
Approximation Algorithms for Clustering with Minimum Sum of Radii,
Diameters, and Squared Radii

by

Mahya Jamshidian

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Mahya Jamshidian, 2022

Abstract

In this study, we present an improved approximation algorithm for three related

problems. In the Minimum Sum of Radii clustering problem (MSR), we aim to select

k balls in a metric space to cover all points while minimizing the sum of the radii. In

the Minimum Sum of Diameters clustering problem (MSD), we are to pick k clusters

to cover all the points such that sum of diameters of all the clusters is minimized.

At last, in the Minimum Sum of Squared Radii problem (MSSR), the goal is to

choose k balls, similar to MSR. However in MSSR, the goal is to minimize the sum

of squares of radii of the balls. We present a 3.389-approximation for MSR and a

6.546-approximation for MSD, improving over respective 3.504 and 7.008 developed

by Charkar and Panigrahy (2001). In particular, our guarantee for MSD is better than

twice our guarantee for MSR. In the case of MSSR, the best known approximation

guarantee is 4 · (540)2 based on the work of Bhowmick, Inamdar, and Varadarajan in

their general analysis of the t-Metric Multicover Problem. With our analysis, we get

a 11.078-approximation algorithm for Minimum Sum of Squared Radii.

ii

”An algorithm must be seen to be believed.”

- Donald E. Knuth

iii

Acknowledgments

I find it difficult to put into words how many ways I am grateful to my supervisor and

mentor, Zachary Friggstad. Your guidance, not only in the academic area but also in

life, has taught me more than I could ever imagine. This work and my studies would

have not been possible without your patience and brilliance. I am forever thankful

for your teaching on how to be a researcher, a colleague, and a human.

I would like to thank Mohammad R. Salavatipour and Xiaoqi Tan for being on

my thesis committee and reading through my thesis as well as providing insightful

suggestions that make this work a better one.

At last, I dedicate this thesis to my parents, Abbas and Hamideh. Without your

sacrifices throughout my life, I could not have achieved a shred of what I have today.

There are no words that can describe how grateful I am to be your daughter. I am

also thankful to my sister, Dina, as her encouragement have been and will be a light

in my path.

iv

Table of Contents

1 Introduction 1

1.1 Preliminaries . 3

1.1.1 Metric . 3

1.1.2 Approximation Algorithms . 4

1.1.3 Linear Programming . 6

1.1.4 k-Centre Problem . 9

1.1.5 Lagrangian Relaxation . 9

1.2 Prior Work . 10

1.3 Our work and Organization . 12

2 Improved approximation of MSR, MSD, and MSSR 15

2.1 Minimum Sum of Radii . 15

2.1.1 Step 1: Guessing the Largest Balls 16

2.1.2 Step 2: Getting a Bi-point Solution 18

2.1.3 Step 3: Combining Bi-point Solutions 20

2.2 Minimum Sum of Diameters . 26

2.3 Minimum Sum of Squared Radii . 28

3 Obtaining the solutions 31

3.1 Overview . 31

3.2 A Simple LMP Algorithm via Direct LP Rounding 32

3.2.1 Consolidating Solutions from ROUND 33

v

3.2.2 The Binary Search . 36

4 Conclusion 41

4.1 Conclusion and Future Considerations 41

Bibliography 43

Appendix A: Optimizing our choice of parameter for the MSR analysis 47

Appendix B: Optimizing our choice of parameter for the MSSR analysis 52

vi

List of Tables

A.1 The cost of our choice for centers in every condition discussed. 50

A.2 The cost of our choice for centers in every condition discussed. 51

B.1 The centres that will be picked in the Minimum Sum of Squared Radii

based on values of R1 and R2 as depicted in 2.1 52

B.2 The centres that will be picked in the Minimum Sum of Squared Radii

based on values of R1 and R2 as depicted in 2.1 53

vii

List of Figures

2.1 A depiction of a group G(i1,R1). The solid ball is B(i1, R1) and the

dashed balls are those in G(i1,R1). Point j is covered by tripling the

ball centered at i′. The dashed path depicts the way we bound d(j, i2)

in the second part of the case Centering at i2. 22

viii

Abbreviations & Acronyms

FPTAS Fully Polynomial Time Approximation Scheme.

LMP Lagrangian Multiplier Preserving.

LP Linear Programming.

MSD Minimum Sum of Diameters.

MSR Minimum Sum of Radii.

MSSR Minimum Sum of Squared Radii.

PTAS Polynomial Time Approximation Scheme.

QPTAS Quasi-Polynomial Time Approximation Scheme.

ix

Chapter 1

Introduction

Clustering is one of the most well-studied problems in computing science and informa-

tion technology, due to its numerous applications in Data Science and Unsupervised

Learning. In many applications, the goal is to cluster the data points into some given

number of clusters. Although Clustering refers to this partitioning process itself re-

gardless of the number of clusters, many times we focus our attention to the the

problems where we aim to partition the data into at most k clusters. Sometimes,

such a problem involves finding k cluster centers and a mapping σ from data points

to the centers to minimize some objective function. One of the most studied such

objective functions is the k-Means problem. In this problem, we are given a metric

(X , d) and the input value k and we wish to find k partitions of data points in X such

that the sum of squared distances from data points to their centres is minimized. In

the k-Means case, a cluster prototype is the mean of the intra-cluster distances. As

shown in [1], the problem in general metrics is NP -hard. It is also proved that the

problem is NP -hard in Euclidean Space (d dimension) even when k = 2 [2]. The

problem is also NP -hard for a fixed dimension d = 2 for the Euclidean Space as

proved in [3].

Another well-studied such clustering problem is k-Center which aims to minimize

the maximum radius of among balls [4, 5]. It has been also shown how the best

approximation factor one can get for k-Centre is 2 unless P = NP .

1

Yet another important example is the k-Median problem which aims to minimize

sum of distances from data points to their centers, as studied comprehensively in

[6–10]. The best current known approximation for k-Median is 2.675+ 2
p
for a fixed

integer p ≥ 1, in running time nO((1/ϵ)log(1/ϵ)) based on work of [11].

Throughout, we put our focus on a different objective function for a clustering

task. In this approach, we still need to pick k centers, however, we also pick a radius

for each of these picked centers. The constraint is to, of course, pick the centres and

radii such that all the data points are present in at least one of the constructed balls,

while the objective is to minimize the sum of all the radii. Specifically, we study the

following problem.

Definition 1 In the Minimum Sum of Radii problem (MSR), we are given a set

X of n points in a metric space with distances d and a positive integer k. We are to

select centers C ⊆ X, |C| ≤ k and assign each i ∈ C a radius ri so that each j ∈ X

lies within distance ri of at least one i ∈ C (i.e. d(j, i) ≤ ri). The goal is to minimize

the total radii, i.e.
∑︁

i∈C ri.

That is, we want to cover X using at most k balls with minimum total radius. For

example, perhaps we want to broadcast messages to all points by selecting k sources

with minimum total broadcast radius.

We also consider a related problem to minimize sum of diameters of the clusters.

More percisely, we define the MSD problem as follows.

Definition 2 In the Minimums Sum of Diameters problem (MSD), the input is

the same as in MSR and our goal is to partition the points into k clusters X1, X2, . . . , Xk

to minimize
∑︁k

i=1maxj,j′∈Xi
d(j, j′), the sum of the diameters of the clusters.

It is easy to see that an α-approximation algorithm for MSR yields an 2α-approximation

algorithm for MSD. That is, if OPTR denotes the optimum MSR solution cost and

OPTD an optimum MSD solution cost, we have OPTR ≤ OPTD because in the op-

timum MSD solution we could pick any point from each cluster to act as its center

2

(with radius equal to the diameter of the cluster). So if we have an MSR solution

with cost at most α · OPTR, then if we define clusters Xi by sending each point to

some center whose ball covers that point, the diameter of cluster i would be ≤ 2 · ri

and the sum of diameters would then be at most 2α ·OPTR ≤ 2α ·OPTD.

As an intuition to the MSR problem, centres can be thought of as prospective

mobile tower locations, whereas the points in X can be thought of as client locations.

A tower can be set up in such a way that it can service consumers within a given

radius. However, the cost of service rises with the broadcast distance travelled. The

goal is to serve all clients at the lowest possible cost.

When calculating the amount of energy required for wireless transmission, it is

typical to think about the cost function to be Minimum Sum of Squared Radii. In

reality, it requires power proportionate to r2 to broadcast up to a certain radius r.

This inspires a form of MSR in which we want to reduce the sum of the radii’s squares.

The Minimum Sum of Squared Radii (MSSR) issue is what we refer to as.

1.1 Preliminaries

This section presents the required prerequisites for understanding the methods and

approaches discussed in the rest of the thesis.

1.1.1 Metric

This work is primarily concerned with metric spaces which can be naively described

as a space including points with distances between them. Let X and d : X → X be a

set and a function, known as set of points and distance function, respectively. If the

distance function satisfies all the following property for points x, y, z ∈ X , then the

pair (X, d) is a metric space.

1. d(x, y) ≥ 0

2. d(x, x) = 0

3

3. d(x, y) ̸= 0 if x ̸= y

4. d(x, y) = d(y, x), and

5. d(x, z) ≤ d(x, y) + d(y, z).

Property (5) is known as the triangle inequality which has many algorithmic and

analytic purposes for our studies.

A well-studied metric is the Euclidean metric where elements of X are present in

a Euclidean space and their distance satisfies Euclidean distance function. Another

example of metric spaces is the Doubling Dimension, generalizing Euclidean metrics

is some sense. For any u ∈ X , B(x, r) is the ball of radius r centered at u, i.e.

B(u, r) = {v : c ∈ X, d(u, v) ≤ r}. The smallest value k > 0 such that each

ball in space can be covered by at most 2k balls of half radius is known as the

doubling dimension of the finite space X. Note that d-dimensional Euclidean metric

has doubling dimension Θ(d).

Also, the following notation are necessary for the rest of our study.

Definition 3 A ball B in a metric space (X , d), identified by two values i ∈ X , r ∈

R≥0 is the following set {j ∈ X : d(i, j) ≤ r}. Then, i is the centre of B and r is

known as the radius of B.

Definition 4 For a set C ⊆ X , the diameter of the induced cluster on C is equal to

maxi,j∈C d(i, j).

1.1.2 Approximation Algorithms

Before describing the motivation behind approximation algorithms, we need to define

an optimization problem. An optimization problem is the task of finding a feasible

solution that optimizes some objective value. It then can be shown as the pair (S, o)

where S and o are the set of feasible solutions and objective function o : S → R,

respectively. Depending on the problem, the task of optimizing could be minimizing

4

or maximizing the objective function o, in that case we call the minimization or

maximization problems.

An example of a optimization instance (S, o) is the problem of finding the mini-

mum cost route in a weighted graph (which passes through all the nodes). In this

minimization problem, the elements of S are routes R that passes through each node

of the input graph and o is the sum of all the weights on the edges of R.

Let us define δ : Z+ → R+ a function that gets the input size of an optimization

problem Γ as input and maps it to a real number. Then, the algorithm A is a δ-

approximation algorithm for Γ if any input I to A, the outputted feasible solution

S(I) holds f(I) ≤ δ(I) · OPT and runs in polynomial time in the input size. Note

that the approximation factor may or may not depend on the input size. There are

problems for which we have approximation factors that will not grow with respect to

the input size.

A vertex cover of a graph is a set of vertices that includes at least one endpoint

of every edge of the graph. The problem of finding a Minimum Vertex Cover is a

classical optimization problem. It is NP-hard and has a 2-approximation algorithm.

As another example, given a set of elements {1, 2, · · · , n} (called the universe) and a

collection S of m sets whose union equals the universe, the set cover problem is to

identify the smallest sub-collection of S whose union equals the universe. There is

a O(log n)-approximation algorithm for this problem. In most scenarios, we hope to

get (1 + ϵ)-approximation for arbitrarily small, positive and fixed ϵ.

An algorithm for an optimization problem Γ is called Polynomial time approxi-

mation scheme (PTAS) if for every instance and fixed positive ϵ input, it runs in

poly(|I|) and the output S admits f(S) ≤ (1 + ϵ) ·OPT . We can require A to run in

polynomial in the size of input and 1
ϵ
and then A is a fully polynomial time approxima-

tion scheme (FPTAS). Another approximation scheme is the quasi-polynomial-time

approximation scheme or QPTAS. A QPTAS has time complexity npolylog(n) for each

fixed ϵ > 0.

5

In computational complexity theory, the class APX (approximable) is the set of

optimization problems that allow polynomial-time approximation algorithms with

approximation ratio bounded by a constant; i.e. they have a O(1)-approximation

algorithm.

1.1.3 Linear Programming

As one of the fundamental optimization problems, Linear Programming (LP) is a

problem expressed as follows.

minimize cTx

subject to
Ax ≥ b

x ≥ 0

(1.1)

where c is a vector in Rn, A is a m×n matrix with real value entries, and b is in Rm.

Note that the operator ≥ mentioned in the body of the program is the pair-wise ≥

operator between two vectors. In other words, Ax ≥ b is a set of n inequalities in the

form of
∑︁

j Ai,jxj ≥ bj. If x satisfies all the constraints of the LP, then it is called

a feasible solution. An LP is feasible if it has at least one feasible solution. It could

be that an LP is feasible but the objective function is unbounded, which then makes

the LP unbounded. A linear program is unbounded if it is feasible but its objective

function can be made arbitrarily “good”.

As of a history on using and solving linear programs, The work of [12] described an

algorithm that could solve the program efficiently in most cases. At the time, being

mid to late 40s, Dantzig used LP for planning problems in US Air Force. Later,

many industries applied the work for daily planning. Later it was shown that LP is

polynomial-time solvable by [13] using an algorithm called “Ellipsoid Method”. In

practice, however, the algorithm is slow and of little practical value, though it did serve

as inspiration for later work that proved to be far more useful. Later, Narendra Kar-

markar [14] proposed a novel interior-point method for addressing linear-programming

problems, which was a bigger theoretical and practical development in the discipline.

6

In (1.1), the program described is called the primal LP. For a primal LP, there is

a dual LP defined as follows:

maximize bTy

subject to
ATy ≤ c

y ≥ 0

(1.2)

The following is useful for many applications of LP:

Theorem 5 (Weak Duality (Theorem 3.20 [15])) If x and y are feasible solu-

tions to primal and dual programs respectively, then

cTx ≥ bTy

We can conclude from the weak duality theorem that every feasible solution to a

dual program is a lower-bound to the optimal value of the primal program. The

inequality mentioned in the theorem holds tightly when both the primal and dual

have an optimal value, as stated in Theorem 6.

Theorem 6 (Strong Duality(Theorem 3.20 [15])) The primal program has an

optimal solution if and only if the dual program has an optimal solution. Furthermore,

their optimal value coincide:

cTx = bTy.

For our discussion later in this study, we need the following definition.

Definition 7 Let P = {x : Ax = b, x ≥ 0} ⊆ Rn. Then x ∈ Rn is an Extreme Point

solution of P if there is no non-zero vector y ∈ Rn such that x+ y and x− y ∈ P .

The corner points of the set of possible solutions are depicted graphically as extreme

point solutions. We can show that for bounded linear programs, there is always an

optimal extreme point solution.

Lemma 8 Let P = {x : Ax ≥ b, x ≥ 0} and assume that min{cTx : x ∈ P} is

finite. Then there is always an extreme point optimal solution that can be computed

in polynomial time.

7

At last, using linear algebraic properties and the given lemma, one can show the

following, also known as Rank Lemma.

Lemma 9 (Lemma 2.1.4 [16]) Let P = {x : Ax ≥ b, x ≥ 0} and let x be an

extreme point solution of P such that all entries of x is non-zero. Then any maximal

number of linearly independent tight constraints of the form Aix = bi for some row i

is equal to the number of variables.

Integer Programming is an optimization problem represented similarly to an LP

except that each variable x can be either 1 or 0. Many of the combinatorial problems

can be modeled using an integer program, and be approximated using a relaxation

from the integer program to an LP since Integer Programming is NP-hard. Although

we have concrete way of solving an LP, there are many methods that one can use

to try to find a feasible solution to the main integer program, and also bound the

objective function.

Another important property associated with Primal and Dual programs is the

Complementary Slackness. Note how if we have an optimal solution to a program,

whether primal or dual, it does not necessary mean that all the constraints are tight.

This leads to the following useful fact:

Theorem 10 (Complementary Slackness (Theorem 3.24 [15])) Let x̄ be a fea-

sible solution for the primal program, and ȳ a feasible solution to the corresponding

dual. x̄ and ȳ are both optimal if and only if:

1. xj > 0¯ −→
∑︁m

i=1 yīAi,j = cj for any 1 ≤ j ≤ n

2. yi > 0¯ −→
∑︁n

j=1 xj̄Ai,j = bi for any 1 ≤ i ≤ m

We can cast many combinatorial problems as integer programs and then relax to

linear programs.

8

1.1.4 k-Centre Problem

The metric k-Centre problem is extensively studied in theoretical computer science.

The problem is considered a clustering task for which we are given a metric, (X , d)

and the parameter k. We aim to pick k centres from the set X such that the maximum

distance between a data point in X and its closest centre is minimized. There is a

simple greedy 2-approximation algorithm for this problem running in O(nk) and it is

shown there are no (2− ϵ)-approximation algorithms for k-centre for any ϵ > 0 unless

P = NP [5].

1.1.5 Lagrangian Relaxation

Let us describe this method with an example. Consider the following Linear Pro-

gramming Relaxation of MSR. Here, x(i,r) = 1 corresponds to us choosing to open

centre i ∈ X with radius r.

minimize :
∑︂
(i,r)

r · x(i,r)

subject to :
∑︂

(i,r):j∈B(i,r)

x(i,r) ≥ 1 for each j ∈ X

∑︁
(i,r) x(i,r) ≤ k

x ≥ 0

Note that the pair (i, r) are from the set X × [D] where D is the maximum distance

between any pair in X which we can scale to be an integer value, and hence, is poly-

nomial. We will use this linear program to design a constant-factor approximation.

To do this, we “Lagrangify” the cardinality constraint. In particular, for any “given”

λ ≥ 0 we consider the following LP where we call λ the Lagrangian multiplier.

minimize :
∑︂
(i,r)

r · x(i,r) + λ(x(i,r) − k)

subject to :
∑︂

(i,r):j∈B(i,r)

x(i,r) ≥ 1 for each j ∈ X

∑︂
(i,r)

x(i,r) ≤ k

x ≥ 0

9

Then, we will be considering the program where we drop the constant term in the

objective function. In this way, we penalize picking too many centres in the objective

function. But note how the solution must still be feasible for the first LP, which then

requires another step in most solutions.

Lemma 11 For some λ ≥ 0, if an optimum integer solution to the Lagrangified LP

uses exactly k balls, then it is an optimum solution to the MSR problem as well.

Proof. If there are exactly k centres in the found solution, the the term λ(x(i,r)− k)

cancels out in the objective function. Then, the LP solution can be translated to a

discrete solution easily with the value at most optimal value of LP.

Note that it is still challenging to determine the Lagrangified LP’s optimum integer

solution, because the optimum may not require precisely k balls. In order to obtain

an approximately optimal solution that employs precisely k balls, our algorithm will

approximate the search for the best integer solution and test several values of lambda.

Even this might not be feasible. In the end, our approach will discover some λ ≥ 0

and two distinct nearly-optimal integer solutions for this identical Lagrangified LP:

one uses at least k balls and one uses at most k balls, as we describe and demonstrate

in Chapter 3. A “bi-point” solution is a pair of such solutions for a certain λ ≥ 0. The

name “bi-point” is chosen since the original LP for MSR may be solved realistically

and inexpensively by appropriately averaging these two integer answers.

1.2 Prior Work

Gibson et al. show MSR isNP-hard even in metrics with constant doubling dimension

or shortest-path metrics of edge-weighted planar graphs [17]. In polynomial time,

the best approximation algorithm is the stated 3.504 approximation by Charikar

and Panigrahy. [18]. Interestingly, [17] show that MSR can be solved exactly in

nO(logn·log Γ) where Γ is the aspect ratio of the metric (maximum distance divided by

minimum nonzero distance). Using Randomized Algorithm, this yields a quasi-PTAS

10

for MSR: i.e. a (1 + ϵ)-approximation with running time nO(log 1/ϵ+log2 n). The main

idea that underlies this result is that if we probabilistically partition the metric into

sets with at most half the original diameter, then with high probability only O(log n)

balls in the optimal MSR solution are “cut” by the partition.

A major open problem is to design a PTAS for MSR, or perhaps to demonstrate

there is no PTAS for MSR under some strong lower bound. For now, it is of interest

to get improved constant-factor approximations for MSR. By way of analogy, the un-

splittable flow problem was known to admit a quasi-PTAS [19, 20] However, improved

constant-factor approximations were subsequently produced [21–23], that is until a

PTAS was finally found by Grandoni et al. [24].

Doddi et al. show that unless P = NP, there is no (2− ϵ)-approximation for MSD

for any ϵ > 0 even if the metric is the shortest path metric of an unweighted graph

[25]. Prior to the work studied in this dissertation, the best approximation for MSD is

simply twice the best polynomial-time approximation for MSR, i.e. 2 · 3.504 = 7.008

using the approximation for MSR from [18].

MSR and MSD have been studied in special cases as well. In constant-dimensional

Euclidean metrics, MSR can be solved exactly in polynomial time [26]. This is par-

ticularly interesting in light of the fact that MSR is hard in doubling metrics. For

MSD in constant-dimensional Euclidean metrics, if k is also regarded as a constant

then MSD can be solved exactly [27]. In general metrics with k = 2, MSD can be

solved exactly by observing that if we are given the diameters of the two clusters,

we can use 2SAT to determine if we can place the points in these clusters while re-

specting the diameters [28]. However, MSD is NP-hard for even k = 3 as it captures

the problem of determining if an unweighted graph can be partitioned into 3 cliques.

Finally, if one does not allow balls with radius 0 in the solution, MSR can be solved

in polynomial time in shortest path metrics of unweighted graphs [29, 30].

Another related problem is lower-bounded min sum of radii with outliers (LBkSRO)

as discussed in [31]. In this problem, we are given the set X in which for each element

11

u, there is an input Lu. Then, the goal is to pick k centres and radii such that cluster

with center u must have at least Lu data points and there has to be at most m

unclustered data points. Then, the objective is to minimize the sum of radii. They

described a 12.365-approximation algorithm for LbkSRO. The version where m = 0,

known as LbkSR has a 3.83-approximation factor, using similar methods. In [32], we

see another fault tolerant version. They discuss the Metric Multi-Cover problem, in

which we have a set of data points X and set of candidate facilities Y and a demand

value k for all the data points. The goal here is to pick pairs of (i, r) as many as

we wish to minimize the sum of radii to power of α while each data point has to be

present in at least k balls. This modification of the problem admits an approximation

factor of 2(108)α. If we make a constraint to have at most t centres, then their work

gives an approximation factor of 4(540)α. On another note, if each data point has

specific demand, the factor changes to 2 · (144)α. At last, by adding an opening cost

to each centre candidate, the approximation factor would be (216)α.

For the Euclidean space for MMC, there is a 23.02 + 63.95(k − 1) approximation

algorithm where k is the coverage demand of the points [33]. They also consider a

non-discrete version of MMC, where there are areas to cover rather than discrete data

points. Their work proves a 63.94 + 177.64(k − 1) approximation factor. For a client

specific version of MMC in the Euclidean, [34] proves a 4(27
√
2)α factor. Also, [35]

studies the MMC problem with a penalty added for each uncovered data point. Then

the objective function is to minimize minimum sum of radii and sum of the penalties.

They give a 3α + rαmax approximation algorithm in Euclidean space.

1.3 Our work and Organization

Prior to this work, Charikar and Panigrahy presented a 3.504-approximation for MSR

[18]. Since an α-approximation for MSR yields a 2α-approximation for MSD, this

also yields a 7.008-approximation for MSD. These were the best polynomial-time

approximations for these problems in general metrics.

12

In this paper, we first present an improved polynomial-time approximation algo-

rithm for MSR. Specifically, we prove the following.

Theorem 12 There is a polynomial-time 3.389-approximation for MSR.

We obtain this primarily by refining a so-called bipoint rounding step from [18]. That

is, our improvement for MSR mainly focuses in the last phase of the algorithm in [18]

which combines two subsets of balls that, together, open an average of k centers and

whose average cost is low. Their algorithm focuses on selecting k of the centers from

these two subsets. We expand the set of possible centers to choose and consider some

that may not be centers in the averaging of the two subsets.

We also present an alternative method for obtaining these two subsets of balls

by considering a simple rounding of a linear programming (LP) relaxation, the La-

grangian relaxation of the problem obtained by relaxing the constraint that at most

k centres are chosen, rather than the primal-dual technique used in [18].The rounding

algorithm is incredibly simple and we employ fairly generic arguments to convert it

to a bipoint solution for a single Lagrangian multiplier λ, this approach may be of

independent interest as it should be easy to adapt to other settings where one wants

to get a bipoint solution where both points are obtained from a common Lagrangian

value λ, as long as the LMP approximation is from direct LP rounding. However, we

emphasize that we could work directly with their primal-dual approach.

Our second result is an improved MSD approximation that does not just use our

MSR approximation as a black box.

Theorem 13 There is a polynomial-time 6.546-approximation for MSD.

In particular, notice the guarantee is better than twice our approximation guarantee

for MSR. This is obtained through a variation of our new ideas behind our MSR

approximation.

Finally, we get to discuss the MSSR problem, using the same machinery. The

13

algorithm makes use of the same bipoint rounding and placing of the centres. At last,

we have the following result.

Theorem 14 There is a polynomial-time 11.078-approximation for MSSR.

Note that this is best known result for the MSSR case. As mentioned, objective

functions with powers greater than 1 has been studied in other works. Although,

their corresponding problems are more strict and hence, they establish a larger ap-

proximation factor. One can also analyze Charikar’s approach to get a constant

approximation.

Organization of the Dissertation

The MSR approximation is given in Chapter 2. Our algorithm follows the same

general structure as the algorithm in [18] so we defer the details behind one significant

step to chapter 3. Our MSD and MSSR approximation is also given in chapter 2.

Finally, our new approach to obtaining a clean bipoint solution is discussed in

chapter 3. Brief concluding remarks are given in Section 4.

At last, the main part of the analysis of the improved approximation factor is

about fixing a particular constant and picking the proper configuration for the com-

bined solution. The result of such analysis is stated in the chapter 2, however tables

summarizing how generic choices of constants would lead to approximation guaran-

tees are in the appendix A and B, the purpose is to demonstrate that our choices are

optimal.

14

Chapter 2

Improved approximation of MSR,
MSD, and MSSR

In this chapter we describe the algorithm for MSR, MSD, and MSSR. In each of

these cases, we will be going over the process of solving the LP for the sake of finding

the proper Lagrangian value, then combining the two solutions for an approximation

guarantee. Based on the objective function, one may have to change some parts of

the algorithm, all of which are discussed in their respective sections.

2.1 Minimum Sum of Radii

At first, we put our focus on the MSR problem, and then apply the same procedure

and ideas to the others.

From now on in this thesis, n = |X|. We know that d(i, i′) > 0 for distinct i, i′ ∈ X

because it is a metric space. We refer to a pair (i, r) as a ball with the understanding

it is referring to the set B(i, r).

In some parts of our algorithm, we need to guess balls from the optimal solution

or use LP variables corresponding to balls that may appear in the optimal solution:

in these steps we only need to consider balls B(i, r) where r = d(i, j) for some j ∈ X

because it is clear that an optimal MSR solution will set each radius by the furthest

point that is covered by that ball. So there are only O(n2) different balls to consider.

We view a solution as a collection B of pairs (i, r), i ∈ X, r ≥ 0 describing the centers

15

and radii of the balls. For such a subset, we let cost(B) =
∑︁

(i,r)∈B r be the total radii

of these balls.

We will fix some small constant ϵ > 0 such that 1/ϵ is an integer. Note that a

smaller ϵ leads to a better guarantee with increased (but still polynomial) running

time. We will be able to pick a small enough ϵ such that it will hide in the approxi-

mation guarantee and that is to why it is not mentioned in the statement of Theorem

12. We assume k > 1/ϵ, otherwise we can simply use brute force to find the optimum

solution in nO(1/ϵ) time.

Here we provide a detailed explanation for the MSR algorithm and all its sub-

routines. The main contribution happens at the last phase of algorithm, where we

establish a better approximation factor. Our algorithm for MSR is summarized in

Algorithm 1 at the end of this section, though it makes reference to a fundamental

subroutine to find our “bi-point” solution that we describe in the Chapter 3. By

bi-point, we simply mean two subsets of balls B1,B2 with |B1| ≥ k ≥ |B2| so some

averaging of these balls looks like a feasible fractional solution using exactly k balls.

2.1.1 Step 1: Guessing the Largest Balls

Let B∗ denote some fixed optimum solution with OPT := cost(B∗). Among all

optimal solutions, we assume B∗ has the fewest balls. Thus, for distinct (i, r), (i′, r′) ∈

B∗ we have that i′ /∈ B(i, r) since, otherwise, B∗ = {(i, r), (i′, r′)}) ∪ {(i, r + r′)} is

another optimal solution with even fewer balls. In other words, if our optimal solution

has the fewest number of balls, then the centre of each ball must be outside of all the

other balls, otherwise we can merge the balls and not increase the objective function.

Similar to [18], we guess the 1/ϵ largest balls in B∗ by trying each subset B′ of 1/ϵ

balls and proceeding with the algorithm we describe in the rest of this discussion.

That is, let B′ ⊆ B∗ be such that |B′| = 1/ϵ and r ≤ r′ for each (i, r) ∈ B∗ − B′ and

(i′, r′) ∈ B′.

Let Rm be the minimum radius of a ball in B′. Remember that since we already

16

have guessed the largest balls and the sum of those guessed balls cannot be greater

than OPT , then Rm ≤ ϵ · OPT . We also let k′ := k − 1/ϵ, which is an upper bound

on the number of balls in B∗ − B′.

We now restrict ourselves to the instance with points X ′ := X − ∪(i,r)∈B′B(i, r)

to be covered. Since no center of a ball in B∗ is contained within another ball from

B∗, the remaining balls in B∗ − B′ are also centered in X ′. We will let OPT ′ =

OPT −
∑︁

(i,r)∈B′ r denote the optimal solution value to this restricted instance. The

solution B∗ −B′ for this instance satisfies r ≤ Rm ≤ ϵ ·OPT for any (i, r) ∈ B∗ −B′.

We also assume |X ′| > k′, otherwise we just open zero-radius ball at each point in ′.

Our guessing step must perform a “precheck” for this guess as follows before pro-

ceeding. By the work of [5], there is a 2-approximation algorithm for the k-Centre

problem. Then, we run this standard 2-approximation for the k′-Centre instance

on the metric restricted to X ′. If the solution returned has radius > 2 · Rm, then

we reject this guess B′. This is valid because we know for a correct guess that the

remaining points can each be covered using at most k′ balls each with radius at most

Rm. From now on, we let A denote the k′ centers returned by this approximation: so

each j ∈ X ′ lies in at least one ball of the form B(i, 2 ·Rm) for some i ∈ A.

Theorem 15 Given an optimal solution set B∗ with value OPT and fewest number

of balls, let B′
be the set of 1

ϵ
largest balls in B∗. Then, if Rm is the minimum radius

in B′, we have Rm ≤ ϵ ·OPT .

Furthermore, let X ′ = X − ∪(i,r)∈B′B(i, r), the set of data points not covered by

B′. Then, if A is the set of centres in the output of 2-approximation (k− 1
ϵ
)-Centre

algorithm, then value of A is at most 2 ·Rm.

When analyzing the rest of the algorithm, we will assume that B′ is guessed cor-

rectly, i.e. B′ ⊆ B∗ and all (i, r) ∈ B∗ − B′ have r ≤ Rm. Our final solution will be

the minimum-cost solution found over all guesses B′ that were not rejected (which

are in O(nϵ)), so it will be at most the cost of the solution found when B′ was guessed

17

correctly.

2.1.2 Step 2: Getting a Bi-point Solution

The output from this step is similar to [18]. We remark that their approach would

suffice for our purposes, except there would be yet another “ϵ” introduced with their

technique. We will be following a different approach primarily to show there is a

simple and direct LP rounding routine and, more importantly, to give a generic pro-

cedure that is likely to apply to most LP-rounding LMP approximations to get a

bi-point solution where both points can be compared with the optimal LP solution

for a single value λ. At first, we will be describing the LP program relaxation for the

problem of MSR, as follow:

min
∑︁

(i,r) r · x(i,r)

s.t.
∑︁

(i,r):j∈B(i,r) x(i,r) ≥ 1 ∀ j ∈ X ′∑︁
x(i,r) ≤ k

x ≥ 0

(LP)

For a value λ ≥ 0, LP(λ) is the linear program that results by considering the

Lagrangian relaxation of MSR. That is, the LP has variables for each possible ball we

may add except instead of restricting the number of balls to be at most k′, we simply

pay λ for each ball.

Note: terms of the LP that consider pairs (i, r) corresponding to balls with i ∈ X ′

and r of the form d(i, j) for some j ∈ X ′ but only for those where r ≤ Rm. Thus, the

LP has O(n2) variables.

min
∑︁

(i,r)(r + λ) · x(i,r)

s.t.
∑︁

(i,r):j∈B(i,r) x(i,r) ≥ 1 ∀ j ∈ X ′

x ≥ 0

(LP(λ))

The following is standard and follows by considering the natural {0, 1}-integer solution

corresponding to the balls in B∗ − B′.

18

Lemma 16 For any λ ≥ 0, let OPTLP(λ) denote the optimum value of LP(λ). Then

OPTLP (λ) − λ · k′ ≤ OPT ′.

Proof. Note that OPTLP (λ)− λ · k′ is the optimal value for the Lagrangified original

LP for the problem. Then, note how in the original LP, we must have
∑︁

(i,r) x(i,r) ≤ k
′
.

Then, the statement follows from the fact that the optimal value for the original

LP is a lower-bound for OPT
′
.

The following theorem is required for the analysis later studied in Chapter 3. We

will state it here for the sake of understanding the next step of the bi-point solution

construction.

Theorem 17 There is a polynomial-time algorithm that will compute a single value

λ ≥ 0 and two sets of balls B1,B2 having respective sizes k1, k2 where k1 ≥ k′ ≥ k2.

Furthermore, for every (i, r) ∈ B1, there is some (i′, r′) ∈ B2 such that B(i, r) ∩

B(i′, r′) ̸= ∅. Finally, for both ℓ = 1 and ℓ = 2 we have the following properties:

• for each (i, r) ∈ Bℓ, we have r ≤ 3 ·Rm (Rm is the smallest radius in the set of

guessed balls),

• tripling the radii of each (i, r) ∈ Bℓ will cover X ′, i.e. for each j ∈ X ′ there is

some (i, r) ∈ Bℓ such that j ∈ B(i, 3 · r), and

• cost(Bℓ) + λ · kℓ ≤ OPTLP(λ)

It could be that B1 = B2, in which case k1 = k′ = k2 must hold. Notice that if

k1 = k′ then cost(B1) ≤ OPT ′ then by Lemma 16 we have

cost(B1) ≤ OPTLP(λ) − λ · k′ ≤ OPT ′.

In this case, tripling the radii of all balls in B1 covers all of X ′ with cost at most

3 ·OPT ′. Together with B′, this is a feasible MSR solution with cost at most 3 ·OPT

(metric property 5, triangle inequality). A similar approximation follows if k2 = k.

We do not distinguish these cases in our full analysis below.

As a warm-up, we consider the case when one of k1 and k2 is equal to k
′
.

19

Theorem 18 If the bi-point step yields k balls (i.e. k1 = k
′
), then we have a 3-

approximation.

Proof. For this proof, we simply consider the LP itself. Note that if we have exactly

k′ balls in the solution, then we have
∑︁

(i,r) x(i,r) = k′, which means in the objective

function of the Lagrangified LP, the term λ(k′ −
∑︁

(i,r) x(i,r)) cancels out. At last,

using the rounding argument we can simply show that this solution is at most 3

times the optimal solution, which is lower-bounded by OPT ′ value of the LP. Note

that this is a rare case, and the idea behind finding and combining two solutions is

that this case may not happen.

2.1.3 Step 3: Combining Bi-point Solutions

Let λ,B1,B2 be the bi-point solution from Theorem 17. For brevity, let C1 = cost(B1)

and C2 = cost(B2). Since k1 ≥ k′ ≥ k2, there are values a, b ≥ 0 with a + b = 1 and

a · k1 + b · k2 = k′. We fix these values throughout this section.

The following shows the average cost C1 and C2 is bounded by OPT ′, the first

inequality is by the last property listed in Theorem 17 and the second by Lemma 16.

a·C1+b·C2 ≤ a·(OPTLP(λ)−λ·k1)+b·(OPTLP(λ)−λ·k2) = OPTLP(λ)−λ·k′ ≤ OPT ′

(2.1)

The rest of our algorithm and analysis considers how to convert the two solutions

B1,B2 to produce a feasible solution whose value is within a constant-factor of this

averaging of C1, C2. First, note tripling the radii in all balls in B2 will produce a

feasible solution as k2 ≤ k′, but it may be too expensive. So we will consider two

different solutions and take the better of the two. The first is solution is what we just

described: formally it is {(i, 3r) : (i, r) ∈ B2}, which is a feasible solution with cost

3 · C2.

Constructing the second solution is our main deviation from the work in [18].

Intuitively, we want to cover all points by using balls (i, 3 · r) for (i, r) ∈ B1. The

20

cheaper of this and the first solution can easily be show to have cost at most 3 ·OPT ′.

The problem is that this could open more than k′ centers (if k1 > k′). As in [18], we

consolidate some of these balls into a single group based on their common intersection

with some (i′, r′) ∈ B2. We will select some groups and merge their balls into a single

ball so the number of balls is at most k′. Our improved approximation is enabled

by considering different ways to cover balls in a group using a single ball, [18] only

considered one possible way to cover a group with a single ball.

We now form groups. For each (i, r) ∈ B2, we create a group G(i,r) ⊆ B1 as follows:

for each (i′, r′) ∈ B1, consider any single (i, r) ∈ B2 such that B(i, r) ∩ B(i′, r′) ̸= ∅

and add (i′, r′) to G(i,r). If multiple (i, r) ∈ B2 satisfy this criteria, pick one arbitrarily.

Let G = {G(i,r) : (i, r) ∈ B2 s.t. G(i,r) ̸= ∅} be the collection of all nonempty groups

formed this way, note G is a partitioning of B1.

How to cover a group with a single ball

From here, the approach in [18] would describe how to merge the balls in a group

G(i,r) ∈ G simply by centering a new ball at i, and making its radius sufficiently

large to cover all points covered by the tripled balls B(i′, 3r′) for (i′, r′) ∈ G(i,r). We

consider choosing a different center when we consolidate the B1 balls in a group. In

fact, it suffices to simply pick the minimum-radius ball that covers the union of the

tripled balls in a group. This ball can be centered at any point in X ′.

Theorem 19 If one decide to replace a group G(i,r) by a single ball, the cost of the

ball is at most 11
8
· r + 3 · cost(G(i,r)).

The exact choice of ball we use for the analysis depends on the composition of the

group, namely the total and maximum radii of balls in G(i,r) versus the radius r itself.

In [18], the ball they select has cost at most r + 4 · cost(G(i,r)). While our analysis

has a higher dependence on r, when considered as an alternative solution to the one

that just triples all balls in B2 we end up with a better overall solution.

21

Figure 2.1: A depiction of a group G(i1,R1). The solid ball is B(i1, R1) and the dashed
balls are those in G(i1,R1). Point j is covered by tripling the ball centered at i′.
The dashed path depicts the way we bound d(j, i2) in the second part of the case
Centering at i2.

For now, fix a single group G(i,r) ∈ G. Let R1 denote r, R2 be the maximum

radius of a ball in G(i,r) and R3 be the maximum radius among all other balls in

G(i,r) apart from the one defining R2. If G(i,r) has only one ball, then let R3 = 0.

That is, 0 ≤ R3 ≤ R2 but it could be that R3 = R2, i.e. there could be more than

one ball from G(i,r) with maximum radius. We also let i1 denote i, i2 be the center

of any particular ball with maximum radius in G(i,r), and i3 be any single point in

B(i1, R1) ∩ B(i2, R2). There is at least one since each ball in G(i,r) intersects B(i, r)

by construction of the groups.

Next we describe the radius of a ball that would be required if we centered it at

one of i1, i2 or i3. Consider any j ∈ B(i′, 3r′) for some (i′, r′) ∈ G(i,r). Let i′′ be any

point in B(i1, r) ∩ B(i′, r′). We bound the distance of j from each of i1, i2 and i3

to see what radius would suffice for each of these three possible centers. Figure 2.1

depicts this group and one case of the analysis below.

22

• Centering at i1. Simply put,

d(j, i1) ≤ d(j, i′) + d(i′, i′′) + d(i′′, i1) ≤ 3 ·R2 +R2 +R1 = R1 + 4 ·R2.

So radius C(1) := R1 + 4 ·R2 suffices if we choose i1 as the center.

• Centering at i2. If (i
′, r′) = (i2, R2) then d(j, i2) ≤ 3 ·R2. Otherwise, r′ ≤ R3

and

d(j, i2) ≤ d(j, i′)+d(i′, i′′)+d(i′′, i1)+d(i1, i3)+d(i3, i2) ≤ 3·R3+R3+R1+R1+R2

= 2 ·R1 +R2 + 4 ·R3.

So radius C(2) := max{3 ·R2, 2 ·R1 +R2 +4 ·R3} suffices if we choose i2 as the

center.

• Centering at i3. If (i′, r′) = (i2, R2) then d(j, i3) ≤ d(j, i2) + d(i2, i3) ≤

3 ·R2 +R2 = 4 ·R2. Otherwise, r′ ≤ R3 and we see

d(j, i3) ≤ d(j, i′)+d(i′, i′′)+d(i′′, i1)+d(i1, i3) ≤ 3·R3+R3+R1+R1 = 2·R1+4·R3.

So radius C(3) := max{4 ·R2, 2 ·R1+4 ·R3} suffices if we choose i3 as the center.

With these bounds, we now describe how to choose a single ball covering the

points covered by tripled balls in G(i,r) in a way that gives a good bound on the

minimum-radius ball covering these points. The following cases employ particular

constants to decide which center should be used, these have been optimized for our

approach. The optimization steps have been deferred to the Appendix A for the

interested reader. The final bounds are stated to be of the form 3 · C(i,r) plus some

multiple of r. Let C(i,r) =
∑︁

(i′,r′)∈G(i,r)
r be the total radii of all balls in G(i,r). So∑︁

G(i,r)∈G C(i,r) = cost(B1) = C1.

• Case: R3 > R2/3. Then the ball B′
(i,r) is selected to be B(i1, C

(1)). Note

4/3 ·R2 < R2 +R3 ≤ C(i,r) so C(1) ≤ r + 3 · C(i,r).

23

• Case: R3 ≤ R2/3 and R2 ≥ 6
5
·R1. The ball B′

(i,r) is selected to be B(i2, C
(2)).

Note C(2) ≤ 6
5
·R1 + 3 ·R2 ≤ 6

5
· r + 3 · C(i,r).

• Case: R3 ≤ R2/3 and 6
5
· R1 > R2 ≥ 3

8
· R1. The ball B′

(i,r) is selected to be

B(i3, C
(3)). Note C(3) ≤ 11

8
·R1 + 3 ·R2 ≤ 11

8
· r + 3 · C(i,r).

• Case: R3 ≤ R2/3 and 3
8
·R1 > R2. The ball B′

(i,r) is selected to be B(i1, C
(1)).

Note C(1) ≤ 11
8
·R1 + 3 ·R2 ≤ 11

8
· r + 3 · C(i,r).

In any case, we see that by selectingB′
(i,r) optimally, the radius is at most 11

8
·r+3·C(i,r).

Also, since R1, R2, R3 ≤ 3 · Rm by Theorem 17, then the radius of B′
(i,r) is also seen

to be at most, say, 21 ·Rm. That is because of two facts

1. With additional preprocessing described in next chapter, a ball in the output

of rounding has radius at most 3 ·Rm, and

2. If we pick our centre to be i2, we might have the case where the radius is

2 ·R1 +R2 + 4 ·R3.

Then, by replacing R1, R2, and R3 by 3 · Rm, the radius of the fractional group is

bounded by 21 ·Rm.

Choosing which groups to merge

For each group G(i,r) ∈ G, we consider two options. Either we select all balls in G(i,r)

with triple their original radii (thus, with total cost 3·C(i,r)), or we select the single ball

B′
(i,r). We want to do this to minimize the resulting cost while ensuring the number

of centers open is at most k′. To help with this, we consider the following linear

program. For each G(i,r) ∈ G we have a variable z(i,r) where z(i,r) = 0 corresponds to

selecting the |G(i,r)| balls with triple their original radius and z(i,r) = 1 corresponds

to selecting the single ball B′
(i,r). As noted in the previous section, the radius of B′

(i,r)

is at most 11
8
· r + 3 · C(i,r) and also at most 21 ·Rm.

24

minimize :
∑︁

G(i,r)∈G(1− z(i,r)) · 3 · C(i,r) + z(i,r) · cost({B′
(i,r)})

subject to :
∑︁

G(i,r)∈G
(︁
(1− z(i,r)) · |G(i,r)|+ z(i,r)

)︁
≤ k′

z(i,r) ∈ [0, 1] ∀ G(i,r) ∈ G
(LP-Choose)

To consolidate the groups, compute an optimal extreme point to LP-Choose.

Since all but one constraint are [0, 1] box constraints, there is at most one variable

z(i,r) that does not take an integer value, according to lemma 9. Since |G(i,r)| ≥ 1,

then setting z(i,r) to 1 yields a feasible solution whose cost increases by at most the

radius of B′
(i,r), which was observed to be at most 21 ·Rm ≤ 21 · ϵ ·OPT .

Recall that a, b are such that a, b ≥ 0, a + b = 1 and a · k1 + b · k2 = k′. Thus,

setting z(i,r) = a for each G(i,r) = 1 is feasible as 1− z(i,r) = b,
∑︁

G(i,r)∈G |G(i,r)| = k2,

and there are at most k′
1 terms in this sum. The value of this solution is∑︂

G(i,r)∈G

(3 · b+ 3 · a)C(i,r) = 3 · (
∑︂

G(i,r)∈G

C(i,r)) +
11

8
· b · (

∑︂
G(i,r)∈G

r)

= 3 · C1 +
11

8
· b · C2

so the optimum solution to LP-Choose has value at most this much as well. Sum-

marizing,

Lemma 20 In polynomial time, we can compute a set of at most k′ balls with total

radius at most 11
8
· b · C2 + 3 · C1 + 21 · ϵ ·OPT which cover all points in X ′.

Finally, we can complete our analysis. Recall our simple solution of tripling the

balls in B2 has cost at most 3 · C2 and the more involved solution jut described has

cost at most 3 · C1 +
11
8
· a · C2 + 21 · ϵ ·OPT . Now,

min

{︃
3 · C2, 3 · C1 +

11

8
· b · C2

}︃
≤ (1− d) · 3 · C2 + d ·

(︃
b · 11

8
· C2 + 3 · C1

)︃
holds for any 0 ≤ d ≤ 1. To maximize the latter, we set d = 3(1−b)

11
8
·b2− 11

8
·b+3

and see the

minimum of these two terms is at most(︃
9

11
8
· b2 − 11

8
· b+ 3

)︃
· (aC1 + bC2) ≤

(︃
9

11
8
· b2 − 11

8
· b+ 3

)︃
·OPT ′

25

where we have used bound 2.1 for the last step.

The worst case occurs at b = 1
2
, at which the bound becomes 85/288 ·OPT ′. Thus,

the cost of the solution is at most 288
85
· OPT ′ + 21 · ϵ · OPT . Adding the balls B′ we

guessed to also cover the points in X − X ′, we get get a solution covering all of X

with total radii at most

cost(B′)+
288

85
·OPT ′+21 ·ϵ = OPT−OPT ′+

288

85
·OPT ′+21 ·ϵ ·OPT ≤ 3.389 ·OPT

for sufficiently small ϵ.

The entire algorithm for MSR that we have just presented is summarized in Algo-

rithm 1.

Algorithm 1 MSR Approximation

S ← ∅ {The set of all solutions seen over all guesses}
for each subset B′

j of 1/ϵ balls do
let X ′, Rm be as described in Section 2.1.1
(A, R)← k-Centre 2-approximation on X ′

if R > 2 ·Rm then
reject this guess B′ and continue with the next

let B1,B2, λ be the bi-point solution from Algorithm 5 {see Theorem 17}
let G be the groups (a partitioning of B1) described in Section 2.1.3
for each G(i,r) ∈ G, let B′

(i,r) be the cheapest ball covering ∪(i′,r′)∈G(i,r)
B(i′, 3 ·r′)

let z′ be an optimal extreme point to LP-Choose
B(1) ← {B′

(i,r) : z
′
(i,r) > 0} ∪

⋃︁
z′
(i,r)

=0{(i′, 3 · r′) : (i′, r′) ∈ G(i,r)}
B(2) ← {(i, 3 · r) : (i, r) ∈ B2}
let B be {(i, 3 · r) : (i, r) ∈ B′} plus the cheaper of the two sets B(1) and B(2)

S ← S ∪ {B}
return the cheapest solution from S

2.2 Minimum Sum of Diameters

Here, we observe that a slight modification to the MSR approximation in fact yields

a 6.546-approximation for MSD.

Lemma 21 If there is an α-approximation for MSR, then there is a 2α-approximation

for MSD.

26

Proof. Consider the ball B in the solution for MSR using the α-approximation. Note

that each pair of data points in B are at most 2α apart. Hence, there exists a ball

with diameter at most 2α covering the same set of data points.

Note that for any Y ⊆ X with diameter, say, diam(Y), for any i ∈ Y we have

Y ⊆ B(i, diam(Y)) and diam(B(i, diam(Y)) ≤ 2 · diam(Y). So while it is difficult to

guess any single cluster from the optimum MSD solution, we can guess the 1/ϵ largest

diameters (the values) and guess balls B′ with these radii that cover these largest-

diameter clusters. Let OPT ′
D denote the total diameter of the remaining clusters

from the optimum solution, k′ = k − 1
ϵ
, X ′ be the remaining points to cluster, and

Rm = min{r : (i, r) ∈ B′} ≤ ϵ ·OPTD.

For any λ ≥ 0, note OPTLP(λ) + λ · k′ ≤ OPT ′
D as picking any single center from

each cluster in optimum solution on X ′ yields an MSR solution with cost at most

OPT ′
D. We then use Theorem 17 to get a bi-point solution B1,B2, λ.

If we triple the balls in B2 and output those clusters, we get a solution with total

diameter ≤ 6 · cost(B2). For the other case, we again form groups G. Instead of

picking a ball B′
(i,r) for each group G(i,r) ∈ G, we simply let B′

(i,r) be the set of points

covered by the tripled balls in G(i,r). We claim diam(B′
(i,r)) ≤ 2 · r + 6 · C(i,r).

To see this, consider any two points j′, j′′ covered by ∪(i′,r′)∈G(i,r)
B(i′, 3 · r′), say

(i′, r′) and (i′′, r′′) are the balls in G(i,r) which, when tripled, cover j′ and j′′, respec-

tively. If (i′, r′) = (i′′, r′′) (i.e. it is the same tripled ball from G(i,r) that covers both

j′, j′′) then d(j′, j′′) ≤ 6 · r′ ≤ 6 · C(i,r). Otherwise, we have r′ + r′′ ≤ C(i,r) and

d(j′, j′′) ≤ d(j′, i′)+d(i′, i)+d(i, i′′)+d(i′′, j′′) ≤ 4 · r′+ r+ r+4 · r′′ ≤ 2 · r+4 ·C(i,r).

In either case, we can upper bound d(j′, j′′) ≤ 2·r+6·C(i,r), so diam(B′
(i,r)) is bounded

by the same. We use an LP similar to LP-Choose except with the modified objective

27

function to reflect the diameter costs of the corresponding choices.

minimize :
∑︁

G(i,r)∈G(1− z(i,r)) · 6 · C(i,r) + z(i,r) · diam(B′
(i,r))

subject to :
∑︁

G(i,r)∈G
(︁
(1− z(i,r)) · |G(i,r)|+ z(i,r)

)︁
≤ k′

z(i,r) ∈ [0, 1] ∀ G(i,r) ∈ G
(LP-Choose MSD)

For a, b ≥ 0, we let a + b = 1 and a · k1 + b · k2 = k′, similar to MSR. Setting

z(i,r) = a shows the optimum LP solution value is at most

·
∑︂

G(i,r)∈G

(6 · b+ 6 · a) · C(i,r) + 2 · b · r = 6 · C2 + 2 · b · C1.

.

In an optimal extreme point, at most one variable in LP-Choose MSD that is

fractional so we set it to 1 we pick to corresponding group to be covered by a single

ball. The final cost is min {6 · C2, 6 · C1 + 2 · b · C2 +O(ϵ) ·OPTD} ≤ (1 − d) · 6 ·

C2 + d · (b · 2 · C2 + 6 · C1) for any d ∈ [0, 1]. Let By setting d = 6(1−b)
2·b2−2·b+6

, the worst

case analysis for the final bound happens when b = 1/2, at which we see the cost is

at most 72
11
· OPT ′

D + O(ϵ) · OPTD. Adding this to the 1/ϵ balls we guessed (whose

diameters are at most twice their radius) and choosing ϵ sufficiently small shows we

get a solution with an approximation guarantee of 6.546 for MSD, which is better

than two times the MSR guarantee.

2.3 Minimum Sum of Squared Radii

The algorithm for MSSR follows the exact same procedure as MSR, the only modifi-

cation happens at the phase where we analyze the cost of a group based on the centre

picked for it. The case by case analysis is similar to the MSR Case. However, note

that the objective function value in the lagrangified LP is in the following form:∑︂
(i,r)

x(i,r)(r
2 + λ)

Remember the upper-bounds for a single ball that is centred in eitehr of i1, i2, and

i3, as depicted in 2.1. With these bounds, we now describe how to choose a single

28

ball covering the points covered by tripled balls in G(i,r) in a way that gives a good

bound on the minimum-radius ball covering these points.

The optimization steps have been deferred to the Appendix B.

We then find ourselves in two cases,

1. R2 ≥ 1
2
·R1, then the cost is 9 ·R2 ≤ 9 · C(G(i1,R1)), and

2. R2 ≤ 1
2
·R1, the cost is upper-bounded by (27

4
·R2

1 + 9 ·R2
2).

In any case, we see that by selecting B′
(i,r) optimally, the radius is at most 27

4
·R2

1+9·R2
2.

This is the solution where we aim to pick a group and merge it. Similar to before,

we will compare the outcome of the corresponding Choose LP with C2, the solution

in which we just tripled the radii of the output balls of Rounding.

Now we must again choose which groups to merge similar to both MSR and MSD

case. Hence, consider the following LP-choose.

minimize :
∑︁

G(i,r)∈G(1− z(i,r)) · 3 · C(i,r) + z(i,r) · cost({B′
(i,r)})

subject to :
∑︁

G(i,r)∈G
(︁
(1− z(i,r)) · |G(i,r)|+ z(i,r)

)︁
≤ k′

z(i,r) ∈ [0, 1] ∀ G(i,r) ∈ G
(LP-Choose (MMSR))

To consolidate the groups, compute an optimal extreme point to LP-Choose

(MMSR). Since all but one constraint are [0, 1] box constraints, there is at most one

variable z(i,r) that does not take an integer value 9. Since |G(i,r)| ≥ 1, then setting

z(i,r) to 1 yields a feasible solution whose cost increases by at most the radius of B′
(i,r),

which was observed to be at most (21 ·Rm)
2 ≤ 212 · ϵ ·OPT .

The final cost is min
{︁
9 · C2, 9 · C1 +

27
4
· b · C2 +O(ϵ) ·OPTMSSR

}︁
≤ (1 − d) · 9 ·

C2 + d ·
(︁
b · 27

4
· C2 + 9 · C1

)︁
for any d ∈ [0, 1].

Then, we need to find d such that we can upper-bound min
{︁
9 · C2, 9 · C1 +

27
4
· b
}︁

with an expression β · (aC1 + bC2). Note that the parametric equation for β in the

maximized point is

β =
9d

1− b

29

which we set equal to
9(1− d) + 27

4
bd

b
.

Then, we can write d = 9(1−b)
27
4
b2− 27

4
b+9

. Then, is maximized at b = 1
2
and then d is

equal to 32
55
.

Then we proceed to construct the choose LP and at last, we get a 11.078-approximation

algorithm.

30

Chapter 3

Obtaining the solutions

In this chapter, we go over details for the obtaining two solutions for the bi-point

combination step.

3.1 Overview

We again emphasize that one can slightly adapt the algorithm and analysis in [18]

to prove a slightly weaker version of Theorem 17 that would still suffice for our

approximation guarantees. The main difference is that the averaging of the bipoint

solution costs as given in bound (2.1) from Section 2.1.3 would be bounded by (1 +

ϵ′) ·OPT for some ϵ′ > 0 (the running time depends linearly on log 1/ϵ).

We give an alternative approach that uses simple LP rounding. This may be of

independent interest since our method of getting a single λ rather than two “close”

values λ1, λ2 is simple in principle and may apply to other Lagrangian multipler

preserving (LMP) approximations that use direct LP rounding. That is, we give a

recipe to find a single λ and two corresponding solutions B1,B2 that uses very generic

properties of the rounding algorithm.

31

3.2 A Simple LMP Algorithm via Direct LP Round-

ing

Algorithm 2 describes our rounding procedure. Note it only depends on x′, the

solution to LP (λ) and not on λ itself. However, the role of λ is implicitly present in

the solution x
′
.

Algorithm 2 ROUND(x′)

B ← ∅
for (i, r) with x′

(i,r) > 0 in non-increasing order of r do

if B(i, r) ∩B(i′, r′) = ∅ for each (i′, r′) ∈ B then
B ← B ∪ {(i, r)}

return B

To analyze the performance of this algorithm, we also consider the dual of LP(λ).

max
∑︁

j∈X′ yj

s.t.
∑︁

j∈B(i,r)∩X′ yj ≤ r + λ ∀ (i, r), r ≤ Rm

y ≥ 0

(DUAL(λ))

Let x
′
be the optimal solution for LP(λ) and y

′
be the optimal solution to the

corresponding dual DUAL(λ).

Theorem 22 Let λ ≥ 0. Let B denote the set returned by ROUND(x′). The balls

in B are pairwise-disjoint and for each (i, r) ∈ B we have r ≤ Rm and r + λ =∑︁
j∈B(i,r) y

′
j. Furthermore, by tripling the radii in the returned set of ROUND(x′),

one can cover all the data points.

Proof. Disjointedness follows by construction. Each ball B has radius at most Rm

since each ball is from the support of x′ and LP(λ) only has variable for balls with

radius ≤ Rm. Again, since each (i, r) ∈ B lies in the support of x′ then complementary

slackness shows r + λ =
∑︁

j∈B(i,r) y
′
j.

Note the last condition shows cost(B) + λ · |B| ≤
∑︁

j∈X′ y′j = OPTLP(λ). Thus, we

call this a “Langrangian multipler preserving” algorithm because if B′′ is obtained by

32

tripling the radii of the balls returned by ROUND(x′), then cost(B′′) + 3 · λ · |B′′| ≤

3 ·OPTLP(λ).

3.2.1 Consolidating Solutions from ROUND

To begin our binary search, we need to ensure taking a large value of λ will produce

≤ k′ balls. It is not necessarily clear from ROUND(x′) that this will happen, so we

also employ a consolidation step described in Algorithm 3.

Roughly speaking, it does the following. If some ball from the k-Center solution

A contains the center of more than one ball from B, then replace all such balls of

B with a single ball that covers all these balls but only if this results in a cheaper

solution (in terms of the r+λ cost per ball). For a large λ, this will always be cheaper

for any i ∈ A that captures the center of more than one ball in B, so at most k′ balls

will remain.

Algorithm 3 CONSOLIDATE(B, λ,A, Rm)

B′′ ← ∅
for each i′ ∈ A do

Let Ni′ = {(i, r) ∈ B : i ∈ B(i′, 2 ·Rm)}
if 3 ·Rm + λ ≤

∑︁
(i,r)∈Ni′

(r + λ) then

B′′ ← B′′ ∪ {(i′, 3 ·Rm)}
B ← B −Ni′

B′′ ← B′′ ∪B {Include the balls that were not consolidated in our returned set}
return B′′

Relevant properties of the algorithm are summarized in the following Lemma.

Lemma 23 Let λ ≥ 0. Let B be the output from ROUND(x′) where x′ is an optimal

solution for LP(λ) and y′ an optimal solution for DUAL(λ). Let B′′ be the output

of CONSOLIDATE(B, λ,A, Rm). Then for each (i, r) ∈ B′′, r ≤ 3 · Rm and there

is some X(i,r) ⊆ B(i, r) such that r + λ ≤
∑︁

j∈X(i,r)
y′j. Furthermore, for different

(i, r), (i′, r′) ∈ B′′ we have X(i,r) ∩ Xi′,r′ = ∅. Finally, for each j ∈ X ′ we have

j ∈ B(i, 3 · r) for some (i, r) ∈ B′′.

33

Proof. The existence of X(i,r) is simply by setting X(i,r) = B(i, r) if (i, r) ∈ B at the

end of the algorithm (i.e. if (i, r) is not consolidated into a larger group) or by setting

X(i,r) = ∪(i′,r′)∈N(i)B(i′,r′) if (i, r) was formed when i ∈ A was considered. Since the

balls in B are disjoint at the start of the algorithm and since we remove a ball when it

is consolidated, the X(i,r) sets will be disjoint. That r ≤ 3 ·Rm either follows because

(i, r) was in the input (so it is in the support of x′), or it is the radius of a new ball

which was set to be exactly 3 ·Rm.

We only consolidated balls if 3 · RM + λ ≤
∑︁

(i,r)∈Ni′
(r + λ). Since the latter sum

is exactly the sum of dual variables for points covered in the balls from Ni′ , the new

r + λ cost remains bounded by the sum of the dual values of points in X(i,r).

Finally, for each j ∈ X ′ if j ∈ B(i, 3·r) for a ball that is not consolidated it remains

covered by tripling the radii of balls in B′′. Otherwise, suppose (i, r) ∈ Ni′ . Then

d(i′, j) ≤ d(i′, i) + d(i, r) ≤ 3 · RM + 3 · r ≤ 3 · RM + 3 · RM ≤ 6 · Rm so certainly

j ∈ B(i′, 3 · (3 ·Rm)).

The following shows that extreme values of λ will yield solutions with ≥ k′ and

≤ k′ balls, which is required at the start of our binary search algorithm.

Lemma 24 Consider λ ≥ 0 and an optimal solution x′ for LP(λ). If λ = 0 then

calling ROUND(x′) will produce a solution with |X ′| > k′ balls. If λ = 4 · Rm then

calling CONSOLIDATE(ROUND(x′), λ,A, Rm) will produce a solution with at most

k′ balls.

Proof. First consider the case λ = 0. The LP solution that sets x(i,0) = 1 for each

i ∈ X ′ and all other variables to 0 has value 0. It is also the only optimal solution

as supporting any variable corresponding to a ball with positive radius yields an LP

solution that has strictly positive cost. So x′ only supports balls with radius 0. Since

i′ /∈ B(i, 0) for distinct i, i′ ∈ X ′ (as we assumed d(i, i′) > 0), then ROUND(x′) will

return |X ′| balls, one per point.

Now consider λ = 4 · Rm. We claim for any i′ ∈ A, when i′ was considered in an

34

iteration we have consolidation would happen if |Ni′| ≥ 2. Note the resulting ball has

r+λ cost being 3 ·Rm+4 ·Rm = 7 ·Rm. On the other hand, the right-hand side of the

inequality determining if we perform the consolidation involves at least two separate

λ values, so the right hand side is at least 8 ·Rm.

So at the end of the loop, each i′ ∈ A for which consolidation was not performed

covers at most one center from B that was not consolidated. Since each B that was not

consolidated is counted this way (as A is a k′-Center solution), we have |B′′| ≤ k′

at the end of the algorithm.

Finally, we require the following routine FILL(B1,B2) which will be used to ensure

the property from Theorem 17 that all balls in the first solution intersect at least one

ball from the second solution.

Algorithm 4 FILL(B1,B2)
while Some ball (i, r) ∈ B1 is disjoint from balls in B2 and |B2| < k′ do
B2 ← B2 ∪ {(i, r)}

if |B2| = k′ then
Do the replacement B1 ← B2

return The pair B1,B2

Lemma 25 Let B1,B2 be two sets obtained by rounding and, perhaps, consolidating

two optimal solutions x1, x2 to LP(λ) for some common value λ. For either of the

final sets B returned by FILL, we have cost(B) + λ · |B| ≤ OPTLP(λ). Furthermore,

if B′
1,B′

2 denotes the pair of returned sets by FILL, then we have |B′
1| ≥ k′ ≥ |B′

2|.

Finally, each (i, r) ∈ B′
1 intersects at least one ball in B′

2.

Proof. For each (i, r) ∈ B1, let X1
(i,r) ⊆ B(i, r) be the X-set from Lemma 23, i.e.

r + λ ≤
∑︁

j∈X1
(i,r)

y′j (or B(i, r) itself if B1 is just obtained from ROUND(x1)). Since

(i, r) is disjoint from all balls in B2 when it is added to B2, we can let X2
(i,r) be the

same as X1
(i,r) and maintain the invariant that balls in B2 have their r+ λ value paid

for by the dual values of disjoint subsets of points.

35

That |B′
1| ≥ k′ ≥ |B′

2| is immediate, given that the original sets B1,B2 satisfy this

bound as well. The final condition that each ball in B′
1 intersect at least one ball in

B′
2 is from the fact that either B′

1 = B′
2 (if |B′

2| = k′) or that the procedure stopped

before |B′
2| became k′ (i.e. there are no more balls in the original set B1 that are

disjoint from all balls in B′
2).

3.2.2 The Binary Search

Recall feasibility of some x′ for LP(λ) is not dependent on λ itself since the constraints

are independent of λ. We call a value λ > 0 smooth if for some ϵ > 0 we have that

the set of optimal extreme points to LP(λ) is the same as the set of optimal extreme

points for LP(λ′) for any λ′ ∈ [λ − ϵ, λ + ϵ]. Otherwise, we call λ a break point

(note λ = 0 is a break point).

We will prove that there is sufficiently large distance between consecutive break

points. Our binary search algorithm will proceed until the window is small enough

to enclose at most one break point, unless an earlier stopping criteria is met. At this

point we can compute the break point itself and then return the required bi-point

solution.

Invariant: The binary search will maintain values 0 ≤ λ1 < λ2. For each ℓ = 1, 2,

let xℓ be an optimal solution to LP(λℓ) We let B1 = CONSOLIDATE(ROUND(x1), λ1,A, Rm)

and B2 = ROUND(x2). The invariant will also maintain that |B1| ≥ k′ ≥ |B2| and

that x1 is not an optimal solution for LP(λ2).

There are two reasons our binary search may terminate early:

• Check 1: For a value λ, if x′ is the corresponding optimal solution to LP(λ) and

if B := ROUND(x′) produces ≥ k′ balls yet Bc := CONSOLIDATE(B, λ,A, Rm)

produces ≤ k′ balls then we terminate the search and return the two solutions

B,B′ plus λ. Clearly every ball in B intersects a ball in Bc (either it is also in

Bc or it will intersect the ball it was consolidated into). The other properties

required by Theorem 17 follow directly from Lemma 23.

36

• Check 2: For a pair λ1, λ2, let x1, x2 be corresponding optimal LP solutions. If

x1 is optimal for LP(λ2) we perform procedure in FILL on ROUND(x1) and B2

(Lemma 25) and return the resulting sets along with λ2. Note ROUND(x1) will

also have size ≥ k′ since it is the unconsolidated version of B1. By properties

of the balls from Lemma 23 and the 25 (noting x1 is optimal for LP(λ2)), the

returned quantities satisfy the properties stated in Theorem 17.

Let ∆ = 8 ·n ·n4·n2
be a lower bound on the gap between break points (cf. Lemma

27 belows). Note once λ2 − λ1 ≤ 1/∆, then if Check 2 fails we have that the largest

λ for which x1 is an optimal solution to LP(λ) satisfies λ ∈ [λ1, λ2]. We show how

to compute this value λ exactly in Lemma 26. We can now state our binary search.

Algorithm 5 Binary Search to Find the Bipoint Solution

λ1 ← 0, λ2 ← 4 ·Rm and corresponding x1,B1, x2,B2 as in the invariant
if Check 1 on either λ1 or λ2 or Check 2 on (λ1, λ2) passes then

return the corresponding solution
while λ1 + 1/∆ < λ2 do

Let λ← (λ1 + λ2)/2, x
′ is optimal to LP(λ), and B,Bc as in Check 1.

if Check 1 on λ passes, return the corresponding solution
if |Bc| ≥ k′ then

λ1, x1,B1 ← λ, x′,Bc

else
λ2, x2,B2 ← λ, x′,B

if Check 2 on (λ1, λ2) passes, return the corresponding solution
Compute the only breakpoint λ ∈ [λ1, λ2], let x

′,B,Bc be as in Check 1 for this λ
if Check 1 on λ passes, return the corresponding solution
if |Bc| ≥ k′ then

perform FILL(Bc,B2) and return the resulting sets along with λ
else

perform FILL(ROUND(x1),B) and return the resulting sets along with λ

After the initial values λ1 = 0 and λ2 = 4 · Rm are set, if the checks all fail then

the invariant is initially true. In each step of the search, if the checks fail then it is

easy to see the invariant continues to hold.

If the loop terminates without returning, the final the returned sets and λ-value

have the properties stated in Theorem 17. This immediately follows from Lemmas

37

23, 25, and the fact that x1 and x2 are both optimal for LP(λ) as λ is the only break

point in [λ1, λ2]. Though we should point out that if final else was reached, then

|B| < k′ or else Check 1 on λ would have passed. Also, |ROUND(x1)| ≥ k′ since B1

does (i.e. the consolidated version is larger than k′ so the unconsolidated must be

as well). The reason we use ROUND(x1) instead of the consolidated version B1 is

because ROUND does not depend on λ whereas B1 does and we might end up with

different consolidations if we did the consolidation with respect to λ instead of λ1. So,

|ROUND(x1)| ≥ k′ ≥ |B|, as required. So in O(log(4 ·Rm ·∆)) = O(logRm+n2 log n)

iterations, which is polynomial in the input size, the binary search will return a bipoint

solution satisfying the properties stated in Theorem 17.

Supporting Results for the Binary Search

Lemma 26 Let x′ be an optimal solution for LP(λ1). In polynomial time, we can

compute the greatest λ such that x′ remains optimal for LP(λ).

Proof. Consider the following LP for this fixed value of x′ but having λ as a variable

and variables yj, j ∈ X ′ as in DUAL(λ).

maximize : λ

subject to :
∑︁

j∈B(i,r)∩X′ yj ≥ r + λ ∀ (i, r) s.t. r ≤ Rm∑︁
j∈X′ yj =

∑︁
(i,r):r≤Rm

x′ · (r + λ)

y, λ ≥ 0

We emphasize that x′ is a fixed value in this setting, so the second constraint is linear

in the variables y and λ.

The first and third constraints assert y is a feasible dual solution for the particular

λ. The second asserts its value in DUAL(λ) is equal to the the value of x1 in LP(λ).

Thus, x′ is optimal for LP(λ) exactly if there is some corresponding y that causes all

of the constraints of the above LP to hold. So solving this LP will yield the maximum

λ such that x′ is an optimal solution for LP(λ).

38

Before we begin the next proof, we recall Hadamard’s bound on the determinant of

a matrix in terms of the lengths of its row vectors. It is a bound on the determinant

of a matrix whose entries are complex numbers. In that case, if vi notes the i-th

column of the real-valued n× n matrix N , then we will have:

|det(N)| ≤
n∏︂

i=1

||vi||2

Lemma 27 For two different break points λ < λ′, we have λ + 1/∆ < λ′ where

∆ = 8 · n2 · n4·n2
.

Proof. Let x be any extreme point solution of the polytope defining LP(λ). So x

is the unique solution to a M · x = b where M is an n × n non-singular submatrix

of the constraint matrix (here, n = |X ′|). From Cramer’s rule, the denominator of

each variable is bounded by | det(M)|. Since the constraint matrix only has entries

0 and 1, each row Mj satisfies ||Mj||2 ≤
√
n. By Hadamard’s determinant bound,

| det(M)| ≤
∏︁

j ||Mj||2 ≤ nn/2. Thus, every denominator in x is an integer at most

nn/2.

Note λ′ > 0. Let λ′′ be very close to λ′ such that some extreme point x′ that is

optimal for LP(λ′) is not optimal for LP(λ′′). This must be the case, it could not be

that there is an extreme point that is optimal for λ′′ arbitrarily close to λ′ but not for

λ′ itself since the set of λ′′ for which a particular x is an optimal solution is a closed

set. Let x′′ be an optimal extreme point for LP(λ′′), which then must be optimal for

LP(λ′) as well.

Define a linear function f ′(z) =
∑︁

(i,r)(z + r) · x′
(i,r) and similarly define f ′′(z) =∑︁

(i,r)(z + r) · x′′
(i,r). Then f ′(λ′) = f ′′(λ′) but f ′(λ′′) ̸= f ′′(λ′′) so they have dif-

ferent slopes. That is, f ′(z) = f ′′(z) has a unique solution, namely at z = λ′ =∑︁
(i,r) r·(x′′

(i,r)
−x′

(i,r)
)∑︁

(i,r) x
′
(i,r)

−x′′
(i,r)

. Note each of x′ and x′′ supports at most n values since they are

extreme points of a polytope with only n constraints apart from nonnegativity. So

the top term in the ratio above expressing λ′ is a fraction of the form N/D where

D ≤ nn/2·2n = nn2
. Similarly, the bottom term of the ratio for λ′ is a fraction of the

39

form N ′/D′ where N ′ ≤ 2n · nn2
(using the fact that all x′ and x′′ values are ≤ 1).

Thus, λ′ itself is a fraction whose denominator is at most 2n · n2·n2
.

Finally, since λ and λ′ are different break points, then λ′ − λ is a fraction whose

denominator is at most 4n2 · n4·n2
= ∆/2. Thus, λ+ 1/∆ < λ′.

40

Chapter 4

Conclusion

4.1 Conclusion and Future Considerations

Foremost, it may be possible to further refine our study by taking into account a

more involved strategy for determining how to best cover a group with a single ball.

But it appears likely that such a method will result in approximations that are still

a constant-factor worse than 3. On the other hand, observation regarding our novel

method of locating the bipoint solution is very intriguing. If we ever encounter a λ

such that |B| ≥ k′ ≥ |Bc| where B is the output of ROUND and Bc is the output

of CONSOLIDATE (using B), then Check 1 will terminate the search with bipoint

solution B,Bc. If we refine the CONSOLIDATE step to perform the consolidations

for B one at a time and stop when the number of clusters first becomes ≤ k′, one

can show that tripling the radii of these ≤ k′ balls is a solution with cost at most

(3 + O(ϵ)) · OPT ′. But this is just for one case in our binary search. In general, is

there a refinement of our binary search routine (or some other approach) that would

always produce a (3 + ϵ)-approximation?

As mentioned before, there exists a QPTAS for MSR, and the question begs to be

asked, Is there a PTAS for the MSR problem? Note that we already know that one

cannot approximate MSD with a factor better than 2, so even though we showed

a separation between approximating the two related problem, where is the line that

MSR and MSD also differ in hardness, if they do? Closing the gap between 2 and our

41

result for MSD appears to require methodology better than using a rounding that

imposes a 3-approximation factor on the problem itself.

Other paths that we discuss during our work, involve getting the rounding step

approximation factor to better than 3. That is to construct a better than 3, likely

2, approximation for MSR’s LMP. This is specifically motivated given the current

2-approximation for k-centre [5].

Considering the same problem in the Doubling Dimension and Euclidean space is

the next step in our study. One can use the same arguments of choosing a centre or

fixating a centre to tackle both MSR and MSD in these metrics. It is likely that getting

a PTAS for MSR in doubling metrics would be easier than getting a PTAS in general.

It is already known there is an exact algorithm in low-dimensional Euclidean metrics

[17], so doubling properties come in helpful. Also, in high-dimensional Euclidean

spaces we do have that the diameter of a set is at most 1/
√
2 times its radius which

may lead to better approximations.

42

Bibliography

[1] S. Dasgupta, “The hardness of k-means clustering,” 2008.

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of euclidean
sum-of-squares clustering,” Mach. Learn., vol. 75, no. 2, pp. 245–248, 2009.

[3] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means prob-
lem is np-hard,” in WALCOM: Algorithms and Computation, Springer Berlin
Heidelberg, 2009.

[4] M. E. Dyer and A. M. Frieze, “A simple heuristic for the p-centre problem,”
Operations Research Letters, vol. 3, no. 6, pp. 285–288, 1985.

[5] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for the k-center
problem,” Mathematics of Operations Research, vol. 10, no. 2, pp. 180–184,
1985.

[6] K. Jain and V. V. Vazirani, “Approximation algorithms for metric facility lo-
cation and k-median problems using the primal-dual schema and lagrangian
relaxation,” J. ACM, vol. 48, no. 2, 274–296, 2001.

[7] M. Charikar and S. Guha, “Improved combinatorial algorithms for the facility
location and k-median problems,” in 40th Annual Symposium on Foundations
of Computer Science (Cat. No.99CB37039), 1999, pp. 378–388.

[8] M. Charikar, S. Guha, Tardos, and D. B. Shmoys, “A constant-factor approxi-
mation algorithm for the k-median problem,” Journal of Computer and System
Sciences, vol. 65, no. 1, pp. 129–149, 2002.

[9] O. Kariv and S. L. Hakimi, “An algorithmic approach to network location
problems. ii: The p-medians,” SIAM Journal on Applied Mathematics, vol. 37,
no. 3, pp. 539–560, 1979.

[10] J. H. Lin and J. S. Vitter, “Approximation algorithms for geometric median
problems,” Information Processing Letters, vol. 44, no. 5, pp. 245–249, 1992.

[11] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh, “An improved
approximation for k-median and positive correlation in budgeted optimization,”
ACM Trans. Algorithms, vol. 13, no. 2, 2017.

[12] G. B. Dantzig and M. N. Thapa, “Linear programming,” New York, NY, USA:
Springer, 1997.

43

[13] L. Khachiyan, “Polynomial algorithms in linear programming,” USSR Com-
putational Mathematics and Mathematical Physics, vol. 20, no. 1, pp. 53–72,
1980.

[14] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
ser. STOC ’84, New York, NY, USA: Association for Computing Machinery,
1984, 302–311.

[15] B. Korte and J. Vygen, “Linear programming,” in Combinatorial Optimization:
Theory and Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 51–71.

[16] L. C. Lau, R. Ravi, and M. Singh, Iterative Methods in Combinatorial Opti-
mization (Cambridge Texts in Applied Mathematics). Cambridge University
Press, 2011.

[17] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. Varadarajan, “On
metric clustering to minimize the sum of radii,” Algorithmica, vol. 57, no. 3,
pp. 484–498, 2009.

[18] M. Charikar and R. Panigrahy, “Clustering to minimize the sum of cluster
diameters,” Journal of Computer and System Sciences, vol. 68, no. 2, pp. 417–
441, 2004, Special Issue on STOC 2001.

[19] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber, “A quasi-ptas for
unsplittable flow on line graphs,” in Proceedings of 38th Annual Symposium on
Theory of Computing (STOC), ser. STOC ’06, Seattle, WA, USA: Association
for Computing Machinery, 2006, 721–729.

[20] J. Batra, N. Garg, A. Kumar, T. Momke, and A. Wiese, “New approximation
schemes for unsplittable flow on a path,” in Proceedings of the 2015 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015, pp. 47–58.

[21] F. Grandoni, T. Momke, A. Wiese, and H. Zhou, “A (5/3 + ϵ)-approximation
for unsplittable flow on a path: Placing small tasks into boxes,” in Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
ser. STOC 2018, New York, NY, USA: Association for Computing Machinery,
2018, 607–619.

[22] F. Grandoni, T. Momke, and A. Wiese, “Unsplittable flow on a path: The
game!” In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2022, pp. 906–926.

[23] F. Grandoni, T. Momke, A. Wiese, and A. Zhou, “To augment or not to aug-
ment: Solving unsplittable flow on a path by creating slack,” in Proceedings
of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2017, pp. 2411–2422.

[24] F. Grandoni, T. Momke, and A. Wiese, “A ptas for unsplittable flow on a path,”
in To appear in proceedings of 54th ACM Symposium on Theory of Computing
(STOC), 2022.

44

[25] S. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer, “Ap-
proximation algorithms for clustering to minimize the sum of diameters,” in
In Proceedings of 7th Scandanavian Workshop on Algorithm Theory (SWAT),
Springer-Verlag, 2000, 237–250.

[26] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. Varadarajan, “On
clustering to minimize the sum of radii,” SIAM Journal on Computing, vol. 41,
no. 1, pp. 47–60, 2012.

[27] V. Capoyleas, G. Rote, and G. Woeginger, Geometric clusterings, 1990.

[28] P. Hansen and B. Jaumard, “Minimum sum of diameters clustering,” Journal
of Classification, vol. 4, no. 2, pp. 215–226, Sep. 1987.

[29] B. Behsaz and M. R. Salavatipour, “On minimum sum of radii and diameters
clustering,” Algorithmica, vol. 73, no. 1, 143–165, 2015.

[30] P. Heggernes and D. Lokshtanov, “Optimal broadcast domination in polynomial
time,” Discrete Mathematics, vol. 306, no. 24, pp. 3267–3280, 2006.

[31] S. Ahmadian and C. Swamy, “Approximation Algorithms for Clustering Prob-
lems with Lower Bounds and Outliers,” in 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, Eds., ser. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 55, Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 69:1–69:15.

[32] S. Bhowmick, T. Inamdar, and K. R. Varadarajan, “Fault-tolerant covering
problems in metric spaces,” Algorithmica, vol. 83, pp. 413–446, 2021.

[33] A. K. Abu-Affash, P. Carmi, M. J. Katz, and G. Morgenstern, “Multi cover of
a polygon minimizing the sum of areas,” in WALCOM: Algorithms and Com-
putation, N. Katoh and A. Kumar, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 134–145.

[34] S. Bhowmick, K. Varadarajan, and S.-K. Xue, “A constant-factor approxima-
tion for multi-covering with disks,” ser. SoCG ’13, Rio de Janeiro, Brazil: As-
sociation for Computing Machinery, 2013, 243–248.

[35] X. Liu, W. Li, and R. Xie, “A primal-dual approximation algorithm for the
k-prize-collecting minimum power cover problem,” Optimization Letters, Nov.
2021.

[36] F. Chudak and D. B. Shmoys, “Improved approximation algorithms for the
uncapacitated facility location problem,” SIAM Journal on Computing, vol. 33,
no. 1, pp. 1–25, 2003.

[37] F. Chudak. and D. P. Williamson, “Improved approximation algorithms for
capacitated facility location problems,” in Proceedings of the 7th International
IPCO Conference on Integer Programming and Combinatorial Optimization,
Springer-Verlag, 1999, 99–113.

[38] S. Guha and S. Khuller, “Greedy strikes back: Improved facility location algo-
rithms,” Journal of Algorithms, vol. 31, no. 1, pp. 228–248, 1999.

45

[39] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Analysis of a local search
heuristic for facility location problems,” Journal of Algorithms, vol. 37, no. 1,
pp. 146–188, 2000.

[40] C. L. Monma and S. Suri, “Partitioning points and graphs to minimize the
maximum or the sum of diameters,” Graph Theory, Combinatorics, and Appli-
cations, pp. 880–912, 1991.

[41] D. P. Williamson, “The primal-dual method for approximation algorithms,”
Mathematical Programming, vol. 91, no. 3, pp. 447–478, Feb. 2002.

[42] S. Bandyapadhyay and K. Varadarajan, “Approximate Clustering via Metric
Partitioning,” in 27th International Symposium on Algorithms and Computa-
tion (ISAAC 2016), S.-H. Hong, Ed., ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 64, Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016, 15:1–15:13.

[43] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit,
“Local search heuristic for k-median and facility location problems,” in Pro-
ceedings of the Thirty-Third Annual ACM Symposium on Theory of Comput-
ing, ser. STOC ’01, Hersonissos, Greece: Association for Computing Machinery,
2001, 21–29.

[44] J. HADAMARD, “Resolution d’une question relative aux determinants,” Bull.
des Sciences Math., vol. 2, pp. 240–246, 1893.

46

Appendix A: Optimizing our choice
of parameter for the MSR analysis

The MSR analysis included a variety of cases and certain constants were chosen to

define these cases. Here, we show that our choices of constants are optimal for our

analysis techniques.

Let δ be the ratio of R3 to R2. We wish to transform radius of the cluster picked

at each center to be similar to other cases. In other words, we wish to transform each

radius into a term like (1 + β) ·R1 + (4− α) ·R2, a term similar to the radius of case

of picking i1, but with less weight on R2 and more on R1. After finding the values to

α and β in terms of δ, we make a decision for the center to pick based on value of R3

R2
:

1. soln*(1): Picking the center based on the value of R2 according to table A.1 if

R3

R2
≤ δ.

2. soln*(2): Picking the center at i1 if R3

R2
≥ δ.

Based on value of α and β, we can then find the parametric approximation factor for

soln*(1) parameterized by δ, which we do in what follows. But first, let us calculate

the approximation factor for soln*(2) using the following inequality:

R2+R3 ≤ Cost(Gi1,R1) =⇒ (1+δ) ·R2 ≤ Cost(Gi1,R1) =⇒ R2 ≤ (
1

1 + δ
)Cost(Gi1,R1).

Then, the cost of a group is R1 + (4
1+δ

) · Cost(Gi1,R1) = Cost(B(i1, R1)) + (4
1+δ

) ·

Cost(Gi1,R1) as Cost(B(i1, R1)) = R1. For the sake of brevity, let Cost(Gi1,R1) =

C(Gi1,R1) and Cost(B(i1, R1)) = C(B(i1, R1)).

47

Now, let us restate the cost of each scenario in terms of α and δ, so that we can

minimize the cost after aggregating the costs over all groups.

Case 1 (R2 ≥ R1 + 2 · δ ·R2):

• Cost of picking i1: R1 + 4 ·R2.

• Cost of picking i2: 3 ·R2 since R2 ≥ R1+2 · δ ·R2 =⇒ 3R2 ≥ 2R1+(1+4 · δ)R2.

• Cost of picking i3: 4R2 since R2 ≥ R1 + 2 · δ · R2 =⇒ 2R2 ≥ 2R1 + 4 · δR2 =⇒

4R2 ≥ 2R1 + 4 · δR2.

Hence, we pick i2 with minimum cost.

Case 2 (R1 + 2 · δ ·R2 ≥ R2 ≥ 2
3
·R1 +

4
3
· δ ·R2):

• Cost of picking i1: R1 + 4 ·R2.

• Cost of picking i2: 2 ·R1 + (1 + 4 · δ) ·R2 since R2 ≤ R1 + 2 · δ ·R2 =⇒ 3R2 ≤

2R1 + (1 + 4 · δ)R2.

• Cost of picking i3: 4R2 since R2 ≥ 2
3
·R1+

4
3
·δ ·R2 =⇒ 3R2 ≥ 2 ·R1+4 ·δR2 =⇒

4R2 ≥ 2R1 + 4 · δR2.

Note that 2
3
·R1 +

4
3
· δ ·R2 ≤ R2 =⇒ 2 ·R1 + (1 + 4 · δ) ·R2 ≤ 4 ·R2. Also, we have

2
3
· R1 +

4
3
· δ · R2 ≤ R2 =⇒ 1

3
· R1 +

4
3
· δ · R2 ≤ R2 −→ R1 + 4 · δ · R2 ≤ 3 · R1 =⇒

2 ·R1 + (1 + 4 · δ) ·R2 ≤ R1 + 4 ·R1. Hence, we pick i2 with minimum cost.

Since R2 ≥ 2
3
·R1 +

4·δ
3
·R2, then

−4 · δ + 3− α

1− 4
3
· δ

(R2 · (1−
4

3
· δ)− 2

3
·R1) ≥ 0,

where δ < 3
4
and 3 ≥ 4 · δ + α, for some value of α. Since we pick the center i2, the

cost is 2 ·R1 + (1 + 4 · δ) ·R2. At last,

Cost ≤ 2·R1+(1+4·δ)R2+
−4 · δ + 3− α

1− 4
3
· δ

(R2·(1−
4

3
·δ)−2

3
·R1) = (

2 · α
3− 4 · δ

)R1+(4−α)·R2.

Case 3 (2
3
·R1 +

4
3
· δ ·R2 ≥ R2 ≥ 1

2
·R1 + δ ·R2):

48

• Cost of picking i1: R1 + 4 ·R2.

• Cost of picking i2: 2 ·R1 + (1 + 4 · δ) ·R2 since R2 ≤ R1 + 2 · δ ·R2 =⇒ 3R2 ≤

2R1 + (1 + 4 · δ)R2.

• Cost of picking i3: 4R2 since R2 ≥ 2
3
·R1+

4
3
·δ ·R2 =⇒ 3R2 ≥ 2 ·R1+4 ·δR2 =⇒

4R2 ≥ 2R1 + 4 · δR2.

Note that 2
3
·R1 +

4
3
· δ ·R2 ≥ R2 =⇒ 2 ·R1 + (1 + 4 · δ) ·R2 ≥ 4 ·R2 Hence, we pick

i3 with minimum cost.

Since R2 ≤ 2
3
·R1 +

4·δ
3
·R2, then

α

1− 4
3
· δ

(R2 · (
4

3
· δ − 1) +

2

3
·R1) ≥ 0,

where δ < 3
4
and α ≥ 0, for some value of α. Since we pick the center i2, the cost is

4 ·R2. At last,

Cost ≤ 4 ·R2 +
α

1− 4
3
· δ

(R2 · (
4

3
· δ − 1) +

2

3
·R1) = (

2 · α
3− 4 · δ

)R1 + (4− α) ·R2.

Case 4 (1
2
·R1 + δ ·R2 ≥ R2 ≥ 1

4
·R1 + δ ·R2):

• Cost of picking i1: R1 + 4 ·R2.

• Cost of picking i2: 2 ·R1 + (1 + 4 · δ) ·R2 since R2 ≤ R1 + 2 · δ ·R2 =⇒ 3R2 ≤

2R1 + (1 + 4 · δ)R2.

• Cost of picking i3: 2R1+4·δ·R2 since R2 ≤ 1
2
·R1+δ·R2 =⇒ 4R2 ≥ 2·R1+4·δR2.

We have 1
4
·R1+δ ·R2 ≤ R2 =⇒ R1+4 ·δ ·R2 ≤ 4 ·R2 −→ 2 ·R1+4 ·δ ·R2 ≤ R1+4 ·R2.

Hence, we pick i3 with minimum cost.

Since R2 ≥ 1
4
·R1 + δ ·R2, then

4− 4 · δ − α

1− δ
(R2 · (1− δ)− 1

4
·R1) ≥ 0,

49

where 4 ≥ 4 · δ + α and α ≥ 0, for some value of α. Since we pick the center i3, the

cost is 2 ·R1 + 4 · δ ·R2. At last,

Cost ≤ 2·R1+4·δ·R2+
4− 4 · δ − α

1− δ
(R2·(1−δ)−

1

4
·R1) = (1+

α

4− 4 · δ
)R1+(4−α)·R2.

Case 5 (1
4
·R1 + δ ·R2):

• Cost of picking i1: R1 + 4 ·R2.

• Cost of picking i2: 2 ·R1 + (1 + 4 · δ) ·R2 since R2 ≤ R1 + 2 · δ ·R2 =⇒ 3R2 ≤

2R1 + (1 + 4 · δ)R2.

• Cost of picking i3: 2R1+4·δ·R2 since R2 ≤ 1
2
·R1+δ·R2 =⇒ 4R2 ≥ 2·R1+4·δR2.

We have 1
4
·R1+δ ·R2 ≥ R2 =⇒ R1+4 ·δ ·R2 ≥ 4 ·R2 −→ 2 ·R1+4 ·δ ·R2 ≥ R1+4 ·R2.

Hence, we pick i1 with minimum cost.

Since R2 ≤ 1
4
·R1 + δ ·R2, then

α

1− δ
(R2 · (δ − 1) +

1

4
·R1) ≥ 0,

where δ < 1 and α ≥ 0, for some value of α. Since we pick the center i1, the cost is

R1 + 4 ·R2. At last,

Cost ≤ R1 + 4 ·R2 +
α

1− δ
(R2 · (δ − 1) +

1

4
·R1) = (1 +

α

4− 4 · δ
)R1 + (4− α) ·R2.

Case # R3

R2
< δ R3

R2
≥ δ

1 3 · C(Gi1,R1)
3

1+δ
· C(Gi1,R1)

2 2·α
3−4·δ · C(B(i1, R1)) + (4− α) · C(Gi1,R1) C(B(i1, R1)) +

4
1+δ
· C(Gi1,R1)

3 2·α
3−4·δ · C(B(i1, R1)) + (4− α) · C(Gi1,R1) C(B(i1, R1)) +

4
1+δ
· C(Gi1,R1)

4 (1 + α
4−4·δ) · C(B(i1, R1)) + (4− α) · C(Gi1,R1) C(B(i1, R1)) +

4
1+δ
· C(Gi1,R1)

5 (1 + α
4−4·δ) · C

g
1 + (4− α) · C(Gi1,R1) C(B(i1, R1)) +

4
1+δ
· C(Gi1,R1)

Table A.1: The cost of our choice for centers in every condition discussed.

50

As per Table A.1, and the conditions for α and δ in every case, set α = 1 and

δ = 1
3
.

Then, the cost of each group is as in Table A.2 based on our decision: Note that each

Case # R3

R2
< 1

3
R3

R2
≥ 1

3

1 3 · C(Gi1,R1)
9
4
· C(Gi1,R1)

2 6
5
· C(B(i1, R1)) + (3) · C(Gi1,R1) C(B(i1, R1)) + 3 · C(Gi1,R1)

3 6
5
· C(B(i1, R1)) + (3) · C(Gi1,R1) C(B(i1, R1)) + 3 · C(Gi1,R1)

4 (11
8
) · C(B(i1, R1)) + (3) · C(Gi1,R1) C(B(i1, R1)) + 3 · C(Gi1,R1)

5 (11
8
) · C(B(i1, R1)) + (3) · C(Gi1,R1) C(B(i1, R1)) + 3 · C(Gi1,R1)

Table A.2: The cost of our choice for centers in every condition discussed.

group’s cost is in form of A ·C(B(i1, R1)) +B ·C(Gi1,R1) where the maximum values

for A and B happens when R3

R2
< 1

3
and R2 ≤ R1

2
+ R2

3
with cost 11

8
· C(B(i1, R1)) +

3 · C(Gi1,R1).

51

Appendix B: Optimizing our choice
of parameter for the MSSR
analysis

We have summarized the case, the condition, and the centre picked in Table . Then,

Case # Condition Centre picked

1 R2 ≥ R1 + 2δR2 i2

2 R1 + 2δR2 ≥ R2 ≥ 2
3
·R1 +

4
3
δ ·R2 i2

3 2
3
·R1 +

4
3
δ ·R2 ≥ R2 ≥ 1

2
·R1 + δ ·R2 i3

4 1
2
·R1 + δ ·R2 ≥ R2 ≥ 1

4
·R1 + δ ·R2 i3

5 1
2
·R1 + δ ·R2 ≥ R2 ≥ 1

4
·R1 + δ ·R2 i1

Table B.1: The centres that will be picked in the Minimum Sum of Squared Radii
based on values of R1 and R2 as depicted in 2.1

Table describes the upper-bound on the cost of each choice, using the upper-bound

value for R2. The main difficulty in this scenario is getting rid of R1R2 terms in the

costs for each case.

Case 1, R2 ≥ R1 + 2δR2: Cost of picking i2 will be (3 ·R2)
2 = 9 ·R2

2. We aim to

balance the cost of other cases such that the upper-bound of each has one term 9 ·R2
2

and a term with some coefficient for R2
1.

Case 2, R1 + 2δR2 ≥ R2: We will be using the bound R2 ≤ 1
1−2δ

R1. Note that

δ is the ratio R3

R2
. Then we must have that δ < 1

2
. Then the cost is bounded by

4 + 32·δ2−16·δ−5
(1−2δ)2

R2
1 + 9R2

2.

52

Case 3, 2
3
·R1+

4
3
δ ·R2: We will be using the bound R2 ≤ 2

3−4δ
R1. Then we must

have that δ < 3
4
. At last, the cost is bounded by 7 · 2

3−4·δR
2
1 + 9R2

2.

Case 4, R1 + 2δR2 ≥ R2: We will be using the bound R2 ≤ 1
2−2δ

R1. Then we

must have that δ < 1. Then the cost is bounded by 4 + −16·δ2+32δ−9
(2−2δ)2

R2
1 + 9R2

2.

Case 5, 1
2
·R1 + δ ·R2 ≥ R2: We will be using the bound R2 ≤ 1

4−4δ
R1. Then we

must have that δ < 1. At last, the cost is bounded by 39−32·δ
(4−4·δ)2R

2
1 + 9R2

2.

Case # Condition Centre picked

1 R2 ≥ R1 + 2δR2 i2

2 R1 + 2δR2 ≥ R2 ≥ 2
3
·R1 +

4
3
δ ·R2 i2

3 2
3
·R1 +

4
3
δ ·R2 ≥ R2 ≥ 1

2
·R1 + δ ·R2 i3

4 1
2
·R1 + δ ·R2 ≥ R2 ≥ 1

4
·R1 + δ ·R2 i3

5 1
2
·R1 + δ ·R2 ≥ R2 ≥ 1

4
·R1 + δ ·R2 i1

Table B.2: The centres that will be picked in the Minimum Sum of Squared Radii
based on values of R1 and R2 as depicted in 2.1

53

	Introduction
	Preliminaries
	Metric
	Approximation Algorithms
	Linear Programming
	k-Centre Problem
	Lagrangian Relaxation

	Prior Work
	Our work and Organization

	Improved approximation of MSR, MSD, and MSSR
	Minimum Sum of Radii
	Step 1: Guessing the Largest Balls
	Step 2: Getting a Bi-point Solution
	Step 3: Combining Bi-point Solutions

	Minimum Sum of Diameters
	Minimum Sum of Squared Radii

	Obtaining the solutions
	Overview
	A Simple LMP Algorithm via Direct LP Rounding
	Consolidating Solutions from ROUND
	The Binary Search

	Conclusion
	Conclusion and Future Considerations

	Bibliography
	Appendix A: Optimizing our choice of parameter for the MSR analysis
	Appendix B: Optimizing our choice of parameter for the MSSR analysis

