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Abstract

The time evolution of a two dimensional incompressible, density stratified, Boussi-

nesq flow in a rectangular cavity is numerically simulated for a range of parameters.

Boundary control is then implemented along the upper boundary by adjusting the

fluid density. More specifically, the top boundary condition of the cavity is a fixed

function of space that is modulated by the control input. The resulting numerical

simulation for the fluid density and velocity is computed using finite differences in the

vertical direction and a spectral method in the horizontal direction. To develop the

control strategy, the flow is simulated and a sequence of snapshots of the density and

velocity fields are collected. Then, a reduced order modelling method suitable for a

linear quadratic regulator (LQR) of the Boussinesq flow is developed using the proper

orthogonal decomposition (POD)/Galerkin approach. The reduced order model is ob-

tained by projecting the governing equations of the flow onto the sub space spanned

by a finite number of basis functions obtained using the method of snapshots. For

the flow in question, the POD method based on the snapshots yields 6 POD modes

which capture 99% of the flow energy. In turn, the boundary control is transferred

to the governing equations using Duhamel’s principle so that the resulting equations

contain the control input.

The feasibility of this method is assessed using a LQR boundary controller that is

designed based on the reduced order model. The cost functional which is minimized

in the LQR control design is defined to be the squared norm of the difference between

the actual density field and the desired density field in the cavity. The weighting

parameter of the cost functional is found to play a critical role in the process of

controller design. To judge the effectiveness of the control, two metrics ηa and ηr

are introduced. ηa denotes the absolute effectiveness of the LQR controller and is

a metric of the controller’s ability to drive the system to the final desired state.
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Conversely ηr denotes the relative effectiveness of the LQR controller and is a metric

of the improvement of the LQR controller compared to an open-loop controller. For

the control cases tested, the LQR controller is found to have ηa = 96.7% and ηr =

22.2% in the best case for the steady state starting configurations, and ηa = 99.3%

and ηr = 47.9% for representative transient cases. ηr is more than doubled in the

comparison between the steady case and the transient case. This indicates that the

LQR controller is able to reject complex transient flow much better than the open-

loop controller. In conclusion, a relatively simple feedback control scheme applied on

the boundary of a turbulent flow improves the performance in regulating the density

field to its desired final state compared to open-loop control.
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Chapter 1

Introduction

1.1 Overview

Control problems that incorporate partial differential equations (PDEs) as state equa-

tions are difficult to solve in real time. One such situation that presents many es-

pecially daunting challenges is the control of fluid dynamical systems. Traditionally,

the solution of fluid dynamical equations obtained using finite element, finite volume,

finite difference or spectral methods is not viable for real-time control because of the

high computational complexity [Krstic and Smyshlyaev, 2008]. However, reduced or-

der modeling has proven to be a powerful tool in reducing the computational cost of

the mathematical models that arise in the numerical simulations [Antoulas, 2005].

The basic idea of model order reduction is to replace a complicated system mod-

elled by high-fidelity simulations with a much simpler system that still preserves the

essential dynamics of the original system. In this thesis, the proper orthogonal de-

composition (POD) approach is used for the purpose of model order reduction. POD

is a statistical procedure that uses orthogonal transformations to form linearly uncor-

related basis functions of an ensemble of variables [Holmes et al., 1998]. The elements

inside this basis are called the principal components of the original ensemble. This

method was independently proposed by [Karhunen, 1947] and [Loeve, 1978], and is
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sometimes called Karhunen-Loève theorem. In [Holmes et al., 1998], the method was

used to study turbulent flow and was first called POD. Subsequently, the method of

snapshots [Sirovich, 1987] was incorporated into the framework.

In contrast to traditional numerical methods which use basis functions that have

very little connection with the problem they are solving, the POD approach uses basis

functions that are generated from either experimental measurements or numerical

simulation data. This set of basis functions are optimal in the sense that the averaged

projection of the dataset onto those basis functions is larger than any other set of

basis functions. When the governing PDEs are projected onto those basis functions

using the Galerkin projection, a reduced order model is obtained [Holmes et al., 1998].

The beauty of the POD/Galerkin approach is that it is a non-linear model reduction

approach and the governing equations of the resulting reduced order model, also know

as the Galerkin system, consist solely of ordinary differential equations [Luchtenburg

et al., 2009].

In light of the above, the goals of this thesis are first to simulate incompress-

ible, density stratified Boussinesq flow in a two-dimensional cavity with control be-

ing applied on the top boundary. Simulations are carried out using a open-source

direct numerical simulation (DNS) solver called Diablo1; second, to generate the cor-

responding reduced order model (ROM) by applying the POD/Galerkin approach.

The ROM encapsulates the system dynamics of which the linear quadratic regulator

(LQR) boundary controller is designed on.

The type of fluid control outlined above serves as a prototype for an indoor HVAC

system that combines distributed heating e.g. due to solar gains and localized cooling

e.g. due to the action of an air conditioner. Different HVAC scenarios can be sim-

ulated by choosing different boundary conditions on the top boundary. Within this

thesis we focus on the technical aspects of algorithm development rather than HVAC

1Details are given at http://www.damtp.cam.ac.uk/user/jrt51/files.html
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application. Correspondingly, and for illustration purposes, attention is restricted

to Dirichlet boundary conditions. In other words, the control is applied by directly

specifying the fluid temperature or density (spatial-varying but symmetric) along the

top boundary.

1.2 Thesis organization

The layout of this thesis is as follows. In chapter 2, the detailed algorithm for the

numerical simulation is outlined. Also presented is a characterization of the flow in

terms of relevant parameters related to fluid properties, physical dimensions, etc. In

chapter 3, the derivation of the reduced order model based on the POD/Galerkin ap-

proach is outlined along with the design of the LQR boundary controller. In chapter 4,

the evaluation of both the fidelity of the reduced order model and the effectiveness of

the LQR controller under different circumstances are considered. Finally in chapter 5,

major conclusions and contributions of this thesis are described along with possible

future work directions.
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Chapter 2

Numerical Method

2.1 Preliminary Remarks

For incompressible, density stratified, Boussinesq flow, the governing equations can

be written as [Kundu et al., 2011]:

∇ · u = 0 (2.1)

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p+ ν∇2u+

(ρ− ρ0
ρ0

)
g (2.2)

∂ρ

∂t
=

ν

Pr
∇2ρ− u · ∇ρ (2.3)

where u is the velocity, p is the hydrostatically adjusted pressure, ρ is the fluid den-

sity, ρ0 is a reference density, ν is the kinematic viscosity, Pr is the Prandtl number

and g is the gravitational acceleration vector. Note that, according to the equations

of state for many simple fluids, density is linearly related to temperature. Therefore

equation (2.3) is introduced into the framework with the notion that density variation

are synonymous with temperature variations. To solve the above equations numer-

ically, the continuous flow field must be transformed into its discrete counterpart.

Furthermore, the spatially discretized equtions must be advanced in time using a

discrete (though not necessarily fixed) time step ∆t. Ideally, one wants to maintain
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both the accuracy and stability of the simulation while choosing reasonable (i.e. not

punitively small) values for ∆t and the spatial grid sizes, in order to minimize the

computational expense. Here equations (2.1) through (2.3) are solved numerically

using an open-source DNS solver called Diablo, which was originally developed by

Professor Thomas R. Bewley (University of California, San Diego) and Dr. John R

Taylor (University of Cambridge). Generally speaking, Diablo can be applied to 2D

or 3D turbulent flow within simple geometries. In this current context, a 2D channel

flow setup is used in which the flow is aperiodic in the vertical direction y and peri-

odic in the horizontal direction x. Second-order finite differences are used to discretize

spatial derivatives in y whereas Fourier spectral methods are used to discretize spatial

derivatives in x as described in detail below. Because the code is of DNS type, rather

than a large-eddy simulation (LES) numerical model or a Reynolds-average Navier-

Stokes (RANS) numerical model, the turbulent motions are supposed to be resolved

at all length-scales. This has the advantage of avoiding sub-grid parameterizations,

which can be difficult to calibrate or justify in case of stratified turbulence. On the

other hand, DNS simulations are more computationally intensive than LES or RANS

simulations as a result of which attention is restricted to relatively small domains as

described blow.

2.2 Spatial Discretization

In the vertical direction y and with reference to figure 2.1, a staggered (non-stretched)

grid is used in which vertical velocities are defined at the GY nodes and horizontal

velocities, the fluid pressure and active scalars are located at the GYF nodes. More

specifically for our case, a single active scalar density is considered. A staggered grid

is used so that the pressure values at adjacent nodes can be coupled together. If

central finite differencing is used on a non-staggered grid, pressure values at adjacent
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nodes would only be coupled through viscous terms. In this case and for flow with

large Reynolds number, spurious fine scale oscillations may arise [Fletcher, 2012].

The GYF nodes lies exactly halfway in between neighboring GY nodes which makes

it straightforward to interpolate from one grid to the other, i.e. interpolation can be

accomplished by simply computing the average of the adjacent values in a second-

order accurate arithmetic step.

Boundary conditions in y are applied using ghost nodes (GY = 1, NY +1;GYF =

0, NY +1) as specified in figure 2.1. Boundary conditions can be of Dirichlet, Neumann

or Robin type. Although boundary conditions are not always specified exactly at

the wall locations due to the usage of a staggered grid, this does not significantly

affect the results provided the grid spacing is sufficiently small. When Dirichlet

boundary conditions are applied, the horizontal velocity and density are specified

exactly at the location of the wall (GYF = 1 or GYF = NY ), whereas the vertical

velocity is prescribed at nodes GY = 2 and GY = NY . When Neumann boundary

conditions are applied for horizontal velocity or density, ghost nodes at GYF = 0

and GYF = NY + 1, coupled with GYF = 1 and GYF = NY respectively, are used

to calculate the relevant vertical gradients corresponding to grid location GY = 1

and GY = NY + 1 by incorporating a second-order central finite difference scheme.

Since the vertical velocity, located at grid GY, is offset from the wall, its wall-normal

derivatives can be specified exactly at the wall.

In order to improve numerical accuracy, a Fourier decomposition is applied to all

derivatives in the horizontal direction. Thus for a generic flow variable f(x, y, t), we

write

f(x, y, t) =

NX
2

−1∑
n=−NX

2
+1

f̂n(kn, y, t)e
iknx (2.4)

where kn = 2πn/NX is the horizontal wavenumber, NX is the number of grid points

in the x direction, and f̂n denotes the Fourier transform of f . Differentiating (2.4)
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with respect to x gives

∂f

∂x
=

NX
2

−1∑
n=−NX

2
+1

iknf̂n(kn, y, t)e
iknx (2.5)

In Diablo, discrete Fourier transforms are calculated using the open source FFTW

software library developed by [Frigo and Johnson, 2003]. The FFTW library was up-

dated from version 2 to the latest version 3 by the author, as outlined in appendix A.

Moreover, Orszag’s 2/3 de-aliasing rule is applied to prevent high-wavenumber modes

from feeding spurious energy to their low-wavenumber counterpart [Canuto et al.,

1988]. This is accomplished by setting all Fourier modes with n > NX/3 to zero

before transforming them back to physical space.

When it comes to the Fourier space evaluation of the nonlinear terms in the

Navier-Stokes equations, special care is required. Evaluating a product in Fourier

space entails computing a discrete convolution sum requiring O(N2) operations where

N is the total number of grid points in that direction. To avoid this computational

overhead, the pseudo-spectral method suggested by [Taylor, 2008] is instead applied

where the nonlinear team is first written in conservation form ∂(fifj)/∂x. The prod-

uct fifj is first computed in physical space and then transferred into Fourier space,

requiring only O(N log(N)) operations instead of O(N2).

2.3 Temporal Advancement

Diablo leverages a time advancement scheme that combines explicit third order low

storage1 Runge-Kutta-Wray (RKW3) and implicit Crank-Nicolson. When numer-

ically solving a diffusion problem using an explicit method, the diffusion number

defined as D = νδt/δx2 must be less than some constant in order for the simulation

1Low storage is preferred because memory can be one of the major limiting factors associated
with DNS-type numerical simulations.
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to be numerically stable. This can place onerous restrictions on the size of δt for a

given grid spacing. The Crank-Nicolson scheme, on the other hand, is unconditionally

stable for pure diffusion problems. This makes Crank-Nicolson a desirable choice for

diffusion terms, more specifically ν∇2u in equation (2.2).

Runge-Kutta methods introduce multiple fractional time steps between time in-

stants tn and tn + ∆t with ∆t being the full time step. At the expense of higher

computational costs per full time step, higher accuracy is obtained as compared to

an explicit single-step scheme like forward Euler [Moin, 2010]. The generic form of

the RKW3 algorithm reads as follows [Bewley, 2014].

f1 = f(θn, tn) (2.6)

θ∗ = xn + β1h1f1 (2.7)

f2 = f(θ∗, tn + h1) (2.8)

θ∗∗ = θ∗ + β2h2f2 + ζ2h2f1 (2.9)

f3 = f(θ∗∗, tn + h1 + h2) (2.10)

θn+1 = θ∗∗ + β3h3f3 + ζ3h3f2 (2.11)

where

h1 = (8/15)∆t, h2 = (2/15)∆t, h3 = (1/3)∆t

β1 = 1, β2 = 25/8, β3 = 9/4

ζ1 = 0, ζ2 = −17/8, ζ3 = −5/4

The variable θ either represents velocity or density. As required by equation (2.1), the

velocity field should always remain divergence free. However between time instants tn
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and tn +∆t, the intermediate velocity field ũrkn may not satisfy this constraint. Here

superscript rk represents the corresponding R-K fractional time step. Therefore,

before each individual fractional step of RKW3, a pressure correction technique is

applied to ensure the velocity field is always divergence free. More specifically, if urkn

is the corrected velocity field

urkn = ũrkn − hj
∂φ

∂xi
(2.12)

where φ = prk+1 − prk is the pressure correction between successive RKW3 fractional

steps. Because urkn is divergence free by definition, a Poisson equation for φ is obtained

by taking the divergence of equation (2.12).

∇2φ =
1

hj
∇ · ũrkn (2.13)

Once φ is determined from the solution of (2.13), the pressure can be updated from

prk+1 = prk + φ. In a similar fashion, the velocity field is updated using (2.12).

Note that the fluid pressure is not initialized at the very beginning of a numerical

simulation, rather it is calculated from (2.2) and (2.3) via:

1

ρ0
∇2p = −∇ · (u · ∇u) (2.14)

2.4 Algorithm

Having outlined key fundamental components of Diablo above, a detailed description

of the code and its execution for the special case of a 2D flow having a single active

scalar, referred to below as θ, is now presented. Regarding the notation to follow,

Ri denotes the right hand side of the momentum equation (2.2) while Fi saves all

the Runge-Kutta terms used in the next Runge-Kutta substep. Consistent with (2.4)
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and (2.5), hatted and unhatted variables are defined respectively, in Fourier space and

physical space. Also, for the sake of runtime efficiency, Diablo minimizes both the

number of stored arrays and the number of calls to FFTW. The “recipe” presented

below follows the more expansive discussion of [Taylor, 2008] where additional details

may be found.

0. Interpolate the horizontal velocity u1 and active scalar θ at the GYF nodes to the

GY nodes, where the vertical velocity u2 is located

ū1(i, j) =
1

2
(u1(i, j) + u1(i, j − 1))

θ̄(i, j) =
1

2
(θ1(i, j) + θ1(i, j − 1))

1. Build, in Fourier space, the right hand side term R̂ using the previously computed

velocity, ûi and scalar concentration, θ̂

R̂i = ûi

R̂θ = ûθ

2. Add previous R-K terms F̂ PREV to R̂ if this is not the first R-K step

R̂i = R̂i + ζrkhrkF̂
PREV
i

R̂θ = R̂θ + ζrkhrkF̂
PREV
θ

3. Add the pressure gradient to R̂ of the momentum equation

R̂1 = R̂1 − hrk îkxP̂

R̂2(kx, j) = R̂2(kx, j)− hrk
P̂ (kx, j)− P̂ (kx, j − 1)

∆y
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4. Add the viscous terms containing horizontal derivatives of ûi and θ̂ to the current

R-K terms F̂

F̂i = −νk2xûi

F̂θ = −αk2xθ̂

5. Add those non-linear terms that contain horizontal derivatives to F̂

F̂1 = F̂1 − îkxû1u1

F̂2 = F̂2 − îkx ˆ̄u1u2
F̂θ = F̂θ − îkxθ̂u1

6. Compute the non-linear terms that contain vertical derivatives S in the physical

domain. S1 =
∂(ū1u2)

∂y
, S2 =

∂(u2u2)
∂y

, Sθ =
∂(θ̄u2)
∂y

S1(i, j) =

(
u1(i, j + 1) + u1(i, j)

2

)(
u2(i, j + 1)

∆y

)
−

(
u1(i, j) + u1(i, j − 1)

2

)(
u2(i, j)

∆y

)
S2(i, j) =

(
u2(i, j + 1) + u2(i, j)

2

)2(
1

∆y

)
−

(
u2(i, j) + u2(i, j − 1)

2

)2(
1

∆y

)
Sθ(i, j) =

(
θ(i, j + 1) + θ(i, j)

2

)(
u2(i, j + 1)

∆y

)
−

(
θ(i, j) + θ(i, j − 1)

2

)(
u2(i, j)

∆y

)

7. Convert S to Fourier space and then add it to R̂

F̂1 = F̂1 − Ŝ1
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8. Done calculating F̂ , which is now to be added to R̂. From this point on, F̂ needs

to be kept untouched for the next R-K step

R̂i = R̂i + βrkhrkF̂i

R̂θ = R̂θ + βrkhrkF̂θ

9. Add the viscous terms containing vertical derivatives to R̂ as the explicit part of

Crank-Nicolson

Ri(i, j) = Ri(i, j) +
νhrk
2

(
ui(i, j + 1)− 2ui(i, j) + ui(i, j − 1)

∆y2

)
Rθ(i, j) = Rθ(i, j) +

αhrk
2

(
θ(i, j + 1)− 2θ(i, j) + θ(i, j − 1)

∆y2

)

10. Use the Thomas algorithm [Thomas, 1949] to solve the tridiagonal matrix for the

scalar θ and intermediate velocity vi

vi(i, j)−
νhrk
2

(
vi(i, j + 1)− 2vi(i, j) + vi(i, j − 1)

∆y2

)
= R2(i, j)

θ(i, j)− αhrk
2

(
θ(i, j + 1)− 2θ(i, j) + θ(i, j − 1)

∆y2

)
= Rθ(i, j)

11. Convert vi to Fourier space v̂i then use the Thomas algorithm to solve the

tridiagonal matrix for the pressure correction φ

−k2xφ̂(kx, j) +
(
φ̂(kx, j + 1)− 2φ̂(kx, j) + φ̂(kx, j − 1)

∆y2

)
=

îkxv̂1 +

(
v̂2(kx, j + 1)− v̂2(kx, j)

∆y

)
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12. Use the pressure correction to calculate the divergence-free velocity field for next

R-K step

ûrk+1
1 = v̂1 − îkxφ̂

ûrk+1
2 (kx, j) = v̂2(kx, j)− (φ̂(kx, j)− φ̂(kx, j − 1))/∆y

13. Update the pressure field

P̂ = P̂ + φ̂/hrk

2.5 Parameter study

When simulating 2D incompressible, density stratified, Boussinesq flow with Diablo,

it is important to choose parameters that guarantee stability and numerical accuracy

and that produce a flow field amenable to control using the scheme described in

following chapters. Parameters to be considered in this subsection are the number of

grid points in the horizontal (NX) and vertical (NY) directions, the Prandtl number

Pr, the kinematic viscosity ν and the time spacing ∆t. All simulations are conducted

within a 110cm× 40cm rectangular cavity, i.e. Lx = 110cm and Ly = 40cm.

Originally, water is used as the working fluid of the simulations, therefore

ν = 0.01cm2/ s and Pr = 1. Although the choice for Pr significantly overesti-

mates the molecular transport of heat, this is necessary for the numerical stability

of the algorithm. According to [Sutherland et al., 2004], the magnitude of Pr does

not significantly change the behavior of the flow which is, in any event, dominated

by turbulent, not molecular transport. The reduced gravity g′ associated with the

Boussinesq flow is defined as

g′ = g

(
ρ1 − ρ0
ρ0

)
(2.15)
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where ρ1 = 1.02g/cm3, ρ0 = 1.00g/cm3 and g = 980cm/s2 is the gravitational accel-

eration. Therefore g′ = 19.6cm/s2. Here ρ1 − ρ0 is a characteristic maximum density

difference. Although the simulations in Diablo assume cgs units, the density field is

everywhere rescaled for improving the numerical accuracy numerical stability by this

characteristic density difference. The rescaled dimensionless density r is therefore

defined as

r =
ρ− ρ0
ρ1 − ρ0

(2.16)

Note that density is referred to as this rescaled dimensionless density r in all the

chapters to follow. Since Runge-Kutta is used as the time marching scheme, Courant-

Friedrichs-Lewy (CFL) condition has to be satisfied to ensure that the numerical

simulations remain stable [Courant et al., 1967]. A Courant number C is defined as

follows

C =
Uchar∆t

∆x
=
Uchar∆tNX

Lx

(2.17)

where Uchar, the characteristic velocity, is given by

Uchar =
√
g′Ly (2.18)

Combining equations (2.19) and (2.18) and using parameter values defined above

gives

C = 0.2545s−1∆tNX ≤ Cmax (2.19)

where Cmax is the maximum Courant number for the simulation to remain stable.

Typically Cmax ≃ 1.

First, we consider the selection of NX and NY. Because Fourier spectral methods

are used in the horizontal direction, NX has to be power of two. In order to maintain

high fidelity, flow within the cavity should be resolved in sufficient detail, which

requires the horizontal spacing ∆x = Lx/NX and vertical spacing ∆y = Ly/NY to be
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Figure 2.2: Evolution curve of average rescaled dimensionless density r̄ of the cavity
with different NX.

smaller than the length scale of the smallest vortices. This indicates that ∆x and ∆y

should be comparable in magnitude, i.e. ∆x ≃ ∆y. To determine the proper value

for NX, three otherwise identical simulations with different NX were conducted, i.e.

NX = 512, NX = 1024 and NX = 2048. For all three simulations, the top boundary

condition for the rescaled dimensionless density r was set to be 0.5(cos(2πx/Lx)+1);

all other boundary conditions (on r, u or v) are homogeneous Neumann (density)

or Dirichlet (velocity). As for the number of grid points in the vertical direction,

recall that ∆x ≃ ∆y. For all three simulations, NY was therefore chosen to be 800

corresponding to the most punitive horizontal grid spacing where NX = 2048. In

similar fashion, and motivated by the restriction imposed by (2.19), ∆t is chosen

to be 0.004s. In order to evaluate the accuracy of the simulations with difference

NX, average rescaled dimensionless density r̄ of the cavity is plotted against time in

figure 2.2. The curves corresponding to NX = 1024 and NX = 2048 almost overlap

but the black curve, representing NX = 512, diverges significantly from the other two.

Thus the maximum value of NX for fully resolving the fine scale vortices is 1024. As
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Figure 2.3: Evolution curve of average rescaled dimensionless density r̄ of the cavity
with different ∆t.

such, NX is set to 1024 for all the simulations described hereafter. Recall that finite

differencing rather than spectral technique, is used in the vertical direction. Since

numerical evaluation of derivatives by finite difference is more costly than by spectral

methods, NY is cut in half to 400 from the value described above. In this case, the

approximate equality of ∆x ≃ ∆y is preserved.

To determine the appropriate value for ∆t with the grid size being 1024 × 400,

three otherwise identical simulations with different ∆t were conducted in an anal-

ogous fashion. As shown in figure 2.3, curves corresponding to ∆t = 0.003 s and

∆t = 0.004 s almost overlap but the black curve, representing ∆t = 0.005 s, diverges

significantly from the other two. Thus the maximum reasonable value of ∆t is 0.004 s.

We therefore empirically find that Cmax = 1.0426 ≈ 1. This again confirms the result

in equation (2.19).

A velocity quiver plot with all the parameter values defined as above and with a top

boundary condition specified by r = 0.5(cos(2πx/Lx) + 1) is presented in figure 2.4.

As noted above, our original intention was to conduct numerical simulations using
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water (ν = 0.01cm2/ s) as the working fluid. However as shown in figure 2.4, flow

in this case is quite chaotic in that it contains vortices of multiple length scales. We

expected this to pose challenges insofar as flow control is concerned and therefore

elected to conduct further simulations but with artificially elevated ν. Figure 2.5

shows the analogous result to figure 2.4, but with ν = 0.1cm2/ s. Here we find that

the flow with a higher viscosity ν = 0.1cm2/ s damps the fine scale vortices and

remains symmetric (at least for the time interval considered here) which makes it a

better candidate in terms of flow control. As such, ν = 0.1cm2/ s is taken to be the

kinematic viscosity in the numerical simulations to follow.

In conclusion, the base simulation parameters for this work are Lx = 110cm,

Ly = 40cm, NX = 1024, NY = 400, Pr = 1, ∆t = 0.004 s and ν = 0.1cm2/ s.
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Chapter 3

Model Order Reduction and Boundary Control

Method

3.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition, usually abbreviated as POD, is a statistical pro-

cedure that uses orthogonal transformations to form a linearly uncorrelated basis of

an ensemble of variables, such as data collected from either experiment or numerical

simulations [Holmes et al., 1998]. The elements inside this basis are called the prin-

cipal components of the original ensemble [Sirovich, 1987]. More importantly, this

technique has the ability to extract the essential components of a complex and highly

non-linear problem using a finite number of modes.

To illustrate the technique, consider an ensemble {θi} of a scalar field. The goal is

to find a basis {ϕj}, that is the optimal representation of the original ensemble {θi}

on a specific inner product space. The technical explanation to follow is based on

the discussion of [Sirovich, 1987], where further details on the POD method can be

found. We consider a linear space L2(Ω) of square-integrable real-valued functions so

that the inner product is defined as:

(f, g)Ω =

∫
Ω

f(x)g(x)dx (3.1)
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and the induced L2(Ω) norm is defined by:

∥f∥Ω =
√

(f, f)Ω (3.2)

In the present context, optimality requires that the basis functions {ϕj} are deter-

mined such that the normalized averaged projection of {θi} onto {ϕj} is maximized.

In symbols

max
ϕ∈L2(Ω)

⟨|(θ, ϕ)|2⟩
∥ϕ∥2

(3.3)

where ⟨·⟩ denotes the average, | · | denotes the modulus and ∥ ·∥ denotes the L2-norm.

Considering a constrained optimization problem as

max
ϕ∈L2(Ω)

⟨|(θ, ϕ)|2⟩ such that ∥ϕ∥2 = 1 (3.4)

The functional corresponding to this specific optimization problem can be written as:

J [ϕ] = ⟨|(θ, ϕ)|2⟩ − λ(∥ϕ∥2 − 1) (3.5)

and the necessary condition for the existence of extrema is that the derivative of J

vanishes for all variations ϕ+ δψ ∈ L2(Ω), δ ∈ R

d

dδ
J [ϕ+ δψ]|δ=0 = 0 (3.6)

Then we have

d

dδ
J [ϕ+ δψ]|δ=0

=
d

dδ
[⟨(θ, ϕ+ δψ)(ϕ+ δψ, θ)⟩ − λ(ϕ+ δψ, ϕ+ δψ)]|δ=0

=2ℜ[⟨(θ, ψ)(ϕ, θ)⟩ − λ(ϕ, ψ)] = 0
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The expression inside [·] can be rewritten as

⟨∫
Ω

θ(x)ψ(x)dx

∫
Ω

ϕ(x′)θ(x′)dx′
⟩
− λ

∫
Ω

ϕ(x)ψ(x)dx

=

∫
Ω

[ ∫
Ω

⟨θ(x)θ(x′)⟩ϕ(x′)dx′ − λϕ(x)

]
ψ(x)dx = 0

Since δψ(x) is an arbitrary variation, in order for the above equation to hold true,

the expression inside [·] has to be zero. Therefore

∫
Ω

⟨θ(x)θ(x′)⟩ϕ(x′)dx′ = λϕ(x) (3.7)

The term θ(x)θ(x′) is the averaged autocorrelation function R(x, x′) of our original

ensemble {θi}. Defining R(x, x′) = θ(x)θ(x′), the above equation can be rewritten as

∫
Ω

R(x, x′)ϕ(x′)dx = λϕ(x) (3.8)

It is now clear that finding the optimal basis {ϕj} is the same as finding the eigenvalues

of the above eigenvalue problem. For this reason {ϕj} are often called empirical

eigenfunctions [Holmes et al., 1998]. {ϕj} are also known as the POD modes of the

ensemble {θi}.

3.2 Decomposition in the spatial domain

Since the controller will be designed solely for the density field, only the rescaled

dimenionless density r is analyzed under the POD formulation. Similar steps can be

used for velocity u if needed. The notation used here follows [Luchtenburg et al.,

2009]. Density r is decomposed as follows

r(x, t) = r0(x) + r′(x, t) = r0(x) +
N∑
i=1

ai(t)ri(x) =
N∑
i=0

ai(t)ri(x) (3.9)
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For computational convenience, the average density r0 is added to the summation as

the ”zeroth” mode, therefore a0 = 1. Also r0 and r′ correspond to the steady and

fluctuating parts of the density field, respectively. Meanwhile {ri}Ni=1 is POD modes

and {ai}Ni=1 is the temporal coefficient. Alternatively, {ai}Ni=1 can be considered as the

POD modes for the temporal domain. The autocorrelation function for the density

field is defined as

R(x,x′) = ⟨r′(x, t)⊗ r′(x′, t)⟩ (3.10)

Here ⟨·⟩ denotes the time average of a variable over time period T , i.e.

⟨·⟩ = 1

T

∫ T

0

(·)dt (3.11)

According to (3.8), the ith POD mode ri with the corresponding eigenvalue λi can

be obtained by solving the following eigenvalue problem

∫
Ω

R(x,x′)ri(x
′)dx′ = λiri(x) (3.12)

R(x,x′) is compact self-adjoint and positive semi-definite [Holmes et al., 1998]. This

implies that the eigenfunctions (i.e. the POD modes ri) are mutually orthogonal

in L2(Ω) and that they are ordered with respect to the real positive eigenvalues in

a decending fashion. Note that zero eigenvalues are ignored because they do not

contribute to the density field r. According to the orthonormality of ri

(ri, rj)Ω = δij (3.13)
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Temporal coefficients ai can be calculated by projecting the POD modes ri onto the

fluctuating part of the density field r′, i.e.

ai(t) = (r′, ri)Ω (3.14)

Since the temporal coefficients ai are calculated from the fluctuating part of the

density field, it is straightforward to show that the time average of {ai} = 0. Because

the autocorrelation tensor R(x,x′) is positive semi-definite, the temporal coefficients

ai are mutually orthogonal in L2([0, T ]) [Holmes et al., 1998], so that

⟨ai⟩ = 0 (3.15)

⟨aiaj⟩ = λiδij (3.16)

A similar approach can be applied for velocity u. Then the average kinetic energy in

each POD mode for velocity ui is given by

KE =
1

2

∫
Ω

⟨uiui⟩dx =
1

2
⟨aui aui ⟩ =

1

2
λi (3.17)

This last result confirms that the eigenvalue λi represents twice the average kinetic

energy in that particular mode.

3.3 Decomposition in the temporal domain

Spatial POD modes and their corresponding temporal coefficients share some similar

features, which indicate that time and space might be interchangeable insofar as the

POD discretization. Similar to the spatial autocorrelation tensor (3.8), the temporal
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autocorrelation tensor can be calculated via

C(t, t′) = (r′(x, t), r′(x, t′)) (3.18)

Then the ith temporal coefficient ai with its corresponding eigenvalue µi can be

obtained by solving the following eigenvalue problem

1

T

∫ T

0

C(t, t′)ai(t
′)dt = µiai(t) (3.19)

Similar to the spatial domain analysis, the temporal coefficients ai are ordered with

respect to the positive eigenvalues in a decending fashion. Moreover, the eigenvalues

obtained here are identical to those obtained from the analysis in the spatial domain,

i.e. λi = µi. The orthogonality of ai shows that

⟨aiaj⟩ =
1

T

∫ T

0

aiajdt = λiδij (3.20)

Using the scaling in equation (3.20), the spatial POD modes ri can be calculated by

the following projection

ri(x) =
1

λi
⟨air′(x, t)⟩ (3.21)

3.4 Method of snapshots

The method of snapshots [Sirovich, 1987] is a POD procedure applied in the temporal

domain. Let an ensemble of M snapshots be given at the discrete times tm, so that

r(x, tm) = r0(x) + r′(x, tm) (3.22)
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The temporal autocorrelation tensor matrix C can be written as

Cmn =
1

M
(r′(x, tm), r

′(x, tn))Ω for m,n = 1, . . . ,M (3.23)

In order to determine the temporal coefficients ai, the following eigenvalue problem

needs to be solved

CA = DA (3.24)

whereC,A,D are allM×M matrices. D is a diagonal matrix containing eigenvalues

of C in descending order as the diagonal elements, and A consists of the eigenvectors

{ai} of the eigenvalue problem (3.24) organized in a column major fashion, i.e. A =

(a1,a2, . . . ,ai, . . . ,aM ). Each eigenvector ai corresponds to a specific POD mode,

and each element in that vector corresponds to the temporal coefficient of a specific

snapshot. For ai = (a
[1]
i , a

[2]
i , . . . , a

[j]
i , . . . , a

[M ]
i ), a

[j]
i represents the temporal coefficient

of ith mode in the jth snapshot. To reiterate, the subscript represents mode number,

and the superscript represents snapshot number. Temporal coefficients are scaled

such that

⟨aiaj⟩ =
1

M

M∑
m=1

a
[m]
i a

[m]
j = λiδij (3.25)

Using this scaling, the POD modes can be expressed as

ri =
1

Mλi

M∑
m=1

a
[m]
i r′(tm) (3.26)

Note that the autocorrelation tensor generated by the method of snapshots is an

M × M matrix with M being the number of snapshots. Applying an analogous

procedure in the spatial domain would produce a matrix of size Ngrid ×Ngrid, where

Ngrid is the total number of grid points in the domain. BecauseNgrid can far exceedM ,

the method of snapshots is the more common alternative when considering numerical
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simulation data. Obviously, for experiments with a limited number of measurement

probes and a long sampling time, decomposition in the spatial domain usually proves

to be more suitable.

3.5 Galerkin method and model order reduction

Most of the energy in a given flow is contained within a limited number of POD modes.

Recall that the average kinetic energy in any given POD mode is linearly related to

the eigenvalue for that particular mode. Thus, assuming a total of M snapshots, the

proportion of the kinetic energy represented by the first N POD modes is given by

E =

( N∑
i=1

λi

)/( M∑
i=1

λi

)
(3.27)

Then a POD-based reduced-order model (ROM) can be constructed via the Galerkin

method by projecting equations (2.1) (2.2) and (2.3) onto the subspace spanned

by the first N POD modes of velocity u and density r. Because equation (2.1) is

only ever used along with the pressure correction technique to ensure the velocity

field remains divergence free for all times, the POD/Galerkin approach only needs

to be applied to equations (2.2) and (2.3). Moreover, the density that is actually

being numerically evaluated by Diablo is the rescaled dimensionless density r defined

in (2.16). Along with the reduced gravity g′ defined in (2.15), equations (2.2) and (2.3)

can be respectively rewritten as

X(u, r) =
∂u

∂t
+ (u · ∇)u+

1

ρ0
∇p− ν∇2u− rg′ = 0 (3.28)

Y (u, r) =
∂r

∂t
− ν

Pr
∇2r + u · ∇r = 0 (3.29)
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where u = (u, v) is the velocity, g′ = (0,−g′), p is the hydrostatically adjusted

pressure, ρ0 is a reference density, ν is the kinematic viscosity and Pr is the Prandtl

number. Note that X(u, r) denotes the Navier-Stokes operator (N-S operator), and

Y (u, r) denotes the convection diffusion operator (C-D operator).

After projecting equations (3.28) and (3.29) onto the velocity POD modes ui

and the density POD modes ri, the resulting ordinary differential equation set that

governs the temporal coefficients aui and ari reads

daui
dt

=
N∑

j,k=0

qijka
u
j a

u
k + ν

N∑
j=0

lija
u
j − g′

N∑
j=0

fija
r
j for i = 1, . . . , N (3.30)

dari
dt

=
ν

Pr

N∑
j=0

(dfij)a
r
j +

N∑
j,k=0

(cvijk)a
r
ja

u
k for i = 1, . . . , N (3.31)

where (3.30) and (3.31) correspond to the Galerkin projection of (3.28) and (3.29)

respectively. Note that, in order to distinguish between the temporal coefficient of

velocity and density, aui is used to denote the temporal coefficient of velocity whereas

ari is used to denote that of density. The calculations for all terms in (3.30) and (3.31)

are as follows. For (3.30)

(
∂u

∂t
,ui)Ω =

∂aui
∂t

=
daui
dt

(3.32)

qijk is the convection term

−((u · ∇)u,ui)Ω = −
(( N∑

j=0

auj uj · ∇
) N∑

k=0

aukuk,ui

)
Ω

= −
N∑

j,k=0

((uj · ∇)uk,ui)Ωa
u
j a

u
k

(3.33)

qijk = −((uj · ∇)uk,ui)Ω (3.34)
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lij is the viscous term

− (−ν∇2u,ui)Ω = ν

(
∇2

N∑
j=0

auj uj,ui

)
Ω

= ν
N∑
j=0

(∇2uj,ui)Ωa
u
j (3.35)

lij = (∇2uj,ui)Ω (3.36)

fij is the body force term

− (−rg′,ui)Ω =

( N∑
j=0

arjrj(0,−g′),ui

)
Ω

= −g′
N∑
j=0

(rj, vi)Ωa
r
j (3.37)

fij = (rj, vi)Ω (3.38)

fp
i is the pressure term

− (∇p,ui)Ω = −(∇ · [pui])Ω = −
∫
Ω

∇ · (pui)dS = −
∮
∂Ω

(pui) · ndl (3.39)

fp
i = −

∮
∂Ω

(pui) · ndl = −
(∮

top

+

∮
bottom

+

∮
left

+

∮
right

)
(pui) · ndl (3.40)

Though not generally the case, this last term happens to be exacly zero here [Noack

et al., 2005]. Diablo incorporates no-slip, no-penetration boundary conditions for

velocity on the top and bottom boundaries, which indicates that
∮
top
(pui) · ndl =∮

bottom
(pui) · ndl = 0. Furthermore since the flow is spatially-periodic in x, the

velocity and pressure distributions on both sidewalls are identical with normal vectors

pointing in opposite directions. Thus
∮
left

(pui) ·ndl+
∮
right

(pui) ·ndl = 0 and fp
i = 0

too. Then for (3.31)

(
∂r

∂t
, ri)Ω =

∂ari
∂t

=
dari
dt

(3.41)
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dfij is the diffusion term

− (− ν

Pr
∇2r, ri)Ω =

ν

Pr

(
∇2

N∑
j=0

arjrj, ri

)
Ω

=
ν

Pr

N∑
j=0

(∇2rj, ri)Ωa
r
j (3.42)

dfij = (∇2rj, ri)Ω (3.43)

cvijk is the convection term

−(u · ∇r, ri)Ω = −
( N∑

k=0

aukuk · ∇
N∑
j=0

arjrj, ri

)
Ω

= −
N∑

j,k=0

(uk · ∇rj, ri)Ωarjauk

(3.44)

cvijk = −(uk · ∇rj, ri)Ω (3.45)

Therefore, the governing equations (3.30) and (3.31) of the ROM that describe

the evolution of the temporal coefficients corresponding to each specific mode are

obtained. These equations are also know as the Galerkin system [Luchtenburg et al.,

2009].

3.6 Reduced order model with boundary control

For control of partial differential equations (PDEs), depending on the location of the

actuator, it is often useful to be categorized as either “in domain” control or “bound-

ary” control. For many fluid problems including the density driven flow discussed

here, boundary control is considered to be more feasible as it is difficult to implement

intrusive actuation and sensing within the domain [Krstic and Smyshlyaev, 2008].

The POD/Galerkin approach for generating the ROM that was outlined in sec-

tion 3.5 cannot account for the effect of the boundary controller. In order to obtain

the ROM for a system with boundary controller, Duhamel’s principle [John, 1982]
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is utilized to transfer the boundary condition into a forcing term in the governing

equations. Because Duhamel’s principle applies only to linear differential equations,

the governing equations must first be linearized about some suitable steady state. For

density driven flow, a realistic boundary control strategy is to change the temperature

or heat flux instead of the fluid velocity on the (stationary) boundary, which is, in

any event, zero, by the no-slip/no-penetration boundary conditions. For this reason,

control is applied only to the density (linearly related to temperature according to

equation of state) field through the convection-diffusion equation (3.29). Note that

whatever control is applied to density r will also be manifest on velocity u because

density and velocity are coupled together through the Navier-Stokes and convection

diffusion equations.

As regards equation (3.29), a Dirichlet boundary condition is used for the upper

boundary y = Ly by specifying density values directly, while a no flux boundary

condition is applied on the bottom boundary y = 0. As usual, periodic boundary

condition is incorporated in the horizontal direction. In order words, r and rx have to

be continuous between x = 0 and x = Lx. Only 2D flows are considered within this

context, and the flow domain is defined as Ω ∈ [0, Lx]× [0, Ly]. The formal statement

of the boundary conditions is

r(x, Ly, t) = U(t)f(x)

ry(x, 0, t) = 0

x ∈ [0, Lx]

r(0, y, t) = r(Lx, y, t)

rx(0, y, t) = rx(Lx, y, t)

y ∈ [0, Ly]

(3.46)

The top boundary condition U(t)f(x) is used as the control input. Here a fixed
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Figure 3.1: (r, r)Ω plotted against time for time-invariant top density boundary con-
dition at different U.

function in space, f(x), that is modulated by the control input U(t).

f(x) = −0.5 cos(2πx/Lx)− 0.3 U ∈ [0, 2] (3.47)

f(x) is carefully chosen in such a way that if U is set to a constant and U ∈ [0, 2],

r and u will reach a steady state so that (r, r)Ω and (u,u)Ω (the inner product is

defined in (3.1)) become time-invariant for sufficiently large t. As shown in figures 3.1

and 3.2, we find that t = 500 s fits this requirement and therefore define the steady

state of r and u for a specific U by their time average fields between 500 s and 600 s.

The corresponding steady state density (velocity) field for different constant U is

denoted by rU (uU). Since 500 s is needed for the flow to develop into its steady state,

it is advantageous if Diablo can be restart at a given time instant from a existing

simulation. The detailed method of achieving this goal is listed in appendix C.

The control strategy is based on a local linearization of the nonlinear convection

diffusion equation (3.29). In general, the linearized form of (3.29) is appropriate



34

0 100 200 300 400 500 600
0

5000

10000

15000

t

(u
,
u
) Ω

U = 1.0
U = 1.2
U = 1.4
U = 1.6
U = 1.8
U = 2.0

Figure 3.2: (u,u)Ω plotted against time for time-invariant top density boundary
condition at different U.

when the fluid system can be described by a small perturbation around a steady base

state. Both density and velocity can be decomposed into a steady base state and a

perturbation around that state if U(t) is close to its linearization point U0. Without

loss of generality, choosing U0 = 1 and write

r(x, t) = r0(x) + r′(x, t) (3.48)

u(x, t) = u0(x) + u′(x, t) (3.49)

U(t) = U0 + U′(t) (3.50)

u0 and r0 represent the linearization points for velocity and density, respectively.

Then the convection diffusion equation (3.29) can be linearized around (r0,u0). Any

steady state (rU,uU), including (r0,u0), satisfies the governing equation by definition,

i.e.

∂r0
∂t

= 0 = α∇2r0 − u0 · ∇r0 (3.51)
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Meanwhile the linearized equation reads:

∂r′

∂t
= ✘✘✘✘α∇2r0 + α∇2r′ −✘✘✘✘✘u0 · ∇r0 − u0 · ∇r′ − u′ · ∇r0 −✘✘✘✘✘⁓≃ 0

u′ · ∇r′ (3.52)

∂r′

∂t
= α∇2r′ − u0 · ∇r′ − u′ · ∇r0 (3.53)

In order to transfer the perturbation of the top boundary condition, U′(t)f(x), into

the governing equation, Duhamel’s principle is applied to the linearized convection

diffusion equation (3.53). Following [Christofides, 2001], define

r′(x, t) = r(x, t)− r0(x) = P(x, t) + b(x)U′(t) (3.54)

where b(x) is a spatial function and P is the new modified density whose properties

will be discussed below. The snapshots of P at discrete times tm are defined by

rearranging (3.54)

P(x, tm) = r(x, tm)− r0(x)− b(x)U′(tm) 1 ≤ m ≤M (3.55)

Substituting equation (3.54) into the first three terms of equation (3.53) and find

∂r′

∂t
=
∂P

∂t
+ bU

α∇2r′ = α∇2P+ U′α∇2b

u0 · ∇r′ = u0 · ∇P+ U′u0 · ∇b

(3.56)

where U ≡ ∂U′/∂t is the augmented state corresponds to the control U. Notice that,

by definition, the top boundary condition of r′ is f(x)U′(t). It is advantageous to

choose b(x) so as to produce homogenous boundary conditions on the top and bottom

boundaries and also to maintain periodicity for the lateral boundary conditions on P
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[Christofides, 2001]. Substituting (3.54) into (3.46) yields

r′(x, Ly, t) = P(x, Ly) + b(x, Ly)U
′(t) = f(x)U′(t)

r′y(x, 0, t) = Py(x, 0) + by(x, 0)U
′(t) = 0

r(0, y, t) = P(0, y) + b(0, y)U′(t)

= P(Lx, y) + b(Lx, y)U
′(t) = r(Lx, y, t)

rx(0, y, t) = Px(0, y) + bx(0, y)U
′(t)

= Px(Lx, y) + bx(Lx, y)U
′(t) = rx(Lx, y, t)

(3.57)

Note that Lx and Ly represent the length scale of the cavity whereas the subscripts

x and y that appear in other terms indicate partial differentiation. By setting

b(x, Ly) = f(x), by(x, 0) = 0, we achieve the desired boundary conditions on P,

namely P(x, Ly) = 0,Py(x, 0) = 0. By setting b(0, y) = b(Lx, y), bx(0, y) = bx(Lx, y),

we have P(0, y) = P(Lx, y),Px(0, y) = Px(Lx, y). Therefore, the boundary conditions

on b(x, y) are

b(x, Ly) = f(x)

by(x, 0) = 0

x ∈ [0, Lx]

b(0, y) = b(Lx, y)

bx(0, y) = bx(Lx, y)

y ∈ [0, Ly]

(3.58)

Provided (3.58) is satisfied, b(x, y) can be chosen arbitrarily. For instance selecting

∇b = 0 removes two of the right hand side terms (U′α∇2b and U′u0 ·∇b) from (3.56).

Alternatively, if b satisfies Laplace’s equation, i.e. ∇2b = 0, only U′α∇2b disap-

pears. In this latter case and when combined with the boundary conditions expressed

in (3.58) there is a unique solution to b(x, y) for each choice of f(x). The general
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form of this solution, obtained using separation of variables, is

b(x, y) =
α0

2
+

∞∑
n=1

{
αn cos

2nπx

Lx

+ βn sin
2nπx

Lx

}
cosh

2nπy

Lx

αn =
2

Lx cosh
2nπLy

Lx

∫ Lx

0

f(x) cos
2nπx

Lx

dx

βn =
2

Lx cosh
2nπLy

Lx

∫ Lx

0

f(x) sin
2nπx

Lx

dx

bx =
2nπ

Lx

∞∑
n=1

{
− αn sin

2nπx

Lx

+ βn cos
2nπx

Lx

}
cosh

2nπy

Lx

by =
2nπ

Lx

∞∑
n=1

{
αn cos

2nπx

Lx

+ βn sin
2nπx

Lx

}
sinh

2nπy

Lx

(3.59)

The advantage of using (3.59) is that it applies for arbitrary integrable f(x). The

disadvantage is that b(x, y) is a artificial field which does not reflect the dynamics

of the actual flow. Therefore when (3.59) is substituted into (3.55) to generate the

snapshots of P, this b(x, y) serves as an extra mean aside from r0, which causes the

first POD mode of P and its corresponding temporal coefficient approximately equal

b(x) and −U′(t) respectively. In other words, the first POD mode of P, instead of

capturing the dominant dynamics of the perturbation of the actual flow, ends up

capturing the artificial field generated by b(x, y).

In light of this difficulty, we instead seek to define b in such a way that P rep-

resents the density perturbation around the steady state density field rU. Following

[Ravindran, 2000], define

b = (rU1 − r0)/(U1 − U0) (3.60)

where rU1 is a steady state density field obtained when U1 = 2 and r0 is the lin-

earization point for density as shown in figure 3.3. By definition, the ratios rU1/U1

and r0/U0 satisfy the same boundary conditions specified for b in (3.58). Substitut-



38

Figure 3.3: (Top) steady state density field r0 obtained at the linearization point
U0 = 1. (Middle) steady state density field rU1 obtained when U1 = 2. (Bottom)
density distribution of b(x, y) defined in equation (3.60).

ing (3.60) into (3.58), it can be shown that

b(x, Ly) = (f(x)U1 − f(x)U0)/(U1 − U0) = f(x)

by(x, 0) = (0− 0)/(U1 − U0) = 0

x ∈ [0, Lx]

b(0, y) = b(Lx, y)

bx(0, y) = bx(Lx, y)

y ∈ [0, Ly]

(3.61)

Therefore b as defined in (3.60) satisfies all the boundary conditions in (3.58). When

the expression for b given in (3.60) is substituted back into equation (3.54), the

following formula for P is obtained

P = r −
(
r0 + U′ rU1 − r0

U1 − U0

)
(3.62)

As shown in figures 3.4 and 3.5 respectively,
(
r0 + U′ rU1

−r0

U1−U0

)
is a good approxi-

mation to the stable density field rU when U = 1.3 and U = 1.6. Other values of
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Figure 3.4: (Top) reconstructed steady state density field rreconU=1.3. (Middle) original
steady state density field rU=1.3. (Bottom) the difference between rreconU=1.3 and rU=1.3.

Figure 3.5: (Top) reconstructed steady state density field rreconU=1.6. (Middle) original
steady state density field rU=1.6. (Bottom) the difference between rreconU=1.6 and rU=1.6.
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U ∈ [1, 2] (not shown here) exhibit similar results. Therefore, we conclude from equa-

tion (3.62) that P ≃ r − rU. This confirms that our choice of b does indeed force P

to represent the density perturbation around the steady state density field rU.

To capture the dynamics of P based on the snapshots of P defined in (3.55),

the system must be excited properly by applying a specific control input U. A step

function is used here, because it contains a broad spectral content [Oppenheim et al.,

1989]. Fluid mechanical systems contain infinite degrees of freedom, however, to keep

the problem analytically tractable, it is necessary to limit the number of modes which

is done based on equation (3.27). This prescribes the proportion of the flow energy

captured by the first N modes. P can be decomposed as follows

P(x, t) =
N∑
i=1

ai(t)ri(x) (3.63)

In order to obtain the expression for r, we substitute (3.63) into (3.54) and rearrange

r(x, t) = r0(x) +
N∑
i=1

ai(t)ri(x) + b(x)U′(t) (3.64)

Although the velocity boundary conditions are, by the no-slip and no-penetration

boundary conditions, homogeneous, boundary control applied on the density field

will influence the velocity: ρ and u are coupled together in the Navier-Stokes and

convection-diffusion equations. Similar to (3.54), define

u′(x, t) = u(x, t)− u0(x) = Pu(x, t) + bu(x)U′(t) (3.65)

so that

u′(x, Ly, t) = Pu(x, Ly) + bu(x, Ly)U
′(t) = 0

u′(x, 0, t) = Pu(x, 0) + bu(x, 0)U′(t) = 0

(3.66)
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By setting bu(x, Ly) = 0, bu(x, 0) = 0, we have Pu(x, Ly) = 0, Pu(x, 0) = 0. Com-

bined with the periodic boundary conditions in the horizontal direction, the boundary

condition for bu(x, y) must satisfy the following

bu(x, Ly) = 0

bu(x, 0) = 0

x ∈ [0, Lx]

bu(0, y) = bu(Lx, y)

bux (0, y) = bux (Lx, y)

y ∈ [0, Ly]

(3.67)

Provided (3.67) is satisfied, bu can be chosen arbitrarily. Because control is only

applied on r, the velocity field is much more stable than is the density field. As a

result, the velocity perturbation u′ around the steady state uU is negligible so that

u ≃ uU (3.68)

Substitute (3.68) into (3.69) yields

Pu ≃ uU − u0 − buU′ (3.69)

Similar to the definition of b in (3.60), bu is defined in an analogous fashion

bu = (uU1 − u0)/(U1 − U0) (3.70)

where uU1 is a steady state velocity field with U1 = 2 and u0 is the linearization point

for velocity as shown in figure 3.6 in which the colormap indicates the magnitude of

velocity. By definition, the ratios uU1/U1 and u0/U0 satisfy the same boundary

conditions specified for bu in (3.67). Substituting equation (3.70) into equation (3.69)
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Figure 3.6: (Top) steady state velocity field u0 obtained at the linearization point
U0 = 1. (Middle) steady state velocity field uU1 obtained when U1 = 2. (Bottom)
velocity profile of bu(x, y) defined in equation (3.70).

results in

Pu ≃ uU −
(
u0 + U′uU1 − u0

U1 − U0

)
(3.71)

As shown in figures 3.7 and 3.8,
(
u0 + U′uU1

−u0

U1−U0

)
is a good approximation to the

stable velocity field uU when U = 1.3 and U = 1.6. Other values of U ∈ [1, 2] (not

shown here) exhibit similar results. Therefore

Pu ≃ uU − uU = 0 (3.72)

Similar to P, which is a linear combination of the POD modes of density {ri(x)}Ni=1

as shown in (3.63), the numerical value of Pu can only be obtained by projecting

it onto the subspace spanned by the POD modes of velocity {ui(x)}Ni=1. However,

equation (3.72) indicates that Pu is punitively small, i.e. Pu ≃ 0. Therefore according
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Figure 3.7: (Top) reconstructed steady state velocity field urecon
U=1.3. (Middle) original

steady state velocity field uU=1.3. (Bottom) the difference between urecon
U=1.3 and uU=1.3.

Figure 3.8: (Top) reconstructed steady state velocity field urecon
U=1.6. (Middle) original

steady state velocity field uU=1.6. (Bottom) the difference between urecon
U=1.6 and uU=1.6.
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to equation (3.69), the velocity perturbation u′ only depends on U′(t), i.e.

u′ = buU′ (3.73)

In order to rewrite equation (3.53) in terms of b, bu and P, substituting both (3.56)

and (3.73) back into (3.53) and rearrange to yield

∂P

∂t
= α∇2P− u0 · ∇P+ U′(α∇2b− u0 · ∇b− bu · ∇r0)− bU (3.74)

Therefore, the ROM can realized by using the Galerkin method to project equa-

tion (3.74) onto the subspace spanned by {ri(x)}Ni=1. The resulting ROM reads

Ẋ = ÂX + B̂U (3.75)

where

X = (a1, a2, · · · , aN ,U′)T

Âij = (α∇2rj − u0∇rj, ri)Ω i, j = 1, · · · , N (3.76)

Âi(N+1) = (α∇2b− u0∇b− bu∇r0, ri)Ω i = 1, · · · , N

Â(N+1)j = (0, 0, · · · , 0)

B̂i = −(b, ri)Ω i = 1, · · · , N

B̂N+1 = 1

Note that Â is an (N + 1)× (N + 1) matrix, B̂ is a 1× (N + 1) matrix and U is the

augmented state corresponds to the control U.
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3.7 Linear Quadratic Regulator

The goal of optimal control theory is to operate dynamic system to minimize a cost

functional [Lewis and Syrmos, 1995]. For the case where the system dynamics are

described by a set of linear differential equations and the cost function is described

by a quadratic function, a Linear Quadratic Regulator (LQR) can be defined. LQR

provides a way of calculating the gain K in the control law of U = −KX in full

state feedback. Moreover, the appropriate weighting factors for states and control

need to be defined in the process of designing the controller[Athans and Falb, 1966].

Discretizing equations (3.75) by implicit Euler results in

Xk+1 = AXk +BUk (3.77)

where A = (I − Â∆t)−1, B = (I − Â∆t)−1B̂∆t, U ≡ ∂U′/∂t, with ∆t being the

time step of the simulation. Here the purpose of the controller is to try to drive the

system to zero, its linearization point, which in this case is the desired density field

rd = r0. Therefore the corresponding cost functional g(r) is defined as follows

g(r) = ∥r − rd∥2Ω =

 N∑
i=0

airi + bU′ − r0

2

Ω

=

 N∑
i=1

airi + bU′
2

Ω

(3.78)

For notational convenience, we denote b by rN+1. Rewriting the above equation into

matrix form results in

∥r − rd∥2Ω = XTQX (3.79)

where

X = (a1, a2, · · · , aN ,U′)T

Qij = (ri, rj)Ω i, j = 1, · · · , N + 1
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Here a quadratic discrete cost functional can be specified as follows

J =
∞∑
k=0

(∥r − rd∥2Ω +RU2) =
∞∑
k=0

(XTQX + UTRU) (3.80)

According to the necessary condition of optimality, the feedback law reads

Uk = −KXk (3.81)

where

K = (R+BTPB)−1(BTPA) (3.82)

and P is the unique positive definite solution to the discrete time algebraic Riccati

equation (DARE) defined so that

P = ATPA− (ATPB)(R+BTPB)−1(BTPA) (3.83)

Here the feedback controller gain K is a constant vector and is calculated off-line in

advance.
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Chapter 4

Results and Discussion

4.1 Reduced order model and system identification

The reduced order model (ROM) is constructed by applying the POD/Galerkin ap-

proach discussed in section 3.5. In order to identify the system dynamics, the step

function of figure 4.1, is used as the input U(t) because of its simple nature and

broadband spectral content. The change of value of U(t) is not applied till after

500 s, which allows the system to achieve steady state.

Thereafter, the method of snapshots is applied and the snapshots are collected

every second. Recall from section 2.5, that the time step of the simulation ∆t is

defined to be 0.004s, as a result of which, the snapshots are collected every 250 time

0 100 200 300 400 500 600 700

1

1.2

1.4

1.6

1.8

2

t

U

Figure 4.1: Input U(t) used for system identification.
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Figure 4.2: Eigenvalues corresponding to the input shown in figure 4.1

Table 4.1: Percent of energy captured as a function of POD mode number.

Number of POD modes N 2 4 6 8 10
Fraction of Energy (%) 72.17 93.92 99.01 99.63 99.88

steps. For the time interval between 500 s and 700 s, 200 snapshots are collected,

therefore the eigenvalue spectrum consists of 200 eigenvalues of the density field r is

shown in figure 4.2. The magnitude of the eigenvalues falls off quickly, suggesting

that a limited number of modes are sufficient to capture the dominant dynamics of

the flow.

The fraction of energy captured by the first N POD modes of the ROM can be

calculated using equation (3.27); results corresponding to figure 4.2 are given in table

4.1. These data indicate that 99% of the energy can be captured using the first six

POD modes. Considering there is only a 0.62% improvement in increasing the number

of POD modes from six to eight whereas the computational cost of this increase is far

greater, six POD modes are used hereafter. The density field associated with each of

the first six POD modes are shown in figure 4.3. Superposed on top of density field

is the velocity field, which is drawn in the form of a quiver plot.

In order to test the fidelity of the ROM, comparisons are made between the evolu-

tion history of the directly projected temporal coefficients and those determined via
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Figure 4.4: Comparison of the directly projected temporal coefficients (solid) and
Galerkin integrated temporal coefficients (dashed) for velocity.

the Galerkin method. The former are generated by the projection of the numerical

model (Diablo) onto the first six POD modes, and the latter are generated by inte-

grating the governing equations (3.30) and (3.31) of ROM. The associated comparison

is shown in figure 4.4 where strong agreement is noted for all values of POD mode

number. The analogue comparison for the density temporal coefficient ari is presented

in figure 4.5. The agreement remains positive, but some slightly larger deviations are

observed for the even-numbered POD modes when 550s < t < 650s.

4.2 LQR controller design for buoyancy driven flow

Recall the definition of the steady state for density field rU in section 3.6. The purpose

of the LQR controller is to drive the flow from one steady state of the density field rU

to another. Since the linearization point r0 (of our linearized model) is itself a steady

state, the specific objective of our controller is to drive the flow from steady state

rU to the linearization point r0 (desired final state). The control action is achieved
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through the top boundary condition for density, which is expressed as

r(x, Ly, t) = f(x)U(t) x ∈ [0, Lx] (4.1)

where U(t) and f(x) represent respectively the temporal dependence and spatial

distribution. Due to the complexity of the flow, it is useful to have a performance

index to provide a simple metric to evaluate the quality of the control. The choice of

performance index to meet the control objective of driving the flow to the linearization

point is non-trivial. A performance index of the form

J(t) = ∥r(t)− r0∥2Ω (4.2)

is chosen. Here r0 is the linearization point, therefore the control purpose is the same

as driving the value of the performance index J(t) to zero. Since the POD form of r

is given by equation (3.64), the performance index J(t) can be rewritten in terms of
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the POD modes of density {ri}Ni=1 in matrix form, i.e.

J(t) = XTQX (4.3)

According to the orthonormality of {ri}Ni=1, (ri, rj)Ω = δij. Applying this result, we

have

Qii = (ri, ri)Ω = 1 i = 1, · · · , N

Qij = (ri, rj)Ω = 0 i, j = 1, · · · , N i ̸= j

Note, however, that the value of (ri, rN+1)Ω = (ri, b)Ω still needs to be calculated.

Since b is defined in (3.60) and the first six POD modes are used, Q reads

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 2.66

0 1 0 0 0 0 0.68

0 0 1 0 0 0 −1.54

0 0 0 1 0 0 0.25

0 0 0 0 1 0 −0.50

0 0 0 0 0 1 −0.51

2.66 0.68 −1.54 0.25 −0.50 −0.51 20.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here Q is positive definite. Therefore the LQR cost functional of the infinite-horizon

LQR problem is

J(X, U) =
∞∑
k=0

(∥r − rd∥2Ω +RU2) =
∞∑
k=0

(XTQX + UTRU) (4.4)

The task of the LQR controller is to compute U(t) such that the cost functional

J(X, U) is minimized subject to the constraint that the flow fields satisfy the system



53

500 600 700 800 900 1000 1100
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

t

U

R = 1
R = 10
R = 100
R = 1000
R = 10000
R = 100000
Uncontrolled

Figure 4.6: Evolution curves of the LQR controller input U(t) with the starting steady
state rU fixed at U = 1.3 for different penalty parameters R.

dynamics described by equation (3.75). By including a term involving the augmented

state U (≡ ∂U′/∂t) in (4.4), one minimizes the rate of change associated with the

forcing by the upper boundary condition f(x)(U0 + U′(t)). The penalty parameter

R > 0 adjusts the relative weight of the two terms in the functional.

In order to determine an appropriate value for the penalty parameter R, which

was found to play a critical role in the controller design, the starting steady state is

fixed at rU=1.3. T0 = 500 s is the time instant where the controller “kicks” in and

Tf = 1100 s is the final time instant for the simulation. As shown in figure 4.6, when

R ≤ 103, the control input initially undershoots. As R increases the amplitude of

the undershoot is observed to decrease. So that when R = 104, a monotone control

input is realized. Of course, similar comments apply to R ≥ 105. Here, however, the

controller is slower than with R = 104. For comparison purposes, an uncontrolled

case that uses an open-loop step down input is also included which is described in

more detail below.

Note that, J(Tf ) represents the value of the performance index at the end point



54

500 600 700 800 900 1000 1100
0

0.005

0.01

0.015

0.02

0.025

t

J

R = 1
R = 10
R = 100
R = 1000
R = 10000
R = 100000
Uncontrolled

1090 1095 1100
4.5

5

5.5

x 10
−4

Figure 4.7: Evolution curves of the performance index J(t) with the starting steady
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Table 4.2: Performance index J(t) at Tf and its time average in the time interval
T0 < t < Tf as a function of the penalty parameter R (T0 = 200s).

R J(Tf ) J̄(T0, Tf )
1 5.607× 10−4 0.0062
10 5.624× 10−4 0.0061
102 5.657× 10−4 0.0059
103 5.663× 10−4 0.0053
104 4.425× 10−4 0.0048
105 5.487× 10−4 0.0049

uncontrolled 5.676× 10−4 0.0054
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t = Tf ; the smaller the value of J(Tf ), the closer the density field is to the linearization

point r0. Moreover, let us define

J̄(T0, Tf ) =

(∫ Tf

T0

J(t)dt

)
/(Tf − T0) (4.5)

where J̄(T0, Tf ) represents the time average of performance index in the interval T0 <

t < Tf . The smaller J̄(T0, Tf ) is, the closer the density field is to the linearization

point r0 during the entire transition stage. As shown in table 4.2 and figure 4.7, when

R = 104, the smallest value of both J(Tf ) and J̄(T0, Tf ) are achieved. This result

indicates that R = 104 gives the best overall performance in terms of driving the

system to its linearization point. As such, 104 will serve as the benchmark value of

R in much of the discussion below.

4.3 Controller performance for different starting steady states

Figures 4.6 and 4.7 consider the system dynamics for variable R but fixed starting

steady state rU=1.3. Having identified R = 104 as an approximately optimum value

which minimize the performance index J defined in (4.2), the starting steady state rU

and the corresponding U is now varied at t = T0, as shown in figure 4.8. Here T0 and

Tf remain unchanged compared to section 4.2.

When U(T0) ≤ 1.4, the evolution curves of the performance index J plateau just

above zero after 1000 s, which means that the LQR controller manage to drive the

flow from the starting steady state rU to the linearization point r0 (desired final state).

As for the comparison between the controlled (solid curves) and uncontrolled (dashed

curves) cases, note that the uncontrolled case exhibits a more significant transient

overshoot for t just larger than 500 s. Although both sets of curves show some os-

cillatory behavior, the dashed curves (uncontrolled cases) are associated with larger

oscillation amplitudes. However, for U(T0) = 1.5, the situation reverses. Although
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Table 4.3: Performance index for controlled (LQR) and uncontrolled (open-loop) cases
at T0 and Tf for starting steady states rU corresponding to different U (T0 = 500s).

U(T0) J(T0) Jc(Tf ) Ju(Tf )
1.1 0.0016 1.71× 10−4 1.94× 10−4

1.2 0.0061 2.26× 10−4 2.42× 10−4

1.3 0.0135 4.42× 10−4 5.68× 10−4

1.4 0.0240 0.0012 0.0013
1.5 0.0369 – –

the dashed curve exhibits a larger overshoot at the beginning, the solid curve shows

more pronounced oscillations thereafter. This is not an unexpected result and is

attributed to the ROM being linearized about r0 with U(T0) = 1.0. By contrast

with U(T0) = 1.5, non-linear effects, ignored in the model development, are likely

strong enough to compromise the performance of the controller. Also, as suggested

by figure 4.10, the oscillations realized after 800 s for the dark blue curve of figure 4.9

may be due to a qualitative change in the nature of the plume and a transition

from symmetric to asymmetric flow. Once the asymmetry within the plume is strong

enough, there is no way to drive the system back to a symmetric state using the

current (symmetric) upper boundary condition. Consistent with these observations,

figure 4.9 indicates that the evolution curve for J never plateau for the cases where

U(T0) = 1.5.

Table 4.3 shows the performance index J of both controlled and uncontrolled cases

at T0 and Tf for different U(T0) values. Here Jc(Tf ) and Ju(Tf ) are the performance

indices for the controlled and uncontrolled cases respectively at the final time Tf . The

entries for Jc(Tf ) and Ju(Tf ) at U(T0) = 1.5 are left empty because of the oscillatory

behavior noted for the dark blue curves of figure 4.9. Since controlled cases and

uncontrolled cases start from the same point in time, Jc(T0) = Ju(T0) = J(T0). Based

on the data provided in table 4.3, the effectiveness of the controller can be evaluated
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Figure 4.10: Density field for the controlled case with the starting steady state rU at
U = 1.5 for four different time instants t = 750s, t = 800s, t = 850s and t = 900s.
Note that the plume develops an asymmetric character between 750 s and 800 s.
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Table 4.4: Absolute and relative effectiveness of the LQR controller for T0 = 500s.

U(T0) ηa ηr
1.1 89.3% 11.7%
1.2 96.3% 6.6%
1.3 96.7% 22.2%
1.4 95.0% 7.7%

in two ways.

First, recall that the control objective is to reduce the value of the performance

index J to zero. Therefore the effectiveness of the controller can be evaluated based

on its ability to reduce the magnitude of J. In this spirit, define

ηa = [J(T0)− Jc(Tf )]/J(T0) (4.6)

ηa, referred to as the absolute effectiveness of the LQR controller, shows how much

closer the density field is to the linearization point r0, the desired final state, at

t = Tf compared with t = T0. Secondly, the effectiveness of the controller can be

evaluated based on the comparison between the controlled cases and uncontrolled

cases. Therefore, define

ηr = [Iu(Tf )− Ic(Tf )]/Iu(Tf ) (4.7)

ηr, referred to as the relative effectiveness of the LQR controller, shows how much

better the LQR controller is compared with the open-loop controller.

Based on the data from table 4.3, ηa and ηr for different U(T0) are calculated and

listed in table 4.4. From table 4.4, we can conclude that when U(T0) ≤ 1.4, the LQR

controller manages to reduce the performance index by 89% or more, and the LQR

controller is always better than the open-loop controller because ηr is always positive.
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Figure 4.11: Evolution curves of the LQR controller input U(t) starting from transient
states rT0

U with fixed T0 = 200s and different U.

Recall the penalty parameter R = 104 is designed for U(T0) = 1.3, so it is to be

expected that the highest values for both ηa and ηr are achieved at U(T0) = 1.3. This

indicates that possible improvements can be achieved for other U(T0) by specifically

tailoring the penalty parameter R.

4.4 Controller performance for transient flow

In all cases considered thus far, the controller is activated after 500 s and the flow

is the steady state denoted by rU. In this section, the control is applied earlier and

before steady state conditions have been realized. The transient state corresponding

to a constant U and a starting time instant T0 (T0 < 500s) is denoted by rT0

U . As

shown in figure 4.11, the starting transient state rT0

U and the corresponding U is varied

at t = T0. The control is turned on at T0 = 200 s and final time instant Tf = 800 s so

that the duration over which the control is applied remains 600 s.

In this case, the LQR control is more attractive compared to steady state case

because the transient flow have more energy which is actively damped by the con-
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in the same color for comparison.

troller. When U(T0) ≤ 1.3, the evolution curves of J plateau just above zero about

700 s – see figure 4.9. As before, the controller is effective in driving the flow from

the initial to the desired final (steady) state. As for the case where U(T0) = 1.4,

the LQR controller still manages to drive the flow to the desired final steady state

without oscillation. By contrast, for the corresponding uncontrolled case indicated

by the teal dashed curve, large oscillations are observed, indicating that the open

loop controller is no longer effective when U(T0) = 1.4. Finally when U(T0) = 1.5,

the results are consistent with analogue curves from figure 4.9 and confirm that the

model linearization assumption does not extend to values of U(T0) as large as 1.5.

Table 4.5 shows the performance index J of both controlled and uncontrolled cases

at T0 and Tf for different U(T0) values for the transient flow. Blank entries are for

the same reason as table 4.3. The absolute and relative effectiveness for the transient

case are calculated based on the data in table 4.5, and the results are shown in

table 4.6. When U(T0) ≤ 1.4, the LQR controller manages to reduce the performance
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Table 4.5: Performance index for controlled (LQR) and uncontrolled (open-loop) cases
at T0 and Tf for starting steady states rU corresponding to different U (T0 = 200s).

U(T0) J(T0) Jc(Tf ) Ju(Tf )
1.1 0.0175 1.23× 10−4 1.43× 10−4

1.2 0.0215 3.24× 10−4 3.97× 10−4

1.3 0.0282 5.21× 10−4 0.0010
1.4 0.0370 0.0018 –
1.5 0.0474 – –

Table 4.6: Absolute and relative effectiveness of the LQR controller for T0 = 200s.

U(T0) ηa ηr
1.1 99.3% 16.3%
1.2 98.5% 18.4%
1.3 98.1% 47.9%
1.4 95.1% –

index by over 95% and even up to 99%. ηr at U(T0) = 1.4 is left blank because

meaningful comparisons cannot be made when the LQR controller manages to drive

the system to the desired final state but the open-loop controller fails to do so (see

figure 4.12). When U(T0) ≤ 1.3, ηr at U(T0) = 1.3 is almost three times the value

of ηr at U(T0) = 1.1 and U(T0) = 1.2. This indicates that the penalty parameter

deigned for U = 1.3 is sub optimal for other values of U.

Comparing figure 4.9 (steady case) with figure 4.12 (transient case), the most sig-

nificant difference observed is for the teal dashed curve representing the uncontrolled

case for U(T0) = 1.4. In figure 4.9, the teal dashed curve plateaus after 1000 s just

above zero whereas large oscillations are observed for the teal dashed curve after 450 s

in figure 4.12. This result indicates that the open-loop controller works reasonably

well when T0 = 500 s (flow in steady state), but its not effective when T0 = 200 s (flow

in transient state). To further investigate this phenomenon, the performance of the
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LQR controller is compared to the open loop controller for five starting times within

time interval 200s < T0 < 500s. These different starting times effectively represent

different starting state rT0

U=1.4.

Additional numerical simulations are conducted at T0 = 275 s, T0 = 350 s and

T0 = 425 s for U(T0) = 1.4. As shown in figure 4.13, despite the difference in T0, the

LQR controller stabilizes the flow in all three cases. For the uncontrolled cases with

open-loop step-down input, the flow does not monotonically decay to the steady state

depending on the starting time T0. For the dashed curve representing the uncontrolled

case, when T0 = 275 s, the number of oscillations decrease but the amplitude of the

oscillations, especially the last few, increase compared with the T0 = 200 s case. When

T0 = 350 s, T0 = 425 s and T0 = 500 s, the curves are almost identical and both solid

and dashed curves plateau just above zero within the 600 s of control. In addition, the

starting value of J decreases as T0 increases. In other words, the later the controller

“kicks” in, the closer the starting density field is to the final desired density field.

In conclusion, when U(T0) = 1.4, the LQR controller is always effective. But the

stabilizing effect of open-loop controller breaks down at some point in the interval

275s < T0 < 350s, indicating the non-linear nature of this flow.
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Chapter 5

Conclusions and future work

5.1 Conclusions

A reduced order modeling method suitable for linear quadratic regulator (LQR)

boundary control of incompressible, density stratified, Boussinesq flow is developed

using a proper orthogonal decomposition (POD)/Galerkin approach. Major contri-

butions and results stemming from this thesis are summarized below

1. Updated and modified the DNS Fortran solver Diablo to make it suitable

for developing control in numerical simulation

• The existing spectral method library of Diablo is updated from FFTW2 to

FFTW3.

• Various simulations using different boundary conditions are conducted to gain

physical insights into the flow. Parameters suitable for subsequent flow control

are found.

• Time varying boundary conditions are implemented on the density field to allow

for boundary control.

• The simulation provides snapshots for generating POD modes.
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2. Obtained reduced order model (ROM) by the applying POD/Galerkin approach

• The control system is excited using a step function because of its simple nature

and broadband spectral content.

• The first six POD modes are found to contain more than 99% of the flow energy

(as shown in table 4.1).

• The ROM is obtained by projecting the POD modes through the governing

equations using Galerkin projection.

• The ROMwith the boundary controller is obtained by transferring the boundary

condition into a forcing term in the governing equation through Duhamel’s

principle.

• The fidelity of the ROM is validated by the strong agreement between the time

evolution of the directly projected temporal coefficients and Galerkin integrated

temporal coefficients (as shown in figures 4.4 and 4.5).

3. Developed and tested a LQR boundary controller

• U(t), the time derivative of the input U(t), is introduced into the ROM as an

augmented state.

• The cost functional which is minimized in the LQR controller design is defined

to be the squared norm of the difference between the actual density field and

the desired density field.

• The penalty parameter R in the cost functional is found to play a critical role

in the process of controller design.

• Two metrics ηa and ηr are introduced to quantify the performance of the con-

troller. ηa denotes the absolute effectiveness of the LQR controller and is a
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metric of the controller’s ability to drive the system to the final desired state.

Conversely ηr denotes the relative effectiveness of the LQR controller and is

a metric of the improvement of the LQR controller compared to a open-loop

controller.

• For the control cases tested, the LQR controller is found to have ηa = 96.7%

and ηr = 22.2% in the best (as shown in table 4.4)) case when the initial state

corresponds to steady conditions, and ηa = 99.3% and ηr = 47.9% (as shown in

table 4.6) when the initial state corresponds to transient conditions. ηr is more

than doubled when comparing the transient and steady cases, indicating that

the LQR controller is able to reject complex transient flow much better than

the open-loop controller.

In summary, the reduced order LQR controller designed within this thesis provides

effective control for moderate disturbance about a base case. This is remarkable given

the non-linear nature of the governing equations of this flow and the fact that control is

implemented using a single, spatially-symmetric boundary condition whose amplitude

is modulated by the controller.

5.2 Future work

The research summarized above can be extended in numerous ways. In particular

• Different spatial distributions for the upper boundary condition could be con-

sidered. Also a different type of boundary conditions (i.e. Neumann or Robin

vs. Dirichlet) could be incorporated to simulate different scenarios.

• More than one input could be added to the control. This would allow for more

effective control when the flow is asymmetric in the horizontal direction.
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• Although the reduced order model is designed for both the Naiver-Stokes and

convection-diffusion equations, control is only applied to the density field r and

the design of the LQR controller is only based on the convection-diffusion equa-

tion. Therefore extending the control to include the Navier-Stokes equations

explicitly (rather than implicitly) could result in better control performance.
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Appendix A

Upgrading from FFTW2 to FFTW3

In the original version of Diablo, discrete Fourier transforms (DFT) are calculated

using FFTW version 2. It is advantageous to upgrade FFTW to its latest official

release version 3.3.4 due to the introduction of numerous new features into the FFTW

framework. In this chapter, we summarize the process for adapting the codes that

are designed for the older FFTW2 to work with FFTW3. Due to the fact that the

interface for FFTW3 is not backward-compatible with the interface for version 2 or

earlier, the codes designed to use version 2 or earlier cannot be made to link with the

library of FFTW3. However, the upgrading process should still be straightforward

due to the fact that the data formats between different versions are identical. Detailed

information regarding FFTW2 and FFTW3 can be found in [Frigo and Johnson, 2003]

and [Frigo and Johnson, 2012] respectively.

Although FFTW is originally designed as a C subroutine library for computing

DFT, the interface for legacy Fortran, the language in which Diablo is written is

included in FFTW library by default. Greater care is needed while using this interface,

however, since it is not type-checked. Besides that, the legacy Fortran interface differs

from its C counterpart in the prefix of the subroutine. More specifically in FFTW3,

‘dfftw ’ is used instead of ‘fftw ’ for double precision calculations.

The main difference between FFTW2 and FFTW3 is in the division of work
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between planning and execution. In FFTW2, plans are generated only based on

the type and size of the transform, then they can be executed on arrays with any

multiplicity and stride parameters. In FFTW3, by contrast, information about both

the array and the transform is needed in the process of generating plans, and these

plans can, in turn, be executed on those specific arrays. Therefore, more specifically,

the difference between FFTW2 and FFTW3 is that the information about arrays that

was formerly specified at execution time in FFTW2 is now specified at planning time

in FFTW3. FFTW calls with the highest level of flexibility are used in Diablo and

they will be used as examples to demonstrate the upgrading process in detail.

A.1 Forward transform (physical space to Fourier space)

For FFTW2

CALL RFFTWND_F77_CREATE_PLAN_(INTEGER PLAN, INTEGER RANK, CONST INTEGER N[],

FFTW_FORWARD, FFTW_MEASURE + FFTW_IN_PLACE)

CALL RFFTWND_F77_REAL_TO_COMPLEX_(INTEGER PLAN, INTEGER HOWMANY,

REAL IN, INTEGER ISTRIDE,

INTEGER IDIST,

COMPLEX OUT, INTEGER OSTRIDE,

INTEGER ODIST)

For FFTW3

CALL dfftw_plan_many_dft_r2c_(INTEGER PLAN, INTEGER RANK, CONST INTEGER N[],

INTEGER HOWMANY,

REAL IN, CONST INTEGER INEMBED[],

INTEGER ISTRIDE, INTEGER IDIST,

COMPLEX OUT, CONST INTEGER ONEMBED[],
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INTEGER OSTRIDE, INTEGER ODIST,

FFTW_ESTIMATE)

CALL dfftw_execute_dft_r2c_(INTEGER PLAN, REAL IN, COMPLEX OUT)

!CALL dfftw_execute_(INTEGER PLAN)

In the code section, the first command is the planning command, and the sec-

ond command is the execution command. Besides, for FFTW3, since PLAN contains

all the information needed for computing the transform, usually the execution sub-

routine does not need to include any parameter except for PLAN just like the last

line of code that is commented out. However, for legacy Fortran, because the in-

put/output arrays are not passed as explicit arguments in dfftw execute, the se-

mantics of legacy Fortran allow the compiler to assume that the input/output ar-

rays are not changed by dfftw execute. As a consequence, certain compilers will

optimize out dfftw execute assuming it does nothing. That is the reason why

dfftw execute dft r2c is used as the execution call instead.

Arguments

• PLAN contains all the necessary information to compute the transform including

both the information about the transform itself and the information about input

and output arrays for FFTW3. Whereas for FFTW2, information about arrays

are unknown to the PLAN variable.

• RANK is the dimensionality of the transform.

• N[RANK] gives the physical size of the transform dimensions. N[1], N[2] and

N[n] equals the size of the transform in first, second and n-th dimension respec-

tively.

• IN and OUT are the starting positions of the input and output arrays respectively.

Since the concept of the pointer does not exist in Fortran, IN and OUT are just
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the elements inside the arrays that specify where the input and output start.

• {I,O}NEMBED[RANK] must be element-wise greater than or equal to N[RANK].

{I,O}NEMBED[RANK] enable input and output arrays to be column major sub-

arrays with larger size on each dimensions. {I,O}NEMBED[RANK] and N[RANK]

are set to be the same in our case.

• HOWMANY is the number of transforms to compute. Plans generated in this way

are often faster then calling plans that are generated for a single transform

multiple times. If HOWMANY> 1, the input of the n-th transform is at location

IN+n*IDIST and the output is at location OUT+n*ODIST.

• {I,O}STRIDE is the distance between adjacent elements inside input and output

arrays, respectively. If the data points that we want to perform transformations

on are adjacent to each other, {I,O}STRIDE= 1.

• FFTW IN PLACE is a FFTW2 only planning option. For FFTW3, input and

output arrays are already specified at the planning phase. In place transforms

can be performed by setting the input and output arrays to possess the same

memory.

• FFTW MEASURE tells FFTW to find an optimized plan by actually computing

several transforms on input and output arrays and comparing their execution

time. With this option, input and output arrays will be overwritten during the

planning phase.

• FFTW ESTIMATE tells FFTW to use a simple heuristic to pick a plan (proba-

bly sub-optimal) quickly. With this flag, input and output arrays will not be

overwritten during the planning phase.

• FFTW FORWARD represents forward transform.
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A.2 Backward transform (Fourier space to physical space)

For FFTW2

CALL RFFTWND_F77_CREATE_PLAN_(INTEGER PLAN, INTEGER RANK, CONST INTEGER N[],

FFTW_BACKWARD, FFTW_MEASURE + FFTW_IN_PLACE)

CALL RFFTWND_F77_COMPLEX_TO_REAL_(INTEGER PLAN, INTEGER HOWMANY,

COMPLEX IN, INTEGER ISTRIDE,

INTEGER IDIST,

REAL OUT, INTEGER OSTRIDE,

INTEGER ODIST)

For FFTW3

CALL dfftw_plan_many_dft_c2r_(INTEGER PLAN, INTEGER RANK, CONST INTEGER N[],

INTEGER HOWMANY,

COMPLEX IN, CONST INTEGER INEMBED[],

INTEGER ISTRIDE, INTEGER IDIST,

REAL OUT, CONST INTEGER ONEMBED[],

INTEGER OSTRIDE, INTEGER ODIST,

FFTW_ESTIMATE)

CALL dfftw_execute_dft_c2r_(INTEGER PLAN, COMPLEX IN, REAL OUT)

Arguments for the backward transformation are as described above.
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Appendix B

Output data in binary format from Diablo

In Diablo, the resulting velocity and density fields are saved in double precision. In

outputting the data in Matlab-readable format, there are two options being ASCII

format and binary format. Although binary files cannot be viewed in a text editor,

data saved in binary is done so with much greater efficiency (and no loss of precision)

as compared to ASCII. A further advantage of using binary is that Matlab loads

binary files output by Diablo approximately four times as fast as compared to the

corresponding ASCII files. With binary format being the obvious winner, the method

of saving the resulting data from Diablo in Matlab-readable binary format is outlined

in this chapter. Here, the OPEN and WRITE commands in Fortran are used to achieve

this goal.

OPEN(UNIT=number, FILE=filename, RECL=length,

STATUS="...", FORM="...", ACCESS="...")

• number must be a positive integer. Low unit numbers such as 0 and 1 are

reserved for special units like INPUT UNIT and OUTPUT UNIT. Usually 10 is the

lowest unit number available; values increase from 10 if more than one file needs

to be open at a time.

• filename is the name of the file to be opened. The extension “.bin” is used
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here since we want this file to be in binary format.

• STATUS="UNKNOWN" indicates that the existence of the file is unknown. This is

the default setting.

• FORM="FORMATTED" indicates the file will be saved in ASCII format.

• FORM="UNFORMATTED" indicates the file will be saved in binary format.

• ACCESS="SEQUENTIAL" indicates the file will be accessed sequentially meaning

without skipping. Although binary files can be generated in this way, addition

information will be added prior to and after each piece of data. These additional

information prevents Matlab from reading the data effectively as a result of

which these additional details are useless and memory wasting.

• ACCESS="DIRECT" indicates the file could be accessed at any specified location.

If this option is used, the value of length needs to be specified as well. Here

length represents the number of characters associated with each file entry.

Since data from Diablo is stored in double precision, length is set to be eight.

Based on the above information, our OPEN command looks as follows:

OPEN(UNIT=10, FILE="filename.bin", RECL=8,

STATUS="UNKNOWN", FORM="UNFORMATTED", ACCESS="DIRECT")

The corresponding WRITE command is given by

DO I=1,N

WRITE(UNIT=10; REC=I) U(I)

END DO

Here REC is the record counter. U is the array to be outputted to "filename.bin".
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Appendix C

Restarting Diablo from a specific time instant

Before applying our controller, the flow is allowed to develop over the time interval

0 < t < T0. As such, and so as to test the impact of different control schemes, it is

desirable if our simulation can be restarted from a specific time instant from another,

already completed, simulation. The method for accomplishing this is outlined as

follows.

In order to restart a Diablo simulation, the velocity field u, density field r and

pressure distribution p are needed. For all our simulations conducted thus far, the

velocity field u and density field r are always saved in Matlab-readable binary format

– see appendix B for details. If the pressure p is the only unknown in equations (2.2),

it can be solved for by substituting in the numerical values for u and r. Luckily, this

functionality is already buried inside an existing Diablo subroutine POISSON P CHAN. I

have already written the wrapper on both the Diablo side and Matlab side. Therefore

without elaborating upon the tedious coding details, the steps to be followed are:

• 1. On the Matlab side, change the path parameter in the file restart.m to the

path where the reference simulation is located. Then change the t parameter

to the time instant of interest.

• 2. Run restart.m. Then three files, namely U.txt, V.txt, D.txt which respec-
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tively store the horizontal velocity, the vertical velocity and the density at the

time instant of choice are generated.

• 3. Copy those three files to the directory /diablo/case/.

• 4. Under the same directory, change the IC TYPE parameter to 3 in the file

input.dat. Then change the parameter N TIME STEPS to the remaining time

steps that you would like to run in the same file. Recall that the number of

time steps can be converted to real time by multiplying by DELTA T.

• 5. Run Diablo by going to the directory where diablo.f is located and type ./go

in the command window.
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Appendix D

Postprocess files

The following table provides a brief description of the files used in the post-processing

of Diablo output.

File Name Description

diablo.m Compute POD using the snapshot method and
Galerkin system based on the velocity and den-
sity data generated by Diablo

diablo q.m Compute convection term q ijk for NS-equation
diablo l.m Compute dissipation term l ij for NS-equation
diablo f.m Compute body force term f ij for NS-equation
diablo cv.m Compute convection term cv ijk for C-D equa-

tion
diablo df.m Compute diffusion term df ij for C-D equation
diablo b.m Compute boundary control term b i
diablo gs.m function handle for ODE45 to compute the

Galerkin projection
diablo k.m compute the gain for LQR controller
restart.m generate velocity and density field data at spe-

cific time instant in order to restart Diablo

Table D.1: Computer Program Summary
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