
Received January 25, 2018, accepted February 28, 2018, date of publication March 5, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2812084

Fast Batched Solution for Real-Time
Optimal Power Flow With Penetration
of Renewable Energy
SHENGJUN HUANG 1,2, (Student Member, IEEE),
AND VENKATA DINAVAHI 1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
2College of Information System and Management, National University of Defense Technology, Changsha 410073, China

Corresponding author: Shengjun Huang (shengjun@ualberta.ca)

This work was supported by the Natural Sciences and Engineering Research Council of Canada. The work of S. Huang was supported by
the China Scholarship Council under Grant 201403170337.

ABSTRACT Renewable energy systems have become an integral part of modern power grid operation,
where the forecasting error is inevitable even though advanced prediction techniques are utilized. To improve
the solution efficiency and accuracy of real-time optimal power flow (RTOPF), a three-stage framework
for parallel processing is employed in this paper. In Stage 1, uncertainties from renewable generators and
demand loads are characterized with scenarios. Large numbers of RTOPFs corresponding to each scenario
are formulated and addressed in Stage 2, where the linear systems are regulated into the same sparsity
pattern and then tackled in a batched style with the graphics processing unit (GPU). Results from Stage 2 are
utilized in Stage 3 to perform a hot-start RTOPF, where the forecasting error can be minimized. Case studies
are implemented on the IEEE 14-bus, 57-bus, 118-bus, and 300-bus systems with 1024 scenarios. The
superiority of the batched GPU solution has been validated by comparisons with regular GPU, parallel CPU,
and sequential CPU implementations. Discussions on the batch size and hot-start strategy are also presented.

INDEX TERMS Graphics processing unit, parallel processing, real-time optimal power flow, renewable
energy.

I. INTRODUCTION
Introduced by Carpentier in 1962 [1], Optimal Power Flow
(OPF) has been widely utilized to determine the optimal
settings of a power system to achieve various objectives. Due
to the variation of grid status, the device control instructions
should be updated timely, especially in the context of modern
smart grids, where the penetration of the intermittent Renew-
able Energy Generators (REGs) is remarkable. Therefore,
Real-TimeOPF (RTOPF) [2] is desired tomake fast decisions
for the compensating of fluctuations. Since forecasted values
of REG generation and demand load are employed as the
input of RTOPF, the output decisions should be utilized when
the forecasted values are still valid, i.e., the RTOPF solution
process should be so fast that the difference between fore-
casted and realized values is minimal. Otherwise, constraints
might be violated, resulting in the deterioration of RTOPF
solution. In order to address this concern, two directions can
be explored: increasing the prediction accuracy and accelerat-
ing the solution process. In terms of forecasting, two methods
are developed in the literature:

• Probabilistic method: Suppose the Probability Distri-
bution Functions (PDFs) of the uncertain demands and
REGs are given, the stochastic optimization problem
is formulated and addressed with Chance-Constrained
Programming (CCP) technique, which ensures that each
constraint will be satisfied in a predefined high probabil-
ity. The CCP is a relatively robust approach, neverthe-
less, it is complex and difficult to solve and; therefore,
its application is usually restricted to long-term off-line
optimization [3]–[5].

• Deterministic method: Instead of performing the pre-
diction with historical data and mathematical statistical
model, different types of sensors designed for tempera-
ture, luminance, and wind speed, etc., can be widely uti-
lized for observing. Since the obtained data set consists
of fixed real values rather than PDFs, a deterministic
optimization problem can be formulated, whose solution
is easier and more accurate when compared with its
probabilistic counterpart. The detailed solution process
will be elaborated in the following paragraphs.

13898
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4703-9020
https://orcid.org/0000-0001-7438-9547

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

FIGURE 1. Traditional implementation framework of RTOPF.

Based on the above analysis, the deterministic method is
employed for the solution of RTOPF. As reported in [6]–[8],
the RTOPF is carried out in every 5–15 min intervals based
on the static snapshot forecasted data. Fig. 1 illustrates the
traditional implementation framework of RTOPF. At the
beginning of each interval i, RTOPFi is carried out to produce
the control decisions for interval i+1. Theoretically, the real-
time observed dataset Oi+1 should be utilized as the input
for RTOPFi since the decision is made for interval i + 1.
Nevertheless,Oi+1 cannot be gathered until ti+1, i.e., utilizing
Oi+1 at ti is not achievable. Therefore, forecasted dataset Fi
is generated for the substitution of Oi+1. Since Fi is derived
from Oi, and Oi is different from Qi+1 as their time-stamps
are various, therefore the variation between Fi and Oi+1
is inevitable, and it goes higher as the length of interval
increases. In order to mitigate the forecasting error associ-
ated with REGs and loads, a lot of research effort has been
put on the development of advanced physical and statistical
algorithms, such as conditional kernel density estimation [9],
cooperative control [10], artificial neural network [11]–[13],
fuzzy-based methods [14], and numerical weather prediction
grids [15], etc.

The aforementioned methodologies provide one promising
direction to improve the accuracy of deterministic RTOPF;
however, the prediction technique is approaching to its maxi-
mum capability. Therefore, further improvements from other
directions have been explored. In [6], the regular RTOPF
scheduling interval (10 min) has been divided into several
subintervals (1 min) based on the introduction of partici-
pation factors for each generator. The time resolution has
been enhanced, thus the prediction error was reduced. On the
other hand, acceleration on the solution process of RTOPF
is also constructive for the reduction of the length of inter-
vals in Fig. 1. The projected gradient descent was employed
for on-line OPF in [16], where good performance has been
reported for both solution efficiency and global convergence.
Reference [17] combines the genetic algorithm and two-point
estimate method to effectively tackle the uncertainties. Quasi-
Newton method is resorted to developing a real-time algo-
rithm for ACOPF in [18], where the second order information
is utilized to provide suboptimal solutions on a fast timescale.

Although these methods are valid and beneficial, they
share one common limitation that Fi in Fig. 1 is directly
utilized to represent Oi+1, i.e., there is an implicit hypothesis
that the forecasted data set is 100% acceptable during each
interval, which may not always be true. To address this issue,

several Fi were generated to predict Qi+1 in [19]. By solving
different RTOPFs corresponding to each Fi, a lookup table
was maintained. At time ti+1, the Oi+1 is available, then the
closest Fi can be determined, thus quick decisions can be
made by indexing the lookup table. This solution framework
is beneficial to minimize the forecasting error between Fi
and Oi+1; however, the intensive computational burden due
to large numbers of Fi consists one of its greatest drawbacks,
thus only 2 REGs and 49 scenarios were considered in [19].
In addition, the difference between Fi and Oi+1 might still be
large after minimization.

To address these two concerns, the Graphics Processing
Unit (GPU) is introduced in this work for the acceleration
of lookup table formulation since RTOPFs corresponding to
each Fi are independent and can be solved in parallel. Based
on this table and the realization of Oi+1, the result corre-
sponding to the closest Fi is selected and utilized as the initial
point for a RTOPF based on Oi+1, i.e., a hot-start RTOPF is
implemented. GPU stimulates the solution process of RTOPF
in a batched style, whose superiority over regular CPU and
GPU implementation is validated with case studies. Hot-start
eliminates the variation between Fi and Oi+1 because the last
RTOPF is actually designed for Oi+1, and the solution time
is very short due to the high quality of start point. As a High-
Performance Computing (HPC) platform, GPU has been
previously used for developing parallel solution algorithms
for various power system studies, such as transient stability
simulation [20], [21], electromagnetic transient simulation
[22], [23], ionized field computation [24], and dynamic state
estimation [25], [26]. In addition, GPU has been harnessed
to accelerate the solution of OPF by [27], [28]; however,
batched implementation is not related and the uncertainty
of REGs and loads are not considered. To the best of our
knowledge, utilizing GPU to improve the accuracy of the
forecasting data for RTOPF with REGs has not been reported
before. In addition, implementation strategies and batch sizes
are investigated and discussed.

The proposed framework has several distinct features:
• It minimizes the forecasting error by the integration of
GPU acceleration and hot-start strategy, which provides
a potential for the solution of RTOPF with REGs.

• It scrutinizes the uncertainty of REGs and loads with
scenarios, where scenario reduction algorithms can be
utilized to control the size, which has a close relationship
with the hot-start strategy, i.e., the larger the size, the less
iteration of hot-start RTOPF solution, and vice versa.

VOLUME 6, 2018 13899

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

• It can be implemented on either pure CPU or heteroge-
neous CPU-GPU architectures, where several details are
referable for other applications, such as regulation rules
for heterogeneous computing and data reusing schemes
for the batched solution.

• It provides different configurations to address specified
problems, including various fill-in reduction algorithms,
platforms, and batch sizes.

The rest of this paper is organized as follows. Section II
formulates the RTOPF problem and uncertainty. Section III
develops the GPU-based parallel implementation frame-
work of RTOPF with the batched mode. Case studies and
discussions are provided in Section IV. Conclusions and
future works are provided in Section V. Finally, the Primal-
Dual Interior Point Method (PDIPM) is briefly reviewed in
Appendix A to facilitate the description of GPU implementa-
tion in Section III.

II. MATHEMATICAL FORMULATION
This section introduces the definition and formulation of clas-
sical RTOPF, where all the utilized variables and parameters
are defined in the nomenclature. To achieve the efficiency and
accuracy, a three-stage process is developed for the solution
of RTOPF with REGs, where scenario reduction algorithm
and hot-start strategy will be employed.

A. NOMENCLATURE
Nb, Nl Set of buses and lines.
Ng, Nr Set of buses where thermal and renewable

generators are integrated.
ag, bg, cg Coefficients of the quadratic cost function of

generator g.
PGg , Q

G
g Active and reactive power output of thermal

generator g.
PRr , Q

R
r Active and reactive power output of REG r .

PDi , Q
D
i Active and reactive power demand of bus i.

Gij, Bij Transfer conductance and susceptance between
buses i and j.

Vi, Vj Voltages magnitude at node bus i and j.
PG0g Active power output of generator g in the

previous subinterval.
fij Power flow on line ij.
θij Voltage angle difference between buses i and j.
θi, θj Voltage angle at node bus i and j.
down, up Ramp down and up limits of thermal generator.
min, max Lower and upper limits of specified variables.

B. OPTIMIZATION MODEL
The RTOPF is expressed as ‘‘determining the thermal gener-
ator output to minimize the total operation cost based on the
forecasted power output of REGs, demand loads, and current
status of thermal units’’.

1) OBJECTIVE FUNCTION
The OPF can be designed to optimize a wide range of
goals [29], such as total generation cost, system loss, and

emission, etc. The operation cost of the generator is deter-
mined for optimization in this work, which is expressed by a
quadratic function as follows:

minF =
∑

g∈Ng

[
ag
(
PGg
)2
+ bgPGg + cg

]
. (1)

2) NODAL POWER BALANCE CONSTRAINTS
The active and reactive power balance on bus i ∈ Nb can be
written as:

PGi + P
R
i − P

D
i = Vi

∑
j∈Nb

Vj(Gij cos θij + Bij sin θij), (2)

QGi + Q
R
i − Q

D
i = Vi

∑
j∈Nb

Vj(Gij sin θij − Bij cos θij). (3)

If i /∈ Ng or i /∈ Nr , then PGi = QGi = 0 and PRi = QRi = 0,
respectively. It should be noted that the intersection ofNg and
Nr may not be empty.

3) GENERATOR CAPACITY CONSTRAINTS
For generator g ∈ Ng, its active and reactive power output
are limited, which can be expressed as:

PG,ming ≤ PGg ≤ P
G,max
g , (4)

QG,ming ≤ QGg ≤ Q
G,max
g . (5)

4) RAMP RATE CONSTRAINTS
The ramp rate limit of generator g ∈ Ng is considered as
follows:

PG0g − R
G,down
g ≤ PGg ≤ P

G0
g + R

G,up
g . (6)

5) VOLTAGE DEVIATION CONSTRAINTS
The voltage magnitude at bus i ∈ Nb is restricted by its lower
and upper limits:

Vmin
i ≤ Vi ≤ Vmax

i . (7)

6) LINE SECURITY CONSTRAINTS
The maximum power flow on line ij ∈ Nl should not exceed
its capacity for security concerns:

f minij ≤ fij ≤ f
max
ij . (8)

In [30], the constraints (8) have been proven to be practi-
cally equivalent to (9).

θminij ≤
(
θij = θi − θj

)
≤ θmaxij . (9)

C. UNCERTAINTY MANAGEMENT
It should be noted that in the above equations (2)–(3),
the terms PRi , P

D
i , Q

R
i , and Q

D
i are fixed forecasted values

of the next interval. Practically, the output of REG is greatly
dependent on the meteorological data [32], such as solar
irradiation and wind speed. Fig. 2 gives an example at NREL
Solar Radiation Research Laboratory (latitude 39.74◦N, lon-
gitude 105.18◦W, elevation 1829m, and time zone GMT-7)

13900 VOLUME 6, 2018

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

FIGURE 2. Daily solar irradiation (global CMP22) and wind speed (height 19ft) at NREL
Solar Radiation Research Laboratory on May 2, 2017 [31].

FIGURE 3. Illustration of scenarios for the power output of REGs.

on May 2, 2017 [31]. It can be seen that, for hours resolu-
tion, the fluctuation is large and random, i.e., the prediction
accuracy is not guaranteed. In the sub-figure, the variation
is depicted in every minute, which is more stable and easier
to forecast. In this paper, although the decision interval is
determined as 30s, the prediction accuracy is still limited.
Therefore, additional enhancement might be required.

Consider the forecasted active power output of REG r is
PRr , probable scenarios around P

R
r are also likely to be real-

ized, such as (1±q)PRr , where q can be 5%or 10%. Take Fig. 3
as an example, picking one value of these 3 high probable
estimations of each REG, a scenario can be generated. It is
obvious that the total number of scenarios is 3nr if there are
nr REGs, which will increase sharply if the dynamics of loads
and more values of q are considered. For each scenario, there
will be one RTOPF to be built and addressed. More scenarios

represent higher accuracy, but the computation may be exces-
sive. Thus, scenario reduction strategies should be employed
to strike a balance between the heavy computational burden
and prediction accuracy.

Fig. 4 demonstrates the stages of the whole solution
process of RTOPF with REGs integrated. Stage 1 is
devoted to scenario preparation, where the utilized pre-
diction algorithm and scenario reduction strategy are out
of the scope of this paper, for more details please refer
to [15], [33], and [34]. RTOPF formulation and solution
is performed in Stage 2, where the heaviest computation
resources are consumed. To achieve high solution efficiency,
GPU-based acceleration techniques will be introduced in
this paper. Stage 3 is designed to refine the solution spec-
ified from the look-up table and eliminate the forecasting
error.

VOLUME 6, 2018 13901

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

FIGURE 4. Three-stage solution process of the hot-start RTOPF with REGs.

III. PARALLEL IMPLEMENTATION ON GPU
This section summarizes general features of Nvidiar GPU
architecture and heterogeneous computing, with processing
flow and instruction rules are described. According to these
regulations, a detailed parallel implementation scheme of
PDIPM for the solution of RTOPF is elaborated based on
the details given in Appendix A. Finally, the batched linear
solver is presented. Other types of GPU architectures, such
as AMDr, are out of the scope of this paper.

A. GPU AND COMPUTE UNIFIED DEVICE ARCHITECTURE
Initially designed for graphic and image processing, GPU has
been introduced for the general-purpose scientific computing
in recent years [35]. Its popularity on HPC community was
soared by the release of Nvidiar Compute Unified Device
Architecture (CUDA) [36]. In CUDA, the function designed
for GPU implementation is named as kernel. Different from
regular C function where one call means one execution,
the kernel can be executed simultaneously by multipleCUDA
threads with one call. As shown in Fig. 5, the threads are
organized in a three-level hierarchy, i.e., each thread is con-
tained in a block and many block consist of a grid. During
execution, the dimensions of grid and block are specified,
as well as their indices, thus each thread can be uniquely
identified and controlled. The CUDA programming model is
heterogeneous, i.e., all the kernels execute on GPU while the
rest of the C program run on CPU. In addition, the host and
device memories are logically separated. CUDA threads can
access the device memory during execution, including local
memory, shared memory, global memory, etc. CPU thread
manages the bilateral data transfer between the host and
device memory via the API function cudaMemcpy(), which
is physically performed by PCIe interface. Based on these
restrictions, a brief processing flow is given in Fig. 5.
In GPU, each thread is executed on one CUDA core,

an arithmetic unit contained in the Streaming Multiprocessor
(SM). The SM receives computation task in the unit of block.
Each thread in one block can be concurrently executed in
one SM, and one SM can also take care of multiple blocks
at the same time. Different blocks are independent with each

FIGURE 5. CUDA thread hierarchy and processing flow.

other, while threadswithin one block can cooperate via shared
memory and barrier.

B. RULES FOR HETEROGENEOUS COMPUTING
Although GPU has far more cores than CPU, its frequency
is significantly lower than CPU core and several important
features are missing, such as interrupts and virtual mem-
ory; therefore, GPU may not always outperform CPU [37].
Actually, the GPU is productive in the manipulation of large
amounts of data with many streams, while the CPU excels at
doing complex operations on a small set of data.

The SM organizes threads in groups of 32 and called
warps. If all 32 threads in a warp are on the same path,
the execution is coherent and efficient [36]. On the other
hand, if divergence occurred on the data-dependent condi-
tional branch, each thread will be checked individually and
sequentially, i.e., parallelism is limited. Similarly, the warp
memory access share the same characteristic. If the target
address of all 32 threads is successive, the coalesced memory
request will be performed; otherwise, up to 32 requests may
be launched. The memory access pattern consists one of
the most important obstacles for the performance of GPU
computing [38]. The GPU-accelerated libraries provided by
Nvidiar contribute to a potential. With minimal changes,
one can integrate them into the domestic code. Since these
libraries are highly optimized, the performance is usually
remarkable [28]. It should also be noted that the bandwidth of
PCIe is relatively slow and might be the bottleneck for data-
intensive problems [36].

Based on the above analysis, three rules for heterogeneous
computing is generated as follows:
• Rule 1: Allocate computational intensive task to GPU,
and leave data-dependent conditional branches for CPU;

• Rule 2: Utilize the coalesced memory access pattern
on device memory, and introduce the highly tuned and
optimized libraries if it is possible;

13902 VOLUME 6, 2018

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

FIGURE 6. The execution time proportion of different operations of PDIPM.

FIGURE 7. Parallel implementation flowchart of concurrent PDIPM with heterogeneous architecture.

• Rule 3: Minimize the amount of data transferred
between CPU and GPU.

C. IMPLEMENTATION FLOWCHART
According to Fig. 4, a set of RTOPFs corresponding to dif-
ferent scenarios should be solved in Stage 2. Since they are
mutually independent, parallel implementation is introduced
for concurrent solution in this subsection. Fig. 6 illustrates

the proportion of execution time for different operations in
a single PDIPM. It is obvious that the linear system (24)
solution is the most intensive computational task, which con-
sumesmore than 80%of thewhole execution time. Therefore,
based on Rule 1, this process should be distributed to GPU.
kernel 2 in Fig. 7 achieved this goal. Although the runtime of
matrix preparation and parameter updating in Fig. 6 are less,
and few data-dependent conditional branches are involved,
they are executed on GPU with kernels 1 and 3 respectively

VOLUME 6, 2018 13903

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

Algorithm 1 Horizontally Concatenating of Two Matrices
C = [A | B] in CSR Format (P, I , X , m, n, z)
1: if mA 6= mB then
2: Return ‘‘dimension mismatch’’ message.
3: else
4: Let mC = mA, nC = nA + nB, zC = zA + zB;
5: Set an indicator ind = 1;
6: for j = 1 · · · mA do
7: for p = PA(j)+ 1 · · · PA(j+ 1) do
8: Let IC (ind) = IA(p), XC (ind) = XA(p);
9: Update ind = ind + 1;

10: end for
11: for p = PB(j)+ 1 · · · PB(j+ 1) do
12: Let IC (ind) = IB(p)+ nA, XC (ind) = XB(p);
13: Update ind = ind + 1;
14: end for
15: Let PC = PA + PB (this is a vector addition).
16: end for
17: end if

in Fig. 7 to minimize the data exchange between host and
device (Rule 3), resulting in that the transferred data in each
iteration is only the binary indicator for termination.

At the beginning, data preparation will be conducted on
CPU. After data copying, kernel 1 will be launched by the
instructions from CPU main thread. The execution of ker-
nel 1 is simultaneous with blocks, where each block cor-
responds to one scenario. Within one block, a maximum
number of 1024 threads can be called for parallel processing.
In CUDA, there is an implicit barrier between different ker-
nels. Therefore, kernel 2 will not be executed until the matrix
preparation processes for all scenarios are finished. This bar-
rier facilitates the utilization of batched solver for the solution
of linear systems in kernel 2, which will be exemplified in
the next subsection. Similarly, the barrier between kernels 2
and 3 guarantees all intermediate results from linear system
solution have been updated for each scenario. The thread
organization pattern in kernel 3 is the same with kernel 1.
The termination judgment of (36) – (37) will be performed
in kernel 3 and an indicator will be generated. Finally, CPU
will copy that indicator from device to host memory when
all blocks finished the calculation. The CPU will terminate
the whole solution process if the termination criteria has been
met; otherwise, execution instructions will be sent to kernel 1
by CPU to start a new iteration. It should be noted that all the
intermediate data produced or updated by kernels are stored
in devicememory, thus the data exchange has beenminimized
and the barrier is required.

D. KERNELS DESIGN
In this paper, all vectors are dense, whereas all matrices

are sparse and stored with Compressed Sparse Row (CSR)
format as follows:

A = (PA, IA, XA, mA, nA, zA),

Algorithm 2 Vertically Concatenating of Two Matrices C =[A
B

]
in CSR Format (P, I , X , m, n, z)

1: if nA 6= nB then
2: Return ‘‘dimension mismatch’’ message.
3: else
4: Let nC = nA, mC = mA + mB, zC = zA + zB;
5: Let IC = [IA, IB] , XC = [XA, XB];
6: Let PC = [PA(1 · · · mA), PA(mA + 1)+ PB].
7: end if

FIGURE 8. Demonstration of CSR format.

where mA, nA, and zA are the numbers of rows, columns, and
nonzero elements; PA, IA, and XA are vectors with sizes of
mA + 1, zA, and zA, respectively. An illustrative example is
given in Fig. 8.

1) KERNELS 1 AND 3
Data preparation and updating are the main tasks for
kernels 1 and 3, where a lot of basic operations are involved,
including matrix/vector element updating, matrix/vector
addition, matrix-matrix/matrix-vector multiplication, matrix
transposing, minimizing, and summation, etc. In order to
achieve the best performance, a lot of investigation has been
conducted to achieve the coalesced access pattern based on
thread origination and shared memory utilization [39]–[41].
In this work, mature strategies reported in the literature are
widely consulted and employed.

In addition to the basic operations, horizontally and ver-
tically matrices concatenating are also involved in kernel 1,
e.g.,

[
M | GTX

]
and

[
M
GX

]
. Algorithms 1 and 2 illustrate the

detailed steps of these two operations in the CSR format,
whose parallel implementation is also conducted within each
block based on the techniques discussed above. Line 6 in
Algorithm 2 consists of the following operations: 1)PA(mA+
1) + PB: add the (mA + 1)th element of vector PA into each
entry of vector PB; 2) [PA(1 · · · mA), PA(mA + 1)+ PB]:
combine the (1 · · · mA) elements of vector PA with the
updated vector PB into one whole vector.

2) KERNEL 2
As shown in Fig. 7, a set of linear systems with different
coefficient matrices and vectors should be solved by kernel 2.
For simplicity, they are denoted as Ajxj = bj (j = 1, 2, ...,N)
in the following, where N is the number of linear systems.
In order to follow the Rule 2, cuSolver library [42] is intro-
duced for the solution of Ajxj = bj on GPU. Table 1 sum-
marizes different types of factorization methods provided by

13904 VOLUME 6, 2018

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

FIGURE 9. Performance illustration of RCM and AMD (X and Y axis correspond to the dimensions of each
matrix; dot means that point is a nonzero entry).

TABLE 1. Accessible factorization methods of cuSolver in various modes.

cuSolver in various modes. In CPU and GPU regular mode,
Ajxj = bj will be solved one-by-one in cuSolver kernels.
Although these kernels are highly optimized, the task switch-
ing between different linear systems is inevitable, resulting
the whole solution efficiency is limited. On the other hand,
the GPU batched mode can solve all the N linear systems
Ajxj = bj at the same time with only one call, thus full
potential of GPU resources are utilized and the solution
efficiency is highly improved. Based on the above analysis,
the QR factorization is determined in this paper for the linear
equations solution since it is the only method that supported
by cuSolver in the GPU batched mode. The batched mode
requires all the coefficient matrices have the same sparsity
pattern, thus adjusting has been made on different matrices Aj
in the same iteration as well as different iterations by adding
zero values. By doing that, PA1 = PA2 = ... = PAN and
IA1 = IA2 = ... = IAN can be achieved. The basic steps of
batched QR solution is depicted as follows:

• Prepare Abatch: Summarize all the individual matrices
Aj into one batched matrix Abatch,

Abatch = {PA1 , IA1 , Xbatch, mA1 , nA1 , zA1},

where vector Vbatch stores the nonzero elements of Aj
one after another, i.e., Xbatch =

[
XA1 , XA2 , . . . , XAN

]
.

• Generate permutation array q: Generally, there will
be extra nonzero entries named fill-ins appeared after the
factorization, which demands extra memory space and
more arithmetic operations. Fortunately, its number can
be greatly reduced by matrix reordering, where a permu-
tation array q is required. In this work, two algorithms,
Reverse Chthill-Mckee (RCM) [43] and Approximate
Minimum Degree (AMD) [44], are considered, whose
intuitive performance is illustrated in Fig. 9, where the
‘nnz’ is the number of nonzero fill-ins.

• Reorder Abatch: The fill-ins reduction is performed by
reordering Abatch into

Bbatch = QAbatchQT ,

where Q is derived from q.
• Symbolic analysis of Bbatch: This process is utilized
to determine the sparsity pattern of lower and upper
triangle matrices of QR factorization, which will be
applied for the parallelism extraction and working space
allocation.

• Numerical factorization for Bbatch: This step is per-
formed by all CUDA cores in the GPU with inten-
sive parallelism. The generated solution xbatch should
be reordered according to q before utilization in the
following steps.

IV. CASE STUDIES
A. NETWORK AND INPUT DATA
The case studies are carried out on four benchmark systems
modified from Matpower [45], including IEEE 14-bus, IEEE
57-bus, IEEE 118-bus, and IEEE 300-bus test cases, where
2, 4, 10, and 25 REGs are integrated to substitute thermal

VOLUME 6, 2018 13905

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

TABLE 2. Execution time of RTOPF with different platforms (s).

TABLE 3. Speedup of different methods over regular CPU
implementation.

generators. For each system, 1024 scenarios are generated at
the beginning of each interval based on the meteorological
data [46], REG parameter [19], and load profile [18], where
time granularity adjusting, data normalization, and scenario
reduction processes are employed.

All of these 1024 RTOPFs are tackled by a PC equipped
with Intel Xeon E5-2620 CPU and Nvidiar GeForce GTX
1080 GPU. The programming environment is Visual Studio
2015 running onWindows 8.1 operating system. For simplic-
ity, only one interval is conducted for comparison.

B. PERFORMANCE COMPARISON
In order to validate the performance of the framework devel-
oped in Section IV, four types of implementations are com-
pared:

• Regular CPU: All scenarios are solved one-by-one, and
the steps shown in Fig. 7 is sequentially executed for
each scenario. In terms of linear equations solution,
the sparse solver Csparse developed in [44] is utilized.

• Parallel CPU: All scenarios are solved in parallel based
on the OpenMP Application Programming Interface
(API) with each thread corresponding to one scenario.
Within each scenario, the solution process is the same
with regular CPU implementation, i.e., sequential and
Csparse. In the case study, 12 threads are launched.

• Regular GPU: Parallel implementation on GPU accord-
ing to the flowchart given in Fig. 7 except that the ker-
nel 2 is performed by cuSolverQR factorization without
batched mode enabled.

• Batched GPU: Parallel implementation on GPU with all
the proposals shown in Section IV employed, including
the batched QR factorization of cuSolver. The batch size
is set at 1024 in case studies.

Although two types of fill-in reduction algorithms are con-
sidered and their performance on the 57-bus system shown
in Fig. 9 is similar, the execution time of AMD is shorter
in all test systems; therefore, the AMD is finally utilized for
all the above four implementation schemes. Tables 2 and 3

summarize themain results for the solution time and speedup,
where 1024 scenarios are considered for each test system.

1) RESULTS ON CPU PLATFORM
In [8], the execution for a 41-bus system with 49 scenarios
is about 80s on CPU. Although the computation platforms
are different, the results reported in Table 2 with regular CPU
implementation are comparable, e.g., 106.95s is consumed
for 57-bus system with 1024 scenarios. Nevertheless, it is
far away from real-time application. Therefore, parallel com-
puting with OpenMP is carried out on CPU with 12 threads
enabled, resulting in the speedups from 8.95 to 10.20 for
various test systems. It can be seen from Table 3 that the
speedup is higher for larger system, which is partially due to
the contradiction between overhead of thread switching and
numerical calculation (larger system has heavier computation
load). Fig. 10 demonstrates the achieved speedups for various
systems with different numbers of threads launched. It is
observable that the marginal profit gained by thread addition
is diminishing, e.g., a speedup of 1.91 can be obtained by
2 threads for 14-bus system, whereas that number is only
8.95 for 12 threads. The reason is still related to the workloads
of each scenario.

2) RESULTS ON GPU PLATFORM
AlthoughGPUhas a smaller frequency thanCPU, the number
of concurrent threads is much larger, thus the execution time
is shorter than parallel CPU as shown in Table 2. In order
to further improve the solution efficiency, batched mode is
introduced, whose solution process is illustrated in Fig. 11 as
well as the regular QR factorization. Both modes take 5 steps
summarized in Section IV.D to solve a single or one bunch
scenarios in iteration 1. Since the sparsity pattern of different
coefficient matrices is tuned as the same on the batched QR,
the results of reorder vector q and symbolic analysis are
reusable, thus a lot of effort has been saved as highlighted
with � in Fig. 11. As reported in Table 3, the utilization of
batched mode has doubled the speedup obtained by regular
GPU implementation.

C. DISCUSSIONS
Apart from the above results on the solution time and
speedup, the following discussions are given on two different
topics.

1) BATCH SIZES
To intensively investigate the performance, different batch
sizes are utilized for the solution of case 300-bus. The result is
depicted in Fig. 12. The total execution time reduced quickly
from 85.05s to 42.21s with the batch size increased from 1 to
256, validating the superiority of the batched mode. If the
batch size keeps increasing, the runtime still decreases, but
the rate is limited, indicating that the full potential of GPU
is approaching. Since the fastest improvement occurs at the
beginning rather than the later stage, one can use smaller
batch size to increase the capability for larger systems with

13906 VOLUME 6, 2018

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

FIGURE 10. Achieved speedups by OpenMP on various test systems with different numbers of threads enabled.

FIGURE 11. Solution process comparison between the regular and
batched QR factorization.

TABLE 4. Effectiveness of the initiated solution based on different
numbers of scenarios for the hot start linear system.

little sacrifice of efficiency. For example, the solution time
increased 11.67% by reducing the batch size from 2014 to
256 in Fig. 12.

2) HOT START
Table 4 summarizes the numbers of iterations for the final hot
start linear system of case 118-bus on the basis of different

FIGURE 12. Execution time of case 300-bus with different batch sizes (1,
32, 64, 128, 256, 512, 1024).

numbers of scenarios. It is observable that the quality of
the initiated solution is higher with more scenarios since the
numbers of iterations before convergence is less. On the other
hand, fewer iterations means that the initial solution is close
to the final one, which can also be explained that the require-
ment for hot start strategy is more urgent for the circumstance
with fewer scenarios. In order to gain better performance,
one can increase the number of scenarios; however, there
is a saturation point, after which the performance cannot be
advanced. In the 118-bus case, that point is 512.

V. CONCLUSION
In order to minimize the forecasting error related with REGs
and demand loads during the solution of RTOPF, a three-stage

VOLUME 6, 2018 13907

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

framework is employed in this paper. Scenarios are generated
and filtered in Stage 1 to characterize the uncertainty. Stage
2 tries to minimize the prediction interval by GPU acceler-
ation, where heterogeneous computing with batched linear
solver is implemented. Hot-start strategy is introduced in
Stage 3 to eliminate the prediction error. Comparison between
CPU and heterogeneous CPU-GPU platforms are imple-
mented on the IEEE 14-bus, 57-bus, 118-bus, and 300-bus
systems, where both regular and batched solution schemes
are included. The results validate the superiority of batched
GPU over regular GPU, parallel CPU, and sequential CPU.
Future work will investigate the saturation point related with
scenario size and hot-start strategy, as well as other types of
batched linear solver. Fuzzy-based methods for uncertainty
addressing will also be considered.

APPENDIX
PRIMAL-DUAL INTERIOR POINT METHOD
In Section III, the nonlinear programming problem RTOPF is
addressed with PDIPM [47]. In order to facilitate the descrip-
tion of GPU implementation, the solution process of PDIPM
is reviewed in this section. The notations are summarized at
the beginning, then the derivations are presented.

A. NOTATIONS
Given a real vectorX = [x1, x2, . . . , xn]T , the first (transpose
of the gradient) and second partial (Hessian matrix) deriva-
tives of a scalar function f (X) : Rn

→ R is given as:

fX =
∂f
∂X
=

[
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

]
, (10)

fXX =
∂2 f
∂X2 =

∂2f

∂x21
. . .

∂2f
∂x1∂xn

...
. . .

...

∂2f
∂xn∂x1

. . .
∂2f
∂x2n

 . (11)

The vector function F : Rn
→ Rm is stated as F(X) =

[f1(X), f2(X), . . . , fm(X)]T , whose first derivatives (Jacobian
matrix) is:

FX =
∂F
∂X
=

∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . .
∂fm
∂xn

 . (12)

A matrix of partial derivatives of F(X) based on the vector
λ is:

FXX (λ) =
∂(FXTλ)
∂X

. (13)

Additionally, [X] represents a diagonal matrix whose diag-
onal elements are valued by vector X , and e is the vector with
all ones.

B. DERIVATIONS
For simplicity, the OPF problem (1)–(8) stated in Section II.B
can be rewritten into a compact form as follows:

min f (X), (14)

s.t. G(X) = 0, (15)

H (X) ≤ 0. (16)

where X is the vector [PG1 , . . . , P
G
n , Q

G
1 , . . . , Q

G
n , V1, . . . ,

Vm, θ1, . . . , θm]; functions f : Rn
→ R, G : Rn

→ Rp, and
H : Rn

→ Rq corresponds to (1), (2) – (3), and (4) – (7)
and (9), respectively.

By introducing a barrier function, a perturbation parame-
ter γ , and a positive slack vector Z , the problem is evolved
into:

min

[
f (X)− γ

q∑
i=1

ln(Zi)

]
, (17)

s.t. G(X) = 0, (18)

H (X)+ Z = 0, (19)

Z > 0. (20)

The Lagrangian function of this equality constrained prob-
lem (17)–(20) is:

Lγ = f (X)+ λTG(X)+ µT (H (X)+ Z)− γ
q∑
i=1

ln(Zi).

(21)

The first and second particle derivatives of (21) over X is
given as:

LγX = fX + GXλ+ HXµ, (22)

LγXX = fXX + GXX (λ)+ HXX (µ). (23)

Based on the Karush-Kuhn-Tucker conditions and Newton’s
method, the following iterative updating procedure can be
performed with initiated X , Z , λ, µ, and γ :
• Step 1: Compute 1X and 1λ according to:[

M GXT

GX 0

] [
1X
1λ

]
=

[
−N
−G(X)

]
, (24)

where

M = LγXX + HX
T [Z]−1[µ]HX , (25)

N = LγX
T
+ HXT [Z]−1(γ e+ [µ]H (X)). (26)

• Step 2: Compute 1Z and 1µ from:

1Z = −H (X)− Z − HX1X , (27)

1µ = −µ+ [Z]−1(γ e− [µ]1Z). (28)

• Step 3: Update variables X , Z , λ, and µ according to:

X = X + αp1X , (29)

Z = Z + αp1Z , (30)

λ = λ+ αd1λ, (31)

µ = µ+ αd1µ. (32)

13908 VOLUME 6, 2018

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

where the primal and dual scale factors αp and αd is
derived by the following equations with constant param-
eter ξ = 0.99995:

αp = min
(
ξ min
1Zi<0

(
−

Zi
1Zi

)
, 1
)
, (33)

αd = min
(
ξ min
1µi<0

(
−
µi

1µi

)
, 1
)
. (34)

• Step 4: Update perturbation parameter γ by the follow-
ing mechanism, where σ is set to 0.1:

γ = σ
ZTµ
q
. (35)

• Step 5: Terminate the solution process if convergent
criteria (36) – (37) are met, where f and f0 are the objec-
tive function value of the current and previous iterations
respectively; ε is valued as 1.0×10−6. Otherwise, go to
Step 1.

max{‖G(X)‖∞, ‖H (X)‖∞}
1+max{‖X‖∞, ‖Z‖∞}

< ε,
|f − f0|
1+ |f0|

< ε, (36)

‖LγX ‖∞
1+max{‖λ‖∞, ‖µ‖∞}

< ε,
Z ′µ

1+ ‖X‖∞
< ε.

(37)

REFERENCES
[1] J. Carpentier, ‘‘Contribution a letude du dispatching economique,’’ Bull.

Soc. Francaise Elect., vol. 3, no. 1, pp. 431–447, Aug. 1962.
[2] R. Bacher and H. P. Van Meeteren, ‘‘Real-time optimal power flow in

automatic generation control,’’ IEEE Trans. Power Syst., vol. 3, no. 4,
pp. 1518–1529, Nov. 1988.

[3] S. Xia, X. Luo, K. W. Chan, M. Zhou, and G. Li, ‘‘Probabilistic transient
stability constrained optimal power flow for power systems with multiple
correlated uncertain wind generations,’’ IEEE Trans. Sustain. Energy,
vol. 7, no. 3, pp. 1133–1144, Jul. 2016.

[4] D. Ke, C. Y. Chung, and Y. Sun, ‘‘A novel probabilistic optimal power
flowmodel with uncertain wind power generation described by customized
Gaussian mixture model,’’ IEEE Trans. Sustain. Energy, vol. 7, no. 1,
pp. 200–212, Jan. 2016.

[5] Z.-S. Zhang, Y.-Z. Sun, D. W. Gao, J. Lin, and L. Cheng, ‘‘A versatile
probability distribution model for wind power forecast errors and its appli-
cation in economic dispatch,’’ IEEE Trans. Power Syst., vol. 28, no. 3,
pp. 3114–3125, Aug. 2013.

[6] S. S. Reddy and P. R. Bijwe, ‘‘Day-ahead and real time optimal power
flow considering renewable energy resources,’’ Int. J. Electr. Power Energy
Syst., vol. 82, pp. 400–408, Nov. 2016.

[7] E. Mohagheghi, A. Gabash, and P. Li, ‘‘Real-time optimal power flow
under wind energy penetration—Part I: Approach,’’ in Proc. IEEE Int.
Conf. Environ. Elect. Eng., Florence, Italy, Jun. 2016, pp. 1–6.

[8] E. Mohagheghi, A. Gabash, and P. Li, ‘‘Real-time optimal power flow
under wind energy penetration—Part II: Implementation,’’ in Proc. IEEE
Int. Conf. Environ. Elect. Eng., Florence, Italy, Jun. 2016, pp. 1–6.

[9] R. J. Bessa, V. Miranda, A. Botterud, J. Wang, and E. M. Constantinescu,
‘‘Time adaptive conditional kernel density estimation for wind power
forecasting,’’ IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 660–669,
Oct. 2012.

[10] W. He and S. S. Ge, ‘‘Cooperative control of a nonuniform gantry crane
with constrained tension,’’ Automatica, vol. 66, no. 4, pp. 146–154,
Apr. 2016.

[11] A. Webberley and D. W. Gao, ‘‘Study of artificial neural network based
short term load forecasting,’’ in Proc. IEEE Power Energy Soc. Gen.
Meeting, Vancouver, BC, Canada, Jul. 2013, pp. 1–4.

[12] W. He, Y. Chen, and Z. Yin, ‘‘Adaptive neural network control of an
uncertain robot with full-state constraints,’’ IEEE Trans. Cybern., vol. 46,
no. 3, pp. 620–629, Mar. 2016.

[13] W. He, Z. Yan, C. Sun, and Y. Chen, ‘‘Adaptive neural network control
of a flapping wing micro aerial vehicle with disturbance observer,’’ IEEE
Trans. Cybern., vol. 47, no. 10, pp. 3452–3465, Oct. 2017.

[14] X. Xie, D. Yue, H. Zhang, and C. Peng, ‘‘Control synthesis of discrete-
time T–S fuzzy systems: Reducing the conservatism whilst alleviat-
ing the computational burden,’’ IEEE Trans. Cybern., vol. 47, no. 9,
pp. 2480–2491, Sep. 2017.

[15] J. R. Andrade and R. J. Bessa, ‘‘Improving renewable energy forecast-
ing with a grid of numerical weather predictions,’’ IEEE Trans. Sustain.
Energy, vol. 8, no. 4, pp. 1571–1580, Oct. 2017.

[16] L. Gan and S. H. Low, ‘‘An online gradient algorithm for optimal power
flow on radial networks,’’ IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 625–638, Mar. 2016.

[17] S. S. Reddy and J. A. Momoh, ‘‘Realistic and transparent optimum
scheduling strategy for hybrid power system,’’ IEEE Trans. Smart Grid,
vol. 6, no. 6, pp. 3114–3125, Nov. 2015.

[18] Y. Tang, K. Dvijotham, and S. Low, ‘‘Real-time optimal power flow,’’ IEEE
Trans. Smart Grid, vol. 8, no. 6, pp. 2963–2973, Nov. 2017.

[19] E. Mohagheghi, A. Gabash, and P. Li, ‘‘A framework for real-time optimal
power flow under wind energy penetration,’’ Energies, vol. 10, no. 4,
p. 535, Apr. 2017.

[20] V. Jalili-Marandi and V. Dinavahi, ‘‘SIMD-based large-scale transient
stability simulation on the graphics processing unit,’’ IEEE Trans. Power
Syst., vol. 25, no. 3, pp. 1589–1599, Aug. 2010.

[21] V. Jalili-Marandi, Z. Zhou, and V. Dinavahi, ‘‘Large-scale transient stabil-
ity simulation of electrical power systems on parallel GPUs,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 7, pp. 1255–1266, Jul. 2012.

[22] Z. Zhou and V. Dinavahi, ‘‘Parallel massive-thread electromagnetic tran-
sient simulation on GPU,’’ IEEE Trans. Power Del., vol. 29, no. 3,
pp. 1045–1053, Jun. 2014.

[23] Z. Zhou and V. Dinavahi, ‘‘Fine-grained network decomposition for mas-
sively parallel electromagnetic transient simulation of large power sys-
tems,’’ IEEE Power Energy Technol. Syst. J., vol. 4, no. 3, pp. 51–64,
Sep. 2017.

[24] P. Liu and V. Dinavahi, ‘‘Finite-difference relaxation for parallel compu-
tation of ionized field of HVDC lines,’’ IEEE Trans. Power Del., vol. 33,
no. 1, pp. 119–129, Feb. 2018.

[25] H. Karimipour and V. Dinavahi, ‘‘Extended Kalman filter-based paral-
lel dynamic state estimation,’’ IEEE Trans. Smart Grid, vol. 6, no. 3,
pp. 1539–1549, May 2015.

[26] H. Karimipour and V. Dinavahi, ‘‘Parallel relaxation-based joint dynamic
state estimation of large-scale power systems,’’ IET Gen., Transm. Distrib.,
vol. 10, no. 2, pp. 452–459, Feb. 2016.

[27] L. Rakai and W. Rosehart, ‘‘GPU-accelerated solutions to optimal power
flow problems,’’ in Proc. 47th Hawaii Int. Conf. Syst. Sci., Waikoloa, HI,
USA, Jan. 2014, pp. 2511–2516.

[28] G. Geng, Q. Jiang, and Y. Sun, ‘‘Parallel transient stability-constrained
optimal power flow using GPU as coprocessor,’’ IEEE Trans. Smart Grid,
vol. 8, no. 3, pp. 1436–1445, May 2017.

[29] J. Zhu, Optimization of Power System Operation, 2nd ed. Hoboken, NJ,
USA: Wiley, 2015.

[30] J. Lavaei and S. H. Low, ‘‘Zero duality gap in optimal power flow
problem,’’ IEEE Trans. Power Syst., vol. 27, no. 1, pp. 92–107,
Feb. 2012.

[31] NREL Solar Radiation Research Laboratory. (Jan. 1, 2015/Nov. 30, 2017).
Daily Plots and Raw Data Files. [Online]. Available: http://midcdmz.
nrel.gov/srrl_bms/

[32] W. He and S. S. Ge, ‘‘Vibration control of a nonuniformwind turbine tower
via disturbance observer,’’ IEEE/ASME Trans. Mechatron., vol. 20, no. 1,
pp. 237–244, Feb. 2015.

[33] Y.Wang, Y. Liu, and D. S. Kirschen, ‘‘Scenario reduction with submodular
optimization,’’ IEEE Trans. Power Syst., vol. 32, no. 3, pp. 2479–2480,
May 2017.

[34] E. Mohagheghi, A. Gabash, and P. Li, ‘‘A study of uncertain wind power in
active-reactive optimal power flow,’’ in Proc. Power Energy Stud. Summit,
Dortmund, Germany, Jan. 2016, pp. 1–6.

[35] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and
J. C. Phillips, ‘‘GPU computing,’’ Proc. IEEE, vol. 96, no. 5, pp. 879–899,
May 2008.

[36] CUDA C Programming Guide 8.0, NVIDIA, Santa Clara, CA, USA, 2017.
[37] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and

A. Shringarpure, ‘‘On the limits of GPU acceleration,’’ in Proc. USENIX
Conf. Hot Topics Parallelism, Berkeley, CA, USA, 2010, pp. 1–6.

VOLUME 6, 2018 13909

S. Huang, V. Dinavahi: Fast Batched Solution for RTOPF With Penetration of Renewable Energy

[38] G. Zhou et al., ‘‘GPU-accelerated batch-ACPF solution for N-1 static
security analysis,’’ IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1406–1416,
May 2017.

[39] N. Bell and M. Garland, ‘‘Efficient sparse matrix-vector multiplication on
CUDA,’’ NVIDIA Corp., Santa Clara, CA, USA, Tech. Rep. NVR-2008-
004, 2008.

[40] M. Aleem, R. Prodan, and T. Fahringer, ‘‘On the extension and evaluation
of the JavaSymphony for heterogeneous parallel computers,’’ in Proc. Int.
Conf. Parallel Process., Pittsburgh, PA, USA, Nov. 2012, pp. 1–11.

[41] D. Merrill and M. Garland, ‘‘Merge-based sparse matrix-vector multipli-
cation (SpMV) using the CSR storage format,’’ in Proc. ACM SIGPLAN
Symp. Principles Pract. Parallel Program., Barcelona, Spain, Mar. 2016,
pp. 1–2.

[42] CUSOLVER Library 8.0, NVIDIA, Santa Clara, CA, USA, 2017.
[43] J. R. Gilbert, C. Moler, and R. Schreiber, ‘‘Sparse matrices in MATLAB:

Design and implementation,’’ SIAM J. Matrix Anal. Appl., vol. 13, no. 1,
pp. 333–356, Jan. 1992.

[44] T. A. Davis, Direct Methods for Sparse Linear Systems. Philadelphia, PA,
USA: SIAM, 2006.

[45] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,
‘‘MATPOWER: Steady-state operations, planning, and analysis tools for
power systems research and education,’’ IEEE Trans. Power Syst., vol. 26,
no. 1, pp. 12–19, Feb. 2011.

[46] NREL. Measurement and Instrumentation Data Center (MIDC).
Accessed: Aug. 9, 2017. [Online]. Available: http://www.nrel.gov/midc/

[47] H. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas,
‘‘On computational issues of market-based optimal power flow,’’ IEEE
Trans. Power Syst., vol. 22, no. 3, pp. 1185–1193, Aug. 2007.

SHENGJUN HUANG (S’14) received the B.Sc.
and M.Sc. degrees in management science
and engineering from the National Univer-
sity of Defense Technology, Changsha, China,
in 2011 and 2013. He is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Alberta,
Edmonton, AB, Canada. His research inter-
ests include mixed-integer linear programming,
decomposition algorithms, large-scale power sys-

tems, and parallel computing.

VENKATA DINAVAHI (SM’08) received the
Ph.D. degree in electrical and computer engi-
neering from the University of Toronto, Canada,
in 2000. He is currently a Professor with the
Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB,
Canada. His research interests include real-time
simulation of power systems and power electronic
systems, large-scale system simulation, and paral-
lel and distributed computing.

13910 VOLUME 6, 2018

	INTRODUCTION
	MATHEMATICAL FORMULATION
	NOMENCLATURE
	OPTIMIZATION MODEL
	OBJECTIVE FUNCTION
	NODAL POWER BALANCE CONSTRAINTS
	GENERATOR CAPACITY CONSTRAINTS
	RAMP RATE CONSTRAINTS
	VOLTAGE DEVIATION CONSTRAINTS
	LINE SECURITY CONSTRAINTS

	UNCERTAINTY MANAGEMENT

	PARALLEL IMPLEMENTATION ON GPU
	GPU AND COMPUTE UNIFIED DEVICE ARCHITECTURE
	RULES FOR HETEROGENEOUS COMPUTING
	IMPLEMENTATION FLOWCHART
	KERNELS DESIGN
	KERNELS 1 AND 3
	KERNEL 2

	CASE STUDIES
	NETWORK AND INPUT DATA
	PERFORMANCE COMPARISON
	RESULTS ON CPU PLATFORM
	RESULTS ON GPU PLATFORM

	DISCUSSIONS
	BATCH SIZES
	HOT START

	CONCLUSION
	NOTATIONS
	DERIVATIONS

	REFERENCES
	Biographies
	SHENGJUN HUANG
	VENKATA DINAVAHI

