S0

on a surface of constant 7.

3.1.5.4 Equation Solution Using Real Quantities

The complete global matrix equation for the acoustic-flow problem with
plane wave inputs and outputs and rigid walled ducts is obtained by adding the

connecting duct boundary damping matrix (4] to Equation 3.23 to give
(IS] - W*[P] + 2iMw[C] + iw(4]) {4,} = {Q} (3.50)

The computer language used for this work did not support the use of complex
arithmetic, so that the complex equations had to be reformed in terms of real
quantities. By splitting the acoustic velocity potential vector {¢fq} and the source
vector {@} into real and imaginary parts, Equation 3.50 can be separated into real
and imaginary terms to give the following equations

(1) - w*1P]) {8,}" - @2Mw[C] + w[4]) {¢,}' = {Q"}

(2Mw[C] +wlA]) {#} + (8] - *P)) {4}’ = (@'}

which can be combined to give the matrix equation

((S]-w?P])  (-2Muw[C]-w[4])] [ {4} | _ [ {Q7}
(Mu(Cl +u(d)  (I8)-w?P) ]{{¢;}'}“{{Q'}} 522

The matrices in this global equation are formed by assembling the element volume

(3.51)

and surface matrices using fue conventional FEM assembly procedure. In the ISO-
HERM32 and ISOHERM12 element models separate connectivity matrices must be
used to assign the global geometric nodes and the velocity potential nodes to the
elements within the model. This has the advantage that on a plane wave boundary
termination, several geometric nodes can be assigned to a single velocity potential
node since the acoustic and flow velocity potentials are constant over the uniform

flow, plane wave interface. Further reductions in the DOF can also be made by
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applying constraint equations to force the acoustic and flow velocities at nodes on

the rigid boundaries to be parallel to the boundaries.

3.1.6 Solution with Higher Order Mode Boundary Conditions

In order to extend the solution to frequencies above the cut-on frequency
for higher order modes it is necessary to consider higher order mode propagation
within the connecting straight ducts. The present work considers only rigid walled
connecting ducts and uniform flow within these ducts. The exact solution within

the straight ducts will be developed first.

3.1.6.1 Higher Order Modes in a Straight Duct with Uniform Flow

This section looks at the propagation of higher order modes within a
straight duct with a uniform cross-section of arbitrary shape and uniform flow. The
geometry of the model is show in Figure 3.2 with the z — axis along the longitudinal
axis of the duct. The governing equation for this problem was developed in Sec-
tion 3.1.3 and is given by Equation 3.13 which was derived from the convected wave
equation assuming a harmonic time dependence. A separation of variables solution

of form

¢' = X(z)%(y,2) (3.53)

can be used. This leads to two equations, the first is given by

2 2
%y—f + 37? +wld=0 (3.54)

which is the two-dimensional Helmholtz equatior for the duct cross-section. The
FEM solution of this equation was considered in Section 2.3.1. The mode shape
and eigenvalue for tae m*® mode are defined respectively as ®n(y, 2) and w,,, with

the eigenvalues ordered from smiallest to largest with increasing m. The second

equation can be used to find X and is given hy
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Figure 3.2 Straight Duct with a Uniform Cross-section

X ., dX 2
(1 - M?) T~ AMw——+ (W -wl )X =0. (3.55)

Letting X = e~%mZ and substituting into Equation 3.55 then yields a

quadratic equation which can be solved for the values of wy, given by

—wM R Ty AW
W = — q:‘/‘;_b(p ) (3.56)

The general solution can then be given as

[o,)
$=Y &nly2) (Al,,.e-i“# + Agme+i“"7“> (3.57)
m=0
where
+_ Fw(MFanm) _ w?
wm———l-—m—— and am—\/l—(l—M2)—j?'. (358)

For the lowest mode (m = 0) the frequency parameter we, = 0 and ®y is constant
over the cross-section. The terms of Equation 3.57 with m = 0 then reduce to
the solution for plane wave propagation given by Equation 3.30. For the higher
order modes (m > 0), if am is real then the terms of Equation 3.57 correspond to
progressive waves which propagate unattenuated. This occurs when the frequency

is above the cut-on frequency given by

w=we, V1 - M? (3.59)
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which decreases as the flow velocity increases and is independent of the direction
of flow. If there is no flow (M = 0). then the cut-on frequency for the m!" mode
is we,,. Below the cut-on frequency wi are complex (entirely imaginary if there is
no flow) and the modes are then referred to as evanescent waves which decay with
distance along the duct. The terms of Equation 3.57 with w}; in the exponent decay
exponentially in the negative z direction and terms with w, in the exponent decay

exponentially in the positive z direction. The rate of decay increases as the driving

frequency w becomes smaller.

3.1.6.2 Higher Order Mode Anechoic Termination

The right hand side of the governing acoustic equation for the FEM
acoustic-flow model (Equation 3.20) is a surface integral containing the normal
derivative of the acoustic velocity potential d¢'/dn. To evaluate this integral, d¢'/dn
must be determined at the interfaces of the connecting straight ducts to the FEM
model. Consider the jt* duct connecting to the model shown in Figure 3.1. As was
done in looking at plane wave boundary conditions, the acoustic velocity potential
within the straight duct, based on the connecting duct non-dimensional coordinates
and frequency, must be converted to a formulation based on the quantities used in
the FEM model. Above the cut-on frequency (@, real) the outward propagating
or transmitted wave is associated with the terms of Equation 3.57 with w}, in the
exponent so that for the anechoically terminated jt straight duct

0
$'= Br(ys, 20 Bir1te iz (3.60)
m=0

where

v _w(Mj—om) _ (1 - a2 Yo
oh =g am—\/ (1-m2) = (361)
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Below the cut-on fréquency (am imaginary), so that the evanescent mode decays
moving outward from the FEM model, the terms of Equation 3.57 with w7} in the

exponent must be used. This is equivalent to using Equation 3.60 with

+ _ _ wM;
Wme I-M?

Y 9| Wi, d?
Wmi = 1—M}\/( M’)uﬂd" -1

where w} and w} are the real and imaginary parts of w};. The normal derivative

(3.62)

of ¢' is then
dé' de' o
D oD Y Bl ) (—iBI) el (3.63)
m=0

At the FEM model interface to the straight duct (z = 0) the acoustic velocity

potential reduces to

0
¢ = dm(ysz,) Bl (3.64)
m=0
and the normal derivative
d¢'  d¢
DL =223 Bl ) (B (3.65)
m=0

The last two equations will be used in Section 3.1.6.4 in the development of the

FEM model of a duct junction with higher order mode boundary conditions.

3.1.8.3 Higher Order Mode Incident Wave Termination

Again consider the j** duct connecting to the FEM model shown in Fig-
ure 3.1. For the specified incident wave termination, the terms of Equation 3.57
with w7, in the exponent form the incident wave and the terms with w/, in the
exponent form the reflected wave. The acoustic velocity potential in the straight

duct is then

(¢,
¢ =Y Bm(yerz) (Biglemiohz 4 pircethons) (3.66)

m=0
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where w, is real and given by Equation 3.61 above the cut-on frequency. Below the
cut-on frequency. w}, is complex and given by Equation 3.62. Similarly wy, is real
above the cut-on frequency and given by

- _w(le-i_am) -
W, = T ]\/If . (3.67)

Below the cut-on frequency the real and imaginary parts of w; are

wM;

J
. (3.68)
- __w 2\ W& _
Ym, 1-MJ2\/( Mf)ww 1

The solutions below the cut-on frequency have been selected so that the incident

evanescent modes decay moving toward the FEM model and the reflected modes

decay moving away from the model. The normal derivative of the acoustic velocity

potential is then

! !
% = i‘i’_ = Z Bm(Ys, 72) (-iw:,B:::ﬂe-w#-* +iwgBicetns) - (3.60)

Evaluating the equation for ¢’ and a.t the connecting duct interface to the model

(£ =0) gives
= iy z) (Bt + Bic) (3.70)
m=0
and
! 1 s .
.‘2% - % = 3 Bnlys, =) (it Bt +iun B (3.71)

These last two equations are used to develop the FEM models of a duct

junction in the following section.

3.1.6.4 Junction with Incident Wave and Anechoic Terminations

Consider the FEM model of a duct junction shown in Figure 2.11. In this

model it is assumed that there is a known incident wave in a straight connecting duct
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at Station 1 and anechoic straight duct terminations at Station 2 and Station 3. This

model will be used to illustrate the equation development. The resulting equations
have also been programmed with only one outlet to solve duct bend problems. The
equations developed could easily be extended to model junctions with four or more
connecting ducts. Station 1 does not necessarily have to be the flow inlet. The
directions of flow can be selected arbitrarily, provided the resulting flow boundary
conditions satisfy mass continuity.

The modal matrix [®];, of FEM model mode shapes will be used for the

incident wave termination at Staiion 1 and defined as

[®]; = {eoH a1} {ge} - {gn}];- (3.72)

The vectors {go},{q1}, {q2} ... {gn} are the eigenvectors of nodal quantities for the
terminating duct cross-section acoustic modes determined from the FEM solution of
the eigenvalue problem. This problemis governed by the two-dimensional Helmholtz
equation given by Equation 3.53 and was considered for two and three-dimensional
problems in Section 2.3. The vector for the acoustic velocity potential and derivative

nodal quantities at this termination is then given by

{¢,}, = (@], ({a} + {8} (3.73)

where {a} is a vector defining the assumed known incident wave modal mixture

and {b} is the vector defining the unknown reflected wave modal mixture at the

termination.

This discretized formulation is then used in Equation 3.70 and Equa-
tion 3.71 which leads to an equation for the acoustic velocity potential at any point

on the terminating cross-section given by

¢' = (N){dg}, = (N)[®], ({a} + {b}) (3.74)
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and the normal derivative of ¢' by

d¢' . -
% = i(N)[®], ({w~a} — {w'b}) (3.75)
where
wg ao wy bo
wita wi by
{wtra} = wias 3 and {w™b} = { waby ). (3.76)
w;::an U-’;.bn

The wave number parameters wg, wy, w5 ...w; can be obtained using Equation
3.66 and Equation 3.67 and wi, w{, ws ...w} can be obtained using Equation 3.61,
and Equation 3.62.

The source terms in the global matrix equation, given by Equation 3.20,

associated with this termination are then

{} = /s {N}-d—g‘ids = i/s {N}(N)ds [®],({w™a} — {w*b}). (3.77)

dn
Let
(@] = [wH{a} wf{n} - of{m}] (3.78)
and
[Pw7] = [wi{n} wi{e} -+ wi{m}] (3.79)
then
{Q1} =i[41] ([2w7], {a} - [Bw™],{8}) (3.80)

where [41] = [5 {N}(N)ds. Similarly at the anechoic termination at St:tion 2,
{¢;},_, = [®],{c} where {c} is the vector defining the unknown transmitted modal
mixture and Equation 3.65 gives {Q:} = —i[A2][®w™],{c}. Also at the anechoic
termination at Station 3, {¢'g}3 = [®],{d} and {Q3} = —i[A3][Pw*],{d} where {d}

defines the unknown transmitted modal mixture at this boundary. The matrices
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[A1], [A2]; [A3] are obtained by integrating on an element basis over each surface
and assembling the element matrices into the associated global surface matrix. The

element matrix is given by

1

1
(Ae] = [7,]F / (FY(E) T, d€ dy[J,] (3.81)
13

when integrated in the element domain over a surface of constant ¢ using the three-

dimensional ISOHERM32 element. and by

1
(4] = (7,7 / (FY(F)Je dé [J,) (3.82)
21

when integrated along the edge of the two-dimensional ISOHERM12 element along
a line of constant +.

Note that {a}, {b}, {c}, {d}, [Mw*] and [Mw™] can be complex. The
global matrix equation for the finite element model given by Equation 3.23 for hard

walled ducts can be split into real and imaginary parts to give
(B +ilBY) ({¢s} +i{e,}') = (@'} +i{Q") (3.83)

where [B"] = [S] — w?[P] and [B'] = 2Mw[C). In terms of all real quantities this

can be expanded to obtain the equation

(B"] [-Bi] {¢L}f} _[{Q)

The vector {d)fq} can be separated into internal node quantities {$in:} and connect-
ing boundary quantities {@pnqa}. Similarly {Q} can be separated into internal and

boundary quantities resulting in the equation

{¢ztnt {O}
[BB] {{Z‘:::‘}} = {?3"}“’} (3.85)

{$hna} {Qaa}
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where the matrix [BB] is defined as

o [1] 2]

The order of the equations can be changed and partitioned between internal and

Gt | _[ {8)

boundary quantities to give

[D11] [Dm]}
= . 3.87
[[021] [D22] {¢£,.d} { Q{md} (3.87)
¢znd and
This is equivalent to the following equations:
::’l ¢rﬂ
[Dn]{ i ‘} +[D12]{¢? d} = {8}
:nt ¢fnd Qr (3.88)
D { ::nt}+ D, { qnd} _ { l?nd}.
(D2 int (D] Phnd Qind
The first equation can be solved for the internal unknowns to yield
:"nt -1 ¢znd
{ i } = —[Dn]™ (D] { ; } : (3.89)
int ¢bnd
which can be used in the second equation to eliminate the internal unknowns giving
Phnd } { Qbnd }
E X = ; 3.90
[ ] {d’;md Q;md ( )
where
[E] = [Das] — [Da)[Dn) ™' [Dre)- (3.91)
The boundary vectors can be expanded to give
117
)
{¢:}, (Q5)
¢y} .
ks | ] {(@5) (3.92)

hi e
ek
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The vectors {¢’g}j can be replaced using the following equations in terms of {a}.
{6}, {c}, and {d}:

{ggh =2l {a"} + (B, {("} (&)} = [®],{a'} + (2], (b))

{8}2 = [2]o{c") CALEINEY! (3.93)
{653 = [®)3{d"} {4"9}?; = [®];{d'}.
Using Equation 3.80. the real and imaginary parts of the source vector {Q,} can
be given by
{Q0) = (4] (~[@w i {a'} - [Bw] {a'} + [BwH]{{b} + (2wt} b))
‘ ) o ) T (30
(@i} = (4] (+[@wI{{a'} - (8w {a'} - [Bw*[[{t7} + (2wt} {5).
If the following matrices are defined
D} = [Aigw*]] (D} = [4i][@w™];
r r . . (3.95)
[Dr] =[Ail[®w7]y (D7) =[Ai][@w7);
then the real and imaginary parts of {Q;} become
(@1} = -[D7)'{a'} - [DT]'{a"} + (D} ('} + (DF ('}
(3.96)

(@i} = D] {a"} - [D7]'{a’} - [DF]' (67} + (D7) (¥}
In a similar manner the real and imaginary parts of {Q2} and {Q3} can be given

by .
{Q3} = [DF]"{'} + [DF]{"}

(@i} = (D3] ('} + DF1'{'}
(@3} = (D3 {'} + (D) {d)

(@4} = —[Df] {d"} + DIV {d'}.
If the expressions for {¢;}j from Equation 3.93 and for {Q;} from Equation 3.96

(3.97)

and Equation 3.97 are substituted into Equation 3.92 and the matrix E partitioned

then



[[En] [Ei2] (Ew) [Eu] [Eis] [Eig)]
[E21] [E22] [Eas) [Eaa) [Eas)
(Es1] [Es2] [Ess) [Esa) [Ess)
(Ea1] [Ea2] [Eas) [Eas) [Bis)
(Es1] [Ese] [Ess] [Esa) [Ess)
L(Es1] [Be2] [Ees] [Esa) [Ess]

[Es]
[E36]
[E4s]
[Es6)

P

[E'ge) ]

A matrix [F] can the be defined by

[F] = [E]

[[®],

([®],{a" + 0} )
[®],{c"}
[®];3{d"}
(@], {a' + 5} |
[‘I’]z{ci}
| [®]3{d'}

[ ~(D7T'{a'} ~ [D1'(a"} + (D} (b} + [Df i} )
+DF1'{'} + (D (")
_ ) +HDIT{d} + (D) {d7}
+DrI'{e’} - [D7]'{a'} - (D] {b} + [DF ' b1}
~(D31"{e"} + [DF]' (<)
| ~[D3]"{a} + [DF]'{a}

J

——
.

[‘I’]a .
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(3.98)

(3.99)

where the elements outside the [®]; sub-matrices in matrix on the right hand side

of this equation are zeros.

If the matrix [F] is partitioned and the terms containing the unknown

vectors {b}, {c} and {d} moved to the left hand side of the equation and the terms
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containing the known vector {a} moved to the right hand side of the equation then

[[Ful - (DF] [P [Fa] (Rl = [DF]
[F2) [Fas) - (D)’ [Fas] (Foy]
[Fa1] (Pl [Fu]-(DF]  [Ful
[Fu] + DY) [Fia] {Fi3] (Fus) - [Df’]i
[F51] [Fs2] + [DF] [Fs3] [Fs4)
[Fo1] [F52] [Fea] + [DF)' [Fo4)
[Fis] [Fie] 7 ¢y
[Fas) - [DF) (Fas] {c"}
[F3s] (Fi] = [DF]"| | {d"}
(Fys] ‘ (Fis] < {b'} f
[Fss) — [DF]' [F’s6] {c'}
(Fis]  [Fes] - (D3] L{d})

~[Ful{a’} - [Fal{e’} - [D{] {a'} - [D})'{a} |
—[Fal{a"} - [Fau){a'}
) ~[Fal{a"} — [Fs4}{a’} |
~[Fal{a"} - [Ful{a'} + [D7] {a"} - [D7]'{e'}
—[Fs1}{a"} — [Fs4]{a'}
| —[Fa1l{a"} - [Fea]{a'} )

[Ful +(Dr]" [Fua)+ (D7)
[F21] [Fas]
- [Fa] (Fa4] ' { {a’} } . (3.100)
[Fu] - (D7]" [Fu] + (D7)
(F51] [F54]
[Fe1] (Fea)

This system of equations can then be solved to find the real and imaginary parts of

{b}. {c} and {d} and thus determine the unknown reflected and transmitted modal

mixtures.

3.1.7 Sound Power Transmission

The last topic to be discussed, to complete this section on the equation

development, is the subject of sound power transmission. The basis of present
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engineering methods for noise prediction in HVAC duct systems is to trace the
sound power transmitted through the system. In the present work, on bends and

duct junctions, many of the results are given in terms of the sound transmission
loss of a duct component.

The presence of flow considerably complicates the equations for sound
intensity. In the present work the generalized definition of acoustic intenmsity of
Morfey [40] has been used. This definition can be used for irrotational isentropic
flow in hard walled ducts and was used by Cabelli [10] when looking at the influence
of flow on the acoustic characteristics of duct bends. As pointed out by Eversman

[30], this definition does not give correct results for ducts with absorptive walls in

the presence of flow.

3.1.7.1 Sound Power Transmission in a Straight Duct
For the case of uniform flow along the longitudinal z-axis of a straight

duct Morfey’s definition reduces to

I = (Re(p") Re(ul)) + ;J‘f—o«ae (7) Re (7))

+M?*((Re(p*) Re (u;)) + pcoM((Re(u;) Re (1)) (3.101)

where (( )) indicates the time average over the period of the harmonically varying
quantity and Re( ) indicates the real part of the quantity. In the absence of flow,
the last three terms of this equation are zero and the equation reduces to the
standard definition of acoustic intensity—the time average of the product of the
real acoustic pressure and acoustic particle velocity. The complex acoustic pressure

p* and acoustic particle velocity 4} can be written as

p* =Pt and ul= Uze™?, (3.102)
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For the case of uniform flow, the acoustic pressure can be related to the non-

dimensional velocity potential using Equation 3.9 to give

P* = —pMc} (1w¢ + w%‘i) {3.103)

The mode shape functions are orthogonal so that the sound intensity can be cal-
culated for each mode and added to give the total intensity at a given frequency.
Substitution of Equation 3.103 and U] = Mcod¢'/8z and the solutions for forward
and backward propagating waves from Equation 3.57, after considerable algebraic

manipulation, gives the relatively simple relations

If = %pco(Mco)zamw2‘I’$n|A1m|2 and I, = —%PCO(MCO)zamwg‘I’snlAzmlg
(3.104)
respectively for the intensities of the forward wave (positive z direction) and back-
ward wave for the m'®t mode when a,; is real. For the evanescent modes (a™

imaginary) the intensities can be shown to be zero. In deriving Equation 3.104 use

was made of the relation

-

{(Re(a)Re (b)) = = (A"B" + A'B') (3.105)

o

for the time average of the product of two harmonically varying quantities where
@ = Aei“t and b = Bel“t,
The transmitted sound power W} for the forward wave, can then be

obtained by integrating the sound intensity I}, over the cross-sectional area of the

w+—// It dA

2pco(Mco) 2 ymw?|Arm)? / / 32 dA (3.106)

= -;—pCO(MC()) amWw lAlml FmA

duct to give
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where Fin can be called the modal power factor and is defined by

®2 dA
Fp = ffT*fj‘T (3.107)

and A is the cross-sectional area of the duct. A similar expression can be derived

for the backward wave,

3.1.7.2 Junction and Bend Sound Power Transmission and Reflection

The equations for transmitted sound power, developed in the previous
section, can be applied to the straight ducts connected to the FEM model of a duct
junction considered in Section 3.1.6.4. Equation 3.106 was based on quantities non-
dimensionalized with the straight duct Mach number and characteristic dimension.
This can be applied to the straight duct at Station 1, in which the incident modal
mixture was specified and the reflected modal mixture determined, to give the total
incident and reflected sound powers based on the FEM model quantities as

winer = -:lz—pco(Mco)zszl S (@m)y () [(0)? + (aiy)?]
m=0 (3.108)

wreflt — %pcO(MCo)zszl Z (am)l(Fm)l [(b;'n)2 + (b;n)2]

m=0

where the subscript 1 refers to quantities evaluated at Station 1 and A4 is the cross-
sectional area of the connecting duct. Also af,, ai,, b}, and bi, are the real and
imaginary parts of the m't elements of the modal mixture vectors {a} and {b} used
in Section 3.1.6.3. Similarly the transmitted sound powers in the straight ducts
connected at Station 2 and Station 3 are

Jtransy %pCo(MCo)2w2A2 Z (am)z(FM)Z [(C:n)2 + (C:n)2]
m=0 (3109)

wissss = L peo(Meo) s Y (am)y(Fnly [(d)? + (0]

m=0
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Based on the above, sound power reflection and transmission coefficients for indi-

vidual modes can be written as

Wreflh 1 . -

Ry, = g = e (am)y (Fm)y [(82)° + (8 )]

T2 _ W'!;‘ransg _ A‘Z_

m = Wina A1Wi“cl
T3 = W't'{anss = As

m Winc1 AIWincx

(@m)al Fm)y [(ch)® + (ch)?] - (3.110)

(am)g(Fm)g [(d:n):2 + (d‘m)g]
The modal power factors Fp for each connecting duct were calculated

based on the FEM model cross-section modal functions. The finite element approx-

imation to the mode shape function ®r, is
®m = (N){gm} = (gm){N} (3.111)

which substituted into Equation 3.107 gives
(gm) f{{N}(N) dy dz{gm}

J"{dydz (3.112)
= (gm}[PH{gm}/A

where [P] is the acoustic “mass” matrix for the duct cross-section eigenvalue prob-

Fm=

lem obtained by assembling the element matrices [P.] and A is the cross-section
area obtained by adding the element areas A.. The integrations in the element

domain using the two-dimensional ISOHERM12 element are given by

1 1
R =0l [ [(FHEI1 dear 0
2140

1 1
m=//maa
S1.

In dealing with components with a single input and output the concept

(3.113)

of transmission loss is commonly used. In this work, this concept will be extended

to junctions with more than one output and will also include the reflected modes in
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the duct with the specified incident modal mixture as an output. The transmission
losses for the m'h reflected mode and the m't transmitted modes in the output

ducts have been defined as
TL, = -10logjgRy, TLE = ~10log)gT2 and TLY, = —10log,oT3 (3.114)

In most cases the incident modal mixture is restricted to a single mode and the
transmission losses for all the individual output modes calculated. Also the com-
bined output sound powers of all modes given by Equation 3.109 can be used to

calculate an overall transmission loss for each duct outlet.

3.2 Tests of the FEM for Plane Waves in Straight Ducts

This section discusses tests of the finite element model to predict plane

wave propagation in straight ducts with uniform flow using the FEM formulation

developed in Section 3.1.5.

3.2.1 Propagation with the Inlet Acoustic Velocity Specified

The first problem to be considered, was a straight duct of length a mod-
eled using ISOHERM12 quadrilateral elements. A duct width of a was used, however
the model was constrained to a one dimensional problem, so that any width could
be arbitrarily chosen. Models with one, two and four elements in a linear string
were used. The same element mesh was used for both the flow and the acoustic
problems and is shown as an example for the two element model in Figure 3.3.
The group of the three global degrees of freedom at each corner of the elements
corresponds to the velocity potential ¢ (acoustic or flow) and the partial derivatives
0¢/0z and O¢ /By respectively. With reference to the velocity potential nodes of
Figure 3.3, the constraint equations “[3]” = “[6]” = “[9]” = 0.0 were used to con-

strain the 0¢/8y and 8¢'/8y to zero at nodes along the top and bottom edges of
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Figure 3.3 Two-Element Model for Plane Wave Propagation in a Straight Duct

the duct. For the flow problem an additional constraint equation “{1]” = 1.0 was
used to assign a value of one to ¢ at this node. Note that the same global degree
of freedom has been assigned to nodes on the top and bottom of the duct with
the same z coordinate, reducing the model to one-dimensional flow and plane wave
propagation. Flow boundary conditions giving an inlet Mach ratio Miyjee/M = -1
and outlet Mach ratio Moyet/M = 1 were used. An acoustic velocity of U = 1
was specified at the inlet (refer to Section 3.1.5.1) and anechoic termination at the
outlet (refer to Section 3.1.5.2).

The flow problem was solved first (in this case giving the same result
as the analytical solution) and the global vector {¢,} of flow velocity potential
and derivative quantities then used in the solution of the flow-acoustic problem as
described in Section 3.1.5.4.

The analytical solution of this problem can be obtained by using the
above boundary conditions in the general solution (Equation 3.30) of the governing

differential equation (Equation 3.29), which was derived from the convected wave
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equation, and is given by

M+ le—iuz/(l-i-;\” (3.115)

, —
¢conv. T

The resulting FEM model acoustical velocity potential ¢z, at the outlet (z = 1)
is compared to the above analytical solution in Table 3.1 for the one. two and four-
element models. for a range of values of the non-dimensional frequency parameter
w (which equals ka) and Mach numbers of zero, 0.1 and ~0.1. The magnitude
and phase refer to the complex quantity given by the ratio of the FEM acoustic
velocity potential and the convected wave equation velocity potential. The mag-
nitude ratio (in decibels) was calculated on a logarithmic scale and is given by
10log;o (I6FEm|/[$tonv])-

For the case of no flow the errors generally increased with increasing ka
and decreased as the number of elements in the model was increased. The one
element model gave magnitude errors of less than 0.1 dB and phase errors of less
than one degree up to a value of ka between 3 and 4. Two elements gave similar
errors up to a value of ka between 6 and 8 and three elements gave magnitude errors
of less than 0.1 dB at ka = 12. This would indicate that each element can model
reasonably accurately one-half of a wavelengfh.

For the case of flow, Table 3.1 shows that the FEM models converged
to nonzero error values and that the phase errors were generally higher at higher
frequencies. It was suspected that this was due to the small Mach number approx-
imation made in deriving the governing differential equation in terms of velocity
potential used in the FEM model. The case of negative Mach numbers (the flow
in the opposite direction to the acoustic propagation) exhibited higher phase errors

than the positive Mach number case.



Table 3.1 Convergence for Plane Wave Propagation in a
Straight Duct with Uniform Flow

One element Two elements Four elements
Magnitude | Phase | Magnitude | Phase | Magnitude | Phase
ka Error Error Error Error Error Error
dB deg. dB deg. dB deg.
M =0.0
0.5 0.0000 0.00 0.0000 0.00 0.0000 0.00
2 0.0021 0.02 0.0000 0.00 0.0000 0.00
4 -0.1220 1.08 0.0003 0.09 0.0000 0.00
6 -0.7219 29.34 0.0164 0.21 0.0001 0.03
8 0.2405 92.55 -0.2228 5.31 0.0017 0.18
10 3.1838 | 146.33 | -0.0677 14.97 0.0026 0.72
12 1.7390 | 167.90 | -1.9300 46.25 0.0590 0.70
M=0.1
0.5 0.0050 0.24 0.0050 0.24 0.0050 0.24
2 0.0202 0.36 0.0177 0.36 0.0177 0.36
4 -0.1334 0.64 0.0132 1.12 0.0128 1.08
6 -0.8211 23.30 0.0198 0.90 0.0015 1.35
8 0.2280 79.23 | -0.2491 4.69 0.0231 1.92
10 48110 |128.58 | -0.0562 8.56 0.0112 2.90
12 2.2140 98.55 | -2.0196 27.70 0.0736 2.12
M=-0.1
0.5 0.0050 0.30 0.0050 0.30 0.0050 0.30
2 0.0194 0.65 0.0177 0.59 0.0177 0.59
4 -0.0865 5.29 0.0131 1.71 0.0128 1.55
6 -0.5807 42.68 0.0137 3.27 0.0014 2.09
8 0.1506 {117.69| -0.1633 13.28 0.0223 3.10
10 1.9865 | 189.12| -0.0374 36.33 0.0098 4,98
12 1.2201 | 246.71 -1.5313 82.60 0.0509 6.75

100

The general solution to the small Mach number, potential flow equation

for plane wave propagation with uniform flow was given by Equation 3.31 which for

a wave propagating in the positive z-direction and 0¢'/0z =1 at z = 0 reduces to

¢:rel.pot. = " (\/m— — M)

e—iw(s/M’-H—M)z

(3.116)

With no flow, this solution is identical to the solution given in Equation 3.115. The

magnitude and phase of this solution at z =1 is compared to the convected wave

equation solution of Equation 3.115 for Mach numbers of £0.1 in the first columns
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of Table 3.2. The magnitude errors are shown to be independent of frequency and
slightly higher for the negative Mach number case but less than one-fortieth of a
decibel. The phase error is a linear function of frequency, again higher for the
negative Mach number case, and reaching approximately two degrees at ka = 6.
This is one aspect of the selected approximate flow model that was not initially
appreciated. Even though the Mach number may be small, the resulting phase
error can be significant if a large value of ka is used.

The FEM results given in Table 3.1 still do not converge exactly to the
analytical small Mach number velocity potential solution given in Table 3.2. The
finite element model was based on the same governing differential equation, however,
there was a difference in boundary conditions used. The FEM model used the
convected wave boundary condition to obtain the anechojc termination element
matrix given by Equation 3.41 and Equation 3.42. The anechojc boundary condition
could also be obtained by using the small Mach rumber potential flow solution of
Eyuation 3.31. This leads to equations for the element matrix (A.] identical to
Equation 3.41 and Equation 3.42 with the exception that the term 1/(1 + M;)
is replaced by \/—m — M;. These terms differ by approximately half of one
percent for M less than 0.1. The last four columns of Table 3.2 compare the FEM
models with four elements using the small Mach number velocity potential anechoic
termination to the analytical convected wave equation and small Mach number
velocity potential solutions. For these cases the FEM model now converges to the
analytical solutions. The results also show more clearly the effect of the flow on the
accuracy of the phase error in the finite element solutions. The phase error increases
with frequency and is larger for the negative Mach numbers. This is reasonable

since the negative flow effectively decreases the speed of wave propagation, thus



Table 3.2 Comparison of Models for Plane Wave Propa-
gation in a Straight Duct with Uniform Flow

Exact vel.pot. FEM(vel.pot.b.c.) | FEM(vel.pot.b.c.)
compared to compared to compared to
Exact conv.wave Exact conv.wave Exact vel.pot.
Magnitude | Phase | Magnitude | Phase | Magnitude | Phase
ka Error Error Error Error Error Error
dB deg. | dB deg. dB deg.
M=0.1
0.5 0.0196 0.12 0.0196 0.12 0.0000 0.00
2 0.0196 0.47 0.0196 0.47 0.0000 0.00
4 0.0196 0.94 0.0197 0.94 0.0000 0.00
6 0.0196 141 0.0198 1.42 0.0001 0.01
8 0.0196 1.88 0.0218 1.97 0.0022 0.09
10 0.0196 2.35 0.0237 2.77 0.0041 0.42
12 0.0196 2.82 0.0878 2.24 0.0682 -0.58
M=-0.1
0.5 0.0240 0.18 0.0240 0.18 0.0000 0.00
2 0.0240 0.70 0.0240 0.70 0.0000 0.00
4 0.0240 1.40 0.0240 1.40 0.0000 0.00
6 0.0240 2.11 0.0241 2.16 0.0001 0.06
8 0.0240 2.81 0.0255 3.15 0.0014 0.35
10 0.0240 3.51 0.0268 4.85 0.0028 1.33
12 0.0240 4.21 0.0695 6.88 0.0455 2.67

decreasing the wavelength so that each element is relatively longer compared to the
wavelength.

At this stage one might suggest that it would be better to use the small
Mach number velocity potential solution boundary condition. This can be easily
done for plane wave propagation. For higher order mode propagation the solutions
become more complicated and it was thought best to use the well known convected
wave equation solutions for connecting ducts rather than deriving solutions to the
approximate low Mach number potential flow equations. Also comparison of the
FEM solutions with the two different boundary condition models in Table 3.1 and
Table 3.2 shows that the difference between the two FEM models is small.

One consequence of choosing to use the convected wave equation in the
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connecting ducts and the small Mach number velocity potential governing differen-
tial equation in the FEM domain is that the termination will not be truly anechoic.
There will be a small reflection at the termination since the acoustic impedances at
the connecting boundary will not match exactly if there is flow in the duct. This

will be investigated in the following section.

3.2.2 Propagation with a Specified Incident Velocity Potential
The same straight duct with uniform flow modeled in Section 3.2.1 has
been considered here. However, instead of a specified inlet acoustic velocity, the
incident wave velocity potential has been specified at the inlet and implemented
with the FEM using ISOHERM12 elements as discussed in Section 3.1.5.3. For
convenience, a unit value was assigned to the incident acoustic velocity potential
at the inlet (Bjpc = 1 in Section 3.1.5.3). After solving for the FEM model nodal
velocity potentials, the reflected velocity potential at the inlet, ¢!, can be obtained
by solving Equation 3.45 to give ¢} 4 = ¢}, — 1 where ¢!, , is the total velocity
potential at the inlet obtained from the FEM model solution. Also the velocity
potential for the transmitted wave at the outlet can be taken as ¢ .., the velocity
potential at the outlet from the FEM solution. Applying the sound power definitions
discussed in Section 3.1.7 to the plane wave mode leads to the following equations
for the FEM model sound power reflection coefficient R and transmission coefficient
T
R = |l —1* and T = |¢hyyel® (3.117)
If the reflected wave is treated as a transmission path then the transmis-
sion loss T L of the FEM model and for lack of a better word, the reflection loss RL

are then

TL = -10log;eT and RL = —10lng,oR (3.118)
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In theory the total reflected and transmitted sound power should equal the incident

sound power since there is no other dissipation within the rigid walled model. To
compare the total reflected plus transmitted sound power to the incident sound
power of the FEM model. a quantity called the total sound power loss PL will be
defined, based on the ratio of the transmitted plus reflected sound power to the

incident sound power and is given by
PL = —10log,o(R + T) (3.119)

Table 3.3 shows the reflection loss RL and the transmission T'L for the
straight duct of length a modeled with a string of one, two and four ISOHERM12
quadrilateral elements. Ideally the incident wave should propagate unattenuated
with no reflected wave created so that TL = 0 and RL = oo. The one element
model gave errors in the transmission loss TL of less than 0.1 dB up to a value of
ka between 4 and 6. Two elements give similar errors for a value of ka between 10
and 12. These are higher values of ka than observed for similar magnitude errors
from Table 3.1 for the specified acoustic velocity problem of Section 3.2.1.

For the case of no flow, as the number of elements is increased, the TL
does appear to converge to zero and the reflected wave becomes negligible. With
flow. the models converge to a residual error value, presumably due to the small
Mach number approximation in the governing differential equation in conjunction
with using the convected wave equation boundary condition. For M = £0.1 the
residual error in TL was less than 10~4 decibels. The RL values converge to values
of the order of 45 decibels or less for M = +0.1 which means that the reflected
wave sound power is less than 0.003 percent of the incident sound power. It was
observed that the positive and negative Mach number cases give identical errors in

TL but different errors in RL.



Table 3.3 Convergence for Plane Wave Propagation in a
Straight Duct with the Incident Wave Specified

One element Two elements Four elements
ka | RL TL RL TL RL TL
indB| indB !indB| indB |indB| indB
M =0.0
0.5 | 148.3 | 0.000000 | 179.6 | 0.000000 | 212.7 [ 0.000000
2 65.5 | 0.000001 | 99.0 { 0.000000 | 132.6 | 0.000000
4 28.5 | 0.006184 | 79.9 | 0.000000 | 127.0 | 0.000000
6 12.9 | 0.231286 | 37.5 | 0.000772 | 81.2 | 0.000000
8 6.4 | 1.136354 | 25.8 | 0.011462 | 67.9 | 0.000000
10 3.6 | 2.456823 | 25.9 | 0.011070 | 58.9 | 0.000006
12 2.3 | 3.797621 7.4 | 0.861033 | 32.0 | 0.002717
M=0.1
0.5 54.2(0.000025 | 54.2 | 0.000025 | 54.2 | 0.000025
2 47.5 | 0.000110 | 48.6 | 0.000089 { 48.7 | 0.000088
4 29.4 | 0.004733 | 49.8 | 0.000068 { 50.1 | 0.000064
6 13.2 | 0.210475 | 36.7 | 0.000954 | 59.1 | 0.000008
8 6.5 { 1.096154 | 26.4 | 0.009410 | 47.1 | 0.000122
10 3.7 | 2.416534 | 28.4 | 0.006151 | 48.7 | 0.000078
12 2.4 | 3.759139 8.2 10.709997 | 31.2 | 0.003461
M=-0.1
0.5 { 50.710.000025{ 50.7|0.000025| 50.7[0.000025
2 44.4 [ 0.000110 | 45.2 | 0.000089 | 45.2 | 0.000088
4 29.8 | 0.004733 | 46.3 { 0.000068 | 46.6 | 0.000064
6 13.2 1 0.210475 | 36.4 | 0.000954 | 55.8 | 0.000008
8 6.5 | 1.096154 | 26.8 | 0.009410 | 43.9 | 0.000122
10 3.7 | 2.416534 | 28.5 | 0.006151 | 46.3 | 0.000078
12 2.4 | 3.759139 8.2 1 0.709997 { 30.8 | 0.003461
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One measure of the accuracy of the model predictions, used for example

by Cabelli [10], is the comparison of the transmitted plus reflected sound power to

the incident sound power. The total sound power loss PL defined by Equation 3.119

for the current problem is given in Table 3.4 for the one, two and four-element models

of the straight duct. Without flow, the PL values were less than 10-!4 dB for all

FEM models at all frequencies and thus the transmitted plus reflected sound power

was exactly equal to the incident sound power (within computer round-off error).

Certainly in this case the sound power check does not give a measure of the
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Table 3.4 Total Sound Power Check for Plane Wave
Propagation in a Straight Duct with the Inci-
dent Wave Specified

Total sound power loss PL in dB

ka One element } Two elements I Four elements

M =0.0

0.5| 1.4465x10~15| 90.6432 x 1016 | 3.8573 x 10~1°
2 4.8216 x 10~ | 3.8573 x 10~15 | 1.4465 x 10~!3
4 1.4465 x 10~16 | 0.6432 x 1016 | 2.8929 x 10~!5
6 | —2.8929 x 10~15 | 9.6432 x 10~16 | —9.6432 x 1016
8 4.3305 x 10~15 | 9.6432 x 10-16 | 4.8216 x 10~16

10 | —3.8573 x 10~15 | —4.8216 x 10~13 | 4.3395 x 10~13

12 | —3.8573 x 10~15 | —9.6432 x 1015 | 4.8216 x 10~16

M=01

5| 8.2429 x 10-¢ 8.2427 x 108 8.2427 x 106

2| 3.3313x107° 2.9199 x 10-% 2.9113 x 105

4 | —2.0537 x 10—4 2.1826 x 10~% 2.1055 x 10~5

6 | —7.2394 x 104 3.5992 x 1079 2.4278 x 108

8

0

2

4.1821 x 10-% | —3.9213 x 10~4 3.7950 x 10-5
9.2923 x 10~3 | —6.8138 x 10~® 1.8513 x 10~3
1.1109 x 102 | —1.9794 x 103 1.3194 x 104
M=-01
5] -1.2313 x 10~° | -1.2313 x 10~% | —1.2313 x 10~
2 | —4.7715 x 10-% | —4.3576 x 105 | —4.3489 x 103
4| 1.9684 x10~* | —3.2194 x 10~% | —3.1450 x 103
61 7.2151 x10~4 | —3.7403 x 10~% | —3.5361 x 108
8

0

2

—4.1962 x 10-3 3.7646 x 10~* | —5.4937 x 10~%
-9.3191 x 103 6.7392 x 10~5 | —2.4314 x 103
-1.1129 x 10~2 1.9743 x 10~% | -1.3717 x 10~*

accuracy of TL values which were in error by several decibels for the one element
model at the largest ka values. With flow, the finite element models converged to
small but nonzero values of PL in the order of 103 decibels, and the PL values
were much smaller in many cases than the individual errors in the transmitted and
reflected sound powers. Comparison of the PL values for M = +0.1 shows that
the values for a positive Mach number were roughly equal to those for the nega-

tive Mach number but of opposite sign. For the four-elcment model with positive
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Mach number. the reflected plus transmitted sound power was slightly less than

the incident sound power and for a ncgative Mach number slightly greater than the

incident sound power.

3.3 Tests of the FEM Model Including Higher Order Modes

This section discusses tests of the fini‘e element model to predict wave
propagation in a straight duct with uniform flow and in a duct bend. including

higher order modes using the FEM formulation developed in Section 3.1.6.

3.3.1 Mode Shapes and Eigenfrequencies for Rectangular Ducts

Part of the FEM developed for modeling higher order mode boundary
conditions requires finding the mode shapes and eigenfrequencies of the duct cross-
sections for the straight ducts linked to the bend or junction FEM models. The
FEM model for the solution of this eigenvalue problem was considered in detail in
Section 2.3. As the subsequent work will consider rectangular ducts, this section
looks at rectangular duct cross-sections.

The exact mode shape function for the rectangular hard walled duct

cross-section is

®m(y,2) = cos(nymy) cos (nzwz) (3.120)

Tz

and the exact non-dimensional frequency parameter given by

2
2 _ 212 ng
wc,,,—" [nv+(7‘z)

for the m*® mode, where n, and n, can have any integer value from zero to infinity.

(3.121)

Also y and z have been non-dimensionalized based on the duct width in the y-
direction and r; is the ratio of the duct width in the z-direction to that in the

y-direction. The modal power factor Fy;, defined by Equation 3.107, calculated
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from the exact mode shapes given by Equation 3.120 gives a value of £}, = 1 for

the plane wave mode (ny = n; = 0). a value of F, = 1/2 for modes with either
ny = 0 or n; = 0 and a value of Fy;, =1/4 for modes with both n, and n. nonzero.

Figure 3.4 shows the ISOHERM12 element meshes used to generate the
eigenvalues, mode shapes and modal sound power factors. Most of the subsequent
work deals with two-dimensional duct problems with one, two or three quadrilat-
eral elements spanning the connecting duct interfaces so that only one-dimensional
eigenvalue problems must be solved. The one-element model has been set up to
illustrate the two-dimensional cross-section model needed to provide input into a
three-dimensional duct model. The width of the duct in the z-direction has been
taken as twice the width in the y-direction. The two and three-element models have
been constrained to one-dimensional models in the y-direction.

The one-element model in Figure 3.4 assumes rigid walled ducts so that
the derivatives 8¢'/8y and 3¢'/Jz are taken to be zero at the corner nodes. These
have been assigned to the last nodal quantity “[5]” of the one-element model in Fig-
ure 3.4. This nodal quantity was excluded from the global matrices in the element
assembly procedure. The mode shape is thus defined ia terms of an eigenvector of
the four corner nodal acoustic velocity potentials only. The finite element solution
to this ISOHERM12 one-element model gives the following modal matrix [®] (refer

to Section 3.1.6.4, Equation 3.72)

1 1 1 1
@ha=|1 7] 1 7 (3.122)
1 -1 -1 1

where each column is the eigenvector for a mode, ordered from the mode with the
smallest eigenvaluein first column (the plane wave mode) to the mode corresponding

to the largest eigenvalue in the last column. Note that in this case the evaluation
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Figure 3.4 Rectangular duct cross-section models
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of the exact mode shape functions given by Equation 3.120 at the corners of the
duct gives modes identical to those in [®] obtained from the FEM model. If the
one-element model is used to solve the one-dimensional eigenvalue problem then the

modal matrix is given by
1
(@)1 = [1 _{] (3.123)

where the first column corresponds to the plane wave mode and the second to the
firs: :ross mode.
The finite element solution to the ISOHERM12 two-element model shown

in Figure 3.4 gives the following model matrix

11 11
1 0 -1 0
(Bl = |0 —3212 0 18.212 (3.124)

1 -1 1 -1

where the first, second and fourth elements of each column are the nodal velocity
potentials and the third element of each column is the slope 8¢'/0y midway across
the duct. The nodal quantity “[5]” as for the one element model has been used for
all nodal quantities constrained to zero. Note that in this case all elements of [®]
are identical to the exact modal function evaluated at the nodes except for the slope
quantities in the second and fourth columns. The exact value of 9¢' /3y evaluated
at this point for the first cross mode is —7 compared to a value of —3.212 in the
FEM modal matrix, and for the third cross mode a value of 37 compared to a value
of 18.212 in Equation 3.124.

Similarly the modal matrix [®] for three elements across the duct is given

by
11 1 11 1
1 05 =05 -1 —0.5 360.5
0 —2736 —5739 0 17.079 36.444
[®ha=|1 05 -05 1 -05 —05 (3.125)

0 -2.736 5739 0 -17.079 36.444
1 -1 1 -1 1 -1 ]
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where all velocity potential values are identical to the exact modal function eval-
uated at the nodes. The derivative values 2.736. 5.739, 17.079 and 36.444 in the
third and fifth rows of this matrix correspond to the derivatives d®,, /dy of the exact
modal function evaluated at one-third and two-third points across the duct. These
are given by 7v/3/2 = 2.720. 7v/3 = 5.441, 27v/3 = 10.882 and 57/3/2 = 13.60
for the first, second. fourth and fifth cross modes respectively.

In both the two and three-element models, the exact and FEM nodal
derivative values differ significantly, with differences becoming greater as the mode
number is increased. It is still best to use the FEM derivative values in the modal
matrices rather than the exact values. Substitution of the exact values into the
modal vectors leads to increased errors in the modal sound power factors and in-
creased coupling between modes. The eigenvalues and modal sound power factors
for the one, two and three element FEM models are compared to the exact values
in Table 3.5. In terms of the one dimensional models, the one-element model pre-
dicts fairly accurately the first cross mode—the only cross mode that it considers.
The two-element model predicts fairly accurately the first and second cross mode
values and inaccurately predicts the third cross mode. The three element model
gives fairly accurate predictions for the first, second and third cross modes, but less
accurate predictions of the fourth and fifth cross modes.

The orthogonality of the modes can be checked by extending Equa-
tion 3.112 which defines the modal sound power factors Fy, to give the matrix
[®)T[P][®]/A. The diagonal elements of this matrix are the modal sound power
factors F,. For the FEM models considered here, ail off-diagonal elements had

values of 10~!4 or less which indicates insignificant coupling between the modes.



TABLE 3.5 Eigenvalues and Modal Power Factors for Duct
Cross-sections

Exact ISOHERM12 FEM
Mode Percent Percent
No. |n;{ny| w? | Fm w2 Error Fr Error
m in w?, in Fp
One-element, two-dimensional cross-section model
0 010 0 1 0.0000 — 1.0000 0.000
1 |o|1| & | 1| 24706 | 0120 | 0.4857 | -2.857
2 | 1|0 «% | § | 98824 | 0129 | 0.4857 | -2.857
3 11 5:—2 % 12.3529 | 0.129 | 0.2359 | -5.632
Two-element, one-dimensional cross-section model
0 01]0 0 1 0.0000 — 1.0000 0.000
1 | 10| =2 | 3 | 98722 | 0.026 | 0.4954 | -0.916
2 | 2|0 4n®| § | 395204 | 0.129 | 0.4857 | -2.857
3 | 3]0 |9n2 | 5 | 942509 | 6.107 | 0.5974 | 19.49
Three-element, one-dimensional cross-section model
0 00 0 1 0.0000 — 1.0000 | 0.000
1 {10« | | 9.8699| 0.003 | 0.4988 | -0.244
2 | 2|0 4n% | 1 | 39.5204| 0.106 | 0.4895 | -2.110
3 3|0 9n2 % 88.9412 | 0.129 | 0.4857 | -2.857
4 4 | 0 |16x? % 162.858 3.131 | 0.5206 4.120
5 5| 0 |25%2 % 273.558 | 10.87 0.8549 | 70.98

3.3.2 Propagation in a Straight Duct with Uniform Flow

The propagation within a rigid walled, two-dimensional, straight duct of

width a has been considered in this section. A segment of the duct of length a

has been modeled with one, two and three square ISOHERM12 elements across the

duct width as shown in Figure 3.5. It was assumed that the straight duct extends

to the left and right of the FEM model. The left sidu «f the model has been taken
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as the inlet at which an incident modal mixture is specified and an anechoic termi-

nation assumed at the outlet on the right side of the model. A uniform flow has
been assumed for which a positive Mach number indicates flow from the left to the
right.

The numbering of the global degrees of freedom in the models is shown
in Figure 3.5. The highest numbered degree of freedom has been assigned to the
9¢' /Oy nodal quantities at the hard walls and has been constrained to a zero value.
The numbers in square brackets indicate the quantities defining the inlet and outlet
cross-section modal vectors. For the one-element model these involve only acoustic
velocity potential quantities. For the other models these include 8¢'/8y terms as
well.

Either a plane wave, or the first, second or third cross modes have been
chosen for the incident modal mixture vector {a} defined in Section 3.1.6.4. A real
unit value was assigned to the element of {a} corresponding to the selected mode and
zeros assigned to all other elements. The outlet modal mixture vector {c} was then
calculated from the exact convected wave equation solution and the FEM model
over a range of ka values. The elements of {a} and {c} correspond respectively to
the incident acoustic velocity potential at the inlet and the transmitted acoustic
velocity potential at the outlet, taken at the .lower wall of the duct for each mode.

The resulting plane wave acoustic velocity potential at the outlet with a
unit incident plane wave velocity potential is shown in Figure 3.6 for the case of
no flow. The real and imaginary parts of the outlet velocity potential for the FEM
models with one, two and three elements across the duct are compared to the exact
solution as a function of ka. The exact solution has been plotted at intervals in ka
of 0.125 and the FEM values at twice this interval. All three models show good

agreement with the exact solution up to ka of 3.5 at which point the one-element
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Figure 3.6 Plane Wave Acoustic Velocity Potential for a Straight Duct with no
Flow

prediction starts to deviate visibly from the exact curves. With two elements across
the duct width, the FEM prediction visibly starts to deviate from the exact curve
at a ka value of about 7 and with three elements at a ka value of 10.

A similar graph for the first cross mode is shown in Figure 3.7. Below the
cut-on frequency for this mode, the imaginary part of ¢' is zero and the real part of
¢' at the outlet is less than the unit incident value at the input. This demonstrates
the decay of this evanescent mode from inlet to outlet and shows how the amount
of decay is reduced as the frequency parameter ka increases and approaches the
cut-on value of ka = #. The deviation between the exact and FEM model curves
near the cut-on frequency is caused by differences in intervals at which the exact
and FEM model points are plotted. The convergence of the FEM models to the

exact solution appears to be similar to that for the plane wave.
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Figure 3.7 First Cross Mode Acoustic Velocity Potential for a Straight Duct
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Figure 3.8 Second Cross Mode Acoustic Velocity Potential for a Straight Duct
with No Flow
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The graph of the second cross mode velocity potential at the outlet, for
a unit inlet second cross mode potential, is shown in Figure 3.8. Note that the
one-element model only predicts the plane wave and first cross mode and thus is
not shown on this graph. The FEM model with two elements across the duct width
starts to visibly deviate from the exact curve at a ka value of about 8. Note that
the FEM model with three elements across the duct width gives greater errors
than with two elements. This unexpected result may be partially explained by the
observation that each element in the two-element model models exactly one half of
a wavelength of the cross-section mode shape. It was noted in the last paragraph
of Section 2.3.2.2, that the eigenvalues of a one-dimensional tube were predicted
more accurately when each element modeled exactly half a wavelength. Table 3.5
shows. however, that the three-element model gives marginally smaller errors than
the two-element model when predicting the eigenvalue ws and modal power factor
F5 for the second cross mode. Thus, one would have expected the model with three
elements across the duct width to give at least as good a prediction as with two
elements across the width.

The results for the third cross mode are shown in Figure 3.9 for the case
of no flow. The noticeable “clipping” of the exact solution, in this and other figures,
is caused by the coarseness of the intervals at which the solution was evaluated. The
FEM model with two elements across the duct width deviates considerably from
the exact solution above the cut-on frequency of ka = 3 for this mode. The model
with three elements across the duct width on the other hand gives a very accurate
prediction up to ka approaching 12—in fact more accurate than the predictions of
the plane wave and lower cross modes with this model. For this mode each element

models exactly one half of a wavelength of the cross-section mode shape.
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Figure 3.9 Third Cross Mode Accustic Velocity Potential for a Straight Duct
with No Flow

The results with flow are given in Figure 3.10, Figure 3.11, Figure 3.12
and Figure 3.13 for Mach numbers of 0.1 and —0.1 where a positive Mach number
indicates the flow is in the same direction as the acoustic wave propagation and a
negative Mach number indicate that the flow in the opposite direction. The results
for the plane wave are shown in Figure 3.10 and are similar to the curves obtained for
the no-flow case. For the positive Mach number case, the sinusoidal shaped curves
have been “stretched out” and for the negative Mach number case “compressed”
along the ka axis in comparison to the no-flow case. Also it was observed that
flow in the opposite direction of the acoustic propagation increased the prediction
error at a given ka value. Similar observations can be made concerning the first
cross-mode results given in Figure 3.11. One difference noted here, compared to the
no-flow case, is that below the cut-on frequency, the imaginary part of the velocity

potential is nonzero and positive for the positive Mach number case and negative
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for the negative Mach number case. As with no flow, the results for the second
cross mode are generally more accurate with two elements across the duct width
than with three. Also the model with three elements across the duct width gives
accurate results for ka approaching 12 for Mach numbers of 0.1 and —0.1.

In the next chapter considerable work is dene in terms of prediction
of sound power transmission loss and reflection loss for plane waves and the first
cross modes in duct system components. The computer program used has been
checked here for the straight duct problem considered above. The results for the
reflected and transmitted plane wave with a plane wave incident were identical (to
the number of significant digits shown) to that given in Table 3.3 which were based
on constraining inputs and outputs to plane waves only. The predicted transmission
loss TL and reflection loss RL of the first cross mode with the first cross mode
incident are shown in Table 3.6 for the FEM models with one, two and three elements
across the duct width. Comparing Table 3.3 and Table 3.6 shows that the one
element model gives slightly smaller errors in TL and RL for the first cross mode
than for the plane wave. The model with three elements across the duct width
generally gave smaller errors for the plane wave than for the first cross mode. The
results for the model with two elements across the cross-section were mixed and
varied depending on the frequency parameter ka. One puzzling difference between
these two tables is that in Table 3.3 for the plane wave propagation, the transmission
losses for positive and negative Mach numbers were identical. For the first cross
mode case, this is also true for the models with one element and three elements
across the duct width. For the case of two elements across the duct width for ka of
10 and 12 (above the cut-on of the third cross mode) the results differ for positive
and negative Mach numbers. The following paragraph sheds some light on the

reason for this difference.
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In duct components, such as elbows for example, a specified single inci-

dent mode can be scattered, contributing sound power to many transmitted and

reflected modes. In a straight rigid duct of uniform cross-section a given incident

mode will continue to propagate as a single mode with no contributions to other

modes. To check how well this was predicted with the straight duct FEM models,

the TL and RL values were predicted for the first, second and third cross modes

with the plane wave incident and for the plane wave, second and third cross modes

with the first cross mode incident. With only oue exception the T'L and RL gave

what appeared to be more or less random values between 280 dB and 320 dB with

little dependence on the frequency, Mach number or number of elements. The one

exception was the case of two elements across the duct cross-section when looking
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at the TL and RL for the third cross mode with the first cross mode incident. For

this case with ka greater than the third cross mode cut-on frequency, the RL values
ranged from between 10 and 30 dB and T'L ranged from 20 to 50 dB depending on
frequency and Mach number. Thus, for this case. significantly more sound energy
was transferred from the incident first cross mode to the transmitted and reflected
third cross mode. This would explain the observation in the previous paragraph
concerning different transmission losses for positive and negative Mach numbers at
ka values of 10 and 12 in Table 3.6 for the case of two elements across the duct
width.

The reason for this apparent transfer of sound energy to a higher mode
in this FEM model is not completely understood. Certainly based on Figure 3.9,
the model with two elements across the duct width predicts rather poorly the out-
let third cross mode velocity potential with the third cross mode incident. With
reference to the modal matrix for the two element cross-section model given by
Equation 3.124, the modal vectors for the first and third cross modes are given by
the second and fourth columns of this matrix. The only difference between these
modes is the slope terms given in the third row. However the check of the orthogo-
nality of the mode shapes, discussed in the last paragraph of Section 3.3.1 where the
matrix [®]T[P][®] was evaluated, did not show any higher values for the off-diagonal
terms involving the first and third cross modes than for other modes.

Subsequent work concentrates on predictions for the plane wave and first
cross mode in duct components up to ka = 6. Based on the results for the straight
duct problem with undistorted elements, the use of one element across the duct
width should give acceptable results up to ka = 4, and two elements across the

width should give acceptable results up to ka = 6 even with a Mach 0.1 flow

opposite the direction of acoustic propagation.
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3.3.3 Propagation in a Duct Bend

The previous straight duct problem tested the acoustic-flow model with
undistorted elements. In this section. the propagation in a duct bend using dis-
torted elements is considered. The bend selected is basically a 90 degree mitred
elbow in which the inner corner of the bend has been rounded with a radius of one
half the duct width. This bend was considered by Cabelli [10] using eight-noded
quadrilateral isoparametric elements.

Meshes with four to thirty-one ISOHERM12 elements were used as shown
in Figure 3.14. The normal derivative of ¢’ was constrained to zero at nodes on the
bend walls to reduce the number of global DOF. The 113 DOF model was close to
the maximum size model that could be handled on the desktop computer system
used. The results with no flow for a plane wave incident are shown in Figure 3.15.
R, is the acoustic velocity potential reflection coefficient defined as the ratio of the
reflected mode velocity potential to the incident mode velocity potential both taken
at the duct wall. The transmission coeflicient Ty is defined similarly base on the
ratio of the transmitted and incident modes. The upper and lower graphs on the
left hand side of the figure are for the reflected and transmitted plane wave modes
and the graphs on the right side are for the reflected and transmitted first cross
modes. This also applies to Figure 3.16 in which the results for the first cross mode
incident are shown.

Cabelli’s results [10] were digitized from a blown up photocopy of the
figure and thus may not be reproduced precisely. There is, however, good agreement
with the 113 DOF model. There are significant differences between the 113 DOF
model and the 52 DOF model for some of the graphs above ka = 4, indicating that

three elements are needed across the duct in this case to accurately model up to
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ka = 6. The need to use a finer mesh compared to that required for the straight

duct problem is probably due to the decreased accuracy of the distorted elements
but may also be partly due to the more complex acoustic field within the bend.

Two of the four elements in the 19 DOF model were severely distorted
and this model gave poor results even at some points below the first cross-mode cut-
on at ka = 7. The five-element 23 DOF model. on the other hand. gave generally
good agreement up to ka = 7 and in fact reasonable agreement up to ke = 4
with the plane wave incident and to ka = 5 with the first cross mode incident. In
this model three of the five elements are square and two elements long rectangles
distorted along one of the short boundaries.

Cabelli also gave results for compressible potential mean flows, with inlet
Mach numbers of 0.25 and 0.4, and local Mach numbers reaching 0.39 and 0.66
respectively at the inner curved corner. Some results were obtained for this elbow at
these Mach numbers even though the incompressible flow model used was probably
not very accurate at these velocities. The resulting transmission and reflection
coefficients obtained typically showed smaller effects of flow and poor correlation
with Cabelli’s results.

The work of Peat [45] uses the same incompressible flow equations as
used in this thesis and gives results for a duct expansion chamber for M = 0.1. The
results are however for an axisymmetric cylindrical expansion chamber, assume
plane wave inputs and outputs, given in terms of the muffler four-pole parameters
and given only up to ka = 1.5. Peat’s paper does not give any results for the no-
flow case and thus does not indicate how significantly the flow influences the four-
pole parameters at this Mach number. It was decided that the limited verification

that might be obtained was not at this stage worth the effort necessary to modify
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the current computer programs to handle this problem. Thus the straight duct

results with flow and the bend results with no flow have been relied on as sufficient

verification of the prediction model.



CHAPTER IV

PROPAGATION OF SOUND THROUGH
DUCT BENDS AND JUNCTIONS

4.1 Introduction

This chapter is mainly concerned with sound propagation through duct
junctions—a subject which has been given relatively little attention in the research
literature. The physical problem to be considered is a duct bend or junction con-
nected to infinitely long or anechoically terminated straight ducts. It is assumed
that the incident mode or modes in one of the connecting ducts is known. The
resulting reflected modes in this duct and the transmitted modes in the other con-
necting ducts are then to be determined. For example, with a plane wave incident,
reflection and diffraction effects within the duct bend or junction can cause the scat-
tering of the plane wave acoustic energy into higher order reflected and transmitted
modes.

Considerable work has been done by Cabelli [9], [10] and Cabelli and
Shepherd [13], [14], [51] on duct bends of various geometries using both the FDM
and the FEM. Two bends are considered in this chapter to examine certain aspects of
application of the ISOHERM12 element. The remainder of the chapter is concerned

with application of this element to duct junctions or branch points.
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4.2 A Mitred 90 Degree Bend

In Section 3.3.3 the propagation of sound through a duct bend requiring
the use of distorted ISOHERM12 elements was considered. Three elements were
required across the duct cross-section to accurately model the elbow reflection and
transmission coefficients up to ka = 6 where a is the duct width. This model
contained 31 elements and was close to the maximum size model that could be
handled on the desk top computer system used for this work. In the subsequent
work on duct junctions, it was anticipated that models with three elements across
the duct width would be too large for the computer system used. A mitred 90 degree
bend has been considered here to test the accuracy of the undistorted element for
modeling this type of problem.

The finite element meshes which were used are shown in Figure 4.1. These
are identified based on the number of elements across the duct width. In the earlier
work of Craggs and Stredulinsky [23] and Stredulinsky, Craggs and Faulkner [55], on
elbows and bends within a piping network, finite element models were constrained to
plane waves at the interface to connecting straight ducts. The finite element meshes
were extended one duct width from the bend or junction to allow some distance for
the evanescent modes generated at the bend or junction to decay so that a plane
wave boundary condition could be applied at the interfaces. For the case of flow it
is also necessary to extend the finite element domains into the connecting straight
ducts to model the inlei and outlet flow fields. The prediction method developed
in Chapter III includes the evanescent modes in the boundary conditions at the
connecting duct interfaces so that, in the absence of flow, it should be possible
to shorten the inlet and outlet finite element domains and thus reduce the size

of the finite element model. A model with a shortened inlet and outlet called
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Figure 4.2 Convergence of FEM Models of a 30 Degree Mitred Bend with No
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model “3EL S” is given in Figure 4.1. It may be possible to reduce this model
further to a square composed of nine elements. This would require that the inlet and
outlet boundaries be linked at one node—a condition not included in the prediction
method development of Chapter III.

The results obtained using these models are compared, for the case of
no flow, in Figure 4.2 for a plane wave incident and in Figure 4.3 with the first
cross mode incident. Both the reflection loss RL and the transmission loss TL

for the plane wave and first cross mode components are shown. The results for
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the model “1EL” with one element across the duct width differ significantly from
the other models. The “2EL” and “3EL” models differ generally by less than one
decibel with differences reaching a maximum of 1.3 dB for the reflection loss with
the first cross mode incident and ka between 4.5 and 5. The differences between the
“3RL” and reduced “3EL S” models was 0.03 dB or less over the frequency range
considered. Thus these results would indicate that undistorted element models with
two elements across the duct cross-section should give acceptable results for ka < 6.

Also in the absence of flow the results indicate that it is not necessary to extend the
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finite element models into the connecting straight ducts (with the restriction that
the current prediction method requires that the connecting duct surfaces must be
separated).

The velocity potential flow solution for this bend is likely to differ signif-
icantly from the actual flow field, since in a real flow, separation is likely to occur
at the mitred inner corner. The effect of the potential flow on the propagation
characteristics of the bend is shown in Figure 4.4 for a plane wave incident and in

Figure 4.5 for the first cross mode incident. In these graphs the reflection loss RL
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and the transmission loss T'L for no flow are compared to the case with flow with an
inlet and outlet Mach number of 0.1 moving in the same direction as the acoustic
wave. The effect of flow appears to be very small except near the cut-on frequency
of the first cross mode where the plane wave transmission loss with a plane wave
incident has changed by approximately 10 dB. The largest differences seem to occur

where RL and TL are large—where relative differences in small sound power values

are compared.
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4.3 A Curved 90 Degree Bend with Turning Vane

The bend to be considered in this section is a 90 degree curved bend
with an inner radius of 0.5a and an outer radius of 1.5a. so that the width of the
connecting straight ducts is a. A thin rigid turning vane subtending an angle of
90 degrees has been included in the bend for the case with the vane at a radius of
0.875a and for the case of the vane at 1.125a. This bend was considered by Cabelli
9] using the FDM for values of ka up to 3. Without the vane in place. this type
of bend has a small transmission loss over this frequency range. With the vane in
place, the bend shows a significant peak in transmission loss at a frequency well
below the cut-on frequency for the first cross mode in the connecting straight duct.

The finite element meshes used to model these bends are shown in Fig-
ure 4.6. Initially models with two elements across the duct width were used. Also,
along the turning vane including the end nodes of the vane, the boundary condi-
tion that the acoustic velocity normal to vane be zero was used to constrain the
acoustic velocity potential derivative nodal degrees of freedom. The reflection and
transmission loss results for this model are shown in Figure 4.7 for a turning vane at
a radius of 0.875a, and in Figure 4.8 for a turning vane at a radius of 1.125a under
the legend item “2ELC™. It was then noted that there were significant differences
between the predictious with this model and the results of reference [9]. Predictions
were then obtained leaving the derivative nodal degrees of freedom at the ends of
the vane unconstrained, increasing the number of global degrees of freedom from 74
to 76 and giving the results referred to as “2EL” in Figure 4.7 and Figure 4.8. A
third result was obtained using three elements across the cross-section with short-
ened inlet and outlet FEM domains and again leaving the nodal quantities at the

ends of the vanes unconstrained. This result is referred to as “3EL” in Figure 4.7

and Figure 4.8.
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Figure 4.6 ISOHERM12 meshes for Curved 90 Degree Bends with an Inner
Radius of 0.5a and an outer radius of 1.5a
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These figures show an eight percent shift in ka for the peak in the plane
wave transmission loss located at approximately ka = 2 in Figure 4.7 and a slightly
smaller shift in Figure 4.8 when comparing the “2ELC” and “2EL” results. Also
there are significant differences in transmission loss values for these two models
above ka = 1.5. The “2EL” and “3EL” results are much closer, but still show some
shift in the first 'L peak and significant differences in the RL values above ka = 4
and in TL above ka = 5.

These results indicate that even in the range of ka between 1.5 and 2,
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the finite models have still not converged, even with three elements across the inlet
and outlet width. Based on the previous elbows considered, this was unexpected.
The bend with a curved inner corner shown in Figure 3.15, which involved distorted
elements, showed good agreement between models with one and two elements across
the duct width and insignificant differences between models with two and three
elements across the duct width in this frequency range. At present it is not known
whether the poorer result for this bend is due to the nature of the distortion of

the elements or possibly the more complex sound field created by the presence
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of the turning vane. These results alsc confirm, as found in modeling a complex
shaped enclpsure in Section 2.3.4. that constraining the derivative nodal quantities
at boundary discontinuities can over-constrain the FEM models leading to increased
errors. Even though the acoustic velocity normal to the vane is zero at end of the
vane, in the fluid just beyond the end of the vane there could be a significant
acoustic velocity perpendicular to the vane and therefore it is best to leave this
node unconstrained and let the implicit boundary condition determine the normal
acoustic velocity at the ends of the turning vane.

The FDM predictions of Cabelli [9] and the ISOHERM12 model with
three elements across the duct cross-section are compared in Figure 4.9 and Fig-
ure 4.10 respectively for the turning vane at a radius of 0.875a and 1.125a. These
graphs show the plane wave transmission loss for a plane wave incident. Cabelli’s
results were digitized from a small figure which was given in terms of the reflec-
tion coefficient and the converted to transmission loss values and thus may not be
reproduced precisely. Cabelli’s results show the first transmission loss peak at a sig-
nificantly lower frequency than the ISOHERM12 results and probably lower than
values {o which ISOHERM12 models with finer meshes are likely to converge. It
was noted in Cabelli’s paper, that using the FDM, the ends of the vane could only
be determined to within one mesh space and for the vanes considered, the angle
subtended by the vane was between 72 and 90 degrees. His experimental work on
other bends with turning vanes consistently showed that the best approximation
corresponded to the upper limit. In view of the above, some additional experimen-
tal results were obtained using an existing facility at the University of Alberta for

measuring duct component transmission loss using the transfer function method of

Chung and Blaser [15], [16].
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The noise generation apparatus used in this experimental work consisted
a white noise source, and amplifier driving an array of four small loudspeakers at
the entrance of a straight inlet duct. This inlet duct was connected to the test
bend which in turn connected to an outlet duct with an anechoic termination. The
measurement apparatus consisted of two 1/4 inch B&K 4145 microphones, a B&K
2807 microphone power supply and a dual channel Nicolet 660A FFT spectrum
analyser controlled by an HP Integral computer.

The experimental procedure was developed for measurement of plane
wave transmission loss. The speaker array could be configured as a monopole, dipole
or quadrapole—for the present measurement the monopole configuration was used
to excite mainly the plane wave mode in the inlet duct. Measurement test stations
were located upstream and downstream of the test bend. The microphones were
located flush to the inner duct wall and spaced 24 mm apart along the axis of the
duct, midway across the duct face in the plane of the bend. These measuring points
were chosen to be at the nodal plane of the first cross mode so that the plane wave
transmission loss measurement could be extended above the cut-on of the first cross
mode [1,0] at ka = 7 where a is the width in the plane of the bend. The actual
bend considered, had an inner corner radius of 100 mm and outer radius of 300mm,
with the turning vane located at either a radius of 175mm or 225mm. The vane was
assumed to have zero thickness in the FEM predictions but actually had a thickness
of 5mm. The rectangular connecting ducts had an inside dimension of 200 mm in
the plane of the bend and 150 mm in the perpendicular dimension. Thus additional
cut-on frequencies of ka = 4.19 for the [0,1] mode and of ka = 5.23 for the [1,1]
modes were in the frequency range considered.

The experimental procedure consisted of measuring the acoustic transfer

function and auto-spectrum with the two microphones at the upstream measure-
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ment station (averaging 192 FFT traces) and then repeating the measurements at
the downstream station. This data was transferred and used by the HP Integral
computer to calculate transmission loss values. The results for the bend at a radius
of 0.875a are shown in Figure 4.9. The location of the first experimental trans-
mission loss peak is closer to Cabelli's result than the “3EL™ ISORERM12 model
result. For the case of the vane at a radius of 1.125a the first peak in the trans-
mission loss is shifted to a lower frequency and both Cabelli’s prediction and the
ISOHERM12 “3EL" prediction show a second peak at roughly double the frequency
at which the first peak occurs. Again Cabelli’s FDM result is lower than the FEM
result. The peaks in the measured transmission loss curve are smaller than either
predicted result and located midway between the predicted peaks.

There is certainly further work needed to resolve the above differences,
including using the FEM models with finer meshes (probably requiring the use of a
larger computer system) and comparing with FEM models using, for example. the
HEX12 element. The actual thickness of the vane could also be modeled, although
since this thickness is less than 3% of the duct width this is not expected to have a

significant influence.

4.4 Propagation Through Duct Junctions

Compared to the amount of research done on duct bends, there has been
relatively little work done on duct junctions where three or more ducts join at a
common junction (restricted to three ducts in the present work). Some analytical
work has been done for “T” junctions and 90 degree side branches for simple two di-
mensional rectangular geometries which involve solution of the Helmholtz equation
in Cartesian coordinates and boundaries parallel to the coordinate axes. Miles [39]

considered a “T” joint of equal width tubes using an electrical circuit analogy which
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limited his approach to plane waves and assumed higher order modes decayed over
short distances. In Miles® formulation any tube leading into the “T" could be chosen
for the incident wave. The plane wave reflection coefficient and the transmission
coefficients for the other branches could then be determined. This “T" junction was
also considered by von Said [57]. In von Said’s work, higher order modes were con-
sidered. An incident plane wave or the first cross mode were considered entering the
stem of the *T" and the total reflection coefficient and transmission coefficient for
the symmetric outlet ducts determined up to the cut-on of the fourth cross mode.
He did not give individual mode reflection and transmission coefficients.

A different approach is taken by Redmore and Mulholland [46] who used
a mode coupling theory to predict the sound pressure in a 90 degree side branch
attached to a semi-infinite straight rectangular duct, with a source distribution at
one end. This approach assumes that the modal sound field in the main duct is not
affected by the presence of the side branch, and that the disturbances caused by
this sound field at the common plane between the side branch and the main duct
become the source for the sound field in the branch duct.

The subsequent work in this chapter considers the junction problem in
which three semi-infinite straight ducts meet at a junction. The incident wave
modal mixture approaching the junction along one of the ducts is specified and the
reflection loss (the transmission loss for the reflected wave) and the transmission
losses for each mode in the two outlet ducts determined. Before considering some
specific applications two low frequency approximations will be considered in the

next section. These are used in subsequent sections for comparison purposes.
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4.4.1 Low Frequency Approximations for Duct Junctions

At very low frequencies, the classical approach to plane wave propagation
in pipes can be used to predict the reflection and transmission losses for pipes
connected at a common junction point. The acoustic pressure is assumed to be
constant in the vicinity of the junction so that the combined incident wave plus
reflected wave acoustic pressures in the inlet duct can be taken as equal to the
acoustic pressures of the transmitted plane waves in the two outlet ducts (only
valid at low frequencies). These conditions and the continuity condition that the
incident plus reflected wave volume velocities must equal the combined outlet wave
volume velocities, can be used to determine the reflected and transmitted plane
waves for a given incident plane wave. The reflection loss RL for the reflected wave
in the inlet duct and the transmission losses TLy and T L9 for the two outlet ducts

are then given by

. 2.
RL = 1010810 (l) — IOlogm {(Sm + Sout1 + Sout2> (4.1)

R Sin - Joutl — Sout?

1 - ,
TL; = 10iog,q (ﬁ) = 10log;o (Sia + 455"_“‘; :15“"") (4.2)
in~o

- ,
TL, = 10log;q (T%) = 10log;q (Sin + 45;‘:;;25“‘2) (4.3)

where R and T are the reflection and transmission coefficients respectively and
Sins Sout1, and Soutz are the cross-sectional areas of the inlet and two outlet ducts.
Note that the results are only dependent on the duct cross-sectional areas and are
independent of the junction geometry and frequency.

The work of Miles [39] for a “T” junction leads to ninefold infinity of

simultaneous equations. If all higher order modal terms are dropped from these
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equations, as a first approximation the following equations are obtained for a 90

degree side branch with ducts all of width a. A matrix Y can be formed as

1 1 1

tanka  sinka ka
= | =L 1 _1
[Y] ~ | sinka tanka ka (4°4)
L N SR
“%a ka tan ka

where k is the wave number and a is the duct width. then let [Z] = [Y]~!. A matrix

[C] can then be defined by

_[m -
el=|i@ T (45)

where (I} is the identity matrix. Also a column vector {D} can be defined by
(oy={ 5 | (46)
Zy '

where Z)1, Z12 and Z)3 are elements of the first column of [Z]. These can be used

to form the linear system of equations
[C]{8} = {D} (4.7)

which can be solved for the vector 8 containing the r=al and imaginary parts of the
pressure reflection and transmission coefficients. The reflection loss and transmis-

sion loss value T Ly, for the side branch and TL¢, for the continuing straight duct

are then
RL = 10log,q ((ﬁ i (ﬁ4)2) (4.8)
1
TLb, = ].OIOgm (m) (49)

Tch = IOIOglo (m) . (410)
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4.4.2 FEM Predictions for a 90 Degree Equal Width Side Branch

The first duct junction to be considered was a 90 degree side branch in
a rectangular duct with a side branch having the same cross-section dimensions as
the main straight duct. This junction was modeled in two dimensions using the
ISOHERM12 meshes show in Figure 4.11. Based on the ninety degree mitred elbow
results of Section 4.2, it was anticipated that the use of two elements across the
cross-section would give acceptable accuracy up to ka = 6. The computer used
did not have sufficient memory to handle the problem with three elements across
the duct width if the finite element domain was extended one duct width into each
connecting straight duct. The model “3EL S”, with shortened inlet outlet finite
element domains was used to check the convergence of the FEM models for the
no-flow case. With reference to Figure 4.11, the incident wave was taken to enter
the left hand duct. A wave could then be reflected back down this inlet duct and
waves could be transmitted out the side branch and the continuing main duct to
the right of the FEM model.

The RL and T'L values predicted by the ISOHERM12 models with ne
flow and a plane wave incident are shown in Figure 4.12 as a function of ka based
on the duct width. “PL” in the legend refers to the zeflected and transmitted plane
wave components and “1X” refers to the first cross mode components. Except close
to the cut-on of the first cross mode at ka = = for the reflection loss RL. the
difference between the “2EL” and “3ELS” curves is less than one decibel. Thus the
“9EL” models could be used to give a reasonable indication of the junction sound
propagation. Similar convergence of FEM models was obtained in Figiwe 4.13 for
the case of the first cross mode incident.

Figure 4.14 compares the plane wave results for the “3EL 5" model to

the simple low frequency (frequency independent) approximation and Miles [39] first
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approximation discussed in the previous section. At ka = 0.06 the three predictions
agree within 0.002 dB. This figure indicates that the simple low frequency result can
be used to predict the RL and T'L values to within one decibel up to a ka of between
1 an 1.5. Miles results shows good agreement up to ka = 2 and generally shows
similar trends as the FEM prediction over most of the frequency range considered.

The effect of flow at Mach 0.1 on the propagation characteristics of a 90
degree mitred bend was found to be small as discussed in Section 4.2. For the case
of a duct junction its was anticipated that perhaps greater changes due to flow could
occur because of the more complex flow field. Certainly a junction leads to many
more flow possibilities, including different combinations of flow direction in the
connecting ducts and variation of flow rates in the ducts. Two flow configurations
have been considered here. In the first (M indicated as positive), the flow has been
taken to be in the same direction as the acoustic propagation—into the inlet duct
with the incident wave and the out the side branch and the continuing duct. In
the second case (M indicated as negative), the flow has been taken in the opposite
direction—into the junction from the side branch and the inain continuing duct and
out the acoustic inlet duct—opposite to the direction of the incident and transmitted
acoustic waves.

The ISOHERM12 mesh used to model this junction with flow was the
model “2EL” shownin Figure 4.11. Asindicated in Section 4.2 for the mitred bend,
the potential flow through this junction which contains sharp mitred corners may
not be very realistic but hopefully will provide some indication of the flow effects.
Also it would have been desirable to also use models with three elements across the
duct width in order to check the convergence of the predictions. It was not possible,

however, to run a model of this size on the computer system used in this work. The
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results for inlet Mach numbers of 0. 0.1 and —0.1 are shown in Figure 4.15 for a

plane wave incident, and in Figure 4.16 for the first cross incident, for the case of an
equal flow split. With an inlet Mach number of 0.1. since the connecting ducts have
the same cross-sectional area. the branch and continuing main duct flows were at
Mach 0.05. Excluding the region near the cut-on frequency for the first cross-mode
at ka = . the changes due to flow were less 0.2 decibel below this frequency and
less than one decibel above it.

Figure 4.17 graphs the differences in RL and TL for the cases with flow
compared to the no-flow case for a plane wave incident. The graph for the reflection
loss shows the most complex variation with frequency. The graphs indicate that the
flow has a greater influence on the plane wave transmitted in the branch than on
the first cross mode. The opposite appears to occur for the transmission down the
continuing main duct—here the flow appears to have little effect on the plane wave
transmission but a significant effect on the first cross mode transmission particularly
at higher frequencies. Additional results were obtained for the case of only 10% of
the flow out the side branch and for the case of 90% of the flow out the side branch.
The results for these cases with a plane wave incident are given in Figures 4.18
and 4.19. The comments made concerning the case with 50% branch flow apply for
these cases as well. In comparing the 10% and 90% branch flow cases, significant
changes were noted in the RL values, mast noticeable for the first cross mode. The
transmission down the side branch changed very little. The transmission of the
plane wave out the continuing main duct did not change significantly however in
going from a 10% branch flow to a 90% branch flow there was generally a decrease
in transmission of the 1st cross mode down the continuing main duct.

For the first cross mode incident the results for the three flow cases are

given in Figure 4.20, Figure 4.21 and Figure 4.22. Again as a function of frequency,

5

6
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the curves are most complicated for the reflection loss RL. In these cases. the side
braach plane wave transmission loss is unaffected by the flow except near the cross
mode cut-ou frequencies while first cross mode shows greater changes with flow.
As indicated above. it would be desirable to use finer mesh models to
confirm the above results with flow. Probably the major conclusion that can be
drawn from this is that for Mach numbers of 0.1 or less the convective effect of flow

has a relatively small influence on duct bend and junction transmission losses.

4.4.3 FEM Predictions for a 90 Degiee Half Width Side Branch

This section considers a duct juaction with a 90 degree side branch which
has half the width of the inlet and continuing duct. The ISOHERM12 mesh used
to model this junction is shown in Figure 4.23. The results for this junction are
shown for the no-flow case aud for the case of an inlet Mach number of 0.1 and
equal flow velocities of Mach (. u67 in the continuing main duct and side branch.
The non-dimensional frequency parameter ka is based on the inlet duct width.

The RL and TL values predicted for this junction with a plane wave
incident are shown in Figure 4.24. The graphs are generally similar to that obtained
for the full width side branch shown in Figure 4.15 and show similar effects of flow.
One difference is the decreased plane wave reflection and side branch transmission
at low frequencies due to the decrease in cross-sectional area of the branch. There
is also a sharper peak in the reflection loss graph near the cui-on cf the first cross
mode at ka = 7. The other major difference is the absence of thke first cross mode in
the transmission loss graph for the side branch. The cut-on of the first cross mode
in the branch occurs at ka = 27 for no flow.

The results with the first cross mode incident, shown in Figure 4.25 for

the half width branch, also show significant changes in the curves as a function of
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Figure 4.23 ISOHERM12 Element Mesh for a 90 degree Side Branch with Half
the Width of the Main Duct

frequency compas = to the results for a full width side branch shown in Figure 4.16.
The most significant change was for the first cross mode reflection loss curve which
for the full width side branch showed a peak in RL near ka = 4.8. For the half
width branch the corresponding RL curve centinually incre - sed over the frequency
range considered, shifting the peak (if it still occurs) to a point above ka = 6. The
effect of flow with an inlet Mach number of 0.1 was small and generally similar to

that found for the full width branch.

4.4.4 FEM Predictions for a 45 Degree Side Branch

The last junction to be considered in this chapter is a more con:plex
juncticn containing a 45 degree side branch and a tapered section reducing the cross-
sectional area of the contin:ing duct—probably more typical of junctions occurring
in HVAC systems than the 90 degree side branches considered previously.

The finite element mesh used for this junction is shown in Figure 4.26.
Note that a mesh with only one element across the duct width had be used. This

1e2d3 ‘o cne of the limitations of the present prediction method as developed in
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Figure 4.26 ISOHERM12 Element Mesh for a Junction with a 45 Degree Side
Branch

Chapter III. The global finite element model, given by the global matrix equa-
tion shown in Equation 3.52, is in terms of acoustic velocity potential and deriva-
tive nodal quantities. These derivative nodal quantities are with respect to the
global spatial coordinates. The duct cross-section modal matrices introduced in
Section 3.1.6.4 for the modes occurring at the connecting straight duct interfaces
are in terms of velocity potential nodal quantities and derivative nodal quantities
tangent to the connecting duct interfaces. These can only be used directly in the
current method if the normal to the interface surface is parallel to one of the global
coordinaie axes. The one exception is the case when only one element is used across
the duct cross-section. In this case, for a hard walled duct the derivative quantities
were constrained to zero so that 1%:x nodal quantities were in terms of the velocity
potential only and connecting interfaces at any angle could be used. The conven-
tional isoparametric ciesients such as HEX12 and HEX32 discussed in Chapter 11
do not have this problem since the nodal quantities used with these elements do

not involve derivative quantities and thus could be used with the present method

169



170
for connecting duct interfaces at any angle.

The resulting predictions for this 45 degree junction are shown in Fig-
ure 4.27. In view of the coarseness of the mesh used. the results may not be very
accurate especially above ka = 3 . The side branch and continuing duct plane wave
TL curves are similar to that obtained for a similar but not identical junction stud-
ied by Stredulinsky, Craggs and Faulkner [55] using two quadratic HEXS8 elements
across the duct widths and constraining connecting duct interfaces to plane waves.
The side branch plane wave T'L curve contains a “hump” reaching a maximum at
roughly half the cut-on frequency of the first cross mode. This hump did not occur
in the simple 90 degree branch results shown in Figure 4.14 and 4.24. It is similar
to that occurring in a simple 1/4 wavelength expansion chamber with a length a.
Along the path from the inlet to the branch outlet there is an expansion and con-
traction occurring roughly over a length a which may be working effectively like a
1/4 wavelength expaasion chamber.

The results tend to diverge more rapidly from the low feequensy approx-
imation than for the simpler 90 degree elbows. For exay: > s, thy =anlts for the 90
degree branch shown in Figure 4.24 follow the horizontal line ey :# -:2ting the low
frequency approximation closely up to ka = 1, whereas the rezulte of Figure 4.27
for the 45 degree side branch diverge significantly for ka of be’w:-::x 0.2 and 0.4.

As indicated above, due to the coarseness of the finite element mesh, the
results for first cross mode are probably not very accurate. They do, however, show
the different £a cut-on values for the different width branches, which are analytically
7 for the reflected wave, 7v/2 and 2r for the branch and duct continuing straight
on. Further work is required to modify the prediction method sc that finer meshes

could be used to confirm the above results for branches at 45 degrees or any other

lesired angle.
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CHAPTER V

CONCLUDING REMARKS

5.1 Summary

This thesis has considered the development of a cubic isoparametric Her-
mitian hexahedral finite element to ¢fficiently model the propagation of sound
through rigid walled duct bends and junctions. With the goal of improved technol-
ogy transfer, the computer programs developed have been implemented on a desk
top computer.

The element was initially tested by considering the acoustic enclosure
eigenvalue problem, governed by the Helmholtz equation, and the incompressible
potential fluid flow problem governed by Laplace’s equation. The results for this
new element have been compared to results for the conventiona! cubic isoparametric
element which uses Serendipity shape functions and has the same number of degrees
of freedom as the new Hermitian element. The new element leads to fewer degrees of
freedom in global models compared to the conventional cubic iscparametric element
models having the same number of elements (typically «iving 40% fewer degrees of
fr- dom). This is achieved by concentrating noda’ -:.spi'ties at the corners of
the element and also explicitly constraining derivative :::! .1 quantities at the rigid
walled boundaries. It was demonsirated that the new element generally gave more
accurate results on a degree of freedom basis. This improved accuracy was greatest

for the case where the cuboid parent elements remained rectangular. Under certain
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twisting distortions of the element boundaries, the new element gave much higher
errors than the conventional isoparametric element.

A finite element model using this element was then developed to study
the propagation of sound through duct bends and junctions including the vonvective
effect of low Mach number steady fluid flow through the bend or junction. Due to
memory limitations of the computer, a two-dimensional version of the element was
used for this part of the work. The fluid flow was modeled using incompressible
potential flow theory. The flow field was obtained first and then used in the equa-
tion governing tie acoustic model. The same element mesh was used for both the
acoustic and flow models. The initial development was tested with boundary con-
ditions limiting the sound propagation to plane waves in straight ducts connected
to the bend or junction models. This was then extended to consider higher ordes
mode boundary conditions. An undistorted element model was t o= s to model
propagation with flow in a straight duct. Propagation of modes up i and including
the third cross mode was considered, and accurate results obtained up to ka = 12
with three elements across the duct cross-section. A distorted element model was
tested for the problem of a mitred duct bend with a curved inner corner. This
problr: « vequired three elements across the duct cross-section to accurately model
plane wave and first cross mode propagation up to ka = 6.

Following the development and testing of the acoustic-flow model, the
procedure was used to consider two additional duct bend problems and to study
sound propagation in duct junctions. The first bend considered was a 90 degree
mitred bend which could be modeled with undistorted elements. In this case it was
found that models with only two elements across the duct width could accurately

model plane wave and first cross mode propagation up to ke = 6. It was also
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demonstrated that in the absence of flow, with the present procedure. it is not

necessary to extend the FEM model very far into the connecting straight ducts
since the evanescent modes were included in the boundary conditions.

The second bend considered was a curved 90 degree bend with a turning
vane. Modeling this bend required distorted elements and there were significant
differences. above ka = 4. between models with two elements and three elements
across the cross-section and some difference between these models at a transmission
loss peak between ka = 1.5 and ka = 2. This predicted peak was in one case
rcughly 10% higher than measured and predicted by another researcher using a
FDM model. This problem also demonstrated, as found earlier when studying
acoustic enclosures, that one must be cautious in constraining nodal derivative
quantities at boundary discontinuities. The constraint of nodal derivative quantities
along continuous boundaries or at 90 degree corners to explicitly satisfy boundary
conditions can lead to models with fewer degrees of freedom: without sacrificing
accuracy. However at acute or oblique angle corners and other discontinuities, for
exaruple, the end point of a turning vane, it was found best to leave the nodal
quantities unconstrained and thus handled by the implicit boundary conditions.

The last subject treated in this thesis was the propagation of sound
through duct junctions. The first junction considered was a simple junction with
a 90 degree side branch having the same width as the main duct. With the finite
element model extended one duct width into the connecting ducts it was found that
only two elements could be used across the duct cross-section with :at exceeding
the computer’s memory capacity. In the absence of flow, a model with three ele-
ments across the duct cross-section, but with shortened regions ir ihe connecting

ducts, was used to confirm that the models with two elements acres. the duct width
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gave sufficiently accurate results up to ka = 6 for plane wave and first cross mode
propagation. Results for 10%. 50% and 90% of the flow out the side branch were
obtained with an inlet Mach number of 0.1. It was found that the flow had only
a small effect. changing the transmission loss values b- . ' 1 decibel for the
plane wave and first cross modes up to ka = 6 with the xvepho il of near the cut-on
for the first cross mode where differences of up to 3 dB were noted. Predictions
were also made for a 90 degree side branch which has half the width of the main
duct with equal flow velocities out the brauch and continuing duct. The flow effects
were similar to that obtained for the full width branch.

The last junction considered contained a 45 degree side branch and ta-
pered section in the continuing duct just after the branch. The results for this
junction showe > complex curves for the reflection loss and transmission loss
as a function - '+ -ency than did the simple 90 degree side branches. There
was also greater de..ation from the . .::.mcy independent low frequency plane
wave approximation. This problem also demonstrated one deﬁc':iency in the cur-
rent procedure—it can only be used with the isoparametric Hermitian element for
bends or junctions in which the connecting duct interfaces are parallel to the global
coordinate axes, for cases where more than one element is used across the duct
cross-section. This problem does not occur if conventional isoparametric elements

are used,

5.2 Areas of Further Research

There were several areas encountered in this work concerning the de-

velopment and testing of the ISOHERM32 element which could be investigated

further.
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In Section 2.2.2. it was noted that this new element has C! continuity

when undistorted but generally has only C° continuity when distorted. It was
observed that if the elements formed segments of a polar grid then C! continuity
was also achieved. It would be interesting to consider in more detail types of
distortions which maintain the C! continuity of this element.

In Section 2.3.2.3, it was observed that the twisting of the common plane
between two ISOHERM32 elements forming a rectangular enclosure caused large
increases in the prediction error of the eigenfrequency for the first axial mode per-
pendicular to this plane. This behavior did not occur in a similar model using the
conventional isoparame:ric HEX32 element. It would be of interest to investigate
this further to deterrune the reason for this difference in behavior between these
elements. The problem of the curved bend with a turning vane discussed in Scction
4.3 showed some discrepancies between the predicted FEM results and experiment
and FDM results of another researcher. Part of the problem appears to be ‘the
increased inaccuracies of the distorted elements, which means that a finer element
mesh is needed to handle this problem—a model too large to run on the desk top
computer used for the current work. |

As indicated above, the last junction considered in this thesis was a 45
degree branch. This problem demonstrated that the present procecire can only
model bends or junctions where the connecting straight duct interfaces are parallel
to the global Cartesian coordinate axis for the case of more than one element across
the duct cross-section. It should be possible to modify the global matrix equation for
the finite element model given by Equation 3.84 so that nodal derivative quartities
on the connecting duct interfaces are in terms of normal and iangential derivative

quaiitities rather than derivatives with respect to the global axes. This would tken
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allow the modal matrix and modal recipe vectors for duct interfaces at any angle
to be used in the finite element models. Also due to limitations of the computer
system used for this work, all the bend and junction predictions have been made
using a two-dimensional version of the element. Certainly much work could be done
on a main frame computer, applying the element to three-dimensional bends and
junctions for ducts of rectangular cross-section and also ducts with circular or oval
cross-sections.

The duct network problem discussed in Section 1.3 was treated by Craggs
and Stredulinsky [23] and Stredulinsky, Craggs and Faulkner [55] combining the
transfer matrix and finite element methods, using exact plane wave solutions in
straight ducts and FEM models in bends, junctions and other areas where two or
three-dimensional effects are important. It should be possible to use the method
developed in this thesis to consider higher order mode boundary conditions for
the FEM models linked to straight ducts in which exact solutions including higher
order modes are used, extending the predictions to higher frequencies including the
convective effect of flow. The work in this thesis indicated that low Mach number
flow had little effect on the bend and junction transmission losses, however, as
indicated by the straight duct results of Section 3.3.2, the flow can have significant
effect on phases of the acoustic waves. In the work for reference [55] it was observed
that small changes in the duct network dimensions caused considerable change in the
overall network transmission loss. Thus it is likely that the phase changes occurring
in the bends and junctions and in the straight duct sections, even for flows at low
Mach number, may have much greater influence on the overall duct network than
observed for individual system components.

Other areas where further werk is required, if the goal of obtaining more

accurate methods fcr noise prediction in HVAC duct systems is to be achieved,
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include implementing models with absorptive duct linings and flexible walled ducts
and considering the problem of flow generated noise within the duct systems. Based
on the work conducted in this thesis and references [23] and [55], the implementation
of such a prediction scheme for a real HVAC system is probably still within the
realm of a mainframe computer, but in view of the rapid development of computer

technology, may soon be possible using a personal desk top computer and thus more

accessible to design engineers.



BIBLIOGRAPHY

[1] American Society of Heating, Refrigeration and Air Conditioning Engineers,
Heating, Ventilation and Air Conditioning Systems and Applications,
Chapter 52, 1987.

[2] Astley, R.J., “A finite element, wave envelope formulation for acousti-
cal radiation in moving flows”, Journal of Sound and Vibration,
Vol. 103, No. 4, 1985, pp. 471 - 485.

(3] Astley, R.J. and Eversman, W., “A finite element method for transmis-
sion in non-uniform ducts without flow: Comparison with the method
of weighted residuals”, Journal of Sound and Vibration, Vol. 57,
No. 3, 1978, pp. 367 - 388.

[4] Astley, R.J. and Eversman, W., “A finite element formulation of the eigen-
value problem in lined ducts with flow”,  Journal of Sound and
Vibration, Vol. 65, No. 1, 1979, pp. 61 - 74.

[5] Astley, R.J. and Eversman, W., “The finite element duct eigenvalue prob-
lem: An improved formulation with Hermitian Elements and no-flow
condensation”, Journal of Sound and Vibration, Vol. 69, No. 1,
1980, pp. 13 - 25.

[6] Astley, R.J. and Eversman, W., “Acoustic transmission in non-uniform
ducts with mean flow, Part II: The finite element method”, Journal
of Sound and Vibration, Vol. 74, No. 1, 1981, pp. 103 - 121.

[7] Buma, C.J., Multiple-source Excitation of Acoustic Resonances of Damped
Small-Room Enclosures, M.Sc.Thesis, University of Alberta, 1986.

[8] Burnett, D.S., Finite Element Analysis from Concepts to Applications,
Addison-Wesley, Reading, Massachusetts, 1987.

[9] Cabelli, A., “The acoustic characteristics of duct bends”, Journal of Sound
and Vibration, Vol. 68, No. 3, 1980, pp. 369 - 388.

[10] Cabelli, A., “The influence of flow on the acoustic characteristics of a duct
bend for higher order modes - a numerical study”, ~Journal of Sound
and Vibration, Vol. 82, No. 11,1982, pp. 131 - 149.

[11] Cabelli, A., “Application of the time dependent finite difference theory to
the study of sound and vibration interactions in ducts”, J ournal of
Sound and Vibration, Vol. 103, No. 1,1985, pp. 13- 23.

179



180
BIBLIOGRAPHY (continued)

(12] Cabelli, A., “The propagation of sound in a square duct with a non-rigid
side wall”, Journal of Sound and Vibration, Vol. 103, No. 3, 1985,
pp- 379 - 3%4.

[13] Cabelli. A. and Shepherd, I.C., “The influence of geometry on the acoustic
characteristics of duct bends for higher order modes”, Journal of
Sound and Vibration, Vol. 78, No. 1, 1981, pp. 119 - 129,

[14] Cabelli, A. and Shepherd, I.C., “Duct acoustics - a numerical technique for
the higher order mode solution of three-dimensional problems with
rigid walls and no flow”, Journal of Sound and Vibration, Vol. 92,
No. 3, 1984, pp. 419 - 426.

(15] Chung, J.Y. and Blaser, D.A., “Transfer function method of measuring
in-duct acoustic properties. I. Theory”, Journal of the Acoustical
Society of America, Vol. 68, No. 3, 1980, pp. 907 - 913.

(16] Chung, J.Y. and Blaser, D.A., “Transfer function method of measuring in-
duct acoustic properties. II. Experiment”, Journal of the Acousticai
Society of America, Vol. 68, No. 3, 1980, pp. 914 - 921.

[17] Craggs,A., “The transient response of a coupled plate-acoustic system using
plate and acoustic finite elements”, Journal of Sound and Vibration,
Vol. 15, No. 4,1971, pp. 509 - 528.

[18] Craggs, A., “The use of simple three dimensional acoustic finite elements
for determining the natural modes and frequencies of complex shaped
enclosures”, Journal of Sound and Vibration, Vol. 23, No. 3, 1972,
pp. 331 - 339.

[19] Craggs, A., “An acoustic finite element approach for studying boundary
flexibility and sound transmission between irregular enclosures”,
Journal of Sound and Vibration, Vol. 30, No. 3, 1973, pp. 343 -
357.

[20] Craggs, A., “A finite element method for damped acoustic systems: An ap-
plication to evaluate the performance of reactive mufflers”, Journal
of Sound and Vibration, Vol. 48, No. 3, 1976, pp. 377 - 392.

[21] Craggs, A., “A finite element method for modelling dissipative muflers with
a locally reactive lining”, Journal of Sound and Vibration, Vol. 54,
No. 2, 1977, pp. 285 - 296.

[22] Craggs, A. and Stead, G., “Sound transmission between enclosures — A
study using plate and acoustic finite elements ”, Acustica, Vol. 35,
No. 2, 1976, pp. 89 - 98.

[23] Craggs, A. and Stredulinsky, D.C., “Analysis of acoustic wave transmission
in a piping network”, Journal of the Acoustical Society of America,
Submitted for publication, 1989.



181
BIBLIOGRAPHY (continued)

{24] Cummings, A., “Sound transmission in curved duct bends®, Journal of
Sound and Vibration, Vol. 35, No. 4, 1974, pp. 451 - 477.

[25] Cummings, A., “Sound transmission in 180° duct bends of rectangular
section”, Journal of Sound and Vibration, Vol. 41, No. 3, 1975,
pp. 321 - 334.

[26] Doak, P.E., “Excitation, transmission and radiation of sound from source
distributions in hard-walled ducts of finite length (I): The effects of
duct cross-zection geometry and source distribution space-time pat-
tern ", Journal of Sound and Vibration, Vol. 31, No. 1, 1973,
pp. 1 - 72.

(27] Doak, P.E., “Excitation, transmission and radiation of sound from source
distributions in hard-walled ducts of finite length (II): The effects of
duct length”, Journal of Sound and Vibration, Vol. 31, No. 2,
1973, pp. 137-174.

(28] Eversman, W., “Computation of axial and transverse wave numbers for
uniform two-dimensional ducts with flow using a numerical integration
scheme”, Journal of Sound and Vibration, Vol. 41, No. 2, 1975,
pp- 252 - 255.

[29] Eversman, W., “A reciprocity relationship for transmission in non-uniform
hard walled ducts without flow”, Journal of Sound and Vibration,
Vol. 47, No. 4, 1976, pp. 515 - 521.

[30] Eversman, W., “Acoustic energy in ducts: Further observations”, Journal
of Sound and Vibration, Vol. 62, No. 4, 1979, pp. 517 - 532.

[31] Eversman, W. and Astley R.J., “Acoustic transmission in non-uniform
ducts with mean flow, Part I: The method of weighted residuals”,
Journal of Sound and Vibration, Vol. 74, No. 1, 1981, pp. 89 -
101.

[32] Eversman, W., Cook, E.L. and Beckemeyer, R.J., “A method of weighted
residuals for the investigation of sound transmission in non-uniform
ducts without flow”, Journal of Sound and Vibration, Vol. 38,
No. 1, 1975, pp. 105 - 123.

(33] Fuller, C.R. and Bies, D.A., “Propagation of sound in a curved bend con-
taining a curved axial partition”, Journal of the Acoustical Society
of America, Vol. 63, No. 3, 1978, pp. 681 - 686.

[34] Gladwell, G.M.L., “A finite element method for acoustics”, 5 Congres
International D’Acoustique, Paper No. L33, 1965.



[35]

(36]

(37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]

BIBLIOGRAPHY (continued)

Kaizer, A.J.M., and Leeuwestein, A., *“Calculation of the sound radiation of
a nonrigid loudspeaker diaphragm using the finite-element method”.
Journal of the Audio Engineering Society, Vol. 36, No. 7/8, 1988,
pp. 539 - 551.

Ling S.F., Hamilton J.F., Allen J.J.. “A Two-dimensicnal isoparametric
Galerkin Finite Element for Acoustic-Flow problems”, Transactions
of the ASME, Journal of Mechanical Design, Paper No. 82-DET-97,
1982,

Lippert, W.K.R., “The measurement of sound reflection and transmission at
right-angled bends in rectangular tubes”, Acustica, Vol. 4, 1954,
pp. 313 - 319.

Lippert, W.K.R., “Wave transmission around bends of different angles in
rectangular ducts”, Acustica, Vol. 5, 1955, pp. 274 - 278.

Miles, J.W., “The diffraction of sound due to right-angled joints in rectangu-
lar tubes”, Journal of the Acoustical Society of America, Vol. 19,
No. 4, 1947, pp. 572 - 579.

Morfey, C.L., “Sound transmission and generation in ducts with flow”,
Journal of Sound and Vibration, Vol. 14, No. 1, 1971, pp. 37 -
55.

Morse,M., Vibraiion and Sound, American Institute of Physics, 1986.

Munjal, M.L., Acoustics of Ducts and Mufflers with Application to Exhaust
and Ventilation System Design, John Wiley & Sons, New York,
1987.

Osborre, W.C., “Calculation of the angular propagation constant for a
bend”, Journal of Sound and Vibration, Vol. 37, No. 1, 1974,

pp. 65 - T7.

Panton, L., Incompressible low, John Wiley & Sons, New York, 1984.

Peat, K.S. “Evaluation of four-pole parameters for ducts with flow by the
finite element method”, Journal of Sound and Vibration, Vol. 84,

No. 3, 1982, pp. 389 - 395,

Redmore, T.L., and Mulholland, K.A., “The application of mode coupling
theory to the transmission of sound in the sidebranch of a rectangular
duct system”, Journal of Sound and Vibration, Vol. 85, No. 3,

1982, pp. 323 - 331.



183
BIBLIOGRAPHY (continued)

[47) Rostafinsky, W., “On propagation of long waves in curved ducts”, Jour-
nal of the Acoustical Society of America, Vol. 52, No. 5, 1972,
pp. 1411 - 1420.

[48] Rostafinsky, W., “Analysis of propagation of waves of acoustic frequencies
in curved ducts”, Jourpal of the Acoustical Society of America,
Vol. 56, No. 11,1974, pp.11-15.

[49] Rostafinsky, W.,  “Acoustic systems containing curved duct sections”,
Journal of the Acoustical Society of America, Vol. 60, No. 1, 1976,
pp. 23 - 28.

[50] Seybert A.F., and Cheng C.Y.R., “Application of the boundary element
method to acoustic cavity response and muffler analysis”, Trans-
actions of the ASME, Journal of Vibration, Acoustics, Stress and
Reliability, Vol. 109, 1987, pp. 15 -21.

[51] Shepherd, I.C. and Cabelli, A., “Transmission and reflection of higher order
acoustic modes in a mitred duct bend”, Journal of Sound and Vi-
bration, Vol. 77, No. 4, 1981; pp. 495 - 511.

[52] Shuku, T.and Ishihara, K., “The analysis of the acoustic field in irregularly
shaped rooms by the finite element method”, Journal of Sound and
Vibration, Vol. 29, No. 1, 1973, pp. 67 - 76.

[53] Sigman, R.K., Majjigi, R.K. and Zinn, B.T., “Determination of turbofan in-
let acoustics using finite elements”, American Institute of Aeronau-
tics and Astronautics Journal, Vol. 16, No. 11, 1978, pp. 1139 -
1145.

[54] Stead, G., Finite element approach to sound transmission, M. Sc. thesis,
University of Alberta, 1973.

[55] Stredulinsky, D.C., Craggs, A., Faulkner, M.G., “Acoustics of piping and
ducts”, Canadian Acoustics, Vol. 15, No. 4, 1987, pp. 3 - 14.

(56] Vo, P.T. and Eversman, W., “A method of weighted residuals with trigono-
metric basis functions for sound transmission in circular ducts”,
Journal of Sound and Vibration, Vol. 56, No. 2, 1978, pp. 243 -
250.

[57) von Said, A., “Theorie der schallausbreitung in kanilen mit rechtwinkligen
ecken und verzweigungen”, Acustica, Vol. 33, 1975, pp. 203 -
210.

(58] Young, C.J. and Crocker, M.J., “Prediction of transmission loss in mufflers
by the finite-element method’, Journal of the Acoustical Society of
America, Vol. 57, No. 1, 1975, pp. 144 - 148.



