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Abstract: 

Feed represents more than half of the costs of livestock production. Residual feed intake (RFI) is 

a phenotypic measure of feed efficiency that has been proposed as the best approach for genetic 

improvement of dairy cows. Although RFI is considered as a useful tool for feed efficiency, the 

application of RFI in dairy cows has been slow. The high cost of recording individual feed intake 

and production traits such as milk yield, body weight and milk composition traits has been the 

main reason for this slow rate of application. Keeping that in mind, the overall objectives of this 

study were: 1) identification of differences in metabolism of high and low RFI cows in early, 

mid, and late lactation stages and 2) assessment of the potential of metabolites as biomarkers for 

prediction of feed efficiency in lactating cows.  

For RFI estimation of 75 lactating cows, feed intake and milk yield data were recorded on a daily 

basis, the concentrations of milk fat, protein and lactose were measured weekly and animals were 

weighed monthly. A random regression model (RRM) was used for prediction of daily values of 

component traits of RFI. Multiple linear regression was used to adjust actual energy intake for 

maintenance and production requirements. Values of RFI were obtained for each individual for 

day 3-240 of lactation and cows were grouped as high RFI (most inefficient, > +0.5 SD) and low 

RFI (least efficient, < -0.5 SD). The changes of RFI and its component traits for the RFI groups 

were visualized along lactation. RFI and actual energy intake (AEI) were significantly (P<0.05) 

different along lactation between groups. Whether these differences in feed efficiency have a 

basis in metabolism is investigated in three sampling days that are shown on RFI plots. 

Targeted quantitative metabolomics using nuclear magnetic resonance (NMR) was employed to 

investigate the differences in metabolite profile of high and low RFI groups. Serum samples 

were taken at 50, 150 and 240 days in milk (DIM) from 75 cows and only high and low RFI 
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samples were analyzed. Concentration of 4 (glycerol, urea, creatinine, dimethyl sulfone), 4 

(creatinine, glycerol, L-ornithine, L-lysine), and 8 (glycerol, acetone, citric acid, 3-hydroxy 

butyric acid, choline, creatinine, glycine, formate) metabolites were significantly (P<0.05) 

different at 50, 150, and 240 DIM respectively. In addition, a small number of metabolites 

showed a tendency to significance (P < 0.10) at 150 (acetone) and 240 DIM (isoleucine, L-

lysine, urea).  

Biomarker discovery analysis was done using principal component analysis (PCA), partial least 

square discriminant analysis (PLS-DA) and receiver operating characteristic (ROC) curve. The 

result showed discrimination of high and low RFI in PCA and PLS-DA score plots. This analysis 

enabled us to identify metabolites with the most discriminatory power between high and low RFI 

groups. Area under the curve (AUC) in ROC plots represents how well the model is capable of 

distinguishing between classes where the closer the value to one, the better is the model in 

classification. The PLS-DA model had AUC of 0.936, 0.866, and 0.997 for 50, 150, and 240 

DIM respectively. The metabolites were then used for multiple linear regression to estimate RFI 

for individual cows. The adjusted R-squared of the models were 0.62, 0.65, and 0.83 for 

metabolite profile of serum samples from early, mid, and late lactation. The relative contribution 

of each metabolite was estimated. The metabolites that are significantly different in RFI groups 

have biological roles in feed efficiency. They are involved in the citric acid and urea cycles that 

are associated with energy and protein turnover at cellular level. Glycerol and creatinine were 

differentially expressed consistently in early, mid, and late lactation stages. This may be an 

indication that these biological pathways explain variation between high and low RFI animals. 

This study provides evidence to support the potential use of serum metabolites as biomarkers of 
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RFI for both classification into high or low RFI and prediction of the efficiency of individual 

cows, however, further investigation is warranted for validation of the results.  
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Chapter 1. General introduction and literature review 

1.1 Introduction 

In most livestock operations, feed cost is more than half of total cost (Kennedy et al 1993). 

Although there have been improvements in growing crops efficiently to reduce feed cost for 

animals, other factors have kept prices high. Population growth, limited arable lands, and biofuel 

application for crops were among the top reasons. They have kept the livestock feed cost on a 

considerable fluctuation with an increasing trend in recent decades (Hemme & Otte, 2010).  

For instance, global price trends for dairy products like milk shows during 1981 to 2005, world 

milk price ranged between 10-25USD per ton. However, it increased rapidly in 2007 to more 

than 45USD per ton as consequence of growth in price of skimmed milk powder (SMP) and 

butter from 1000 to 4000USD per ton, in response to lack of milk availability relative to world 

demand. On the other hand, feed cost for dairy farms has increased considerably and in parallel 

to milk price trend. World supplies of grain have not kept up with the growing demand for milk 

and it has led to historical high prices. Grain demand is driven by the need for feed and fuel of an 

ever-growing world population. Besides, higher energy prices push up the price for feed and land 

according to a Food and Agriculture Organization (FAO) report (Hemme & Otte, 2010).  

This trend is also the case for the dairy industry in Canada. According to the CDC (Canadian 

Dairy Commission, 2016) cost of production studies, the amount of money spent for feed in 

dairy farms has increased from $12.80 per hectolitre of milk in 2012 to $17.61 in 2017. Thus, it 

shows how necessary it is to find a tool to create more feed efficient dairy cows because the 

animal is the core of the milk production system. There is a need to improve the production 

system with a focus on the dairy cow to reduce feed purchase costs. 



2 

Maximizing net income is generally the economic objective of a dairy farm. This can be 

achieved by conversion of a greater share of the feed nutrients into milk while less nutrient waste 

is emitted to the environment (de Ondarza et al. 2017). Feed efficiency could be the answer to 

this question on how to reduce feed cost while production is maintained. Different measures 

have been defined for feed efficiency of cattle to be used in breeding programs. Residual Feed 

Intake (RFI) is one of these feed efficiency measures that is used for economically important 

livestock species. It is the difference between actual and expected feed intake and was first 

defined by Koch, et al. (1963). We considered this measure of feed efficiency in lactating dairy 

cows and its relationship with blood serum metabolite profile in chapters 2 and 3, respectively.   

After a brief introduction, the focus of this review will be first on efforts to measure RFI 

indirectly, metabolism and physiological aspects of feed efficiency. Then, I will investigate 

metabolomics technology and its success in biomarker discovery, and how a metabolomics 

approach can explain metabolic differences between groups of animals. Environmental concerns 

that can be reduced by genetic improvement in feed efficiency of dairy cows are mentioned at 

the end. 

 

1.2 Definition and the objective of RFI estimation 

 

The purpose of RFI estimation is genetic improvement of feed efficiency in farm animals. 

Residual feed intake (RFI) is the difference between actual and expected energy intake. This 

difference can be negative or positive. If an animal consumes less energy than our expectation, 

RFI will have negative value and this animal is feed efficient. The average daily RFI value for an 

individual in Mcal/day unit can be between -7 to +7 Mcal/day in 305 day of lactation where the 

average of this value for population is close to zero (Manafiazar et al. 2013).  
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The actual energy intake is estimated based on actual daily measurement of feed intake while the 

expectation of energy intake is more complex. The expectation of energy intake depends on 

animal maintenance and production requirements. These include basal metabolism, growth and 

milk production energy requirements. Therefore, regular body weight, milk yield, and milk 

composition traits also need to be recorded. Appropriate statistical modeling of these continuous 

energy-related traits can lead us to RFI values (Manafiazar et al. 2013). 

Genetic evaluation of animals for feed efficiency needs a large sample size to enable researchers 

to capture the genetic diversity of the trait in a population of animals. Large sample size is also 

needed in order to reduce the standard error of estimations of genetic merit of animals. This is 

required to gain more accuracy to usefully estimate genetic merit of animals. More accuracy of 

genetic merit of animals will make the result of selection of animal for feed efficiency more 

reliable (Miglior et al., 2017). 

One reason for the slow progress in genetic improvement of dairy cows using RFI has been its 

moderate heritability of RFI. Heritability is a parameter estimate of population that can show 

how much of phenotypic variation of a trait is due to genetic variation. Estimation of heritability 

is essential for selection and genetic improvement of animals. This is true while collection of 

phenotypic information of RFI for heritability estimation has been too expensive and slow. 

Collaboration of a group of countries including USA, Canada, UK and Netherlands has pooled 

feed efficiency data for estimation of heritability of RFI with good accuracy (Hardie et al. 2016). 

This study which was the outcome of multiple country efforts provided a suitably large sample 

size of RFI data to attain the desired accuracy. This shows the positive impact of large sample 

size on genetic improvement of RFI. 
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The high cost of data collection for estimation of RFI has been one of main barriers of genetic 

improvement of feed efficiency (VandeHaar et al. 2016). RFI is an expensive trait to measure 

and it takes a long time to collect the required feed intake and production data to sort animals 

based on RFI. Specifically, dairy cows have 305 days of milking which means it takes almost a 

year to measure feed efficiency accurately in dairy cows (Hardie et al. 2016). This has led many 

researchers to think about alternative methods for estimation of RFI in dairy and beef cattle.  

 

1.3 Efforts to measure RFI indirectly 

Indirect measurement of RFI using a method that is less expensive, fast, and reliably correlated 

with RFI is still a challenge. There are studies with different approaches to predict RFI 

indirectly. Application of infrared spectral profiles of milk samples as a predictor for DMI and 

RFI was considered recently (Shetty et al., 2017). The experiment was done using Danish 

Holstein and Jersey breeds. They developed models for indirect prediction of RFI. Cross 

validated R-squared was used as a measure of accuracy for how much of the variation in RFI 

could be explained by the model. They reported the cross validated R-squared of RFI for periods 

of early, mid, late and across lactation respectively to be 0.29, 0.09, 0.09 and 0.20 (Shetty et al., 

2017). This showed that the model is really affected by peak of milk yield production period as 

early lactation RFI had the highest association with milk spectral data. Authors concluded that 

infra red spectral data does not have significant information in model development for prediction 

of DMI and RFI in comparison to the information that fat, protein and lactose provide for this 

purpose.  

There are many more studies using this same experimental method with different analysis 

approaches, but none explained more variation of individual DMI of dairy cows (McParland et 
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al. 2014, Wallén et al. 2018). The common concept between them is that 1) inclusion of milk 

component traits and live body weight increases the explanatory power of models and 2) early 

lactation data would provide a better fit for prediction of DMI. 

Another approach for prediction of RFI and DMI has been the use of thermal imaging to observe 

body surface temperature. Thermal imaging was used by Hardie et al. (2016) to measure surface 

body temperature to analyze its relationship with RFI and its potential use as an indicator for 

RFI. Although genetic analysis showed that surface temperature heritability was moderate the 

amount of variation that could be explained by body surface temperature was only 1.7%. 

Phenotypic correlation of RFI with surface temperature of paralumbar fossa, rump and leg were 

0.12, 0.07 and 0.13. They suggested that the impact of environmental temperature on the quality 

of thermal images needed to be investigated in more detail in order to determine if this method 

could be useful (Hardie et al. 2016). 

A similar study was done in beef cattle to predict RFI indirectly and had similar outcome. The 

correlation between infra red thermography (IRT) and RFI was significant (r=0.39) using 

infrared thermal cameras (Schaefer et al., 2018). However, an important condition of the 

procedure was that animals must be in their thermal neutral zone otherwise there is no significant 

correlation between RFI and body temperature. The experiment showed how environmental 

factors like wind and daily temperature can influence the neutrality of the thermal distribution on 

the body. They suggested further studies need to be done to consider important variables that 

affect this consideration (Schaefer et al., 2018).  
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1.4 Metabolism and physiological aspects of feed efficiency 

The physiological basis of RFI in dairy cows is multi-dimensional and complex. It has not been 

well studied yet, however in beef cows more work has been done in recent decades (Richardson 

and Herd 2004, Davis et al. 2014). One of the fundamental differences in RFI model 

development between beef and dairy cows is the energy requirement of animals. In general, 

growth and maintenance energy requirements of cattle needs to be considered for both beef and 

dairy. The key difference is in lactation energy requirement consideration for dairy cows 

(Manafiazar et al. 2013). It is the part of feed efficiency in production dairy cows that make it 

more expensive and time consuming than beef cattle.  

Although beef and dairy cattle are bred for different purposes, they are from one species and it is 

expected that they will have more similarities in feed efficiency than with other mammals. The 

review paper done by Richardson and Herd (2004) characterized RFI in cross-bred Angus beef 

steers. They concluded that inter-animal variation in RFI is composed of protein turnover and 

tissue metabolism and stress (37%), physical activity (10%), digestibility (10%), heat increment 

of fermentation (9%), body composition (5%) and feeding pattern (2%) whilst 27% was 

unknown or unassignable. The highest share of RFI sources of variation was due to protein 

turnover and it brought the attention of researchers to investigate the underlying metabolism 

differences between high and low RFI groups of animals. Thus, studies with designs that 

compare the extreme high feed efficient and low feed efficient animals in terms of biological 

differences has become more common in recent years. Blood, liver, and muscle are among the 

tissues that had most interest between researchers for investigation of biological differences. 

Liver plays a significant role in lipid metabolism and homeostasis of lipid in animals. For 

instance, long chain fatty acids are oxidized in hepatic mitochondria and peroxisomes. Then very 
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low-density lipoprotein (VLDL) carries triglycerides in the blood stream that are end products of 

oxidation. Non-esterified fatty acids (NEFA) in blood flow which is created by lipid metabolism 

can be oxidized by hepatic mitochondria and peroxisomes too (Dann & Drackley, 2005). Liver 

functions as an organ that metabolizes fat tissue and could show biological differences between 

high and low RFI cows due to the considerable amount of body fat that lactating dairy cows lose 

and recover along lactation.  

Genetic inheritance of complex traits cannot be explained by segregation of a single gene. They 

are influenced by environmental and genetic factors. Expression of complex traits is impacted by 

many genes with small effects. To investigate the association of genetic variants with a trait, 

genome-wide association study (GWAS) can be done (Solem et al. 2008, Kadarmideen et al. 

2008). RFI is a complex trait that has made it difficult to find causal genes by GWAS (Khansefid 

et al., 2017). Causal genes are genetic loci that are directly responsible for regulation of a trait. 

The expression of genes is also valuable information in detection and validation of causal genes 

(Solem, 2008). Therefore, differentially expressed genes between high and low RFI groups plus 

biological pathway analysis of significant genes that work together could provide insights on the 

genetic and physiological background of RFI (Khansefid et al., 2017). 

The relationship of gene expression of liver and blood of Holsteins with RFI values and genomic 

estimated breeding values (GEBV) was considered recently by Khansefid et al. (2017). The 

normalized gene read counts which is a form of RNA data for gene expression studies was used 

in this study. The positive regression sign in association of gene expression and RFI was 

considered as upregulation of gene expression in high RFI cows and down regulation for low 

RFI cows. They discovered 233 and 240 genes that were upregulated and downregulated 

respectively in animals with high RFI. The GEBVs that were calculated from a previous study, 
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had significant association with 526 genes (Pryce et al., 2015). The study also identified 39 

biological pathways in proteolysis, energy metabolism, regulation of transcription, translation, 

the cell cycle, and apoptosis. This study also considered Angus breed and reported 28 genes 

where expression levels in liver were associated with RFI and had the same magnitude as in 

Holstein breed (Khansefid et al., 2017). But at the same time, 285 and 454 genes in liver tissue of 

Holstein and Angus respectively were associated with RFI that had no overlap. The authors 

concluded that although not many genes that had significant association with RFI were 

overlapping, the same biological processes were involved. These biological function of these 

genes were protein catabolic processes, macromolecule catabolic processes, proteolysis involved 

in cellular protein catabolism, regulation of transcription, and oxidation reduction (Khansefid et 

al., 2017).  

Liver gene expression has also been studied in beef cattle with different RFI values. A recent 

transcriptomic study compared high and low RFI animals and showed that most differentially 

expressed genes in liver are involved in many cellular processes such as lipid, amino acid and 

carbohydrate metabolism and energy production (Wang et al. 2020). They used whole 

transcriptome data from liver tissue as it is metabolically very active organ which shares 18-26% 

of total body oxygen for its activities. Angus, Charolais and Kinsella composite breeds were 

considered for this study. Although they were all beef breeds, the majority (82-88%) of 

differentially expressed genes in liver were breed specific. This shows a huge difference in 

biological regulation of genes associated with RFI in beef breeds: more than half of the 

differentially expressed genes between high and low RFI animals within a breed are not common 

with other beef breeds. It indicates the different genetic background of RFI in breeds of beef 

cattle.  
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The latter study also considered micro RNA (miRNA) expression between high and low RFI 

animals. The miRNA functions in (messenger RNA) mRNA silencing and post transcriptional 

regulation of gene expression. If a group of genes have significant contribution to the variation of 

RFI, it is wise to investigate which genes can silence the effect of them which can be those that 

produce miRNAs. This would also help provide additional information on the relevant biological 

networks and increase our understanding from gene interactions that build the final phenotype. 

The result of analysis of miRNAs were consistent with mRNAs results, miRNAs that are 

associated with RFI were also breed specific. The study identified 39 microRNAs associated 

with RFI that could target 55-76% of the genes that were involved in molecular metabolism 

(Wang et al. 2020). According to this study which used Ingenuity Pathway Analysis (IPA 

software) libraries for biological network analysis, both coding and non-coding DNA regions 

that are associated with RFI are significantly different between breeds of beef cattle. This shows 

there could be significant genetic variation between beef breeds for feed efficiency (Wang et al. 

2020).  

RFI is the residual of dry matter intake (DMI). It is reported that the phenotypic correlation 

between RFI and DMI in beef cattle is 0.73 (Crowley et al., 2010). There could be part of the 

variation of RFI hidden in metabolites associated with DMI.  Therefore, another approach to 

reduce costs associated with RFI estimation is indirect prediction of DMI. Urine metabolite 

concentrations were found to predict a considerable amount of variation in DMI in beef and 

dairy cows in a recent paper (Dórea, Danés, Zanton, & Armentano, 2017). Furthermore, 

metabolomic approach could provide insight on biological regulation of DMI. Recently, Dórea et 

al. (2017) showed in a meta-analysis with a sample size of thousands of cows from independent 

studies (more than 3600 and 900 dairy and beef cattle respectively) that DMI could be predicted 
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based on urinary metabolites. This study demonstrated how much potential there is for using 

metabolites to accurately predict individual feed intake based on metabolite concentrations. They 

used 62 published data from both dairy and beef cattle and developed twenty models with body 

weight and metabolite concentrations of urine. Allantoin, uric acid and creatinine were used to 

predict DMI and digestible DMI. R-squared were reported in the range of 0.58 – 0.84 for dairy 

cows and 0.32 – 0.83 for beef cattle depending on the included predictor and formula of the 

model. Purine derivative and creatinine index (PDC index) which was suggested first by Chen, et 

al. (2004) had the best result. PDC index is urinary purine derivative to creatinine ratio that has 

been used as a non-invasive estimation of microbial protein synthesis in the rumen (Pulido & 

Briones, 2004). PDC index explained 75 and 67 percent of variation of DMI in beef and dairy 

cattle when it was not adjusted for random effect of the study. They discovered a stronger linear 

relationship (  0.90 for beef,  0.96 for dairy) between PDC index and DMI if they 

included study as the random effect in the model in this meta-analysis. 

However, the predictive ability of the prediction model based on urinary metabolites still needs 

to be validated by other researchers. If the model is accurate then there is a chance to reduce cost 

of obtaining individual feed intake for RFI calculation of cattle. The interesting point of this 

meta-analysis with large sample size was the consistent result of the model for both dairy and 

beef cattle using urinary purine derivative (PD) and creatinine excretion for model development. 

This indicates that part of the physiological basis of DMI is common in beef and dairy because 

the models used the same metabolites.  

The physiological basis of RFI in dairy cow is not well known and more work needs to be done. 

So far, most of the published studies had a relatively small sample size (5-10 animals per group). 
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This leads to limitation of statistical power to detect the effects. Small effect predictors may have 

not been seen in studies with small sample size. 

Ribonucleic acid molecules from genome such as messenger RNAs (mRNAs) transfer biological 

information from nucleus to ribosomes for protein synthesis. miRNAs are another product of 

genome that has post transcription role to prevent mRNAs to reach ribosomes. They regulate 

gene expression by targeting groups of mRNAs. These types of RNAs are only part of available 

transcriptomic data that control the cell metabolism. Proteins function as enzymes to make 

biological reactions efficient and in some cases possible. They also build bonds with 

carbohydrates and lipids and influence biochemical reactions considerably. Proteomic and 

metabolomic studies could draw part of the underlying biological map of the metabolism. In 

addition to phenotypic recording at farm level, different omics levels from genomic to 

transcriptomic, proteomic and metabolomic could show differences between high and low RFI 

groups in dairy cows. For example, Salleh et al. (2017) indicated 19 and 70 candidate genes 

using RNA-based transcriptomic profiling which are associated with regulation of feed 

efficiency pathways in Danish Jersey and Danish Holsteins. The differentially expressed genes 

(P<0.05) between low and high RFI groups were investigated by pathway analysis. They 

concluded that the primary immunodeficiency pathway has a significant (FDR<0.001) role in 

utilization of feed and the metabolism of lipids, sugars and proteins. Salleh et al. (2017) also 

discussed that down-regulation of primary immunodeficiency pathway in high RFI (less feed 

efficient) Holstein and Jersey cows suggests that low immunity may influence feed efficiency.  

The relationship between lactating dairy cow immunity and feed efficiency has been seen before. 

Arndt et al (2015) investigated the sources of variation of feed efficiency in Holstein between 

extreme high and low feed efficient lactating cows. They defined feed conversion efficiency as 
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milk production (kg/day) divided by DMI (kg/day) and grouped animals based on this definition 

of feed efficiency. They found that somatic cell count (SCC) is significantly (P-value = 0.03) less 

in high feed efficient cows than low feed efficient dairy cows (Arndt et al., 2015). They 

converted SCC to somatic cell score (SCS) and found that the difference in SCS explained 6.4% 

of the observed difference between milk production of two groups of animals. It was concluded 

that there is a possibility that immune response contributes to feed conversion efficiency in dairy 

cows (Arndt et al., 2015). Although they did not use RFI for this study, the statistical evidence 

(small P-values) that more immunity is reported for more feed efficient dairy cows from two 

independent studies is promising. Immunity is also another complex trait of interest in dairy 

cows for breeding and its role in regulation of feed efficiency needs more attention in future 

studies. 

Moreover, Salleh et al. (2017) reported other biological pathways to be differentially expressed 

between high and low RFI dairy cows such as metabolism of xenobiotics, sphingolipid 

metabolism, arachidonic acid metabolism, retinol metabolism, starch and sucrose metabolism 

and ether lipid metabolism. These pathways are mainly related to metabolism of nutrients such 

as protein, fatty acids, and carbohydrates. Different studies show that biological basis of feed 

efficiency in beef and dairy cattle is not limited to a couple of physiological pathways and more 

studies need to be done. 

Metabolic biomarkers for RFI in Holstein and Jersey breeds of dairy were investigated by Wang 

and Kadarmideen (2019). They found significant (P<0.001) differences in fatty acid group from 

plasma samples between animals from high and low RFI dairy cows. They also used 

transcriptomic data from a previous study for integrative pathway analysis (Salleh et al., 2017). 

Using only metabolomic data and metabolic and transcriptomic data both showed three 
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important pathways. Amino acyl tRNA biosynthesis, citrate cycle (TCA) and alanine, aspartate 

and glutamate metabolism were reported as key potential metabolic biomarkers from this study 

that needs to be validated. However, the study used only 10 Holstein and 10 Jersey cows, the 

differences between high and low RFI groups within breeds with only 5 animals in each group 

were observed and they concluded a larger sample size could show more significant metabolites 

as biomarkers of RFI. 

As examples from the literature show in recent years, the complexity and dynamic nature of feed 

efficiency in the dairy cow has increased the interest in researchers to approach this trait with 

assistance of other omics. Metabolomics is closer than other omics such as genomics, 

transcriptomics, and proteomics to the external phenotype of animals. It was suggested that this 

approach will therefore open a door to many potential discoveries in functional genomics 

(Wishart 2005). Functional genomics is the attempt to describe gene functions and interactions. 

Metabolomics is an additional information to other layers of omics and which can help to 

provide a better explanation of biological pathways that are related to the trait of interest 

(Wishart 2005) – feed efficiency in this case. 

Therefore it is proposed that the biological basis of RFI and the answer to the question of how 

genetic variation of animals can affect the phenotypic variation of RFI can be better understood 

with metabolomics. Metabolomics has been used to map the biological pathways associated with 

feed efficiency to expand the knowledge of underlying physiology of RFI in beef cattle (Karisa 

et al. 2014). Proteomics is also of interest as proteins have important enzymatic roles in feed 

efficiency (Fonseca et al., 2019). Simultaneous analysis of multi-omics data to map biological 

networks are expected to be used more in the future to improve our understanding of RFI and 

other complex traits (Zampieri, Vijayakumar, Yaneske, & Angione, 2019).  
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Future use of metabolite concentration in investigation of physiological aspect of RFI can be 

found with fluxomics. Flux is rate of biological reaction (metabolite concentrations of reactants 

and products) within a biological environment in an organism (Winter & Krömer, 2013). 

Genomic and metabolic data can be used in fluxomic studies for estimation of rate of changes of 

metabolic pathways between animals form divergent groups. Potential applications of fluxomic 

studies in livestock are discussed in a recent review (Goldansaz et al., 2017). This kind of study 

can be useful in understanding metabolic sinks and assessing nutrition and metabolic efficiency. 

Tissue development and transformation in each developmental stage of an animal is another 

reason that makes metabolite flux more interesting. Fluxomic studies are a next level of omics 

that can show physiological aspect of feed efficiency. Such study has not been done yet in cattle 

due to costs and difficulty of isotope labeling required for such studies (Goldansaz et al., 2017). 

 

1.5 What is Metabolomics?  

The metabolome can be defined as the complete set of low molecular-weight compounds (i.e. 

metabolites) produced by cells. These compounds include peptides, organic acids, carbohydrates, 

amino acids, lipids, nucleotides, vitamins, toxins, minerals, cofactors and any compound with a 

molecular weight < 2000 Da that is chemically produced or transformed during metabolism 

(Wishart et al. 2013). Originally, the metabolome was described in the context of metabolic 

control analysis (MCA) as the complete set of low molecular weight endogenous molecules 

synthesized by an organism. Eventually the definition of the metabolome was modified and 

redefined to mean the collection of all small molecules that can be measured within a biological 

system. This includes both endogenous and exogenous metabolites such as drugs, toxins, and 

pollutants. Using modern metabolomics techniques many attempts have been made to estimate 
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the total numbers of metabolites in a variety of organisms and to construct comprehensive 

metabolome databases. However, this has proved challenging as the size of the metabolome 

varies with the organism’s diet or other factors such as age and depends on the organism being 

studied. 

Environmental effects like ration quality have significant effects on the metabolome of different 

biofluids of dairy cows (Sun et al., 2015). Therefore, in response to the demand for detailed 

information on milk metabolites and facilitate further research into milk chemistry, a database 

with appropriate baseline for milk metabolite was recently provided (Foroutan et al., 2019). The 

Milk Composition Data Base (MCDB) which is freely available in electronic version has 

identified 2355 cow milk metabolites. The database has all the different names of a single 

metabolite, structure for both abundant metabolites with a concentration of more than 1µM and 

rare metabolites. The MCDB includes both water soluble and lipid soluble metabolites (Foroutan 

et al., 2019). Modern quantitative metabolomics techniques such as nuclear magnetic resonance 

(NMR), inductively coupled plasma−mass spectrometry (ICP−MS) and liquid 

chromatography−mass spectrometry (LC−MS) were applied in this study that led to 

quantification of 296 bovine milk metabolites from the 2355 identified metabolites. This data 

was aided by knowledge from literature and used to build MCDB database accessible online.  

The rumen is the primary place for microbial fermentation and has a vital role in cattle, sheep, 

and goat. Chemical composition of rumen reflects the rumen microflora and diet. Digestion of 

cellulose-rich material is possible in the rumen. The rumen converts cellulose to a wide range of 

metabolites that are used by microbes for proliferation and replication. Some of these metabolites 

are absorbed by cattle as nutrients for maintenance requirement, muscle production and milk 

production (Saleem et al. 2013). The health of ruminants and especially high producing animals 
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like lactating Holsteins depends on efficient rumen metabolism. Almost half of dairy cows in a 

given herd are more likely to be exposed to rumen-associated or metabolic diseases (Bertram et 

al., 2009). Therefore, the bovine ruminal fluid metabolome database (BRDB) was established to 

enhance quantitative metabolomics in this field of research (Saleem et al. 2013). They combined 

direct flow injection, NMR, GC-MS and ICP-MS with computer aided literature mining for 

identification and quantification of metabolites in bovine ruminal fluid. The application of 

multiple platforms expanded the metabolome coverage. The baseline of 246 identified and 

quantified metabolites with concertation means and standard errors and related literature value 

for each metabolite has become available (Saleem et al. 2013). They concluded that ruminal fluid 

is a metabolically diverse biofluid with 28 different compound categories. It was not surprising 

as estimates show that just 1 mL of ruminal fluid has 1 million protozoa, 10–50 billion bacteria, 

and 1000s of yeast or fungi (Fiehn et al. 2005). 

 

1.6 Metabolomics platforms 

 

Analysis of the entire metabolome using a single chemistry-based method is impossible due to 

the complexity and heterogeneity of the components of the metabolome. Therefore, multiple 

platforms are used for whole metabolome analysis of fluids from an organism. Liquid 

Chromatography Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) have 

been the most common platforms used in recent years for detection, identification and 

quantification of small molecule compounds of biological samples. Different analytical 

platforms have different advantages and disadvantages. Basic principles of NMR and LC-MS 

and how they are used for metabolomics will be briefly explained. There are other metabolomics 

platforms for analysis of samples such as immunodetection, capillary electrophoresis and 
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infrared spectroscopy. More in-depth introduction of above-mentioned metabolomics 

technologies were reviewed by Dunn & Ellis (2005).  

Theory of NMR spectroscopy was first triggered by Wolfgang Pauli in 1924 and two years later 

a paper was published about independent measurement of NMR phenomena (Bloch, 1946). 

Bloch, Packard and Purcell were awarded the Nobel Prize in physics in 1952 for their discovery. 

Since then, characterization of different compounds using NMR has developed to be one of the 

main methods in chemistry and this platform was also developed for metabolomics studies.  

Chemical compounds are made of elements such as oxygen, hydrogen that are connected with 

chemical bonds. Each element has a specific number of protons and electrons. Electrons spin 

around protons and they can be affected by magnetic field. Total angular momentum of the 

nucleus of an element is called nuclear spin. When a chemical compound is exposed to a certain 

known external magnetic field, the nuclear spin will transfer from a low to a high energy level 

(Nielsen & Oliver, 2005). The basic principle of NMR based methods is that there are certain 

nuclei that have a spin that generates small, local, magnetic fields. When an external magnetic 

field is applied to a chemical compound (which consists of atoms and nuclei that are chemically 

bonded together), it is possible to transfer energy to the chemical’s nuclei (or cause their nuclear 

spins to flip) from a low to a high-energy level by exposing the nuclei to a weak, oscillating 

magnetic field at a “resonance” frequency that matches each of the nuclei’s spinning frequency 

(Griffiths et al., 2010). Chemical/nuclear composition, its chemical structure, the chemical 

environment and the strength of the external magnetic field determines the resonance frequency 

that causes a given nucleus in a chemical compound to spin flip or jump in energy. When a 

nucleus (or nuclei if one is referring to a molecule) returns to equilibrium (a low-level state) 

energy is released at a frequency that corresponds to the characteristic resonance frequency of 
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the nucleus (or nuclei) in the biological sample. This energy can be detected via a radio 

frequency receiver and the oscillating signal can be Fourier transformed to produce an NMR 

spectrum (Nielsen & Oliver, 2005). The important feature of the spectrum is its characterization 

by lines and the peak or signals at different positions that corresponds to each chemical shift 

(Griffiths et al., 2010). 

The other feature that has made NMR a common platform for metabolimcs projects is the non-

destructive aspect of this technique which does not need chromatography separation or steps of 

derivatization. Therefore in vivo studies on bacteria and metabolism monitoring have become 

possible (Dass et al., 2017).  

Reproducibility of NMR is high, and it means the result of NMR-based analyses are consistent. 

High reproducibility means the metabolite concentration that is gained by the same methodology 

described in different papers are very similar. This fact has increased the interest in using NMR 

in recent years for metabolomics studies (Emwas et al. 2015).  

Simultaneous quantification of several classes of metabolites is a capability of NMR. 

Metabolites from different chemical classes have their own unique features that can be detected 

by NMR (Vadla, et al. 2013). For example protein-bound metabolites like lipoprotein particles 

and also certain inorganic ions or metabolites like H+ and metal ions that cannot be accurately 

determined with LC-MS or GC-MS can be analyzed by NMR (Ciborowski et al., 2012).  

A disadvantage of NMR is a relatively low sensitivity (1-5 μM), however, it can be improved 

with higher magnetic field strength, hyperpolarization methods and cryo-cooled and micro 

probes.  In general NMR spectroscopy is often 10 to 100 times less sensitive than LC-MS and 

GC-MS (Emwas et al. 2015). NMR-based metabolomics studies usually cover 50 – 200 

metabolites that are present at over 1 µM while LC-MS is able to return over 1000 metabolites 
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with concentrations from 10 – 100 nM (Bertram et al., 2009).   

Mass spectrometry-based methods have been used widely for comprehensive profiling of 

metabolites which provides both qualitative and quantitative information from structure and 

concentration of molecules within a sample. MS needs ionization methods to increase the 

number of metabolites that are detected (Guo, Zhang, Elmore, & Vishwanathan, 2013). The 

advantage of MS over NMR is its higher sensitivity of detection at nano molar concentrations 

and far more detectable number of metabolites, however, the disadvantage is that its results have 

been less reproducible than NMR. For a quantitative analysis, NMR is inherently quantitative 

because intensity of signal is directly proportional to number of nuclei in the molecule and 

metabolite concentration. MS intensity data does not have correlation with metabolite 

concentration most of the time and the reason is the different efficiency of ionization of different 

molecules (Emwas et al. 2015).  

Technical advantages and disadvantages of both platforms were discussed above. Another 

important variable in platform considerations is cost of metabolite quantification for each 

method. Using both platforms is recommended (Marshall and Powers, 2017), as the metabolome 

is not detectable using a single platform. Biomarker discovery needs high sensitivity which MS 

methods provide but as indicated MS is less reproducible than NMR. Our study of association of 

metabolites and RFI has used NMR as it is a better approach for quantitative analysis and has 

better reproducibility (Marshall and Powers, 2017). 

 

1.7 Metabolomics in livestock species 

Metabolomics studies in livestock have mainly focussed on animal health with the bovine 

metabolome having the highest number of research publications. After cattle with 50% of the 
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papers, pig and sheep had 28 % and 13 % respectively. Most research (65%) were about health, 

production, and nutrition (Goldansaz et al., 2017). However, this report of application of 

metabolomics in livestock is from 2017, the need for biomarkers that can contribute to diagnosis 

or prognosis of diseases in livestock is evident. For instance, the application of metabolomics in 

identification of predictive biomarkers for post-partum disease states in dairy cows was reported 

by Hailemariam et al. (2014). They could predict which cows would develop periparturient 

disease 4 weeks before clinical symptoms using metabolites as biomarkers from plasma samples. 

The prediction had 87% sensitivity and 85% specificity using metabolite concentrations. This 

experiment in dairy cows using metabolomic approach can be also done for other complex traits 

such as RFI. This is done lately for high and low RFI cow and could show some groups of 

metabolites are expressed differentially (Kadarmideen et al. 2019). Metabolites in the fatty acid 

group had different concentration (P<0.001), however more work needs to be done for biomarker 

discovery that can classify high and low RFI lactating cows. 

One of the challenges in the application of metabolomics after biomarker discovery is estimation 

of heritability of the metabolite. For example, beta hydroxy butyrate (BHB) is an indicator of 

ketosis in dairy cows and has a heritability between 0.25 to 0.36 in different stages of lactation 

while ketosis has heritability of 0.078 (Belay, 2017). If the metabolite has a moderate to high 

heritability like BHB, then this metabolite is more likely a good stable candidate to estimate the 

susceptibility of an individual for disease in a population of dairy cows or the merit of animals in 

feed efficiency. Heritability is a measure that can show us whether heritable genetic basis of 

metabolite is high enough that we expect to see this biomarker work well in future generations 

that will have different environmental effects. Estimation of heritability of indicator traits or 

intermediate phenotype has been discussed at transcriptome, proteome and metabolome level of 
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biology (Kadarmideen 2008). When the biomarker has moderate to high heritability, there is a 

genetic background for expression of metabolite in the population that most likely would not 

much change in one generation. But this needs a large sample size to show genetic variability of 

metabolite concentration in a population of animals (Jones, 2009). The cost, time and 

technological infrastructure are challenges for estimation of heritability of metabolites. 

Despite the cost and technological needs of estimation of heritability for metabolites, there have 

been different studies in search of metabolites that have moderate to high heritability and strong 

association with complex traits. For instance, strong association between postpartum negative 

energy balance length with fertility was the motivation for researchers to study metabolites of 

blood plasma samples (Hayhurst, et al 2009). The importance of glucose and fatty acids function 

in negative energy balance length was the reason to estimate their heritability in blood plasma 

samples taken from dairy lactating cows (Hayhurst et al., 2009). Heritability estimates for 

glucose and free fatty acid (FFA) were moderate in the range of 0.23 ± 0.11 and 0.25 ± 0.13 

respectively. All metabolite heritabilities were significantly different from zero. The authors 

indicated that metabolite heritability estimates were comparable to the heritability of other 

studies that measured the reproductive trait of interest (Hayhurst, et al 2009). 

In addition to blood, milk has been one of the biofluids of interest that can potentially provide 

biomarkers of health status (or other traits) in dairy cows (Sundekilde, 2012). Fatty liver 

syndrome, rumen acidosis, milk fever and ketosis have been among important diseases studied 

using metabolomics in dairy cows. For example 3-hydroxy-butanoic acid has been identified as a 

biomarker for ketosis (Wittenburg et al., 2013). Another important feature of milk is its 

nutritional value, for example bovine milk oligosaccharides in cow milk are very similar 

structurally to human milk oligosaccharides and have similar protective roles for the infant 
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intestine. These benefits of metabolites in milk and blood of dairy cow and the predictive power 

for some diseases has brought attention to the question of how much variability in the 

concentration of these important metabolites are due to genetic variability of the population? If 

they have moderate to strong heritability, there could be chances for metabolites to be introduced 

as a trait for genetic selection. Wittenburg et al. (2013) reported the narrow-sense heritability for 

metabolites in the range of zero to 0.569. The study used Single Nucleotide Polymorphism 

(SNP) data with genomic best linear unbiased prediction (GBLUP) approach for each metabolite 

as response variable. Assessment of predictive power of SNPs in the model to predict metabolite 

measurements was done using leave-one-out cross validation (LOOCV). They estimated 

population genetic parameters such as additive genetic effect, dominance and polygenetic 

variance components for metabolites. It was concluded that the prediction accuracy of 

metabolites using SNP is at a high level. Correlation between observed and predicted metabolites 

were reported as 0.665, 0.668, 0.700, 0.709 and 0.769 respectively for Glycerol-3-phosphate, 

Glucose-2-amino-deoxy, Lactic acid, Ribulose-5-phosphate and Glucose 1,6-anhydro β.  

The application of the metabolite BHB in detection of ketosis has a longer history in dairy cows. 

It is used as a gold standard indicator of ketosis with threshold of 1.2-1.4 mmol/L. In addition to 

the contribution to our knowledge of ketosis development, it has application in prevention of the 

disease progress by change of ration or treatments. Furthermore, there is evidence that genetic 

selection using BHB as an indicator of ketosis could make more genetic improvement than direct 

genetic selection for ketosis (Belay et al. 2017). This was investigated by the Canadian Dairy 

Network (CDN) using a pedigree of over 83 thousand animals, milk BHB concentration and 

incident of ketosis records. They concluded that selection for animals with lower BHB 

concentration can be used to increase the resistance to ketosis (Koeck et al., 2016). 



23 

New metabolomics approach with platforms such as NMR that can measure concentration of 

metabolites has provided an opportunity to detect potential biomarkers. Metabolites that can be 

indicators of RFI or at least classify animals into high and low RFI with high accuracy in dairy 

cows may be useful in management and genetic improvement of RFI.  

 

1.8 Overall objective  

RFI is the difference between the actual and expected feed intake. Prediction of RFI is expensive 

because of the need for long term regular measurement of individual feed intake. Indirect 

measurement of RFI can reduce the cost and speed up phenotyping of more animals in a fixed 

time period. Based on previous studies in beef cattle, it is believed that more than half of 

variation in RFI originates from differences in metabolism (Herd & Arthur, 2009). This shows 

there is significant potential for investigation of metabolism of RFI in cattle. Metabolomics has 

also shown biological differences in RFI in dairy (Kadarmideen 2019); and beef (Karisa et al. 

2014). Thus, in this project the metabolomics approach was used to investigate differences 

between high and low RFI in lactating dairy cows. The overall objective of the thesis is to 

identify serum candidate biomarkers that distinguish high and low RFI cows and predict 

individual RFI phenotypes from metabolites.  

Estimation of residual feed intake in dairy cows requires recording daily feed intake, measuring 

body weight, collecting milk samples and composition analysis, sampling the diet and 

performing dry matter and nutrient composition analysis during the lactation period. Because of 

these requirements, collection of data for RFI estimation is costly and difficult in commercial 

farm conditions. Consequently, this limits the application of RFI to improve feed efficiency and 

reduce carbon footprints from dairy cows. To overcome this problem, blood metabolites can be 
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investigated as a continuous indicator trait of RFI or a biomarker that can classify animals into 

high and low RFI groups.  

In this project, a comparative serum metabolomics study was undertaken between high and low 

RFI cows at day 50, 150 and 240 days in milk (DIM) during lactation for discovery of potential 

metabolite biomarkers. The three time points were selected taking into account the physiological 

dynamics during the lactation period and represent early, mid and late lactation stages.  

We hypothesized that: 

1) The high and low RFI cows differ in serum metabolite profiles at 50, 150 and 240 DIM. 

2) Classification of high and low RFI cows is possible using metabolite profiles at 50, 150 and 240 

DIM. 

3) RFI values of individual cows can be predicted using metabolite concentrations at 50, 150 and 

240 DIM. 
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Chapter 2.  Estimation of residual feed intake (RFI) for lactating dairy cows 

2.1 Introduction 

2.1.1 Measures of feed efficiency 

There have been many studies on cattle feed efficiency exploring a number of different 

approaches. In recent years, there has been substantial work on the application of residual feed 

intake (RFI) as a good feed efficiency measure to describe variability of energy efficiency in 

dairy cows. However, several other methods have been proposed and they have different 

applications and limitations. The question of which definition of feed efficiency is better and 

suitable for genetic selection will be discussed here. 

Feed conversion ratio (FCR) is commonly defined as kilogram concentrate fresh weight per 

kilogram product fresh weight. Feed conversion ratio is easy to use and more traditional common 

tool to calculate feed conversion in livestock. The aim is to reduce FCR in order to reduce the 

cost of production. FCR is generally used for nutritional studies or management purposes in 

monophagous animals and beef cattle. But it should be mentioned that sources of genetic 

variation of energy efficiency was basically reviewed by Veerkamp and Emmans (1995); they 

considered FCR for dairy cows. Manafiazar et al (2015) considered both FCR and RFI in dairy 

lactating cows and reported phenotypic and genetic correlation among them. However, later on 

scientists used Gross Feed Efficiency (GFE) for dairy cows because FCR did not have milk yield 

in its definition.  

Gross Feed Efficiency (GFE) is the amount of milk yield divided by feed intake over a period of 

time (Wang and Kadarmideen 2019). Milk yield is the numerator and feed intake the 

denominator in this case. The higher the value of GFE, the more efficient the animal because she 

produces more milk for a fixed amount of feed. GFE can be easily calculated by farmers via 



35 

daily milk and DMI records. However, as for FCR, GFE is a ratio trait that brings a problem 

which will be discussed later.  

The other index that has been often used in dairy cattle is Gross Energy Efficiency (GEE) which 

is the energy in milk divided by total energy intake (Veerkamp & Emmans, 1995). Unlike FCR, 

the higher GEE for a cow means a more feed efficient animal because output is the numerator of 

the ratio. GEE takes the energy of feed material into account and it is more reasonable in dairy 

cattle system as the moisture of feed has a large variation ranging from 60g/Kg in concentrate to 

900g/Kg in some root crops (McDonald, Edwards, Greenhalgh, & Morgan, 2002). Rations for 

cattle diets are formulated with Dry Matter (DM) and it is highly correlated with Gross Energy 

(GE) of feed. The denominator for each feed ingredient can be calculated through multiplying 

dry matter (DM) of feed by a constant coefficient which comes from the gross energy of feed. 

Therefore, GEE has many advantages in comparison with FCR for dairy nutrition, but both of 

these plus GFE have drawbacks for animal breeding programs.  

There are distinctive partial efficiencies for maintenance, pregnancy, lactation and body gain or 

loss and these two indices (FCR and GEE) are not able to demonstrate them separately 

(Veerkamp & Emmans, 1995). Furthermore, they have phenotypic and genetic correlation with 

production traits such as Average Daily Gain (ADG) which is a measure of growth and mature 

size. When an unfavoured significant correlation exists between GEE and ADG, selection for 

animals based on GEE would result in offspring with higher body size and consequently a 

greater maintenance requirement. Finally, we will not have any clue whether improvement has 

taken place from a change in the numerator or denominator of the GEE and FCR ratios. It is 

important for genetic improvement (or animal breeding) to know the direction of changes in a 

trait to be able to identify which components of efficiency of metabolism have the largest genetic 
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variation as this is the basis for improvement (Manafiazar, et al 2012). That is why ratio traits are 

problematic here. 

Lifetime Efficiency (LTE) is another measure that takes the whole life of the cow into account. It 

is defined as “the capture of feed energy in milk, conceptus, and body tissue divided by gross 

energy intake during the life of cow, starting at birth” (Vandehaar, 1998; VandeHaar and St-

Pierre, 2006). Many factors in LTE should be standardized to be able to compare one cow to 

others, such as age at calving, calving interval, feeding, and housing. It is a merit of this index 

that it looks at all economic life of a cow and production management to evaluate profitability of 

each cow. But it takes a long time to access this data and genetic progress of dairy industry is 

moving faster than the life cycle of a dairy cow. Dairy cows on average have an economic life of 

4 years and it takes too long to measure the merit of this cow for selection because the merit of 

sires are based on the production data of daughters. Moreover, LTE is highly dependent on 

precalving and intercalving period because we considered energy efficiency of the animal for its 

whole life. 

The other problem of all these ratio measures is that any phenotypic correlation between feed 

efficiency and other traits should be measured carefully as it can change the result of selection in 

a way which is not expected, and results of breeding programs can have potential effects for 

many generations.  

Residual feed intake (RFI) was first suggested as a better alternative for beef cattle by Koch and 

colleagues (Koch, et. al 1963) and is defined as the difference between actual feed intake and the 

prediction of feed requirement based on the animal’s weight and production. Koch (1963) 

proposed RFI for beef cattle with heritability of 0.28 using body weight and feed intake data 

from 1950s. He compared different scenarios of defining feed efficiency and showed the 
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importance of analysis of covariances between the definition of feed efficiency and feed 

consumption. This trait in dairy cattle is moderately heritable with a range of 0.22 to 0.38 

(Korver et al., 1991; Pryce et al., 2014). The dairy cow undergoes different stages of 

physiological change during a lactation cycle and within this period feed efficiency changes. RFI 

does not have phenotypic correlation with BW, ADG and Energy Corrected Milk (ECM) yield 

(Connor et al. 2013; Manafiazar et al. 2015). Therefore, it would not have the same problems as 

indicated for ratio traits of feed efficiency. RFI also has a normal distribution that improves its 

utility for conventional genetic selection compared to other feed efficiency measures. RFI is an 

indicator of differences in metabolism rather than a direct interpreter of differences in production 

as Crews (2005) explained. Because RFI is not a ratio, it is equal to the difference of actual 

energy intake and expected energy intake. Positive RFI cows consume more than the expected 

energy requirement for maintenance and production while negative RFI cows consume less than 

the expected for the same production level. RFI calculation in research centers and universities 

using regular precise measurement of energy related phenotypes of individual animals is the first 

step to recognize feed efficient animals for genetic selection, however other aspects for RFI must 

be considered for genetic selection like phenotypic and genetic correlation of RFI with other 

economic traits. Negative RFI cows have lower feed intake compared the positive RFI cows for 

the same production level. Selection for negative RFI cows can reduce feed cost and improve 

profitability. The other benefit of selection for negative RFI cows is a reduction of enteric 

methane emission. The relationship between RFI and methane production in beef and dairy cattle 

was studied and reviewed by many authors (e.g. Arthur and Herd 2008, Basarab et al. 2013). 

Residual feed intake (RFI) is the difference between actual energy intake and expected energy 

intake. This measure of feed efficiency considers the maintenance, lactation, and growth energy 
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requirements of the cow during lactation. RFI is a useful feed efficiency measure as it can extract 

or identify the individual merit of an animal in terms of feed efficiency with high precision 

because it is going to be used for genetic selection which will have a long-term effect on the 

population. 

Some researchers such as Berry and Crowley (2012) believe RFI may have lack of acceptance 

from producers. The reason is that in beef cattle, slow growing animals which eat relatively less 

feed may have low RFI. They proposed another feed efficiency measure, Residual intake and 

body weight gain (RIG) for only beef cattle. It has significant phenotypic and genetic correlation 

with production traits such as average daily gain (ADG). Positive values of their proposed 

measure show more feed efficient animals which was considered an advantage over RFI concept 

by authors. Animals with greater RFI that are more feed efficient have greater ADG and reduced 

DMI. To date, this measure of feed efficiency has not been redefined for dairy. 

Different energy requirements are important during lactation. Maintenance, milk production and 

body reserve changes vary between individuals and we need a measure that can account for this 

variability (Manafiazar et al., 2012). The reason that we are interested to see variability of the 

trait is that phenotypic and genetic variation has a great importance for genetic selection 

programs. The first step for genetic improvement of RFI in dairy cow is to define the statistical 

model for RFI prediction. It has been done by Manafiazar et al. (2013) and this chapter will 

briefly explain the method and how it is used to separate animals into high and low RFI groups 

that can be used to discover metabolomic biomarkers as discussed in chapter three. 
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2.1.2 Estimation of RFI in lactating dairy cows 

Residual feed intake (RFI) is a measure of feed efficiency that can explain individual phenotypic 

merit of individuals, however, its estimation needs complex statistical modeling in dairy cows. 

RFI is equal to actual energy intake (AEI) minus expected energy intake (EEI). In order to have a 

reasonably accurate estimate of RFI values for ranking a group of lactating dairy cows, multiple 

traits need to be observed over time. Major traits related to RFI such as dry matter intake, body 

weight, milk yield and milk composition traits. The complexity originates from infeasibility or 

high cost of daily recording of production traits such as animal body weight in every single day 

of lactation.  

In practice, milk fat, protein, and lactose concentrations can be recorded weekly, body weight 

monthly, and feed intake on a daily basis in research facilities. These traits are used to build EEI 

which represent multifunctional energy requirements of lactating cows. Multifunctional energy 

requirements of dairy cows are maintenance requirement for basal metabolism, milk production 

energy requirement and body weight gain or loss along lactation. 

Multifunctional energy requirements can be estimated as RFI components using metabolic body 

weight (MBW), milk production energy requirement (MPER), and empty body weight change 

(EBWC). The number of observations for these RFI components along lactation are different due 

to the high costs for collection. Therefore, there is a need to predict daily values of RFI 

components using appropriate statistical modeling.  

Manafiazar et al (2013) developed a method for RFI computation based on a log-likelihood ratio 

test and Bayesian information criterion for component traits of RFI and multiple linear 

regression to obtain RFI values. The proposed method by Manafiazar et al (2013) for estimation 

of RFI in dairy cows was probably the most acceptable approach by researchers. For example, 
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this approach has been used by independent researchers for estimation of RFI in international 

collaborations from the United States, Canada, the Netherlands, and the United Kingdom (Hardie 

et al , 2017). They took advantage of pooled data from 4916 lactating cows to estimate 

phenotypic and genetic parameters of RFI. To date, this was the largest sample size that was used 

for estimation of RFI. 

 

2.2 Materials and Methods 

Experimental procedures were approved by the University of Alberta Animal Care and Use 

Committee for Livestock (AUP00000170). Dairy cows were handled in accordance with the 

guidelines described by the Canadian Council on Animal Care (CCAC 2020). The animal study 

was conducted at Dairy Research and Technology Center (DRTC). 

 

2.2.1 Barn management  

Mixed parity lactating Holstein cows were used for this study. Milk production records of 75 

dairy cows from June 2017 to October 2018 were used in the analysis. Animals were kept in a 

tie-stall system at the Dairy Research and Technology Center (DRTC) at the University of 

Alberta. Ration at two levels of energy, high and medium, was fed to animals between the first 

days of lactation and day 240 in milk (DIM) as total mixed ration (TMR) based on their milk 

production level. Daily records of offered feed intake to each animal were taken at the morning 

and the weight of refused feed was weighed the morning of the next day. 

All cows in the project were fed the same diet after calving. The dry off diet was usually offered 

to the dairy cows when they are close to parturition and contained approximately 20% 

concentrate on a dry matter basis. After parturition cows were gradually switched during the first 
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seven days to an early lactation diet with higher proportion of grain (up to 50% on DM basis) to 

meet the energy demands for high milk production cows. Then animals moved to mid ration as 

their milk production declines. Daily ration was offered as total mixed ration (TMR) for ad 

libitum intake to allow approximately 5% feed refusal throughout the experiment. Animals were 

fed once daily in the morning at 8:00 AM. 

 

2.2.2 Blood sampling  

Blood samples were taken at three time points: early, mid and late lactation (50, 150, 240 DIM) 

from all 75 cows. The blood samples were obtained from the coccygeal vein 6:00 A.M before 

feeding. All blood samples were collected in 10mL vacutainer tubes and were allowed to clot by 

keeping at room temperature until separation of serum. Clotted blood samples were centrifuged 

at 2090 × g at 4 °C for 20 minutes (Rotana 460 R centrifuge, Hettich Zentrifugan, Tuttlian, 

Germany) and the separated serum were aspirated and transferred to a sterile 2mL tube. Finally, 

all serum samples were stored at -80 °C until metabolomics analysis. 

 

2.2.3 Data Editing and RFI component traits calculation 

Three cows were removed from analysis because they did not fall within three standard 

deviations from the population mean on the test day. The remaining 72 cows had enough number 

of records and met the criteria of normal distribution to be analyzed for RFI estimation using 

random regression model (RRM).  

RFI is equal to the difference between actual energy intake (AEI) and expected energy intake 

(EEI), the formula is as follow: 

RFI = AEI – EEI 
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Residual feed intake is the actual energy intake that is accounted for energy requirements of the 

cow. Individual actual energy intake can be calculated with net energy density (ED), offered 

feed, refused feed and dry matter (DM) percentage. DMI was calculated as: 

DMI (Kg/day) = [offered feed (Kg) – refused feed (Kg)] × DM %  

AEI (Mcal/day) = DMI (Kg/day) × ED (Mcal/kg) 

ED is the amount of energy per kilogram dry matter of ration (Mcal/ kg DM).  

Expected energy intake (EEI) has several components including metabolic body weight (MBW), 

milk production energy requirement (MPER) and empty body weight change (EBWC). Here we 

explain how each of these components were calculated: 

 1) Metabolic body weight (MBW) was defined as (NRC, 2001):           

                    MBW (kg) =  

Where BW is body weight (kg) of the animal which was measured monthly at 29th each month 

in the morning 6 AM. The analysis of BW records between 5 to 240 day in milk (DIM) were not 

adjusted for fetus growth weight because based on the fetus growth energy requirement is 

negligible in this period of pregnancy (NRC, 2001). 

2) Another component of expected energy intake (EEI) is milk production energy requirement 

(MPER) which can be calculated using the following formula: 

MPER (Mcal/day) = [(0.0929 × fat %) + (0.0547 × Crude Protein %) + (0.0395 × Lactose %)] × 

Milk Yield. 

As the above formula shows the total energy that is expressed in the form of milk is included in 

MPER. The amount of milk yield, concentration of fat, protein and lactose are also considered in 

this formula (Eastridge 2002, Linn 2003, Zanton 2016). Milk yield was measured daily in 
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morning and afternoon milking by an automatic milking machine. Milk samples of AM and PM 

milking was sent to a central milk testing laboratory (CMTL). 

3) To avoid the confounding effect of water and gastrointestinal content with body weight 

(Bewley et al., 2008), body weight is needed to be adjusted for gut fill (GF) as following formula 

shows 

EBW (kg) = BW – GF, 

GF (kg) = DMI × (11-(7×MED/15)), 

Where MED is metabolizable energy density (Mcal/Kg). 

 

2.2.4 Random Regression Model (RRM) for RFI component traits 

After calculation of daily AEI, monthly MBW, weekly MPER and monthly EBW which are all 

elements to calculate RFI, it is needed to predict MBW, MPER and EBW values and smooth 

AEI. For this purpose a random regression model (RRM) was used (Manafiazar et al. 2013). 

Multivariate mixed model was as follow: 

 

Where is ith animal record on time (t) 

  is contemporary grouping of animal i on time (t) which is a fixed effect in the model 

 is regression coefficient for fixed effect trend of order m  

 is random regression coefficient of animal’s permanent environmental effect plus additive 

genetic effect. 

  is the mth order of time (t) 

K1 and K2 are the orders of fixed effects and random effects regression respectively 
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Contemporary grouping effects were combined month and year of measurement, ration type, 

temperature and humidity index (THI), lactation number and age at first calving (AFC) as 

covariate. 

The assumptions of the models such as normality and homogeneity of variance, were checked 

with diagnostic plots. The best model was selected using log-likelihood ratio test (LRT) and 

Bayesian information criterion (BIC).  

 

2.2.5 Multiple linear regression for computation of RFI 

Prediction of RFI component traits were done with RRM and daily value for these items which 

are predicted metabolic body weight (PMB), predicted empty body weight (PEBW) and 

predicted milk production energy requirement (PMPR) and smoothed actual energy intake (AEI) 

are gained. Therefore, we have the required component traits for prediction of RFI. It should be 

noted that the merit of feed efficiency is calculated based on the whole experiment from day 3 to 

240 of lactation. 

For computation of RFI, empty body weight change (EBWC) was used as the difference between 

two consecutive days. 

EBWC (t) = EBW (t) – EBW (t-1) 

 The model for computation of RFI is: 

 

Where is the summation of actual energy intake for ith animal between day 5 and 240 

in milk (DIM), is the parity of ith cows,  is the summation of metabolic body 

weight (MBW) for ith animal between day 3 and 240 in milk (DIM),  is the 
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summation of empty body weight change (EBWC) for ith animal between day 3 and 240 in milk 

(DIM),  is the summation of milk production energy requirement (MPER) for ith 

animal between day 5 and 240 in milk (DIM) and  is the residual of them model which 

will give us the cumulative RFI for ith animal along the lactation DIM (3-240). 

All statistical analysis for RFI computation were performed using the MIXED procedure of SAS 

(SAS Institute, Inc. 2003). 

All animals were sorted based on the RFI values and animals with RFI value over half a standard 

deviation from the mean on positive (µ + 0.5 SD)  and negative (µ - 0.5 SD) sides were selected 

as high and low RFI animals for metabolomics analysis.  

RRM modeling with five fixed and five random effects model made 25 models. AIC, BIC and 

log likelihood values were used to compare models. The model with order of 2 for fixed effects 

and order of five for random effects had the best fit.  

Multiple linear regression for calculation of cumulative RFI had R-squared of 0.71. Therefore 

29% of variation of dry matter intake (DMI) was not explained by derived traits. The daily 

derived traits such as AEI, PMBW, PMPER, PEBW, PEBWC as it has biological importance, 

were plotted along days in milk. Residual feed intake was calculated as the average of 3-240 

DIM for each cow. RFI had normal distribution and a range from -5.06 to +4.83 on average in 

240 days of lactation. Positive and negative RFI values are symmetrically distributed around 0 as 

figure 2.1 shows. 

RFI had an average of 0.03 with a normal distribution which means half of animals with positive 

RFI value at the right side of the plot (Figure 2.1) are feed inefficient in comparison to the 

average of the herd (72 cows). Phenotypic standard deviation of RFI was 2.13 for 72 cows.    
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As the figure 2.1 shows, the 72 RFI predicted cows were ranked and categorized into most 

efficient (low RFI, RFI < 0.5 SD from the mean) and least efficient (high RFI, RFI > 0.5 SD 

from the mean). Then, serum samples from high RFI (n=20) and low RFI (n=20) cows were 

sorted out at all sampling time points (50, 150 and 240 DIM) and analysed using NMR 

metabolomics approach.   

Lactating cows in high and low RFI groups show different trends in the components of RFI 

prediction equation. Actual energy intake (AEI), MBW, EBWC, MPER were components of RFI 

calculation equation. The change in the RFI components were plotted during lactation for high 

and low RFI groups.  

 

2.3 Results 

2.3.1 Actual energy intake (AEI) 

Blood sampling days which are 50, 150 and 240 days in milk (DIM) are indicated by the vertical 

lines (Figure 2.2). Blue and red lines are the average of actual energy intake of low and high RFI 

group cows, respectively.  

The energy intake rose rapidly from day 3 to 50 of lactation, then its growth slows down but still 

with an overall positive slope increased till 150 DIM that is the second sampling time point. Late 

lactation had almost fixed trend with fluctuations till the last day of blood sampling. None of the 

days had significant different actual energy intake between high and low RFI groups.  

 

2.3.2 Milk Production Energy Requirement (PMPER) 

Milk production energy requirement as the MPER formula (mentioned in section 2.2.3) is a 

function of milk yield, fat, protein and lactose concentration. Predicted milk production energy 
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requirement, which is modeled based on weekly MPER observations, increased rapidly in early 

lactation and gets to the plateau around day 40 of lactation (Figure 2.3). Then PMPER increases 

steadily up to day 150 of lactation and with a small drop arrives to day 240 of lactation. The gap 

between high and low RFI groups is clear after day 50 of lactation. There were no significant 

differences between groups in PMPER along lactation. 

 

2.3.3 Predicted Empty Body Weight (PEBW) 

Predicted empty body weight shows a nonlinear trend of body weight along the lactation (Figure 

2.4). As lactation starts body weight is decreasing and both RFI groups experience their 

minimum somewhere in the vicinity of day 50 of lactation. The trend has fluctuations and not a 

clear greater value from either RFI group. Lactating cows recover their body weight with 

considerable slope from day 50 to 150. Then this body weight gain slows down, however cows 

are still increasing their body reserves up to the end of the experiment. The difference of PEBW 

between groups was not significant in any days of the experiment. 

 

2.3.4 Predicted metabolic body weight (PMBW) 

Predicted metabolic body weight trend shows a small reduction from start of lactation to day 50 

(Figure 2.5). Then it increased from day 50 to 150 with a gap between high and low RFI groups. 

The gap in metabolic body weight is constant between groups in all periods of the experiment. 

After day 150, PMBW grows with lesser slope in comparison to the mid-lactation stage (day 50-

150).  
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2.3.5 Predicted empty body weight change (PEBWC) 

PEBWC shows a fluctuating trend at the beginning before 50 DIM. It increases up to 125 DIM 

and then is reduced up to 200 DIM. The last 40 days of experiment represents another fluctuation 

in predicted metabolic weight. There is almost no clear gap between groups along the lactation 

for this component trait.  

 

2.3.6 Weekly average RFI value for high and low RFI groups 

Weekly average of RFI for both groups is demonstrated in figure 2.7. It shows a constant 

fluctuation for both groups. The gap is clear between groups and was significant (P < 0.05) in all 

time intervals. The 50, 150 and 240 DIM are shown as vertical lines.  

 

2.4 Discussion 

Based on the definition of RFI, there is a difference between our expectation from cow energy 

requirement and her actual energy intake. This has been noticed since a long time that some of 

animals eat less and some pretty close to the expectation of energy requirement and some have 

appetite to consume more (Koch et. al 1963). It has caught the attention of researchers to 

measure this variability to consider it as a measure of feed efficiency because part of that 

phenotypic variation can be heritable and be useable in breeding programs. The reason behind 

this variability has been shown to originate from differences in metabolism in beef and dairy 

cows. Selection for high and low RFI bulls in beef cattle and the study on next generation 

provided evidence that protein turnover, tissue metabolism, body composition, and heat 

increment of fermentation explain most of variation of RFI. This study brought the attention to 
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role of metabolism in RFI regulation and led researchers to investigate feed efficiency in dairy 

cows with a metabolomics approach (Richardson and Herd 2004, Wang and Kadarmideen 2019).  

In this study, we considered divergent RFI groups of lactating cows for daily changes of RFI and 

its component traits such as MPER, MBW, EBWC and AEI. This can show the differences in 

energy metabolism between high and low RFI cows along lactation. Even though other 

researchers used random regression models for estimation of RFI in dairy, they did not show the 

trajectory of RFI and its derived traits for divergent RFI groups (Manafiazar 2013, Hardie et al. 

2017, Li et al. 2020) 

Normality of the RFI trait is one of the important features of this trait. Not only does this show 

how the feed efficiency merit is randomly distributed between animals, but it also facilitates 

downstream phenotypic and genetic analysis. Ranked animals by RFI values (Figure 2.1) showed 

a distribution which is in accordance with plots of mean of RFI per sire group and average daily 

residual feed intake from lactating cows (Davis et al. 2014, Manafiazar et al. 2013). Hassoun et. 

al (2019) also ranked dairy ewes by RFI values and showed the same distribution. The histogram 

of (Figure 2.1) is a normal bell shape distribution because most of animals have RFI close to 

zero. The most feed efficient lactating cow (Figure 2.1) with RFI of -5.06 Mcal/day at the left 

side shows that this cow consumes 5.06 Mcal less energy per day than average of 72 cows from 

day 3 to 240 of lactation. Part of this merit in feed efficiency comes from genetic basis and 

animals with negative RFI values can be selected to be parents of next generation. The groups of 

cows that are selected for metabolomics study are shown in (Figure 2.1).  

Actual energy intake (AEI) of lactating cows in low and high RFI groups showed a clear and 

significant (P < 0.05) separation between the groups (Figure 2.2).  This figure shows a sharp 

increase of actual energy intake in the first 100 days and the steady mild trend after that until the 
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end of experiment. Actual energy intake traditionally was a trait of interest for its importance in 

energy balance and health traits of dairy cows during the transition period (Collard et al. 2000) 

However in recent years, it has become a trait of interest for computation of RFI in beef and 

dairy cattle (Berry and Crowley 2013, Pryce et al. 2015). Direct measurement of individual feed 

intake of dairy cows along lactation is expensive and has been one of the largest challenges in 

improvement of feed efficiency (Connor, 2014). Recent studies have shown a similar trend in 

AEI and DMI in dairy cows and our result agrees well with these reports (Manafiazar et al. 2013; 

Li et al. 2020).  

Predicted milk production energy requirement (PMPER) of high and low RFI cows grew rapidly 

in both groups (Figure 2.3) from first days of lactation with a gap. The time point close to 

maximum energy requirement (50 DIM) is associated with higher metabolism load for increased 

level of milk production. PMPER stayed nearly constant in mid-lactation and then it falls as the 

cow gets closer to the end of lactation. High and low RFI cows that have different energy 

efficiency classes may have differences in metabolism at these days that metabolic pressure for 

production is higher (Figure 2.3). The blood samples that were taken at this day are analyzed in 

chapter 3.   

Empty body weight (EBW) is an adjusted body weight for gut fill (VandeHaar and St-Pierre 

2006; Yu et al. 2003). High and low RFI groups had very close PEBW up to the 50 DIM where 

the cows experience the minimum weight along the 240 days of lactation. Then body weight 

recovered gradually with steady increase after 150 DIM. This (Figure 2.4) shows how divergent 

groups of RFI cows handle the metabolic pressure of catabolism in early lactation and anabolism 

in mid- and late-lactation stage. The difference between the two RFI groups is not significant and 

the trends do not show a clear gap between groups except from the day 130 to190. In this time 
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interval, low RFI group cows seem to be steadily gaining more body weight than the high RFI 

group. The day 150 of sampling for metabolomics study is almost in the middle of this period 

which has potential to show biological differences between high and low RFI groups. Body 

weight gain continued up to day 240 of lactation with considerably less rate of changes in 

comparison to the range 50-150 DIM. 

Metabolic body weight (MBW) is interpreted as the weight of body tissues that are active in 

metabolism and has been used in dairy industry for decades for estimation of maintenance 

energy requirements. (Gaines, 1946). From day 3 to 50 of lactation, metabolic body weight does 

not show lots of changes (Figure 2.5), however, a mild fall and rise is evident. MBW increased 

considerably after day 50 of lactation, and then it reaches its plateau by day 240. 

MBW was numerically different between RFI groups along the lactation, however this difference 

was not significant (P > 0.05). The differences are not statistically significant, but the trend is 

important to be observed for tracking the metabolism trend along lactation in high and low RFI 

groups. 

PEBWC is probably the most interesting result from this visualization. PEBWC is plotted (figure 

2.6) for both groups and shows they lose around 0.5 kg body weight every day in the first 50 

days of lactation. After day 50 both RFI groups pass the zero line (Figure 2.6) with a one-day 

gap. High RFI cows stop losing weight at 71 DIM while low RFI cows experience it at 72 DIM. 

 

Weekly RFI values are demonstrated in Figure 2.7. This plot has a horizontal line at zero to show 

when RFI groups get negative or positive. The difference between high and low RFI groups have 

been statistically significant all along lactation. In overall, both groups show negative RFI values 

up to 40 DIM due to little dry matter intake in comparison to animal needs for milk production. 
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Limited capacity of rumen after calving and its gradual expansion to take more feed per day is 

the underlying reason for negative RFI for both groups in the first 50 days of lactation. Mid-

lactation changes show more fluctuation around zero, however the gap between groups is still 

clear and wide. From day 150 to day 240, even low RFI cows experience positive values as they 

need to store energy for pregnancy requirements and the next lactation. To the best of our 

knowledge Li et al. (2020) has been the only study that showed the trend of daily RFI values 

using the data from USDA. The same fluctuations described above took place in the RFI results 

for the dairy cows reported by Li et al. (2020). 

 

2.5 Conclusion 

Overall, this chapter showed how RFI was estimated in dairy cows using body weight, milk 

production, fat, protein and lactose concentrations. Animals were sorted by RFI values and were 

grouped by high and low RFI groups. Changes of AEI, PMPER, MBW, EBWC and RFI were 

considered along lactation. Differences of high and low RFI groups were visualized for RFI and 

its derived traits. The differences between component traits were not significant. Actual energy 

intake (AEI) and RFI was significantly different between RFI groups as was shown before in 

lactating Holsteins (Elolimy, et al. 2018). Previous studies considered across experiment time 

interval for the differences of high and low RFI groups, but we used the same method for daily 

differences between groups in a longer period (DIM 0-240). The results were plotted for the 

period to see how they change by time. This information may be useful in biological 

interpretation of energy expenditure in divergent RFI groups of lactating cows and also shows 

the consistency of differences visually. 
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At critical time points of metabolism along lactation such as peak of lactation and minimum of 

body weight, there could be differences in metabolism. Previous studies on RFI were more 

focused on overall feed efficiency of lactating cows with a single biological sample for tacking 

differences in metabolism. This study could visualize the trend of changes of RFI along lactation. 

It can be useful for future studies on RFI groups that are interested to study biological differences 

with focus on metabolism status changes along lactation. Further investigation of biological 

differences between high and low RFI groups can shed light on some of the underlying reasons 

of RFI variation in dairy cows. 
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Figure 2.1 Lactating dairy cows were sorted by RFI values and the extreme individuals (< -0.5 

SD and > +0.5 SD) were selected for metabolomics analysis. 

 

Figure 2.2 Actual Energy Intake (AEI) for both high and low RFI groups along lactation. Blood 

sampling days (50, 150, 240 DIM) are demonstrated as vertical lines. 
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Figure 2.3 Predicted Milk Production Energy Requirement (PMPR) for both high and low RFI 

groups along lactation. Blood sampling days (50, 150, 240 DIM) are demonstrated as vertical 

lines. 

 

Figure 2.4 Predicted Empty Body Weight (PEBW) for both high and low RFI groups along 

lactation. Blood sampling days (50, 150, 240 DIM) are indicated as vertical lines. 
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Figure 2.5 Predicted Metabolic Body Weight (PMBW) for both high and low RFI groups along 

lactation. Blood sampling days (50,150,240 DIM) are demonstrated as vertical lines. 

 

 

Figure 2.6 Predicted Empty Body Weight Change (PEBWC) for both high and low RFI groups 

along lactation. Blood sampling days (50,150,240 DIM) are demonstrated as vertical lines. 
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Figure 2.7 Residual Feed Intake for both high and low RFI groups along lactation. Blood 

sampling days (50,150,240 DIM) are demonstrated as vertical lines 
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Chapter 3.  Metabolomics approach to uncover differences between high and low RFI 

dairy cows 

3.1 introduction 

Physiological mechanisms have significant contribution to the variation of RFI in beef and dairy 

cattle. The association of RFI with metabolite profile has been earlier studied in beef cattle than 

dairy cows. The experience of researchers from beef have shown that no single mechanism is 

primarily responsible for the variation in this trait (Herd & Arthur, 2009). Some of the pathways 

and physiological functions that contribute to RFI have been discovered in recent years. They are 

useful to increase the knowledge about the factors that affect efficiency of feed utilization in 

animals. Furthermore, tracking biological pathways may lead us to find genes that play 

significant role in regulation of RFI in animals (Karisa, et al. 2013).  

One of the experiments that could show biological differences between high and low RFI 

animals was done using divergent selection for RFI in Angus beef cattle (Arthur et al. 2001). 

This study took a long time to measure RFI and related traits in progeny of two RFI groups but 

had interesting results. Arthur et al. (2001) demonstrated metabolic processes such as heat 

production from metabolic processes, body composition and physical activity altogether explains 

73% of variation of RFI (Herd & Arthur, 2009).  

These findings which had been gained by actual selection on animals brought the attention of 

researchers to experiments that could show biological differences between high and low RFI 

cattle groups. Therefore, multi-omics studies using different types of samples such as blood and 

liver with metabolomics and proteomics approaches were used to expand our knowledge of 

physiology of feed efficiency in beef cattle. Such studies also attempted to map metabolites and 

proteins to genes through biological pathways (Karisa et al. 2014, Fonseca et al. 2019 ). The goal 
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of such studies was to detect potential biomarkers that can be used to classify high and low RFI 

animals. The other outcome is that they also show how gene regulation is different in cell 

processes by biological pathways analysis. Moreover, interesting efforts of researchers has been 

done to develop models with molecular data that can explain variation of RFI and predict its 

values for individuals in the herd (Karisa et al., 2014). 

Residual feed intake is a complex trait with moderate to low heritability that can be better 

understood with omics studies than only GWAS approach. There are also potentials that complex 

traits could be explained with statistical models that use concentration of biological molecules as 

predictors (Kadarmideen 2008). Given that these molecular data (metabolites or proteins) are 

heritable and relatively inexpensive to measure compared to directly calculating residual feed 

intake, there would be chances for molecular data to be used for genetic selection to improve 

complex traits in dairy cattle.  

Even though there are basic differences in energy partitioning between beef and dairy cows, 

similar metabolic processes are likely to have significant influence on variation of RFI. Yao et al. 

(2013) showed a genetic basis for this similarity. They mapped 38 SNPs to RFI quantitative loci 

regions and four of them were previously detected by GWAS studies in beef cattle. Wang and 

Kadarmideen (2019) studied RFI in two dairy cattle breeds and found important biological 

networks associated with feed efficiency. However, the latter study used a small sample size of 5 

animals per group of RFI which resulted in limited findings. The other aspect that is not known 

yet is the biological differences in different stages of lactation between two RFI groups of 

lactating cows. Thus, our project has been defined to investigate differences between high and 

low RFI Holstein cows with sample size of 20 per group of animals in 3 stages of lactation. 

Larger sample size will most likely show more differences because of higher degree of freedom 
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that increases the power of the test. Moreover, samples are taken at day 50, 150 and 240 DIM 

representing the early, mid and late stage of lactation. 

One of the differences between metabolomics study and other omics is the nature of sample type. 

Metabolomics needs body fluids like urine, rumen fluid, blood etc. However, although 

metabolomics has been developed in tissues like liver, brain and other organs in different 

species, originally the method was used for body biofluids (Wang et al. 2019). The question of 

which fluid is better for a metabolomic study depends on which fluid is more involved with the 

phenotype of interest. RFI is a measure of feed efficiency and different biochemical reactions 

play roles in its expression (Manafiazar et al., 2012). From digestion and absorption of the feed 

to its conversion to energy for the body or the application of energy in basal metabolism and 

production, many tissues are involved in efficient use of energy (Nkrumah, 2006). All organs of 

digestive system such as rumen, omasum, abomasum and intestine work together to extract feed 

energy for animal maintenance and production requirements. Then part of energy is used for 

maintenance requirements of cows. This involves any organ that need energy to function which 

means all of the body. Part of the energy is saved as body reserves, which will be used at the 

time of need in her peak of lactation or when she does not have access to enough feed (Moe, 

1981).  

The energy in biological environment is hidden in chemical bonds of molecules. The small 

molecules can leave one organ to the blood stream and release energy in another organ. Small 

molecules in the body play a vital role in transportation of nutrients and intermediate end 

products which primarily are carried by blood. Every tissue and any organ are bathed in blood 

and cell by-products are carried by blood to kidney and consequently bladder for excretion. 
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Blood as a fluid is mentioned as a liquid highway for molecules that are products of secretion or 

excretion molecules in response to physiological needs (Serkova et al., 2011).  

Furthermore, metabolomic data from blood have already shown the ability to predict RFI values 

in beef cattle. Karisa et al. (2014) reported 48% and 99.5% accuracy of prediction for models 

that had three and twelve metabolites respectively as predictors of RFI. The application of blood 

metabolites in early diagnosis of diseases in transition dairy cows is another example of 

metabolites potential functionality in future livestock industry to prevent severe stages of 

diseases in dairy cows. This may reduce health-related economic cost of production such as 

mastitis, metritis, ketosis etc. given the metabolomic diagnosis approach can be done with 

reasonable cost. In a recent study on transition dairy cows done by Hailemariam et al. (2014), 

predictability of periparturient diseases four weeks before appearance of clinical symptoms was 

reported using blood metabolites. They developed a model that could predict periparturient 

diseases using only three blood metabolites with sensitivity and specificity of 87% and 85% 

(Hailemariam et al., 2014). 

These facts have made blood the most interesting fluid for metabolomics study in livestock. 

Most of studies that are done with metabolomics approach in beef and dairy have used serum and 

plasma, respectively in 21 and 14 papers. These research articles have been used as references in 

the Livestock Metabolome Data Base (LMDB) (Goldansaz et al., 2017). In our study, we 

analysed serum metabolites since it reflects the metabolism in wide variety of tissues that are 

important for feed efficiency. Furthermore, literature (Karisa et al. 2014) in beef studies supports 

the usefulness of blood fluid for investigation of RFI. 

A look at metabolomics studies that are done to investigate RFI shows that there is no specific 

preferred fluid of blood (serum or plasma) that provides significantly different results, however, 
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there are limited studies for this specific trait on beef/dairy cow. Nevertheless, it is possible to 

consider human studies that have already used NMR technology to evaluate differences between 

plasma and serum sensitivity and stability regardless of the case of study. Yu et al. (2011) 

considered concentrations of 122 metabolites with over limit of detection, each serum and 

plasma sample were analyzed for metabolite profiling twice. The reason to perform 

metabolomics analysis using NMR twice was to compare stability and sensitivity of blood 

plasma and serum. Mean correlation of all considered metabolites between the replicates were 

reported as 0.80 and 0.83 for serum and plasma which shows relatively better stability of plasma 

samples. Their result also indicated that 104 metabolites of serum have significantly more 

concentrations than plasma. Yu et al. (2011) concluded that the higher concentration of 

metabolites in serum samples makes biomarker discovery studies more sensitive for detection of 

differences between experimental groups.  

Different energy transformations take place during lactation. Anabolism and catabolism of body 

tissues to support production, and digestion and absorption of feed are the main metabolic 

processes that dairy cows undergo during lactation (Martin & Sauvant, 2007). Numerous 

researchers believe variation in RFI is the result of variation in metabolism of animals by 

providing pathways that are regulated significantly differently between high and low RFI groups 

(Salleh et al. 2017, Khansefid et al. 2017).  

In this project, I took blood samples from lactating dairy cows in early, mid, and late lactation 

stages to investigate potential differences in metabolism between high and low RFI groups. The 

next section of introduction will explain the typical production rhythm of lactating dairy cows in 

early, mid, and late lactation. The three important stages of lactation that are not yet investigated 

if there is any significant difference in metabolite concentration between high and low RFI 
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animals. The day 50, 150, and 240 of DIM are selected as a day roughly in the middle of these 

stages of lactation.  

 

3.1.1 Metabolism of lactating cows in stages of lactation 

Lactating dairy cows start lactation with a rise of milk yield that continues up to the peak of 

lactation that happens around week 6-8 of lactation. Then, milk production gradually reduces to 

the end of lactation. In this first three months of lactation, called “early lactation”, dairy cows are 

unable to eat as much as they need to provide the energy required to support milk production. 

This is due in part to changes in gut capacity as the body cavity has been extensively occupied by 

the embryo for the final months before calving. The rumen also reduces during pregnancy 

specifically in last two month. That means rumen digestion capability and the amount of feed 

intake has reduced because of physical and physiological changes in pregnancy. After calving, 

the rumen starts expanding gradually to reach to its normal (non-pregnant) digestion ability. In 

early lactation, the rumen is not capable of taking as much feed as cow needs for peak of milk 

production (Neves et al., 2018). Therefore, the cow breaks down body tissues to provide fat and 

protein for the energy needed for high milk production. Energy turnover efficiency in this stage 

is still under study (Wang & Kadarmideen, 2019). 

The next stage is termed mid-lactation and feed intake meets the energy requirement. The animal 

then starts storing energy in body tissues while milk production is being reduced. At this stage, 

the cow is less challenged metabolically in comparison to early lactation and body reserves are 

increasing. The peak of dry matter intake (DMI) happens between months 3 to 7 of lactation 

(French, 2017). Clearly, this period is the time when the cow recovers her energy sources partly 
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and with considerable body weight changes. Cow body weight sill increases in next stage of 

lactation to store energy for next milk cycle. 

Late lactation is defined as after month 7 of lactation when the animal is still gaining body 

weight with less rate of change relative to the previous, mid-lactation, stage (O’Sullivan et al., 

2020). Milk production is substantially decreased, and the concentration of milk elements like fat 

and protein are increased. This stage continues up to month 10 of lactation.  

The last stage is termed the dry-off period and is after calving from month 10 to 12 and cows are 

not milked at this time. Weight gain is very noticeable during this period. A significant part of 

her body weight gain is due to supporting embryo requirements as it is in its main developmental 

stage of the embryo. This is a critical part of dairy herd management. Milk fever is a common 

consequence of poor management and nutrition in this stage which may lead to reduced feed 

intake, negative energy balance and consequently ketosis (Mulligan et al. 2006). Depending on 

body condition of cows and her health status, appropriate ration energy and ingredients needs to 

be considered in this period. 

In this study, we aimed to observe physiological and metabolic differences between high and low 

RFI lactating Holsteins. It was our goal to find metabolites that can predict whether the animal is 

high or low RFI with good accuracy. As one of the purposes of our study was to detect potential 

metabolite biomarkers associated with RFI, serum was selected for metabolomics analysis in this 

study. We assumed differences in RFI of dairy cows have roots in differences in their 

metabolism and RFI class of animals (high/low) and the RFI values are predictable using 

metabolite profile of animals. To test these hypotheses, we used multiple linear regression to see 

if metabolite concentrations of RFI classes are significantly different in presence of other effects 

such as month-year of sampling, parity, etc. The prediction ability of metabolite profile 



69 

metabolites for classification of cows by RFI classes was tested using PLS-DA model and 

demonstrated with ROC plot. Multiple linear regression with stepwise method was used to assess 

the linear relationship of metabolite concentrations and RFI values of individuals. 

 

3.2 Materials and methods 

3.2.1 Sample preparation and NMR spectroscopy 

Serum samples of high and low RFI dairy cows collected at 50, 150 and 240 DIM were analysed 

using NMR spectroscopy at The Metabolomics Innovation Centre (TMIC). A total of 120 serum 

samples (20 serum samples per group at three time points during lactation) were analysed.  

Serum samples contain a significant concentration of large molecular weight proteins and 

lipoproteins which affects the identification of the small molecular weight metabolites by NMR 

spectroscopy. A deproteinization step, involving ultra-filtration as previously described by 

Psychogios et al. (2011) was therefore introduced in the protocol to remove serum proteins. Prior 

to filtration, 3 KDa cut-off centrifugal filter units (Amicon Microcon YM-3), were rinsed five 

times each with 0.5 mL of H2O and centrifuged (10,000 rpm for 10 minutes) to remove residual 

glycerol bound to the filter membranes.  Aliquots of each serum sample were then transferred 

into the centrifuge filter devices and spun (10,000 rpm for 20 minutes) to remove 

macromolecules (primarily protein and lipoproteins) from the sample. The filtrates were checked 

visually for any evidence that the membrane was compromised and for these samples the 

filtration process was repeated with a different filter and the filtrate inspected again. The de-

proteinized serum samples (280 μL) were then transferred to a 1.5 mL Eppendorf tube, to an 

additional 70 μL of the standard NMR buffer solution (54% D2O:46% 1.75 mM KH2PO4 pH 7.0 

v/v containing 5.84 mM DSS (2,2-dimethyl-2-silcepentane-5-sulphonate)). 
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The serum sample (350 µL) was then transferred to a 3mm SampleJet NMR tube for subsequent 

spectral analysis. All 1H-NMR spectra were collected on a 700 MHz Avance III (Bruker) 

spectrometer equipped with a 5 mm HCN Z-gradient pulsed-field gradient (PFG) cryoprobe. 1H-

NMR spectra were acquired at 25°C using the first transient of the NOESY pre-saturation pulse 

sequence (noesy1dpr), chosen for its high degree of quantitative accuracy (Saude, Slupsky, & 

Sykes, 2006). All FID’s (free induction decays) were zero-filled to 250 K data points.  The 

singlet produced by the DSS methyl groups was used as an internal standard for chemical shift 

referencing (set to 0 ppm) and quantification of all 1H-NMR spectra were processed and 

analyzed using an in-house version of the MAGMET automated analysis software package using 

a custom metabolite library. MAGMET allows for qualitative and quantitative analysis of an 

NMR spectrum by automatically fitting spectral signatures from an internal database to the 

spectrum. Typically, all visible peaks were assigned. Most of the visible peaks are annotated 

with a compound name. It has been previously shown that this fitting procedure provides 

absolute concentration accuracy of 90% or better (Ravanbakhsh et al., 2015). 

 

3.2.2 Univariate metabolite analysis 

The NMR panel for serum samples included 33 metabolites above limit of quantification (LOQ) 

for analysis. The LOQ is the lowest concentration that the metabolite can be not only reliably 

detected but also it does not have the imprecision and bias (Armbruster & Pry, 2008). Therefore, 

we used LOQ as the lowest acceptable metabolite concentration. The multiple linear regression 

assumptions of normality, homogenous variance, linear relationship of variables with response 

and other criteria were checked according to statistical literature standards and guidelines 

(Akinwande, et al. 2015). One of the important assumption of linear regression in normality of 
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data. Therefore, the distribution of metabolites concentration was checked before fitting the 

model. 

Metabolite concentrations were checked to be normal before stepwise multiple linear regression 

analysis. In case that the distribution of metabolite concentration was not normal, the logarithm 

on base 10 transformation was applied to meet the assumptions of linear regression model. This 

transformation is usual in data processing before model development with metabolomics data 

(Thévenot, et al. 2015) to meet the assumption of the model. All data management and model 

development was done using R (R-Core-Team, 2019). 

Metabolite concentration was taken as dependent variable to assess the effect of environmental 

factors and grouping effect of animals. The model to assess the effects was: 

 

 =   +  +  +   +  + +  

Where: 

   is the metabolite concentration of ith animal 

                is the month and the year that blood sample was taken from ith animal   

               is age at first calving of ith animal  

          is lactation number of ith animal 

         is the health status of ith animal 

         is the type of fed ration of ith animal 

                is the group of ith animal (High RFI or Low RFI). 

                     is the residual error Linear contrast among predictions for RFI groups was 

calculated using lsmeans package (Lenth, 2016). Data were reported as least square means with 

related standard errors. We declared significance at P ≤ 0.05 and tendency was reported at 0.05 ≤ 
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P ≤ 0.10. If any of independent variables except RFI were significant, the metabolite was 

adjusted to remove confounding effects. The adjusted metabolite concentrations were later used 

for multivariate analyses and RFI value predictions.  

 

3.2.3 Multivariate analysis for classification  

Adjusted metabolites were used for this analysis to make sure no confounding effects influence 

the result. First step was autoscaling of data which is the most popular method of data dispersion 

and was done according to (Xia, et al. 2013). The data points in this method were mean centered 

and divided by standard deviation.  

After normalization process for all metabolites, statistical multivariate analysis for classification 

of animals was done using principal component analysis (PCA) partial least square discriminant 

analysis (PLS-DA). The permutation test on PLS-DA model was used for validation of model. 

PCA is an unsupervised clustering method that reduces space for high dimensional data set. It 

examines the variation in the data and reduces the complexity of data for interpretation. Scores 

plot were used to show similarities and differences between samples from high and low RFI 

groups. The first two axes of score and loading plot often is used to show the classification 

between groups of samples with PCA. 

PLS-DA is a supervised learning algorithm that maximizes the covariance between response 

variable and features (metabolites). Characterization of data pattern is done with first two 

principal components of score plots. Important metabolites were sorted based on variable of 

importance projection (VIP). If the VIP for a metabolite is greater than 1.0, it suggests that the 

metabolite is statistically significant in classification of high and low RFI samples. All 
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multivariate analysis for classification of high and low RFI animals using metabolite profile was 

done using MetaboAnalyst (Xia et al. 2013) 

Statistical significance of PLS-DA model was assessed with permutation testing. This test is 

done to make sure the discrimination of two classes on score plot and the value of diagnostic 

statistics are not gained by chance because of lucky choice of samples. Permutation test assumes 

that there is no difference between two groups that are randomly labeled by permutation. This 

test is an effort using existing data to ensure that the outcome of developed PLS-DA model is 

reproducible (Szymańska et al. 2012). 

The performance of PLS-DA model in classification of high and low RFI animals is illustrated 

using receiver operating characteristic (ROC) curve. The ROC curve is made by plotting true 

positive rate (TPR) against false positive rate (FPR) at different threshold settings. The threshold 

is made by the classifier model when classification is done by more than one variable. TPR is the 

ratio of positive cases that are predicted positive correctly to all individuals that are predicted as 

positive. FPR is the ratio of cases that are predicted positive falsely to all individuals that 

predicted negative. In machine learning terminology, TPR and FPR are known as sensitivity and 

(1-Specificity). The sensitivity is the proportion of positives that are identified correctly. The 

specificity is the proportion of negatives that are identified correctly. Formula of these measures 

are as follow: 

Sensitivity = TPR =    ,    FPR =  = 1 - specificity   (Yerushalmy, 1947) 

 

3.2.4 Multiple linear regression for RFI value prediction 

Multiple linear regression is the extended version of ordinary least square regression with 

multiple independent variables. This model considers the linear relationship of response variable 
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with predictors. Limitation of this model is that number of predictors cannot be larger than 

number of experimental units. The assumptions of normality of residuals and homogenous 

variance, and independence of residual were checked with appropriate tests and diagnostic plots 

in R (R-Core-Team, 2019). 

Relative importance of variables in the model was estimated using relaimpo package which is 

one of the state-of-the-art methods (Grömping, 2006). The stability of estimations of the 

metabolites relative importance values were also computed using bootstrap technique of 

relaimpo package. Leave-one-out cross validation (LOOCV) of linear models were done using 

caret package (Kuhn 2005).  

 

3.3 Results 

A total of 33 serum metabolites were identified and quantified at 50, 150 and 240 DIM and 

comparisons of each metabolite between high and low RFI groups was performed using 

univariate linear regression analysis. Moreover, multivariate analysis was conducted to see if 

high and low RFI cows cluster separately and facilitate biomarker identification. Using multiple 

linear regression analyses panels of metabolites that can predict individual RFI phenotypes were 

identified at each time point during the lactation period. In the comparisons of each metabolite 

concentration between high and low RFI groups at 50, 150 and 240 Days in milk (DIM), fixed 

effects such as parity (P), age at first calving (AFC), sampling month and year (MY), health 

status (HS) and ration (R) were adjusted whenever significant (P < 0.05).   
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3.3.1 Univariate metabolite analysis 

3.3.1.1 Serum metabolites affected by RFI category at early stage of lactation  

At the early stage of lactation (50 DIM), 6 metabolites (glycerol, urea, creatinine and dimethyl 

sulfone) were significantly (P<0.05) different between high and low RFI groups.  Low RFI cows 

had 37% more (P = 0.00000166) glycerol than high RFI cows (table 3.1). The narrow standard 

error of estimates of glycerol for both groups is considerable which is the reason for very small 

P-values at sample size of 20 per group of RFI. Serum concentration of glycerol was not affected 

(P > 0.05) by any of the fixed effects considered in the analysis. Urea has higher concentration in 

low RFI cows than high RFI group (P = 0.000124). The month and year of sampling had an 

effect on urea concentration. Elevated concentration of creatinine was observed in low RFI cows 

(P = 0.014) compared to the high RFI groups. All the fixed effects considered in the analysis had 

no effect (P > 0.05) on the concentration of this metabolite. Dimethyl sulfone had lower 

concentration in low RFI cows than high RFI (P = 0.018). Month and year of blood sampling 

time had also significant effect on dimethyl sulfone concentration.  

  

3.3.1.2 Differences in serum metabolites concentrations between high and low RFI cows at 

mid lactation stage   

The comparison of high and low RFI groups at the mid lactation (150 DIM) stage revealed that 

the serum concentrations of creatinine, glycerol, L-ornithine and L-lysine were significantly 

altered (table 3.2).  The concentration of creatinine was increased (P < 0.05) in the low RFI 

compared to the high RFI cows. Parity, age at first calving and health had significant effect on 

the serum concentration of creatinine. Glycerol was the second most significant metabolite with 

higher concentration in low RFI cows. L-Ornithine had lower (P < 0.05) concentration in low 
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RFI cows compared to high RFI. L-ornithine concentration was significantly affected by month 

and year of sampling. L-Lysine had higher (P < 0.05) concentration in high RFI cows. It should 

be mentioned that parity effect was significant (P < 0.05) in concentration of L-lysine in blood 

serum in 150 DIM. Acetone had tendency of significance (P=0.09) with more concentration in 

low RFI animals. Our result showed that age at first calving and month-year of sampling affects 

the serum concentration of acetone in high and low RFI animal groups of lactating dairy Holstein 

cows. 

 

3.3.1.3 Differences in metabolites concentration between high and low RFI groups at late 

lactation stage 

A total of 8 metabolites (glycerol, acetone, citric acid, 3-hydroxybutyric acid, choline, creatinine, 

glycine, formate) significantly differed between high and low RFI cows, whereas isoleucine 

L-lysine and urea tended to differ between the RFI groups at the late lactation stage (240 DIM) 

(table 3.3). Interestingly, none of the fixed effects considered in the analyses had significant 

effect on the serum concentration of glycerol in lactating dairy cows at 240 DIM. Citric acid and 

acetone had higher (P < 0.05) concentration in low RFI cows than high RFI group. Month and 

year of blood sampling also had influence on concentration of acetone and citric acid. Creatinine, 

glycine, formate and 3-hydroxybutyric acid had higher concentration in low RFI animals in late 

lactation stage with no significant fixed effects. Choline showed lower concentration in serum of 

low RFI group than high RFI with significant effect of health status (P<0.05). 

L-lysine and urea tended to increase in high RFI compared to the low RFI groups, whereas 

isoleucine tended to decrease in the high RFI group.  Age at first calving and ration type had 

impact on concentration of isoleucine in 240 DIM. L-lysine concentration was only affected by 
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ration type, with a higher concentration in high RFI animals. Urea concentration was affected by 

month-year. 

 

3.3.2 Multivariate analysis 

3.3.2.1 Early lactation 

Principal component analysis (PCA) did not show separation well between groups of RFI. Partial 

least squares discriminant analysis (PLS-DA) at the early lactation stage revealed that the first 

and second components of score plot distinguished low and high RFI dairy cows (Figure 3.1.a). 

A significant (P = 0,002) PLS-DA model was observed at early lactation stage indicating the 

separation observed between the two groups (low vs. high RFI) was very unlikely to be due to 

chance (Figure 3.1.c). The variable of importance in projection (VIP) score plot showed that 

glycerol, urea, creatinine, dimethyl sulfone, L-glutamine were the top 5 metabolites responsible 

for the separation of high and low RFI groups (Figure 3.1.b). The performance of top two 

metabolites (glycerol and urea) in classification of lactating cows to high and low RFI is shown 

in ROC curve (Figure 3.1.d). The area under the curve (AUC) of ROC plot was 0.936 with 95% 

confidence interval of (0.816 – 1.0). 

 

3.3.2.2 Mid lactation 

The partial least squares discriminant analysis at the mid lactation stage (150 DIM) showed a 

partly separation of the high and low RFI groups with tendency to be significant in permutation 

test (P = 0.09) (Figure 3.2 a and c). The VIP plot was used to rank the metabolites based on their 

importance in discriminating the high and low RFI cows. Creatinine, glycerol, L-lysine, L-

histidine, L-ornithine, Formate, and L-Proline are the most powerful group discriminators with 
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VIP >1.0 (Figure 3.2 b). The AUC of ROC was 0.866 using top three metabolites (creatinine, 

glycerol and L-Lysine) in 150 DIM (Figure 3.2 d). 

 

3.3.2.3 Late lactation stage 

Multivariate classification analysis of high and low RFI dairy cows using day 240 of lactation 

blood samples with PLS-DA model was validated (figure 3.3.a). Permutation test had very small 

P-value of 0.002 and model was considered significant (figure 3.3.c). Important features of the 

model (VIP > 1.0) were respectively glycerol, citric acid, creatinine, acetone, beta hydroxy-

butyric acid, formate, choline, L-lysine, isoleucine and urea (figure 3.3.b). The performance of 

top two metabolites (glycerol and creatinine) in classification of high and low RFI cows is shown 

with ROC curve (figure 3.3.d). The AUC of these two classifiers was 0.997 with confidence 

interval of (0.969 - 1.0). 

 

3.3.3 Regression analysis for RFI value prediction 

The average of RFI (Mcal/day) from 3 to 240 DIM was used as response variable and 

metabolites concentrations (µM) adjusted for significant fixed effects were used as predictor of 

RFI variables. The model at 50 DIM of lactation explained 71.76% of variation in RFI. Relative 

importance of metabolites is shown in Table 3.4. Regression coefficient of metabolites with 

standard error is provided in this table which shows with one-unit change of metabolite 

concentration (µM) of serum, how much RFI value would change and in which direction.  

Relative contribution to RFI could differ even if this experiment is repeated with identical 

conditions. Therefore, it is informative to have an estimate of the stability of relative importance 

of metabolites for prediction of RFI. Figure 3.5 shows the relative contribution of metabolites 
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with 95% confidence interval. The confidence interval is gained by bootstrap technique. This 

stability estimate means if we repeat the experiment 100 times with same conditions, in 95 times 

of that the result for relative contribution of metabolites will be in the range of the bar plot shown 

for each metabolite (Figure 3.5). 

RFI was predicted from a set of 10 serum metabolites at the mid lactation stage (150 DIM) with 

stepwise multiple linear regression model (Table 3.5). The prediction model explained 73.74% 

of variation in RFI (Table 3.5). The relative contribution of metabolites from largest to smallest 

were creatinine, L-ornithine, glycerol, L-phenyl alanine, L-proline, L-threonine, citric acid, 

acetone, L-glutamine, and 3-hydroxy butyric acid. Among this group of metabolites, creatinine 

and L-ornithine had highest contribution to RFI prediction model. The stability of metabolite 

relative contribution to RFI is presented as a bar plot in figure 3.7.  

At the late lactation stage (240 DIM), RFI could be predicted from 6 metabolites with model 

accuracy of 0.85. The linear regression model for 240 DIM could explain 85.21% of variation 

with 6 metabolites (table 3.6). Important metabolites in order were glycerol, L-alanine, pyruvic 

acid, creatinine, creatine, and formate. More than half of contribution of RFI in developed model 

for this sampling day can be explained with glycerol. Stability of 6 important metabolites of 240 

DIM as predictors of RFI is shown in bar plot (figure 3.6)  

Comparison of developed models for prediction of RFI is provided in a table form with each row 

representing a feature for model for comparison and columns as our results from early, mid and 

late lactation stages (Table 3.7). Multiple  is the amount of variation in RFI that could be 

explained using the trained model in this experiment. This model feature had highest value for 

240 DIM with 85.21 %. Adjusted  is the penalized Multiple  for number of variables in the 

model. Adjusted  is the generally reported measure in literature. This model feature was best 
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in 240 DIM with 0.82 adjusted . To avoid overfitting leave-one-out cross validation statistics 

of a model is reported. The purpose of all cross-validation measures is to show how adequate is 

the model for unseen data. Cross validated  shows how much of unknown RFI values can be 

explained by metabolites. Cross validated  was 0.71 for 240 DIM with highest value among 

other days. Root mean squared error (RMSE) and mean absolute error (MAE) are two most 

common measures of accuracy of model that represent the bias of predicted values from 

observed values. The lowest values for RMSE and MAE are respectively 1.50 and 1.23 from 240 

DIM. Based on parsimony rule in statistics, simpler models with a smaller number of metabolites 

that can explain more variation of the response variable are better. Number of biomarkers for 

each model is provided in (table 3.7). The model for 240 DIM has also the least number of 

biomarkers in comparison to previous models made by 50 DIM and 150 DIM metabolite profile.  

 

3.4 Discussion 

Metabolomic profiling of dairy cows for classification of RFI groups is scarce (Wang & 

Kadarmideen, 2019). One of objectives of this study was to investigate if high and low RFI cows 

differ in serum metabolite concentrations. This was tested with a linear regression that included 

RFI class of animals and other factors that could potentially change metabolite concentration of 

serum. Three time points (50, 150 and 240 DIM) during the lactation period were selected to 

collect blood samples. These three days of sampling were selected in the middle of early, mid 

and late lactation stages as they are representative of metabolism status for lactating cows as it 

was explained in introduction (section 3.1.1). Univariate analysis could show us the effect of 

grouping of animals by high and low RFI on concentration of metabolites that were above limit 

of quantification (LOQ) on NMR platform. In univariate analysis, each metabolite is considered 
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separately. Therefore, the importance of metabolite in dairy cow health and production, the role 

of the metabolite in metabolism and the probable cause of significant different level of 

metabolite concentration are discussed here based on available evidence and knowledge of 

metabolites from the literature up to now. Multivariate and regression analyses which considered 

all adjusted metabolites of NMR platform together in a single model is also discussed in section 

3.4.10. The agreement or disagreement of our result with similar studies in the literature is 

mentioned in each subsection of discussion. 

 

3.4.1 Glycerol 

The results revealed that the concentration of glycerol is consistently higher in low RFI than high 

RFI cows at all the three time points during the lactation period. Glycerol has a strong influence 

in dairy cow nutrition supplementation since decades ago (Kholif et al., 2019). Although the 

effect of glycerol on milk production has been different between studies, the interest for its use in 

dairy cows has increased. The reason is its effect when dairy cows are in negative energy 

balance. Increased blood glucose and decreased ketone bodies have been observed in many 

studies where glycerol was added to the diet (Osman et al. 2008; Paiva et al. 2016; Thoh, et al. 

2017; Porcu et al. 2018; Saleem, et al. 2018). There is a high interest in dairy nutrition for the use 

of glycerol in diet at 5% to 8% level (Donkin, 2008). Despite our experiment did not have any 

nutritional treatment, our result suggests that low RFI animals naturally have higher glycerol 

concentration which is promising as it is helpful in providing energy for maintenance and 

production requirements.  

The liver is responsible for synthesizing glycerol from adipose triglycerides. To obtain energy 

from fat by lipolysis, triglyceride breaks down to glycerol and three free fatty acids (FFA). Cells 
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from other tissues take up FFA after its release into the blood. The cell utilizes FFA in beta 

oxidation process and produces acetyl-CoA. Acetyl-CoA will subsequently lead to generation of 

adenosine three phosphate (ATP) in TCA cycle. The ATP provides energy for many biochemical 

processes in the cell (Wood, 2000). 

The other end of triglyceride molecule is glycerol which enters the glycolytic pathway as 

dihydroxyacetone phosphate (DHPA). The final product of glycolysis is pyruvate. The pyruvate 

molecule will be processed by pyruvate oxidation, TCA cycle and finally oxidative 

phosphorylation to produce ATP (Wood, 2000). Glycerol is a precursor of glucose and its 

metabolic pathway is similar to glucose (Fisher et al.  1973). This metabolite was the most 

important metabolite in 50 and 240 DIM and was second most important metabolite in 150 DIM 

in univariate analysis. Our result suggests higher lipid metabolism in low RFI cows in 

comparison to high RFI cows. 

 

3.4.2 Creatinine 

Creatinine was the second most significant (P<0.05) metabolite that had different level of 

concentration between RFI groups in all sampling days. The concentration of creatinine showed 

persistent increase in low RFI in comparison to high RFI cows at all the three time points. 

Creatinine was not found to be influenced by other factors at 50 and 240 DIM, but this was not 

the case at 150 DIM. At this point (150 DIM), creatinine was significantly affected by parity, age 

at first calving and health status. Karisa et al. (2014) also reported association between RFI 

group and creatinine in beef cattle. Montanholi et al. (2017) explored the relationship between 

liver morphometry and blood metabolic profiles and reported higher concentration of creatinine 

in feed efficient animals which is in accordance with our results. Because they took liver samples 
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after slaughter of high and low RFI steers to generate photo microscopic images, histological 

quantification provided strong visual evidence of enlarged hepatocytes in low RFI animals. 

Larger hepatocytes area in low RFI steers from different regions of liver (portal triad (P = 0.001) 

and central vein (P = 0.03)) was accompanied by significant different (P = 0.03) level of plasma 

creatinine concentration. They concluded that low RFI animals have increased metabolism by 

liver. Creatinine was also found as one of the important variables of classification of high and 

low RFI of Nellore cattle (Consolo et al., 2020). The concentration of creatinine in liver and 

muscle tissues respectively were reported 0.44±0.16 and 1.71±0.34 µM for low RFI and 

0.23±0.04 and 0.25±0.02 µM for high RFI beef cattle (Consolo et al., 2020). This agrees with 

our result that represents consistent significant difference (P<0.05) of serum creatinine 

concentration in lactating Holsteins in three days of blood sampling. The concentration of 

creatinine in low RFI animals is greater than high RFI group in serum samples of lactating 

Holsteins in our study which is also the case in liver and muscle samples of beef cattle. 

Creatinine is the converted form of creatine that is made in muscle. Creatinine, then leaves 

muscle through the blood stream and is carried to kidney. Finally, creatinine is excreted into the 

urine. 

 

3.4.3 Urea 

Urea was shown to be significantly different between low and high RFI groups at 50 DIM and 

there was a tendency (0.05<P<0.10) for it to be different at 240 DIM. Only month-year factor of 

blood sampling was also significant (P<0.05) for this metabolite at these days. This is in 

accordance with a study that evaluated the effect season on urea in dairy cows. The concentration 

of urea in blood was found to be significantly (P<0.05) lower in summer than spring and autumn 
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(Alberghina et al., 2013). Metabolism of urea, along with methane, was reported to be associated 

with RFI value in beef cattle (Karisa et al. 2014). In addition, urea was reported to have 4 times 

the concentration in muscle tissue of beef cattle in a low RFI group in comparison with high RFI 

(Consolo et al., 2020) which is in agreement with the results obtained in this study. Most 

excreted nitrogen in mammals is in the form of urea.  

The urea is produced by nitrogen metabolism in the mitochondrial matrix of liver cells in a series 

of reaction that are known as urea cycle. The main objective of the urea cycle is to remove 

highly toxic ammonia from the body (Watford, 2003).  The urea cycle starts with carbamoyl 

phosphate which is converted form of ammonia. In first step of urea cycle, carbamoyl phosphate 

needs ornithine to be converted to citrulline. This is where ornithine plays a direct role in the 

urea cycle (Wood, 2000). 

The other amino acid is aspartate that has a role in the second step of the urea cycle, a reaction 

that consumes 3 ATP. Aspartate is made by transamination of glutamate. Lysine is an important 

precursor of glutamate and it has indirect impact on the urea cycle through glutamate and 

consequently aspartate (Wood, 2000). 

Lysine and ornithine were reported as differentially expressed amino acids that are indirectly and 

directly related to urea cycle in a metabolomics study of growing heifers (Smeding et al. 2019). 

These authors suggest that down regulation of urea cycle occurs in low RFI heifers in 

comparison to high RFI (Smeding et al. 2019). This agrees with our result that shows ornithine 

and lysine have significantly (P<0.05) lower concentration in low RFI animals in 150 DIM. 

Furthermore, the result from 240 DIM represent a tendency of significance (0.05<P<0.10) for 

urea and lysine. The down regulation of amino acids that are related to urea cycle can be because 

of lower DMI of low RFI animals that is the cause of lower protein intake as it is suggested by 
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Smeding et al. (2019). This conclusion stays in the line with another study result that shows 

significantly (P=0.04) lower nitrogen in milk and feces of low RFI lactating Holsteins relative to 

high RFI (Rius et al., 2012 

 

3.4.4 3-hydroxybutyric acid 

The 3-hydroxybutyric acid (other name is beta hydroxybutyric acid) is a ketone body synthesized 

from fatty acids in liver. In addition to playing a role as an essential carrier of energy when 

glucose supply is low, beta hydroxybutyric acid was recently found to have an important role in 

cell signalling. The signalling function of this intermediate metabolite occurs both at the surface 

of cells and intercellularly to impact gene expression, lipid metabolism, metabolic rate and 

neural function (Newman & Verdin, 2017). Beta hydroxybutyric acid (BHB) is associated with 

higher genetic merit for milk fat yield in lactating dairy cows (Dechow, Baumrucker, 

Bruckmaier, & Blum, 2017). This metabolite was significantly (P<0.001) different between RFI 

groups in beef cattle but in the opposite direction. Positive correlation of RFI and beta 

hydroxybutyric acid is reported which means feed efficient beef cattle have less concentration of 

beta hydroxybutyric acid (Karisa et al. 2014). Our study found significantly (P<0.05) higher 

concentration of beta hydroxybutyric acid in low RFI animals at 240 DIM which contradicts the 

expression of this metabolite in beef cattle. This metabolite is known as one of the indicators of 

negative energy balance and elevated levels of BHB may have unfavorable effects on health and 

reproductive traits. But this is true for early lactation stage which is not the case in our result as 

we found the difference in late stage lactation when animal is increasing body weight. 

Consideration of blood metabolites while evaluating dairy cows for feed efficiency may help 

making decisions that maintain high level of health and reproductive traits (Dechow et al., 2017). 
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Future studies in dairy cow with focus on cell signalling role of beta hydroxybutyric acid may 

find the underlying reason of significant difference between high and low RFI animals.  

 

3.4.5 Amino acids 

Concentration of some amino acids was observed to be significantly different between RFI 

groups. Karisa et al. (2014) showed lysine as one of the metabolites that have tendency (P = 

0.09) to be significantly different between high and low RFI groups of beef cattle. Wang and 

Kadarmideen (2019) reported lysine and isoleucine among other amino acids that are associated 

with RFI in dairy cows. The possible origin and biological reason for significantly different 

concentration of amino acids in the serum of RFI groups in this study is explained in relation to 

differences in other metabolites. For example, the role of lysine and ornithine in the section 

describing the urea cycle (3.4.3) and the importance of lysine, isoleucine and glycine in TCA 

cycle are explained in the section on citrate (3.4.8). 

 

3.4.6 Acetone 

Acetone was significantly (P = 0.01) different between RFI groups at 240 DIM. This metabolite 

has higher concentration in low RFI animals than high RFI group. Month and year of blood 

sampling affected significantly (P<0.05) the concentration of this metabolite. The pattern of 

higher concentration of acetone for low RFI animals is constant between day 150 and 240 of 

lactation results. There is not any evidence of different expression of acetone in high and low 

RFI lactating cows up to now, but acetone has been seen in a study of beef cattle that considered 

blood metabolomic biomarkers of divergent RFI groups (Karisa et al. 2014). This study had 

discovery and validation population to validate metabolite biomarkers. Acetone was significantly 
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associated with average body weight (ABW) of beef steers in both discovery and validation 

population (Karisa et al. 2014). In dairy cows, acetone concentration of milk and blood are 

indicators of ketosis but this happens in days around calving up to the end of early lactation stage 

around week 10 of lactation (van Knegsel et al., 2010). Our result did not show even a tendency 

of different acetone concentration in 50 DIM. There is a tendency of significant difference 

between high and low RFI groups in 150 DIM (P = 0.09) and this gap increases in 240 DIM (P = 

0.01) which can show slight change of acetone concentration from mid-lactation to late lactation. 

Blood acetone in high levels is generally associated with ketosis, but this happens when dairy 

cow is in negative energy balance or the mammal is fasting or have caloric restrictions (Koeslag, 

et al. 1980). Glucose formation from acetone is also a minor way of metabolism in mammals 

(Kalapos, 2003). This form of conversion happens when there is small amount of acetone in 

blood which are made from fatty acids in blood. These fatty acids are mobilized and released 

from adipose tissue (Kalapos 2003). The difference in the regulation of the pathway that are 

involved in conversion of acetone to glucose might be the reason of higher acetone concentration 

in low RFI animal in mid and late lactation when there is no feed restriction or negative energy 

balance. The low concentration of acetone in mid (33.7±6.39 µM) and late (57.20±10.10 µM) 

lactation in our result in comparison to blood acetone level in cows that have ketosis (300-350 

µM) is considerable (Belay, et al. 2017). This gap strengthens the possibility that acetone to 

glucose conversion is the biological reason of higher acetone level in low RFI group than high 

RFI in 150 and 240 DIM. 
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3.4.7 Formate 

Formate is an intermediate metabolite in the rumen that is a source of carbon and hydrogen for 

rumen microbial population growth. Almost 18% of rumen methane ( ) is produced from 

formate. Microbes use the intercellular formate in rumen and convert it to methane. This process 

is called methanogenesis and one of the important contributors to methane production from 

formate in rumen is Methanobacterium ruminantium (Hungate et al. 1970). This microbe tends 

to have higher abundance (P=0.22) in high RFI lactating Holsteins in early stage of lactation than 

low RFI. Although this difference was not significant using 8 cows per group in that study, 

further investigation of abundance of other methanogenic bacteria plus this species together may 

make the role of rumen and its byproduct metabolites in feed efficiency clearer (Rius et al., 

2012). Nevertheless, our result states formate has significantly (P=0.04) higher concentration in 

serum of low RFI cows. Recently, a study on dairy heifers reported greater  (g/Kg of DMI) 

in low RFI animals (Flay et al., 2019). This agrees partially with our result that shows formate 

which is the intermediate metabolite for methane ( ) production by microbes has higher 

concentration in serum. It is important to mention that /DMI is a measure that is adjusted for 

DMI, this measure of methane is independent from the argument that low RFI animals make less 

methane because of less DMI. Beef studies on methane have shown the same relationship 

between RFI class of animal and  emission. They showed low RFI beef cows produce 3.7% 

less  daily but have 9.9% higher  when related to DMI (g/Kg of DMI) (Manafiazar et al. 

2020). 

There are few reports of this metabolite in cattle, but it is believed this metabolite is a by-product 

from the rumen. The difference in concentration level of serum samples of high and low RFI 

cows might be because of differences in microbial activities in ruminal digestion of feed.  
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3.4.8 Citrate 

Citrate (other name citric acid) has an important role in citric acid cycle (TCA cycle). Citrate is 

consumed by this cycle and regenerates with TCA cycle again. TCA cycle works closely with 

oxidative phosphorylation pathway to release energy in form of ATP from carbohydrates, fat, 

and protein. These biological processes take place in matrix of mitochondria. Citrate 

concentration was significantly higher (P = 0.01) in low RFI cows at 240 DIM. This is in 

accordance with the result of Karisa et al. (2014) who reported citrate as significantly different 

metabolite between high and low RFI animals. The higher concentration of citric acid as initiator 

of TCA cycle might be associated with upregulation of this pathway. This is supported by the 

finding that other metabolites associated with the TCA cycle are different in low RFI cows such 

as choline (P = 0.02) isoleucine (P = 0.07), lysine (P = 0.08) and glycine (P = 0.04). Lysine is 

one of the amino acids that is needed to make acetoacetyl - CoA then it converts to acetyl – CoA 

and finally citrate. Isoleucine is another amino acid necessary for acetyl CoA synthesis. Choline 

can be converted to acetyl choline and consequently acetyl-CoA and therefore play a role in the 

TCA cycle. Glycine has two ways to influence TCA cycle as it is needed to make pyruvate and 

pyruvate can be converted to oxaloacetate which is a main component of TCA cycle or pyruvate 

participates in synthesis of acetyl CoA and finally citrate (Wood, 2000).  

In late lactation stage, cows are rebuilding body reserves that they have lost in early lactation 

stage. The difference between high and low RFI groups may be partly in regulation of pathways 

to rebuild muscle and fat tissues. Recent studies have found evidence that TCA cycle 

intermediates have other roles in addition to releasing energy such as DNA methylation, 

immunity and signalling molecules with functions in chromatin modifications. RFI is known as 
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one of complex traits that 20% of its variation is in additive genetic control (Manafiazar et al. 

2015). Beef cattle studies in RFI has found differential pattern of DNA methylation among 

animals (Betancourt et al. 2016). Further studies using other biological data may make the 

biological picture of RFI regulation clearer in dairy cows as it has been done in beef cattle. 

 

3.4.9 Dimethyl sulfone 

The metabolite with largest P-value in univariate analysis of 50 DIM was dimethyl sulfone 

(Table 3.1). There is little information about this metabolite. In normal health status of humans, 

this metabolite exists in blood plasma and has a dietary source (Wishart et al. 2013). However 

gut microbial source has also mentioned in human metabolite literature (Maher et al., 2013). 

High correlation (r=0.69, P= ) using statistical heterospectroscopy method is recently 

reported between dimethyl sulfone concentration in blood plasma and milk of Holsteins. Authors 

have assigned dimethyl sulfone to microbial products of rumen (Maher et al., 2013). Our study 

result shows this metabolite significantly (P = 0.01) higher in blood serum of high RFI cows. 

Future studies with consideration of microbial population structure and abundance of rumen, 

plus rumen and blood metabolites may be able to show evidence of dimethyl sulfone role and 

origin as in biological regulation of RFI in dairy cows.  

 

3.4.10 Choline 

Choline was significantly (P = 0.02) different between high and low RFI groups only in 240 

DIM. This metabolite had less concentration in low RFI cows than high RFI. Consolo et al 

(2020) assigned the significantly different levels of choline in muscle samples of beef cattle to 

differences in energy metabolism of carbohydrate and fat-related compounds. Choline also 
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showed significant difference (P=0.008) between blood plasma samples of high and low RFI 

beef cattle (Karisa et al. 2014). 

 

3.4.11 Multivariate analysis discussion 

Multivariate analysis uses multiple metabolites at the same time as predictors of RFI class of 

dairy cows. Multivariate classification using PLS-DA captured 16.7% of variation of 33 

metabolites in 50 DIM and showed fair discrimination. Glycerol, urea, creatinine, and dimethyl 

sulfone are respectively the most important variables in multivariate classification analysis. The 

order of VIP scores (Figure 3.1) from PLS-DA in 50 DIM matches exactly with order of sorted 

significant metabolites (Table 3.1) by P-values from univariate analysis. Two independent 

analysis showed same metabolites are important for classification of dairy cows for high and low 

RFI. In addition to glycerol, urea, creatinine, and dimethyl sulfone at 50 DIM, there are other 

metabolites with (VIP >1). They are L-glutamine, tyrosine and 3-hydroxy butyric acid that 

stands after first four metabolites with small difference from VIP score of one. Results from 150 

DIM (Table 3.2) represented creatinine, glycerol, L-ornithine and L-lysine among important 

metabolites in the classification model. The univariate analysis results (Table 3.2) also showed 

the same metabolites as significant or tendency of significance at this time point during lactation. 

Glycerol was the most important metabolite in VIP score of 240 DIM with score of 3.5 which 

was considerable in comparison to citric acid, creatinine, acetone, 3-hydroxy butyric acid, 

formate, choline, lysine, isoleucine, and urea with VIP score in range 1 to 1.7.  

Score plots provided by PLS-DA model are projected metabolite concentrations on a hyperplane 

that maximized the covariance of metabolites concentrations and class of RFI. The higher scores 

show more importance of the variable in separation of RFI classes which is called variable of 
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importance projection (VIP) score (Worley & Powers, 2013). Visual separation of RFI groups by 

score plots of PLS-DA showed the best discrimination in 240 DIM (Figure 3.3) was gained and 

after that 50 DIM (Figure 3.1) where the ellipses had less common area than 150 DIM (Figure 

3.2). All animals were sorted based on the average of cumulative RFI in all 240 days. Thus, 

prediction of whether the lactating cow belongs to high or low RFI group at day 50 which is 190 

days before end of experiment with metabolite profile is reasonable to have less accuracy than 

using day 240 metabolite profile. As the metabolism status of cows at day 240 is partly a result 

of the past metabolism rhythm at day 50 and 150, however this relationship is not only 

dependent on time because day 50 (Figure 3.1) showed better separation of RFI classes than day 

150 (Figure 3.2). Day 50 is in the vicinity of peak of production and peak of lactation for most 

cows and has unique importance in dairy cow production and management (Amaral-Phillips, 

2012). Milk yield of 305-day lactation is tightly related to peak of milk production so that there 

are models that can predict overall milk production of animal using peak of milk yield with 

decent accuracy (R-squared = 0.69) (Mellado et al. 2011, Amaral-Phillips 2012). The production 

and health of animal is a function of metabolism and feed efficiency have same relationship 

(Rius et al., 2012). The high accuracy of our result for prediction of RFI in 240 days using day 

50 serum metabolite profile may be another indication of the importance of metabolism status in 

peak of production on the performance of animal in overall lactation period.  

Classification of high and low RFI beef cattle using muscle metabolites with PLS-DA model 

showed glycine, choline, creatinine, 3-hydroxybutyric acid, and glycerol with VIP over 1.0 

which are common with at least one of our sampling days VIP score results. Glycerol and 

creatinine had high VIP consistently in our three blood sampling days (Consolo et al., 2020). 
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This study did same analysis using liver samples too and VIP score of metabolites showed citric 

acid, creatinine, histidine and urea common with at least one of our sampling days. 

This experiment to best of our knowledge was the first one that focused on biological differences 

in feed efficiency of Holsteins by stage of lactation. For example Wang et al (2019) did not 

mention the time of blood sampling in the report.  

The other aspect is the larger sample size of animals in each group of RFI (n=20) in our study in 

comparison to other studies that tried to explain part of metabolic difference between high and 

low RFI animals. For example, metabolomics approach of blood plasma, immunoassay approach 

of blood serum concentrations and response of blood plasma hormones and metabolites to 

metabolic challenges had respectively 5, 14 and 9 animals per group of RFI (Wang and 

Kadarmideen 2019, Xi et al. 2016, Nürnberg, et al. 2019). This has led to lower statistical power 

which would result in smaller number of significant biomarkers and less certainty in making 

conclusions. 

Moreover, our research in comparison to other reported papers is the length of time that animals 

are considered for RFI estimation which shows the efficiency of animal in feed and body 

resources utilization. Li et al. (2017) wrote a paper only about this issue as it was to some extent 

neglected. Researchers consider animals for RFI in time intervals that are different. However, Li 

et al. (2017) discussed around the differences of heritability of RFI along lactation and between 

primiparous and multiparous cows. This concept is applicable to underlying metabolic changes 

of RFI because genetic basis is part of the variation of RFI as they showed its significant 

heritability along lactation period. As an example the experiment that was done by Xi et al. 

(2016) used 50 days and RFI values are considered for that limited time period. Other studies 

such as Wang and Kadarmideen (2019) did not clearly mention the details of sampling day 
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whether it was done on early lactation or other stages. This information is essentially needed to 

make conclusion on metabolic efficiency of energy in dairy cows by stage of lactation and across 

lactations in future studies.  

Metabolomics is useful to reveal biological differences between groups of individuals if 

confounding effects such as diet, age and other important variables (depends on experiment) 

would be considered (Xia and Wishart 2011, Emwas et al. 2015). The only confounding factor 

that Wang and Kadarmideen (2019) used in their univariate analysis of metabolites was parity. In 

our study, we considered month-year of blood sampling, age at first calving (AFC), ration type, 

health status and parity to remove confounding effects. The above-mentioned variables that we 

considered were identical to those that were used as fixed effects in calculation of RFI 

component traits using random regression model. Because it is believed that metabolites build 

the metabolic foundation of RFI based on researchers’ experience in beef cattle studies (Karisa et 

al. 2014, Consolo et al., 2020). Exclusion of other variables that have significant effect on 

metabolite concentration can either reduce or increase the classification result such as P-value 

and least square means estimates of metabolite for high and low RFI groups. If there is no 

significant effect of these variables, the metabolite concentration would not be adjusted. This 

step is necessary to avoid misleading result and consequently unreproducible conclusions.   

 

3.5 Conclusion 

In conclusion, the results of this study suggest that metabolomics is useful for prediction of RFI 

in lactating dairy cows. Important metabolites that have potential predictive power were 

introduced for classification of animals in different stages of lactation. This study also provided 

regression prediction models for RFI values for the first time in dairy cows with accuracy 
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measures. As expected, other important variables that influence concentration of metabolites 

were detected. This knowledge is useful for design and implementation of experiments with 

larger sample size. Metabolites showed strong prediction power in this study. Given this strong 

relationship be reported in future studies, it would be worth to estimate heritability of metabolite 

biomarkers to be considered for genomic selection. We see considerable potential for reported 

biomarkers to contribute to this development.  

 

3.6 References 

Alberghina, D., Piccione, G., Casella, S., Panzera, M., Morgante, M., & Gianesella, M. (2013). 

The effect of the season on some blood metabolites and haptoglobin in dairy cows during 

postpartum period. Archives Animal Breeding, 56(1), 354–359. 

https://doi.org/10.7482/0003-9438-56-035 

Amaral-Phillips, D. M. (2012). Using Peak and Summit Milk to Evaluate Your Dairy’s 

Management Programs. Retrieved from 

https://afs.ca.uky.edu/files/using_peak_and_summit_milk_to_evaluate_your_dairys_manag

ement_programs.pdf 

Armbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. 

The Clinical Biochemist. Reviews, 29 Suppl 1(Suppl 1), S49-52. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/18852857 

Arthur, P. F., Archer, J. A., Johnston, D. J., Herd, R. M., Richardson, E. C., & Parnell, P. F. 

(2001). Genetic and phenotypic variance and covariance components for feed intake, feed 

efficiency, and other postweaning traits in Angus cattle. Journal of Animal Science, 79(11), 

2805–2811. https://doi.org/10.2527/2001.79112805x 



96 

Belay, T. K., Dagnachew, B. S., Kowalski, Z. M., & Ådnøy, T. (2017). An attempt at predicting 

blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using 

multivariate mixed models in Polish dairy cattle. Journal of Dairy Science, 100(8), 6312–

6326. https://doi.org/10.3168/jds.2016-12252 

Betancourt, F., Lachance, H., Friedman, S., Perlee, S., & McKay, S. (2016). Exploring DNA 

Methylation in the Bovine 5 ’ AMPK Gene Family (p. 1). Burlington: University of 

Vermont. Retrieved from 

https://www.researchgate.net/profile/Hannah_Lachance/publication/309121378_Exploring_

DNA_Methylation_in_the_Bovine_5’_AMPK_Gene_Family/links/57ffc2e308ae6fc7fc652

2d0/Exploring-DNA-Methylation-in-the-Bovine-5-AMPK-Gene-Family.pdf 

Cantalapiedra-Hijar, G., Guarnido, P., Schiphorst, A. M., Robins, R. J., Renand, G., & Ortigues-

Marty, I. (2019). Natural 15N abundance in specific amino acids indicates associations 

between transamination rates and residual feed intake in beef cattle. Journal of Animal 

Science, 98(6), 1–7. https://doi.org/10.1093/jas/skaa171 

Consolo, N. R. B., Buarque, V. L. M., Silva, J., Poleti, M. D., Barbosa, L. C. G. S., Higuera-

Padilla, A., …  Silva, S. L. (2020). Muscle and liver metabolomic signatures associated 

with residual feed intake in Nellore cattle. Animal Feed Science and Technology, 8401(20). 

https://doi.org/10.1016/j.anifeedsci.2020.114757 

Dechow, C. D., Baumrucker, C. R., Bruckmaier, R. M., & Blum, J. W. (2017). Blood plasma 

traits associated with genetic merit for feed utilization in Holstein cows. Journal of Dairy 

Science, 100(10), 8232–8238. https://doi.org/10.3168/jds.2016-12502 

Derno, M., Nürnberg, G., & Kuhla, B. (2019). Characterizing the metabotype and its persistency 

in lactating Holstein cows: An approach toward metabolic efficiency measures. Journal of 



97 

Dairy Science, 102(7), 6559–6570. https://doi.org/10.3168/jds.2019-16274 

Donkin, S. S. (2008). Glycerol from biodiesel production: The new corn for dairy cattle. Revista 

Brasileira de Zootecnia, 37(SPECIALISSUE), 280–286. https://doi.org/10.1590/S1516-

35982008001300032 

Emwas, A. H., Luchinat, C., Turano, P., Tenori, L., Roy, R., Salek, R. M., … Wishart, D. S. 

(2015, November 21). Standardizing the experimental conditions for using urine in NMR-

based metabolomic studies with a particular focus on diagnostic studies: a review. 

Metabolomics. Springer New York LLC. https://doi.org/10.1007/s11306-014-0746-7 

Fisher, L. J., Erfle, J. D., Lodge, G. A., & Sauer, F. D. (1973).  Effects of propylene glycol or 

glycerol supplementation on feed intake, milk yield and composition, and incidence of 

ketosis. Canadian Journal of Animal Science, 53(2), 289–296. 

https://doi.org/10.4141/cjas73-045 

Flay, H. E., Kuhn-Sherlock, B., Macdonald, K. A., Camara, M., Lopez-Villalobos, N., Donaghy, 

D. J., & Roche, J. R. (2019). Hot topic: Selecting cattle for low residual feed intake did not 

affect daily methane production but increased methane yield. Journal of Dairy Science, 

102(3), 2708–2713. https://doi.org/10.3168/jds.2018-15234 

Fonseca, L. D., Eler, J. P., Pereira, M. A., Rosa, A. F., Alexandre, P. A., Moncau, C. T.,  … 

Fukumasu, H. (2019). Liver proteomics unravel the metabolic pathways related to Feed 

Efficiency in beef cattle. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-

41813-x 

French, P. (2017). Applied Animal Nutrition Feedstuffs (3rd Editio). Upper Saddle River, NJ, 

United States: Pearson Education (US). Retrieved from 

https://courses.ecampus.oregonstate.edu/ans312/seven/cows_6_trans.htm 



98 

Goldansaz, S. A., Guo, A. C., Sajed, T., Steele, M. A., Plastow, G. S., & Wishart, D. S. (2017). 

Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE, 

12(5), 1–26. https://doi.org/10.1371/journal.pone.0177675 

Grömping, U. (2006). Relative importance for linear regression in R: The package relaimpo. 

Journal of Statistical Software, 17(1), 1–27. https://doi.org/10.18637/jss.v017.i01 

Hailemariam, D., Mandal, R., Saleem, F., Dunn, S. M., Wishart, D. S., & Ametaj, B. N. (2014). 

Identification of predictive biomarkers of disease state in transition dairy cows. Journal of 

Dairy Science, 97(5), 2680–2693. https://doi.org/10.3168/jds.2013-6803 

Herd, R. M., & Arthur, P. F. (2009). Physiological basis for residual feed intake. Journal of 

Animal Science, 87(14 Suppl), 64–71. https://doi.org/10.2527/jas.2008-1345 

Hungate, R. E., Smith, W., Bauchop, T., Yu, I., & Rabinowitz, J. C. (1970). Formate as an 

intermediate in the bovine rumen fermentation. Journal of Bacteriology, 102(2), 389–397. 

https://doi.org/10.1128/jb.102.2.389-397.1970 

Jorge-Smeding, E., Renand, G., Centeno, D., Pétéra, M., Durand, S., Polakof, S., & 

Cantalapiedra-Hijar, G. (2019). Metabolomics reveals changes in urea cycle associated to 

residual feed intake in growing heifers. In International Symposium on Energy and Protein 

Metabolism and Nutrition (ISEP) (pp. 231–232). https://doi.org/10.3920/978-90-8686-891-

9_50 

Kadarmideen, H. N. (2008). Genetical systems biology in livestock: application to 

gonadotrophin releasing hormone and reproduction. IET Systems Biology, 2(2), 64–72. 

https://doi.org/10.1049/iet-syb 

Kalapos, M. P. (2003, May 2). On the mammalian acetone metabolism: From chemistry to 

clinical implications. Biochimica et Biophysica Acta - General Subjects. Elsevier. 



99 

https://doi.org/10.1016/S0304-4165(03)00051-5 

Karisa, B. K., Thomson, J., Wang, Z., Li, C., Montanholi, Y. R., Miller,  S. P., …  Plastow, G. S. 

(2014). Plasma metabolites associated with residual feed intake and other productivity 

performance traits in beef cattle. Livestock Science, 165(1), 200–211. 

https://doi.org/10.1016/j.livsci.2014.03.002 

Karisa, B., Moore, S., & Plastow, G. (2013). Complicated Relationships: A Review of Biological 

Interaction Networks and Pathways in Animal Science. Springer Science Reviews, 1(1–2), 

73–83. https://doi.org/10.1007/s40362-013-0005-8 

Karisa, B., Moore, S., & Plastow, G. (2014). Analysis of biological networks and biological 

pathways associated with residual feed intake in beef cattle. Animal Science Journal, 85(4), 

374–387. https://doi.org/10.1111/asj.12159 

Karisa, Brian K. (2013). Candidate Genes , Metabolites and Biological Pathways Associated 

With Residual Feed Intake and Carcass. (Publication No. NS27583.) [PhD thesis, 

University of Alabama]. ProQuest Dissertations & ThesesGlobal 

Kennedy, P.M & Milligan,  L. P. (1980). the Degradation and Utilization of Endogenous Urea in 

the Gastrointestinal Tract of Ruminants: a Review. Canadian Journal of Animal Science, 

60(2), 205–221. https://doi.org/10.4141/cjas80-030 

Khansefid, M., Millen, C. A., Chen, Y., Pryce, J. E., Chamberlain, A. J., Vander Jagt, C. J.,  … 

Goddard, M. E. (2017). Gene expression analysis of blood, liver, and muscle in cattle 

divergentlya selected for high and low residual feed intake. Journal of Animal Science, 

95(11), 4764–4775. https://doi.org/10.2527/jas2016.1320 

Kholif, A. E. (2019). Glycerol use in dairy diets: A systemic review. Animal Nutrition, 5(3), 

209–216. https://doi.org/10.1016/j.aninu.2019.06.002 



100 

Koeslag, J. H., Noakes, T. D., & Sloan, A. W. (1980). Post‐exercise ketosis. The Journal of 

Physiology, 301(1), 79–90. https://doi.org/10.1113/jphysiol.1980.sp013190 

Lenth, R. V. (2016). Least-Squares Means: The R Package lsmeans. Journal of Statistical 

Software, 69(1). https://doi.org/10.18637/jss.v069.i01 

Li, B., Berglund, B., Fikse, W. F., Lassen, J., Lidauer, M. H., Mäntysaari, P., & Løvendahl, P. 

(2017). Neglect of lactation stage leads to naive assessment of residual feed intake in dairy 

cattle. Journal of Dairy Science, 100(11), 9076–9084. https://doi.org/10.3168/jds.2017-

12775 

Maher, A. D., Hayes, B., Cocks, B., Marett, L., Wales, W. J., & Rochfort, S. J. (2013). Latent 

biochemical relationships in the blood-milk metabolic axis of dairy cows revealed by 

statistical integration of 1H NMR spectroscopic data. Journal of Proteome Research, 12(3), 

1428–1435. https://doi.org/10.1021/pr301056q 

Manafiazar, G., Baron, V. S., McKeown, L., Block, H., Ominski, K., Plastow, G., & Basarab, J. 

A. (2020). Methane and carbon dioxide emissions from yearling beef heifers and mature 

cows classified for residual feed intake under drylot conditions. Canadian Journal of 

Animal Science, 100(3), 522–535. https://doi.org/10.1139/cjas-2019-0032 

Manafiazar, G., Goonewardene, L., Miglior, F., Crews, D. H., Basarab, J. A., Okine, E., & 

Wang, Z. (2015). Genetic and phenotypic correlations among feed efficiency, production 

and selected conformation traits in dairy cows. Animal, 10(3). 

https://doi.org/10.1017/S1751731115002281 

Manafiazar, G., McFadden, T., Goonewardene, L., Okine, E., & Wang, Z. (2012). Factors That 

Affect Energy Efficiency and Indirect Response of Selection for Efficiency on Related 

Traits. https://doi.org/http://dx.doi.org/10.5772/50776 



101 

Martin, O., & Sauvant, D. (2007). Dynamic model of the lactating dairy cow metabolism. 

Animal, 1(8), 1143–1166. https://doi.org/10.1017/S1751731107000377 

Kuhn, M. (2005). Building Predictive Models in R Using the caret Package. Journal Of 

Statistical Software, 14(September), 981029. https://doi.org/10.18637/jss.v081.b02 

Mellado, M., Antonio-Chirino, E., Meza-Herrera, C., Veliz, F. G., Arevalo, J. R., Mellado, J., & 

de Santiago, A. (2011). Effect of lactation number, year, and season of initiation of lactation 

on milk yield of cows hormonally induced into lactation and treated with recombinant 

bovine somatotropin. Journal of Dairy Science, 94(9), 4524–4530. 

https://doi.org/10.3168/jds.2011-4152 

Moe, P. W. (1981). Energy Metabolism of Dairy Cattle. Journal of Dairy Science, 64(6), 1120–

1139. https://doi.org/10.3168/jds.S0022-0302(81)82692-6 

Montanholi, Y. R., Haas, L. S., Swanson, K. C., Coomber, B. L., Yamashiro, S., & Miller, S. P. 

(2017). Liver morphometrics and metabolic blood profile across divergent phenotypes for 

feed efficiency in the bovine. Acta Veterinaria Scandinavica, 59(1), 1–11. 

https://doi.org/10.1186/s13028-017-0292-1 

Mulligan, F., O’Grady, L., Rice, D., & Doherty, M. (2006). Production diseases of the transition 

cow: Body condition score and energy balance. Irish Veterinary Journal, 59(9), 505–510. 

Neves, R. C., Leno, B. M., Curler, M. D., Thomas, M. J., Overton, T. R., & McArt, J. A. A. 

(2018). Association of immediate postpartum plasma calcium concentration with early-

lactation clinical diseases, culling, reproduction, and milk production in Holstein cows. 

Journal of Dairy Science, 101(1), 547–555. https://doi.org/10.3168/jds.2017-13313 

Newman, J. C., & Verdin, E. (2017). β-Hydroxybutyrate: A Signaling Metabolite. Annual 

Review of Nutrition, 37, 51–76. https://doi.org/10.1146/annurev-nutr-071816-064916 



102 

Nkrumah, J. D. Okine, E. K., Mathison, G. W., Schmid, K., Li, C., Basarab, J. A., … Moore, S. 

S. (2006). Relationships of feedlot feed efficiency, performance, and feeding behaviour 

with metabolic rate, methane produciton, and energy partitioning in beef cattle. Journal of 

Animal Science, 84(1), 145–153. Retrieved from https://doi.org/10.2527/2006.841145x 

O’Sullivan, M., Butler, S. T., Pierce, K. M., Crowe, M. A., O’Sullivan, K., Fitzgerald, R., & 

Buckley, F. (2020). Reproductive efficiency and survival of Holstein-Friesian cows of 

divergent Economic Breeding Index, evaluated under seasonal calving pasture-based 

management. Journal of Dairy Science, 103(2), 1685–1700. 

https://doi.org/10.3168/jds.2019-17374 

Osman, M. A., Allen, P. S., Mehyar, N. A., Bobe, G., Coetzee, J. F., Koehler, K. J., & Beitz, D. 

C. (2008). Acute metabolic responses of postpartal dairy cows to subcutaneous glucagon 

injections, oral glycerol, or both. Journal of Dairy Science, 91(9), 3311–3322. 

https://doi.org/10.3168/jds.2008-0997 

Porcu, C., Manca, C., Cabiddu, A., Dattena, M., Gallus, M., Pasciu, V., … Molle, G. (2018). 

Effects of short-term administration of a glucogenic mixture at mating on feed intake, 

metabolism, milk yield and reproductive performance of lactating dairy ewes. Animal Feed 

Science and Technology, 243, 10–21. https://doi.org/10.1016/j.anifeedsci.2018.06.012 

Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., …  Wishart, D. S. 

(2011). The human serum metabolome. PLoS ONE, 6(2). 

https://doi.org/10.1371/journal.pone.0016957 

R-Core-Team. (2019). R: A language and environment for statistical computing. Retrieved April 

22, 2020, from https://www.r-project.org/ 

Ravanbakhsh, S., Liu, P., Bjordahl, T. C., Mandal, R., Grant, J. R., Wilson, M., … Wishart, D. S. 



103 

(2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS ONE, 

10(5), 1–15. https://doi.org/10.1371/journal.pone.0124219 

Richardson, E. C., & Herd, R. M. B. (2004). Biological basis for variation in residual feed intake 

in beef cattle. 2. Synthesis of results following divergent selection Cooperative Research 

Centre for Cattle and Beef Quality . Australian Journal of Experimental Agriculture, 44, 

431–440. https://doi.org/10.1071/EA02221 

Rius, A. G., Kittelmann, S., Macdonald, K. A., Waghorn, G. C., Janssen, P. H., & Sikkema, E. 

(2012). Nitrogen metabolism and rumen microbial enumeration in lactating cows with 

divergent residual feed intake fed high-digestibility pasture. Journal of Dairy Science, 

95(9), 5024–5034. https://doi.org/10.3168/jds.2012-5392 

Saleem, A. M., Zanouny, A. I., & Singar, A. M. (2018). Effect of glycerol supplementation 

during early lactation on milk yield, milk composition, nutrient digestibility and blood 

metabolites of dairy buffaloes. Animal, 12(4), 757–763. 

https://doi.org/10.1017/S175173111700180X 

Salleh, M. S., Mazzoni, G., Höglund, J. K., Olijhoek, D. W., Lund, P., Løvendahl, P., & 

Kadarmideen, H. N. (2017). RNA-Seq transcriptomics and pathway analyses reveal 

potential regulatory genes and molecular mechanisms in high- and low-residual feed intake 

in Nordic dairy cattle. BMC Genomics, 18(1), 1–17. https://doi.org/10.1186/s12864-017-

3622-9 

Saude, E. J., Slupsky, C. M., & Sykes, B. D. (2006). Optimization of NMR analysis of biological 

fluids for quantitative accuracy. Metabolomics, 2(3), 113–123. 

https://doi.org/10.1007/s11306-006-0023-5 

Serkova, N. J., Standiford, T. J., & Stringer, K. A. (2011). The emerging field of quantitative 



104 

blood metabolomics for biomarker discovery in critical illnesses. American Journal of 

Respiratory and Critical Care Medicine, 184(6), 647–655. 

https://doi.org/10.1164/rccm.201103-0474CI 

Szymańska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: 

validation of diagnostic statistics for PLS-DA models in metabolomics studies. 

Metabolomics, 8(S1), 3–16. https://doi.org/10.1007/s11306-011-0330-3 

Thévenot, E. A., Roux, A., Xu, Y., Ezan, E., & Junot, C. (2015). Analysis of the Human Adult 

Urinary Metabolome Variations with Age, Body Mass Index, and Gender by Implementing 

a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of 

Proteome Research, 14(8), 3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354 

Thoh, D., Pakdeechanuan, P., & Chanjula, P. (2017). Effect of supplementary glycerin on milk 

composition and heat stability in dairy goats. Asian-Australasian Journal of Animal 

Sciences, 30(12), 1711–1717. https://doi.org/10.5713/ajas.17.0066 

van Knegsel, A. T. M., van der Drift, S. G. A., Horneman, M., de Roos, A. P. W., Kemp, B., & 

Graat, E. A. M. (2010). Short communication: Ketone body concentration in milk 

determined by Fourier transform infrared spectroscopy: Value for the detection of 

hyperketonemia in dairy cows. Journal of Dairy Science, 93(7), 3065–3069. 

https://doi.org/10.3168/jds.2009-2847 

Wang, X., & Kadarmideen, H. N. (2019). Metabolomics analyses in high-low feed efficient dairy 

cows reveal novel biochemical mechanisms and predictive biomarkers. Metabolites, 9(7), 

1–16. https://doi.org/10.3390/metabo9070151 

Wang, X., Han, W., Yang, J., Westaway, D., & Li, L. (2019). Development of chemical isotope 

labeling LC-MS for tissue metabolomics and its application for brain and liver metabolome 



105 

profiling in Alzheimer’s disease mouse model. Analytica Chimica Acta, 1050, 95–104. 

https://doi.org/10.1016/j.aca.2018.10.060 

Watford, M. (2003). The urea cycle: Teaching intermediary metabolism in a physiological 

setting. Biochemistry and Molecular Biology Education, 31(5), 289–297. 

https://doi.org/10.1002/bmb.2003.494031050249 

Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., … Scalbert, A. (2013). 

HMDB 3.0-The Human Metabolome Database in 2013. Nucleic Acids Research, 41(D1), 

801–807. https://doi.org/10.1093/nar/gks1065 

Wood, E. (2000). Lehninger’s principles of biochemistry. Biochemistry and Molecular Biology 

Education, 28(5), 286–287. https://doi.org/10.1016/s1470-8175(00)00020-5 

Worley, B., & Powers, R. (2013). Multivariate Analysis in Metabolomics. Current 

Metabolomics, 1(1), 92–107. https://doi.org/10.2174/2213235x11301010092 

Xi, Y. M., Wu, F., Zhao, D. Q., Yang, Z., Li, L., Han, Z. Y., & Wang, G. L. (2016). Biological 

mechanisms related to differences in residual feed intake in dairy cows. Animal, 10(8), 

1311–1318. https://doi.org/10.1017/S1751731116000343 

Xia, J., Broadhurst, D. I., Wilson, M., & Wishart, D. S. (2013). Translational biomarker 

discovery in clinical metabolomics: An introductory tutorial. Metabolomics, 9(2), 280–299. 

https://doi.org/10.1007/s11306-012-0482-9 

Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making 

metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257. 

https://doi.org/10.1093/nar/gkv380 

Yao, C., Spurlock, D. M., Armentano, L. E., Page, C. D., VandeHaar, M. J., Bickhart, D. M., & 

Weigel, K. A. (2013). Random Forests approach for identifying additive and epistatic single 



106 

nucleotide polymorphisms associated with residual feed intake in dairy cattle. Journal of 

Dairy Science, 96(10), 6716–6729. https://doi.org/10.3168/jds.2012-6237 

Yerushalmy, J. (1947). Statistical problems in assessing methods of medical diagnosis, with 

special reference to X-ray techniques. Public Health Reports, 62(40), 1432–1449. 

https://doi.org/10.2307/4586294 

Yu, Z., Kastenmüller, G., He, Y., Belcredi, P., Möller, G., Prehn, C., … Wang-Sattler, R. (2011). 

Differences between human plasma and serum metabolite profiles. PLoS ONE, 6(7), 1–6. 

https://doi.org/10.1371/journal.pone.0021230 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

Table 3.1 Least square means of metabolites that are significantly different between high and 

low RFI dairy cows at day 50 of lactation. Significant fixed effects are M: month-year, A: age at 

first calving, L: lactation, H: health status, R: ration.  

 

  

Table 3.2 Least square means of metabolites that are significantly different between high and 

low RFI dairy cows in day 150 of lactation. Significant fixed effects are M: month-year, A: age 

at first calving, L: lactation, H: health status, R: ration.  

Metabolite 

High RFI  Low RFI 

P-value 

Fixed 

Effects 

HMDBID 

Conc(µM) SE  Conc(µM) SE 

Glycerol 389.00 19.20  543.00 21.60 1.66E-06  HMDB0000131 

Urea 1290.00 83.20  1784.00 81.20 1.24E-04 M HMDB0000294 

Creatinine 60.20 2.26  68.40 2.26 1.41E-02  HMDB0000562 

Dimethyl sulfone 46.60 5.34  31.70 3.55 1.80E-02 M HMDB0004983 

Metabolite 

High RFI  Low RFI 

P-value 

Fixed 

Effects 

HMDBID 

LSM(µM) SE  LSM(µM) SE 

Creatinine 59.90 3.19  72.90 3.72 2.23E-03 L, A, H HMDB0000562 

Glycerol 286.00 12.60  331.00 12.60 1.43E-02  HMDB0000131 

L-Ornithine 78.40 5.97  60.80 4.90 2.67E-02 M HMDB0000214 

L-Lysine 93.60 4.54  80.30 5.33 3.48E-02 L HMDB0000182 

Acetone 19.60 4.65  33.70 6.39 9.47E-02 M, A HMDB0001659 
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Table 3.3 Least square means of metabolites that are significantly different between high and 

low RFI dairy cows in day 240 of lactation. Significant fixed effects are M: month-year, A: age 

at first calving, L: lactation, H: health status, R: ration.  

 

 

 

 

 

 

Metabolite 

High RFI  Low RFI 

P-value 

Fixed 

Effects 

HMDBID 

LSM(µM) SE  LSM(µM) SE 

Glycerol 292.00 13.00  470.00 13.00 7.88E-12  HMDB0000131 

Acetone 28.10 5.40  57.20 10.10 1.07E-02 M HMDB0001659 

Citric acid 190.00 10.55  227.00 9.64 1.14E-02 M HMDB0000094 

3-hydroxybutyric acid 557.00 77.10  938.00 129.90 1.32E-02  HMDB0000357 

Choline 8.17 1.10  6.28 1.17 2.17E-02 H HMDB0000097 

Creatinine 65.00 2.29  72.40 2.29 3.32E-02  HMDB0000562 

Glycine 273.00 17.70  329.00 24.70 4.06E-02  HMDB0000123 

Formate 31.10 1.54  36.10 1.79 4.19E-02  HMDB0000142 

Isoleucine 97.70 6.84  114.70 6.26 7.50E-02 A, R HMDB0000172 

L-Lysine 71.20 9.65  57.50 9.65 8.37E-02 R HMDB0000182 

Urea 1551.00 84.50  1344.00 103.00 9.95E-02 M HMDB0000294 
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Table 3.4 Relative importance of metabolites in regression model to predict RFI values with 

metabolite profile at 50 DIM of lactation 

 

Metabolite Relative Contributions to  Coefficient (SE) 

Glycerol 0.22 -1.40 (0.34) 

Urea 0.19 -1.19 (0.34) 

Choline 0.08 -0.98 (0.32) 

Dimethyl sulfone 0.06 0.98 (0.34) 

Acetone 0.04 -1.23 (0.36) 

Creatine 0.03 1.23 (0.34) 

Isoleucine 0.03 0.80 (0.39) 

L-Alanine 0.02 -0.71 (0.39) 

Methionine 0.02 -0.85 (0.42) 

D-Glucose 0.02 0.54 (0.31) 

Model  0.7176 - 

.  
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Table 3.5 Relative importance of metabolites in regression model to predict RFI values with 

metabolite profile of day 150 of lactation.  

Metabolite Relative Contributions to  Coefficient (SE) 

Creatinine 0.31 -2.12 (0.36) 

L-Ornithine 0.15 1.07 (0.35) 

Glycerol 0.09 -1.09 (0.31) 

L-Phenylalanine 0.05 0.85 (0.34) 

L-Proline 0.04 1.26 (0.43) 

L-Threonine 0.03 -1.16 (0.40) 

Citric acid 0.03 1.01 (0.38) 

Acetone 0.02 1.16 (0.48) 

L-Glutamine 0.02 0.60 (0.31) 

3-hydroxybutyric acid 0.01 -1.20 (0.46) 

Model  0.7374 - 
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Table 3.6 relative importance of metabolites in regression model to predict RFI values with 

metabolite profile of day 240 of lactation.  

Metabolite Relative Contributions to  Coefficient (SE) 

Glycerol 0.44 -1.96 (0.22) 

L-Alanine 0.06 -1.03 (0.21) 

Pyruvic acid 0.07 1.15 (0.22) 

Creatinine 0.16 -1.15 (0.23) 

Creatine 0.05 1.18 (0.23) 

Formate 0.07 -0.52 (0.21) 

Model  0.8521 - 
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Table 3.7 Accuracy measures of regression model using metabolite profile form day 50, 150 and 

240 of lactation to predict RFI for dairy lactating cows.  

 

 

 

 

 

 

 

 

 

Model Feature 

Metabolites as predictors 

Day 50 Day 150 Day 240 

Multiple  0.7176 0.7374 0.8521 

Adjusted  0.6202 0.6469 0.8253 

Cross validated  0.5214 0.2477 0.7122 

LOOCV RMSE 1.9377 2.7750 1.5096 

LOOCV MAE 1.4740 2.2654 1.2309 

Biomarkers 10 10 6 
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Figure 3.1 a) Score plots between first and second components of partial least square 

discriminant analysis (PLS-DA) on left panel and b) variable of importance in projection scores 

of PLS-DA analysis using metabolite profile of day 50 of lactation for classification of high and 

low RFI groups. c) The performance of top two serum metabolites (glycerol and urea) as 

biomarkers of RFI is presented in ROC curve. AUC = 0.936 (CI: 0.816 - 1.0)  

a) 
 

b) 
 

c) 
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Figure 3.2 a) Score plots between first and second components of partial least square 

discriminant analysis (PLS-DA) on left panel and b) variable of importance in projection scores 

of PLS-DA analysis using metabolite profile of day 150 of lactation for classification of high and 

low RFI groups. c) The performance of top three serum metabolites (Creatinine, glycerol, and L-

lysine) as biomarkers of RFI is presented in ROC curve. AUC = 0.866 (CI: 0.673 - 1.0)  

a) 
 

b) 
 

c) 
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Figure 3.3 a) Score plots between first and second components of partial least square 

discriminant analysis (PLS-DA) on left panel and b) variable of importance in projection scores 

of PLS-DA analysis using metabolite profile of day 240 of lactation for classification of high and 

low RFI groups. c) The performance of top two serum metabolites (glycerol and creatinine) as 

biomarkers of RFI is presented in ROC curve. AUC = 0.997 (CI: 0.969 - 1.0). 

a) 
 

b) 
 

c) 
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Figure 3.4 Stability of relative contribution of variables to multivariate regression models for 

RFI using serum metabolites from 50DIM. Values expressed as contribution to  with 95% 

confidence intervals. Abbreviations: Gly = Glycerol; Urea = Urea; Chol = Choline; Dime = 

Dimethyl Sulfone; Acet = Acetone; Crea = Creatine; Isol = Isoleucine; L. Al = L-Alanine; Meth 

= Methionine; D. Gl = D-Glucose. 
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Figure 3.5 Stability of relative contribution of variables to multivariate regression models for 

RFI using serum metabolites from 150DIM. Values expressed as contribution to  with 95% 

confidence intervals. Abbreviations: Crea = Creatinine; L. Or = L-Ornithine; Gly = Glycerol; 

L.Ph = L-Phenyl alanine; L.Th = L- Threonine; Citr = Citric acid; Acet = Acetone; L.Gl = L-

Glutamine; X3.H = 3-hydroxybutyric acid. 

 

 

 

 

 

 

 

 

 



118 

 

 

 

 

 

 

 

 

Figure 3.6 Stability of relative contribution of variables to multivariate regression models for 

RFI using serum metabolites from 240DIM. Values expressed as contribution to  with 95% 

confidence intervals. Abbreviations: Gly = Glycerol; Crean = Creatinine; Form = Formate, 

Pyru = Pyruvic acid; L. Al = L-Alanine; Crea = Creatine. 
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Chapter 4. Summary and general conclusion 

4.1 Summary of results  

 

Feed cost represents over half of dairy production costs (de Haas et al. 2017). Residual feed 

intake has been proposed as a measure of feed efficiency (Koch, et al. 1963). Animals that 

consume less amount of feed for same level of production would most likely increase 

profitability for dairy farmers and reduce the environmental footprint of dairy production 

(Manafiazar et al. 2012). 

Despite the efforts made to date, RFI estimation is still expensive to measure with no proposed 

indicator trait or classifier of animals with high or low RFI to reduce phenotyping costs. 

Furthermore, the biological processes underlying feed efficiency and the differences in 

metabolism that lead to different phenotypes is rarely studied in dairy cows. RFI of lactating 

dairy cows is even less studied than growing dairy calves because of the cost of recording of RFI 

component traits such as milk composition, milk yield, feed intake, and body weight that need to 

be measured along lactation.  

The other aspect of RFI that few dairy studies have studied is the nonlinear changes of RFI and 

its component traits along lactation. These traits have nonlinear trends along lactation that can be 

predicted by appropriate statistical modeling. In this study, feed intake was recorded on a daily 

basis while milk composition and body weight were measured on a weekly and monthly basis, 

respectively. The daily values of the derived traits (MPER, MBW and EBW) were predicted 

from weekly and monthly records in order to obtain comparable daily records of all RFI 

component traits.  

Residual feed intake (the measure of feed efficiency) and its component traits including milk 

production energy requirement, maintenance energy requirement and dry matter intake are 
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important production traits in the dairy industry (Manafiazar et al. 2013).This enabled us to 

calculate daily RFI values using multiple linear regression. 

Animals were then grouped as high and low RFI cows (low RFI: < -0.5 SD, high RFI: > +0.5 

SD) and these extreme groups were selected for metabolomics analysis. The daily changes of all 

derived traits for high and low RFI lactating dairy cows were plotted from day 3 to 240 of 

lactation. This is the first report of how RFI and its component traits change along lactation for 

high and low RFI lactating cows. The trend of PMBW, PEBWC, PMPER in high and low RFI 

groups had no significant difference because they were adjusted for estimation of RFI. But the 

trend of AEI and RFI were significantly different. These two plots (Figure 2.2 and 2.7) 

represented the gap in energy intake between high and low RFI animals that originated from 

their different merits for feed efficiency.  

The pattern of RFI changes along lactation for high and low RFI groups described in this study 

(figure 2.7) agrees with a recent paper that presented the RFI plot of a herd (Li et al., 2020). This 

shows the differences between high and low RFI groups are relatively stable along lactation, 

however, further studies with a larger sample size per group of animals is needed to further 

validate this result. That is a contribution to the knowledge of trend of feed efficiency of 

divergent RFI groups in lactating dairy cows along lactation. The latest studies provide more 

confidence that RFI is the most relevant measure of feed efficiency as it provides a window on 

the underlying metabolic efficiency of dairy cows (Tempelman & Lu, 2020). This has made the 

investigation of the metabolic differences between high and low RFI lactating cows more 

interesting. Because there might be biomarkers with biological role in regulation of RFI that can 

classify animals by their feed efficiency. This potentially makes RFI phenotyping easier and 

cheaper. 
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In chapter 3, we ran four analyses to consider the differences in metabolite concentration 

between groups, the classification of groups of RFI by metabolite profile, the candidate 

biomarker discovery, and the prediction of RFI values using respectively univariate metabolite 

regression, PLS-DA classification model, ROC curve, and multiple linear regression. Similar 

metabolites were significant in all three types of analysis. To check validity of the result, 

independent analyses were done with cross validation. Although this validation was tested by 

accredited statistical techniques such as permutation test and bootstrap, actual validation of 

trained models using independent study data will show the true accuracy of our predictions.  

We found 4, 4 and 8 metabolites from respectively day 50, 150 and 240 of lactation that have 

significantly (P<0.05) different concentrations between RFI groups. Glycerol and creatinine 

emerged as potential biomarkers for classification of RFI groups based on univariate analysis 

because they were significantly different in all three sampling days. Specifically, glycerol at day 

50 and 240 with P-value of  and  with sample size of only 40. This indicates very 

little chance to see glycerol concentration be randomly different between the groups in this 

study. Metabolites that were significantly different were discussed and compared with literature. 

Pathways such as TCA cycle and urea cycle may be the origin of these differences.  

Other important fixed effects such as parity and month-year showed differences for some of the 

metabolites. For example, urea concentration was also impacted significantly by month-year 

variable in the model. The effect of season was seen before in blood urea concentration of dairy 

cows (Alberghina et al., 2013). This was one of the differences between our study and most of 

other published results on RFI and metabolomics: we considered other variables that could have 

significant effect on metabolite concentration to avoid false interpretation about biological 

differences between RFI groups. This also helped us to follow the recommended method for 
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adjusting the metabolites for significant effects before using multiple metabolites in a statistical 

model (Xia et al. 2013). 

Classification ability of high and low RFI animals using metabolite profile was tested using PLS-

DA model. This model showed importance of metabolites when they are used together for 

classification. Moreover, the prediction power of models was presented by ROC curve. The 

AUC of ROC curves were 0.936, 0.866, and 0.997 respectively for day 50, 150 and 240 DIM. 

This criterion of binary classification is ideally 1.0 for a perfect classifier that does not have any 

false prediction. In this project, AUC values are very close to one which shows strong potential 

of serum metabolites for classification of RFI. This thesis has provided insights on the use of 

metabolites for classification of high and low RFI of lactating cows. Although many studies have 

tried to classify high and low RFI groups using different approaches, relatively poor success has 

been made.  

Furthermore, in this study, we showed that a metabolomics approach has a greater potential for 

predicting individual RFI values in dairy cows. Our approach for regression analysis follows 

Karisa et al. (2014) that modeled RFI values by multiple linear regression using metabolite 

concentrations in beef cattle. We used this method in our study for lactating dairy cows. Linear 

relationship between RFI values and metabolite profile was evaluated. Feed efficiency values 

(RFI) for 240 days of lactation of Holsteins could be predicted with multiple regression model 

with high accuracy. Correlation coefficient (r) between observed and predicted RFI value 

(squared root of adjusted ) using serum metabolite concentrations from day 50, 150 and 240 

of lactation were respectively 0.79, 0.80, and 0.90. This shows a strong potential for metabolites 

to be used as an indicator trait for RFI values in dairy cows.  
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Moreover, our biomarkers are metabolites that have a biological role in variation of feed 

efficiency, and they have potential for future studies to show biological differences between high 

and low RFI lactating dairy cows. The metabolites with VIP score over 1 in PLS-DA model and 

the candidate biomarkers of ROC curve have shown which metabolites have potential for 

classification of lactating cows to high and low RFI groups. The metabolites that are used as 

variables of linear regression model had contribution to our knowledge about RFI of lactating 

cows because they can be interpreted simply. The sign of the regression coefficient states how 

metabolites that are in the model are related to the RFI value of lactating cows. They show 

whether higher or lower values of a metabolite concentration is associated with more feed 

efficient cows. The regression coefficients of metabolites in linear models show how much RFI 

value (Mcal) changes with one unit change of metabolite concentration (µM). The regression 

coefficients with standard errors are provided in this thesis (Tables 3.5, 3.4, 3.6). Additionally, 

the sign of regression coefficient of metabolite represents the direction of this change. The 

relative contribution percentage for each metabolite with provided confidence interval indicates 

how much of RFI variation can be explained by variation of each metabolite in the model 

(Tables 3.5, 3.4, 3.6). The regression model results provided insights on the role of different 

metabolites on RFI values of dairy cows. 

There is a potential for serum metabolites to be used as indicators of feed efficiency in dairy 

cows, however there are conditions to be met for practical use of metabolites. The strong 

relationship between metabolites and RFI must exist in large-scale dataset. This relationship 

must be seen in independent studies using data from different farms and labs. In other words, the 

strong phenotypic relationship between RFI and metabolites has to be reproducible. In addition, 

the indicator metabolites of RFI needs to have greater heritability than RFI. The most important 
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conditions to be met is less cost and ease of measurement of metabolites in comparison to 

conventional method of data collection of individual lactating cows along lactation.  

 

4.2 Study limitations and future works 

The number of metabolites that each metabolomic platform can identify and quantify from 

biological samples is limited. In this study, we analyzed only 33 metabolites that were above the 

limit of quantification (LOQ) from NMR platform. But that is not the whole set of metabolites 

that could be quantified in serum samples. There are other metabolomic platforms that can 

quantify more metabolites from serum samples. It is unknown if metabolite form other 

metabolomic platforms could provide better separation between high and low RFI lactating 

cows. Therefore, there could be better metabolite biomarkers associated with RFI in lactating 

dairy cows using other metabolomic platforms such as GC-MS, LC-MS etc. Future studies can 

work on the potential of metabolites as biomarkers from other metabolomic platforms for 

classification of high and low RFI lactating cows. 

This study was limited to metabolomics and did not use other biological biomarkers from other 

omics such as DNA, RNA, or protein data. This limitation made the biological pathway analysis 

impossible because of low number of metabolites that were significantly different between high 

and low RFI groups. Although promising classification result with clear separation was evident 

in our study, the number of significantly different metabolites only from NMR platform was not 

enough for further investigation of differences in biological pathways between RFI groups. 

Therefore, combination of serum metabolomics with serum proteomics and genomics may reveal 

biological pathways associated with feed efficiency in dairy cows. Some proteins have 

enzymatic role in biological reactions. Some are necessary for mitochondrial function and energy 



125 

metabolism. There are 71 differentially expressed proteins reported in liver tissue of high and 

low RFI beef cattle groups (Fonseca et al., 2019). Addition of proteomics to metabolomics will 

make biological interpretation of differences between high and low dairy RFI cows more 

reliable. Because the relationship between metabolites and proteins can be investigated. 

Furthermore, integrated analysis of metabolomics and genes will reveal biological networks 

associated with feed efficiency with more reliability than combining only two omics in pathway 

analysis. 

Future works can focus on the association of metabolite profile and RFI with similar design that 

we have done. This can validate the result of this study because a true validation can be done 

only by increase of sample size with similar experiment conditions. However statistical measures 

were taken before selection of adequate model in our study, future studies with similar 

experiment will determine reproducibility of results. The power of models for prediction using 

unseen data has been always influenced by sample size of population. Machine learning models 

such as PLS-DA and statistical models like linear regression both gain more prediction power 

with larger sample size. The advantage of future studies with considerably larger sample size 

will be narrower standard error for regression parameters. 

 

4.3 Conclusion 

Overall, this study showed how RFI and its component traits change along lactation and found a 

significant difference between high and low RFI cows and that this difference was stable or 

consistent during lactation. Candidate metabolite biomarkers that could classify high and low 

RFI groups of lactating cows with high accuracy were identified. We obtained AUC of 0.936, 

0.866, and 0.997 in ROC curve analysis using 2-3 metabolite concentration from serum samples 
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at 50, 150 and 240 DIM respectively. Furthermore, the prediction of individual RFI in lactating 

dairy cows using serum metabolite profiles from 50, 150 and 240 DIM was possible with cross-

validated R-squared of 0.52, 0.25, and 0.71 respectively. This is promising result that individual 

lactation RFI can be predicted with moderate accuracy 190 days before end of the trial 

considering the sample size of study. Further studies need to be done to validate this result with 

larger sample size. There is a strong potential to reduce costs and time related to regular 

recording of feed intake and production traits for indirect estimation of RFI. This study is a 

potentially important step forward for this development. 
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