5, MCD-KO 

CAL=4), glucose oxidation (B, WT CAL=12, MCD-KO CAL=7) proton 

production (C, WT CAL=5, MCD-KO CAL=4), fatty acid oxidation (D, WT 

CAL=12, MCD-KO CAL=6) and lactate oxidation (E, WT CAL=5, MCD-KO 

CAL=4). Data are expressed as mean ± SEM, N values represent independent 

hearts. * indicates P ˂ 0.05.  

 

 

 

 

 

 

 

 

 



102 
 

Figure 3.7 
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Figure  3.8 Rates of exogenous energy substrate metabolism in WT CAL and 

MCD-KO CAL hearts normalized for LV work.  

 Metabolic rates (expressed per unit LV work) are shown for glycolysis (A, WT 

CAL=5, MCD-KO CAL=4), glucose oxidation (B, WT CAL=12, MCD-KO 

CAL=7), proton production (C, WT CAL=5, MCD-KO CAL=4), fatty acid 

oxidation (D, WT CAL=12, MCD-KO CAL=6) and lactate oxidation (E, WT 

CAL=5, MCD-KO CAL=4).  Cardiac efficiency of exogenous substrate 

utilization, calculated as Joule per mole ATP, (F, WT CAL=5, MCD-KO 

CAL=4), ATP production (G, WT CAL=5, MCD-KO CAL=4), % contribution of 

each energy substrate to ATP production (H, WT CAL=5, MCD-KO CAL=4) are 

also shown.  Data are expressed as mean ± SEM, N values represent independent 

hearts.  *indicates P˂0.05.  
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Figure 3.8 
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Table  3.1 In vivo echocardiographic and ex vivo hemodynamic parameters of 

CAL and SHAM hearts  

In vivo 

Parameter (unit) SHAM (N=12) CAL (N=11) P value 

Heart rate (beats/min) 437±14 440±19 0.84 

Cardiac output (mL/min) 21.75±2.22 20.26±1.54 0.59 

LV systolic volume (µL) 33.95±2.63 119.89±19 0.0001 

LV diastolic volume (µL) 77.56±3.43 175.37±21.32 0.0001 

LVIDs (mm) 2.94±0.10 4.90±0.32 <0.0001 

LVIDd (mm) 4.17±0.08 5.84±0.30 <0.0001 

Corrected LV mass 102.96±1.54 156.29±18.90 0.0015 

LVPWs (mm) 1.19±0.05 1.23±0.13 0.76 

LVPWd (mm) 0.82±0.03 0.91±0.08 0.30 

IVSs (mm) 1.18±0.04 1.17±0.12 0.97 

IVSd (mm) 0.81±0.01 0.84±0.06 0.97 

EF (%) 54.47±0.98 27.89±2.38 <0.0001 

FAC (%) 46.41±5.83 22.75±1.54 0.0001 

IVCT (ms) 17.14±1.20 28.19±2.55 0.0005 

Tei index (ratio) 0.76±0.03 1.24±0.09 <0.0001 

E 768±92 643±50 0.03 

E` 31.8±9.0 23.2±7.5 0.02 

A 440±184 279±162 0.04 

E/E` (ratio) 25.48±1.77 29.26±2.58 0.23 

E/A (ratio) 2.01±0.24 4.59±2.27 0.23 

IVRT (ms) 17.78±1.01 23.02±1.29 0.004 

MV DT (ms) 16.92±0.95 15.18±2.47 0.45 

Ex vivo 

Parameter (unit) SHAM (N=18) CAL (N=17) P value 

Body weight (g) 26.99 ± 0.31 27.45 ± 0.37 0.34 

Systolic pressure (mmHg) 77.2 ± 1.8 68.5 ± 1.0 0.0002 

Diastolic pressure (mmHg) 20.4 ± 1.2 28.9 ± 1.4 <0.0001 

Cardiac output (mL/min) 9.51 ± 0.46 5.84 ± 0.55 <0.0001 

Aortic flow (mL/min) 7.04 ± 0.45 3.61 ± 0.41 <0.0001 

Coronary flow (mL/min) 2.48 ± 0.33 2.23 ± 0.37 0.62 

 

Abbreviations: LV= left ventricular, LVID=LV internal dimension, LVPW=LV 

posterior wall thickness, IVS=interventricular septal thickness, EF=ejection 

fraction, FAC=fraction area change, IVRT=isovolumetric relaxation time, 

IVCT=isovolumetric contraction time, MVDT=mitral valve deceleration time. All 

data are mean ± SEM. P values are shown beside each parameter and a value less 

than 0.05 is considered significant. 
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Table  3.2 In vivo echocardiographic and ex vivo hemodynamic parameters of 

WT-CAL and MCD-KO CAL hearts  

In vivo 

Parameter (unit) WT CAL  

   (N=9) 

MCD-KO CAL 

      (N=7) 

P value 

Heart rate (beats/min) 504±25 519±14 0.64 

Cardiac output (mL/min) 18.24±1.74 20.80±1.26 0.28 

LV systolic volume (µL) 78.98±15.71 54.47±11.88 0.26 

LV diastolic volume (µL) 114.42±11.78 107.48±13.75 0.71 

LVIDs (mm) 4.06±0.35 3.49±0.31 0.26 

LVIDd (mm) 4.88±0.21 4.75±0.26 0.69 

Corrected LV mass 103.77±9.51 118.98±6.78 0.24 

LVPWs (mm) 0.83±0.08 1.14±0.05 0.007 

LVPWd (mm) 0.66±0.04 0.81±0.04 0.014 

IVSs (mm) 0.84±0.08 1.00±0.07 0.17 

IVSd (mm) 0.66±0.04 0.73±0.03 0.19 

EF (%) 29.16±3.20 38.08±2.50 0.055 

FAC (%) 18.03±3.92 27.12±2.66 0.09 

LVPWd (mm)-pre-op 0.74±0.03 0.76±0.01 >0.05 

LVPWd (mm)-Week 1 0.77±0.06 0.77±0.04 >0.05 

LVPWd (mm)-Week 4 0.66±0.04 0.81±0.04 <0.05 

LV diastolic volume-pre-op (µL) 50.50±1.78 60.29±1.86 0.20 

LV diastolic volume-Week1 (µL) 106.20±5.73 102.38±8.53 0.71 

LV diastolic volume-Week 4 (µL) 130.44±11.29 107.58±7.72 0.14 

    

Ex vivo 

Parameter (unit) WT CAL  

   (N=17) 

MCD-KO CAL 

      (N=11) 

P value 

Body weight (g) 22.74 ± 0.47 23.92 ± 1.14 0.28 

Systolic pressure (mmHg) 63.9 ± 1.2 67.8 ± 2.2 0.10 

Diastolic pressure (mmHg) 41.9 ± 1.5 38.2 ± 2.1 0.16 

Cardiac output (mL/min) 6.73 ± 0.31 7.95 ± 0.57 0.05 

Aortic flow (mL/min) 4.76 ± 0.34 5.67 ± 0.44 0.11 

Coronary flow (mL/min) 1.97 ± 0.23 2.28 ± 0.28 0.40 

 

Abbreviations: LV= left ventricular, LVID=LV internal dimension, LVPW=LV 

posterior wall thickness, IVS=interventricular septal thickness, EF=ejection 

fraction, FAC=fraction area change. All data are mean ± SEM. P values are 

shown beside each parameter and a value less than 0.05 is considered significant. 
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Table  3.3 Adenine nucleotide, inosine and creatine content in CAL and 

SHAM hearts 

In vivo 

Parameter (µmol/g dry wt) SHAM (N=5) CAL (N=5) P value 

ATP  31.02±2.09 22.96±3.40 0.08 

ADP 5.90±0.53 5.13±0.81 0.45 

AMP 0.78±0.08 0.98±0.26 0.49 

GTP 1.63±0.12 1.43±0.18 0.21 

Inosine 10.45±4.32 4.91±2.39 0.29 

Creatine 27.93±2.01 20.75±2.87 0.07 

Creatine phosphate 35.31±2.76 28.64±4.61 0.25 

 

Abbreviations: ATP=adenosine triphosphate, ADP=adenosine diphosphate, 

AMP=adenosine monophosphate, GTP=guanosine triphosphate. All data are 

mean ± SEM. P values are shown beside each parameter and a value less than 

0.05 is considered significant. 
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Table  3.4 Immunoblot analysis of protein expression of mitochondrial 

abundance and key metabolic regulatory enzymes 

In vivo 

Parameter (arbitrary units) SHAM (N) CAL (N) P value 

VDAC  1.00±0.24 (3) 1.01±0.13 (3) 0.99 

Complex I (NDUFB6) 1.00±0.06 (3) 1.05±0.07 (3) 0.56 

β-HAD 1.00±0.16 (4) 1.06±0.10 (4) 0.76 

LCAD 1.00±0.08 (3) 1.33±0.12 (3) 0.08 

PDH 1.00±0.13 (3) 0.90±0.13 (3) 0.20 

LDH-A 1.00±0.17 (6) 1.04±0.32 (6) 0.92 

HK1 1.00±0.19 (3) 1.22±0.16 (3) 0.43 

GAPDH 1.00±0.07 (6) 1.29±0.20 (6) 0.19 

 

Abbreviations: VDAC= voltage-dependent anion channel, β-HAD = β-hydroxy 

acyl CoA dehydrogenase, LCAD=long chain acyl CoA dehydrogenase, 

PDH=pyruvate dehydrogenase, LDH-A=lactate dehydrogenase isozyme A, 

HK1=hexokinase 1, GAPDH=glyceraldehyde-3-phosphate dehydrogenase. All 

data are mean ± SEM. P values are shown beside each parameter and a value less 

than 0.05 is considered significant. See details in Fig 4.7 and 4.8. 
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4 Tolerance to ischemic injury in remodeled 

mouse hearts: less ischemic glycogenolysis and 

preserved metabolic efficiency 
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4.1 Introduction 

  Hearts that are remodeled following ischemia exhibit impaired mechanical 

function both in vivo and during ex vivo aerobic perfusion [221]. In Chapter 3, 

energy metabolic mechanisms that may contribute to the observed mechanical 

dysfunction were investigated and the data demonstrate that hearts remodeled 

following CAL surgery are not energetically starved as they maintain comparable 

rates of energy substrate oxidation, rates of ATP production and ATP contents 

despite lower mechanical function.  Instead, post-infarction remodeled hearts are 

metabolically inefficient [221], that is, remodeled hearts have adequate rates of 

energy substrate metabolism and ATP production, but this energy is not translated 

into mechanical function as efficiently as in normal hearts.  Although many 

factors may influence cardiac metabolic efficiency (reviewed in Chapter 1, 

Introduction), metabolic inefficiency in remodeled hearts may be related to higher 

rates of proton production from glucose metabolism.  This increased proton 

production can increase the amount or energy used for the correction of acidosis-

induced dysregulation of ion homeostasis, that includes Na
+
 and Ca

2+
 overload.  

 Based on this metabolic inefficiency, it might be expected that remodeled 

hearts would be more susceptible to injury following a subsequent episode of 

ischemia compared to normal healthy hearts.  However, several studies have 

provided evidence that remodeled hearts actually have a greater tolerance to 

ischemia [314-316].  In a comparison of normal and remodeled hearts perfused in 

the Langendorff mode, Kalkman et al [315] reported that remodeled hearts have a 

lower ischemia-induced release of lactate and purines.  A similar improved 
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tolerance to ischemic injury in remodeled hearts was confirmed by Pantos et al 

[314] who showed that a lower release of lactate dehydrogenase was accompanied 

by less ischemic contracture, a higher expression of heat shock protein 70, as well 

as an improved recovery of mechanical function during post-ischemic 

reperfusion.  Both studies employed non-working Langendorff preparations so 

energy metabolic mechanisms were not investigated. Less dysregulation of ion 

homeostasis has also been noted in remodeled hearts by Sharikabad and 

colleagues [316], who reported that cardiomyocytes derived from post-infarction 

remodeled rat hearts exhibit less Na
+ 

and Ca
+2

 accumulation than cells from 

normal hearts.  These authors also found lower release of lactate dehydrogenase 

and less depletion of ATP content during a hypoxic challenge of remodeled 

cardiomyocytes, but the mechanistic basis of the increased tolerance has not yet 

been elucidated. 

 Energy substrate metabolic rates and energy substrate preference during 

reperfusion of ischemic hearts affects recovery of LV mechanical function [13, 

140, 317, 318].   For example, acceleration of fatty acid oxidation during 

reperfusion inhibits glucose oxidation (the “Randle cycle”), thereby increasing the 

uncoupling of glycolysis and glucose oxidation leading to increased proton 

production.  This slows the rate of recovery of intracellular pH and contributes to 

further accumulation of Na
+
 and Ca

2+
 overload [317].  Moreover, inhibition of 

glycolysis during early reperfusion limits Ca
2+ 

overload and improves post-

ischemic recovery of LV function [318].  
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 Experiments described in this Chapter were designed to compare post-

ischemic mechanical function in normal and remodeled hearts, and to investigate 

the associated changes in cardiac energy substrate metabolism and metabolic 

efficiency.  Studies were performed in mouse hearts that had undergone 

remodeling following coronary artery ligation or a sham procedure.  Hearts were 

isolated and perfused as isolated working heart mode in the presence of relevant 

energy substrates (fatty acids, glucose, and lactate) and energy demand 

(workload), in order to assess LV mechanical work, rates of energy substrate 

metabolism and metabolic efficiency. 

4.2 Methods   

 Male C57BL/6 mice (age 12 weeks) were subjected to either a coronary 

artery ligation (CAL, n=17) or a sham procedure (SHAM, n=33), as described 

previously [381, 382].   

4.3 Results 

4.3.1 CAL hearts have lower in vivo function   

 In accordance with data presented in Chapter 3, , echocardiographic 

evaluation of CAL mice revealed impaired LV function relative to the age-

matched SHAM group (Fig 4.1 and Table 4.1). CAL mice have lower systolic 

function as indicated by reduced LV % ejection fraction (%EF) and LV % 

fractional area change (%FAC).  CAL hearts have coexistent diastolic dysfunction 

(higher Tei index, E/E` and IVRT) and marked dilatation (as indicated by the 

significant increases in LV diastolic and systolic volumes and internal diameters).  
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CAL hearts are also mildly hypertrophied (higher diastolic interventricular septal 

thickness (IVSd) but unaltered LV posterior wall thickness).  

Ex vivo mechanical function (average LV work during aerobic perfusion, 

Joule/min/g dry wt) is 36% lower in CAL hearts than in SHAM hearts, which 

confirms the in vivo findings of lower systolic function.  However, CAL hearts 

recovered to aerobic levels of LV work during post-ischemic reperfusion, in 

contrast to SHAM hearts that show significant deterioration of LV work during 

post-ischemic reperfusion (Fig 4.2A-B).  When LV work during reperfusion is 

expressed as a percent recovery of pre-ischemic values (Fig 4.2C), there is a 

significantly higher recovery of LV work in CAL hearts compared to SHAM 

hearts (67±5% vs 49±5%, P<0.05).  A similar complete recovery of other 

hemodynamic parameters was also seen in CAL hearts post-ischemia (Table 4.2). 

4.3.2 CAL hearts are not energy starved during post-

ischemic reperfusion 

 As we reported in Chapter 3, CAL hearts, relative to SHAM hearts, are not 

energy starved during aerobic perfusion, as indicated by similar rates of 

glycolysis, glucose oxidation, fatty acid oxidation and lactate oxidation in the two 

groups (Fig 4.3A-E).  Thus the rate of ATP production from these energy 

substrates is similar in CAL and SHAM hearts, indicating that CAL hearts are not 

deficient in energy availability (Fig 4.3F). Moreover, we now show that post-

ischemic reperfused CAL hearts maintain similar rates of energy substrate 
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metabolism to SHAM hearts, which indicates that they are also not energy starved 

during reperfusion.  

 Similarly, CAL hearts maintain comparable ATP and creatine phosphate 

contents to SHAM hearts during post-ischemic reperfusion (Table 4.3), also 

indicative of a lack of energy starvation.  

4.3.3 CAL hearts undergo less deterioration in metabolic 

efficiency during reperfusion   

 During aerobic perfusion, when normalized per unit LV work 

(µmol/Joule), CAL hearts have higher rates of glycolysis (Fig 4.4 A, P<0.05, t-

test) and similar rates of glucose oxidation (Fig 4.4B), a finding confirming data 

presented in Chapter 3.   The greater mismatch in the rates of glycolysis and 

glucose oxidation in CAL hearts results in a higher rate of proton production (Fig 

4.4C, P<0.05).   Fatty acid oxidation and lactate oxidation rates were similar in 

SHAM and CAL hearts (Fig 4.4D-E).  CAL hearts have lower metabolic 

efficiency (LV work done per ATP produced, Joule/µmol) (Fig 4.4F, P<0.05). 

 During reperfusion, as compared to aerobic perfusion, SHAM hearts 

exhibit a significantly higher glycolysis per LV work (Fig 4.4A) while glucose 

oxidation per LV work is unchanged (Fig 4.4B), yielding a significantly higher 

rate of proton production per LV work (Fig 4.4C).  Rates of fatty acid oxidation 

per LV work significantly increase (Fig 4.4D) while lactate oxidation per LV 

work remain similar to aerobic rates (Fig 4.4E). Accordingly, metabolic 

efficiency is significantly lower in reperfused SHAM hearts (Fig 4.4F).    
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 In contrast, reperfused CAL hearts exhibit no further changes in glucose 

metabolism (Fig 4.4A-B). Thus, proton production per LV work remains at 

similar levels to aerobic perfusion (Fig 4.4C). Similarly, fatty acid oxidation and 

lactate oxidation per LV work are comparable to values during aerobic perfusion 

(Fig 4.4D-E). Thus, in CAL hearts energy substrate preference is unaltered and 

metabolic efficiency does not further deteriorate during post-ischemic reperfusion 

(Fig 4.4F).  

4.3.4 Endogenous substrate utilization during ischemia 

and reperfusion 

 Compared to SHAM hearts, CAL hearts utilize less glycogen during 

ischemia but accumulate less glycogen during reperfusion (Fig 4.5A-B).  As a 

result, CAL hearts produced less protons during ischemia compared to SHAM 

hearts (Fig. 4.5C).  TG utilization was similar in CAL and SHAM hearts during 

ischemia. While SHAM hearts continue to utilize TGs during reperfusion, CAL 

hearts accumulate TG (Fig 4.5d-E), which, together with comparable LV work 

levels, indicates a higher metabolic efficiency in reperfused CAL hearts. 

4.3.5 Abundance of mitochondrial markers and key 

metabolic enzymes  

 CAL hearts have a significantly higher PGC-1α protein expression (Fig 

4.7A), indicative of a higher stimulus for mitochondrial biogenesis. However, the 

expression of markers of mitochondrial abundance, complex 1 subunit 
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(NDUFB6), VDAC, β-HAD and LCAD  were comparable in CAL and SHAM 

hearts (Fig 4.7B-E), indicative of an unchanged mitochondrial content in CAL 

hearts. Expression levels of CaMKII, pCaMKII, phospholamban and SERCA2 

were also similar in CAL and SHAM hearts (Fig 4.7F-H), suggesting the absence 

of abnormalities in Ca
2+

 handling.  Similarly, expression of PPARα, PDH, 

hexokinase, GLUT1, GLUT4, GSK3β, pGSK3β, LDH and GAPDH was similar 

in CAL hearts supporting the lack of major changes in metabolic rates in CAL 

hearts compared to SHAM hearts (Fig 4.8A-I).  Similarly AMPK activity 

(pAMPK/tAMPK) was similar in CAL and SHAM hearts at each time point (Fig 

4.6). As expected, AMPK activity was higher in both SHAM and CAL hearts at 

the end of ischemia (Fig 4.6), but recovered during reperfusion. 

4.4 Discussion 

 A number of major findings were demonstrated in this study.  Confirming 

previous studies, we demonstrate that hearts remodeled following a coronary 

artery ligation are not energy deficient, but rather have a lower metabolic 

efficiency.  Of importance, we provide the novel observation that hearts 

remodeled following coronary artery ligation exhibit less deterioration of 

mechanical function during post-ischemic reperfusion.  Despite lower metabolic 

efficiency during aerobic (pre-ischemic) conditions, remodeled hearts maintain 

similar levels of metabolic efficiency during reperfusion.  In contrast, normal 

hearts exhibit a marked deterioration of mechanical function and metabolic 

efficiency during reperfusion following ischemia.  Recovery of cardiac energy 

metabolism was not compromised in either normal or remodeled hearts following 
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ischemia.  However, there is a significant attenuation of glycogen utilization in 

remodeled hearts during ischemia, with a lower rate of proton production during 

ischemia in the remodeled hearts.  This decrease in proton production in 

remodeled hearts compared to normal may explain the improved tolerance to 

ischemic injury in the remodeled hearts. 

 While there are numerous studies of energy substrate metabolism and 

reperfusion injury in normal hearts, few have addressed the relationships between 

metabolism and post-ischemic function in hearts remodeled following a 

myocardial infarction.  In order to create an experimental model of the remodeled 

heart, we produced a permanent ligation of the coronary artery in mice, followed 

by a 4 wk post-surgical period during which a mature scar formed and LV 

dysfunction developed.   The examination of LV mechanical and metabolic 

function during isolated working heart perfusion enabled comparisons of normal 

and  remodeled hearts under controlled conditions of energy substrate availability 

and workload and so provided an appropriate assessment of metabolic efficiency, 

a measure of LV work produced per unit ATP produced (joule/µmol).  

 Post-infarction remodeled hearts exhibit a marked deterioration of 

mechanical function [221]. We previously showed that CAL hearts are not 

energy-starved since they maintain comparable adenine nucleotide contents to 

SHAM hearts, and the reduction in ATP production rates from fatty acid, glucose, 

and lactate metabolism in these hearts does not match the deterioration of 

mechanical function. Thus there is a significant reduction of metabolic efficiency 

(i.e., inefficient utilization of ATP for generation of external mechanical work) in 
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the CAL hearts during aerobic perfusion [221].  We also showed that this may be 

due to increased proton production per LV work as a result of increased mismatch 

between glycolytic flux and glucose oxidation rates [221] that may lead to a 

diversion of ATP from contractile work towards correction of ion homeostasis.  

The demonstration in this study that CAL hearts maintain similar metabolic rates 

to SHAM hearts during aerobic perfusion confirms our previous finding that CAL 

hearts are not energy starved [221] but instead develop metabolic inefficiency,    

In addition,  we now demonstrate that following ischemia and reperfusion,  CAL 

hearts maintain comparable rates of energy substrate metabolism to reperfused 

SHAM hearts excludes the possibility of a change in energy substrate preference 

as a contributor to the observed lower functional deterioration in reperfused CAL 

hearts.  Indeed, the finding that CAL hearts maintain similar metabolic rates per 

LV work during reperfusion as during aerobic perfusion indicates that there is no 

further deterioration of metabolic efficiency in reperfused CAL hearts.  These 

findings are in accordance with previously published reports highlighting a better 

ischemic tolerance in remodeled post-infarction hearts as indicated by reduced 

release of purines and lactate [315], less ischemic contracture and less lactate 

dehydrogenase release [314]. Similarly, cardiomyocytes derived from post-

infarction remodeled hearts exhibit lower decreases in ATP levels and less release 

of lactate dehydrogenase following hypoxia re-oxygenation [316].  

 In contrast to CAL hearts, reperfused SHAM hearts exhibit a significant 

increase in glycolytic flux per LV work that is not matched by a corresponding 

increase in the rate of glucose oxidation, resulting in increased proton production 
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per LV work. This finding, together with a significant increase in reperfusion fatty 

acid oxidation rate per LV work, contributes to the deteriorating metabolic 

efficiency during reperfusion of SHAM hearts. These findings are also in 

accordance with previous published data showing that during post-ischemic 

reperfusion, normal mouse hearts exhibit a marked deterioration of oxidative 

metabolism.  This augments the mismatch between glycolytic flux and glucose 

oxidation rates resulting in lactate accumulation [13, 326, 405-407].  Meanwhile, 

protons derived from the hydrolysis of glycolytically produced ATP accumulate, 

increasing intracellular acidosis [317]. The subsequent activation of the Na
+
-H

+
 

exchanger causes Na
+
 accumulation [333], which, in turn, activates reverse mode 

Na
+
-Ca

2+
 exchange leading to Ca

2+
 overload [185].  In order to correct Na

+
 and 

Ca
2+

 overload, more ATP is diverted towards ionic homeostasis than to 

mechanical function. This is expected to lead to deterioration of metabolic 

efficiency associated with a significant deterioration of mechanical function 

(reviewed in [319]) 

 A higher abundance of mitochondria in CAL hearts is a potential 

mechanism for the finding that CAL hearts, as compared to SHAM hearts, do not 

show further deterioration of metabolic efficiency during reperfusion.  Although 

higher expression of PGC-1α (which stimulates mitochondrial biogenesis) is 

observed in CAL hearts, this did not translate into increase in mitochondrial 

abundance of enzymes such as complex 1 subunit (NDUFB6), VDAC, βHAD or 

LCAD.  Moreover, protein expression of key enzyme regulators of oxidative 

metabolism is similar in CAL and SHAM hearts. Nevertheless, the increased level 
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of PGC-1α expression in CAL hearts may have contributed to the maintenance of 

mitochondrial mass and oxidative capacity in the remodeled viable tissue. Thus it 

is unlikely that the better functional recovery and maintained metabolic efficiency 

during reperfusion of remodeled hearts are due to alterations in mitochondrial 

abundance. 

 Improved calcium handling is another potential mechanism for the 

absence of functional deterioration during reperfusion of CAL hearts. If present, it 

may contribute to reduced post-ischemic contracture and more efficient utilization 

of ATP for external mechanical work. However, the absence of changes in the 

calcium handling proteins, CaMKII, phospholamban and SERCA2, suggests the 

presence of other contributing factors to the observed absence of post-ischemic 

functional deterioration in CAL hearts. 

 A third potential explanation of the observed better functional recovery 

following ischemia and maintained metabolic efficiency in CAL hearts is a 

decrease in intracellular acidosis and Na
+
 and Ca

2+
 overload during ischemia. A 

major contributor to the development of acidosis during ischemia is the 

incorporation of glycogenolysis-derived glucose-6-P into anaerobic glycolysis 

producing lactate and protons.  The finding that CAL hearts exhibit significantly 

lower ischemic glycogenolysis as compared to SHAM hearts resulted in a lower 

ischemic production of lactate and protons in CAL hearts.   Evidence to support 

this hypothesis comes from the finding that recovery of intracellular pH in 

reperfused hearts is delayed if the rates of glycolytic flux are not matched with 

glucose oxidation and that improving the coupling enhances the recovery of 
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intracellular pH and improves both mechanical function and cardiac efficiency 

[317].  In fact, many interventions that inhibit glycolytic flux during early 

reperfusion are cardioprotective. Omar et al [318] showed that diverting glucose 

metabolism towards glycogen synthesis rather than glycolytic flux reduces proton 

production, limits Ca
2+

 overload and improves recovery of post-ischemic 

mechanical function. Similarly, other cardioprotective interventions such as 

adenosine [340] or ischemic preconditioning [330, 408] reduce glycogen 

utilization and inhibit glycolytic flux.  The demonstration that CAL hearts utilize 

less glycogen than SHAM hearts during ischemia indicates that CAL hearts have 

lower proton accumulation at the end of ischemia.  This lower stimulus for Na
+
 

and Ca
2+

 accumulation during early reperfusion likely contributes to the lack of 

further deterioration in mechanical function and the lower deterioration in 

metabolic efficiency.   

Attenuation of rates of glycogenolysis during ischemia has been noted 

with some cardioprotective interventions such as ischemic preconditioning and 

adenosine [328, 330] as well as with lower rates of ATP catabolism [409].  

Indeed, the findings that CAL hearts have lower rates of glycogenolysis during 

ischemia and preserved ATP contents during reperfusion suggest that the 

improved ischemic tolerance of remodeled hearts may mimic some of the 

mechanisms involved in ischemic preconditioning. Furthermore, the 

demonstration that preconditioning mechanisms are already activated in 

remodeled hearts may explain the failure of additional preconditioning 

interventions to achieve functional benefits in remodeled hearts [410-412]. 
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AMPK is a known regulator of glycogen turnover [325, 413]. A previous 

study by Jaswal et al [325] showed that AMPK inhibition at post-ischemic 

reperfusion of rat hearts shifts glucose metabolism towards glycogen synthesis. 

The inhibition of glycogenolysis and subsequent reduction of glycolytic flux rates 

improve coupling between glycolytic flux and glucose oxidation rates. This, in 

turn, reduces reperfusion proton production and is associated with a better 

functional recovery. We studied the expression and activation of AMPK at 

different perfusion time points. The demonstration that CAL hearts exhibit similar 

pattern of ischemic AMPK activation indicates that changes in AMPK are less 

likely to explain the observed reduction of ischemic glycogen utilization in CAL 

hearts. 

4.5 Conclusion 

 In conclusion, remodeled CAL hearts exhibit impaired LV mechanical 

function and metabolic efficiency during baseline aerobic conditions. Following 

exposure to an acute ischemic episode remodeled hearts exhibit higher recovery 

of LV function compared to normal hearts, with no further deterioration of 

metabolic efficiency.  Lower glycogenolysis during ischemia with subsequent 

less intracellular acidosis and ion dysregulation may contribute to the greater 

tolerance to ischemic injury in the remodeled heart. Changes in Ca
2+

 handling 

proteins, mitochondrial mass or AMPK activity are less likely contributors to our 

findings. 
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Figure  4.1 In vivo echocardiographic functional assessment.  

 Panel A shows a parasternal long axis view of a SHAM heart. Panel B 

shows a parasternal long axis view of a CAL heart. Notice the dilatation of the 

LV. Panel C shows an m-Mode capture of a SHAM heart. Panel D shows an m-

Mode capture of a CAL heart. Notice the increased LV volume (panel B) and 

reduced wall motion (panel D) in CAL hearts as compared to SHAM hearts 

(panels A & C).  
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Figure 4.1 
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Figure  4.2 Ex vivo assessment of mechanical function and hemodynamic 

parameters.  

Panel A shows time-dependent changes in LV work and Panel B shows average 

LV work for SHAM (N=33) and CAL (N=17) hearts during aerobic perfusion, 

global ischemia and reperfusion. Panel C shows % recovery of mechanical 

function during reperfusion. (*) refers to a significant difference (P<0.05) from 

aerobic SHAM parameters. Data are expressed as means ± SEM.   
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Figure  4.3 Rates of energy substrate metabolism in SHAM and CAL hearts.  

Glycolysis, glucose oxidation and calculated proton production are shown in 

panels A-C (SHAM N=16, CAL N=7). Fatty acid oxidation (panel D, SHAM 

N=15, CAL N=10) and lactate oxidation (panel E, SHAM N=15, CAL N=9) are 

also shown. Calculated ATP production rates are shown in panel F. Since data are 

not normally distributed, data are presented as median ± interquartile range (5% 

and 95%).. Differences are considered significant when P<0.05.  
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Creatine 21.20 3.97 19.84 3.03

Creatine phosphate 32.15 3.31 39.77 5.87

G Nucleotide, nucleoside and creatine contents at the end of reperfusion

Figure 4.3 

 

 

 

 

 

 

 

 

 

 

 

 



129 
 

 

 

 

Figure  4.4 Metabolic rates per LV work of SHAM and CAL hearts.  

Glycolysis, glucose oxidation and calculated proton production are shown in 

panels A-C (SHAM N=16, CAL N=7). Fatty acid oxidation (panel D, SHAM 

N=15, CAL N=10) and lactate oxidation (panel E, SHAM N=15, CAL N=9) are 

also shown. Values for calculated metabolic efficiency are shown in panel F. 

Since data are not normally distributed, data are presented as median ± 

interquartile range (5% and 95%). Differences are considered significant when 

P<0.05. (*) 
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Figure  4.5 Contents and change of endogenous energy substrates in SHAM 

and CAL hearts.  

Glycogen content is shown in panel A at the end of aerobic perfusion (SHAM 

N=5 and CAL N=5), end of ischemia (SHAM N=4 and CAL N=4) and end of 

reperfusion (SHAM N=6 and CAL N=4). Changes in glycogen content during 

these intervals are presented in panel B. Ischemic proton production from 

glycogen utilization is presented in panel C. Triglyceride (TG) content is shown 

in panel D at the end of aerobic perfusion (SHAM N=4 and CAL N=5), end of 

ischemia (SHAM N=4 and CAL N=4) and end of reperfusion (SHAM N=6 and 

CAL N=5). Changes in TG content during these intervals are presented in panel 

E. Data are presented as median ± interquartile range (5% and 95%). Differences 

are considered significant when P<0.05 (*). 
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Figure  4.6 Phosphorylation status (pAMPK/tAMPK) of AMPK. 

Phosphorylation of AMPK is used as an indication of activity. Data are shown for 

the following time points: end of aerobic perfusion, ischemia and reperfusion. 

N=4. Data are expressed as mean ± SEM. Differences are considered significant 

when P<0.05. * Significantly different from aerobic values. 
#
 Significantly 

different from corresponding reperfusion values. 
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Figure 4.6 
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Figure  4.7 Protein expression of markers of mitochondrial biogenesis and 

abundance and calcium handling proteins in aerobically perfused hearts. 

Protein expression of markers of stimulus for mitochondrial biogenesis (PGC1α - 

panel A), markers of mitochondrial abundance (complex I subunit, NADH 

dehydrogenase (ubiquinone) 1 beta subcomplex (NDUFB6), voltage dependent 

anion channel (VDAC), β-hydroxy acyl CoA dehydrogenase (β-HAD) and long 

chain acyl-CoA dehydrogenase (LCAD) - panels B-E), calcium handling proteins 

(pCaMKII, tCaMKII and phospholamban - Panel F-H). N = 3-6. Data are 

expressed as mean ± SEM. Differences are considered significant when P<0.05. 

(*) refers to a significant difference. 
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Figure 4.7 
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Figure  4.8 Protein expression of key metabolic enzymes 

 Protein expression of PPARα, PDH, hexokinase, GLUT1, GLUT4, GSK3β, LDH 

and GAPDH (Panel A-I). N = 3-6. Data are expressed as mean ± SEM. 

Differences are considered significant when P<0.05. (*) refers to a significant 

difference. 
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Figure 4.8 
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Table  4.1 Detailed echocardiographic parameters of SHAM and CAL hearts.  

LV = left ventricular, LVID = LV internal dimension, LVPW = LV posterior wall 

thickness, IVS = interventricular septal thickness, EF = ejection fraction, FAC = 

fraction area change, IVRT = isovolumetric relaxation time, IVCT = 

isovolumetric contraction time, MVDT = mitral valve deceleration time. (*) refers 

to a statistically significant difference (P<0.05). Data are presented as means ± 

SEM.    
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Table 4.1  

Parameter (unit) SHAM (N) CAL (N) 

M-mode measures:  

 

  

     Heart rate (beats/min) 422±10 (18) 418±14 (11) 

     Cardiac output (mL/min) 21.95±2.15 (6) 18.96±0.98 (11) 

     EF (%) 56.04±0.98 (18) 25.79±1.43 (11)* 

     FAC (%) 42.88±4.76 (6) 22.53±2.20 (11)* 

Wall measurements:    

     LV systolic volume (µL) 36±1.80 (18) 98±12.09 (11)* 

     LV diastolic volume (µL) 83±2.81 (18) 149±11 (11)* 

     LVIDs (mm) 3.02±0.06 (18) 4.55±0.22 (11)* 

     LVIDd (mm) 4.30±0.06 (18) 5.49±0.17 (11)* 

     LVPWs (mm) 1.14±0.04 (18) 1.05±0.05 (11) 

     LVPWd (mm) 0.77±0.02 (18) 0.85±0.05 (11) 

     IVSs (mm) 1.15±0.03 (18) 1.15±0.05 (11) 

     IVSd (mm) 0.78±0.01 (18) 0.89±0.03 (11)* 

     Corrected LV mass (mg) 102±3 (18) 184±16 (11)* 

Tissue doppler data:  

 

  

     IVCT (ms) 17.95±1.04 (17) 22.59±2.36 (11) 

     Tei index (ratio) 0.75±0.03 (17) 1.06±0.07 (11)* 

     E 715±97 (17) 619±130 (11)* 

     E` 29.5±7.6 (17) 20.4±3.8 (11)* 

     A 426±166 (17) 307±75 (7) 

     E/E` (ratio) 25±1 (17) 31±2 (11)* 

     E/A (ratio) 1.89±0.18 (17) 2.02±0.12 (7) 

     IVRT (ms) 18.13±0.75 (17) 22.83±1.11 (11)* 

     MV DT (ms) 19.45±2.16 (16) 19.94±2.47 (7) 
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Table  4.2 Detailed ex vivo hemodynamic parameters of SHAM and CAL 

hearts.  

(*) refers to a significant difference (P<0.05) from aerobic SHAM parameters. Data are 

expressed as means ± SEM. 

 

Parameter (unit) 
SHAM (N=33) CAL (N=17) 

Aerobic  Reperfusion  Aerobic  Reperfusion  

Body weight (g) 27.6±0.3 27.01±0.36 

Viable heart dry weight (mg)  32±1 33±2 

Viable heart dry wet ratio (ratio)  0.16±0.01 0.16±0.01 

Heart rate (bpm) 329±7  319±11 324±11  309±8  

Systolic pressure (mmHg) 82.9±1.6  69.2±4.0  75.4±2.0*  71.0±3.5  

Diastolic pressure (mmHg) 20.6±1.1  25.6± 1.7  29.1±1.7*  28.5±1.4  

Cardiac output (mL/min) 9.7±0.3  5.9±0.6  6.3±0.5*  5.2±0.6  

Aortic flow (mL/min) 7.6±0.3  3.6±0.4  4.6±0.5*  3.2±0.4  

Coronary flow (mL/min) 2.1±0.3  2.2±0.3  1.8±0.2  1.9±0.3  
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Table  4.3 End reperfusion nucleotide, nucleoside and creatine contents.  

Data are expressed as means ± SEM. Differences are considered significant when 

P<0.05. End aerobic nucleotide contents are presented in Table 3.3. 

Parameter (µmol/g dry wt) SHAM (N=5) CAL (N=5) 

Adenosine triphosphate (ATP)  20.02±2.30 24.27±3.10 

Adenosine diphosphate (ADP)  3.86±0.37 5.05±0.74 

Adenosine monophosphate 

(AMP)  

0.47±0.05 0.86±0.13 

Guanosine triphosphate (GTP)  1.03±0.14 1.42±0.16 

Inosine  1.75±1.12 1.91±0.68 

Creatine 21.20±3.97 19.84±3.03 

Creatine phosphate 32.15±3.31 39.77±5.87 
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5 Study of the possible cardioprotective effect of 

pharmacologic modulation of cardiac energy 

substrate metabolism 

 

 

 

 

 

 

 

 

 

 

Echocardiographic examinations were performed by Donna Becker from the 

Cardiovascular Research Centre, University of Alberta. 
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5.1 Introduction  

 

 In Chapter 3 we showed that hearts remodeled following infarction are 

metabolically inefficient possibly due, in part, to mismatched glycolytic flux rates 

and glucose oxidation rates. In addition, we showed that improving the match 

between glycolytic rates and glucose oxidation rates in mice with a chronic 

deficiency of MCD improves metabolic efficiency and lessens post-infarction 

functional deterioration. In addition, in Chapter 4 we showed that despite their 

metabolic inefficiency, post-infarction remodeled hearts exhibit no further 

deterioration of their metabolic efficiency during ex vivo post-ischemic 

reperfusion as compared to SHAM hearts. This is in contrast to the known 

features of IR injury, namely, slowed oxidative metabolism and an increase in 

glycolytic rates [318, 322, 325, 329, 414] which result in a greater mismatch 

between glycolytic flux rates and glucose oxidation rates with the subsequent 

increased proton production rates. This Chapter addresses the potential for 

improvement of metabolic efficiency in remodeled hearts by pharmacologic MCD 

inhibition using an MCD inhibitor (MCDi), CMB-0000382 as well as the 

possibility for further improvement in the recovery of post-ischemic functional 

recovery and metabolic efficiency using DCA, a known stimulator of glucose 

oxidation.  

 DCA stimulates glucose oxidation in normal healthy hearts through 

inhibition of PDK, an upstream inhibitor of PDH [367, 415, 416]. This results in 

stimulation of PDH, the rate limiting enzyme of glucose oxidation. The 
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accelerated rate of glucose oxidation lessens the mismatch between the rates of 

glycolysis and glucose oxidation and so causes less proton accumulation and less 

deterioration of metabolic efficiency in conditions such as reperfusion and heart 

failure.  In ex vivo models of IR, DCA improves post-ischemic recovery of 

mechanical function in normal healthy hearts [416-418]. It also improves 

efficiency of these hearts through the stimulation of the oxidation of glucose, a 

more efficient energy substrate relative to fatty acids [367, 419].   Beneficial 

effects of DCA also occur in patients with heart failure where it improves exercise 

tolerance, hemodynamic function and mechanical efficiency [355, 420-422]. 

 As shown in Chapter 4, the response of post-infarction remodeled hearts to 

ex vivo IR does not follow the expected pattern of healthy hearts. Instead, they 

maintain comparable levels of metabolic efficiency and LV function as seen 

during aerobic perfusion. Thus, as the response of remodeled hearts to DCA 

might not be similar to healthy hearts, we describe in this chapter the response of 

remodeled hearts to DCA when administered at the onset of post-ischemic 

reperfusion.  

 Many studies of DCA on cardiac metabolism have been performed in the 

absence of lactate [320, 367, 369, 373, 423, 424] since study focus was on the 

effects of DCA on the changes in the metabolism of glucose.  Interestingly, 

reports about effects of DCA when examined in the presence of lactate are not 

consistent. Barak et al [418] reported limited functional recovery following 

ischemia that was associated with insignificant changes in glucose oxidation and 

fatty acid metabolism in rat hearts reperfused with 5 mM DCA. In contrast, Mazer 
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et al [425] reported that in vivo pig hearts reperfused with 3 mM DCA show the 

expected stimulation of carbohydrate metabolism but without improvements in 

systolic function. Since this thesis is addressing energy substrate metabolism in 

remodeled hearts, we have included lactate as an energy substrate as the heart is 

normally exposed to this energy substrate during similar pathologic conditions.  

Thus, the regular heart perfusate used throughout this thesis contains glucose, 

palmitate and lactate unless specified otherwise. A secondary aim of this 

component of the thesis is to determine whether the absence of lactate might 

affect the response to DCA treatment during post-ischemic reperfusion.  

 We have also shown (Chapter 3) that chronic MCD deficiency results in 

less functional deterioration and an improved cardiac metabolic efficiency 

following CAL surgery. This appears to be due to enhancement of the matching 

between glycolytic rates and glucose oxidation rates resulting in lower rates of 

proton production. These findings are confirmed by a recent report that cardiac-

specific MCD deletion by microRNA limits functional deterioration and preserves 

energy stores in post-infarction remodeled rat hearts [60]. Similarly, other studies 

highlight the important benefit of MCD inhibition in the setting of ischemia, heart 

failure and insulin resistance [66, 67, 96, 221, 322, 324]. The ability of MCD 

inhibition to improve the matching of glycolysis to glucose oxidation, which 

occurs secondary to inhibition of fatty acid oxidation (Randle cycle), reduces 

lactate production in ischemic pig hearts following demand induced-ischemia 

[66]. Furthermore, MCD inhibition improves post-ischemic functional recovery in 

ex vivo perfused rat hearts [66, 67]. This benefit was associated with improved 
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matching of glucose metabolism, due to stimulated glucose oxidation resulting in 

less lactate production [66, 67].  

 It is known that genetic interventions such as MCD deletion in mice can 

result in a myriad of compensatory mechanisms that can confound experimental 

results. In this regard, MCD-KO mouse hearts maintain comparable energy 

substrate metabolic rates under normal aerobic perfusion conditions despite an 

increase in malonyl CoA content [96]. The authors of that study concluded that a 

compensatory increase in the fatty acid carrier, CD36, uncoupler protein 3 

(UCP3), CPT1 or pyruvate dehydrogenase kinase 4 (PDK4) [96] may have helped 

maintain normal rates of fatty acid oxidation. Thus, a second series of 

experiments in this chapter investigates the effect of acute MCD inhibition in 

remodeled CAL hearts during ex vivo aerobic perfusion to determine if MCD 

could be a useful drug target to improve metabolic efficiency in remodeled hearts. 

5.2 Methods 

 Male C57BL/6 mice, age 12-14 weeks, were subjected to permanent 

coronary artery ligation (CAL, n=45) or sham operation (SHAM, n=60). 

Anesthesia was induced by IP pentobarbital (60 mg/kg) (See Chapter 2, Materials 

and Methods for details). A total of 26 CAL and 37 SHAM hearts were used for 

the reperfusion DCA treatment study and 19 CAL and 23 SHAM hearts were 

used for aerobic MCDi study.  

 To study the effect of an absence of lactate on DCA action, another set of 

C57BL/6 mice (12-14 wk of age) (N=11) were used for aerobic perfusion in the 
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working mode in the presence (N=5) or absence (N=6) of 1 mM lactate. In treated 

groups, DCA (1.5 mM) was present from time 45 min until the end of the 90-min 

perfusion protocol. 

 The protocol for the MCDi study included a 45-min aerobic perfusion and 

in treated groups, the MCDi, CMB-0000382 at a concentration of 50 µM was 

added to the perfusate at time zero of the perfusion protocol. The choice of 50 µM 

concentration is based on the IC50 of CMB-0000382 for inhibition of MCD 

(verbal communication from Dr. Lopaschuk’s lab). Please refer to Chapter 2 for 

details of methods. 

5.2.1 Measurement of short chain CoA esters in heart tissues 

 Measurement of short-chain CoA esters (malonyl CoA, acetyl CoA and 

succinyl CoA) was performed as reported previously [322]. Briefly, frozen viable 

heart tissue samples (~10–20 mg, excluding infarcts in CAL hearts), were 

homogenized for 20 s in 300 μL of 6% (v/v) perchloric acid. After 

homogenization, the samples were left on ice for 10 min followed by 

centrifugation at 12,000g for 5 min. Then 100 µL of the supernatant was analyzed 

using an Ascentis Express C18 Column, 10 cm × 2.1 mm and 2.7 μm particle size 

from Supelco and an ACQUITY UPLC HSS system (Waters, Milford, MA, 

USA). Each sample was maintained at a temperature of 40 °C and run at a flow 

rate of 0.4 mL/min. Detection was performed at an absorbance of 260 nm. The 

mobile phase consisted of a mixture of buffer A (water and 0.25 M NaH2PO4) and 

buffer B (acetonitrile and 0.25 M NaH2PO4). The gradient-elution profile 

consisted of the following sequence of initial conditions: 2% B for 2–4 min, 25% 
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B for 4–6 min, 40% B for 6–8 min and 100% B for 10–12 min, maintained for 15 

min. All gradients were linear and peaks were acquired, integrated and analyzed 

using the Waters Empower Software. 

5.3 Results  

5.3.1 Treatment with DCA at reperfusion 

5.3.1.1 Pre- and post-ischemic function of untreated remodeled 

hearts 

 Confirming our previous data, CAL hearts have impaired systolic function 

as evidenced by lower percentage ejection fraction (%EF) and fractional 

shortening (%FS). Diastolic function is not much affected in this cohort as 

indicated by a higher Tei index and only a trending high isovolumetric relaxation 

time (IVRT, P=0.08). Other parameters such as MV DT, the ratio between early 

mitral inflow velocity and mitral annular early diastolic velocity (E/E`) and the 

ratio of the early (E) to late (A) ventricular filling velocities (E/A ratio) remain 

similar to SHAM hearts. There is a marked dilatation of CAL hearts as evidenced 

by increased systolic and diastolic LV volumes and LVID. CAL hearts maintain 

similar LVPW and IVS despite the loss of a portion in the infarcted area, 

indicative of compensatory hypertrophy. See Table5.1 for details of the 

aforementioned hemodynamic parameters.  

 During ex vivo aerobic perfusion, CAL hearts produce less LV mechanical 

work than SHAMs confirming in vivo findings and our previous data. During 
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reperfusion, LV mechanical work of untreated SHAM and CAL hearts recover to 

similar values as observed in aerobic CAL hearts, indicative of a better % 

recovery of CAL hearts. Similarly, cardiac output and systolic pressure decline 

significantly during reperfusion in SHAM hearts but remain similar to aerobic 

perfusion values in CAL hearts (Fig 5.2B-C, Table 5.2). 

5.3.1.2 The effect of reperfusion DCA treatment on SHAM and 

CAL hearts 

5.3.1.2.1 Post-ischemic functional recovery  

 SHAM hearts treated with DCA recover to similar LV work levels as 

untreated SHAM hearts (46% vs 47% - Fig 5.2B-C). Similarly, treated SHAM 

hearts show a similar trend of deterioration of LV work, systolic pressure, 

developed pressure and cardiac output during reperfusion as compared to 

untreated SHAM hearts (Table 5.2). However, CAL hearts treated with DCA 

exhibit poorer functional recovery as compared to untreated CAL hearts (25% vs 

50% - Fig 5.2B-C). A similar pattern is also observed for systolic pressure, 

cardiac output and aortic flow that significantly deteriorated in treated reperfused 

CAL hearts as compared to untreated CAL hearts (Table 5.2). 

5.3.1.2.2 Energy substrate metabolism and ATP production 

 Confirming our previous data, CAL hearts maintain comparable metabolic 

rates to SHAM hearts during aerobic perfusion (Fig 5.3A-E). Similarly, 

reperfused CAL hearts maintain similar metabolic rates to aerobic values, 

indicative of lack of energy starvation during both aerobic and reperfusion phases. 
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Apart from lower lactate oxidation rates, reperfused SHAM hearts maintain 

similar metabolic rates to aerobic levels. Confirming our previous published data, 

CAL hearts exhibit a slightly but significantly lower ATP production rate during 

aerobic perfusion, but this is not sufficient to explain the observed lower LV 

mechanical function (Fig 5.3F). During reperfusion, both untreated CAL and 

SHAM hearts as well as CAL hearts treated with DCA maintain similar ATP 

production rates to their aerobic values. Conversely, reperfused SHAM hearts 

treated with DCA exhibit a significant decrease in ATP production rates as 

compared to SHAM aerobic rates (Fig 5.3F). 

5.3.1.2.3 Reperfusion metabolic efficiency 

 Confirming our previous data shown in Chapter 3, when expressed per LV 

work, CAL hearts have higher glycolytic rates (Fig 5.4A) than SHAM hearts 

(P<0.5 - t-test). This is not associated with an increase in glucose oxidation rates 

(Fig 4B) resulting in a significant increase in proton production rates in CAL 

hearts (P<0.05 - t-test) (Fig 5.4C). Fatty acid oxidation and lactate oxidation per 

LV work are also higher in CAL than SHAM hearts (Fig 5.4D-E). Thus the 

calculated metabolic efficiency of CAL hearts during aerobic perfusion is lower 

than SHAM hearts (Fig 5.4F).  

 During reperfusion, confirming our data presented in Chapter 4, untreated 

reperfused SHAM hearts exhibit a significant increase in glycolytic rates (Fig 

5.4A), but these are not matched by a corresponding increase in glucose oxidation 

rates (Fig 5.4B) resulting in a significant increase in proton production rates (Fig 

5.4C). Untreated reperfused SHAM hearts also exhibit higher fatty acid oxidation 
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per LV work than aerobic hearts (Fig 5.4D). Lactate oxidation is similar to 

aerobic values. Collectively these alterations result in a significant deterioration of 

metabolic efficiency in reperfused SHAM hearts.  

 In accordance with our previous data, reperfused CAL hearts maintain 

similar rates of glycolysis (Fig 5.4A) and glucose oxidation (Fig 5.4B) resulting in 

no further increase in proton production rates (Fig 5.4C). Fatty acid oxidation and 

lactate oxidation rates per LV work remain similar to aerobic values (Fig 5.4D-E). 

Thus, metabolic efficiency does not exhibit further deterioration during 

reperfusion (Fig 5.4E). 

  DCA treatment at reperfusion does not alter rates of glucose metabolism 

per LV work in SHAM hearts. During reperfusion, DCA-treated SHAM hearts 

maintain a higher glycolytic flux rate per LV work as compared to values during 

aerobic perfusion (Mann-Whitney test – P<0.05 - Fig 5.4A). Despite higher rates 

of glycolysis, DCA does not increase glucose oxidation.  Thus, the extent of 

uncoupling of the rates of glycolysis and glucose oxidation is increased (Fig 

5.4B), resulting in a significant increase of the rate of proton production per LV 

work, as compared to aerobic perfusion values (Fig 5.4C).Thus, regardless of 

DCA treatment, metabolic efficiency significantly deteriorated in reperfused 

SHAM hearts (Fig 5.4E). 

 In contrast to untreated CAL hearts, DCA-treated reperfused CAL hearts 

exhibit a significant increase in glycolytic rate per LV work as compared to 

aerobic values (P<0.05 – Mann-Whitney – Fig 5.4A). DCA fails to accelerate 

glucose oxidation per LV work over the rates observed in untreated reperfused 
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CAL hearts (Fig 5.4B). These rates are not sufficient to match the increased 

glycolytic flux rates. Thus, DCA-treated reperfused CAL hearts have a higher 

proton production rate per LV work as compared to aerobic values. Despite lower 

LV work, DCA-treated reperfused CAL hearts exhibit higher fatty acid oxidation 

and lactate oxidation rates per LV work than either aerobic and untreated 

reperfusion values (P<0.05 - Kruskal Wallis - Fig 5.4D-E). Thus, DCA-treated 

reperfused CAL hearts exhibit a marked deterioration of metabolic efficiency (Fig 

5.4E). 

5.3.1.3 The effect of reperfusion DCA treatment on healthy (non-

SHAM) hearts 

5.3.1.3.1 Post-ischemic functional recovery 

 Normal healthy hearts subjected to ischemia and treated with DCA during 

reperfusion recover to similar work levels as untreated healthy hearts. There is no 

significant difference in percent recovery of LV work (50±7 vs 38±7, P>0.05) 

(Fig 5.5A-C). Also hemodynamic parameters are similar in both groups (see 

Table 5.3 for details).  

5.3.1.3.2 Energy substrate metabolism and ATP production 

 Rates of glycolysis, glucose oxidation, lactate oxidation and fatty acid 

oxidation are similar during aerobic perfusion of untreated and DCA-treated 

reperfused healthy hearts, indicative of a lack of response to DCA treatment (Fig 

5.6A-E). Consequently, DCA does not improve ATP production rates (Fig 5.6F).  

5.3.1.3.3 Reperfusion metabolic efficiency 
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 Hearts reperfused in the absence or presence of DCA exhibit similar 

patterns of metabolic rates when expressed per unit LV work (Fig 5.7A-E). DCA 

fails to increase the rate of glucose oxidation (Fig 5.7B) so the proton production 

rate is not reduced during reperfusion and remains comparable to untreated hearts 

(Fig 5.7C). Similarly, rates of fatty acid oxidation and lactate oxidation are not 

altered in the DCA-treated group. Thus, DCA-treated hearts show the same 

pattern of significant deterioration of metabolic efficiency at reperfusion as 

untreated hearts (Fig 5.7F). 

5.3.1.4 Effect of absence of lactate on response to DCA treatment 

of healthy hearts 

 In order to determine if the unexpected failure of DCA to affect rates of 

glucose oxidation might be due to the presence of lactate, a competing substrate, 

we also studied the effects of DCA in hearts perfused in the absence of lactate.  

Comparison of values obtained in normal hearts that were perfused aerobically 

with or without lactate (1.5mM) indicates that the absence of lactate does not 

affect aerobic LV work (Fig 5.8A-B) or ex vivo hemodynamic parameters (Table 

5.4). 

  Glycolytic rates (Fig 5.8C), glucose oxidation rates (Fig 5.8D) and proton 

production rates (Fig 5.8E) are similar for hearts perfused in the presence or 

absence of lactate  Furthermore, DCA does not affect glycolytic rates regardless 

of the presence of lactate (Fig 5.8C). However, in the absence of lactate, DCA 

stimulates glucose oxidation (Fig 5.8D), but the presence of lactate prevents 

DCA-induced stimulation of glucose oxidation (Fig 5.8D).  Nevertheless, DCA 
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has no effect on the rate of proton production regardless of the presence of lactate 

(Fig 5.8E). 

5.3.2 Treatment with MCDi during aerobic perfusion 

5.3.2.1 LV function:   

 Confirming our previous results, compared to SHAM, CAL hearts have 

impaired ex vivo LV function.  Average LV work during aerobic perfusion 

(Joule/min/g dry wt) is 30% lower than SHAM hearts and confirms in vivo 

findings (Fig 5.9A-B).  See Table 5.5 for detailed ex vivo hemodynamic 

parameters. MCDi does not alter LV function in either CAL or SHAM hearts (Fig 

5.9A-B). 

5.3.2.2 Metabolic rates:   

 In SHAM hearts, MCDi increases the glycolytic rate (Fig 5.10A) and the 

rate of glucose oxidation (Fig 5.10B).  Consequently, the rate of proton 

production is accelerated by MCDi (Fig 5.10C). As expected, MCDi significantly 

decreases the rate of fatty acid oxidation (Fig 5.10D). In marked contrast to 

SHAM hearts, treatment of CAL hearts with MCDi has no effect on rates of 

glucose or palmitate metabolism. 

Lactate oxidation rates are similar in SHAM and CAL hearts and these rates are 

not altered by MCDi (Fig 5.10E).  

5.3.2.3 Malonyl CoA content:  
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 MCDi-treated SHAM hearts exhibit a trend towards increased malonyl 

CoA content (P=0.10 Fig 5.11) that was not associated with inhibition of fatty 

acid oxidation. Treated CAL hearts exhibit a significant increase in malonyl CoA 

content. However, this did not result in inhibition of fatty acid oxidation. 

 

5.4 Discussion 

5.4.1 Response to DCA during reperfusion 

 A major finding of this study is that 1.5 mM DCA, when present during 

reperfusion does not improve recovery of mechanical function of CAL, SHAM or 

normal healthy hearts. In addition, the presence of 1.5 mM DCA during 

reperfusion does not alter rates of energy substrate metabolism in CAL, SHAM or 

normal healthy hearts during post-ischemic reperfusion. However, DCA (1.5 mM) 

does stimulate glucose oxidation in normal hearts perfused aerobically in the 

absence of lactate but this effect does not translate into inhibition of proton 

production or to improved mechanical function. 

 There are many studies that address the beneficial effect of DCA in 

reducing IR-induced mechanical dysfunction and deterioration of cardiac 

efficiency [320, 367, 417-419]. However, the benefit of DCA in the treatment of 

human cardiac dysfunction such as heart failure has been a controversial issue. 

Some studies have reported a benefit of DCA in improving exercise tolerance 

[420, 421], hemodynamic function and mechanical efficiency in heart failure 

patients [426] while others have found no benefit of DCA in improving exercise 
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tolerance [427] or LV function [428]. However, the potential benefit of DCA for 

alleviation of IR-induced LV dysfunction in post-infarction remodeled hearts has 

not been addressed.   

 The demonstrations that CAL hearts develop systolic and diastolic 

dysfunction as shown by echocardiographic evaluation and LV dysfunction 

during ex vivo aerobic perfusion confirm our previous data [221] and indicates 

that our model is a successful model of post-infarction heart failure. The finding 

that aerobically-perfused CAL hearts maintain similar metabolic rates to SHAM 

hearts and that the reduced ATP production rate cannot explain the LV 

dysfunction also confirms our previous conclusion that CAL hearts are not 

energetically starved, but are metabolically inefficient.  Moreover, the finding that 

reperfused CAL hearts exhibit no further deterioration of LV function of 

metabolic efficiency as compared to the significant deterioration of reperfused 

SHAM heart LV function and metabolic efficiency confirms our previous finding 

of maintained metabolic efficiency and a better functional recovery of CAL hearts 

during reperfusion.  

 In this section, the effects of DCA, when given at reperfusion, have been 

examined in CAL, SHAM and normal healthy hearts.  The demonstration that 

DCA at reperfusion fails to improve recovery of mechanical function or to change 

rates of energy substrate metabolism in reperfused CAL, SHAM and normal 

healthy hearts indicates that the expected stimulation of glucose oxidation did not 

occur. Instead, CAL hearts reperfused in the presence of DCA have the worst 
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percent recovery and experience a significant decrease in their metabolic 

efficiency.  

5.4.1.1 Contribution of the chemical composition of the perfusate 

to the sensitivity of mouse hearts to DCA 

 One possible explanation for the finding that DCA does not stimulate 

glucose oxidation in perfused mouse hearts is the chemical composition of the 

heart perfusate. The standard perfusate used in all experiments described so far in 

this thesis contains 1 mM lactate. The use of lactate in our model is based on the 

fact that lactate is an important energy substrate that is normally present in vivo 

and that is expected to increase in conditions of IR injury [429]. Moreover, the 

presence of lactate in the perfusate is important for accurate assessment of 

metabolic rates of an energy substrate other than glucose or palmitate [430]. 

Clearly, the chemical composition and the type of energy substrate provided in 

the perfusate may affect measured metabolic rates due to intra-substrate 

competition. An example of this is the ability of increased fatty acid oxidation to 

inhibit glucose oxidation and vise versa (Randle cycle - Fig 1.1). Similarly, 

reported glucose oxidation rates in rat hearts in the presence of lactate are less 

than those reported in the absence of lactate perhaps due to the feeding of lactate-

derived pyruvate into the TCA cycle which reduces the glucose-derived pyruvate 

incorporation into the TCA cycle. Interestingly, it was reported that the presence 

of 1 mM lactate in the perfusate doubles fatty acid oxidation rates in isolated 

perfused rat hearts [430].  
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 In contrast to the standard perfusion condition used in this thesis (1 mM 

lactate), many of the published reports on DCA-mediated acceleration of glucose 

oxidation have utilized perfusates that lack lactate [431-434] or used smaller 

concentration of lactate (0.5 mM) [436-438]. Thus, it is possible that lactate in the 

perfusate may have reduced the sensitivity of the hearts to the stimulatory effect 

of DCA on glucose oxidation. Indeed, a report from White et al indicates that 

addition of lactate (2.5 mM) to reperfused normal rabbit hearts prevents the 

functional benefits of DCA (5 mM) as compared to hearts perfused with a 

solution supplemented with pyruvate [435].  Those authors concluded that the 

presence of lactate at reperfusion limits the functional benefits of DCA-induced 

stimulation of PDH [435].  Similar findings were reported by Griffin et al 2000 

[358] where post-ischemic rabbit hearts were reperfused with 5 mM DCA in 

presence of glucose (5 mM), pyruvate (2.5 mM) or lactate (2.5 mM). The 

presence of lactate yielded the least functional recovery and a delayed recovery of 

intracellular pH. Alternatively, the stimulation of pyruvate oxidation in their 

preparation may be due to the use of a higher DCA concentration (5 mM), as 

compared to the 1.5 mM used in this study.  

 To study the possibility that the presence of 1 mM lactate in our 

preparation could be contributing to the lack of benefit of DCA treatment at 

reperfusion, we treated aerobically perfused normal healthy mouse hearts with 1.5 

mM DCA in the presence or absence of 1 mM lactate. The demonstration that 

DCA stimulates glucose oxidation in the absence of lactate confirms our 

hypothesis. The demonstration that DCA-induced stimulation of glucose 



160 
 

oxidation does not translate into an inhibition of proton production or functional 

benefit is possibly because only small changes in glucose oxidation are elicited by 

the relatively low concentration of DCA.  Also, these hearts were perfused in 

aerobic mode. Further challenge with ex vivo IR that exacerbates the mismatch in 

glucose metabolism, as well as higher concetrations of DCA may be needed to 

illustrate the functional benefit of stimulating glucose oxidation and restoration of 

a better matched state of glucose metabolism. 

 

5.4.1.2 Species-dependent difference in the sensitivity to DCA 

 The finding that DCA is able to improve cardiac efficiency [436] as well 

as improve functional recovery in rat hearts [437] and newborn (6 weeks) rabbit 

hearts [438] after IR in presence of lower concentrations of lactate (0.5 mM) 

indicate the possibility of species-dependent response to DCA. 

 One major difference in mouse heart is that PDH seems to be working at 

maximal activity and therefore there is no potential for further stimulation. Rat 

heart studies report glucose oxidation rates between 0.2-0.8 µmol/g dry wt/ min, 

depending on glucose concentration (5 to 11 mM) and palmitate concentration 

(0.4 to 1.2 mM) [318, 329, 439-443]. In the experiments reported in this thesis, 

glucose oxidation rates for mouse hearts perfused under similar conditions (1.2 

mM palmitate and 11 mM glucose) were 2-3 µmol/g dry wt/ min [221], values 

similar to those reported earlier for mouse hearts perfused with (glucose 5-11 mM 

and palmitate  0.4 - 1.2 mM) [244, 322, 444]. The higher baseline glucose 

oxidation rates in mouse hearts indicate a state of higher activity of PDH that may 
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be close to maximal and so less able to respond with further increases in response 

to treatment with DCA (1.5 mM). Measurements of PDH activity in rat and 

mouse hearts perfused with a range of DCA concentrations would be a useful 

approach to test for this possibility.  

 Another possible explanation of the higher baseline glucose oxidation 

rates in mouse hearts as compared to rat hearts is that higher baseline glycolytic 

rates in mouse heart supply more pyruvate as substrate for oxidative metabolism.  

Rates of glycolysis reported for aerobically perfused rat hearts range from 1.5 to 5 

µmol/g dry wt/ min [318, 329, 439-443]. In contrast, glycolytic rates in mouse 

hearts are significantly greater.  Values reported in this thesis range from 13 to 25 

µmol/g dry wt/ min depending on perfusion conditions and are similar to values 

reported for mouse hearts by other authors (11-20 µmol/g dry wt/ min) [244, 322, 

444]. Thus, higher baseline PDH activity in mouse heart might be an adaptive 

response of PDH to match the higher availability of pyruvate supplied through 

glycolysis and thereby minimize the consequences of the mismatch in glucose 

metabolism. 

5.4.2 Response to aerobic MCD inhibition 

 A major finding of this part of the study is that despite acute ex vivo MCD 

inhibition in CAL and SHAM hearts, as indicated by increased malonyl CoA 

content in CAL and a trending increase of malonyl CoA in SHAM hearts, only 

SHAM hearts exhibit an inhibition of fatty acid oxidation rate, and this is 

accompanied by an increase in glucose oxidation (Randle cycle). However, due to 

a concomitant increase in the glycolytic rate in SHAM hearts, as compared to 
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CAL hearts, this MCDi-mediated increase in glucose oxidation does not translate 

into an improvement in the matching of glucose metabolism.  Indeed, proton 

production rates are higher in the MCDi-treated SHAM hearts. Despite this, LV 

function in untreated and treated SHAM hearts is similar. In contrast, MCDi-

treated CAL hearts do not exhibit an inhibition of fatty acid oxidation rates and 

maintained LV function that is comparable to untreated CAL hearts.  

 It has been shown previously that an increased dependence on fatty acid 

which is a less efficient energy substrate than glucose, contributes to the 

development of cardiomyopathy in diabetes and obesity [21, 397, 445]. We have 

also shown in Chapters 4 and Chapter 5 that post-ischemic reperfused SHAM 

hearts exhibit a significant increase in fatty acid oxidation rate that is associated 

with deterioration of LV function as compared to their pre-ischemic aerobic 

values. These findings highlight the potential importance of inhibiting fatty acid 

oxidation as an approach to reduce cardiac dysfunction in heart failure.  

 Several approaches have been proposed to inhibit fatty acid oxidation in 

heart failure (reviewed in [21, 140]. Among these approaches, MCD inhibition is 

an evolving and promising approach for protection against acute IR and 

functional consequences of post-ischemic remodeling. Data presented in Chapter 

3 indicate that chronic MCD deficiency reduces post-ischemic LV dysfunction 

and improves metabolic efficiency. A similar report from Dyck et al [96] 

highlights the cardioprotective effect of chronic MCD deficiency against acute IR 

injury. However, it can be argued that these experimental scenarios do not mimic 

the real-life situations where the pharmacologic intervention is normally initiated 
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after the ischemic insult. In this regard, MCD inhibition is also reported to be 

protective when initiated after the ischemic injury [60]. A recent report by Wu et 

al [60] indicates that chronic in vivo cardiac-specific inhibition of MCD via 

microRNA intervention initiated after CAL surgery in rats limits functional 

deterioration and maintains energy stores. Hence, we studied the possibility of 

improvement of metabolic inefficiency in remodeled hearts via acute ex vivo 

MCD inhibition using CMB-0000382. 

 The demonstration that CMB-0000382 increases malonyl CoA content in 

CAL and SHAM (a trend) hearts suggests inhibition of MCD in both groups. The 

demonstration that fatty acid oxidation rates are inhibited only in treated SHAM, 

but not CAL hearts indicates that other regulators of fatty acid oxidation might 

have been upregulated in association with the remodeling process in CAL hearts. 

The finding that malonyl CoA content is increased in MCDi-treated CAL hearts 

excludes the possibility that a compensatory downregulation of acetyl CoA 

carboxylase (ACC2) [446], that produces malonyl CoA, may have contributed to 

the observed lack of fatty acid oxidation inhibition. However, other regulators of 

fatty acid oxidation may have been up-regulated in CAL hearts that prevent a 

response to MCD inhibition. These data are in accordance with the previous 

report of Dyck et al [96] where the lack of inhibition of fatty acid oxidation in 

MCD-KO hearts under aerobic perfusion conditions was suggested, but not tested, 

to be due to upregulation of other regulators of fatty acid oxidation such as CPT1, 

CD36, PDK4 and PPARα. 
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 Another explanation for the lack of fatty acid oxidation inhibition in 

MCDi-treated CAL hearts, despite malonyl CoA accumulation, is the possibility 

of compartmentalization of malonyl CoA so that its concentration in the vicinity 

of its effector; CPT1 at the outer mitochondrial membrane is not sufficient to 

exert its inhibitory action leading to an unaltered fatty acid oxidation rate. In this 

regard, basal malonyl CoA levels in whole tissue were reported to be higher than 

the inhibitory concentration for CPT1 [447], suggesting compartmentalization of 

cardiac malonyl CoA [97]. Thus, it is possible that malonyl CoA levels in the 

vicinity of CPT1 could undergo changes sufficient to affect CPT1 activity 

accordingly. This possibility can explain the finding that a moderate increase in 

malonyl CoA concentrations (20% of control) in human skeletal muscles leads to 

a significant reduction of fatty acid oxidation (41% of control) [68]. Confirming 

our results, Zordoky et al [91] reported that accumulation of malonyl CoA in 

post-ischemic and high work-load perfused hearts, secondary to lack of AMPK-

mediated inhibitory phosphorylation of the key regulatory enzyme ACC, is not 

associated with any change in the rate of fatty acid oxidation. This is indicative of 

possible compartmentalization of malonyl CoA as well as involvement of other 

regulatory mechanisms potentially including the energy demand of the hearts in 

the regulation of fatty acid oxidation [91]. 

 The apparent discrepancy between the impact of MCD inhibition on 

glycolysis in chronic and acute settings can be explained on basis of the demand 

for energy which, in turn, is influenced by the metabolic efficiency status. In our 

MCD-KO CAL heart model, where metabolic efficiency is, in fact, improved, 
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MCD inhibition is associated with reduction of glycolytic rates and glucose 

oxidation rates with less functional deterioration following CAL surgery. Hence, 

there is less need for a compensatory increase in the metabolic rates of other 

energy substrates (Chapter 3). This is not the condition in acute ex vivo MCD 

inhibition where a compensatory increase in glycolytic flux is noted in MCDi-

treated SHAM hearts (Chapter 5). 

 One limitation of this study is the short-term acute ex vivo exposure of the 

hearts to MCD inhibition. It remains a possibility that that chronic in vivo post-

ischemic initiation of MCD inhibition would be more effective since it is present 

during the time-dependent and evolving remodeling process. This assumption is 

supported by our findings in Chapter 3 where chronic MCD deficiency in MCD-

KO mice was associated with less functional deterioration and less metabolic 

inefficiency following CAL surgery. Similarly, the protective effect of post-

surgical MCD inhibition via microRNA treatment of CAL rats [60] suggests the 

potential for a more effective response to chronic post-surgical pharmacologic 

MCD inhibition. 

5.5 Conclusion 

 In conclusion, the sensitivity to DCA in mouse hearts is influenced by the 

chemical composition of the perfusate. In addition, mouse-specific differences in 

the baseline contribution of the various energy substrates to overall ATP 

production (higher dependence on glycolysis, less contribution of fatty acid 

oxidation to overall ATP production) may influence the pharmacologic response 
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and/or sensitivity to DCA and may explain the marked differences from the more 

extensively studied rat heart. Further studies are needed to study whether DCA 

can improve the matching in glucose metabolism using either higher DCA doses 

or lactate-free perfusate. Similarly, more studies are needed to understand why 

CAL hearts exhibit a significant deterioration of post-ischemic function in the 

presence of DCA. Also, more studies are needed to understand the mechanism of 

lactate-induced reduction of sensitivity to DCA action. 

 Similarly, further studies are needed to understand the regulation of fatty 

acid metabolism in CAL hearts. This is expected to help an understanding of the 

mechanisms underlying the differences in the response of chronically remodeled 

hearts to MCD inhibition from healthy hearts where MCD inhibition improves 

post-ischemic LV function [60, 61, 66, 96, 140, 176]. 
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Figure  5.1 In vivo echocardiographic assessment of LV function in SHAM 

and CAL hearts.  

Panel A shows a parasternal long axis view of a SHAM heart. Panel B shows a 

parasternal long axis view of a CAL heart. Notice the dilatation of the LV. Panel 

C shows an m-mode capture of a SHAM heart. Panel D shows an m-Mode 

capture of a CAL heart. Notice the increased LV volume (panel B) and reduced 

wall motion (panel D) in CAL hearts as compared to SHAM hearts (panels A & 

C).  
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Figure  5.2 Ex vivo assessment of LV mechanical function of SHAM and CAL 

hearts.  

Panel A shows time-dependent changes in LV work and Panel B shows average 

LV work for SHAM (N=37) and CAL (N=26) hearts during aerobic perfusion, 

global ischemia and reperfusion. Panel C shows % recovery of mechanical 

function during reperfusion. * refers to a significant difference (P<0.05) from 

aerobic SHAM parameters. Data are expressed as means ± SEM. 
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Figure  5.3 Rates of energy substrate metabolism in SHAM and CAL hearts. 

 Glycolysis, glucose oxidation and calculated proton production are shown in 

panels A-C (SHAM N=16 (12 without DCA and 6 with DCA at reperfusion), 

CAL N=13 (8 without DCA and 5 with DCA at reperfusion)). Fatty acid 

oxidation (panel D, SHAM N=19 (13 without DCA and 6 with DCA at 

reperfusion), CAL N=13 (7 with DCA and 6 without DCA at reperfusion) and 

lactate oxidation (panel E, SHAM N=19 (13 without DCA and 6 with DCA at 

reperfusion), CAL N=13 (7 with DCA and 6 without DCA at reperfusion) are also 

shown. Calculated ATP production rates are shown in panel F. Since data are not 

normally distributed, data are presented as median ± interquartile range (5% and 

95%). Differences are considered significant when P<0.05. * refers to a 

significant difference from untreated aerobic SHAM values. 
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Figure 5.3
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Figure  5.4 Metabolic rates per LV work of SHAM and CAL hearts.  

Glycolysis, glucose oxidation and calculated proton production are shown in 

panels A-C (SHAM N=16 (12 without DCA and 6 with DCA at reperfusion), 

CAL N=13 (8 without DCA and 5 with DCA at reperfusion)). Fatty acid 

oxidation (panel D, SHAM N=19 (13 without DCA and 6 with DCA at 

reperfusion), CAL N=13 (7 with DCA and 6 without DCA at reperfusion) and 

lactate oxidation (panel E, SHAM N=19 (13 without DCA and 6 with DCA at 

reperfusion), CAL N=13 (7 with DCA and 6 without DCA at reperfusion) are also 

shown. Calculated metabolic efficiencies are shown in panel F. Since data are not 

normally distributed, data are presented as median ± interquartile range (5% and 

95%). Differences are considered significant when P<0.05. (*) refers to a 

significant difference from aerobic SHAM values. 
#
 refers to a significant 

difference from untreated aerobic CAL values. 
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Figure 5.4
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Figure  5.5 Ex vivo assessment of LV mechanical function of normal healthy 

hearts.  

Panel A shows time-dependent changes in LV work and Panel B shows average 

LV work for normal hearts (Aerobic (N=28), reperfusion without DCA (N=17) 

and reperfusion with DCA (1.5mM, N=11)). Panel C shows % recovery of 

mechanical function during reperfusion. * refers to a significant difference 

(P<0.05) from untreated aerobic SHAM hearts. Data are expressed as means ± 

SEM. 
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Fig 5.5 Ex vivo LV work, recovery and hemodynamic parameters 
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Figure  5.6 Rates of energy substrate metabolism in unremodeled hearts 

treated with DCA at reperfusion.  

Glycolysis, glucose oxidation and calculated proton production are shown in 

panels A-C (Aerobic, N=14 (8 without DCA and 6 with DCA at reperfusion). 

Fatty acid oxidation (panel D, aerobic N=12 (7 without DCA and 5 with DCA at 

reperfusion) and lactate oxidation (panel E, aerobic, N=14 (9 without DCA and 5 

with DCA at reperfusion) are also shown. Calculated ATP production rates are 

shown in panel F. Since data are not normally distributed, data are presented as 

median ± interquartile range (5% and 95%). Differences are considered 

significant when P<0.05. * refers to a significant difference from aerobic values. 
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Figure 5.6
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Figure  5.7 Rates of energy substrate metabolism per LV work in normal 

healthy hearts.  

Glycolysis, glucose oxidation and calculated proton production are shown in 

panels A-C (Aerobic, N=14 (8 without DCA and 6 with DCA at reperfusion). 

Fatty acid oxidation (panel D, aerobic N=12 (7 without DCA and 5 with DCA at 

reperfusion) and lactate oxidation (panel E, aerobic, N=14 (9 without DCA and 5 

with DCA at reperfusion) are also shown. Calculated metabolic efficiencies are 

shown in panel F. Since data are not normally distributed, data are presented as 

median ± interquartile range (5% and 95%). Differences are considered 

significant when P<0.05. * refers to a significant difference from aerobic values. 
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Figure 5.7
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Figure  5.8 Ex vivo assessment of LV mechanical function and metabolic rates 

of aerobically-perfused normal healthy hearts: Effect of DCA in presence or 

absence of lactate  

Panel A shows time-dependent changes in LV work and Panel B shows average 

LV work for normal hearts (5 with lactate and 6 without lactate). Glycolysis, 

glucose oxidation and proton production rates are shown in panels C-E (5 with 

lactate and 6 without lactate). Since data are normally distributed, they are 

expressed as means ± SEM. (*) refers to a significant difference from aerobic 

counterpart values. 
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Figure 5.8
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Figure  5.9 Ex vivo assessment of LV mechanical function of aerobically-

perfused CAL and SHAM hearts:  Effect of MCDi.  

Panel A shows time-dependent changes in LV work and Panel B shows average 

LV work for SHAM hearts (10 without MCDi and 12 with MCDi) and CAL 

hearts (11 without MCDi and 10 with MCDi). Data are normally distributed and 

are expressed as means ± SEM. (*) refers to a significant difference. 
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Figure 5.9 
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 5.10 Rates of energy substrate metabolism in SHAM and CAL hearts:  Effect 

of MCDi.  

Glycolysis, glucose oxidation and calculated proton production rates are shown in 

panels A-C (SHAM, N=10 (5 without MCDi and 5 with 50 µM MCDi) and CAL, 

N=10 (5 without MCDi and 5 with 50 µM MCDi). Fatty acid oxidation and 

lactate oxidation (panels D and E, SHAM N=12 (5 without MCDi and 7 with 50 

µM MCDi and CAL N=11 (5 without MCDi and 7 with 50 µM MCDi)) are also 

shown. Since data are normally distributed, data are presented as mean ± SEM. 

Differences are considered significant when P<0.05. (*) refers to a significant 

difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



186 
 

*
A Glycolytic flux

µ
m

o
l/
m

in
/g

 d
ry

 w
t

25

20

15

10

5

0
CAL

- MCDi

CAL 

+ MCDi
SHAM 

- MCDi

SHAM 

+ MCDi

5 5 5 5

B

Figure 2 Energy substrate metabolic rates

µ
m

o
l/

m
in

/g
 d

ry
 w

t

4

3

2

1

0

*
Glucose oxidation

5 5 5 5

CAL

- MCDi

CAL 

+ MCDi
SHAM 

- MCDi

SHAM 

+ MCDi

*
D Fatty acid oxidation

µ
m

o
l/

m
in

/g
 d

ry
 w

t
1.0

0.8

0.6

0.4

0.2

0
5 7 6 5

CAL

- MCDi

CAL 

+ MCDi
SHAM 

- MCDi

SHAM 

+ MCDi

E Lactate oxidation

µ
m

o
l/

m
in

/g
 d

ry
 w

t

4

3

2

1

0

5 7 6 5

CAL

- MCDi

CAL 

+ MCDi
SHAM 

- MCDi

SHAM 

+ MCDi

*

C Proton production

µ
m

o
l/

m
in

/g
 d

ry
 w

t

50

40

30

20

10

0

5 5 5 5

CAL

- MCDi

CAL 

+ MCDi
SHAM 

- MCDi

SHAM 

+ MCDi

Figure 5.10 

 

 

 

 



187 
 

Figure 3 Malonyl CoA content
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 5.11 Change in cardiac malonyl CoA content in SHAM and CAL hearts:  

Effect of  MCDi.  

Cardiac malonyl CoA contents of SHAM, N=8 (4 without MCDi and 4 with 

MCDi) and CAL hearts, N=8 (4 without MCDi and 4 with MCDi). Data are 

normally distributed and are presented as mean ± SEM. One way ANOVA was 

used. Differences are considered significant when P<0.05. (*) refers to a 

significant difference. 
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Table  5.1 In vivo echocardiographic assessment of function of SHAM and 

CAL hearts.  

Detailed echocardiographic parameters are shown for both SHAM (n=6) and CAL 

(n=10) hearts. * refers to a statistically significant difference (P<0.05). Data are 

resented as means ± SEM. Abbreviations: LV = left ventricular, LVID = LV 

internal dimension, LVPW = LV posterior wall thickness, IVS = interventricular 

septal thickness, EF = ejection fraction, FAC = fraction area change, IVRT = 

isovolumetric relaxation time, IVCT = isovolumetric contraction time, MVDT = 

mitral valve deceleration time. 

 

 

 

 

 

 

 

 

 



189 
 

Table 5.1   

Parameter (unit) SHAM (N) CAL (N) 

 

M-mode measures:  

  

     Heart rate (beats/min) 449±20 (6) 454±11 (10) 

     Cardiac output (mL/min) 17.59±1.63 (6) 16.14±0.89 (10) 

     EF (%) 53.24±1.18 (6) 27.34±2.21 (10)* 

     FS (%) 28.65±2.04 (6) 15.60±1.57 (11)* 

Wall measurements:    

     LV systolic volume (µL) 36±5 (6) 131± 22 (8)* 

     LV diastolic volume (µL) 78±6 (6) 188±26 (8)* 

     LVIDs (mm) 2.99±0.18 (6) 5.12±0.37 (8)* 

     LVIDd (mm) 4.16±0.14 (6) 6.04±0.35 (8)* 

     LVPWs (mm) 1.10±0.04 (6) 1.25±0.17 (8) 

     LVPWd (mm) 0.77±0.03 (6) 0.93±0.10 (8) 

     IVSs (mm) 1.12±0.03 (6) 1.18±0.18 (4) 

     IVSd (mm) 0.79±0.02 (6) 0.84±0.09 (4) 

     Corrected LV mass (mg) 97±5 (6) 168±22 (4)* 

Tissue doppler data:    

     IVCT (ms) 16.65±1.04 (6) 26.88±2.41 (10)* 

     Tei index (ratio) 0.74±0.04 (6) 1.24±0.10 (10)* 

     E 777±96 (6) 712±186 (8) 

     E` 33.7±10 (6) 23.7± 3.4 (8) 

P=0.07 

     A 449±135 (6) 260±187 (8) 

P=0.07 

     E/E` (ratio) 24.39±2.73 (6) 32.57±4.09 (8) 

     E/A (ratio) 1.81±0.13 (6) 3.82±1.51 (7) 

     IVRT (ms) 17.53±1.10 (6) 21.90±1.71 (10) 

     MV DT (ms) 16.18±1.32 (6) 13.65±2.65 (4) 
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Table  5.2 Ex vivo hemodynamic parameters of SHAM and CAL hearts.  

Detailed ex vivo hemodynamic parameters are shown for SHAM and CAL hearts. 

(*) refers to a significant difference (P<0.05) from aerobic SHAM parameters. (
#
) 

refers to a significant difference (P<0.05) from aerobic CAL parameters. (
$
) refers 

to a significant difference (P<0.05) from reperfused CAL - DCA parameters. Data 

are expressed as means ± SEM. 

Parameter (unit) 

SHAM (N=37) CAL (N=26) 

Aerobic 

N=37  

Reperfusion 

- DCA  

N=25 

Reperfusion 

+ DCA 

N=12 

Aerobic 

N=26  

Reperfusion

- DCA 

N=15 

Reperfusion 

+ DCA 

 N=11 

Body weight (g) 27.62±0.30 27.45±0.31 

Viable heart dry weight (mg)  32±1 34±1 

Viable heart dry wet ratio  0.162±0.004 0.161±0.006 

Heart rate (bpm) 332±8 331±8 287±15* 300±12 315±8 303±16 

Systolic pressure (mmHg) 78±1 67±5* 59±5* 71±2 68±4 46±5
#$

 

Diastolic pressure (mmHg) 20±1 24±2 26±3 27±1* 26±2 28±3 

Cardiac output (mL/min) 10.0±0.4 6.1±0.7* 6.2±1.0* 6.4±0.5* 5.4±0.7 2.6±0.6
#
 

Aortic flow (mL/min) 7.3±0.3 3.5±0.5* 2.2±0.6* 4.0±0.4* 3.2±0.5 0.7±0.3
#$

 

Coronary flow (mL/min) 2.7±0.2 2.6±0.4 4.0±0.9 2.4±0.3 2.2±0.3 1.9±0.4 
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Table  5.3 Ex vivo hemodynamic parameters of normal healthy hearts.  

Detailed ex vivo hemodynamic parameters are shown for normal healthy control 

hearts. (*) refers to a significant difference (P<0.05) from aerobic control 

parameters. Data are expressed as means ± SEM.   

 

Parameter (unit) 

Control (N=28) 

Aerobic 

(N=28) 

Reperfusion 

- DCA  

(N=17) 

Reperfusion           

+ DCA  

(N=11) 

Body weight (g) 27.2±0.5 

Viable heart dry weight (mg)  27.2±1.2 

Viable heart dry wet ratio  0.172±0.006 

Heart rate (bpm) 317±10 304±17 318±24 

Systolic pressure (mmHg) 80±2 62±5* 65±6* 

Diastolic pressure (mmHg) 20±1 26±2* 28±3* 

Cardiac output (mL/min) 11.1±0.6 6.8±1.1* 7.7 ±1.6* 

Aortic flow (mL/min) 6.5±0.5 4.0±0.8* 5.6±1.5 

Coronary flow (mL/min) 4.7±0.6 2.8±0.6* 2.1±0.6* 
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Table  5.4 Ex vivo hemodynamic parameters of aerobically-perfused normal 

healthy hearts.  

Detailed ex vivo hemodynamic parameters are shown for normal healthy control 

hearts. Since data are normally distributed, they are expressed as means ± SEM. 

 

Parameter (unit) 
- Lactate (N=5) + Lactate (N=6) 

- DCA + DCA - DCA + DCA 

Body weight (g) 26.9±1.0 25.8±0.5 

Viable heart dry weight (mg)  27±1 25±1 

Viable heart dry wet ratio  0.141±0.006 0.143±0.008 

Heart rate (bpm) 359±10 360±12 328±12 329±9 

Systolic pressure (mmHg) 78±2 79±3 86±3 84±3 

Diastolic pressure (mmHg) 23±2 26±2 23±2 22±1 

Cardiac output (mL/min) 10.1±0.3 10.1±0.5 11.5±0.6 11.3±0.8 

Aortic flow (mL/min) 7.3±0.4 7.2±0.6 8.5±0.4 8.2±0.5 

Coronary flow (mL/min) 2.8±0.2 2.9±0.3 3.1±0.3 3.0±0.4 
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Table  5.5  Ex vivo hemodynamic parameters of aerobically-perfused SHAM 

and CAL hearts: Effect of MCDi.  

Detailed ex vivo hemodynamic parameters are shown for normal healthy  hearts. 

Since data are normally distributed, they are expressed as means±SEM. (*) refers 

to a significant difference (P<0.05) from aerobic SHAM - MCDi parameters. 

 

Parameter (unit) 

SHAM  CAL 

- MCDi 

(N=10) 

+ MCDi 

(N=12) 

-MCDi 

(N=11) 

+ MCDi 

(N=10) 

Body weight (g) 27.9±0.6 27.9±0.4 27.5±0.5 28.6±0.7 

Viable heart dry weight (mg)  26±1 26±1 28±1 26±1 

Viable heart dry wet ratio  0.14±0.01 0.13±0.01 0.15±0.01 0.13±0.01 

Heart rate (bpm) 300±24 282±14 289±1 326±9 

Systolic pressure (mmHg) 85.7±4.7 83.7±1.4 82.2±3.2 74.1±2.9 

Diastolic pressure (mmHg) 15.2±1.6 13.3±1.1 21.6±1.7* 24.6±1.6* 

Cardiac output (mL/min) 9.4±0.4 9.7±0.5 7.5±0.4* 6.9±0.7* 

Aortic flow (mL/min) 7.4±0.4 7.3±0.3 5.8±0.3* 4.6±0.6* 

Coronary flow (mL/min) 1.9±0.2 2.4±0.4 1.7±0.3 2.3±0.4 
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6 General Discussion and Conclusions 
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In Canada, cardiovascular disease is a major health problem that results in 

serious morbidity and mortality. According to a Heart and Stroke Foundation of 

Canada report in 2014, each year there are 50,000 new heart failure cases 

diagnosed and 70,000 heart attacks occur [448]. Due to advances in diagnosis and 

treatments, the numbers of cardiovascular disease survivors are on the rise. In 

2013, there were 165,000 Canadian survivors of heart and stroke diseases [448]. 

This group of patients needs special medical attention which adds more expenses 

in the health care sector. Earlier statistics from Health Canada indicate that 

cardiovascular disease represents 11.6% of the total Canadian cost of illness 

classifiable by diagnostic category. This was estimated to be about $21.2 billion 

in direct and indirect annual costs [449]. Thus, it is important to invest in research 

that aims at discovering new modalities of treatment not only to manage the acute 

attacks of ischemic heart disease but also to improve the quality of life and 

performance of the increasingly growing group of cardiovascular disease 

survivors.  

One step to discover new treatments of cardiac diseases is to better 

understand the nature of changes that occur as the disease evolves and progresses. 

Currently, it is established that both heart failure and ischemic heart disease are 

associated with changes in energy substrate metabolism. Yet, there is no 

agreement on the nature of these changes. However, there are two main themes 

that attempt to explain the nature of these metabolic changes. One theme 

considers the failing heart as an engine out of fuel implying reduced rates of 

energy substrate metabolism and scarcity of resources. The other theme considers 
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the failing heart an inefficient machine where the available energy resources are 

inefficiently used for external mechanical work. The first study of this thesis has 

investigated the nature of metabolic changes in a post-infarction model of heart 

failure. It also studied the changes of metabolic efficiency which reflects the LV 

work generated per ATP produced. The second part of that study used a genetic 

metabolic intervention, MCD deletion, to study the potential of functional 

improvement through indirect improvement of glucose metabolism.  

Since post-infarction heart failure patients are more susceptible to 

subsequent ischemic attacks, the second study of this thesis addressed the 

response of remodeled hearts to an ex vivo IR insult. Changes in exogenous and 

endogenous energy substrate metabolism before and during IR injury were 

studied. This included characterization of the accompanying changes in metabolic 

efficiency and how they relate to the observed functional responses in remodeled 

and healthy control hearts.  

Finally, the last group of studies in this thesis investigated the potential for 

improving functional recovery following ex vivo ischemic injury using 

pharmacologic interventions such as DCA. Based on our findings that remodeled 

hearts are metabolically inefficient due, in part, to mismatched glucose 

metabolism, DCA, a known stimulator of glucose oxidation, was used to study the 

potential for improvement of functional recovery by minimizing mismatched 

glucose metabolism with the resultant reduction of proton production.  Since 

chronic MCD deficiency limits functional deterioration and metabolic 

inefficiency after CAL surgery, another set of experiments was performed to 
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study whether MCD is a potential target for acute pharmacologic inhibition to 

improve metabolic inefficiency in remodeled hearts using an MCDi administered 

during ex vivo aerobic perfusion of remodeled hearts.  

This penultimate chapter will discuss the rationale for the methods used in 

this thesis, justification of their use, advantages over other methods used for the 

same purpose and potential limitations. It will also discuss the results of the 

studies described in this thesis and how they fit into the current knowledge and 

literature, in addition to the main conclusions summarized in each experimental 

chapter.   The discussion will focus on the contribution of the new research 

findings to our current understanding of the nature of metabolic changes in post-

ischemic heart failure and those accompanying exposure of the failing heart to 

subsequent IR. 

6.1 Experimental model and methods 

6.1.1 Coronary artery ligation in the mouse 

The use of mice in this thesis provided the advantage of the use of genetic 

interventions such as MCD-KO. In addition, the short life cycle and a more 

economic cost of care provided an additional advantage. The availability of a 

research core equipped with tools for in vivo functional evaluation and validation 

of the surgical model made it possible to validate the model in vivo before 

proceeding to the ex vivo heart perfusions. 

Since the focus of this thesis is on a well-established heart failure model 

rather than an evolving one, we chose the coronary artery ligation model. Other 
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models such as transverse aortic ligation allow the stratified development of 

variable degrees of hypertrophy which eventually mount to full blown heart 

failure. Such models are more suitable for studies with a focus on the 

hypertrophic process and interventions aiming to alter the development or 

progression of cardiac hypertrophy (reviewed in [450-454]).  

The coronary artery ligation model of heart failure was first described 

about 36 years ago [455]. Nowadays, it is a well-established and widely-used 

model of post-infarction heart failure [381, 382, 450, 452-454, 456-458]. This 

model can be used for either permanent ischemia that mimics an unresolved 

ischemic attack or an IR insult that mimics an ischemic attack that was resolved 

using revascularization interventions. In the latter, cardioprotective interventions 

can be used to rescue the area at risk and reduce the overall infarct size.  

For the purpose of this thesis, the permanent ischemia intervention was 

chosen to allow the development of a predictable post-infarction scar following a 

permanent ligation with limited variability. The recovering hearts eventually 

develop LV dysfunction where the remaining viable myocardium undergoes 

remodeling and hypertrophy with accompanying metabolic alterations. For 

quality control, a SHAM procedure was performed to exclude any cardiac 

dysfunction that might develop as a result of the surgical procedure itself. We 

adhered to the peri-operative use of analgesia and antibiotics to minimize 

confounders in the etiology of heart failure in this model.  
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Being aware of the second window of inhalational anesthetic-induced 

preconditioning [459, 460], a three-day interval was allowed before the hearts of 

echoed mice were taken for ex vivo perfusion in the working mode. The choice of 

a 4-week postoperative period before ex vivo perfusion allowed the development 

of a mature scar which guarantees that the measured metabolic rates are attributed 

to metabolic activity of the remaining viable remodeled tissue that are not 

confounded by any contribution from the infarct tissue.  

In general, our mouse model is not typically representative of human 

pathologic conditions. In human ischemic attacks, a common scenario is an 

immediate therapeutic medical or surgical intervention which alters the natural 

course of the remodeling process. In the CAL model, interventions were initiated 

either before the ischemic insult via the use of MCD deficiency or 4 weeks after 

the coronary artery ligation. However, both interventions contribute to our 

understanding of how a pharmacologic intervention can affect the normal course 

of metabolic remodeling following an ischemic insult. Another potential 

disadvantage is the fact that mice are not an exact replicate of human response to 

a disease process [461]. Moreover, different mouse strains exhibit different 

metabolic profiles. To further complicate the matter, metabolic profiles of the 

same strain of mice differ according to the various experimental conditions [462]. 

The latter adds emphasis on the importance of keeping standardized experimental 

conditions throughout the experimental protocol, a fact that we strictly followed. 



200 
 

6.1.2 Isolated working mouse heart perfusions 

 The isolated working heart preparation is a well-established model for ex 

vivo study of heart mechanical function and metabolic rates under well-controlled 

physiologic conditions of workloads and energy substrate concentrations [5, 386, 

463]. Standardizing cardiac workloads to near physiologic levels allows a more 

reliable measurement of energy substrate metabolic rates since they are greatly 

influenced by the work level [464] and vice versa [465]. In contrast, other models, 

such as the Langendorff preparation, are considered less physiologic since levels 

of external cardiac work during perfusion cannot be maintained at physiologic 

levels [5, 466]. In addition, the isolated working heart preparation allows profiling 

of cardiac energy substrate metabolism without the influence of changes in 

autonomic regulation, circulating hormones or the influence of other organs.  

  The isolated working heart preparation is an ideal method to study 

changes in energy substrate metabolism since it guarantees adequate supply of 

oxygen and energy substrates to the working heart under controlled physiologic 

workloads. The fact that these materials reach the heart via the normal coronary 

perfusion route guarantees access of all parts of the heart to the required energy 

substrates and oxygen, hence more reliable values of metabolic rates can be 

measured. In contrast, Langendorff perfusion renders the heart under limited 

energy demand since physiologic workloads are not maintained. Besides, the 

retrograde aortic perfusion in this preparation and the use of low viscosity 

perfusate allows a minor degree of aortic valve incompetence. This builds up the 

intraventricular pressure to values more than perfusion pressure. Thus, metabolic 
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rates may be underestimated [5]. Similarly, isolated muscle preparations, such as 

isolated papillary muscle, can underestimate metabolic rates since these 

preparations depend on superfusion which does not guarantee adequate supply of 

oxygen to the deep muscle layers [467]. This limitation applies also to isolated 

cardiomyocyte preparations where the cells are not beating and are thus under a 

low metabolic demand [468]. Even when these cells are induced to beat, they beat 

under zero load which again render them under a low energy demand, hence 

underestimating metabolic rates [469]. 

 In order to guarantee adequate energy substrate supply to our preparation, 

exogenous energy substrates were added to the perfusate in adequate amounts. 

With the exception of the MCD-KO mouse study, all the experiments were 

performed with 11 mM glucose, 1.2 mM palmitate and 1 mM lactate. Insulin (100 

µU/mL) was added in all experiments. An aerobic perfusion for a minimum of 40 

min was used to replenish glycogen stores which are depleted during dissection 

and connection of the isolated hearts to the apparatus. Previous data from isolated 

working rat heart preparations indicated that aerobic perfusion for a period of 45-

60 minute is needed to rebuild glycogen stores and hence increase the reliability 

of the measured metabolic rates [470, 471].  

 The choice of 1.2 mM concentration of palmitate may be considered 

higher than physiologic levels if compared to reported normal human non-

esterified fatty acids (NEFA) levels (0.2 - 0.8 mM) [472, 473] that in turn vary 

according the fasting status. However, reported mouse NEFA levels vary from 0.4 

mM [474] to 2.5 mM [475]. Thus, 1.2 mM palmitate is a reasonable average 
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value. Moreover, in conditions of stress such as ischemic attacks and in high 

cardiovascular risk groups, circulating NEFA levels are elevated [476-478]. 

 Similar issues can arise regarding the use of 11 mM glucose. The normal 

fasting human glucose levels are defined as values below 6.1 mM [479]. 

However, considering conditions of metabolic stress such as ischemic attacks and 

post-infarction heart failure where cardiovascular risk factors exist, 11 mM is also 

a reasonable choice. Moreover, reported mouse non-diabetic fasting glucose level 

are 8 mM [480] which make 11 mM a close value to in vivo levels under stressful 

conditions. The exception is the choice of 5 mM glucose and 0.4 mM palmitate in 

the MCD-KO study to mimic perfusion conditions where MCD-KO mice were 

found to exhibit a lower proton production rate during reperfusion [322]. 

 To comply with the commonly used experimental conditions for isolated 

mouse heart perfusions, perfusate in all experiments contained 100 µU/mL 

insulin. Despite this value appearing higher than the reported normal diet-fed 

mouse plasma insulin levels of 20 - 40 µU/mL according to age [481], the chosen 

higher concentration guarantees adequate free circulating insulin levels as a great 

portion of insulin adheres to the glass walls and tubing of the perfusion apparatus.  

 Oxygen is delivered to isolated mouse heart preparation via oxygenation 

of a crystalloid perfusate. Despite the fact that such a perfusate has less oxygen 

carrying capacity as compared to blood, adequate oxygen supply is secured 

through gassing of the perfusate with a carbogen mixture (95% O2 and 5% CO2) 

that results in a high partial pressure of oxygen (pO2) [482]. This method of 
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oxygen delivery was shown previously to maintain oxygen supply to the 

preparation [482]. Moreover, reducing pO2 of the perfusate by gassing with only 

70% O2 is associated with a similar contractile performance. Also the stability of 

mechanical function, after an initial period of adaptation, confirms adequate O2 

supply. Besides, the preparation is able to respond to positive inotropic drug 

treatment by increasing work without development of ischemic injury, indicative 

of a plentiful O2 supply. Finally, the measured coronary venous pO2 was found to 

remain high, indicative of sufficient oxygen reserve [482]. 

 Despite the fact that the isolated mouse heart preparation can remain 

functioning for hours, a maximum perfusion time of 90 min was used to guarantee 

reliability of results and stability of function. Hearts were immersed in the 

perfusate to maintain adequate physiologic temperatures throughout the perfusion 

protocol. Since isolated mouse hearts were maintained under physiologic 

temperatures, they maintained an adequate spontaneous heart rate and electrical 

pacing was unnecessary. 

 For the study of IR injury in the second and third studies of this thesis, a 

global no-flow ischemia was used. In this approach, the inflow of perfusate to the 

whole heart is stopped for 15 min by clamping both the left atrial inflow and 

aortic outflow lines leading to ischemia to the entire preparation.  Reperfusion is 

achieved by removal of the clamps; a reperfusion period of 30 min was used. This 

approach is slightly different from what happens in vivo where a coronary branch 

is blocked by a thrombus leading to a regional ischemia in the area supplied by 

this branch while the remaining heart is normally supplied by the uninterrupted 
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coronary blood flow.  However, our experimental approach provides an ideal way 

of measuring changes in energy substrate metabolism where the observed changes 

can be attributed to the entire ischemic myocardium. Should a regional ischemia 

be produced, distinction of metabolic changes attributed to healthy and ischemic 

tissue would be impossible. 

6.1.3 Measurement of energy substrate metabolism 

 Rates of energy substrate metabolism were assessed by measuring 
14

CO2 

and 
3
H2O released by the metabolism of radiolabeled glucose added to the 

perfusate. With the knowledge of specific activities of the radiolabeled substrates 

used, rates of flux through individual metabolic pathways can be directly 

measured [419, 483]. All experiments were done in two sets, one with [5-

3
H]glucose and [U-

14
C]glucose for measurement of glycolytic flux and glucose 

oxidation, respectively. In the other set, [9,10-
3
H]palmitate and [U-

14
C]lactate 

were added to measure palmitate and lactate oxidation, respectively. Details of the 

methods and interpretation are mentioned in Chapter 2. This section will focus on 

the advantages and disadvantages of this method in comparison to other methods 

used for the same purpose. 

 The use of radiolabeled isotopes for direct ex vivo measurement of energy 

substrate metabolism is well characterized in hearts from other experimental 

animals such as rats [368, 484-487]. Efforts of Belke et al 1999 [488] showed that 

energy substrate metabolism can be directly measured mouse hearts and that it 

compares to results from other models such as rat hearts. Since then, many studies 

have been performed characterizing energy substrate metabolism in ex vivo mouse 
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hearts under different pathologic conditions [221, 334, 489-491]. As our 

knowledge grows, more differences between mouse and rat heart energy substrate 

metabolism are being characterized. 

6.1.4 Pros and cons of the use of 
3
H- and 

14
C- radiolabeled 

substrates 

 This method allows the measurement of metabolic end products, 
3
H2O and 

14
CO2, which implies a direct steady state rate that can be maintained throughout 

the perfusion protocol. Since metabolic rates of glucose oxidation, lactate 

oxidation and palmitate oxidation are directly measured, tricarboxylic acid cycle 

activity can be assessed since the acetyl CoA yield from each metabolic pathway 

can be calculated (8 from palmitate, 2 from glucose and 1 from lactate). 

Moreover, ATP production rates can be assessed by quantification of the ATP 

yield of glycolytic flux (2 ATP), glucose oxidation (31 ATP), lactate oxidation 

(17.5 ATP) and palmitate oxidation (104 ATP).  

 Another advantage is the direct measurement of the end products of the 

metabolic pathways which does not require complex mathematical assumptions, 

calculations and kinetic modeling. This method is also relatively inexpensive 

compared to other alternative methods (see below). Moreover, no sophisticated 

expensive instruments are needed in this approach. 

 The use of [5-
3
H]glucose for measurement of glycolytic flux was claimed 

by Goodwin et al. [492] to overestimate the actual rates of glycolytic flux since 
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the rates calculated from detritiation of [5-
3
H]glucose were higher than the rates 

calculated from the sum of glucose oxidation rates and rates of accumulation of 

pyruvate and lactate in the perfusate which, according to the authors, may be due 

to non-glycolytic detritiation of [5-
3
H]glucose by the non-oxidative branch of 

pentose phosphate shunt. However, it is important to mention that reported 

glucose oxidation rates in that study were very low which may underestimate 

glycolytic rates calculated using the authors’ suggested method. This evidence is 

further supported by reports from Leong et al. [493] who found glycolytic flux 

rates to be similar to rates calculated by either method with minimal contribution 

from the pentose phosphate shunt. 

 Claims about the inability of [U-
14

C]glucose to account for other specific 

pathways such as the pentose phosphate shunt since it measures the end product 

of oxidative glucose metabolism can be seen as an advantage since the portion of 

glucose that goes through the pentose phosphate shunt will end up in the TCA 

cycle. Thus this method is a better option to study the ultimate fate of glucose 

metabolism, regardless of intermediary pathways. 

 The ex vivo isolated heart preparation has advantages as well as 

disadvantages. Ex vivo isolated hearts do not reflect hormonal and autonomic 

influences that are important players in modulating cardiac metabolism under 

different physiologic and pathologic conditions. However, the isolated preparation 

can be seen as a focused approach to study isolated cardiac responses and direct 

cardiac effects of pharmacologic agents excluding confounding effects of the 

complex in vivo responses. Similarly, despite efforts to represent most of energy 
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substrates such as palmitate, glucose and lactate in the perfusate, many other 

substrates are not represented in the ex vivo isolated heart perfusate including 

other fatty acids, different carbohydrates, amino acids and ketone bodies. (See 

Barr RL and Lopaschuk GD [494] for details regarding other available methods of 

assessment of energy substrate metabolic rates). 

6.2 Aerobic metabolic profiling of CAL hearts 

 As discussed in the Introduction, there is no agreement on the nature of 

metabolic changes in heart failure. Currently it is explained by two themes. The 

first one describes the failing heart as an engine out of fuel. This implies a 

generalized deterioration in energy substrate uptake and utilization [245, 246], 

oxidative phosphorylation for ATP production [270, 271], and/or transfer of high 

energy phosphate to creatine, via CK activity [400]. While this holds true in 

advanced cases of heart failure, we hypothesize that failing hearts are inefficient 

and that inefficient energy utilization can play a major role in the evolving heart 

failure. This is of great importance since interventions that aim to improve 

functional performance of the failing hearts should be initiated early in the disease 

process before a well-established impairment supervenes.  

  The fact that a decline in energy substrate metabolism is not uniformly 

present in all heart failure models [239, 401] suggests that alternate etiologies are 

involved.  Interestingly, evidence used to support the energy starvation theory can 

be subject to alternate interpretations that actually support the inefficiency 

concept. An inefficient heart uses more energy to perform an equivalent 

workload, so providing more ATP, whether via external supply of energy 
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substrates, increasing rates of energy substrate metabolism, or enhancing ATP 

flux through CK, can improve contractility.  Improved mechanical function in 

failing rat hearts by DCA-induced stimulation of glucose oxidation [214] reduces 

mismatched glucose metabolism. Thus, heart function improves, not only due to 

increased ATP generation, but also by less dysregulation of ionic homeostasis.     

 We have shown in the first study of this thesis that CAL hearts do not 

have depressed rates of glycolysis, glucose oxidation or fatty acid oxidation. 

Moreover, total rates of ATP production were only 25% lower in CAL hearts, not 

sufficient to explain the marked depression in LV work (46%).  Similarly, 

endogenous energy substrate turnover, glycogen and TG synthesis and 

degradation, were similar in CAL and SHAM hearts. Besides, CAL hearts 

maintain similar contents of adenine nucleotides and creatine. These findings 

provide strong evidence against energy starvation and support metabolic 

inefficiency in these hearts.  Thus, the calculated metabolic efficiency for 

exogenous energy substrate utilization (external LV work done per ATP 

produced) was significantly lower in CAL hearts (two thirds of SHAM values). 

Similarly, the metabolic efficiency for endogenous energy substrate utilization in 

CAL hearts tended to be lower than in SHAM hearts (P=0.07). 

 Alterations in energy substrate preference occur in hearts following acute 

ischemia [403] and have the potential to decrease efficiency [21, 319], but based 

on similar percentage contributions of energy substrates to overall ATP 

production in SHAM and CAL hearts (Fig 3.4H), it appears that substrate 

preference is unaltered in the infarct-remodeled heart. Instead, CAL hearts exhibit 
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an increase in glycolysis rate per unit LV work that is not matched by a sufficient 

increase in glucose oxidation rate per unit LV work causing a significant increase 

in proton production per unit LV work and suggests that mismatched glucose 

metabolism may be a contributor to inefficiency.  This mismatch has also been 

reported in other Heart failure models [9, 236, 325, 404].   

6.3  Improved coupling of glucose metabolism 

limits metabolic inefficiency and mechanical 

dysfunction in CAL hearts 

 MCD-KO mice were chosen because their hearts were previously shown 

to exhibit lower reperfusion proton production rates associated with better post-

ischemic functional recovery [322]. These hearts have unaltered rates of glucose 

and fatty acid oxidation when perfused aerobically. However, when challenged by 

IR they show a preference for glucose oxidation over fatty acid oxidation which 

improves coupling between glycolysis and glucose oxidation, lessens intracellular 

acidosis and improves recovery of contractility [322].  Using this model, we 

studied the potential for enhancing mechanical function in remodeled hearts via 

improvement in the efficiency of exogenous substrate utilization. Confirming 

what is expected in our permanent coronary artery ligation model, infarct weights 

(both actual and as % of whole heart weight) are similar in WT CAL and MCD-

KO CAL hearts. This indicates that functional effects are due to actions on the 

surviving viable tissue.  
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 MCD-KO CAL hearts exhibit improved cardiac function and a reduction 

in the rates of glycolysis, glucose oxidation, lactate oxidation and ATP 

production.  The improved mechanical function in presence of lower energy 

substrate metabolic rates indicates improved metabolic efficiency. These changes 

persist after normalization for LV work. In accordance with the study by Dyck et 

al [96], MCD-KO CAL hearts have unaltered fatty acid oxidation rates. That 

study showed that fatty acid oxidation regulating genes that code for fatty acid 

transporter (CD36), CPT1, acyl CoA thioesterase, and uncoupling protein-3 are 

upregulated in MCD-KO healthy hearts [96] resulting in maintained aerobic fatty 

acid oxidation despite the lack of MCD. We speculate that the upregulated genes 

are also responsible for the lack of significant change in fatty acid oxidation rates 

in remodeled MCD-KO CAL hearts. The improved metabolic efficiency and 

maintained fatty acid oxidation rates in these hearts may explain why lower rates 

of glucose metabolism were observed. 

In that part of the thesis, we showed that MCD-KO CAL hearts have 

improved coupling between glycolysis and glucose oxidation, lower proton 

production and improved total LV work. This indicates that enhancing the 

matching of glucose metabolism is beneficial in this model of heart failure. While 

this does not prove a cause-effect relationship between metabolic inefficiency and 

cardiac function, it supports such a relationship.  
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6.4 Remodeled hearts exhibit no further 

deterioration of mechanical function and 

metabolic efficiency following ex vivo ischemia 

reperfusion 

 IR injury is associated with changes in energy substrate preferences, 

deterioration of cardiac efficiency and mechanical dysfunction [342, 405]. During 

post-ischemic reperfusion, normal mouse hearts exhibit a marked deterioration of 

oxidative metabolism. This augments the mismatch between glycolytic flux and 

glucose oxidation rates resulting in lactate accumulation [13, 326, 405-407].  

Meanwhile, protons derived from the hydrolysis of glycolytically produced ATP 

accumulate, increasing intracellular acidosis [317]. The subsequent activation of 

the Na
+
-H

+
 exchanger causes Na

+
 accumulation [333], which, in turn, activates 

reverse mode Na
+
-Ca

2+
 exchange leading to Ca

2+
 overload [185].  In order to 

correct Na
+
 and Ca

2+
 overload, more ATP is diverted towards ionic homeostasis 

and away from mechanical function. This is expected to lead to deterioration of 

metabolic efficiency associated with a significant deterioration of mechanical 

function. It is thus expected that CAL hearts being metabolically inefficient and 

functionally impaired, would experience severe functional deterioration following 

ex vivo IR. However, we confirmed in the second study of this thesis previous 

evidence that remodeled hearts actually exhibit a better tolerance to IR injury 

[314-316].  
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 That study extended measurements of energy substrate metabolism and 

metabolic efficiency to reperfused hearts.  The demonstration that reperfused 

CAL hearts maintain comparable rates of energy substrate metabolism to 

reperfused SHAM hearts excludes the possibility of a change in energy substrate 

preference as a contributor to the observed lower functional deterioration in 

reperfused CAL hearts. Indeed, the finding that CAL hearts maintain similar 

metabolic rates per LV work during reperfusion as during aerobic perfusion 

indicates that there is no further deterioration of metabolic efficiency in 

reperfused CAL hearts. This contrasts with reperfused SHAM hearts that 

experience a significant deterioration in function and metabolic efficiency 

associated with increased reperfusion proton production per LV work due a 

marked mismatch between glycolytic flux and glucose oxidation rates. Also 

reperfused SHAM hearts exhibit a significantly increased utilization of the less 

efficient energy substrate, fatty acid, as indicated by a significant increase in fatty 

acid oxidation per LV work.   

 We also studied potential contributors to the observed better ischemic 

tolerance and maintained metabolic efficiency in CAL hearts. We studied two 

possibilities, higher mitochondrial abundance and improved calcium handling.  

However, there was no difference in the expression of markers of either 

mitochondrial abundance or key metabolic enzymes. Similarly, there were no 

changes in the calcium handling proteins, SERCA2, CaMKII and phospholamban, 

suggesting that it is unlikely that the better functional recovery and maintained 
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metabolic efficiency during reperfusion of remodeled hearts are due to alterations 

in mitochondrial abundance or improved calcium handling. 

 A third potential explanation is a lower stimulus to develop intracellular 

acidosis and Na
+
 and Ca

2+
 overload. The finding that CAL hearts exhibit 

significantly lower ischemic glycogenolysis as compared to SHAM hearts implies 

lower ischemic production of lactate and protons in CAL hearts. Hence, 

accumulation of protons during ischemia is expected to be lower in CAL hearts.   

In support of our hypothesis, recovery of intracellular pH in reperfused hearts is 

delayed if the rates of glycolytic flux are not matched with glucose oxidation. 

Similarly, improving the coupling enhances the recovery of intracellular pH and 

improves both mechanical function and cardiac efficiency [317].  In fact, 

diverting glucose metabolism towards glycogen synthesis rather than glycolytic 

flux reduces proton production, limits Ca
2+

 overload and improves recovery of 

post-ischemic mechanical function [318]. Similarly, cardioprotection by 

adenosine [340] or ischemic preconditioning [330, 408] reduce glycogen 

utilization and inhibit glycolytic flux.  Indeed, the findings that CAL hearts have 

lower rates of glycogenolysis during ischemia and preserved ATP contents during 

reperfusion suggest that the improved ischemic tolerance of remodeled hearts 

mimics some of the mechanisms of ischemic preconditioning. The possibility that 

preconditioning mechanisms are already activated in remodeled hearts may 

explain the failure of additional preconditioning interventions to achieve 

functional benefits in remodeled hearts [410-412]. 
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6.5 Reperfusion DCA administration does not 

stimulate glucose oxidation or improve 

functional recovery  

 Many studies have addressed the cardioprotective effect of DCA against 

IR injury in normal hearts [364, 367, 416, 418, 419]. Meanwhile, the benefit of 

DCA in the treatment of heart failure patients has been a controversial issue. As 

indicated in Chapter 5, some studies reported the benefit of DCA in improving 

hemodynamic function and cardiac mechanical efficiency in heart failure patients 

[426]. Others found no benefit of DCA in improving exercise tolerance [427] or 

LV function in heart failure patients [428]. However, the potential benefit of DCA 

for alleviation of IR-induced LV dysfunction in post-infarction remodeled hearts 

has not been addressed. Since CAL hearts are metabolically inefficient with a 

mismatch between rates of glycolytic flux and glucose oxidation, it was 

hypothesized that these hearts would benefit from improving the matching of 

glucose metabolism during reperfusion with a potential of improved functional 

recovery. 

 We demonstrated in Chapter 5 that DCA treatment at reperfusion failed to 

improve functional recovery or to induce metabolic changes in reperfused CAL, 

SHAM and normal control hearts indicative of failure to stimulate glucose 

oxidation.  Below are the potential contributors to the reduced sensitivity of 

mouse hearts to DCA treatment. 
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6.5.1 Contribution of the chemical composition of the perfusate 

to the sensitivity of mouse hearts to DCA 

 As indicated in Chapter 5, our standard perfusate contains 1 mM lactate 

which is an important energy substrate normally present in vivo and is expected to 

increase in conditions of IR injury [429]. Moreover, the presence of lactate in the 

perfusate is important for accurate assessment of metabolic rates of energy 

substrates [430]. In contrast, many of the published reports on DCA-mediated 

acceleration of glucose oxidation have utilized perfusates that lack lactate [431-

434] or used smaller concentrations (0.5 mM) of lactate [436-438].  Thus, it is 

possible that lactate in the perfusate may have contributed to the reduced 

sensitivity of mouse hearts to the stimulatory effect of DCA on glucose oxidation. 

As detailed in Chapter 5, reports from White et al 1999 [435] and Griffin et al 

[358] indicated that presence of lactate in the perfusate prevented the functional 

benefits of DCA and delayed recovery of intracellular pH or reperfused rabbit 

hearts. Similarly, we demonstrated that DCA stimulated glucose oxidation in 

mouse hearts in absence of lactate, indicative of lactate-induced reduced 

sensitivity to DCA.  

 Since the aim of this thesis was to characterize energy substrate 

metabolism under physiologic and pathologic IR conditions, studies required the 

use of lactate in the perfusate [429]. Moreover, the presence of lactate in the 

perfusate is important for accurate assessment of metabolic rates of energy 

substrates [430]. 
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6.5.2 Species-dependent difference in the response to DCA 

 The finding that DCA is able to improve cardiac efficiency [436] as well 

as improve functional recovery in rat hearts [437] and newborn (6 weeks) rabbit 

hearts [438] after IR in presence of lower concentrations of lactate (0.5 mM) 

indicate the possibility of species-dependent difference in sensitivity to DCA.  

 One major difference in mouse heart is that PDH seems to be working at 

maximal activity and therefore there is no potential for further stimulation. As 

detailed in Chapter 5, rat heart studies report lower baseline glucose oxidation 

rates (0.2-0.8 µmol/g dry wt/ min) [318, 329, 439-443]. We report in this thesis 

glucose oxidation rates in mouse hearts of 2-3 µmol/g dry wt/ min [221], which 

are similar to previously reported mouse heart data [244, 322, 444]. The higher 

baseline glucose oxidation rates in mouse hearts can be an indication of higher 

baseline activity of PDH that may be close to maximal and so unable to respond 

to DCA stimulation. Measurements of PDH activity in rat and mouse hearts 

would be a useful approach to test for this possibility.  

 Another possible explanation of the higher baseline glucose oxidation 

rates in mouse hearts as compared to rat hearts is that higher baseline glycolytic 

rates in mouse heart supply more pyruvate as substrate for oxidative metabolism.  

Rates of glycolysis reported for aerobically perfused rat hearts range from 1.5 to 5 

µmol/g dry wt/ min [318, 329, 439-443]. In contrast, glycolytic rates in mouse 

hearts are significantly greater.  Values reported in this thesis range from 13 to 25 

µmol/g dry wt/ min depending on perfusion conditions and are similar to values 

reported for mouse hearts by other authors (11-20 µmol/g dry wt/ min) [244, 322, 
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444]. Thus, higher baseline PDH activity in mouse heart might be an adaptive 

response of PDH to match the higher availability of pyruvate supplied through 

glycolysis and thereby minimize the consequences of the mismatch in glucose 

metabolism. 

6.6 Despite effective MCD inhibition, metabolic 

inefficiency is not improved in MCDi-treated 

CAL hearts   

 MCD inhibition is an evolving and promising approach for protection 

against acute IR injury and functional consequences of post-ischemic remodeling. 

We have shown in Chapter 3 that chronic MCD deficiency reduces post-ischemic 

LV dysfunction and improves metabolic efficiency. Similar reports from Dyck et 

al [96] highlighted the cardioprotective effect of chronic MCD deficiency against 

acute IR injury. It can be claimed that these scenarios do not mimic real life 

situations where the intervention is normally initiated after the ischemic insult. In 

a scenario more similar to the clinical scenario where treatment is usually initiated 

after the ischemic insult, cardiac-specific inhibition of MCD via microRNA 

intervention in vivo initiated after CAL surgery in rats limits functional 

deterioration and maintains energy stores in treated hearts. Hence, to probe further 

the potential benefit of acute MCD inhibition, we studied the consequences of 

acute ex vivo MCD inhibition using an MCDi (CMB-0000382) on metabolic 

efficiency in remodeled hearts. 
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 The demonstration that CMB-0000382 increases malonyl CoA content in 

CAL and trends to increase it in SHAM hearts confirms inhibition of MCD in 

both groups.  Thus it was unexpected that fatty acid oxidation rates were inhibited 

by CMB-0000382 only in SHAM hearts and not in CAL hearts.  This indicates 

that other regulators of fatty acid oxidation might have been altered in remodeled 

CAL hearts, but the finding that malonyl CoA content was increased in treated 

CAL hearts excludes the possibility of a compensatory downregulation of acetyl 

CoA carboxylase (ACC) [446], that produces malonyl CoA, could have 

contributed to the lack of inhibition of fatty acid oxidation in treated CAL hearts. 

However, other regulators of fatty acid oxidation could be altered in our CAL 

model, thereby preventing any response to MCD inhibition. These data are in 

accordance with previous reports from Dyck et al [96] where the lack of fatty acid 

oxidation in MCD-KO hearts under aerobic perfusion conditions was associated 

with upregulation of CPT1, CD36, PDK4 and PPARα. 

 Another explanation for the lack of fatty acid oxidation inhibition in 

MCDi-treated CAL hearts despite malonyl CoA accumulation is the possibility of 

compartmentalization of malonyl CoA so that its concentration in the vicinity of 

CPT1 at the outer mitochondrial membrane, where it competes with acyl CoA for 

intramitochondrial transport by CPT1, is not sufficient to inhibit transport and so 

fatty acid oxidation rates remain unchanged.  In support, previous reports that 

basal malonyl CoA levels in tissues are in excess of those requires to inhibit CPT1 

[447] have also suggested possible compartmentalization of cardiac malonyl CoA 

[97].  In this way, a lower malonyl CoA concentration exists in the vicinity of 
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CPT1, hence CPT1 remains active despite the higher overall malonyl CoA 

content. Thus, it is possible that malonyl CoA levels in the vicinity of CPT1 could 

undergo changes sufficient to affect CPT1 activity accordingly. This possibility 

may explain the finding that a moderate increase in malonyl CoA concentrations 

(20% of control) in human skeletal muscles led to significant reduction of fatty 

acid oxidation (41% of control) [68]. 

 Further studies are needed to understand the regulation of fatty acid 

metabolism in CAL hearts. This is expected to help understand the response of 

chronically remodeled hearts to fatty acid oxidation inhibitors that are known to 

be effective in improving function in acute settings such as acute ischemia 

reperfusion in healthy hearts [61, 66, 96, 140, 176].  

 One limitation of this study is the short-term acute ex vivo exposure of the 

heart to the MCDi. It is possible that longer-term in vivo post-ischemic exposure 

to MCDi would be more effective since MCD inhibition would occur during the 

remodeling process. This assumption is supported by our findings in Chapter 3 

where chronic MCD deficiency in MCD-KO mice was associated with less 

functional deterioration and less metabolic inefficiency following CAL surgery. 

Similarly, the protective effect of post-surgical MCD inhibition via microRNA 

treatment of CAL rats [60] suggests the possibility of a better response to chronic 

post-surgical pharmacologic MCD inhibition in CAL hearts. 
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6.7 Conclusion 

 Post-infarction remodeled failing mouse hearts are inefficient in the 

utilization of energy substrates for mechanical work.  Mismatched glucose 

metabolism (glycolysis vs glucose oxidation) and the resulting accelerated proton 

production per unit LV work may be a contributor to inefficiency and the 

deterioration of LV mechanical function.  The prevention of inefficiency by a 

metabolic intervention (chronic MCD deficiency) that lessens mismatched 

glucose metabolism and improves mechanical function supports the view that 

inefficiency is a major contributor to HF in the infarct-remodeled heart and is 

amenable for improvement by metabolic interventions. 

 Remodeled CAL hearts exhibit impaired LV mechanical function and 

metabolic efficiency during baseline aerobic conditions. They exhibit higher 

recovery of LV function and no further deterioration of metabolic efficiency 

following exposure to ex vivo IR injury. Lower glycogenolysis during ischemia 

with subsequent less intracellular acidosis and ion dysregulation may contribute to 

the greater tolerance to ischemic injury in the remodeled heart.   

 Extreme caution is warranted when generalizing the responses to 

cardioprotective metabolic interventions from normal to remodeled hearts. For 

example, while the presence of DCA during reperfusion of normal hearts is 

associated with functional benefits and maintenance of cardiac efficiency [367, 

416, 495], the response of remodeled hearts to the same metabolic intervention 

appears more complex and potentially different from normal healthy hearts. More 

studies are needed to understand why CAL hearts exhibit a significant 
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deterioration of post-ischemic function following the DCA exposure. Also, more 

studies are needed to understand the mechanism of lactate-induced inhibition of 

the effects of DCA on glucose oxidation. Also species differences may partly 

explain why mouse hearts do not exhibit a similar response to DCA as rat hearts. 

This is extremely important and should be considered when applying animal-

derived data to human studies. 

 Similarly, while MCD inhibition is protective against acute IR injury and 

chronic MCD inhibition, whether by MCD-KO [221] or by microRNA 

approaches initiated after CAL surgery [60], is protective against post-ischemic 

functional and metabolic efficiency deterioration, acute ex vivo MCD inhibition 

was not sufficient to produce similar beneficial effects in CAL hearts. A study 

employing chronic in vivo pharmacologic MCD inhibition is needed to test the 

potential benefit of MCD inhibition in terms of improving mechanical function 

and metabolic efficiency in remodeled CAL hearts. 
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7.1 Limiting metabolic inefficiency and mechanical 

dysfunction following CAL surgery via chronic 

MCD inhibition 

 We have shown in Chapter 3 that chronic MCD deficiency is associated 

with less deterioration of metabolic efficiency and less cardiac dysfunction. This 

is associated with better matching of glycolytic flux and glucose oxidation rates 

which results in lower proton production rates. These findings confirm our 

hypothesis that CAL hearts are metabolically inefficient and that this state of 

inefficiency is amenable to correction, at least partially, by metabolic 

interventions. Similar benefits are obtained by microRNA-induced silencing of 

MCD expression in rat hearts [60]. However, genetic interventions can result in a 

myriad of compensatory mechanisms that can confound the observed findings. 

Moreover, the initiation of the intervention before the ischemic insult does not 

recapitulate the actual clinical real-life sequence of events where interventions are 

usually initiated after the ischemic insult. 

 One approach to dissect the actual consequence of MCD inhibition from 

any other confounding factors is to inhibit pharmacologically MCD after the 

initiation of the ischemic event. As mentioned in the second part of Chapter 5, 

acute ex vivo administration of MCDi at time zero of the perfusion protocol does 

not improve ex vivo function of CAL hearts despite a significant increase in 

malonyl CoA levels. An alternative approach to better address this issue is to 
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initiate chronic MCD inhibition in vivo immediately after CAL surgery. This 

would allow a sufficient treatment period that is initiated at the start of the 

remodeling process where there is a higher possibility of causing a reversal or at 

least a diminution of the adverse events. Preliminary data (personal 

communication from Lopaschuk’s lab) indicate that CAL rats treated with oral 

MCDi initiated after the surgery have better treadmill performance indicative of 

improved exercise tolerance as compared to untreated rats.  

 

7.2 Study of the acetylation control of fatty acid 

oxidation in remodeled hearts 

 Acetylation/deacetylation control of metabolic enzymes is an emerging 

field of research. In general, lysine acetylation is an important reversible post-

translational modification that modifies activity of proteins involved in many 

cellular processes, including nuclear transcription, cell survival, apoptosis and 

mitochondrial function [496-501]. Lysine acetylation is achieved via the activity 

of a group of enzymes called histone acetyl transferases and involves the transfer 

of an acetyl moiety from acetyl CoA to lysine resulting in neutralization of the 

lysine positive charge and subsequent alterations in protein configuration and 

activity [496, 498, 501]. The deacetylation process is carried out by a group of 

histone deacetylases of which sirtuins (SIRTs) are of particular interest [499, 500, 

502-504].  
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 Currently, there is no agreement about the consequences of acetylation of 

fatty acid β-oxidation enzymes. Reports from Hirschey et al [505, 506] suggest 

that deacetylation of LCAD by SIRT3 accelerates fatty acid oxidation in the liver. 

Moreover, chemical acetylation of LCAD on lysine 318 and lysine 322 reduces 

enzymatic activity, while deacetylation with recombinant SIRT3 restored catalytic 

activity [507]. In contrast, Zhao et al [508] reports that acetylation activates β-

HAD in muscle cells. Similarly, mitochondria from hindlimb muscles of fasted 

mice have an increased acetylation associated with increased fatty acid oxidation 

rates [509]. Moreover, diaphragm muscle of SIRT3-KO mice exhibit increased 

acetylation and increased fatty acid oxidation rates [509]. Furthermore, obese dam 

offsprings exhibit a significant decrease in SIRT3 expression and activity 

associated with increased LCAD acetylation [510]. Recently, Abo Alrob et al 

[511] reports that decrease in SIRT3 seen following chronic high fat feeding or 

chronic SIRT3 deficiency enhances acetylation of β-HAD and LCAD. This 

induces a switch in cardiac energy substrate utilization from glucose to fatty acid 

oxidation.  

 Similarly, acetylation is reported to regulate glucose and lactate oxidation 

through modification of the rate limiting PDH activity. As mentioned in chapter 1, 

PDH is regulated by substrate/product ratios and by covalent modifications [20]. 

The latter includes phosphorylation and acetylation [509, 512, 513]. Acetylation 

of lysine residues in the E1α subunit of PDH inhibits the enzyme [509]. Similarly, 

inhibition of SIRT3 in skeletal muscles and myoblasts induces acetylation 

resulting in inactivation of PDH [509]. In the heart, treatment with angiotensin II 
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leads to a reduction in SIRT3 protein levels as well as increased acetylation and 

inactivation of PDH [514]. A recent study by Fan et al [512] suggested that 

acetylation at lysine 321 of PDH is an important regulator of PDH activity in 

human cancer cells. Similar to fatty acid regulation, there is no agreement 

regarding the impact of acetylation. Recently, acetylation of lysine 254 is reported 

to activate GAPDH in response to glucose signals [515]. In contrast, a report from 

Wang et al [516] indicates that G-6-PD is inactivated by acetylation of lysine 403 

increasing the susceptibility of the cell to oxidative stress secondary to reduced 

pentose phosphate pathway-derived NADPH. The subsequent reduction of 

intracellular reduced glutathione that is the main intracellular reducing agent 

increases the susceptibility to oxidative stress [516].  

 Considering the complexity of metabolic changes that develop in 

remodeled hearts and the lack of agreement regarding the role of acetylation in 

the control of the key metabolic regulatory enzymes, it is warranted to examine 

the acetylation status of key enzymes such as PDH, G-6-PD, LCAD and β-HAD 

as an initial step towards the understanding of the regulation of these pathways 

which helps in the identification of potential targets for the improvement of the 

function of remodeled hearts through improvement of their metabolic efficiency. 
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7.3 Stimulation of pentose phosphate pathway to 

lessen cardiac post-infarction functional and 

metabolic deterioration 

 The pentose phosphate pathway (PPP) is an important accessory glucose 

metabolism pathway that can be divided into oxidative PPP and non-oxidative 

PPP [517, 518].The main function of the oxidative PPP is the production of 

NADPH which plays an essential role in regulating oxidative stress via 

replenishing reduced glutathione levels. Meanwhile NADPH is required for the 

production of cytosolic reactive oxygen species that, at low levels, are involved in 

proliferation and survival signaling [519]. Besides, NADPH is also required for 

lipogenesis [520, 521] and anaplerosis [522-526].  The oxidative PPP utilizes G-

6-P created from the initial reaction of glycolysis as a substrate through the action 

of G-6-PD [518, 520, 521]. In the non-oxidative PPP, formation of ribose-5-

phosphate and xylulose-5-phosphate is important in nucleotide or nucleic acid 

synthesis or as a possible transcriptional signaling molecule, respectively [527, 

528].  

 Currently, there is no agreement regarding the occurrence of PPP 

stimulation in heart failure models. While earlier reports indicated that PPP is not 

upregulated in heart failure [529], many other reports confirm its stimulation 

[530-533].  Moreover, the consequences of PPP stimulation are not agreed upon. 

In canine model of pacing-induced heart failure, increased activity of G-6-PD is 

associated with increased levels of superoxide [533]. The consequences of 
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increased superoxide production depend on whether its level exceeds the 

threshold for harmful oxidative damage of cellular organelles and disruption of 

ionic homeostasis. Similarly, proteomic analysis of hearts from Dahl salt sensitive 

rats reveals activation of PPP and the functional benefits of DCA treatment is 

associated with further activation of PPP [259]. Furthermore, chronic deficiency 

of G-6-PD in mice increases oxidative stress and functional deterioration 

following myocardial infarction and transverse aortic constriction [534]. In 

contrast, recent reports indicate that excessive NADPH derived from the oxidative 

PPP contributes to cardiomyopathy and heart failure [533, 535]. Taken together, 

the current evidence suggests that a certain degree of PPP stimulation is a 

protective compensatory mechanism in heart failure and that further stimulation 

may be protective. 

 One approach to stimulate PPP is the treatment with benfotiamine which 

is a thiamine derivative that activates transketolase and directs glucose to PPP 

[536-541]. Treatment with benfotiamine is reported to protect against acute 

streptozotocin-induced diabetes reducing oxidative stress and rescuing 

cardiomyocyte contractile function [541]. Similarly, treatment of normal and 

streptozotocin-induced diabetic mice with benfotiamine is reported to stimulate 

PPP leading to reduction of oxidative stress and activation of G-6-PD/akt 

prosurvival pathway leading to improved post-infarction survival, functional 

recovery and neovascularization and reduced cardiomyocyte apoptosis and 

neurohormonal activation in normal and diabetic mice [540]. Benfotiamine is also 

reported to stimulate glucose oxidation in differentiated human skeletal muscle 
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cells under normoglycemic and hyperglycemic conditions [542] perhaps through 

enhancement of NADPH-dependent anaplerotic generation of TCA cycle intermediates.  

 We showed in this thesis that CAL hearts have mismatched glucose 

metabolism where the increase in glycolytic rates is not associated with sufficient 

increase in glucose oxidation. It is important to study the changes in PPP and the 

subsequent changes in oxidative stress in CAL hearts which can contribute to the 

observed functional deterioration. Chronic post-infarction treatment with 

benfotiamine can add insights regarding the potential benefits of further 

stimulation of PPP in our model.  
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