INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand cormner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

University of Alberta

A VisuaL QUERY FacILITY FOR DISIMA IMAGE DATABASE
MANAGEMENT SYSTEM

by

@ Bing Xu

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2000

i+l

Your e Votre réldrence

Our fle Notre riférence

L’auteur a accordé une licence non
exclusive permettant a la

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
The author has granted a non-
exclusive licence allowing the
National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-60196-X

Canada

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

University of Alberta

Library Release Form

Name of Author: Bing Xu

Title of Thesis: A Visual Query Facility for DISIMA Image Database Man-
agement System

Degree: Master of Science

Year this Degree Granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Bing Xu

615 GSB

Department of Computing Science
University of Alberta

Edmonton, Alberta

Canada T6G 2H1

Date: A{ﬁl‘// (0 2cces

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled A Visual
Query Facility for DISIMA Image Database Management System
submitted by Bing Xu in partial fulfillment of the requirements for the degree
of Master of Science.

Prof. M. Tamer Ozsu

Supervisor
M —
I / I
Prof. M. Nascimento .

Prof. € Montgomerj
External Examiner

Date. Aron'/ (0. 20200

Abstract

Recent advances in image processing and networking technologies have
made the development of an image database management system (DBMS)
possible. Images require specific storage management, processing methods and
manipulation languages which are application dependent. Managing images
for efficient retrieval is a growing need and a challenging issue. One aspect
of this challenge is the development of a high level interface to access these
databases.

This thesis addresses the design and implementation of a visual query in-
terface, called VisualMOQL, for the DISIMA image DBMS. DISIMA has a
text-based query language, MOQL, which is an extension of MOQL with mul-
timedia constructs. VisualMOQL is the visual interface to OQL and combines
semantic-based (query image semantics) and textual-based (specify and com-
pare attribute values) query approaches. This combination leads to a flexible,
yet powerful visual query interface. A query specified using VisualMOQL is
translated into MOQL to make use of the MOQL parser and query processor.

To my parents

Acknowledgements

I would like to express my appreciation to the following people who have made
the completion of this study possible.

Dr. Tamer Ozsu for his guidance, advice, patience, and for being a great
supervisor.

Dr. Vincent Oria for his valuable suggestions and help.

Paul Iglinski for his helpful support.

Irene Cheng, who implemented the query parser and search engine, for her
suggestions.

Finally, I want to thank my fiancee Esther for her continuous love, encour-

agement, and moral support.

Contents

1 Introduction
1.1 Motivation. e e e

1.2 Thesis Scope and Organization

2 Related Work

2.1 Content-based Image Retrieval
2.1.1 General Approaches
2.1.2 Visual Query Languages
2.1.3 Other Image Retrieval Systems
214 Conclusions,

2.2 Image Similarity,
22.1 ColorSimilarity
2.2.2 Shape Similarity
2.2.3 Texture Similarity
2.2.4 Other Image Similarity Measures
225 Conclusions

3 The DISIMA System

3.1 Objectivet
3.2 Functiomality,
33 TheDISIMAModel
3.3.1 The Model Components
332 ThelmageBlock
3.3.3 The Salient Object Block

3.3.4 Defining a DISIMA schema

w

O ~J o » W

3.4 The DISIMA Architecture 44

3.5 MOQL: A Multimedia Extension of OQL 47
4 The User Interface 51
41 Imtroduction 51
4.2 VisualMOQL: The DISIMA Visual Query Interface 53
42.1 Interface Overview 54
4.2.2 Salient Object Class Browser 56
423 WorkingCanvas. 57
424 QueryCanvas nnn.. 62

4.3 VisualMOQL Query Semantics and Translation 64
43.1 VisualMOQL Query Semantics 64
4.3.2 VisualMOQL Query Translation and Processing 65

4.4 VisualMOQL and Other Content-Based Image Retrieval Systems 67

5 Implementation Issues 69
5.1 VisualMOQL Translation. 69
5.2 Query Parser and Query Engine 72

6 VisualMOQL Query Examples 74

7 Conclusions and Future Work 92
71 Conclusions 92
72 FatureWork o 93

A VisualMOQL Translation Algorithm 105

List of Figures

2.1
2.2
2.3
24
2.5
2.6

2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Query interface for QBIC
Query interface for Virage
Query interface for VisualSeek
Query interface for Photobook
Query interface for IFQ
Three color histograms whose perceptual similarities do not cor-
respond to their L-distance

The cumulative histogram of the histograms displayed in Figure

Turning angle representation
Turning angle representation using Fuclidean distance is sensi-

Bve L0 NOTSE . . . v o e e e e e e e e e e e e e e e e e e

DISIMA model overview
An ezample of image and logical salient object hierarchies.

An ezample of salient objects hierarchy
Eztended ER diagram for part of entities in the DISIMA model
The DISIMA architecture.
Distribution in DISIMA

Mediator-wrapper architecture

Main window of VisualMOQL
Object property input window for object Person.
Dialog window for defining directional spatial relationship . . .
Definitions of directional relations

Definitions of topological relations

21

22
28

30

39
40
41
43
45
46
47

4.6
4.7

5.1
5.2

5.3
5.4

5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

Dialog window for defining image property 63
Warning boz appears when users try to AND queries containing

incompatible image classes 66

The query tree of a compound query containing negator operator 70

The query tree of a compound query with negator in normalized

form . .. e 70
A VisualMOQL compound query with NOT operator. 71
The VisualMOQL compound query in Figure 5.3 after being

converted to normalized form. 71
DISIMA query processing. 73
VisualMOQL forquery 1 75
Translated MOQL for query I 75
Queryresult of query 1, 76
VisualMOQL forquery 2. 77
Object property window for query 2 78
Translated MOQL for query 2 78
Queryresult of query 2 79
VisualMOQL for query 3 80
Spatial relationship dialog window for query 3 81
Translated MOQL for query & 81
Queryresult of query 3 82
VisualMOQL forquery 4 83
Translated MOQL for query 4 84
Queryresult of query 4o 84
VisuadlMOQL forquery 5. 85
Image property dialog window for query 5. 86
Translated MOQL for query 5 86
Queryresult of query 5 87
VisusdlMOQL forquery 6 88
Translated MOQL for query 6 89

Queryresultof query 6 89

6.22 VisualMOQL for query 7.
6.23 Translated MOQL for query 7

6.24 Query result of query 7

......................

Chapter 1

Introduction

1.1 Motivation

Multimedia information has become a very important part of our every-
day life. From textbooks to computer games, from geographical information
systems to the latest web sites, the popularity of multimedia is growing at a
rapid rate. While this provides people greater opportunity to explore more
information, it also poses a new problem: how can users find the desired in-
formation easily and effectively? In the last ten years, a significant amount
of research effort has been directed into this area, especially in the context of
image databases.

An image database is a database that stores both image data and associated
symbolic data. An image DBMS supports acquisition, storage, management,
and access to image data, similar to what traditional database systems do with
conventional data. The usage of image databases is increasing. For example,
a fashion designer may need to find a fabric of a certain color, a visitor may
want to search a painting by Picasso from a museum’s collection, a doctor may
need to find a X-ray image of a tumor with particular shape, and a newspaper
editor may require an image database to retrieve pictures s/he wants.

Unlike the problem of data processing in traditional alphanumeric database
systems, retrieving images efficiently and effectively in databases is difficult.
Due to their visual nature, it is hard, if it is possible at all, to find a verbal de-

scription for image content. This makes efficient image retrieval a challenging

issue.

In order to build an image database system, we need to find answers to
several questions: Would an easy text search be enough? Should the database
provide both image manipulation features and information retrieval function-
ality? How should we design the interface so that not only experts, but also
naive users, can use the database? What kind of description is most suitable?

Most early image retrieval systems are text-based, in that relevant text
annotations are attached to each image and stored in a traditional database.
These annotations are used as the basis for retrieval after the user enters the
keywords for the image that s/he wants to retrieve. This approach, known as

“query-by-caption” [32], has the following disadvantages:

1. User queries are restricted by the particular vocabulary used, because

keywords do not allow unanticipated search in subsequent applications.
2. It is hard to obtain consistent annotations.

3. It does not catch the semantic features of the images or support queries
based directly on the visual features of the images. For example, it is

difficult, if not impossible, to specify texture by means of words.

4. It can’t provide queries based on similarities between images.

To overcome the problems of text-based image retrieval systems, the use
of image content features as the basis for retrieval has been investigated-where
searches are performed directly on image data as opposed to searches of asso-
ciated textual information that has been “attached” to each database image
by an interpreter or analyst. This approach allows the user to query over
the color, texture, shape of objects, and even the spatial relationship among
objects in the image. Content-based retrieval will greatly improve the value
of massive image databases, especially for those applications where data are
collected in such staggering quantities that human experts will only be able
to examine a smalll portion of the entire data set.

The concept of content-based retrieval alleviates several technological prob-

lems. It gives a user the power to retrieve visual information by asking a query

like “Show me all pictures that look like this”. The system satisfies the query
by comparing the content of the query picture with that of all target images
in the database. This is called query-by-example (QBE) [18] and is a simple
form of content—based retrieval.

Traditional database access is via well-defined textual query languages.
Some image database systems have adopted this idea and developed interfaces
based on keyword and SQL-like query languages. These are more precise,
but not natural or friendly to the users, since they would require knowledge
of the database schema and learn a query language. Due to the diversity
of image database users, such requirement are often not realistic. Another
disadvantage of this approach is that query languages do not visualize queries,
so users are not able to match the query representation with their mental
models. An image database needs a visual query interface to allow effective
and easy access to the database.

Another approach is to develop more user friendly interfaces. Approaches
include cognition—based interfaces that support query by image examples [64,
19], and a descriptive semantics-based approach [23] in which users pose
queries by describing the semantics of the target image. These interfaces have
the advantage of being more natural to users, but they have low precision,
because the queries are ambiguous.

To fill the gap between these two approaches, an image database query
interface should not only visualize queries, but also support precise manipula-
tions of query construction. Moreover, image data are semantically richer than
the traditional text data. The fact that segments in an image have associated
semantics and that they constitute meaningful structures is ignored by most
systems. Users should be able to query objects with finer granularity than a

whole image.

1.2 Thesis Scope and Organization

This thesis identifies the query interface requirements of an image database.

It addresses the design and implementation of a visual query interface, called

VisualMOQL, for the DISIMA image database management system [62]. DIS-
IMA has a text-based query language, MOQL, which is an extension of OQL
with multimedia constructs. VisualMOQL is the visual interface to MOQL and
combines semantic-based (query image semantics) and textual-based (specify
and compare attribute values) query approaches. This combination leads to a
flexible, and yet powerful visual query interface which allows the user to access
the DISIMA image DBMS easily and more effectively. A query specified using
VisualMOQL is translated into MOQL to make use of the MOQL parser and
query processor.

This thesis is organized as follows: Related issues in image database and
visual interface design are discussed in Chapter 2. Chapter 3 explains the
DISIMA DBMS. The visual query interface is detailed in Chapter 4. Chapter
5 discusses some implementation issues. Sample VisualMOQL queries are

presented in Chapter 6. Chapter 7 concludes the thesis and proposes some

future work.

Chapter 2
Related Work

Building visual interfaces to databases has become a fairly active research
area. There are a number of systems that have been proposed, with varying
capabilities [24, 35, 46, 58, 66, 74, 75, 76]. Building such interfaces for image
databases is more involved, since the systems have to be able to deal with
issues such as similarity searches and content-based querying. In this chapter

related work in these areas is reviewed.

2.1 Content—based Image Retrieval
2.1.1 General Approaches

With the advent of image technologies such as like pattern recognition,
image compression, and edge detection, considerable research effort has been
directed into image processing and image retrieval during the last several years.
This work has made content-based image retrieval systems possible.

Research on ways to extend and improve content-based query methods for
image databases is widespread. Currently, there are more than twenty research
and three commercial image retrieval systems and these numbers keep growing.

Two main approaches have been investigated. The first one is to use tra-
ditional SQL-like query languages or keyword-based search techniques. As a
result, the interfaces are built based on the system’s view. They often require
the user to learn the database schema and become a master of the query lan-
guage. This causes serious problems since most image database users are not

computer experts and do not have time to learn a new query language.

5

Recently developed image information systems lean more toward the query-
by-example paradigm, where the user provides an example image by choosing
it from the database or partly drawing what a desired image should look like.
The most popular image features used in these content-based retrieval systems
are color, texture, and shape. Besides extracting the global features of images,
some systems also calculate the regional color and texture. These techniques
have been applied to overall image content without taking into account the
characteristics of individual objects. While the techniques work well for the
retrieval of images with similar overall content (including backgrounds), their
accuracy is limited because they are unable to take advantage of individual
objects’ visual characteristics, and to perform object-level retrieval.

Other information systems have focused on the representation of spatial
structures and efficient access methods to these structures, such as 2D-string
feature indexing [21]. In these approaches image contents are modeled as a set
of user defined attributes, extracted automatically or manually, and managed
within the framework of conventional database management systems. The
values of the attributes are grouped together and translated into a signature of
the image. The signature is then stored in the database with the corresponding
image. When the user presents a query containing a set of desired values, it is
first translated into a signature, and then compared with the image signatures
stored in the database. The similarity between them is computed using some
distance function, the most common one being Euclidean distance. Finally, a
set of ranked images is returned to the user as the query result. Attribute-
based representation of images entails a high level of image abstraction. The
major disadvantage of these symbolic methods is that they cannot handle
direct spatial queries. For example, given a GIS map, the query “Is there
a river within 5km distance of Toronto” cannot be answered by the above
approaches. Another limitation is the difficulty of modeling the temporal and

evolutionary relations in the data model.

2.1.2 Visual Query Languages

The effectiveness of an image retrieval system ultimately depends on the
types and correctness of the image content representations used, the types of
image queries allowed, and the efficiency of search techniques implemented.
These factors pose new challenges for the traditional query languages and user
interfaces.

A query language is a set of formally defined operators which allow users
to express requests to a database. While traditional query language (SQL)
can handle alphanumeric data very well, it does not fulfill the requirements

for new image retrieval systems. The main reasons are:

e It is not user friendly.

e It does not have operators to handle the complex spatial, temporal, and

evolutionary relationships among objects in the images.

e More importantly, it deals only with queries based on exact match, while

content-based image queries require similarity match.

Trying to overcome the disadvantages of traditional query languages, re-
searchers have proposed several new query languages designed for multimedia
databases in the last few years. These proposals can be classified into three

categories:
o Entirely new and specialized languages: [5, 16, 33, 37, 47].

o Languages that are based on a logic or functional programming approach:
[28, 55].

o Languages that are extensions of the standard database query language
SQL: [2, 10, 60, 61, 69].

It has been pointed out that completely new multimedia query languages
(at least those that have been proposed) present the problem of lack of theo-

retical framework to reason about the soundness and expressive power of the

languages [51]. It is also not easy to convince users to learn and use a new
language for every new application domain. The majority of existing proposals
of new multimedia query languages are based on extensions of SQL.

As analyzed before, formal query languages alone are not suitable for the
user interface of image databases since they do not fulfill the requirement of
user friendliness. Users should be able to construct queries in a more natural
way than using the query language directly. Recently, many visual interfaces
for multimedia database systems have been proposed in the literature. They
adopt a range of different visual representations and interaction strategies.

Several authors singled out a number of usability features that can be

obtained with direct manipulation visual techniques [81):

e Shortening of the distance between the user’s mental model of reality

and the representation of such reality proposed by the computer;
e Reduction of the dependency on the native language of the user;
e Ease in learning of the basic functionality of the interaction;

o High efficiency rate obtained also by expert users, partly because of the

possibility of defining new functions and features;
o Significant reduction in the error rate.

Visual languages coupled with internal query languages provide an abstract
set of operators and a mechanism to express operators defined in the internal
language. There are a few prototypes using this approach. The QBD* visual
language [4] is not directed at multimedia applications but is one of the first
visual languages to separate the external model and querying from the internal
query language. The QBD* visual query language is based on an entity—
relationship representation at the external level and uses SQL internally. A
query is expressed by selecting an entity, then following a path by choosing a
relationship. Conditions can be expressed on attribute values. Delaunay™M
[25] is a framework for querying multimedia data stored in distributed data

repositories, including the web. The Delaunay™™ query interface provides a

8

format in which users can enter object SQL-like queries. The queries are then

translated into the syntax accepted by the destinations.

2.1.3 Other Image Retrieval Systems

IBM’s QBIC system [58] is one of the early image retrieval systems in
which the user provides value-examples for one or more visual features. QBIC
(Figure 2.1) is able to not only pick out the colors in an image, but also to
gauge texture by measures—contrast, coarseness, and directionality. It uses
simple keyword descriptors and allows text-based search. It also has a limited
ability to search for shapes within an image. However, the user cannot search
on objects and the spatial relationships among them in the images.

SaFe [76] is a general tool for spatial and feature image search. It pro-
vides a framework for searching and comparing images by utilizing the spatial
arrangement of regions or objects. In a SaFe query, objects or regions are
assigned by the user. These are given properties of spatial location, size, and
visual features such as color. SaFe also resolves spatial relationships, which
allows the user to position objects relative to each other in a query. But as
with QBIC, it does not support queries based on salient objects and visual
properties.

VISUAL [8] is a graphical icon-based query language. It is designed for
scientific databases where the data has spatial properties. VISUAL is nonpro-
cedural and uses the example element concept of query-by-example [82] to for-
mulate query objects. The data model used is an object-oriented data model
with complex objects, which can be built by set, bag, tuple, and sequence
constructors. Utilizing graphical icons, VISUAL allows users to express vi-
sual queries in an incremental fashion. VISUAL has an object-oriented query
specification model. A query object is composed of subquery objects, which
can be saved and reused.

The UCLA Medical Image Model [38] consists of two layers. The lower layer
represents the related image and object contours. The upper layer abstracts
objects from images. Additional hierarchical, spatial, temporal, and evolution-
ary constructs help capture the relationships among objects. The prototype

9

Ehttp://wewgbic.almaden. ibm. com/cgi-bin/photo—demo/search? fname=Color+El

Usage: Ik Get Info B Find Similar Color IR Find Similar Colors It
Find Similar Layout Bk Find Similar Texture

Figure 2.1: Query interface for QBIC

10

built on top of the commercial object-oriented DBMS Gemstone (15, 12] pro-
vides a framework for image preprocessing and feature extraction. Its query
language, SEQL (Spatial Evolutionary Query Language), allows users to ex-
press queries with temporal, evolutionary and spatial predicates.

WebSEEK [74] is a web image search engine developed at Columbia Uni-
versity. It lets users begin a search by selecting a category from a menu, say
“cat”. WebSEEK provides a sampling of icons for the “cat” category. To
narrow the search, the user can click on any icon that shows black cats. Using
its previously generated color analysis, the search engine looks for matches of
images that have a similar color profile. The presentation of the next set of
icons may show black cats — but also some marmalade cats sitting on black
cushions. A visitor to WebSEEK can refine a search by adding or excluding
certain colors from an image when initiating subsequent queries. WebSEEK
has downloaded and indexed more than 650,000 pictures from tens of thou-
sands of web sites. While providing search ability on objects and some visual
properties, WebSEEK lacks the ability to process spatial queries. And since
it is not based on a formal multimedia query language, the query is not very
precise.

ImageRover [71] is an experimental content-based web image browser. At
search time, users can iteratively guide the search through the selection of
relevant examples. The query is formulated based on the composition of color,
texture, and dominant orientations presented in the user-selected example im-
ages. Query-by-example interface has been developed and is accessible via a
web interface.

Los Alamos National Laboratory has developed the CANDID (Comparison
Algorithm for Navigating Digital Image Databases) system [45, 46] which em-
ploys the idea of comparing a global signature generated to describe an entire
image, or a specific region of interest, to other global signatures. When a user
queries the database to retrieve images that are similar to a given image, a
global signature for that example image is first computed, and then compared
to the signatures of all images in the database. This system has been used
for both a medical application (retrieving pulmonary CT images to identify

11

patients suffering from similar lung diseases) and a remote-sensing application
(searching a database of digital satellite imagery), and has obtained promising
results. However, both ImageRover and CANDID have the same general prob-
lems that query-by-example approaches have — namely, they do not capture
the image semantics represented by salient objects and their spatial relation-
ships.

Virage (Figure 2.2) is an image retrieval system based on visual features
as image primitives. These primitives can be general, such as color, shape,
or texture, or domain specific. Virage transforms images from a data-rich
representation of explicit image pixels to a more compact, semantically rich
representation of visually salient characteristics. The Virage model [34] uses
layered views of image data. The system is made up of four layers: image
representations and relations (IR), domain objects and relations (DO), image
objects and relations (IO) and domain events and relations (DE). The Virage
system allows the user to incrementally express incomplete queries, starting
from semantic pictorial objects with similarity predicates, and it can retrieve
images or part of images.

VisualSeek [75] (Figure 2.3) is a image database system which provides
color and spatial querying. Since the discrimination of images is only partly
provided by global features such as color histograms, VisualSeek instead uti-
lizes salient image regions and their colors, sizes, spatial locations, and rela-
tionships to in order to compare images. This allows the user to form queries
by diagramming spatial arrangements of color regions. The system finds the
images that contain the most similar arrangements of similar regions. Prior
to the queries, the system automatically extracts and indexes salient color
regions from the images. By utilizing efficient indexing techniques for color
information, region sizes and absolute relative spatial locations, a wide variety
of complex joint color/spatial queries may be computed.

Photobook [66] (Figure 2.4) is set of interactive tools for browsing and
searching images, based on image content. It uses semantics—-preserving image
compression, which reduces images to a small set of coefficients, and compares

features associated with images, rather than the images themselves. The fea-

12

2 VIR Tedha bagy Bmen

VIR
TECHNOLOGY DEMO

CLICK AN IWAGE TO FIND STMILAML IMAGES

R SO
R]

Figure 2.2: Query interface for Virage

13

oabent Laced bnage Babrevdd Seston

http://wer.ctr.columbia.edu/~jrsmith/Visual SEBK/Visual SEBK . html

Since January 14, 1949

A
Figure 2.3: Query interface for VisualSeek

14

tures used are commonly color, texture, and shape. Features are compared
using some matching algorithms provided by the Photobook library. In version
5, the algorithms include Euclidean, Mahalanobis, divergence, vector space an-
gle, histogram, Fourier peak, and wavelet tree distances, as well as any linear

combination of these. Version 6 allows user-defined matching algorithms via

dynamic code loading.

Figure 2.4: Query interface for Photobook

15

Photobook includes FourEyes [57], an interactive learning agent which se-
lects and combines models based on examples from the user. This makes
Photobook different from tools like QBIC and Virage, which support a search
on various features, but offer little assistance in actually choosing one for a
given task. FourEyes, by contrast, allows users to directly address their intent.

Although Virage, VisualSeek, and Photobook support queries on color,
texture, and other visual properties, they do not provide a view of the internal
data structure. And they do not support complicated queries involving logical
operators (like OR, NOT) either.

SEMCOG (SEMantics and COGnition-based image retrieval) [53] is an-
other visual query language developed at NEC and CCRL. It integrates se-
mantic and cognition-based approaches with a visual approach. The query
is posed by specifying image objects and their layout using the visual query
interface IFQ (In Frame Query) (Figure 2.5). A query specification in IFQ is
done in two steps. First, the user introduces image objects, describes them,
and then specifies their spatial relationships. A query specified using IFQ
is then translated into CSQL (Cognition and Semantics-based Query Lan-
guage), which is a SQL-like language extended with semantic predicates is_a
(specialization), s_like (semantic like), i_like (image like), contains, and spatial
relationships. SEMCOG is being implemented on top of a deductive and a
commercial object-relational DBMS. A comparison between IFQ and Visual-
MOQL is given in Section 4.4.

2.1.4 Conclusions

In most of the interfaces developed for image databases, users can specify
the color, texture, and shape of the objects. Query by example image is also
available in most of the systems (QBIC [58], Virage [7]).

However, current image retrieval systems have many significant limitations.
Many are specialized for a particular class of images and/or queries, support-
ing relatively weak querying by content (i.e., by color, texture or shape, but
with no deeper understanding of the structure of the image). We can make

significant improvement by providing a visual interface on top of the formal

16

Figure 2.5: Query interface for IFQ

17

multimedia query language in order to bridge the gap between users’ percep-

tive concepts and direct manipulation of query languages.

2.2 Image Similarity

In content—-based image retrieval, similarity measures, rather than exact
match, are used for the search. The similarity selection operation is the gen-
eralization of the k-nearest neighbor query and spherical range query, and
approximate versions of those queries [78]. The parameters of the similarity

selection query operation are the following:

1. A query vector ¢ € R% The query results are ordered in increasing
distance from g, where distance is usually the Euclidean or the weighted

Euclidean distance.

2. A positive integer k that specifies the maximum number of nearest neigh-

bors returned in the query result.

3. A positive real number T that specifies the maximum distance from the
query vector to any vector in the query results. Note that if T is larger
than the distance from q to the kth nearest neighbor, then an exact query
returns the k-nearest neighbors of ¢. If k is larger than the number of
objects within distance T of g, then an exact query becomes a spherical

range query bounded by T relative to g.

4. A non-negative real number ¢ that specifies a bound on the approxima-

tion error. The approximation error bound is given by

DD‘ <1l+4e (2.1)

where D is either equal to T if k result vectors have not been found, or
is the distance from ¢ to the current kth nearest neighbor vector in the

approximate query result; and where D* is the distance from the closest

missed vector to the query point g.

18

The similarity between two images can be measured by comparing them in
their entirety (whole-matching or global matching) or by comparing parts of
them (sub—pattern matching or local matching). Global matching is relatively
easy to do and needs less storage. Typically, a few numbers will be computed
over the entire image and two images are then considered similar if these
numbers are close to each other. The most common features used here are
color and texture. Global matching is limited because it cannot take advantage
of the local features in an image. Local matching needs more complicated
algorithms to capture and compare more features of an image, such as the
objects contained and their properties. It also needs more storage and longer
search time, but it is usually more accurate and provides more information
and query power to the user.

The interface for an image DBMS should provide tools to support the
image similarity algorithms used in the system. And often, these algorithms
affect the design of the interface. In the following sub-sections, we discuess

some commonly used algorithms for calculating the image similarities.

2.2.1 Color Similarity

Color indexing is one process by which the images in the database are
retrieved on the basis of their color content. A color indexing system requires
that several important objectives are satisfied, namely: automated extraction
of color, efficient indexing, and effective retrieval.

There are two techniques for color indexing: (1) global color distribution
and (2) local or region color. An important distinction between these tech-
niques is that indexing by global distribution enables only whole images to be
compared, while regional indexing enables matching among localized regions
within images. Both techniques are very useful for retrieval of images, but are
best suited for different types of queries.

Color indexing by global distribution is most useful when the user provides
a sample image for the query and is not concerned with the positions of colored
objects or regions in the images. However, it does not provide the means for

resolving the spatially localized color regions from the global distribution when

19

the user is interested in finding objects within images. On the other hand, color
indexing by localized or regional color supports partial or sub-image matching
between images. Localized or regional color indexing is generally more difficult
because it requires the effective extraction and representation of local regions.
In both cases a system is needed for the automated extraction and efficient
representation of color to support effective image retrieval.

Color indexing is introduced in [79]. The coarsely quantized color his-
tograms of the images are stored in the index. The color histogram H con-
taining n colors of image M is a vector (h,, he,, -, he,), where each element
he, represents the number of pixels of color ¢; in the image M. It is assumed
that all images contain N pixels and hence 3.1, ke, = N.

The L;-distance and L,-distance of two color histograms, H and I, are
defined as

n

Dy, (HI) =) |he -1 | (2.2)
Jj=1
Di,(H,I) = \Jz(hc, ic,)2 (2.3)

Some early experiments [78] show that this method does not retrieve all
the images with perceptually similar color histograms. This happens because
perceptually similar color histograms may be a large distance apart from each
other. For example, in Figure 2.6, the distance between H; and H, should
certainly be smaller than the one between H; and Hj if we order the bins
of color histogram in a way such that neighboring bins correspond to similar

colors. But the distances are:

Dr,(Hy, Hp) = 2N > Dy, (Hy, Hs) = Dy, (H,, H3) = 1.33N (2.4)

D[,,(Hl, H2) = 0.82N > D[,2 (H]_, H3) = DLz(Hg, H3) = 0.66 N (25)

This clearly shows the undesired effect of using the L-distance as a simi-

larity measure of color histograms.

20

In order to overcome the shortcomings of existing methods, a method called
cumulative color histogram has been proposed [78]. The cumulative color
histogram H(M) = (he,, Bey, - - -, he,) of the image M is defined in terms of the
color histogram H(M):

he; = 3 he, (2.6)

ci<c;

and the distance functions are defined as follows:

DLI(}.IY f) = z l ,.."Cj - ;c,- I (27)
i=l
DL,(FI, f) = \l}:(ﬁc, - :icj)z (28)
Jj=1
DLco (FI7 i) = {2?53" | ilc_,- - :‘:c,' l (2.9)

The cumulative histograms of H,, H,, and Hj in Figure 2.6 are shown in

Figure 2.7. The distances between the cumulative histograms are

DLl(Hg,H3) =4N > DLI(H1,H3) =3N> DLI(H1,H2) =N (210)

DLz(Hg,Hs) = 141N > D[,z(Hl, H3) = 1.20N > D[,,(Hl,Hg) = 0.58N
2.11)

I O

HI H2 H3

Figure 2.6: Three color histograms whose perceptual similarities do not corre-
spond to their L-distance

21

D[,m (Hz, H3) = DLQ (Hl, H3) =0.67N > l)[,‘,° (Hl, Hz) =0.33N (2.12)

The order resulting from the cumulative color histogram distance corre-
sponds to the intuitive order of the similarities of the color histograms. It has
been shown that cumulative color histograms, together with the L-metrics,
are more robust with respect to the quantization of the histograms than the
L-distances applied to color histograms {78].

The cumulative color histograms are always completely dense vectors even
if only a few colors of the discrete color space appear in each image. Usually,
the non-empty bins in color histograms are sparse, and, thus, the price paid
for the increased robustness of cumulative color histograms is an increase in

the index size and a slower retrieval speed.

H3 | H1 | | H2
——-
L L | | | | ! 1 | | I

Figure 2.7: The cumulative histogram of the histograms displayed in Figure 2.6

Color histogram intersection for color image retrieval is proposed in [73]. It
provides useful information such as “30% of the color distribution of image A
is similar to the color distribution of image B”. The intersection of histogram

H and Iis given by:

Z?:l mm(hc’ ? ic,')
min(Xio; he;y Tjoy ic;)

Colors not presented in the user’s query image do not contribute to the

DT(HaI) =

(2.13)

intersection. This formulation differs from that originally proposed by [79] in
order to make it a true distance metric. The intersection formula in [79] is not

symmetric in A and i and therefore is not a distance metric.

22

In IBM’s QBIC (Query By Image Content) system, both the global and
local color information are represented by mean color and color histogram [58).
This system defines a metric making use of the color similarities of the bins in
the color histograms. If the color similarity of the j-th and I-th bin is a; and
the symmetric matrix A with entries a;; is positively definite, then it defines

a new distance

DA(H, I) = Jiwj . (hcj - icj)z (2.14)
=1

where w; is the eigenvalues of the matrix A. If we choose all weights
as 1, i.e., Dy = Dg,. This method still suffers from the same problem as
Dy, as shown in Equation 2.11. Since the quadratic distance measure is very
computationally intensive, the mean color distance is used as a pre-filter for
color queries.

A new system for color indexing that provides automated extraction of
local color regions and efficient indexing is presented in [73]. First, the system
defines a quantized selection of n colors that will be indexed in the database. A
binary color vector ¢ for a color region in the image is a vector (¢, ¢, -, ¢Cn),
where ¢; is either 1 if color ¢; is found in the region, or 0 if it is not. In order to

be captured in the index by a color set, a region must meet two requirements:

1. There must be at least N pixels in the region, where N is a user defined

integer.

2. Each color in the region must contribute at least t% of the region area,

where ¢ is also user defined.

Each region is represented by the minimum bounding box and added to the
database index. The information stored for each region includes the color set,
region location, region size, and image ID. Together, they enable a rich variety
of queries that specify not only color content but also the spatial relationships
and composition of color regions. Color set technique provides an alternative to

color histograms for representation of the color content of images and regions.

23

A similarity measure based on the color moments is proposed in [78]. The
color distribution of an image is interpreted as a probability distribution, then
the color distribution can be characterized by its moments. The first moment
is the average, the second is the variance, and the third is the skewness. So
the average color, the standard deviation, and the third root of the skewness
of each color channel are stored in the index. Hence, all the values in the index
have the same units, which makes them somewhat comparable. If the value

of the jth image pixel is p;, then the index entries are:

=N 12-:1?] (2.15)
z(p, E)?)3 (2.16)

1 & ,
=y 2= BP) (2.17)

Let H and I be the color distribution of two images with r color channels.
If the index entries of these images are E; resp. Fj;, o; resp. g;, and s; resp. ;,
then the distance is defined as

r

Dpom(H,(I) =) (wir | Es = Fi | twie | 0i — G | +wis | si = |) (2.18)

i=1

where wy; > 0(1 < I,k < 3) are user defined weights and can be used to
tune the similarity function for specific application. For example, if all the
images in the database were taken under the same lighting conditions, then
the weights can be set such that w;; > w;; and wy; > w;3 in order to penalize
shifts in the average color. For HSV color space, where usually the hue must
be matched more strictly than the saturation and the value, all the weights
for the moments of the hue channel can be set to a higher value than the other
weights.

It should be noticed that D, is not a metric, i.e., it is possible that
two non-identical color distributions have a similarity value of 0. A retrieval

based on D, may produce a false positive because the index contains no

24

information about the correlation between the color channels. Nevertheless,
the experimental results reported show that this method is more robust and
faster than the histogram-based methods.

The histogram-based color retrieval techniques described above suffer from
a lack of important spatial knowledge. [39] discusses a technique of integrat-
ing color information with spatial knowledge to obtain an overall impression of
the image. The technique involves three steps. In the first step, some heuris-
tic rules are formulated to find the set of representative colors. Then this
set of representative colors is used as the basis for obtaining relevant spatial
information through a maximum entropy discretization process. Finally, the
information obtained in step two is used to retrieve relevant images from an
image database.

A color is selected if (1) it occupies a large percentage of the pixels in the
image; or (2) it occupies a significant percentage of the pixels within a pre-
defined “window” located at the center of the image. Two color histograms
are computed. The first color histogram, H,, represents the color composition
of the entire image. The second color histogram, H,, represents the color
composition of the predefined central “window”. Both color histograms are
then sorted according to the number of pixels per color. The color with the
largest number of pixels in Hy is chosen as the background color of the image,
and the color with the greatest number of pixels in H,, is chosen as the color
of the object in the image. By doing this, the problem of having a relevant
object color being hidden/distorted by the background color is avoided.

The experimental results show that this approach generally yields a better
average precision for image retrieval and is more tolerant to noise in the image
[39].

Various methods for comparing color similarity have been proposed. Each
method has its own strengths and weaknesses. A color histogram is a high-
dimensional feature vector—typically having greater than 100 dimensions—
and the comparison of histograms is computationally intensive. They are
best suited for representation of global color rather than local color regions,

because of storage requirements and the large number of computations required

25

at query time. Other methods like color sets or color moments are reported
better than color histograms on some applications, but further experiments
must be conducted to test the robustness, accuracy, and efficiency of these
methods{29].

It is clear that color plays a critical role in image similarities because of
their perceptual importance and computational simpleness. It is also clear
that color alone is not sufficient to characterize an image. Shortcomings in
many of the existing color-based retrieval techniques include the inability to
recognize similar objects with different color, the extreme sensitivity of the
techniques to the scaling of an object, and the poor tolerance of noisy images.
It is clear, therefore, that an object’s color alone is not sufficient to determine
its identity; in general, texture or geometric properties are needed to identify
objects. Thus it is necessary to combine color indexing with texture and/or

shape indexing methods.

2.2.2 Shape Similarity

Shape representation is an interesting problem that has attracted signifi-
cant research, e.g., [6, 56, 41, 43]. There are two closely related problems:

(a) How to measure the difference between two shapes, so that the differ-
ence corresponds to the visually perceived difference;

(b) How to represent a single shape in a compact manner so it can be
stored in the DBMS efficiently.

A shape representation must have several properties:

o It should be a metric. E.g., let A and B be two shape representations
and d(A, B) be the measure of difference between them, then we should

have

— d(A,B) > 0 for all A and B.

— d(A, B) = 0 if and only if A = B.

— d(A, B) = d(B, A) for all A and B.

— d(A, B) +d(B,C) > d(A,C) for all A, B, and C.

26

e It should be invariant under translation, rotation, and scale. This is
to assure that shape similarity won't depend on the size of the images
or the position of the object in the image. For example, the shape
representation of a square should be the same after we rotate the object

45 degrees clockwise and/or make the side twice as long.

e It should be reasonably easy to compute. This must hold for the measure

to be of practical use.

e Most important of all, it should match the human intuitive notions of
shape resemblance. In other words, answers should be similar to those

that a human might give.

Generally, there are three kinds of approaches used in shape representation:

1. Representation through ‘landmarks’. For example, in order to match two
faces, information about the eyes, nose, etc., is extracted manually or
automatically. Thus, a shape is represented by a set of landmarks and
their attributes (area, perimeter, relative position, etc). The distance
between two images is the sum of the penalties for the differences of the
landmarks [68].

2. Representation through numerical vectors, such as

e Turning angle function [6].
o Some coefficients of the 2-d Discrete Fourier Transform (DFT) [30].
e The first few moments of inertia, as in [40] and QBIC.
e Sign of curvature [70].
¢ Chain codes [54].
3. Representation through a simpler shape, such as polygonalization and
mathematical morphology. For example, in [43], the shape of an object is

approximately represented by a group of rectangles. Similarity is based
on the position and size of the most significant rectangles. The technique

27

can also be extended to apply to 3-D images. But it is not clear if the

representation is invariant to rotation of the object.

An interesting comparison among various methods used to represent object
shapes has been made on a large image database in {70]. According to the
results presented, the most efficient method of shape representation for image
retrieval seems to be the one based on turning angles.

Turning angle representation is proposed in {6]. Using this approach, the
boundary of a simple polygon A is represented by the turning function ©4(s).
The function ©4(s) measures the angle of the counter-clock-wise tangent as
a function of the arc-length s, measured from a reference point O on A's
boundary. Thus © 4(0) is the angle v that the tangent at the reference point O
makes with some reference orientation associated with the polygon (such as the
x-axis). © 4(s) keeps track of the turning that takes place, increasing with left-
hand turns and decreasing with right-hand turns. Without loss of generality,
it is assumed that the polygon is normalized so that the total perimeter length
is 1; hence © 4(s) is a function from [0, 1] to R. For a convex polygon A, © 4(s)
is a monotone function, starting at some value v and increasing to v+2mr. So

©4(1) = ©,4(0) + 2m. An example can be found in Figure 2.8.

O(s)
3
A
y 1’2 2701 B R :
EEEE
C v AR
D S R S SR

OABc DE ! s
Figure 2.8: Turning angle representation

The distance function is defined as:

28

D(4,B) =" (\/z(e(A,) o(B) ?) (2.19)

where min, g represents the minimum of all the possible horizontal and ver-
tical shifts of B. The complexity of this algorithm is in the order of O(n? * log(n?)).

Representation by turning angles has a number of advantages over other
techniques:

e For polygons, the turning angle function is piecewise-constant, with jump

points corresponding to the vertices.

e It is more or less independent of translation of objects and can be made
invariant to rotations and scale factors. Rotation of a polygon A cor-
responds to a simple vertical shift of ©4(s). Changing the location of
the origin O by an amount ¢ € {0,1] along the perimeter of polygon A

corresponds to a horizontal shift of ©4(s).

e It is also very natural, as it describes polygons in terms of their angles,

a technique used by humans as well.

e Finally, it gives a compact description in the form of a unidimensional
signal, which is much simpler to deal with than signals that have more

dimensions.

Despite these advantages, the distance commonly used to measure the simi-
larity between shapes represented by turning angles—the Euclidean distance—
is generally too sensitive to small variations in the shapes. This is illustrated
in Figure 2.9.

To overcome this difficulty, [41] proposes another distance function, called

median distance function, on turning angle as follows:

29

D
B
A A
Polygon P Polygon Q
o(s) o(s) 6(s) — P
........ 0
2w on o
0 A B | g 0 ABCDE ' S 0 ABCDE L's

Turming Angle Representationof P Turning Angle Representationof Q Different between P and Q is significant

Figure 2.9: Turning angle representation using Euclidean distance is sensitive
to noise

Dredian(4, B) =™ (| ©(4:) - ©(B;) |) (2.20)

where min, is the minimum of all the possible horizontal translations of B,

and both A and B have been previously normalized:

A = A — median(A);
B = B — median(B);

The purpose of this normalization is to eliminate the effect of any rotation

(2.21)

A or B may have undergone. If polygon B is polygon A rotated by the angle
6:, then we have:
median(B) = median(A + 0,) = median(A) + 6,

and

A = A — median(A);
B = B — median(A) — 0;;

So, the effect of rotations between the two polygons is eliminated after the

(2.22)

relative median values are subtracted from both vectors A and B.
The experimental results [41] show that the median distance behaves better

than Euclidean distance, giving values close to zero when the shapes are the

30

same and returning results very close to those which a human being would
return, when the shapes are similar but not identical. The complexity of this
algorithm is in the order of O(n2 * log(n)).

2.2.3 Texture Similarity

The precise definition of texture has been elusive. The notion of texture
generally refers to the presence of a spatial pattern that has some properties
of homogeneity [20]. In particular, the homogeneity cannot result from the
presence of only a single color or intensity in the region but requires interaction
of various intensities.

Since giving a verbal description of texture is not easy for naive users,
queries over object texture is often done with the help of some sample tex-
tures. Towards the development of “query-by-texture”, it is necessary to find a
meaningful measure of the similarity of textures (texture discrimination) and
to develop a procedure for segmenting images based on textural content (tex-
ture segmentation). Furthermore, discriminant functions are needed to gauge
the similarity between textured regions and the texture key used for searching.

In [20], in order to get texture classes as complete as possible in the process
of determining the optimal texture discriminant function, the complete set of
112 Brodatz texture images were obtained. The Brodatz textures, scanned
from the album published by photographer Brodatz [13], are well-known in
the texture analysis field. The photographs in this album were not originally
intended for scientific research, but rather for artistic use. They have, however,
been widely used in the texture analysis literature.

A texture set approach is proposed in [72] to extract spatially localized tex-
ture information and to provide efficient indexing of texture regions. Texture

regions are extracted by the following process:

1. conversion of color data to gray-level intensity;
2. orthogonal spatial-frequency decomposition of gray-scale image;

3. energy thresholding within each sub-band; and

31

4. operations to merge pixels of high spatial-frequency energy.

After filtering, the data in the sub-band are analyzed together to provide
labels for the sufficiently large regions that produce characteristic patterns of
energy distribution across the sub-bands. The pattern of energy distribution is
represented using a binary texture set, whereby each element in the binary set
corresponds to the presence of energy above the threshold within a particular
sub-band. The binary texture sets, which label regions within the images, are
used to retrieve images from the database based on texture content.

In QBIC (58], the texture features include coarseness, contrast, and di-
rectionality. The coarseness feature helps measure the scale of the texture,
and is calculated using moving windows of different sizes. The contrast fea-
ture describes the vividness of the pattern, and is a function of the variance
of the gray-level histogram. The directionality feature describes whether it is
isotropic (like a smooth object). It is a measure of the “peakedness” of the
distribution of gradient directions in the image.

It has been shown then that when texture is modeled sufficiently well it
can be used to find certain items in the database. But not all objects and

regions of interest can be characterized by texture processes.

2.2.4 Other Image Similarity Measures

A domain-independent framework for defining notions of similarity is pre-
sented in [44]. The framework contains three components: a pattern language
P, a transformation rule language T, and a query language L. An expression in
P specifies a set of data objects. To specify objects that match a pattern ap-
proximately, some transformation rules defined in the transformation language
T are attached to patterns in P. An object A is considered to approximate an
object B if B can be reduced to it by a sequence of transformations. A specific
application of a transformation to an object has a cost, which is 2 measure of
the distance between object A and object B. Finally, a query language L is

obtained by wrapping logic or algebra around expressions built using P and
T.

32

The framework can be tuned to the needs of a specific application domain
by the choice of P, T, and L. Consider shapes represented as a collection of
black pixels, identified by location in a coordinate system. Assume that the
pattern language P has a rectangular region of pixels as a basic unit, and union
and difference as compositional operators. This allows defining expressions to
describe shapes, and transformation rules to shift/scale objects along the z or
y dimensions. The transformations, when embedded in the pattern language,
permit portions of an object to be shifted/scaled in arbitrary ways, to create a
variety of similar objects. With appropriate quantification on the permissible
shift /scale parameters, one obtains a language for querying similar shapes.

But this approach has its limitations. For example, the transformation
testing problem and membership testing is undecidable, i.e., for a set of trans-
formation rules T, a string s, and an expression e over T, the problem of testing
whether s € e is undecidable.

In {77], contextual similarity and spatial similarity are considered. Four

levels of contextual similarity between two images M; and M, are defined:

e The images have exactly the same objects.
e Any object found in M, exists in My (M includes M,).
e Any object found in M, exists in M2 (M, includes M,).

e There is at least one object common to both M, and M.

Five levels of spatial similarity are also defined based on the spatial rela-
tion and distance among objects. As well, complex queries combining con-
textual and spatial constraints using logic ‘AND’ and ‘OR’ operators can be
constructed.

A method for searching similar wavelet images is presented in [42]. The
query image may be a hand-drawn sketch or a scan of the image to be retrieved.
The coefficients of the Harr wavelet decompositions [11] are truncated, quan-
tized and distilled into small signatures for each image, then an image querying

metric that operates on these signatures is introduced. This metric essentially

33

compares how many significant wavelet coefficients the query has in common
with potential targets. The resulting algorithm is simple, requiring very lit-
tle storage overhead for the database of signatures, and is fast enough to be
performed on a database of 20,000 images at interactive rates, as a query is
sketched.

In [67], attributed relational graphs (ARG) are used to represent image
content. Nodes with associated attributes represent objects in the image.
The spatial relationship between two objects is recorded by the angle between
the horizontal reference axis and the line connecting the centers of mass of
the objects. Image similarity is decided based on both object properties and
relationships among objects. The distance is measured by the cost of matching
nodes and matching relationships among such nodes. This method relies on the
assumption that a fixed number of labeled objects are common in all images
of a given application domain in addition to a variable number of unlabeled

objects.

2.2.5 Conclusions

With the increasing popularity of multimedia information systems, man-
aging image data efficiently is becoming more important. It is obvious that
image similarity measurement is fundamental to image databases. The mea-
sure must replicate as well as possible human similarity assessment. The major
challenge is to find feature extraction functions that preserve the dissimilarity
and distance among the objects as much as possible. At the same time, the
interface should provide tools to support such similarity measurement. The
user should be able to specify the criteria and other parameters for similarity
selection query operation.

The meaning of similarity may vary depending on the application domain
and even the purpose of the query. In many applications, we must expect to
see several similarity criteria involved. Two images can be very similar in one
context and very dissimilar in another. For example, two images picturing Bill
Clinton would be considered similar by a newspaper editor but may not be by
a fashion designer if s/he wants to find a image with the President dress in a

34

black suit. The availability of several similarity measures poses the problem of
how to combine different similarity measures in a coherent and intuitive way.
One simple way to do this is by successive refinements: create a first query
with respect to one of the criteria, and order the whole database with respect
to this. Then take the a portion of the result of the first query and order it

with respect to the second similarity criteria, and so on.

35

Chapter 3
The DISIMA System

3.1 Objective

The retrieval of digital images is an active research subject, which promises
to provide powerful new tools for database management in the near future. The
DISIMA (DIStributed Image database MAnagement system) research project
developed at the University of Alberta deals specifically with the development
of technology to facilitate the management of, and access to, images using a
database management system.

The major objectives of the DISIMA project are to model image data
by using an object—oriented approach, and to support efficient content-based
spatial query by using new indexing techniques. The model is sufficiently
powerful to allow spatial and image data representations and indexing. Based
on the model, a sophisticated query language is developed to allow complex
queries involving image content and fuzziness.

This chapter introduces the data model, system architecture, and query
language of the DISIMA system. A more detailed description can be found in
[62] and [22].

3.2 Functionality

A distributed image database should provide the following functionality:

36

e A powerful data model which allows the representation of all types of
information defined in the image, including raw data and symbolic data.
Modeling of the structure of an image should be done in terms of abstract
objects, independent of a particular presentation. The model must also
be extendible, allowing the database to be extended and integrated with

other multimedia information systems in the future.

e The image database should provide efficient and concurrent access to
both an image and its associated symbolic data. A browsing and search-
ing mechanism must be supplied to find information in the database.
Meanwhile, must be able to manage and manipulate traditional alphanu-

merical data.

e The external components of an image database must provide several
tools for modeling and manipulating itself, as the SQL language does
for the definition and manipulation of classical data. These tools should
include an image DDL and DML which offer several possibilities for
image database querying and image operations: retrieval by content,
query by the type of data or the links between data, conversion from and
to different file formats, scaling, change of color depth, tiling, regions
of interest, etc. The DDL and DML must be enhanced to allow the
definition of more sophisticated data types and the execution of image

processing functions upon a set of images retrieved by a query.

e A storage management system that stores different representations of the
same image, including raw data, thumbnails, or symbolic data. These
representations must be linked together so that the user can control
the evolution of the system. It also needs to provide efficient storage,
accessing, and sharing of image data among several sites and multiple

users in a reliable and concurrent environment.

37

3.3 The DISIMA Model

A data model is defined as a collection of mathematically well-defined
concepts expressing both static and dynamic properties of data intensive ap-
plications [14]. This section describes how DISIMA represents the content of
an image and the model components. The model has similarities to VIMSYS

[34] in its layered view of image data.

3.3.1 The Model Components

The DISIMA model aims at efficient representation of images to support a
wide range of queries. Typical queries that DISIMA would support include
the following:

¢ Find images that contain a given object 0, and satisfy P(o,;) where P
presents query criteria specified on the object’s properties (e.g., name,

color, shape).

e Find images that contain objects 0, and o0, and R(04,0;) is true, where

R expresses a spatial relationship (e.g., touch, contain, west, east).

These queries require information not only about images, but also the ob-
jects within images (called salient objects), and the spatial relationship between
them. The DISIMA model addresses both image and spatial databases issues.
It allows independence between image representations and applications, and
distinguishes the identity of salient objects (logical salient objects) from their
appearance in an image (physical salient objects). This allows the user to as-
sign different semantics to an image component (semantic independence), and
an image representation can be changed without any effect on applications
using it (representation independence).

The DISIMA model, as depicted in Figure 3.1, is composed of two main
blocks: the salient object block and the image block built on top of it. A
block is defined as a functional first-level entity that can be broken down into

several entities.

38

; trepresenied _by) RN
I ’ . H A .“ S ~
Represcatation Salient Object
Representation
Image Block Salient Obfect Block
B category(class) . -+ belongs to ——— inheritance
@ iosafce ... « other relationships

Figure 3.1: DISIMA model overview

3.3.2 The Image Block
The Image Block

An image is a basic unit in the DISIMA model.

Definition 1 An image i is defined by a quadruple < i, R(i),C(3),D(i) >
where :

- 1 1s the unique (raw) image identifier;

- R(i) represents the raw image;

- C(3) 1is the content of i;

- D(3) is a set of descriptive alphe-numeric date associated with ¢.

The image block is made up of two layers: the image layer and the image
representation layer. In order to accomplish representation independence, an
image is distinguished from its representations. At the image layer, the user
defines an image type classification similar to hierarchies in object type sys-
tems. A classification hierarchy for an application which manages news and
medical images is illustrated in Figure 3.2. These images can be classified
by the end users, according to specific criteria, during database population

time. The NewslImage class is specialized by three classes: one for nature

39

images (Naturelmage), another for images where a person has been identified

(PersonImage), and the last one for the others (Other Image).

Image

S

Medicallmage Newslmage

T

OtherImage Personlmage Naturelmage

Figure 3.2: An ezample of image and logical salient object hierarchies.

Two main representation models: raster and vector are used in DISIMA.
Raster representations are used mostly by image applications, while vector
representation fits well with spatial applications. For raster representations,
the JPEG format is used as default, and spaghetti modeling [49] is used for

vector representations.

3.3.3 The Salient Object Block

In an image database system, images can be used in queries in the same way
alpha—numeric data are used. However image data are too large to retrieve and
manipulate in memory each time they are referenced; this can slow down the
system performance. The common solution is to try to “understand” images
and find a way to simply represent them, possibly by alpha-numeric data.

In DISIMA, the contents of an image are represented as a set of salient
objects (i.e., interesting entities in the image) with certain spatial relationships
to each other. The salient object block is designed to handle salient object
organization. A simple example of a salient object hierarchy, corresponding
to the image classes defined in Figure 3.2, is depicted in Figure 3.3. Several
physical salient objects belonging to images may correspond to one logical
salient object. Hence, a logical salient object does not have any representation,
but a physical salient object may have one or more. Specific data members,
such as posture and coordinates, can be added to a physical salient object.
The logical salient object level models the semantics of the physical salient

40

object.

Salient_object
Human_body Other Person
Head Torso Limb Politician Other_person Athlete

Figure 3.3: An ezample of salient objects hierarchy

For a given application, salient objects are known and can be defined. The

definition of salient objects can lead to a type lattice as in Figure 3.3.

Definition 2 Let SO be the set of all salient objects and SO be the power
set of SO. Furthermore, let RS, CS and T'S be the set of all representation,
color, and texture objects, respectively. A representation object describes the
spatial properties, such as shape and location of a logical salient object with
respect to an image. A color representation describes color properties and
tezture representation describes texture properties of a logical salient object
with respect to an image. The content of an image i is defined by a quadruple

C(i) =< so, f,9,h > where:

- s0 € SO;
- f:s0 — RS: maps each logical salient object to a representation object;
-g:s0— CS: maps each logical salient object to a color object;

-h:s0—TS: maps each logical salient object to a tezture object.

A logical salient object is an abstraction of a salient object that is relevant
to some application. For example Clinton may be created as instance of type
Politician to represent President Clinton. Object Clinton is created and ex-
ists even if there is yet no image in the database in which President Clinton
appears. This is called logical salient object and it maintains the generic infor-
mation that might be stored about this object of interest (e.g., name, position,

spouse)

41

Particular instances of this object may appear in specific images. There is
a set of information (data and relationships) linked to the fact that “Clinton
appears in image 7;”. The data can be his posture, his location, and his
shape in image ¢;. Examples of relationships are spatial relationships with
regards to other salient objects belonging to image i,. A physical salient
object, (P.objectClinton_1) linked to logical salient object objectClinton, is
created to refer to image i, and gives the additional information. Another
physical salient object (P_objectClinton_2) will be created if President Clinton
is found in another image i,,

Each physical salient object may have one or more representations (a min-
imum bounding box, a raster representation corresponding to a sub—image
extracted from the image, or a vector representation extracted from the image
after it has been segmented). Salient object relationships such as spatial rela-
tionships make sense only at the physical salient object level. A logical salient
object has some functional relationships (is-a) with other logical salient ob-
jects. A logical salient object gives a meaning (a semantic) to a physical
salient object. And several logical salient objects can correspond to a physi-
cal salient object. That is, depending on the application, the user can assign
different semantics to the same physical salient object. Relationships between
image, logical salient object (LogicalSalientObject), and physical salient object
(PhysicalSalientObject) are summarized by an entity-relationship diagram in
Figure 3.4.

Definition 3 A physical salient object belonging to an image < i, R(z), C(2), D(i) >
where C(i) =< so, f,g,h > is defined by < z, f(z), g(z), h(z) > and z € so.

The two levels of salient objects ensure the semantic independence and
multi-representation of salient objects. Only the logical salient object level is
used to answer the query “find all the images in which Clinton appears”. The
query “find all the images in which Clinton is between Arafat and Netanyahu”
requires the physical salient object level to check the spatial relationship among
the three salient objects. The processing can indeed benefit from the existence
of spatial indexes.

42

[LogicalSalientObject |

{0, n]

<o

(1, n]

r Image il @ .1 thSimlSalicmObjecz]

[0, n]

[1,n]

| Representation]

Figure 3.4: Ertended ER diegram for part of entities in the DISIMA model

Similar to the images, the representation of salient objects is separated from
their content information. The representation can be raster or vector. Raster
representations of salient objects are useful to access parts of images, while
vector representations can be used for spatial indexing and spatial relationships
computation.

The distinction between the image block and the salient object block leads
to more flexible and powerful modeling than having a fixed image hierarchy.
Two salient objects belonging to the same image can have different data mem-
bers. Let us take an image in which there is a well known politician shaking
the hand of an athlete. For both of them we may want to know who and what
they are. For the politician we may want to add the party s/he belongs to,
while for the athlete we will be interested in the sports s/he practices. For
this purpose, sub-classes (Athlete, Politician) were created in Figure 3.3.

The DISIMA model allows independence between image representations
and applications (representation independence) and distinguishes the existence
and identity of salient objects from their appearance in an Image (semantic
independence). These independencies are achieved by introducing an abstrac-
tion between an image and its representation, and also between a salient object

and its appearance in an image. For the management of different representa-

43

tions of both image and salient object, DISIMA provides a powerful version

manager.

3.3.4 Defining a DISIMA schema

A DISIMA schema is made up of two sub-schemas: an image schema and a

salient object schema.

Definition 4 Let ITG (Image Type Graph) be an image type hierarchy and
STG (Salient Object Type graph) be a salient object type hierarchy. A DISIMA
schema is defined by (ITG,STG).

For some pure image applications in which there is no need for spatial
searches, images and salient objects may not need to have vector representa-
tions. On the other hand, for some pure spatial applications there may not be
any raster representations for either images or salient objects. In this case, an
image object will, in fact, be a map which does not need any image processing

function.

3.4 The DISIMA Architecture

This section first concentrates on the basic components of a DISIMA single
site architecture (Figure 3.5) and then the distributed one.

The single site architecture is composed of the interface, the meta-data
manager, the image and salient object manager, the image and spatial in-
dex manager, and the object index manager. The interface provides a visual
query facility to define and search image data. The data definition language
(DDL) used for the DISIMA project is C++ODL {17] and the query language
is an extension of OQL. DISIMA API is a library of low-level functions that
allows applications to access system services. DISIMA is built on top of ob-
ject repositories (ObjectStore [48] for the current prototype). These object
repositories may not have image and spatial indexes. And the object-oriented
indexes they provide (if any) may not match DISIMA requirements. More-

over, the image and spatial index manager and the object index manager have

44

to dynamically integrate new indexes. The meta—data manager implements
object-based meta-data that give information about images and salient ob-
jects. The salient object manager implements the DISIMA model and the
index managers allow dynamic index management. Indexes include object,

image, and spatial indexes.

Visual MOQL DISIMAAPI | | ODMGDDL
MOQL
I : |
Query Processor ODMG Preprocessor

I I

I I I]
Image Image and Object Meta-Data
And Salient Object
Spatial Manager Index Manager
Index
o S -

Object Repasitory (ObjectStore)

- > <
Salient Meta-
Image
& Object Data

Figure 3.5: The DISIMA architecture

Meta—data is important in improving the availability and quality of the
information to be delivered. It is a kind of on-line documentation. In some
image applications [3], everything except the raw image data is included in
meta—-data. Based on object oriented concepts, the DISIMA model integrates
the raw image and the alpha-numeric data linked to it. Meta—data in this
context refers to meta~types and other types defined to keep track of all classes
and behaviors (methods) defined by the user. The idea is to simulate, on top of
ObjectStore, meta-types (i.e., types of types) that will be used by the user for
schema definitions. DISIMA views the main components of the user-defined

schema as objects that can be stored and queried using OQL.

45

As defined, the DISIMA meta-data is independent of any underlying object
repository. Consequently, as everything is defined as an object, the same query
language and query processor can be used to query both data and meta—data.

DISIMA provides an interoperable architecture to allow users to query
multiple, and possibly remote, image sources. Due to the autonomy of each
individual image source, DISIMA needs to have a wrapper built for each par-
ticipating image data source. This wrapper which is responsible for trans-
forming MOQL queries into local queries, executable at the individual site.
When the individual image source is using a database (relational or object
oriented) model, the transformation is simpler. However, translating content-
based queries is not straightforward. When the image source is modeled as a
file system or hyperlinks, the wrapper needs to provide search capabilities to
support queries.

The interoperable architecture is designed using common facilities, as de-
fined in the Object Management Architecture (OMA) [31]. CORBA provides
transparencies at the platform and the communication levels. There remain
two other levels: the database level where different data models can be found,
and the semantic level to homogenize the meanings of the objects. The dis-
tribution framework is given in Figure 3.6. It involves homogeneous systems
(S1 talking to S2) and heterogeneous systems (S1 talking to S4 or S3). DIS-
IMA builds wrappers that can transform MOQL queries into target queries

executable at the target sources for the heterogeneous case.

UNIX
L1} 53 e
DISIMA I I
Image Schema Image Schema Image Analysing
Query Export Query Export Tools
Service Service Service Service

Image Schema Image Schema
Query Export Query Export
Service Service Service Service
2 1 i
DISIMA 4
e’ MM-DBMS

Figure 3.6: Distribution in DISIMA

46

DIS DISIMA Mediator
Image

Wrapper | Wrapper i - Wrapper n

Image Image Image
Source | Source i Source n
na— ~n— S

Figure 3.7: Mediator-wrapper architecture

The implementation of the similar predicate is application dependent. The
current implementation of the similar predicate in the DISIMA project in-
volves salient objects, color, and spatial relationships among salient objects.
However, one of our objectives is to allow the user to set the similar predicate
to the desirable checking (semantic checking, feature checking, and spatial re-
lationship checking). The query processing benefits from the 2-D-S-tree [50]
which is an index based on the 2 — D String approach [21]. For example, the
processing of Query 4 in Section 3.5 will benefit from the use of the 2-D-S-tree
(59].

DISIMA is being implemented on top of the ObjectStore [48] DBMS. The
model, the architecture, and a complete query language, MOQL, have been
defined. One of the research objectives is to study algebraic primitives which
will support optimization of multimedia queries. In the current prototype,
each algebraic operator is implemented in terms of ObjectStore functions.
This establishes a link between the query processor and the underlying object

repository, while enabling independent development of the query processor.

3.5 MOQL: A Multimedia Extension of OQL

In an image database system, users want to query images using not only

conventional textual annotation, but also image content, which is hard to

47

define. The query language must be sufficiently sophisticated to allow fuzzy
search, and support high-level notions and relationships. It has been shown
[51] that the expressiveness of the traditional database query languages (e.g.,
SQL) is inadequate for multimedia data.

MOQL [51] is an object-oriented, general-purpose multimedia query lan-
guage based on ODMG’s Object Query Language (OQL) [17]. An OQL query
is a function which returns an object whose type may be inferred from the
operators contributing to the query expression. OQL allows users to query
objects by using the object names as entry points into a database. The basic
statement of OQL is:

select [distinct] projection_attributes

from query [[as] identifier] {, query [[as] identifier] }

[where query] [group by partition_attributes] [having query]
[order by sort_criterion {, sort_criterion}]

The language includes constructs to deal with spatial properties, temporal
properties, and presentation properties. Most of the extensions introduced in

OQL are in the where clause, in the form of four new predicate expressions:

e spatial_ezpression

This expression includes spatial objects, spatial functions, and spatial

predicates.

There are five spatial primitives (point, line, circle, rectangle, and region)
in MOQL. Spatial relations can be categorized into directional and topo-
logical relations. Directional relations describe the direction from one
point to another, such as east, top, northwest. Topological relations de-

scribe the relative position and location of contact among objects, such

as separated, contains, connects, invades.

e temporul_ezpression

This expression deals with temporal objects, functions, and predicates.
It is not supported by the current version of VisualMOQL.

e contains_predicate

48

This expression is defined as:

contains_predicate ::= media_object contains salientObject

where, media_object represents an instance of a particular medium type
(e.g., an image or video object), while salientObject is an object within
the media_object that is deemed interesting (salient) to the application
(e.g., a person, a car or a house in an image). The contains predicate

checks whether or not a salient object is in a particular media object.

o similarity_predicate.

This predicate checks if two images are similar with respect to some met-
ric; such a metric can be based on salient objects, spatial relationships,
colors, textures, or combinations of these. Different application domains

may provide different implementation for these predicates.

In the following examples, some sample queries are given to demonstrate
the use of MOQL to query image databases. The schema of the database
against which these queries are specified is not defined here. The queries

themselves are self-explanatory.

Query 1 Find all images in which a person appears.

select m
from Images m, Persons p
where m contains p

Query 2 Find all images in which President Clinton appears.

select m

from Images m, Politicians p

where p.name = “Clinton”
and m contains p

Query 3 Find all images in which Clinton appears to be white.

select m
from Images m, Politicians p
where p.name = “Clinton”

and m contains p

and p.color(m) = “white”

49

Query 4 Find all images in which a Clinton is between Arafat and Netanyahu.

select
from
where

m
Images m, Politicians p1,Politicians p2 , Politicians p3
pl.name = “Clinton”
and p2.name = “Arafat”
and p3.name = “Netanyahu”
and m contains p!
and m contains p2
and m contains p?
and ((p1.region(m) left p2.region(m)
and pl.region(m) right p3.region(m))
or (pl.region(m) right p2.region(m)
and pl.region(m) left p3.region(m)))

Query 5 Find all images that look like an image in which Clinton appears.

select
from
where

ml, m2

Images m1, Images m2, Politicians p
p.name = “Clinton”

and m! similar m2

and m! != m2

Query 6 Select all the images in which there is a city within a 500km range

of the point at longitude 60 and latitude 105 with populations in excess of

50000:

select
from
where

m

Images m, Cities ¢

m.name="“Canada”

and c.location inside circle(point(60,105), 500)
and c.population>50000

DISIMA adopts MOQL as the query language for the following reasons:

e It is based on well-accepted SQL.

e It deals with spatial and temporal relationships.

e It is a general multimedia query language which can handle not only

images, but also video data and multimedia documents.

e It is designed to be applied on general domains, rather than for a par-

ticular application.

50

Chapter 4

The User Interface

VisualMOQL is the visual query interface for the DISIMA project. It is
based on the textual query language MOQL, and implements the image part
of MOQL. A query specified using VisualMOQL is automatically translated
into MOQL to make use of the MOQL parser and query processor. This
chapter first describes the user interface in general, and then explains the se-
mantics of VisualMOQL queries and query translation process. A comparison
between VisualMOQL and some other image database query interfaces is also

presented.

4.1 Introduction

Recently, with the growing popularity of the World Wide Web (Web) and
other multimedia applications, there is a need for developing a user interface
which is intuitive so naive users, such as private consumers or commercial
business partners, can easily find and retrieve the large multimedia collections
describing presented products and services. However, the traditional textual-
based interface (e.g., SQL [26]) poses some disadvantages for image retrieval.
First, it is not user friendly since users need to study database schema and
query languages. Second, textual query languages do not visualize queries, so
they do not allow users to match the query representation with their mental
models [52]. Historically, several approaches have been taken to improve the
user friendliness of database interfaces. Techniques include form-based (QBE
[82]), diagrammatic (GUIDANCE [36], Gql [65]) and iconic (IconicBroswer

51

[80]). There have been attempts to develop a more natural interface using
approaches such as cognition-based interfaces, that support query by image
examples; and descriptive semantics-based approaches in which users pose
queries by describing target image semantics using some keywords. These
types of interfaces have the advantage of being natural to users, but have low
precision, because queries are ambiguous.

In the last decade, visual query systems (VQS) have attracted much atten-
tion and have been gaining popularity. They greatly improve the effectiveness
and user—friendliness of the human-computer interaction [9]. Because of this,
they are oriented towards a wide spectrum of users, especially novices who have
limited computer expertise and are generally ignorant of the inner structure
of the accessed databases.

In order to best facilitate the human-computer interaction in an image
retrieval system, it is important to first understand the tasks the users want
to accomplish and then build a visual interface that is suitable for perform-
ing these tasks. In order to be successful, the visual interface should provide
functionalities to allow the user to visualize queries. Generally speaking, an
efficient visual interface for image retrieval should provide the following func-
tionalities: {9, 52]

e A clear and concise representation of the organisation of the data stored
in the database. The main purpose of adopting a visual representation
in a query system is to communicate clearly to the user the informa-
tion content of the databases, concentrating on essential features and
omitting unnecessary details. This helps the user to grasp the internally
structured information stored in the database easily without spending

too much time learning it.

e A query paradigm that allows the user to naturally specify content-based
queries. The construction of the visual query should be easy to use, and
effective, so that users can express their visual queries using minimum
steps; otherwise the user may as well learn a query language. Meanwhile,

the interface has to be reasonably powerful, and it has to allow users to

52

visualize the process by which they are constructing a query.

e Algorithms and techniques for finding the best similarity measure ac-
cording to the application context of the query.

e A way for users to express similarity measure, both on salient objects
(e.g., their color, shape) and on the image as a whole. This is impor-
tant because in the paradigm of content-based retrieval, images are not
simply matched, but are ranked in order of their similarity to the query

image.

e If a multimedia query language is defined and used for querying the
database, then the visual interface should be able to render query lan-

guage operators in terms of appropriate direct manipulation sequences.

4.2 VisualMOQL: The DISIMA Visual Query
Interface

Since visual query languages are directed at naive users and often not
based on a textual query language, they are not always as expressive as textual
queries. One way to extend the capabilities of visual languages is to base them
on powerful multimedia query languages, which themselves may be extensions
of object or object-relational query languages. This provides a visual query
language that enables easy querying of multimedia databases, while benefiting
from the query facilities provided by the database management system.

Taking this approach, VisualMOQL provides advanced functionalities and
high usability through strong emphasis on the expressiveness and intuitiveness
of the user interface. It allows casual users to query an image database by
expressing image semantics, which are based on the DISIMA model that views
images as composed of salient objects with some properties. Several levels of
refinement are offered, depending on the type of query and the level of precision
users want.

In VisualMOQL, users start building visual queries by specifying the salient
objects of interest. Then these queries can be refined by adding salient objects’

33

color, shape, and spatial relationships. Tools for defining image properties are
also provided. All the query criteria can be grouped by using logical conditions
to obtain a more complicated visual query. Finally, users can filter the resulting
images by restricting the number of images to be returned and /or the minimum

similarity value between the query image and the images returned.

4.2.1 Interface Overview

The VisualMOQL main interface window (Figure 4.1) consists of the fol-

lowing components:

I work Canvas : Aevise Quary

(insert] i) [Char] {Buin]
tnsert Raistion] Delets felation] {Imaqe Property] (valldute]

() (i () (555 (3] () i) (s (i] Qo)

Figure 4.1: Main window of VisualMOQL

e An image class selector, which is implemented using a drop—down selec-
tion list.

Images stored in DISIMA are categorized into system—defined classes

during database population time. The database administrator can cus-

94

tomize the categories according to particular application domains. Dur-
ing query construction, users will select the image class that they want to
query over. This step reduces the search space dramatically and speeds

up the entire query process.

Although the image classes are defined and organized hierarchically in
the database, the parent—children relationship is not illustrated in the
current implementation of VisualMOQL. Because usually the number of
image classes defined is relatively small, a simple drop—down selection list
would provide the same functionality a complicated navigation browser
does, but is much simpler and easier to use. This helps diminish the

complexity of the query interface.

e A text field where users specify the maximum number of images that
should be included in the query result. A scroll bar is not chosen because
the value cannot be predetermined, so a scroll bar cannot provide the
flexibility that is needed.

This number is not translated into MOQL, but passed to the query
engine with the MOQL query, as a separate parameter used by the query

result presentation interface.

o A horizontal scroll bar to let users specify the minimum global similarity

between query image and images retrieved from the database.

This is not translated into MOQL, but passed to the query engine to-
gether with the MOQL query. It is a quality of service parameter used

by the query result presentation interface.

e A salient object class browser that allows users to choose any predefined
logical salient objects (LSO) that are of interest. This component is

explained in more detail later.

e A working canvas where users can construct and modify simple queries.

A detailed description is given in the next subsection.

55

e A query canvas where users can build compound queries based on simple
queries, using logical operators — It is also described in more detail in

the next section

4.2.2 Salient Object Class Browser

In DISIMA, image semantics are based on logical salient objects and their
properties. These are identified and saved during the database population
time, using the DISIMA image entry interface. Objects are organized into a
salient object hierarchy, and the root is Logical Salient Object (LSO).

The salient object browser, referred to as “browser” from now on, allows
users to navigate through the hierarchy defined in DISIMA’s object block,
and select the objects that they want. The first component in the browser is
a drop-down list called parent class selector. Below it are three selection lists.
Arranged from left to right, they are: class list, subclass list, and property list.

When the interface is first invoked, LSO is selected automatically by the
parent class selector as the default active parent class. All its children classes
are displayed in the class list. The user can search for the desired object by
browsing the list with help of a vertical scroll bar. Once an object class is
selected, it is highlighted in the class list and its subclasses and properties, in-
cluding those that are inherited, will be shown in the subclass list and property
list, respectively.

To traverse down the hierarchy tree, users can double click on any salient
object in the class list. This will add the object to the parent class selector and
set it as the active parent class. The object’s subclasses will then be displayed
in the class list immediately. To travel up the tree, users need to click on the
parent class selector and choose a selection from the drop-down list. This will
update the class list as well.

VisualMOQL chooses this browser-oriented approach for a couple of rea-
sons. First, it is a natural choice for representing the object-oriented salient
object block in the data model used by the DISIMA system. Second, it eli-
mindates the burden on users of being required to learn the internal database

schema. Using this browser, the user can select any salient objects defined

96

in the salient object hierarchy. In addition, the browser can present three
levels of the hierarchy tree at a time. So, even with little knowledge of the
database structure, casual users can locate the desired object class in the tree
very quickly. Lastly, the browser provides future extensibility. With more
and more images being inserted into the database, the object class hierarchy
tree can grow rapidly. Other facilities, like list, simple categorizing, or key-
word searching, will not be able to provide the capability to support efficient

navigation of the object hierarchy.

4.2.3 Working Canvas

In VisualMOQL, there are two kinds of visual queries: simple and com-
pound. We concentrate on simple query in this subsection and will discuss
compound query in the next subsection.

All VisualMOQL visual queries are built based on simple query, in which
users select multiple salient objects, specify their properties and spatial rela-
tionships, and define image properties. A simple query can be translated into
a valid MOQL query.

The working canvas is where users construct simple queries using the se-
mantic and textual approach, referred to as query-by-drawing [18]. In this
approach, users first select an object from the salient object class browser’s
class list. LSO, a system-defined class, is used as the default if nothing is
specified. Then users click the insert button to introduce the object into the
working canvas. The object is represented by its minimum bounding box
(MBB), which is a rectangle, and a short string label, which is used as the
name of the object. In comparison to representing objects by bullets, MBBs
are more visible so it is easier for users to select them. Moreover, MBBs can
be used to determine not only directional relationships but also topological
relationships, as we will demonstrate later in this subsection. Object names
are generated automatically and are different for each object in the visual
query. They are used not only to help users distinguish objects, but also to
provide VisualMOQL with the equivalent expressiveness of MOQL. This will
be illustrated when we discuss object property specification.

57

Salient object property is another important component of image semantics
defined in DISIMA and MOQL. In order to build a fully integrated image
database system, an object property input window, shown in Figure 4.2, is
provided. It is used to define the color, shape, and other textual properties of
salient objects. To invoke this window, users first click the edit button then

select the target object from the canvas.

Circle] |Oval] | Rectangle] Square]
{Polygon] {Polyline] [Seqment]
(Delen] [Cloar] [Hows]

Figure 4.2: Object property input window for object Person.

The object property input window is further divided into three major com-

ponents:

e A color panel where users can select colors from a predefined color tem-
plate. Color plays a critical role in image similarity because of its percep-
tual importance and computational simplicity. A visual query interface
must be equipped with tools to allow users to specify color similarity
as part of the local image matching. In VisualMOQL, users can choose

58

colors from the templates and assign them to salient objects. A salient
object may consist of multiple colors; for example, the national flag of
France has three colors. In order to reflect this in the visual query spec-
ification, VisualMOQL supports multiple color assignment to a single
object, i.e., one object can be red and green instead of being either red

or green.

An object property input panel. Every salient object stored in the
database has some properties defined and values specified, such as the
name and age of a Person. During query construction, users can type in

alphanumeric values of salient object properties.

Since each object in the query has a unique name, and is displayed as
part of the object icons in the working canvas, users can use it to express
join operators on object properties. For example, “find images with 2
persons who have the same last name” can be expressed in VisualMOQL
by following these steps: First, two salient objects of type Person are
introduced in the working canvas (say, P101 and P102). Then in the
property input panel of P101, the value of its last name is specified as
P102.name.

The third component is the shape input panel. Geometric information
is another important visual property used in image matching. Visual-
MOQL supports query specifications using four simple types of shape:
circle, oval, square, and rectangle. Users can combine these simple shapes

to form more complicated irregular shapes.

As explained in Chapter 2, color and shape searching are based on sim-

ilarity, instead of exact match. Therefore, horizontal scroll bars are added

to the color and shape input panels so that users can specify the similarity
thresholds for them. Unlike the global image similarity threshold, these two
similarity values are part of the visual query primitives, and are included in
the translated MOQL query.

Spatial relationships between objects are critical for many image database

59

applications such as medical imaging systems and geographical information
systems. The DISIMA system aims at developing a method to capture the be-
havior and characteristics, not only of images, but also of spatial applications.
Spatial relationships can be categorized into topological and directional rela-
tionships. In MOQL, eight directional operators are defined: East, Northeast,
North, Northwest, West, Southwest, South, and Southeast. Directional rela-
tionships are defined explicitly through a dialog box shown in Figure 4.3. Users
specify which axes (x-axis and/or y-axis) matter by toggling the corresponding
boxes. Currently, query conditions specified on the z-axis, and distance, are
not translated by VisualMOQL since MOQL does not yet provide operators
on these relationships.

Figure 4.4 shows some typical spatial arrangements of two objects in the

working canvas, and their MOQL translations.

Figure 4.3: Dialog window for defining directional spatial relationship

To calculate the directional relationships among objects, the centroids of
the object MMBs are used. When compared to using the edges of MBBs, this
approach is much simpler. It is necessary to compare the locations of only two

points, in contrast to eight, if the edges of MBBs are used.

Topological relationship makes up the other half of spatial relationships.

60

L]

X

Y

]

X

Y

. Y

[-] x

X southwest of Y

X westof Y
Case 1: X-axis matters AND Y-axis matters

X southof Y

: -] ~ 1Y
x Y X Y -] x
X westof Y X westof Y X south of YOR
X northof Y

Case 2: X-axis matters and Y-axis does not matter

& =

x Y X Y [-] x

Xsouthof Y X westof Y OR X southof Y
Xeastof Y

Case 3: X-axis does not matter and Y-axis matters

Figure 4.4: Definitions of directional relations

Eight fundamental topological relations are considered {27]: inside, cover,

touch, overlap, disjoint, equal, coveredBy, and contain. However, two pairs

of predicates are inverses: cover vs. coveredBy and inside vs. contains. Fig-

ure 4.5 shows the six basic topological relations.

1N

[a] B

A disjoint B A rtouch B

Figure 4.5: Definitions of topological relations

A coverB

A inside B

A equal B

A overlap B

From Figure 4.5, we can see that the topological relationships are defined
based on object’s MBBs, not their centroids. If two objects’ MBBs are inter-

sected then the topological relationship is automatically detected and inserted

into the visual query. This helps to reduce the number of errors caused by hu-

61

man mistakes. To remove a topological relationship, users just need to move
the MBBs apart.

All query conditions defined in a simple query are conjunctional, i.e., they
are ANDed in the final query translation. It is difficult to combine both con-
junctional and disjunctional conditions in the same canvas, let alone building
nested queries. To solve this problem, a second canvas, called a query can-
vas, is introduced into the interface. So a VisualMOQL query construction is
done in two places. In the working canvas, users concentrate on low level de-
tails and local matching criteria such as salient objects and their color, shape,
alphanumeric property, and spatial relationships. All these criteria are repre-
sented by conjunctional predicates in simple queries. After the simple query
is moved into query canvas, it can be combined with other queries by using
disjunctional, conjunctional, or negate operators to form more complicated
compound queries. To move a simple query from the working canvas to the
query canvas, users click on the validate button. This procedure is referred to
as validating the simple query.

In addition to all we have mentioned so far, image semantics also include
image properties. VisualMOQL implements an image property dialog window
(Figure 4.6) which can be invoked by clicking the Image Property button in
the working canvas. It is very similar to the object property dialog window.

4.2.4 Query Canvas

Before discussing the design of the query canvas, we need to define a

compound query. In VisualMOQL, a compound query is one of the following:
1. ¢¢ AND ¢, where q; and ¢, are simple or compound queries;
2. q; OR ¢, where ¢, and g, are simple or compound queries;
3. NOT ¢, (NOT g¢;) where ¢; (g2) is a simple or compound query.

The query canvas is where users build compound image queries. To do this,

users first select the logical operators by clicking the corresponding button;

62

Color Similarity

- n»

1N IHE
TR

Selected Color |none

g

Figure 4.6: Dialog window for defining image property

63

they then choose the icons of the queries that they want to connect. If the
operator is AND or OR, then icons of the two queries involved are grouped
together inside a bracket with the operator displayed between them. If the
new compound query is a negation with only one query involved, then the
query icon is displayed following the NOT operator.

In VisualMOQL'’s two—phase query construction process, details of the sim-
ple queries are hidden from users in the query canvas. Thus, each validated
simple query is represented by just a small square box, and a string which is
used as the name of the simple query.

A visual query interface should have the flexibility to allow users to change
queries at any time. In VisualMOQL, the task of query modification is carried
out in both the working and query canvases. In the query canvas, the user
can build and ungroup compound queries. If they want to modify the content
of a validated simple query, they can click the edit button to bring the query
canvas into edit mode, and then select a simple query to load its content
into the working canvas. From there, they can add or remove salient objects,

change query criteria, and revalidate the simple query.

4.3 VisualMOQL Query Semantics and Trans-
lation

4.3.1 VisualMOQL Query Semantics

VisualMOQL has a well-defined semantics based on object calculus [63]. A
query at the working canvas level is viewed as a sub-query in the query canvas.
If we view the images and the salient objects classes as complex value relations
[1], a simple query from the query canvas is, in fact, a formula without any
free variable. The general framework of such a formula is: (3m € M 3s, €
Sy ... sk € Sk, cond(sy, - . ., sg)Acond(m)Am contains siA. . .Am contains si)
where M is an image class, S, ... S; are salient object classes, cond(sy, ..., k)
expresses boolean conditions on salient objects, cond(m) expresses conditions
on the image, and m contains the salient object s;. There is only one image

class in a simple query. The default image class is Image, the root of the

64

image class hierarchy, but this can be changed. As a formula without any free
variables, a simple query is evaluated to true or false [63).

Since simple queries in the query canvas could be based on different image
classes, not all of them can be grouped by the AND operator. Consider these

two simple queries:

e Find natural images that contain a beach.

e Find people images that contain Bill Clinton.

AND cannot be applied to them because natural image and people image
are not compatible, i.e., neither one is an ancestor or a descent of the other
in the image class hierarchy tree. This rule also applies to compound queries.
The image class of compound queries is calculated as follows: Assume we have

two queries, A and B, and they are based on image classes M, and M,, then

e In A AND B, M, and M, must be compatible. If M, is the ancestor of

M, in the image class hierarchy tree, then M; will be set as the image
class of A AND B.

e In A OR B, M, and M, may or may not be compatible. The image class
of the resulting query will be the least common ancestor of M, and M, in
the image type system. Since the DISIMA image type system is rooted,

the common ancestor will be the image root class, in the worst case.

If users try to AND two queries that don’t have compatible image classes,

a warning window will pop up (Figure 4.7).

4.3.2 VisualMOQL Query Translation and Processing

To start searching the database, users select one and only one query, either
compound or simple, from the query canvas and click on the “Query” button.
With this approach, users can construct several similar queries at one time

and compare the results, without deleting any queries and reconstructing them

from scratch.

65

(Edi] (ewts] Claw] (A0] (OR] [WOT) (Ungroup] [Safect] [imags Properiy] [Quary]

Figure 4.7: Warning boz appears when users try to AND queries containing
incompatible image classes

After users issue the query command, the system translates the Visual-
MOQL queries to MOQL query strings. This is performed automatically by
the MOQL generator so that users are not required to remember the complex
syntax of MOQL. The pseudo-code of the translation algorithm is given in
Appendix A.

After the equivalent MOQL query is generated, it is displayed by a separate
pop-up window. If the user does not specify any visual queries or image
properties before s/he clicks on the Query button, then a dialog window will be
brought to the user to let her/him type in the MOQL query directly. For users
who understand MOQL, and do not want to go through the visual construction
process, this gives them the flexibility they want.

After all query criteria have been translated into appropriate formatted
MOQL expressions, the MOQL string is passed to the search engine along
with other two important parameters: the minimum similarity between the

query image and resulting images, and the maximum number of images that

66

should be returned.

The result of query execution is a list of image thumbnails, and a URL
linked to the real images ranked by their degree of similarity to the query
image. These are presented to users in the same web browser in which they

pose the visual query.

4.4 VisualMOQL and Other Content-Based Im-
age Retrieval Systems

In this section, we compare VisualMOQL with some other content-based
image retrieval systems.

QBIC, Virage, VisualSeek, and Photobook are some of the earliest content—
based image retrieval systems. Their approaches have been explained in Chap-
ter 2. They all use media-based search technology and support image matching
on some image properties, such as color, texture, and shape. VisualSeek can
also compare images based on spatial locations of salient image regions. But
unlike VisualMOQL, these other systems do not capture image semantics on
the salient object level and they do not support queries using a combination
of textual description and visual examples to specify image semantics. Fur-
thermore, VisualMOQL is based on a well-defined multimedia query language
MOQL, and thus has enhanced capabilities.

The IFQ query interface [52] used by SEMCOG (53] is very similar to
VisualMOQL. It too translates the visual query to a SQL-like query language
called CSQL. The main difference between VisualMOQL and IFQ is that in
IFQ, users do not have access to the database schema, so they can’t assign
values to object attributes. SEMCOG integrates a facilitator in charge of
query reformulation. For example, the facilitator will consult the Terminology
Manager, which is a dictionary, to replace “man” in the query by “person” if
necessary. While in VisualMOQL users start a query by browsing the schema
to find the salient objects and image class they are interested in, in IFQ users
have to specify the spatial relationships between objects explicitly; but in
VisualMOQL the relationships are determined automatically. From the users’

67

point of view, VisualMOQL is more user-friendly and from the implementation
point of view, the VisualMOQL translator needs less work to translate user
queries.

In IFQ, the CSQL translation is displayed in a panel just below the working
canvas, where the visual query is constructed. At the same time as users change
the visual query, the CSQL translation gets updated, so users can see it right
after they make the changes.

VisualMOQL cannot support this feature because, unlike IFQ, which allows
users to build only simple queries, VisualMOQL supports both simple queries
and compound queries. During the construction stage, it is hard to find which
query the user is interested in, and to display its translation. Another reason
is that, since visual query interfaces are targeted at naive users, the query
translation process should be transparent to them, and the query interface
should be kept as simple as possible. Otherwise, the user may be overwhelmed
by all the information provided by the interface at one time.

In conclusion, VisualMOQL is a declarative visual query language with a
step-by-step construction of queries, close to the way people think in natural
languages, and is based on a clearly defined semantics using an object calculus.
This feature can be the basis of a theoretical study of the language. Visual-
MOQL combines semantic-based (query image semantics using salient objects)
and attribute-based (specify and compare attribute values) approaches for im-

age retrieval.

68

Chapter 5

Implementation Issues

In this chapter we describe some implementation issues for the user interface.
VisualMOQL is implemented as a Java applet using Sun Java Development
Kit (JDK) release 1.0.2 on a Unix Solaris 2.5 platform. The interface can be
accessed by any Web browser (e.g., Netscape, Internet Explorer) anywhere.

5.1 VisualMOQL Translation

After users issue the query command, the system translates the Visual-
MOQL queries to MOQL query strings automatically. For compound queries,
the first step is to organize the query into a query tree with all simple queries
stored in leaf nodes, and logical operators in non-leaf nodes. The next step is
to reduce the complexity of negated compound queries by transforming them
into a normalized form so that the child of each negation is an existentially
quantified formula (simple query). For example, if a query reads NOT (A OR
B) where A, B are either compound or simple queries, it will first be trans-
formed into (NOT A) AND (NOT B) before being passed to the visual query
translation engine. This process is done from the root to the leaf in the query
tree to ensure that at the end all negation operators are associated only with
simple queries. This will simplify the translation process and make the final
MOQL string more readable to system developers. Figure 5.1 shows the query
tree of (NOT (Queryl AND Query2)) OR Query3 and Figure 5.2 shows the
same tree in the normalized form. The coresponding VisualMOQL screenshots
are shown in Figure 5.3 and Figure 5.4.

69

SRS

Figure 5.1: The query tree of a compound query containing negator operator

Figure 5.2: The query tree of a compound query with negator in normalized
form

In the current implementation, the normalization is performed on the Java

object that represents the VisualMOQL query directly. So if the user clicks the

70

[ipager Peratn] [Comip Feiatim] (image Property] (valldate]

(=mt3) o] Heee]
[nrare Aeigtio] [Cotwtn Aorgtret] [imege Progerty]

)

) () () ()) (5] (Viae) (3] (i o) (Gien)

Figure 5.4: The VisualMOQL compound query in Figure 5.3 after being con-

verted to normalized form.

‘back’ button in the browser after he sees the results, the screen in Figure 5.4
will be shown instead of that in Figure 5.3. However, this may cause some
confussion to the user. A better way to do this is to apply the normalization
on a clone of the VisualMOQL query object so the query representation in the

query canvas will stay the same.

5.2 Query Parser and Query Engine

VisualMOQL is responsible for handling all interaction with the user and
translating the visual query to MOQL. The DISIMA query facility also includes
a MOQL parser and query engine. The MOQL parser, which is the subject of
another M.Sc. thesis [22], communicates with the MOQL generator through
a common gateway interface (CGI) program. It takes the MOQL string as
input and generates an execution plan [22]. At this time, no optimization is
performed, so multiple plans are not generated. This plan is executed by the
query processor. The whole process is illustrated in Figure 5.5.

The search engine, implemented in C++, reads the query string and other
arguments, e.g., image similarity threshold ¢; and maximum number of images
¢2. Once the MOQL string is parsed, ObjectStore queries are generated and
each image in the database is compared with the query image M,. The images
whose similarity with M, is higher than ¢, will be filtered out and ranked.
Finally, the top ranked ¢, images will be returned as the result of the Visual-
MOQL query. The search engine is also responsible for displaying the result
by generating HTML files with thumbnails of images and links embedded.

72

...

MOQL
Generator

...

...

Salient
Object

ObjectStore

Query Result
Presentation
Interface

Figure 5.5: DISIMA query processing

73

Chapter 6
VisualMOQL Query Examples

This section uses some sample VisualMOQL queries to illustrate the query
construction process, the translation of VisualMOQL to MOQL, and the query

results of these queries.
Query 1. Find all the images that contain a person.

Query 1 is the type of query one can easily express in a textual-based query
language using exact matchings on attribute values.

The visual query is shown in Figure 6.1. The equivalent MOQL query
produced by the query translator is shown in Figure 6.2 and the query result
is shown in Figure 6.3.

74

I Work Canvas : Revise Quary

(ingert] {Clear) Tow] {Resizs]
{ingerz Reiaticn] [Delete Reiaticn] {imege Property] {Validaws]

(€] (pila) (Gr) () 36) (RT) (i) (i) (e oroaer) (Goicy)

Figure 6.1: VisualMOQL for query 1

Figure 6.2: Translated MOQL for query 1

7

Figure 6.3: Query result of query 1

76

Query 2. Find all images where Bill Clinton appears to be
wearing black.

The visual query expression is shown in Figure 6.4. An object property
editing dialog box, as shown in Figure 6.5, is used to assign “Clinton” to
attribute “lastname”. To define the color of the object, the user selects the
color he wants and the color is translated into an RGB value. For flexibility, a
threshold is associated with the color to provide a search interval in the color
histogram.

The equivalent MOQL query produced by the query translator is shown in
Figure 6.6 and Figure 6.7 is the query result.

[l work Canvas : Revise Query

{

Crgert) [Celete] [Siger] (€3R) Meve] [Rasize]

Figure 6.4: VisualMOQL for query 2

(4

* A - L | .”.

(Ciecia] [Owail [Rectange] [Sauare]
{Polygon] |Polyline] |Seqment]
{Delate] [Cloar] [Move] [Resize]

Figure 6.5: Object property window for query 2

Figure 6.6: Translated MOQL for query 2

78

Figure 6.7: Query result of query 2

79

Query 3. Find images with Bill Clinton next to Jean Chretien.

The visual query expression is shown in Figure 6.8. To construct this
query, the user first introduces two Person objects into the working canvas
and assigns “Clinton” and “Chretien” as their lastname. The user then must
to insert a directional relationship between the two Person objects, using the
dialog window shown in Figure 6.9.

“Next” is not a simple spatial relationship. The user has to translate it
into Bill Clinton at the right of Jean Chretien, or Bill Clinton at the left of
Jean Chretien. The user can express this relationship by saying that the x-axis
does not matter with the centroids of the two salient objects at the same level
on the y-axis.

The equivalent MOQL query produced by the query translator is shown in
Figure 6.10, and Figure 6.11 is the query result.

K9R] [Celen) (Shar] (A%c]) 58] (MOT] (Uimesr] (Selest] [imeg Property] (Query]

Figure 6.8: VisualMOQL for query 3

80

Figure 6.9: Spatial relationship dialog window for query 3

Figure 6.10: Translated MOQL for query 3

81

Figure 6.11: Query result of query 3

82

Query 4. Find images with Bill Clinton next to Jean Chretien or
images with Hillary Clinton with Bill Clinton.

To construct this query, the user first builds query 3, then introduces a
similar simple query specifying query conditions on Bill Clinton and Hillary
Clinton. The two simple queries are then connected by the OR operator to
form the final VisualMOQL query.

The visual query expression is shown in Figure 6.12. The equivalent MOQL
query produced by the query translator is shown in Figure 6.13, and Fig-
ure 6.14 shows the query result.

| - e

(ingert) Dewtp] (Cioa] (Eait) Move] (Baiza]
{ingevt Reigtion] [Delets Retation] {imege Progerty] (validate}

Figure 6.12: VisualMOQL for query 4

83

Figure 6.13: Translated MOQL for query 4

Figure 6.14: Query result of query 4

84

Query 5. Find images that look grey--ish or red--ish.

The visual query expression is shown in Figure 6.15. This is also a query
that involves two simple queries, each constructed using the image property
dialog window shown in Figure 6.16.

The equivalent MOQL query produced by the query translator is shown in
Figure 6.17, and Figure 6.18 is the query result.

[irzerr feiation] [Coiate Peigtini] [image Property] (vaiidaty)

S

((nl Reivte]) (Sioar) (aN0) (O] [OT] (narovp) (Ssiest) [image Property] [Queey]

Figure 6.15: VisualMOQL for query

85

| none

.
e
.
.
L

TN
T
W T

g
:
d

Figure 6.16: Image property dialog window for query §

Figure 6.17: Translated MOQL for query 5

86

Figure 6.18: Query result of query 5

87

Query 6. Find images that contain Clinton but do not contain

Hillary Clinton.

Two simple queries have to be constructed first for query 6. The first one
contains Clinton and the second one contains Hillary, as in query 2. In the
query canvas, a negate operator is added to the second query first. Next, the
user groups the two simple queries using an AND.

The visual query expression is shown in Figure 6.19. The equivalent MOQL
query produced by the query translator is shown in Figure 6.20, and Fig-
ure 6.21 is the query result.

|

Figure 6.19: VisualMOQL for query 6

88

Figure 6.20: Translated MOQL for query 6

Figure 6.21: Query result of query 6

89

Query 7. Find Animal images that contain birds or Scenic images

that contain a house.

This query demonstrates how to retrieve images from different image classes.
Animal and Scenic are two image classes defined in the database. To build
this VisualMOQL query, the user has to first construct two simple queries by
selecting the correct image class from the image classes selector, and inserting
the right object. Then s/he connects them using the OR operator.

The visual query expression is shown in Figure 6.22. The equivalent MOQL
query produced by the query translator is shown in Figure 6.23, and Fig-
ure 6.24 is the query result.

(ingers] [Cuine] (Sioar] [£0K) [iove] (Reaize]
{inart Retation] [Delete Relation] [(image Property) (validate]

(T () ()) (G () () (i) (o wresern] (o)

Figure 6.22: VisualMOQL for query 7

90

Figure 6.23: Translated MOQL for query 7

Figure 6.24: Query result of query 7

91

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The popularity of visual query languages is gaining momentum; and they
are seen as the next step in query language evolution. The aim of visual
query languages is to provide users with a friendly interface that easily allows
them to pose complex queries. Most of the existing visual query languages
have a low expressive power due to the fact that they are often just GUIs
designed for naive users. We argue that powerful query languages can provide
significant help in simplifying multimedia database access. These languages
must provide constructs for querying, based on the structure of multimedia
data. For this purpose, we have defined MOQL (Multimedia Object Query
Language). MOQL extends OQL by including extensions related to spatial
properties, temporal properties, and presentation properties.

VisualMOQL is a visual query language that implements the image features
of MOQL. It aims at integrating semantics and media-based search to give
users a greater flexibility in posing queries. VisualMOQL combines several
approaches, such as semantic-based (query image semantics) and textual-based
(specify and compare attribute values). The image matching is based on salient
objects, spatial relationships among salient objects, salient object colors, and
shape. This gives users a greater flexibility in describing objects with finer
granularity than a whole image, and specifying spatial relationships between
objects. It bridges the gap between users’ perceptive concepts and direct

manipulation of query languages.

92

A query specified using VisualMOQL is translated into MOQL before exe-
cution. This distinction between the external query language (VisualMOQL)
and the internal query language (MOQL) has several advantages. As a visual
language VisualMOQL is easy to use, but provides the same query facilities
as MOQL. Thus, users are not required to be aware of schema design and
language syntax, which can be very complicated for multimedia data. Since a
query specified using VisualMOQL is translated into MOQL before execution,
it can make use of the MOQL query processor and optimizer (the optimizer is

not yet implemented).

7.2 Future Work

Although VisualMOQL shows significant improvement over traditional im-
age database query systems by allowing users to pose queries using combina-
tions of concepts, semantics, visual properties, and spatial relationships, some

research issues remain and need more investigation. These include:

e MOQL is a general-purpose multimedia query language, while Visual-
MOQL implements only the image component. Work is in progress to
extend VisualMOQL beyond the image component. To keep the query
interface simple, it might be preferable to provide a VisualMOQL inter-
face for each type of application (e.g., video, document, image). These
interfaces have to interact with each other to achieve the expressive power
of MOQL. For example, a sub-query can be expressed using the Visual-
MOQL interface dedicated to images, and then combined with another
one defined using the video interface. DISIMA, ultimately, will be a dis-
tributed and inter-operable image database management system. That
means VisualMOQL has to be able to address other sites including the
Web.

e In the current implementation of VisualMOQL, users cannot issue queries
using sample images. To overcome this limitation, VisualMOQL needs

to provide a general browsing tool to allow users to select sample images

93

from the database — either randomly, or using results from some ear-
lier query. Furthermore, a mechanism must be provided to enable users
to customize their definition of image similarities. For example, which
color, texture, shape, or spatial relationship matters; and for those that
do, what is the weight of each matching criteria? In addition, the data
model and search engine must have the corresponding functionalities

defined and implemented.

e More query criteria should be incorporated into the interface. For exam-
ple, VisualMOQL does not support queries that include distance between
salient objects. This limits VisualMOQL’s usage on some application
domains, especially geographical and medical image databases. Other
useful features include enabling the user to select texture and more com-

plicated shapes.

e Currently, VisualMOQL is implemented using Java 1.0.2, and runs as an
applet inside the web browser on clients’ machines. With Java’s latest
version 1.2, we can simplify the implementation of the interface and make
it easier to use and more efficient. For example, with Java Swing, we can
implement the salient object class browser using the tree structure. And
the new event handling mechanism defined in Java 1.1 should improve

the efficiency of the user interface.

The framework presented in this thesis does not fully support all MOQL
primitives. However, its purpose is to demonstrate the power of the query

language and visual interface, which has been accomplished.

94

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

R. Ahad and A. Basu. ESQL: A query language for the relational model
supporting image domains. In Proceedings of the Tth International Con-

ference on Data Engineering, pages 5560—559, Kobe, Japan, 1991.

J. T. Anderson and M. Stonebraker. Sequoia 2000 metadata schema for
satellite images. SIGMOD RECORD, 23(4):42—48, December 1994.

M. Angelacio, T. Catarci, and G. Santucci. QBD*: A graphical query
language with recursion. IEEE Transactions on Software Engineering,
16(10):1150—1163, 1990.

H. Arisawa, T. Tomii, and K.Salev. Design of multimedia database and a
query language for video image data. In Proceedings of IEEE Internati-
nal Conference on Multimedia Computing and Systems, pages 462—467,

Hiroshima, Japan, June 1996.

E. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. Mitchell.
An efficiently computable metric for comparing polygonal shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(3):209-
215, 1991.

J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz,
R. Humphrey, R. Jain, and C. Shu. The Virage image search engine:

An open framework for image management. In Proceedings of the SPIE:

95

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Storage and Retrieval for Image and Video Databases IV, pages 76—87,
1996.

N. H. Balkir, E. Sukan, G. Ozsoyoglu, and Z. M. Ozsoyoglu. VISUAL: A
graphical icon-based query language. In Proceedings of 12th International
Conference on Data Engineering, pages 524-533, 1996.

C. Batini, T. Catarci, M. F. Costabile, and S. Levialdi. Visual query
systems: A taxonomy. In E. Knuth and L. M. Wegner, editors, Visual
Database System, II, pages 153—168, The Netherlands, 1992. Elsevier
Science Publisher B. V. (North-Holland).

E. Bertino, F. Rabitti, and S. Gibbs. Query processing in a multime-
dia document system. ACM Transactions on Office Information System,
6(1):1—41, 1991.

G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and nu-
merical algorithms I. Communications on Pure and Applied Mathematics,
44(4):141-183, 1991.

R. Bretl, D. Maier, A. Otis, and J. Penney. The GemStone data man-

agement system. Object-Oriented Concepts, Databases and Applications,
1989.

P. Brodatz. Teztures: a Photographic Album for Artists and Designers.
Dover Publications, New York, 1966.

M. L. Brodie. On the development of data models. In M. L. Brodie,
J. Mylopoulos, and J. W. Schmidt, editors, On Conceptual Modeling,
pages 19—48, NewYork, USA, 1984. Springer-Verlag.

P. Butterworth, A. Otis, and J. Stein. The Gemstone object database
management system. Communications of the ACM, 34(10):64-77, 1991.

A. F. Cardenas, I. T. Ieong, R. K. Taria, R. Barker, and C. M. Breat. The
knowledge-based object-oriented PICQUERY + language. IEEE Transac-
tions on Knowledge and Data Engineering, 5(4):644—657, 1993.

96

[17] R. G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman,

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Jordan, A. Springer, H. Strickland, and D. Wade, editors. The Object
Database Standard: ODMG 2.0. Morgan Kaufmann, San Francisco, CA,
1997.

A. E. Cawkell. Picture-queries and picture databases. Journal of Infor-
mation Science, 19(6):409-413, 1993.

N. S. Chang and K. S. Fu. Query-By-Pictorial example. IEEE Transac-
tions on Software Engineering, SE-6:519—524, August 1980.

S. Fu Chang, J. R. Smith, and H. Wang. Automatic feature extraction
and indexing for content-based visual query. Technical Report CU/CTR
414-95-20, Columbia University, 1995.

S. K. Chang, Q. Shi, and C. Yan. Iconic indexing by 2D-string. I[EEFE
Transactions on Pattern Analysis and Machine Intelligence, 9:413—428,
May 1987.

I. L. Cheng. Image databases: A content-based type system and query
by similarity match. Master’s thesis, Department of Computing Science,
University of Alberta. Available as Technical Report TR-99-03, 1999.

W. Chu, I. Ieong, and R. Taira. A semantic modeling approach for image
retrieval by content. VLDB Journal, 3(4):445-477, 1994.

W. W. Chu, L. T. Leong, and R. K. Taira. A semantic modeling approach
for image retrieval by content. VLDB Journal, 3(4):445—477, October
1994.

I. F. Cruz and W. T. Lucas. A visual approach to multimedia querying
and presentation. In Proceedings of Fifth ACM International Conference
on Multimedia, pages 109—120, Seattle, WA, November 1997.

C. J. Date. A Guide to the SQL Standard. Addison Wesley, 1987.

97

[27] M. Egenhofer and R. Franzosa. Point-set topological spatial relations.
International Journal of Geographical Information Systems, 5(2):161—
174, 1991.

[28] F. Golshani and N. Dimitrova. Design and specification of Eva: a language
for multimedia database systems. In Proceedings of the International
Conference on Database and Ezpert Systems Applications, pages 356—362,
1992.

[29] Y. Gong, C. H. Chuan, and X. Guo. Image indexing and retrieval based
on color histograms. Multimedia Tools and Applications, 2(2):133-156,
1996.

[30] R. C. Gonzalez, T. Seppanen, and M. Pietikainen. An experimental com-
parison of autoregressive fourier-based descriptors in 2d shape classifica-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 201-207, 1995.

[31] Object Management Group. The common object request broker: Archi-
tecture and specification. OMG Document, (93.12.43), December 1993.

[32] V. N. Gudivada and V. V. Raghavan. Content-based image retrieval
systems. Computer, September:18—22, 1996.

[33] E. J. Guglielmm and N. C. Rowe. Natural-language retrieval of images
based on descriptive captions. ACM Transactions on Information Sys-
tems, 14(3):237—267, 1996.

[34] A. Gupta, T. Weymouth, and R. Jain. An extended object oriented data
model for large spatial databases. In Proceedings of the 2nd International
Symposium on Design and Implementation of Large Spatial Databases
(SSD), pages 45-61, Barcelona, Spain, September 1991.

[35] A. Gupta, T. Weymouth, and R. Jain. Semantic queries with pictures:
The VIMSYS model. In Proceedings of the 17th International Confer-

98

[36]

[37]

[38]

[39]

[40]

[41]

ence on Very Large Databases, VLDB, pages 69-79, Barcelona, Spain,
September 1991.

D. Haw, C. Goble, and A. Rector. Guidance: Making it easy for the user
to be an expert. In 2nd Int. Workshop on Interfaces to Database Systems,
pages 19-43, 1994.

N. Hirzalla and A. Karmouch. The role of database systems in the
management of multimedia information. In Proceedings of International
Workshop on Multimedia Database Management Systems, Blue Mountain
Lake, New York, August 1995.

C. Hsu, W. W. Chu, and R. Taira. A knowledge-based approach for
retrieving imgaes by content. I[EEE Transactions on Knowledge and Data
Engineering, 8(4):522-532, 1996.

W. Hsu, T. S. Chua, and H. K. Pung. An integrated color-spatial approach
to content-based image retrieval. In Proceedings of ACM Multimedia,
pages 305-313, 1995.

M. K. Hu. Visual pattern recognition by moment invariants. IRE Trans-
actions on Information Theory, IT-8:179-187, 1962.

G. lannizzotto and L. Vita. A new shape distance for content based image
retrieval. In Proceedings of the 22nd VLDB Conference, pages 371-386,
1996.

[42] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution image

querying. In Proceedings of SIGGRAPH 1995, pages 277-286, 1995.

[43] H. V. Jagadish. A retrieval technique for similar shapes. In ACM SIG-

MOD Conference, pages 208-217, 1991.

[44] H. V. Jagadish, A. O. Mendelzon, and T. Milo. Similarity-based queries.

In Symposium on Principles of Database System, pages 36—45, 1995.

99

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

P. M. Kelly and T. M. Cannon. Experience with CANDID: Comparison
algorithm for navigating digital image databases. In SPIE Proceedings of
the 23rd AIPR Workshop on Image and Information Systems: Applica-
tions and Opportunities, pages 64-75, 1994.

P. M. Kelly, T. M. Cannon, and D. R. Hush. Query by image example:
the CANDID approach. In SPIFE Storage and Retrieval for Image and
Video Databases III, pages 238-248, 1995.

T.C.T.Kuoand A. L. P. Chen. A content-based query language for video
databases. In Proceedings of IEEE Internatinal Conference on Multimedia
Computing and Systems, pages 456—461, Hiroshima, Japan, June 1996.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications of ACM, 34(10):19—20, 1991.

R. Laurini and D. Thompson. Fundamentals of Spatial Information Sys-

tems. Academic Press, 1992.

J. Z. Liand Y. Niu. Query processing and image indexing in multimedia
databases. Poster Session, The Annual Conference of Canadian Institute

for Telecommunications Research, August 1995.

J. Z. Li, M. T. Ozsu, Duane Szafron, and Vincent Oria. MOQL: A mul-
timedia object query language. In The Third International Workshop on

Multimedia Information System, pages 19-28, Como, Italy, September
1997.

W. Li, K. Candan, K. Hirata, and Y. Hara. IFQ: A visual query interface
and query generator for object-based media retrieval. In Proceedings of the
International Conference on Multimedia Computing and Systems, pages
353—361, Ottawa, Canada, 1997.

W.-S. Li, K. S. Candan, K. Hirata, and Y. Hara. SEMCOG: an object-
based image retrieval system and its visual query language. In Proceed-

100

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

ings of ACM SIGMOD International Conference on Management of Data,
pages 521—524, Tucson, Arizona, May 1997.

G. Lu. Image retrieval based on shape. In Proceedings of the International

Conference on Visual Information Systems, Melbourne, Australia, 1996.

S. Marcus and V. S. Subrahmanian. Foundations of multimedia database
systems. Journal of ACM, 43(3):474—523, 1996.

R. Mehrotra and J. E. Gary. Similar-shape retrieval in shape data man-
agement. IEEE Computer, 28(9):57-62, 1995.

T. P. Minka. An image database browser that learns from user interaction.
Technical Report TR 365, MIT, 1996.

W. Niblack, R. Barber, and W. Equitz et al. The QBIC project: Querying
images by content using color, texture, and shape. In SPIE Proceedings

of Storage and Retrieval for Image and Video Databases, pages 173187,
1993.

Y. Niu, M. T. Ozsu, and X. Li. 2-D-S-tree: An index structure for content-
based retrieval of images. In Proceedings of Multimedia Computing and
Networking, pages 110-121, 1999.

E. Oomoto and K. Tanaka. OVID: Design and implementation of a video-
object database system. IEEE Transactions on Knowledge and Data En-
gineering, 5(4):629—643, 1993.

J. A. Orenstein and F. A. Manola. Probe spatial data modeling and
query processing in an image database application. IEEE Transactions

on Software Engineering, 14(5):611—629, 1988.

V. Oria, M. T. Ozsu, X. Li, L. Liu, J. Li, Y. Niu, and P. J. Iglinski.
Modeling images for content-based queries: The DISIMA approach. In
Proceedings of 2nd International Conference of Visual Information Sys-

tems, San Diego, California, December 1997.

101

[63]

[64]

65]

[66]

[67]

[68]

[69]

[70]

V. Oria, M. T. Ozsu, B. Xu, and L. I. Cheng. VisualMOQL: The DISIMA
visual query language. In IEEE International Conference on Multimedia
Computing and Systems, pages 536-542, Florence, Italy, 1999.

D. Papadias and T. Sellis. A pictorial query-by-example language. Jour-
nal of Visual Languages and Computing (Special Issue on Visual Query
Systems), pages 53-72, March 1995.

A. Papantonakis and P. J. H. King. Syntax and semantics of Gql, a
graphical query language. Journal of Visual Languages and Computing,
6(1):3-25, 1995.

A. P. Pentland, R. Picard, and S. Sclaroff. Photobook: Tools for content-
based manipulation of image databases. In Storage and Retrieval for
Image and Video Databases, pages 34-47, 1994.

E. G. Petrakis and C. Faloutsos. Similarity searching in medical im-
age databases. I[EEE Transactions on Knowledge and Data Engineering,
9(3):435-447, 1997.

M. E. Ragab, A. M. Darwish, E. M. Abed, and S. I. Shaheen. Face
recognition using principal component analysis applied to an Egyptian
face database. In Industrial and Engineering Applications of Artificial
Intelligence and Ezpert Systems, pages 540-549, 1999.

N. Roussopoulos, C. Faloutsos, and T. Sellis. An efficient pictorial
database system for PSQL. IEEE Transactions on Software Engineer-
ing, 14(5):639—650, 1988.

B. Scassellati, S. Alexopoulos, and M. D. Flickner. Retrieving images by
2d shape: a comparison of computation methods with human perceptual
judgements. In Proceedings of SPIE Storage and Retrieval for Image and
Video Databases, pages 2-9, 1994.

102

[71] S. Sclaroff, L. Taycher, and M. L. Cascia. ImageRover: A content-based
image browser for the world wide web. In IEEE Workshop on Content-
based Access of Image and Video Libraries, 1997.

[72] J. R. Smith and S. F. Chang. Automated image retrieval using color
and texture. Technical Report CU/CTR 408-95-14, Columbia University,
1995.

[73] J. R. Smith and S. F. Chang. Tools and techniques for color image re-

trieval. In Proceedings of SPIE Storage and Retrieval for Image and Video
Database IV, 1995.

[74] J. R. Smith and S. F. Chang. Searching for images and videos on the
world-wide web. Technical Report 459-96-25, Columbia University Center

for Telecommunications Research, New York, NY, 1996.

[75] J. R. Smith and S. F. Chang. VisualSEEK: a fully automated content-
based image query system. ACM Multimedia, pages 87-98, November,
1996.

[76] J.R. Smith and S.F. Chang. SaFe : A general framework for integrated
spatial and feature image search. In IEEE Workshop on Multimedia Signal
Processing, 1997.

[77] A. Soffer and H. Samet. Pictorial queries by image similarity. In Proceed-
ings of ICPR, pages 114-119, 1996.

[78] M. Stricker and M. Orengo. Similarity of color images. In Proceedings of
SPIE 1995, pages 381-392, 1995.

[79] M. Swain and D. Ballard. Color indexing. International Journal of Com-
puter Vision, 7(1):11-32, 1991.

[80] K. Tsuda, M. Hirakawa, M. Tanaka, and T. Ichikawa. Iconic browser: An
iconic retrieval system for object-oriented databases. Journal of Visual
Languages and Computing, 1:59-76, 1990.

103

[81] J. E. Ziegler and K. P. Fahnrich. Direct manipulation. Handbook of
Human-Computer Interaction, pages 123-133, 1988.

[82] M. Zloof. Query-by-example: A data base language. IBM Systems Jour-
nal, 16(4):324-343, 1977.

104

Appendix A

VisualMOQL Translation
Algorithm

This appendix contains the pseudo-code of the VisualMOQL translation algorithm.
String function TranslateVisualMOQL (Q){

//Input Q is a VisaulMOQL query.
//Return Result is the translated MOQL query of Q.

if (Q is a simple VisualMOQL query) then
return SimpleQueryToMOQL(Q);

else
return CompoundQueryToMOQL(Q) ;

String function CompoundQueryToMOQL (Q){

//Input Q is a compound query.
//Return Result is a MOQL query string

Convert (to normal form;

Calculate the image class M that Q is based on;
Result = "SELECT m FROM " + M + " m " + "WHERE ";
String whereClause = CompoundQueryGetWhereClause(Q);
Result += whereClause;

return Result;

105

String function CompoundQueryGetWhereClause (Q){

}

//Input Q is a compound query in normal form;
//Return Result is the where clause of Q

String s1, s2, Result;

if(the left child query of Q is a simple query) then

si = its where clause by calling SimpleQueryGetWhereClause();
else

sl = its where clause by calling CompoundQueryGetWhereClause();

if(the right child query of Q is a simple query) then

82 = its vhere clause by calling SimpleQueryGetWhereClause();
else

82 = its where clause by calling CompoundQueryGetWhereClause();

if(Q is an AND query) then

String operator = " AND “;
else

String operator = " OR ";

Result = sl + operator + s2;

return Result;

String function SimpleQueryToMOQL (Q){

//Input Q is a simple VisualMOQL query.
//Return Result is a MOQL query string

calculate the image class M that Q is based on;
Result = "SELECT m FROM " + M + " m " + "WHERE ";
String whereClause = SimpleQueryGetWhereClause(Q);
Result += whereClause;

return Result;

106

String function SimpleQueryGetWhereClause (Q){

//Input Q is a simple VisualMOQL query.
//Return Result is the where clause of Q;

String Result = "";

if (Q is a negatiom) then{

calculate the image class M that Q is based on;

Result = "m not in (SELECT m FROM " + M + " m " + "WHERE “;
}

for (each salient object Obj in Q) {
add "M contains Obj" predicate to Result;

add color, shape, and property predicators to Result;
}

for (each spatial relationship Relation in Q) {
add Relation to Result;
}

if (any image property is define){
add image properties predicators to Result;

}

if (Q is a negation) then{
Result += ")";
return Result;

107

