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ABSTRACT

A general approach to the elastic and inelastic analysis of
thin-walled members of arbitrary open cross section is presented and
a finite element formulation is developed.

Usihg this formulation, the solution for critical loading as
well as nonlinear load deflection response for elastic members is
obtained.

Numerical results are presented for simple cases when local
and member buckling are coupled.

Inelastic beam-column problems are solved using an iterative
incremental technique based on an equilibrium balance, and inelastic
buckling problems are solved using a standard eigenvalue solution to
evaluate the critical length. Numerical examples are presented and

éompared with available results.
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LIST OF SYMBOLS

In this dissertation, the notation generally corresponds with

the notation commonly encountered in texts. All symbols are defined

where they first appear in the text. However, in certain cases, it has

not been possible to maintain uniform symbology throughout.
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[]
Il

u
u
u' =9
dz

= Ju/d
uy = 2u/3y
Variables
A
Aw
A?
be
B
b
Bl

row vector
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matrix
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continuous variable

nodal vector

differentiation with respect to z

partial differentiation u with respect to y

area of the cross section; point on the
contour of thin-walled section (see Fig. 2.1)
area of the web

transformed area

breadth of the flange

length of the smaller leg for angle section
(Fig. 6.14); sectorial centroid of elastic
section (Fig. D.3a)

plate segment length

sectorial centroid of inelastic section

(Fig. D.3c)



s £,y £

1 3

[g,] - [g,,]

Xxii
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centre with respect to reference axis
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2.1)

(in special cases,‘C, refers to centroid)
instantaneous centroid (Fig. p.3b)
properties of thg cross section defined in
Equation A-53

X aﬁd y distances of the load point from
shear center

depth of the web

flexural rigidity of the plate

coordinates of point S with reference to
coordinate axes through C (Fig. 2.1)
Green's strain tensors in initial and
deformed c;nfiguration (Fig. 2.5)
increment in the quantity of strain tensor
Young's modulus, plastic modulus and strain
hgrdening modulus respectively (Fig. D.la)
coordinates of the instantaneous shear
center with respect to instantaneous centroid
in the principal directions (Fig. 5.3)
linear, quadratic and cubic interpolation
functions, respectively

submatrices defined in Equation A-57
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element geometric stiffness matrix associated
with local buckling (Equation 4-23b)
submatrices which couples the local and beam
buckling (Equation 4-23b)
submatrices defined in Appendix D
shear modulus
properties of the section defined in
Equation A-53
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axes passing through'a
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- St. Venant's constant

submatrices defined in Equation A-57
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flexural stiffness, tangent stiffness and
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'initial stress' stiffness matrix correspond-
ing to some nominal stress distribution

plate segment index
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xiv
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element flexural stiffness matrix correspond-
ing to the degrees of freedom associated
with local buckling (Equation 4-23a)
coefficient matrices as defined in Equation
A-56
element  length
length of the member
degrees of freedom associated with local
buckling
moments about respective axes (Fig. 5.6)
critical moment
torsional moment
applied moment
warping torque
yield moment
distributed torque
reduced plastic moment due to presence of

axial load

a stress resultant evaluated with respect
to S

moments about corresponding coordinate
directions of the plate

stress resultant evaluated with respect to
s

Marcal's first and second order initial

displacement matrices
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XV
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in Fig. 5.1
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respectively

arbitrary point of the cross section (Fig.
2.1)
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and surface area

Kirchhoff's stress tensor in the deformed
configuration

instantaneous shear center (Fig. D.3b)
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sectorial static moment, linear sectorial
static moments about x and y axes
respectively

tangent properties

surface loads in initial and deformed
configuration (Fig. 2.5)

increments in surface loads

St. Venant torque

thickness of the plate

transformation matrix

displacements of point S in the reference
directions

displacements in the initial and displaced
configuration respectively (Fig. 2.5)
increment in displacement quantity

strain energy

global displacements

beam and plate displacements respectively
displacement of the web in x-direction
(Fig. 4.2)

increments in displacements. of the instant-
aneous shear center in the principal axes
directions

displacements of the instantaneous shear
center in the directions parallel to xy

reference axes

xvi



xvii

AU , AVs increments in displacements of the original

shear center in the global direction

Vx, Vy V shear stress resultants
v , volume of the element
vg, vg displacement of the top and bottom flange

in y-direction (Fig. 4.2)

W = I o w_ dA ' bimoment
w z n
A

) potential of external loads

v, axial displacement (uniform) of C

chm increment in axial displacement of the
middle node
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in the reference configuration (Fig. 5.3)



P, T + AT

xviii

angle between the tangent at any point on
the contour to y-axis (Fig. 2.1); and angle
of inclination of principal axes to
reference axes (Fig. 5.3)

dimensionless parameter (Fig. 2.6)

shear strains

initial and deformed configuration of the
structure (Fig. 2.5)

prefixed to other term denotes variations
partial differentiation

strain

residual strain

yleld and strain hardening strain respectively
dimensionless parameter; a quantity with this
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is dependent on z

denotes tangential direction at point A
(Fig. 2.1); and dimensionless parameter as
defined in Chapter IV Equation 4-16
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critical load or critical length parameter
dimensionless parameter as defined in
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thin wall (Equation 2-1)
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Xix

tangential stress in the "n' direction
Kirchhoff's stfess tensor in configuration
r

increment in stress tensor

residual stress

critical stress

stresses due to beam and plate action
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angle of twist
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CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

Thin-walle& beams occupy an important place in the field of
modern structural engineering. Rolled, welded or rivétted metallic
beams, columns, girders and elements of frames, are examples of thin-
walled members. In addition, many spatial engineering structures,
such as shear wall structures, have such proportions that they can be
considered as thin-walled structures.

The use of cold-formed structural members is increasing, and
hence the range of loading for which elastic analysis is applicable is
also increasing. The stability of such structures has been the subject
of many investigations and the study of stability analysis is an
important aspect of design since it predicts an upperbound for the
ultimate carrying capacity of the member. The general approach to
such problems has been to formulate a set of equations for the specific
problem under consideration. In some cases the design criteria is
based on deflection limitations and hence this aspect of analysis
should not be overlooked.

Thin-walled beam theory is based on the assumption that the
cross section does not distort. However, in some.cases, failure can
be initiated by local buckling which involves distortion of the cross
section. Hence it is necessary to design such members so that, at
design load, adequate safety exists against failure by local buckling.

The problem becomes more complex when nonlinear material or
geometry is considered. A three dimensional structure is often

analyzed as a collection of two dimensional planar structures. While

1



this idealization has usually resulted in safe design, it does not
necessarily represent the best model for the analysis of such struc-
tures. To the author's knowledge no general study of the inelastic
behaviour of beam-columns is available. Today, many structures are
designed by plastic design methods and each member must undergo con-
siderable inelastic deformation in order for the whole frame to’
develop its full strength. These inelastic deformations may cause
premature failure by various types of instability. Hence there is a
need to study inelastic instability.

Although the general differential equatiéns for thin-walled
beams (68,74) are valid for complex geometry, loading and boundary
conditions, the complexity of these equations is such that only a few
problems have been solved using classical mathematics. More general
approaches consist of approximating the differential equations using
the finite difference technique, (26), or solving the equations by
direct numerical integration (68). Even these methods offer only a
partial improvement over classical methods of solution. On the other
hand, the development of a general treatment by finite element method
is encouraging and has resulted in a number of successful applications

(7,8).

1.2 Purpose and Scope

The objectives of this investigation are:
1) to develop a general set of beam equations which are applicable to
both elastic and inelastic analysis and adaptable to finite element
analysis;
2) to develop general computational procedures for the finite element

analysis of elastic and inelastic members, which are applicable to



stability problems; and,
3) to investigate the effect of distortion of the cross-section on the

member buckling strength for some simple cases.

1.3 Outline of Contents

Beam equilibrium equations, in both total and incremental
form, and without any assumptions relating stress resultants to deform-
ations, are derived in two ways in Chapter 2. By specializing to
elastic response the equations are shown to be equivalent to Vlasov's
equations (74). A finite element model is then developed for the
elastic case. Details of derivations of equations are contained in
Appendix A. A comparison of nonlinear terms in the potential energy
and virtual work formulations is carried out in Appendix B where the
range of applicability of the derived equations is investigated.

In Chapter 3, solution techniques to solve small-deflection,
beam-column, and bifurcation problems, using the elastic finite
element equations of Chapter 2, are discussed. Numerical results for
a variety of problems are compared with those obtained from classical
solutions.

Chapter 4 introduces distortion of the cross-section and
formulates the equilibrium equations, in general terms, in which local
and member buckling effects are coupled. A finite element approxima-
tion to these equations is derived for the special case of elastic
wide flange sections. Numerical results for a variety of local
buckling problems in wide-~flange sections are compared with available
solutions in the literature. The coupling between local and member
buckling is also investigated. Details of the derivation of the

matrices required in this type of analysis are provided in Appendix C.
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The extension of the formulation of the equation of Chapter
2 to the case of inelastic response, 1s carried out in Chapter 5.
The finite element equations are formulated with respect to two dif-
ferent systems of local reference axes, and assembly of the 'tangent'
stiffness and geometric stiffness matrices with respect to reference
axes through the original centroid and shear center of the elastic
section is discussed. Detailed derivations of the relevant section
properties, stress resultants, submatrices and transformation matrices
are contained in Appendices D and E.

Chapter 6 illustrates the application of the equations
derived in Chapter 5, to the solution of inelastic small-deflection,
beam-column and bifurcation problems. A short summary and discussion

is contained in Chapter 7.



CHAPTER II

FORMULATION OF ELASTIC BEAM EQUATIONS

2.1 Introduction

This chapter treats the formulation of the governing equa-
tions for a thin-walled member of open cross-section by two approaches.
A set of differential equations, identical with those of Vlasov (74),
are derived from equilibrium considerations. It is then shown that
the same set of equations may be derived from virtual work. A finite
element formulation,/for elastic members, is derived from the virtual
work equations.

Original studies of the flexural buckling of compressed bars
were made by Euler in the eighteenth century. Derivations of funda-
mental differential equations are associated with the names of Chwalla
(9), Goodier (28), Kappus (9), Timoshenko (68), Vlasov (74), and others.
Djanelidze (18) derived the governing equations for thin-walled sections
by the energy method. The early studies of torsional and flexural

buckling have been described by Bleich (13).

2.2 Governing Equations Derived From Equilibrium

A thin-walled open cross section is shown in Fig. 2.1. Let
point 'C' be an arbitrary origin of coordinates and point 'S', whose
coordinates are (ex,ey), be an arbitrary reference point. Let the
transverse load and support reactions pass through the 'S-axis', as

shown in Fig. 2.2.



Define the following stress resultants

g, d A (2-13a)

Lo}
)
B —

Mx = j o,y d A (2-1b)
A

M& = f o xdaA (2-1c)
A

Vx = j O d A (2-1d)
A

Vy = f Ozy d A (2-1e)
A

M= [ {ozy (x.— ex) -0, v - ey)} d A (2-1f)
A

where O, Ox? ozy are components of the stress tensor acting on the
cross section, and A is the area of the section.

If the effect of displacements on the equilibrium equations
is neglected the normal'small deflection equilibrium equations result

from a consideration of the equilibrium of an infinitesimal length of

the beam (26), (Fig. 2.2), and are

11 = -
M& + py 0 (2-2a)
" = -
My + Py 0 (2-2b)
M'+m = 0 (2-2¢)

t t
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where (') indicates differentiation with respect to z; M, is the torque
about the S axis; and py, P, and m_ are distributed loads and torques
-applied to the beam (Fig. 2.2). These equations represent the sum of
the forces in the x and y directions and the moment about the S axis,
respectively, for an infinitesimal length of beam. However, if the
effect of displacements on the equilibrium equations 1is to be con-
sidered, Equations 2-2 are inadequate and it is necessary to include
the effects of‘the change in orientation and location of the stresses

. acting on the cross-section in the summations.

Let Ugs Vg denote the displacements of the axis passing
through § in the x and y directions, respectively; v, denote the
(uniform) axial displacement of point C (see Fig. 2.1); and ¢ denote
the angle of twist.

It is now necessary to make some of the assumptions normally
assoclated with the behaviour of thin-walled beams, (74), namely
1) Because of the bending and torsional flexibility of thin-walled
open sections, the relative effect of shearing strain along the mid-
surface of the plate is extremely small and can be neglected.

2) The shape of the projected cross-section is unaltered during
deformation.

Consider now a longitudinal fibre of length Az and area AA
with its center at an arbitrary point A on the midsurface contour
(Fig. 2.1). On the application of loads, the fibre displaces Uys and
v, as shown in Fig. 2.3a. When it reaches an equilibrium configuration,
it has developed a force of 0,0A which acts along the deformed axis of

the fibre. Let ;; and ;& denote the total change in transverse force

per unit of length resulting from the projection of the normal and



shearing stresses due to the deformation. Assuming the section is
thin so that shearing stresses act in the direction of the contour,
these changes may be evaluated from Figs. 2.3b and 2.3c, which result
in the rates of change shown in Fig, 2.3d. Summing over the cross-

section yields

- ) vy 3

pyAz = f 5;-(02 3;—9 AA - f Yy (ozn ¢) AA sin o) dz (2-3a)
A A

- 3 du, 3

prz = ] 3;-(02 5;;0 AA - f v (czn ¢) AA cos a % dz (2-3b)
A A

The change in torsional moment about S resulting from these deforma-
tions, may be evaluated from Figs. 2.3d and 2.4, as

- ¥ vy g
m Az = [ 5;-(02 32 " 3% (ozn ¢) sin al (x - ex) AA
A

Jdu
- I a (oz 3;5) - %; (ozn $) cos o} (y - ey) AA
A .

+f g—z-(o u) - g—z @, ) AAZ] Az (2-3¢)
A

Expressing the previously stated assumption for the direction of the

shearing stress, as



o = g cos o (2-4a)
zy zZn

o -0 sin o (2-4b)
zx zZn

; expressing u, and v, by the kinematic relationships (Fig. 2.1)

vy = Vg + (x - ex)¢ (2-5a)

U = u -(@- ey)cb (2-5b)

; and carrying out the integration in Equations 2-3, yields

P, = ®ud +@e oD -ap” (2-6a)
Fy = v;)' - (Pe, o+ CH 9 (2-6b)
B v - e, v -0 u) e, u)’

1 1 J
' - - .
+ M) -V v) o+ (Vy ug) (2-6c)
where it has been necessary to define the additional stress resultant

Mp = ] o, {(x ex) + (y ey) } AA 2-7)
A

Augmenting Equations 2-2 by the effective changes in distributed forces

expressed in Equations 2-6, yields the equilibrium equations including

the effects of member displacements, as
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Mt @YD O - @e o) +p = 0 (2-8a)
MU -t 0 +@e 90 +p = 0 (2-8b)
Mé + (M.y v;) - (P e vé) - (Mx u;) + (@ e, u;)

+ 00D - )+ @ ) km = o (2-8¢)

It should be noted that Equations 2-8 are valid for arbitrary location
of the reference points C and S and that it has been unnecessary to

specify the distribution of o, and n®

2.3 Governing Equations Derived By Virtual Work

In this section incremental equilibrium equations and an
incremental stiffness formulation are developed using the principle of
virtual work. The principle of virtual work is selected since it is
less restrictive than a potential energy formulation and the total
and incremental equilibrium equations developed by this principle are
valid for both elastic and inelastic members. Rectangular cartesian
coordinates and the principle of virtual displacements are used
throughout.

Referring to Fig. 2.5, let T represent the deformed equili-
brium configuration (the initial configuration) of the structure under
the surface loads E;, and I' + ATl represent the deformed equilibrium
configuration under the loads Ti' Let —;j’ E;j’ and ;i be Kirchhoff's
tensor, Green's strain tensor, and the displacements respectively in
configuration I'; and sij’ Eij and Ui be Kirchhoff's stress tensor,

Green's strain tensor and the displacements in configuration I' + AT.
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Green's strain tensor in the equilibrium configurations ' and T + AT

are given by,

Let

ij

i3

(2-9a)

(2-9b)

(2-10a)

(2-10b)

(2-10¢)

(2-10d)

where oij’ eij’ ugs and ti are increments in the corresponding quan-—

tities going from configuration T' to I' + AT.

I' + AT, and regarding the displacement increments u

yields

Substituting for Sij and Eij Equation 2-11 becomes,

I Sij 6(EiJ) dv

v

S

Fi 6Ui dv

Applying the principle of virtual displacements in position

as variables,

(2-11)
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1 —
E-I (crij + oij)(d ui,j + 8 uj,i + uk,i ) uk,j + uk,j 8 uk,i
v .

+ uk,i 8 uk,j + ;i,j § uk,i) dv = J (ti + E;)G uy ds
S

+ J Fi é uy av (2-12)
v

The equilibrium equation in configuration I'; which may be obtained by

letting o 0, t, =0, and u, = 0, is

ij = i

1 -— — -—
E-j oij (Gui’j + Guj,i + uk,i Guk,j + uk,j Suk’i) av =
v
j E; Su, ds + J F; Su, dv (2-13)
S A

The incremental equilibrium equation can be obtained, using
Biot's (10) procedure, by finding the difference between the equili-
brium equations for positions I' + AT and T. Subtracting Equation 2-13

from Equation 2-12 the incremental equation for position I' + AT is

1 {— 1
i-f Gij 6(uk’i uk,j) av + E-J cij 6(“1,j + uj,i + uk,i uk,j) dv
v v
1 — —
+ E-f oij G(uk’i uk,j + uk,j uk,i) dv = f ti 8 uy ds (2-14)
\'J S

The first term in Equation 2-14 represents the work of the
"initial stress" state during the virtual variations of increments in
displacement gradients and is of the same order of magnitude as the

second term. This gives rise to the "initial stress" or "geometric"
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stiffness. The second term represents the work of the increments in
the stress state during virtual variations of increments in strain.
This gives rise to the normal "flexural stiffness". The third term
arises becﬁuse of the presence of the initial displacement gradient
terms in the virtual variation of increments in strain. This gives
rise to Marcal's (44) so-called "initial displacement” matrix (see
Appendix B). The term on the right hand side represents the work
done by the increments in the external loading on the virtual varia-
tion of displacement increments.

Equation 2-11 represents the final total equilibrium equa-
tions. In the following development Equation 2-11 will be written,
for simplicity of notation, by replacing Ui with u Sij with Gij

and Ti with ti’ Equation 2-11 then becomes

1
i-] Oij G(Ui,j + uj,i + uk,i uk,j) v = f ti 8 u, ds
v S

+ J fi 8 uy dav (2-15)
Y
However, the reader must now clearly distinguish between the symbology
of Equation 2-15, which 1s in terms of total quantities, and Equation
2-14, which is in terms of incremental quantities. Equation 2-15 will
form the basis of the remaining derivations in this section.
Using the symmetry of the stress tensor, Equation 2-15 can

be written as

1
f oij Gui,j av + E-J qij G(uk’i uk’j)dV = f ti Gui ds (2-16)
\' v S

where body forces have been neglected.
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This equation may be written symbolically as

8(I; + I, = 1) = 0 (2-17)
where
1, - f 0y Uy, W (2-18a)
v
I, = |5 av (2-18b)
2 2 | %13 “k,1i “,j
v
I3 = f t:i uy ds (2-18c)
s

For thin-walled beams, the stress tensor is of the form,

0 0 o]
Xz
Gij = 0 0 oyz (2-19)
o o o
zX zy z

where Opx? ozy are related to Opn? by Equations 2-4 (see Fig. 2.1).

Substituting Equation 2-19 for o,., and Equation 2-5 for u

ij i

into Equation 2-17; and, applying the variation and integrating by
parts; yields the Euler-Lagrange equilibrium equations and the natural
and geometric boundary conditions. Details of this procedure are
given in Appendix A.

The equilibrium equations are,

dp

L9, 0 (2-20a)
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(My)" - Oﬂx¢)" + (Pu;)'+ (Pey¢')' + q - m; = 0 (2-20b)

M )" + (My¢)" + (Pv)' - (Pe_¢")' + 1, - m. = 0 (2-20c¢)
W+ Mol - Myv's' =Mo" - (Pe ul)' + (Pe V)

-m = 0 (2-20d)

t " Tav
where q, is the distributed axial load per unit of length; m and my

are distributed couples per unit of length; Ww is defined as the
bimoment (see Appendix A); TSv is defined as St. Venant's torque (see
Appendix A); and the other stress resultants have been defined in
Section 2-2,

It should be noted that the St. Venant torque, Tsv’ does not
arise entirely naturally from Equation 2-18a, but the virtual work from
this effect has been added as described in Appendix A.

Equations 2-20 derived from the virtual work principle, are
the same as Equations 2-8, derived from the equilibrium approach,
except for minor details in notation. They apply to a thin-walled
member regardless of the constitutive relationships and with respect
to any pair of reference axes C and S. All the terms in which displace-
ments appear are a result of second order geometric effects. Discard-
ing these terms yields the small deflection beam equations, Equations

2_2 .

2.4 Displacement Equations of Equilibrium

The solution of Equations 2-20 for the general statically



16

indeterminate case is a complex problem. Since stress resultants are
themselves dependent upon the deformations, it is necessary to express
them in terms of the dependent displacement variables before a solu-
tion for displacements can be attempted. If "large" displacements
were included the expressions for the stress resultants would them-
selves include higher order terms. The introduction of these higher
order terms adds to the complexity of the problem. Since, for the
usual type of instability problem they have negligible effect on beam
behaviour (see Appendix B), it is common practice to compute the stress
resultants using only first order quantities.

Because a solution for displacements is required, it is
always necessary to express at least the first stress resultants in
each of Equations 2-20, and TSV in Equation 2-20d, in terms of the
displacement variables. The stress resultants in the remaining terms
may be expressed eithef in terms of displacements or evaluated
directly from statics. The selection of the technique to be used may
depend on the type of problem under investigation but a more efficient
numerical solution is obtained when these stress resultants are
evaluated from statics, if this is possible.

The first order expressions for stress resultants in terms
of displacements are derived in Appendix A and expressed by Equations
A-26. These equations uncouple when we choose C as the centroid; S
as the shear center; B as a sectorial centroid; and the x and y axes
as principal axes of cross section (see Fig. 2.1). Under these con-

ditions Equations A-26 become

P = EA wé (2-21a)
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Mx = =K Ix v; (2-21b)
M.y = - E Iy ug (2-21c)
Ww = E Iw o" (2-214)

where Ix, Iy and Iw are the principal moments of inertia, and the
sectorial moment of inertia, respectively.

Equation 2-16, which is the variational equivalent of Equa-
tions 2-20, may then be written for elastic case, by substituting
Equations 2-21 iﬁto Equation A~-49, which yields the specialized

equilibrium equation

£
f EAw! 8w' +EI_v' v +EI_u' Su" +ETI ¢" 6¢" + V ¢ Ssv!
c c X s s y s s w X s

o

+V_ v 8 -V ¢ Su' -V u' 8¢ +Pu'Su +P v' sv'
X 8 y s y s s s s s
' ' ' v ' v ' '
+ P ey ug §¢' + P ey ¢ 6uS Pexvs §¢ Pex ¢ dvs
- [} ' 1, | B ' ' ' '
Mx ug §¢' + My vs ¢ Mx ¢ 6us + My ¢ GVS

2

R P dA)} ¢" 8¢" + GK ¢' &¢'

+ PI/A+MC +MC +WC + (J o}
P X X yy ww
A

- | 1
(qx éus + qy dvs + q, GWC + m 8¢ + m 6vs + my 6us + a4, dy 8¢

qy dx 8¢ + 9y dx o8¢ ~ qy dy ¢6¢E]dz = 0 (2-22)

The coefficients Cx’ Cy’ Cw and Ip are properties of the section, as
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derived in Appendix A (Equation A-53), and dx’ dy are the coordinafes
of the load axis from the S-axis.

| It is emphasized that Equation 2-22 is valid only for linear
elastic response where C, is the centroid, S is the shear centre and

the axes are the principal axes of the cross section.

2,5 Comparison of Equations

A comparison of the variational Equation 2-22 with the spec-
ialized case derived by Bleich (13), reveals that he omitted the terms
OQxCx)¢" and G!;Cx)¢'. This omission has already been pointed out by
Masur and Milbrandt (49). The same terms were omitted by Barsoum and
Gallagher (7,8). Substituting Equation 2-21 into Equations 2-20 the
equilibrium equations derived in this chapter agree with Timoshenko
(68) and Vlasov's (74) equations, except that they have neglected the
normal stress due to bimoments in the Mp term. Oden (54) omitted the
change in the transverse forces and torsional moment resulting from the
rotation and translation of shearing stresses (as shown in Fig. 2.3c,
2.3d and 2.4) in his derivation of these equations. If his equations
are specialized to principal axes they therefore differ from Vlasov's
and those derived in this chapter by the terms arising from these effects.
It would be necessary to make numerical comparisons in order to arrive
at conclusions regarding the significance of these terms omitted by
other authors.

The conceptual difficulty of including all these factors in an
equilibrium approach demonstrates the desirability of investigating the

formulation from a variational point of view.

2.6 Review of Finite Element Beam Formulations

Turner (72), et al, showed that a 'new class' of stiffness
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matrices had to be introduced into the equilibrium equations, when
large deflections and stability were to be investigated. They pre-
sented the derivation for this stiffness matrix for an axially loaded
member. The first published development of beam-column stiffness
matrix was by Gallagher (78) and Padlog. Archer (2) also has dis-
cussed structural stability and gives an energy expression for the
beam-column which is virtually a verbation restatement of Gallagher .
Arghyris (3) showed that, by using a large number of elements to
represent a nonuniform column excellent convergence could be achieved
for the buckling load, in spite of the fact that 'ais geometric stiff-
ness matrix was inconsistent . Martin (45) arrived at the initial
stress stiffness matrices for axial force members and for beam-column
problems. He expressed the bending displacement as a cubic polynomial
and the axial displacement as a linear function.

Krajcinovic (40) developed a finite element formulation for
a thin-walled member based on the use of hyperbolic functions to
represent twist. These functions represent the exact displacement
field for the stable formulation and yielded excellent results. His
formulation cannot account for the effect of moment gradient on
lateral buckling. Barsoum (7,8) and Gallagher's formulation is similar
to Krajcinovic except that the effect of moment gradient can be accounted
for and twist is expressed in terms of a cubic polynomial. They also
investigated fifth order Hermitian polynomials and concluded that fifth
order polynomials are superior to cubic polynomials in linear stability

problems. They recommended the use of lower order displacement functions
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for the incremental matrices. They also concluded that the desired
accuracy can be achieved by choosing a larger number of elements
when dealing with nonlinear problems. In addition, Powell (59)
solved the problem of lateral buckling of I-section beams using the
elastic and geometric stiffness.

The formulation developed in this dissertation uses cubic

polynbmials for the displacements u, v, and ¢; a linear function for
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axial displacements in the case of elastic members with prismatic
~ elements, and a second degree axial displacement function for elastic
members with non-prismatic elements and for all inelastic problems.
Stiffness matrices are derived for an element with a linear variation
of geometric properties. Using this formulation, it is possible to
carry out an approximate elastic analysis of tapered thin-walled
beaﬁs of general cross section subjected to general loading and
support conditions. The effect of residual stress is also included
in the analysis. The resulting equations, for the elastic case, are
similar to those derived by Barsoum and Gallagher (7,8) who used

potential energy, rather than virtual work, for their formulation.

2,7 Finite Element Idealization

In the finite element approach the displacements are approxi-
mated by forming a linear combination of assumed shape functions,
where the parameters are appropriate nodal displacements. Let'{f3},
{fz}, and {fl} represent the cubic, quadratic and linear interpolating
functions, respectively. Then we may write the displacements of the

reference axes, in any element as

u, = < £y > (u) (2-23a)

v, = < fy> {9 (2-23b)

¢ = < £y {¢} (2-23c)

w, = < f1 >'{yc} (2-23d) for elastic prismétic
elements

e = < f2 > {EC} (2-23e) for elastic non-prismatic

and inelastic element.



where Uy Vo, ¢, LA represent continuous displacements and {u},

{v}, {¢} and {w.} represent the corresponding nodal displacement
vectors, as defined in Fig. 2.6. Substituting Equations 2-23 into

Equations 2-22, we obtain for one element,

EI
—-Es<w >‘{f5}<fé>{v_zc}+—£§£s<g>{fg}<fg>{1}

+'—£25'6<U>{f"}<f">{u}+—£—;-6<$>{f"}<f">{§>_}

Gk P
f—zﬁa<1>{f§}<f5>{9_}+I€a<g>{f§}<f§>{g}

P ' PI

+oR 8 < v > (£1) < £! > {y} + § <> (£} < £l > {4}
3 3 A, 3 3

M# ' ' §§£

-7£6<9_>{f3}<f3>{g}-£G<g>{f3}<f3>{i}

-Vy6<g_>{f§}<f3>{g}—vy6<g>{f3}<f§>{g}

M M
+—%€s<i>'{f§}<f§> {1}+-%€a<1> (3} < £5 > {9)

TV Sy >l < £y > {9} +V S <> {£5} < £53 > (v}

P e P e
+-—§—£y—g-6<g>{f5}<f:'3>{g}+-i£l£6<g>{f§}<f§>{_¢_}

P e P e
—%’ﬂa<1>{fé}<f§>{!}— 7R 6 <y > (8]} < £ > (9}

M _C_+M _C_+W C )
+ XU XL ygzyc W wl 6<£>{fé}<fé>{i}:| dg

21
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2
-8 (121 Fogut Fyi v, + in w, M 0 + Myi eyi +M 6 .

2 2 _
+ (in dxi ¢i + Fyi dyi ¢i)/2) = 0 ‘ (2-24)

where the subscript ¢ indicates that the quantity is a variable with
respect to the z coordinate.

Assuming all the geometric properties, the axial loads, and
the moments vary linearly along the element, and integrating with

respect to B yields, (see Appendix A, Equations A-54 and A-55)
(k] frgd + [k Dz} = (R)) (2-25)

where {rE} is defined in Fig. 2.6;

[ks] is the usual element stiffness matrix for the linear elastic pro-
blem and [kG] is called the "initial stress" or "geometric stiffness"
matrix.

Equations 2-24 and 2~25 express the total equilibrium re—
quirement implied in Equations 2-~11 and 2-15. The matrix [kG] must be
evaluated using the stress resultants in the final equilibrium position,
which are directly dependent on the displacements, {rE}.

The incremental equilibrium Equation 2-14 can be written in
finite element form, neglecting the initial displacement matrix (see

Appendix B), as
[kg] {arg) + [k,] {arg} = {aR } (2-26)

where [ks] and [kG] have exactly the same form as in Equation 2-25.

However a distinction occurs in that, for Equation 2-26 the geometric
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stiffness is evaluated from the stress resultants at the beginning of
the increment.
The expressions for [ks] and [kG] are derived for a typical

element in Appendix A. They may be partitioned in the following form

[kS] = kuu
kvv (2-27)
Koo
k
e ww —r
[kG] = guu . gud’ .
: gVV gV¢) - (2—28)
Bou | Bev | Bog |

where [kuu] [g¢¢], are submatrices defined in Appendix

A.

2.8 Assembly of Finite Element Equations

The element stiffness matrices of Section 2-7 have been
evaluated witﬁ respect to nodal displacements referenced to a 'local'
coordinate system, where u_ and vs are shear center displacements in
the directions of the principal axes; LA is the uniform axial dis-
placement of the centroid; and ¢ is the twist. In many cases it is
convenient to select a different set of reference axis for the global
system of nodal displacements.

Let the lateral loads be applied through an axis passing
through an arbitrary point 'S' of the cross section (not the shear

center), and the axial load be applied through C (not the centroid).
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Let C be the centroid of the section and S the shear center and let the
principal axes of the cross section be at an angle of & to the global
axes, as shown in Fig. 2.7. The element displacements with respect to
the local coordinate system can be related to those in the global

coordinate system by the transformation

trghy = [T] (g}, (2-29)
where [T] is given by
- -
Tll 0
[t] = (2-30)
0 T22

; the submatrices are shown in Table 2~1;

P
Iy
{rE}L = (2-31a)
q
Iy
L
where
{p}T - <4 P P P (.d_'«l)Pf_ (d_V)PK (stt)p£>L (2-31b)
Ix L B UWos Vi, W, ¢z’ dz ' Mz Y Mz
and
T d¢z P
{EE} = <uP, vP, wP, <1>‘z’, eg, ei, -2 > G (2-31c)
G ‘

; and p and q are nodal numbers.
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Rewriting Equation 2-25 in this nomenclature yields

[ks] {rpd + [kG] (g}, = {Rp}, (2-32)

Substituting for {rE}L in terms of {rE}G’ and premultiplying by [T]T

yields,

[x1" [xg] [] trgh + [117 [k, [1] el = (R},  (2-33a)

or
[kglg (rpdg + DGl {rply = (R}, (2-33b)

The formation of the complete stiffness matrix for the entire structure
is obtained by direct addition for all the interface nodes (thus satis-
fying the equilibrium and compatibility requirements (35), and finally
introducing the kinematic constraints. The stiffness matrix for the

entire structure can be written as,
kg1 {r} + (k,] {xr} = (R} (2-34)

Whgre [KS] is the elastic flexural stiffness matrix; [KG] is the
geometric or initial stress stiffness matrix; and {r} is the assembled
vector of global nodal displacements.

Equation 2-34 is the finite element form of the total equili-
brium equations as expressed in Equation 2-15 and evaluated in Appendix
A. The finite element form of the incremental equilibrium equations,
Equation 2-14, with the simplifying assumptions of Appendix B, may be

written as

[KS] {Ar} + [KG] {Ar} = {AR} (2-35)
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Where [K ] and [K ] are identical to those of Equation 2-34 but [K ]

is determined from initial stress prior to the load increment.

2.9 Summary

These equations up to and including those in Section 2.3,
apply whether the member is elastic or inelastic. In the remainder
of the chapter, the equations were specialized for the elastic case

and a finite element formulation for this case was developed.
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FIGURE 2.2 THIN-WALLED BEAM OF OPEN SECTION- A GENERAL SYSTEM
OF LOADS IN A TYPICAL BEAM SEGMENT
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FIGURE 2.3a DISPLACEMENT OF A FIBRE DURING DEFORMATION
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FIGURE 2.3b PROJECTIONS OF A DEFORMED BAR ON YZ & XZ PLANE
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AT z+Az

FIGURE 2.3c INTERNAL FORCES INDUCED DUE TO SHEARING DEFORMATION
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FIGURE 2.3d INPLANE FORCES INDUCED BY NORMAL AND SHEARING STRESSES



AT 2 AT z+Az

FIGURE 2.4 ADDITIONAL TORSIONAL MOMENT INDUCED DUE TO SHEAR
STRESSES DURING DEFORMATION
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| \ ‘ Initial Configuration I

N\

Incremented Configuration
~ ‘I +AT

Sij, Ui, Eii, T,
o-ij ! J [ t Y ! 1J !
are increments in stresses, strains,
displacements and surface loads

- respectively

Lh liai

FIGURE 2.5 STRESS STRAIN AND DISPLACEMENT NOMENCLATURE IN
INITIAL AND INCREMENTED CONFIGURATION
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PIGURE 2.7 THIN-WALLED BEAM WITH RESPECT TO LOCAL AND GLOBAL ORIENTATION
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CHAPTER III

SOLUTION OF ELASTIC BEAMS AND BEAM-COLUMNS

3.1 Introduction

In this chapter the elastic finite element formulation
developed in Chapter II is applied to a number of different types of

problems. The problems may be separated into three categories, namely;

a) small deflection problems involving the solution of first order

beam equations; b) buckling or bifurcation problems involving the
eigenvalue solution of the incremental equilibrium equations; and c¢)
beam-column type problems which include the effect of "prebuckling"
deformations by satisfying the nonlinear total equilibrium equations.
The study of beam-column response in the elastic range is
motivated by a number of considerations. The elastic critical or
'buckling' load forms an upper bound on the carrying capacity of such
a member. However if the design criteria is controlled by a deflection

limitation then it is necessary to determine the loading condition at

Which this limitation is reached and useful to relate this load to the

upper bound on carrying capacity. The range of loading for which an
eléstic analysis is applicable is limited.by the proportional limit of
the material and the actual carrying capacity is normally governed by
inelastic béam—column response. It is useful, however, to study the
elastic beam-column response as a prerequisite to solving the more
realistic inelastic problem.

It might also be noted, that, with the current development
of high strength materials, the range of loading for which elastic
analysis is applicable is increasing. Since the buckling problem is

based on a classical eigenvalue analysis, it ignores all deformations

35
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prior to the attainment of the critical load and these, together with
geometric misalignments, may make the eigenvalue estimate an
unrealistically high upper bound. In this chapter, the finite element
model derived in Chapter II is used to study both elastic beam—column
behaviour and the classical efgenvalue or buckling analysis.

The method is also applied to beam~column problems with
initial‘geometric imperfections. For this case Southwell (65) pro-
posed an extrapolation technique by means of which experimental
elastic critical loads can be predicted for concentrically loaded
pin-ended columns, with sinusoidal imperfections. Gregory (29) and
Ariaratnam (6) have extended the above method in the case of struts
. which fail by flexural torsional buckling. The elastic deformation
of I-beams with sinusoidal initial crookedness or twist under the
action of equal and opposite end moments has been carried out by
Flint (20) and Massey (47) for simply supported beams, and by Horne
(36) and Trahair: (70)(71) for beam~columns. Recently Leicester (42)
has shown the applicability of the Southwell plot to monosymmetrical

beam~columns.

3.2 Solution of First Order Beam‘Equations

3.2.1 Introductory Remarks

The finite element model derived in Section 2.7 has been
used to represent beam flexure by a number of investigators. Barsoum
and Gallagher (7,8) and Powell et al (59) have included twist in their
model using the same interpolation functions. However, neither of
these studies investigated, in detail, the ability of the model to

represent non~uniform torsional response.
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The bimoment which arises in the derivation of the beam
equation has been designated as Ww' This bimoment is produced by
restraint of warping deformations and the rate of change of bimoment
produces a torque along the beam called the "warping torque", Mw'

A measure of magnitude for bimoment is given by the product of the
distance between two parallel planes and the moment on one of them.

A bimoment is assumed positive when the sense of one moment seen from
tﬁe plane of the other moment is anticlockwise. A rigorous defini-
tion is given in Appendix A, Equation A-14. The distinctive feature
of the bimoment is that when it is acting in an elastic body it pro-
duces internal stresses and strains which have conventional stress
resultﬁnts of zero magnitude. When any beam is cut by an imaginary
plane the bimoment acting on the section to one side of the plane is
equal and opposite to.that acting on the other side.

One type of problem that a model must be capable of analys-
ing, to produce reliable results for thin-walled beams of open section,
is the problem of nonuniform torsion, where the total torque is
resisted by a combination of the warping torque, Mw’ and the St. Venant
torque, M_. The following examples test the capability of the model

t

to represent stress conditions in beams subjected to nonuniform torsion.

3.2.2 Numerical Results for Nonuniform Torsion Problems

E-1 Nonuniform Torsion of a Prismatic Beam

In order to check the ability of the finite element model to
represent nonuniform torsional behaviour, an 8WF3l cantilever beam of
50 inches length was analyzed with a 5 inch-kip torque applied at the

free end. Eight elements were used and the finite element solution was
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cpmpared with the closed form solution (68). Fig. 3.1 shows the varia-
tion of the angle of twist ¢, and its derivatives, along the length.

In Fig. 3.2 the torsional moment of resistance due to St. Venant and
warping are compared with the closed form solution (68). Since a cubic
polynomial was used for twist, the variation of warping torsional
moment of resistance is constant along the element whereas the varia-
tion of St. Venant resistance is quadratic. Fig. 3.3 shows a compari-
son of the twist curves along the length of the beam for different
numbers of elements. The convergence characteristics of the solution

are shown in Fig. 3.4.

E-2 Nonuniform Torsion of a Tapered I-Beam

Fig. 3.5 shows the comparison of the finite element analysis
with Lee's (41) power series solution for nonuniform torsion of tapered
beams. The finite element analysis agrees with the closed form solu-
tion (68) for a uniform beam, A, but this solution does not agree with
Lee's results. For the tapered beams, B and C, Lee's analysis includes
the torque about the longitudinal axis resulting from the projection of
the inclined flange moments. This effectively reduces the torsional
stiffness of the beam. Such an effect is not incorporated in the
equilibrium equations of Chapter II and therefore cannot be represented
by the finite element model. When the beam taper is considerable, as
in these examples, the: contribution of flange moment to the torsional
moment is significant and hence there is a discrepancy between Lee's

analysis and the results from the conventional beam equations.

3.3 Elastic Buckling Problems

3.3.1 Introductory Remarks
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Many structures when loaded to a critical state will undergo
a marked change in the character of deformation, which is not the
result of material failure or alteration of mechanical properties.
Such a change occurs because one mode of deformation becomes unstable
and the structure seeks a stable configuration. The change in deforma-
tion which takes place when the structure passes from an unstable
configuration to a stable configuration is generally known as buckling.
The load at which this occurs is known as the critical or bifurcation
load. The classical buckling problem ignores all deformations prior
to the attainment of the buckling load and hence the eigenvalue

analysis always forms an upper bound for the load.

3.3.2 Solution Scheme

A buckling problem is formulated by imposing a variation of
displacements in the matrix equation 2-34 under constant load. The

result is identical to the homogeneous form of Equation 2-35, i.e.: -

[(xg] r) + 5] m] = 100 (3-1)

The above equation is satisfied, for a non-zero displacement vector,
only if the stiffness matrix is singular, and the '"buckling criterion"
can be represented by the vanishing of the determinant of the stiff-

ness matrix, i.e.: -
|1[xg1 + [K,[] = o (3-2)

By assuming that throughout the loading range the stress state can be
written in terms of some function whose intensity is governed by a

single parameter, A, the initial stress state takes the form
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(ko1 = Akl (3-3)

where [Eﬁ] represents the initial stress stiffness matrix computed for
some nominal stress distribution. Introducing Equation 3-3 into

Equation 3-1 yields
[kgl{ar} = -A[R J{Ar} (3-4a)

orl
$ o) = -[k 7[R J(ar) (3-4b)

The critical buckling load is now obtained by solving Equation 3-4b
for the unknown eigenvalue . The eigenvalue solution for the follow-
ing problems was determined using "NROOT" of the IBM-SSPackage (1).
The buckling mode can be identified as the eigenvector corresponding

to the lowest eigenvalue.

3.3.3 Numerical Examples

In order to verify the formulation a wide variety of problems
have been solved and checked with closed form solutions. Table 3-1
shows the comparison of the results of a large number of critical loads
computed by the finite element analysis with the corresponding avail-
able solutions. The table includes examples of Euler, lateral and
lateral torsional buckling. Nomenclature is specified in Fig. 3.6.
Some importan£ additional examples are described below.

E~1 Torsional Buckling of a Symmetrical I-Beam

Table 3-2 shows a comparison of the results of Krajcinovic
(40) and the present formulation. Krajcinovic used a hyperbolic func-

tion for the twist and claimed that the results from a cubic polynomial
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would not be able to reflect the term k (ratio of St. Venant torsional
rigidity to warping rigidity) no matter how many elements were used.
In the present formulation a four element approximation gives results
closer to the exact solution.

E-2 Influence of Point of Load Application for Lateral Buckling of

Beams
Fig. 3.7 shows the solution for lateral buckling of a beam
with a single vertical concentrated central load applied at a distance
dy above or below the shear center. The section is that used by
Powell (59), et. al., and is a 21" x 10" I beam with a uniform thick-
ness of 1". The span is 300". The solution is compared to that of
- Timoshenko (68).

E-3 Elastic Buckling of Indeterminate Structures

Table 3-3 shows the comparison of finite element results with
those of Horne and Ajmani (37) who developed a series solution to
determine the critical loading on columns supported laterally by "side
rails". The side rails, acting with the cladding and any bracing
system, are assumed to provide a rigid lateral support at the points
of attachment. They also provide an elastic torsional restraint. A
8WF 28 column, 69" in length and restrained laterally by side rails at
a spacing of 23" and at an eccentricity of 3" from the centre line of
the column, was analyzed when subjected to an axial load of P and a
uniform moment of M about the major axis. At each rail position the
torsional restraint was assumed to be 1040 in.K/Rad. As shown in
Table 3-3, the load which causes lateral torsional buckling is 1972,19
kips, when the rotations are nonzero at lateral supports (case 8),

and 6100 kips when the rotations are zero at lateral supports (case 17).
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In the first case the column buckles in a lateral torsional buckling
mode and in the second case the column buckles in an Euler mode. The
mode shapes for these cases are shown in Fig. 3.8.

E-4 Euler Buckling of an Unsymmetrical Section

The unsymmetrical beam used by Vlasov (74) for unsymmetrical
bending,shown in Fig. 3.9, was analyzed with an axial load applied at
the centroid and with a span of 300". The eigenvalue corresponds to
lateral torsional buckling. The finite element critical load is
1163 kips compared to a value of 1140 kips determined from the equations
of Timoshenko (68).

E-5 Lateral Torsional Buckling of an Unsymmetrical Section Under

Uniform Moment

End moments were applied about the X-axis for the beam of
example E-4 and the critical moment to cause lateral torsional buckling
about the minor axis was found to be 2.3706 x 104 inch-kips compared
to a value of 2.367 x 104 inch~kips determined by the closed form
solution (68).

E-6 Lateral-Torsional Buckling of an Unsymmetrical Section with

Moment Gradient

A vertical load was applied at the mid-span of the beam of
example E-4 and E-5 acting 2.42" above the shear centre as shown in
Fig. 3.9. The critical load to cause lateral-torsional buckling was
found to be equal to 263.27 kips. A classical solution of this pro-
blem involves the solution of three coupled ordinary differential
equations and no closed form comparison is available.

E-7 Elastic Buckling of a Tapered Axially Loaded Member

A tapered WF column with the dimensions as shown in Fig. 3.10
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was analyzed with‘the small end pinned and the larger end fixed. The
finite element analysis estimates the buckling load 4.93 percent
higher than that given by Culver (17), who has published a set of
curves for thié type of problem using Lee's (41) nonuniform torsion
formulation.

E-8 Lateral Torsional Buckling of a Tapered Beam Under Moment Gradient

The beam described in E-7 was loaded with a moment at the
larger end and the critical moment was found to be 1035 inch-kips
which is 9.21 percent lower than the critical moment given by Culver
(17). The discrepancy is attributed to the component of the flange
bending moments in the z-direction, which were considered by Lee and
Culver, and discussed in example E-2 of Section 3.2.2, and which are
not taken into account in present analysis.

E-9 1Interaction Surface for Critical Loading

Fig. 3.11 shows the influence buckling surface for an 8WF28

beam, 69" in length, when it is loaded by axial load and end moments.

3.4 Solution Methods for Beam-Column Problems

3.4.1 Introductory Remarks

The previous examples in this chapter have dealt with the
small-deflection beam equations and elastic buckling or bifurcation
problems. When pre-buckling deformations are considered it is
necessary to solve a 'beam-column' type problem. This involves the
solution of Equation 2-34 which, because of the dependence of [KG]
on {r}, is nonlinear. There are a number of methods of solving this
set of nonlinear equations. A 'Newton-Raphson' method was used to
solve elastic beam=column problems and a "Modified Newton 'Raphson'

was used to solve inelastic beam-column problems in this dissertation.
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A description of these two methods, applied to elastic problems, is
given in the remainder of this section. An equilibrium check is

incorporated into both techniques.

3.4.2 Newton-Raphson Method

This method has been employed successfully by a number of
investigators. For example, Walker and Hall (75) used it to study
large deflections of beams, and Brebbia (14) and Connor used it to
study the stability and geometrically non-linear behaviour of
arbitrary shells. Initially, a small displacement solution of Equa-
tion 2-34 is obtained, for the first load increment, with [KG] set to
zero. The element stress resultants are computed from the known
displacements and the geometric stiffness matrix for the structure is
evaluated. The total resisting force at any node is the sum of the
resisting forces obtained from the flexural stiffness and the
geometric stiffness. The difference between the resisting forces and
the applied loads represents a set of unbalanced forces for the given
configuration of the model. Knowing the set of unbalanced forces on
the model, in this configuration, one can solve for the increments in
the nodal displacements. The iteration islrepeated till the configura-
tion of the model maintains equilibrium with the applied loads. The
following algorithm explains the procedure and is illustrated in
Fig. 3.12a.

1. For any approximate {r}n, compute [KG]n and the unbalanced force

vector,

{AR}n+1 = {R} - [KS]{r}n - [KG]n {r} (3-5)
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5.
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Compute the increment in displacements to equilibrate the unbalanced

forces,
-1
{Ar}n = ,:[KS] + [KG]n:] {AR}n (3-6)

Update the displacements

{r} {r} + {ar} (3-7)

n-1

Repeat steps 1 to 3 until the unbalanced force vector is arbitrary
small.

Apply a new load increment and repeat steps 1 to 4.

The principal disadvantage of this technique is that it is necessary

to triangularize a new stiffness matrix for every iterate.

3.4.3 Iterative Initial Force Method (Modified Newton-Raphson Method)

This method retains the linear elastic matrix on the left

hand side of the equation and keeps all the nonlinear terms on the

right hand side. It is illustrated in Fig. 3.12b. For the nth iterate,

Equation 2-34 can be written as,

[KS]{r}n+1 = {R} - [KG]{r}n (3-8)

and solved for the next estimate of nodal displacements

- 1Ry - k.72 -
rhpr = [RgIT R} - [RI7 [RIEe2 (3-9)

The above procedure is repeated till the displacement for the (n+1)th

iterate is the same as for the nth iterate, at which time the unbal-

anced force vector is arbitrarily small. The matrix [KG] is updated

only at the beginning of each load step.
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To investigate the convergence of this method one may follow

the procedure which Dupuis et al (79) used for direct iteration:

_ +1 -1 -1, _ -1 _
{rhpg = [RgITRY - [RITIR,] IR T RY [k 17K e} b (3-10)
continuing this back substitution yields

_ _ ‘ 2 _ 3 _a\D n
{r} = ([1] - [c] + [e] [6]7 ..icv(-D) [c]" ) x

[KS]'l{R} + (1™ et {r } (3-11)
where
-1
[e]l = [k [k,] (3-12)

Assuming the displacements are initially zero the convergence depends

on the expression
-1 [e]" [Ks]-l {R} tending to zero
If {53} are the eigenvectors of the matrix [G], we may write
-1 n -
[k ™R} = ] c, {u} (3-13)
P B

Noting that [KS] and [KG] are symmetric matrices and'[KS] is a positive

definitive matrix, we have

L@ = [l (3-14)
[ & =1 @ (3-15)
Al'l.

1" kI ® = [6° o)+ [eI® G} + ...

cl{El}/An (3-16)
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Since A is greater than 1 when the current load is less than the buck-

ling load, the method converges.

3.4.4 Solution Scheme for Beam-Columns with Geometric Misalignment

When the beam has an initial imperfectionlof'{ro} Equation

2-34 can be written as
[KS]{r} + [KG]{r} = {R} - [KG]{ro} (3-17)
The unbalanced load for the Newton-~Raphson method
{ar} = {R} - [R]{r} - [k, (r} - ko] {r } (3-18)
and the corrections'{Ar}n+l is given by the solution to
[[KS] + [KG]n]{Ar}n+l = {aR} (3-19)

where {r} are the diéplacements from the initially imperfect configura-

tion.

3.5 Elastic Beam-Column Response

3.5.1 1Introductory Remarks

For beam-column type problems the load-deformation response
was obtained by applying the load incrementally and iterating to find
the equilibrium configuration for each loading condition as described
in Section 3.4.2. A solution to this type of problem can be obtained
for statically indeterminate, as well as statically determinate mem-
bers, subjected to any combination of externally applied concentrated
or distributed loads, moments, or torques, with or without elastic

constraints.
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3.5.2 Examples of Beam—Column with Initial Imperfection

E-1 Inplane response of a column (axial load)

Fig. 3.13 compares, with the solution of Timoshenko (68),
the column response for an 8WF31l section of length 69" with an initial
deflection éf 0.01 sin E%, when subjected to an axial load. Deflec-
tion increases in a nonlinear manner and after 0.8Pcr the deflection
increases rapidly.

E-2 1In and out of plane response of a column

In Fig. 3.14 the load deflection response of a beam-column
is shown, for initial deflections of -0.0l1 sin 7z/L in u, v, and ¢,
when the member is subjected to axial load. When the load reaches
the critical load corresponding to the Euler buckling load about the
minor axis, the sign of the determinant changes. For loads above the
critical value, the sign of the u-deflection changes. When the load
reaches the torsional buckling load, the sign of the determinant
changes again as well as the sign of the twist. The v-deflection
continues to increase and becomes asymptotic to the line of the major
axis Euler buckling load.

E-3 Out of plane response of a beam due to end moments

Fig. 3.15 shows the moment and out of plane response for an
8WF31 beam when there is an initial lateral deflection of 0.01 sin I%.
Moment and deflection curves are drawn, neglecting the effect of
moment about the minor axis on the equilibrium equation for torsional
moment, and compared with the results obtained by Trahair (71).

Curves are also drawn when this coupling effect is considered. Closed

form and finite element solutions are compared for both cases.
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E-4 Out of plane response of beam-column due to axial load and equal

" end moments
A 12WF50 with a sinusoidal imperfection is analyzed with
the axial load applied at different eccentricities. The beam-column

response curves are shown in Fig. 3.16 and compared with corresponding

eigenvalue solutions.

3.6 Summary

In this chapter, some examples of solutions were presented
for a) the first order beam equations, b) elastic buckling of both
statically determinate and indeterminate structures, and c) the elastic

analysis of beam—columns with imperfections.
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Pz(a) —
A C - = — B
£ 0 Pz(s)
M v
x(A) F,
¢ fro My (s) RAE)?:rsRA'NED
SUPPORT CODE WHEN MARKED DISPLACEMENTS ARE
SUPPRESSED
Degree of dé,
Code \ freedom | u [ v | w| o, o, |6, | 9,
H(HINGE) X | X X X
R(ROLLER) X | X X
C(CLAMPED) [ x | x | x | x X | x | x
F(FREE)
HY X X X X X
HX X X X X X
HYW X X X X X X
HXW X X X X X X
U X
v X
Ue X X

CODE FOR BUCKLING MODE

EW - Euler buckling about weak axis
ES - Euler buckling about strong axis
LW - Lateral buckling about weak axis
LS - Lateral buckling about strong axis
T - Torsional Buckling

LTB Lateral torsional buckling

FIGURE 3.6 NOMENCLATURE FOR SUPPORT CONDITION AND BUCKLING MODE
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FIGURE 3.8 COLUMNS SUPPORTED LATERALLY BY SIDE RAILS
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' FIGURE 3.9 ELASTIC BUCKLING OF UNSYMMETRICAL SECTION
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FIGURE 3.10 BUCKLING OF TAPERED BEAM-COLUMN
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R2
R, P4
2Ra AR, ‘[
1 | ar,
FIGURE 3.12a A NEWTON-
RAPHSON METHOD
M-ATI-DQ-Af2-DAf3!-
e r" —-ﬂ
“ f2—>
4——73———-ﬂ
= f4 >
——>1 1 ~-CORRESPONDING |e—
TO R
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FIGURE 3.12b MODIFIED
NEWTON-RAPHSON METHOD
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1500} —— CLOSED FORM SOLUTION (71

(Neglecting the coupling effect My)
4000 L ——— CLOSED FORM SOLUTION
(Including the coupling effect My) U
| ; "
sso0l ®4 FINITE ELEMENT ,,,.f = )
1/’ ‘ /,’ \V/
A~ R4
3000 | o P
o’ /
7 / )
& y o
& 2500 - /
= N/
=< / /./
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S1500 |-
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FIGURE 3.15 BEAM WITH INITIAL IMPERFECTION
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CHAPTER 1V

LOCAL BUCKLING OF ELASTIC SECTIONS

4.1 Introduction

Thin-walled beams are made up of relatively thin plates, and
ﬁndér certain conditions, these plates may experience local buckling.

' Local buckling in combination with other buckling behaviour is often
observed in failure of members. Local buckling of the various plate
components, of which heavy structural sections consist, needs rarely
to be considered, because these sections are proportioned so that they
will not buckle locally at stresses below the yield point. However,
with the introduction of high strength steels, sections which had
previously been immune to local buckling prior to yield may no longer
be so. In addition cold rolled steel shapes, and aluminum shapes
often have proportions such that local buckling may occur.

Buckling theories of thin-walled members have been separately
developed for member and local buckling. Member buckling is based on
the assumption that the cross section does not distort while loéal
buckling naturally involves a distortion of the section. 1In practice
these phenomena may not be independent and hence it is reasonable to
investigate conditions where both may occur simultaneously.

Bleich (13) studied the flexural torsional buckling of
T-shaped stiffners including the deformation of the web. Goldberg (27),
et. al., presented a systematic buckling analysis, for members with
arbitrary cross-sectional shape, considering the cross-sectional de-
formation, by starting with the usual plate and membrane equations,

and arriving at eight first order simultaneous partial differential

70
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neglecting the effect of cijP
B P BP
I, = I, +1I, +1, (4-6)
where
B 1 B B B
12 = 3 J oij uk,i uk,j dv (4-7a)
v
P 1 B P P
12 5 J oiJ uk,i uk,j dav (4~7b)
v
BP _ B B P
12 = J Oij uk,i uk,j av (4-7¢)
v

and the symmetry of the stress tensor has been used in expression for

BP
IZ .
Using the notation of Chapter II, Equation 4-7a becomes,
1 B _ 1 ¢ (-2v. ¢ u' + 2V ¢ v' + P(u'2 + v'2 + 2e_ u' ¢'
2 -2 o y s X s s s y s
2
- vt Yot 1 ' ' -
2exvS o' + ZMy ve ¢ 2Mx ug ¢' + Mp $'") dz (4-8)

Considering only the normal stresses in the z-direction; retaining
only the out of plane plate displacement gradients (see Felippa (19));
and neglecting the effect of in-plane shears; Equation 4-7b may be
written as
P _ ¥l B p |2 p |2
I, = 121[§-£ o, t {(u’z) + (v’z) } dA]i (4-9)

Similarly Equation 4-7c¢ becomes
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[ f ozB(up B+ v sz) avl, (4-10)

4.3.4 Evaluation of I3

If surface loads are regarded as line loads the integral I3
remains as in Chapter II, and is expressed as Equation A-48 of

Appendix A.

4.3.5 Expression for total virtual work

Substituting the expressions for Il, IZ’ 13 into Equation

4-1 yields,

4
§[ j Cwl - M vy - M ul + W "+ T ¢') dz

y
(o]
(4-11)
T P p P
- 121 l My, + Moy, + 2 ) A

£
l_ - ' 1 |2 '2 tar tat
+ 3 J{ ( 2Vy¢us + 2vxq>vs + p(us + vt o+ 2eyus¢ 2exvscl> )
2
LIV . 1t 1
+ ZMyvs¢ ZquS¢ + Mp¢ ) }ldz

[% [ ozB t{(ul:z)2 + (v?z)z} dA + J ozB (up uB + vP sz) dV]i

n
+
E 22 2 sZ
A v

i=1

- f tyou ds] = 0
s

Equation 4-11 applies to any thin-walled beam of open section, composed
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of flat plate segments, for both elastic and inelastic response. The
terﬁs in Equation 4-11 arising from Equation 4-5a, IlB, give rise to
the beam flexure tangent stiffness matrix, for inelastic response, and
the conventional beam flexure stiffness matrix for elastic response.
Those arising from Equation 4-5b give rise to the flexural stiffness
matrix for plate bending. Equations 4-7a and 4-7b lead to the geo-
metric stiffness matrix for the work done by the initial stress state
on the out of plane beam and plate deformationms, respectively, whereas
Equation 4-7c represents the coupling effect between plate and beam

stresses and deformations.

4.4 Specialization for Elastic WF Sections

For elastic response the conventional beam stress resultants
appearing in Equation 4-11 are defined in Chapter II. The stress
resultants, Mg, Mg, MSB for the plate segments may be expressed as

(see Fig. 4.1)

Mz = =D (Xa + v XB) (4-12a)

Mg = =D (xg + v x,) (4-12b)

Mpg = - D (1-v) Xqg (4-12c)
where v is poisson's ration and D = E t3 / 12 (1 - vz) (4-13)

Assuming a symmetric WF shape and designating the out of plane plate

segment displacements by vtp, vbp and uwp

as shown in Fig. 4.2;
expressing the curvatures in Equation 4-11 in terms of the derivatives
of these displacements; expressing the stress resultants, in the first

set of braces in Equation 4-11, in terms of displacements; and,
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approximating GZB by the normal beam equation (the first three terms

of‘Equation A-51); the component expressions of Equation 4-11 becomes

L
B l._ |2 nl n2 nl
§(1,7) 5[2 [ {EA w'® + EI vi° + EIy ug” + EL ¢
o
,2
+ GK¢'“} dz
P Dt P P 2 P
6(11 ) = GE-E f {(Vt,zz + vt,xx) -20Q- V)(vt,xx
A
P )Z»dzdx + EE' {(vp + P )2 - 2(1 - V)P
t,xz ) 2 b,zz b,xx b
o A
P 2 Dw P P 2
(Vb,xz) ) }dxdz + —E-f {(uw,yy + uw,zz) - 21 - V)
P p — (P 2
(uw,yy a2z (uw,yz) )} dydz L
s(r.By = [k ¢ {- 2V ¢u' + 26V_v' + P(u'? + v'?
2 2 y''s “T'x s s s
)
L 2
' St _ 1.1
+ A ¢'7) + 2Myvs¢ ZMx¢ us} dz
P 1 P dew M X P 2
sa,h) = olp [ (@ o) 62
v
Md M X
P xW ¥ P )2
A Iy)(vb,z)

p -
vt,zz

p
sXX b,zz

(4-143a)

(4-14Db)

(4=14c)

(4-144d)
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BPy _ P XW, yY..p
6(12 ) 8 [j {(A + 21 + I ) vt,z v z tox ¢,z)
v y
p_ "% EL}E P
+ (K T2 + Iy) vb, v ’Z tx ¢,z)
T P
+ G+ —I—x) Uz W =Y ¢,z)}] dv (4-14e)

Where the local coordinate system is shown in Fig. 4.2; u and v refer
to X and Y coordinate directions; the subscripts b, t and w refer to

'bottom flange', 'top flange' and 'web' respectively; the superscript
P indicates plate bending displacement; and, ugs Vo, ¢ and LA refer to

beam bending displacements.

4.5 Finite Element Model

The plate segment displacements for a wide flange beam are
assumed to be represented by the shape functions shown in Fig. 4.3.
These functions imply that on any section perpendicular to the longi-
tudinal axis the flange remains straight. With this model there are
four degrees of freedom associated with cross section distortion at
each node, in addition to the seven degrees of freedom associated with
beam action at each node. The sketches in Fig. 4.3 show the deflected
shape of the I-section due to unit values of the generalized displace-
ment coordina;es corresponding to each degree of freedom of the top

flange while 'the others are kept zero. Shape functions for the bottom

flange are similar to those for the top flange.

p

¢+ can be written in terms of the

The plate displacements v

nodal displacements as
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T
3,2 P
1+ 2 3z%) (vt)1
- 2% + 2% LGP )y
vf: = £ ) 3 o (4-15)
32 P
(z ) K(vt,z)2

where £ and ¢ and n are the dimensionless parameters illustrated in

Fig. 4.2, and expressed as

E = 2x/bf; r = z/&; n = 2y/dw (4-16)

P P P P
and (Vt)l’ z(vt,z)l’ (vt)z, K(vt,z)2 are the nodal values of the
generalized coordinates as shown in Fig. 4.3.

Denoting the set of shape functions by, <kC> the displacements.

in the top and bottom flanges are expressed as

P ™ - P

vt <kC> 0 ZE
= £ (4-17)

P P

vy 0 <kC> 1.9_

b

Where VE and vP represent the vectors of generalized nodal coordinates.
Since the angle at the junction of the web and the flange

remains unchanged

= = p -
Oy = 8y = 2/b, (D)) (4-18)

Where e:l is the rotation at the top of the web, and et is the top

1

flange rotation at node, 1. Using a similar notation at the bottom

Junction we may write these rotations along the element length as
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r— —
6.d ' <k_> 0 vP
tw 2dw 4 t
= e (4-19)
bf )
ebdw 0 <kZ_',> Xb

Where anti-clockwilse rotation is assumed as positive for the web, bf
is the flange width and dw is the depth of the web.

Choosing the local coordinate system at the centre of the
web, as éhown in Fig. 4.2, the web displacements are expressed as

T

2
p _ 1 1L+n) @@-n7 6.d
u’ = 3 2 (4-20)
(n-1y Q@ -n9 6, d

and using Equation 4-19, Equation 4-20 may be expressed in terms of

the generalized coordinates, as

T — —
- o2 P
a 1+n) Q-1 <kC> 0 Ve
uz = -4—;;- | (4—21)
f
-1 -0 | o > | o

Substituting the distributed displacements, in terms of nodal coor-
dinates, into Equations 4-14 and integrating, we may write the element
equilibrium relationship between the generalized forces and generalized

displacements in the symbolic form
[legd + [kgIl {xp} = {Rp} (4-22)

where the matrices are derived in Appendix C and have the following

structure.
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uu

[k ] = k (4-23a)

[k,1 = Bu  Epv  Bpp  ° Bgp (4-23b)
Bou Bov Bpy By
e J
and
<r > = <<u> <w> <¢> <w> <> (4-23¢)

E

The nodal vectors u, v, ¢, and w have been defined in Chapter II and
nodal vector £ corresponds to the eight degrees of freedom associated

with local buckling i.e.:

RO L A G S MR e

P P P
t,z )1» Veoo 'e'(vt,z)Z’ MYE

s Z

P
L(v ,z)2> (4-24)

Upon assembly, the equilibrium equatioms for the whole structure may

be written as,

[[&g] + [x,11 {r} = (R} (4-25)
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The buckling problem arises from the variation of the homogeneous matrix

equation in the form

[
(]

[[KS] + [KG]] {Ar} (4-26a)

or

1]
o

([KS] + A[EG])' {Ar} (4-26b)

Solving the above eigenvalue equation for the unknown value
A and multiplying it by the nominal stress distribution yields the

critical stress.

4.6 Illustrative Solutions

E-1 Local Buckling of Plates

To test the plate buckling representation a number of pro-
blems were solved without coupling the local buckling to member buck-
ling. 1In Table 4.1 the solutions for buckling of plates for various
boundary conditions are compared with the closed form solutions. The
nomenclature of Table 4.1 is indicated in Fig. 4.4. The buckling of
a single plate can be simulated by setting the thickness of the other
plates to zero. The model yields good results for flange plate buck-
ling but is too stiff to yleld accurate results for web plate buckling
since only a linear variation curvature can be represented across the
plate.

E-2 Uncoupled Local Buckling of Columns subjected to an Axial Load

Fig. 4.5 shows the results obtained when an axial load is
applied to a symmetric wide-flange column of constant thickness and

the critical local buckling load (uncoupled solution) is calculated for
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various ratios of bf/dw' The minimum plate buckling coefficient, kw’
was computed frdm the critical stress, and the relationship of kw to
bf/dw is compared with Bulson's (15) theoretical curve in Fig. 4.5.
It can be seen that the model closely represents the flange buékling
of a wide flange beam, but, as is to be expected does not accurately
reproduce web buckling behaviour because the assumed shape functions
cannot represent the fundamental mode of this plate.

E-3 Interaction of Local and Member Buckling

Fig. 4.6 shows the buckling load for an axially loaded wide
flange column for (a) uncoupled local buckling, (b) uncoupled Euler
buckling, (c) interactive column and local buckling. The interaction
curve gives values for the buckling coefficient only a few percent
lower than the Euler column buckling curve. These results agree with
those of Pfluger and Bulson (16). Curves are also shown for the case
where the load is acting at an eccentricity of 5".

E-4 1Interaction of Local and Lateral Buckling

Fig. 4.7 shows a comparison of the (uncoupled) elastic local
buckling load and the (uncoupled) lateral buckling load, with the
critical load including interactive effects, for a simply supported

beam.

4.7 Summary

The formulation developed in this chapter can form the basis
for elastic or inelastic buckling of a thin-walled beam with local and
member buckling interaction. The model adopted in this chapter for
elastic wide flange beams has eleven degrees of freedom at each node

compared to eighteen degrees of freedom for the simplest finite element
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plate representation, illustrated in Fig. 4.8.

The model developed in this chapter appears to yield good
results for local flange buckling but should not be expected to
represent web buckling. The results verify the validity of the class-
ical approach to local buckling by showing that, for wide flange
sections in the elastic range, the interactive effect is normally
small, and local and member buckling are initiated as relatively

detached phenomenon over most of the range of loading.
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FIGURE 4.1 LOCAL PLATE CO-ORDINATE DIRECTIONS



FIGURE 4.2 LOCAL COORDINATE SYSTEM FOR PLATE DEFORMATIONS
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FIGURE 4.3 DEFLECTED SHAPE OF THE I-SECTION DUE TO UNIT VALUE
OF THE GENERALIZED DISPLACEMENT
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n - number of elements

FIGURE 4.4 GENERAL NOTATIONS
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FIGURE 4.5 LOCAL BUCKLING OF COLUMNS SUBJECTED TO AXIAL LOAD
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FIGURE 4.8 PLATE ELEMENTS WITH 18 DEGREES OF FREEDOM AT
EACH NODE OF THE BEAM ELEMENT
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CHAPTER V

FORMULATION FOR INELASTIC MEMBERS

5.1 Introduction

Nonlinear formulations relating kinematic and mechanical
variables may fall into the three following categories: 1) nonlinear
constitutive equations (material nonlinearity), 2) geometric nonlinear-
ity, 3) combined material and geometric nonlinearity. The beam-column
problems considered in Chapter III fall into the second category. This
and the following chapter are devoted to beam-column problems falling
intoithe third category. A comprehensive review of the application of
finite element concepts to nonlinear problems in structural mechanics
has been given by Oden (56).

Basically there are three types of finite element solution
methods which can be adopted for nonlinear problems (30,34); 1) incre-
mental methods without equilibrium checks; 2) incremental methods with
equilibrium checks; 3) direct solution of the governing nonlinear
equations. The first type of approach is computationally fast but has
the disadvantage that equilibrium is not satisfied at each step and
there is no direct indication of the errors involved in the solution.
In the second type, incremental solutions due to a series of load
steps are determined, equilibrium is checked, and corrections are made
for each load step, if necessary. Unlike the first method this
insures that the equilibrium equations are satisfied throughout the
loading history. The beam-column solutions presented here have been
carried out using this method. The third method has been successfully

applied by Oden (55).
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5.2 Formulation of Inelastic Incremental Equilibrium Equations

5.2.1 General Description of Solution Procedure

Details of the solution procedures for inelastic small
deflection, beam—column and bifurcation problems are discussed in
Chapter VI. However, since the formulation is, to some extent,
dependent on the solution procdedure adopted, a general description
of this procedure for beam-column problems is given in this section.

The solution procedure for inelastic beam-columns employed
in this study may be described as follows. In the formulation,
strains, displacements and rotations are assumed to be 'small' and
hence a second order small displacement theory is used. A linear
incremental solution technique is adopted with equilibrium checks.
This is similar to the method adopted by Murray (50) and Wilson
(51,52), Sharifi (63), and Hofmeister and Greenbaum (34).

The incremental equilibrium Equation 2-35, was derived in
Chapter II for elastic response. A similar equation is derived in

this chapter and may be expressed as
[[xg] + [k ] (ar} = {aR} (5-1)

whgre [Kg] is the tangent stiffness matrix for the increment of loading.
The Newton-Raphson method for inelastic response is explained

in the following algorithm.

1) For any approximate {r}n, the total strains may be determined from

the kinematic relationships, Equation A-36. The stresses may then be

computed directly from the stress—strain relationship, shown in Appendix

D in Fig. D.1la.
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2) Knowing the strains énd stresses, the tangent stiffness matrix,
the geometric stiffness matrix, and the unbalanced forces may be

evaluated, as detailed in Appendix D. Equation 5-1 may be solved to
determine the displacement increments to equilibrate the unbalanced

forces, i.e.:
(ar}. = [[K:1 + [k.]1 17 ar) (5-2)
n S°n G'n n
3) The displacements are updated

{r}n+1 = {r}n + {Ar}n (5-3)

4) Steps 1 to 3 are repeated until the unbalanced force vector is
arbitrarily small.
5) A new load increment is applied and steps 1 to 4 are repeated.

This procedure is identical to that of Section 3.4.2 except
for the detailed evaluation of [Kg] and [KG]. Héwever, a modified
Newton-Raphson technique, holding the tangent stiffness constant for
several iterations, was actually used for the numerical work.

The procedure of computing the error vector in nodal equilQ
ibrium is described as follows. The total forces at a node are the
sum of a) thF applied forces, b) the resisting forces due to stresses,
which may be computed from statics for the stress resultants produced
by any stress distribution, and c) the forces resulting from changes
in geometry which may be evaluated as [KG]{r} for any set of stress
resultants and displacements. The stress resultants are computed at

the ends of each element by a numerical integration of stresses which

have been previously determined from the element strains as detailed in
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Appendix D. The difference between the applied loads and the sum of
a) the resisting forces and b) the 'geometric' forces, represents the
set of unbalanced forces, designated as {AR} in Equation 5-1, on

the given configuration of the model.

5.2.2 Other Formulations

Other methods, such as the initial strain method (38), and
the initial stress method (77), have been adopted for the analysis
of elastic-plastic problems. In the initial strain method, fictitious
loads are applied to the structure to produce elastic strains numeri-
cally equal to the plastic strains. Although this requires only one
‘inversion of the stiffness matrix, an iterative solution for the
fictitious forces must be carried out in order to control solution
errors. The initial stress approach, developed by Zienkiewicz, et. al.
(77), uses a slightly different incremental technique, treating dis-
crepancies between elastic and elastic-plastic stress increments as
unbalanced body forces and iterating until these forces disappear.
The main advantage of these methods is that the assembled stiffness

matrix remains unchanged.

5.2.3 Assumptions for Derivétion of Tangent Stiffness

In deriving the tangent stiffness for a partially plastic
beam section it is assumed that no strain reversal occurs. If one con-
siders a section, which has already yielded, and an infinitesimal
increment in bending moment is applied, the resistance to this moment
is a measure of incremental bending stiffness. The yielded zones,

will be increased somewhat, while some strain reversal may take place,
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in the already yielded zones. These effects are neglected in this
formulatidn and the additional moment is assumed to be resisted by
all parts of the cross section with the stress increment determined
f;om the tangent modulus relationship for the material at the current
value of strain. The section properties relating increments in stress
resultants to increments in displacements may then be computed by a
transformed area concept. This concept may be utilized for thin-wall
open beam sections since the stress 1is essentially uniaxial and the

effect of shear stress on the principal stresses may be neglected.

5.2.4 Basis for Incremental Equilibrium Equations

Since the incremental equilibrium equations derived in
Chapter II are virtual work equations, they may be used directly for

the incremental formulation of inelastic problems. Equation 2-14 is

N 1
E-f cij 6(uk,iuk,j)dv +-§ f oij 6(ui,j + uj,i + uk,i uk,j)dv

v v

+-% J cij G(Ek,i uk,j + uk,i uk,j)dV = J ty Guids (5-4)

v ]

The physical interpretation of the terms in this equation
was discussed in Section 2.3 and the initial displacement terms were
shown in Appendix B to have negligible effect for this class of pro-
blem in the range of interest under consideration. They are therefore
neglected in the following formulation.

An examination of the first term of Equation 5-4, from which
the geometric stiffness arises, indicates that it is dependent only on

the initial stress and the geometry of the deformation and therefore
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is independent of the constitutive relationship. Hence the geometric
stiffness terms derived in Chapter II remain unchanged and can be used

directly in the solution of problems involving nonlinear material

. behaviour.

For inelastic material response, the location of the instant-
aneous centroid, shear centre and sectorial centroid, and the incre-
mental principal axes are functions of the current strain distribution.
For elastic response it was convenient to refer displacement increments
to the original shear centre axis. However for inelastic response,
the variation of increments in displacements, in Equation 5-4 may be
referred to either
a) the original shear centre, centroid, sectorial centroid, and
reference axes of the elastic section (reference points S, C and B, and
coordinates x-y of Fig. 5.2)
or
b) the instantaneous shear centre, instantaneous centroid and instant-
aneous sectorial centroid of the transformed section, in the instantan-
eous principal directions (reference points §; C and B' and coordinates
E-n of Fig. 5.2.)

The element equilibrium equations will be derived with respect
to both of these reference systems. The formulation with respect to
the original reference axes of the element (the x-y coordinates of
Fig. 5.2) will be referred to as 'Formulation 1'. The formulation with
respect to the transformed section principal axes (the £-n coordinates
of Fig. 5.2) will be referred to as 'Formulation 2'. The transforma-
tion of displacements to the global coordinate system (reference points

* *
S and C , and coordinates X,Y) will be discussed in Section 5.4, and
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becomes a part of the assembly process. It is shown in Appendix E that

these two formulations are substantially the same.

5.2.5 Formulation of Incremental Equilibrium Equations - 'Formulation 1'

Neglecting the initial displacement matrix, and taking the
variation with respect to the original reference system, Equation 5-4

may be written for one element as

f {AP Sw' - AM_ Sv" - AM_ Su" + AW 84" + V_¢ Sv!
c X 5 y s w X s
L

+V v' 8 - V ¢8u'"-V u'ép+Pu' su'+P v sv
X s y s y s s s 8 s

' v g ' v ' v ' 1

+ P ey ug 6¢" +'P ey ¢ Gus Pexvs ¢ Pex ¢ GVS

- ' ' ' v _ ' ' ' ' ' '
M_u! 89" + M ovy 89" - M 9 su! + M ¢t SVl M 6" 89

v _ '
+ TSv 8¢ (Aqx 6us + Aqy Gvs + qu Gwz + Amt 8¢ + Amx Gvs

] - -
+ Amy 6us)}dz = 0 (5-5)

where P, Mx’ My’ Mp, Vx’ Vy are the total stress resultants existing
prior to the load increment; and AP, AMX, AMy and Aww are increments
in stress resultants, with respect to the x-y reference axes travel-
ling along with the section, as shown in Fig. 5.2. The total stress
resultants may be evaluated by direct integration of stresses as
detailed in Appendix D.

If each element of area is 'transformed' such that the pro-

duct of the current tangent modulus times the original element of area
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is equal to the original modulus times the element of transformed area;
the stress resultant increments, AP, AMX, AMy and Aww appearing in

Equation 5-5 are given by Equation A-26, as

AP = EA W' -EA' yv' -EAY x u" + E ST o" . (5-6a)
e os os w
AM = E ATy w' - E 1T V' - EIL u"+ E ST o" (5-6b)
X o ¢ X s Xy s wx
M = EAx W' ~EIL v' -EIL u' +ES° ¢" (5-6¢)
y oc Xy s y s wy
M = ES w' —ES. v ~ES' u' +EIL ¢" (5-6d)
® w wx s wy s w

T _T T T T _.T T T
where A", I, I, Iy’ Sm, wa, Swy’ Iw represent the properties of the

transformed section with respect to points C and S and the x-y reference
axes. The distances X5 Vs of Equation 5-6, and e s ey of Equation

5-5 refer to the location of C and S, as shown in Fig. 5.3.

5.2.6 Formulation of Incremental Equilibrium Equations 'Formulation 2'

Taking the variation of displacement increments with respect
to the instantaneous (transformed) principal axis reference system,

Equation 5-4 may be written for one element as

1 1
vn S¢ + V€¢ Gvn

3

P - AM M- AM su” + AW S + V
IL A Gwc A £ évn . ug W ¢

- Vn¢ 6ug

- Vu! + Pu! 8u! + Pv! 8v' + Pe u! 8¢' + P ' Su}
nuE 8¢ uE duE vn 6vn enuE ¢ en ¢ <Sug

- 1 v o {7 { 1 ' v ' ' ' 1
Pegvn §d PeE¢ Gvn Mgug §¢' + ann Y Mg¢ Gug + Mn¢ 6vn

1 1 v _
+ MDC¢ .6¢ + Tsv 8¢ (Aqg Su, + Aqn Gvn + ch Sw_ + AmC 8¢

£ 4
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‘ ! ! d = -
f AmE Gvn + Amn GuE) z 0 (5-7)

where £ and n are the transformed section principal axes of Fig. 5.2;
the displacement increments and coordinate relationships are shown in
Fig. 5.3; and the stress resultant increments are shown in Fig. 5.4.
The stress resultant increments, AP, AMg, AMn, and Awwc
appearing in Equation 5-7 may be written in the following uncoupled

form (see Appendix A)

AP = E AT w' (5-8a)
C
T 11}

AME = -E Ig Vn (5-8b)
T u

AMn = - In ug (5-8c)

T 11}
MW,o= EL ¢ (5-8d)

where A: is the transformed area; IT

g

of inertia of the transformed section about the £-n axes; Iic is the

and Ii, are the principal moments

principal sectorial moment of inertia of the transformed section about

S; M_ and Mn are the stress resultants about the principal axes; and

g

MDC is the stress resultant defined in Equation 2-7, about S.

5.3 Finite Element Idealization

The finite element equations for one element may be obtained
from Equations 5-5 and 5-6, or Equations 5-7 and 5-8, by substituting

for the displacements in terms of shape functions and nodal parameters,
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and carrying out the required integration. The total virtual work may
be evaluated by summing the integrals over each element, and the
reference axis in each element may be different providing the displace-
ment variations are compatible at the junction of any two elements.

For sections with variable properties, a linear variation of
axial displacement is incapable of representing a constant axial load.
Therefore, an additional degree of freedom for axial displacement is
introduced at the midpoint of an élement to achieve a balance of axial
forces at the nodes. Hence the ﬁuadratic displacement function of
Equation 2-23e is used to represent the axial displacement.

To determine the element stiffness for 'Formulation 17,
Equations 5-6 are substituted into Equation 5-5, and Equations 2-23a,
b, c and e are then substituted for displacements. The element tan-
gent stiffness matrix that arises in this substitution is derived in
Appendix E. The geometric stiffness that arises is also discussed
in Appendix E and differs from that in Equation 2-28 only in the

[g¢¢] submatrix. The element equilibrium equations then become
Tq - -
[ks] {arg} + [kG] {arg} = {8Rp} (5-9)

where {ArE} is defined in Fig. 2.6; [k'g] is now a full matrix with

submatrices denoted as
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— kT -
uu
T T
. kvu R kvv sym,
[kl = I k. g, (5-10)
pu v ¢
I , . S S
wu wv w wwW

(Equation E-5 of Appendix E); and [kG] is of the same form as Equation
2-28, but [g¢¢] is given by Equation E-7a. In the derivation of Equa-
tions 5-9, and 5-10, a linear variation of stress resultants and section
properties has been assumed.

To determine element stiffnesses for 'Formulation 2', Equa-
tions 2-23a, b, c and e are assumed to represent displacement incre-
ments referréd to the S and C axes, in ﬁhe £, n coordinate system.
With this assumption, the evaluation of stiffness matrices based on
Equations 5-7 and 5-8 may be carried out. This results in a set of
element equilibrium equations of the same form as Equation 5-9.
However, [kg] is now given by Equation E-10 and, as in the elastic
case, is uncoupled. The form of [kG] is identical to that in "Formu-
lation 1" but, because of the different reference axes, the stress
resultants have different magnitudes. The displacement increment

vector {ArE} is shown in Fig. 5.5.

5.4 Transformation and Assembly

5.4.1 Reference Configurations

The element equilibrium Equation 5-9 has been derived for

two different local coordinate systems. In general the location and
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orientation of the local reference axes may vary from element to
element. Prior to assembly it is therefore necessary to transform
the‘nodal displacements and forces from the local coordinate system
to a global coordinate system in order to maintain compatibility of
deformations.

For inelastic analysis it is assumed that the global refer-
ence points C* and S* (Figs. 5.1 and 5.3), and the X-Y coordinate
system, are the original elastic centroid, shear center, and centroidal
reference axes,respectively. An arbitrary section after deformation is
shown at P, in Fig. 5.1. This same section is shown at different
stages of the deformation in Fig. 5.2. The original position is indi-
cated as position I. Application of the load causes the section to be
displaced to position II. The subsequent addition of a small load
increment causes the section to be further displaced to position IV.

The movement from position II to position IV results from a
simultaneous translation and rotation of the cross section. For con-
venience the movement caused by the increment of load will be considered
to occur in two parts. The first part is the translational displace-
ment from position II to III. The second part is the movement from

position III to IV, caused by twist.

5.4.2 Displacement Transformation

"Formulation 1"

The nodal vector of Equation 5-9 for 'Formulation 1' is
expressed in terms of displacement increments of points C and S of posi-
tion IT (Fig. 5.2) in the x and y coordinate directions which are the

reference axes travelling with the cross section. These increments may
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* *
be related to the displacement increments of C and S , for a typical

node by the transformation (Fig. 5.3).

(‘us'\ [ cos @ , sin ¢ 7 (AUS\
vS -sin ¢ g cos & AVS
{ LR 1 AWC
) ? = 1 *A(I) ?
u'l £ cos & , £ sin ¢ AU
[} s
v'e -£ sin ¢ , £ cos ¢ AV!
s s
k@'!_) B L A@') (5-11)
\

For nodes p and q at the ends of an element, Equation 5-11 may be

written symbollically as

(P} = [r,] {auP} ((5-12a)
9 - q -
{u} = [Tq] {aU™} (5-12b)

where the transformation matrices of Equations 5-12 are defined by
matrix of Equation 5-11, with ¢ taking the values of oP and 99 in
[Tp] and [Tq], respectively. Reordering the vector of element nodal
displacements, it may be expressed in the local and global coordinate

systems, as

T _ P P P ,P p P 5 P P
{ArE}L SUg s Vgr Voo o7, L us,z’ £ vs,z’ £ ¢,z’ Vem?

q q q q q q qd -
Ugs Vo Weo o1, L ug g £ e,z £ ¢,z > (5-13a)
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and
T _ AP avP awP aeP AP AavP AP
{ArE}G <AUs’ AVs’ ch’ hev, AUs,z’ AVs,z’ AQ,z’ chm’
q q q q q q q -
AUS, AVS, ch’ Ad*, AUS’Z, AVS,Z’ A¢’z> (5-13b)

which are related, through Equations 5-12, in the expression

oP T T 7 (wP
s P -
{ArE}L = v = 1 ﬂAym (5-14a)
ul T aud
-s q L~

Symbolically we may write Equation 5-14a as

{arp ), = [Tl] {argd, (5-14b)

5.4.3 Displacement Transformation - "Formulation 2"

The nodal vector of Equation 5-9, for 'Formulation 2', is
expressed in terms of the displacement increments of points C and S
of position II of Fig. 5.2, in the £ and n coordinate directions,
(which represent the centroid and shear center of the displaced trans-
formed section, and the principal axes of the displaced transformed
section, respectively). Let o be the angle between the instantaneous
£, n principal axes and the original x, y reference axes travelling
with the section. The relationship between the displacement incre-
ments of C* and S*, defined in Section 5.4.2, and those in the vector

{ArE} of Equation 5-9, can now be derived as follows
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From Fig. 5.2 and Fig. 5.3

Ucos a+vsina (5-152a)

=
]

<
]

-u sin o + V cos a (5-15b)

where ug, vn are the displacement increments of the instantaneous
shear center along the principal axes directions, and ﬁ, v represent
the displacement increments of the instantaneous shear center in the
directions parallel to the x, y reference axes.

Expressing ﬁ, v in terms of Uy Vo (the displacements of the

original shear center in the direction of the reference axes) results

in

>

<
]

A + (bx - ex) ) (5-16a)

>

[~
n

u, - (by - ey) ¢ (5-16b)

Substituting Equation 5-16 into Equation 5-15 yields

(-]
"

u, cos o + v, sin o + ((bx - ex) sin a - (by - ey)cos a)d

<
n

-u_ sin o + v, cos o + ((by - ey) sin o + (bx - ex)cos a)e (5-17)

where ¢ is the increment in ¢.

For the small displacement problem it can be assumed that
¢ = ¢ (5-18)

Now ug and \A referenced to the configuration at position II should be
transformed to the global system. If AUS, AVS are the increments of

*
displacements of the original shear center, S , in the global system,

then,
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AU cos @+ AV_sin ¢ = u (5-19a)
s ] s
~AU sin ¢ + AV_cos & = v (5-19b)
s s )
Substituting Equations 5-19 into Equations 5-17 yiélds:
uE = AUS cos (¢ + a) + AVS sin (¢ + a) + {(bx - ex) sin a
- (b -e) cos a}l Ad 5-20a
(b - o) cos o (5-208)
v, = -AUS sin (¢ + a) + AVs cos (& + o) + {(by - ey) sin a
+ (bx - ex) cos al Ad (5-20b)
Using the similar transformation for rotations
L - ' ' _ .
ug AUs cos (¢ + a) + AVS sin (& + a) + {(bx ex) sin a
- (b -e ) cos a} Ad' 5-21a
(y y) ( )
t = A? ' ! -
v AUs sin (¢ + a) + AVS cos (¢ + a) + {(by ey) sin a
- ' —
+ (bx ex) cos o} Ad (5-21b)

The axial displacement of C may be expressed in terms of the axial dis-

placement of C as

w_ = Aw (5-22)

ex - xo 6 + w
Py y

- 1"
¢~ Yo pa' ¢

where Wap? is the unit relative warping of the transformed section
sectorial centroid (B') and the sectorial centroid of the original

section (b); and, ex, ey are the increments in rotations about refer-

ence axes X and y.
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Neglecting Wppr We may write

wz = ch - (yo cos & + X sin ¢)Aex - (x0 cos ¢ - Yo sin <I>)A6y (5-23)
or
VZ AwC (yo cos § + X, sin &)A VS (xo cos & Yo sin <I>)AUs (5-24)

Equations 5-20, 5-21 and 5-24 may be evaluated at the end nodes p and
q of the element to establish the transformation of displacement incre-
ments. However it is also necessary to establish a transformation of
the axial displacement for the mid-point node. This may be accomplished
as follows.

Using the expression Equation 5-24 for the displacement of

the middle node w_ , and designating the location with the subscript

cm
m, yields
W = Aw_ - (y. cos & +x_ sin ¢ )AV'
- cm om m om m’" sm
cm
— - ' -
(xom cos @m Yom sin <I>m)AUSm (5-25)

For the assumed shape function Equation 5-25 reduces to

= —1— ..3_ P
w chm + 7 (yom cos @m + X0 sin @m)(2 \Y
cm ~
1 o.p,_3 q_ 1 q 1
+ 4A 6x£ 2 AV + 3 A ex 2 + 7 (xom cos @m
- 3 p_ 1 p,_3 q
Y om sin ¢m) (2 AUT + 7 A ey £ > AU

1 q -
+4aey£) (5-26)
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The increments of the displacements of the instantaneous coordinates

* *
may now be written in terms of those of C and S by the relation

{ArE}L = [Tz]'{ArE}G (5-27)

where [TZ] is given in Table 5-1; {ArE}L is

T _ p P P .P P p p
{rp}ls SUgs Vo, W, ¢, L Up g £ vn,z,ﬂ LTI
C cm
qQ 9 _q q q q q _
Ups Voo WE , o1, £ ug’z, L vn,Z’ L ¢,z > (5-28a)

; and {ArE}g is given by Equation 5-13b.

5.4.4 Assembly

The element equilibrium relationship may now be expressed in
terms of the original reference axis nodal displacements by using the
appropriate displacement transformation from Section 5.4.2 or 5.4.3,
and premultiplying by the consistent force transformation. Equation

5-9 then becomes

[kl (argl, + [k I {ard, = {8R ), (5-29)
where
T T (, T ‘
kgl = [T1° [k ] [7] (5-30a)
T
and
T .
{ARE}G = [T] {aR_} (5-30¢)
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Assembly of the incremental equilibrium equations now pro-

ceeds by the direct stiffness method to yield
[KEJ {ar} + [K,] {ar} = {aR} (5-31)

Equation 5-31 is now in the form of Equation 5-1 and forms the basis
for the solution technique discussed in Section 5.2 and those employed

in Chapter IV,

5.5 Tangent Stiffness Properties

The evaluation of the element tangent stiffness matrix [kg],
which arises in Equation 5-9, as described in Section 5.3, is carried
out in Appendix E. Appendix E presupposes that the values of A?, Ig, Iﬁ,
Iﬁ, eg, en, Xos Yo and the angle o are known at each end of the element.
For any given set of total displacements {r}, the strains may be deter-
mined at any point on the cross section from the kinematic relation-
ship, Equation A-36. The transformed section properties may then be

computed as detailed in Appendix D. This provides all the information

required for the evaluation of [kg].

5.6 Stress Resultants

5.6.1 Stress Resultants for [kG]

The evaluation of [KG], which arises in Equation 5-9 as des-
cribed in Section 5.3, requires that the total stress resultants be
known. The term which arise in Section 5.3 are identical to the terms
depending on the stress resultants in Equation 2~24, for the elastic
case, except that, for 'Formulation 1' the stress resultants and dis-

placement increments are referred to the C, S, x~y reference system,
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whi;e, for '"Formulation 2' they are referred to the E; §; £-n refer-
ence system. All coefficient matrices remain the same as those of
section A-6, except that the expression for [g¢¢] arising from the
evaluation of Mp is now expressed directly in terms of this stress
resultant.

For any set of nodal displacements the strain is determined
from Equation A-36. The stresses are determined in each region of
the plate segment from the stress-strain relationship. The axial
load and bending moment stress resultants are calculated with respect
to the reference axis passing through the centroid, C, of the beam
cross section by simple statics as described in Appendix D.3. The
stress resultant Ww is also computed by simple statics about §.

For Formulation 1, these stress resultants are now used
directly in the evaluation of [kG] as detailed in Appendix E. The
shear stress resultants required for the evaluation are obtained from

the equations

m .

Vo= —df (5-32a)
Qe ,

v o= & (5-32b)

For Formulation 2, the required stress resultants are

obtained from the above evaluations as (Fig. 5.6)

Mg = an - P yo) cos o - Gﬁy - P xo) sin « (5-33a)

Mn = (My - P xo) cos a + (Mx - P yo) sin a (5-33b)
dM

v, = —2 (5-33c)

£ dz
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v = —& (5-33d)

5.6.2 Stress Resultants for Evaluating Unbalanced Forces

The resisting stress resultants Mx’ M.y computed in Section
5.6.1 are with respect to the local reference axes moving with the
cross section. In order to compute the unbalanced residual fofce
vector in the global system, the stress resultants, <Mx’ My, M%>,
with respect to the local system may be transformed to the global

system using the following transformation matrix

X y z
X cos ¢ sin ¢ - 4u
dz
dv
Y -sin ¢ cos & iz (5-34)
du dv
z dz T dz 1

Since the torsional moment is relatively small, and this
work is primarily concerned with prebuckling deformations, the con-
tributions of the torsional moment to the moments about the X and Y
axes (i.e. - %%- MT and %%-MT) have been neglected in the computations.

The contribution of the element to the unbalanced load vector
of Equation 5-31 may now be evaluated by adding the approximate nodal

stress resultants as determined above, into the applied load vector

{AR}.

5.7 Summary

In this chapter the finite incremental equilibrium equations,
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for inelastic beam~columns, have been formulated with respect to two
reference systems. It should be noted that the incremental stiffness
matrix developed in Formulation 2 is not exact, since. the rotation of
the principal axes throughout the element length is not taken into
account. Using the formulations developed in this chapter, inelastic

beam-column and bifurcation problems are solved in Chapter VI.
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FIGURE 5.1 ISOLATED BEAM-COLUMN
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FIGURE 5.6 TRANSFORMATION FOR STRESS RESULTANTS
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CHAPTER VI

SOLUTION FOR INELASTIC MEMBERS

6.1 Introduction

To date no general study of the inelastiec behaviour of beam-
columns bent out of plane is available, but a number of solutions for
special cases have been obtained. The ultimate load carrying capacity
of H-columns under biaxial loading has been studied by Birnstiel
(11,12,32)., Their procedure requires successive trials and corrections
and is based on an indirect incremental load analysis in which strain
history is considered. Recently Smith (64) considered the biaxially
loaded column in terms of the equations of three dimensional elasticity
taking into account the nonlinear effects of the end tractioms.
Inelastic lateral-torsional buckling problems have been investigated
by Galambos (24,25), Fukumoto (22,23) and others (47). However, a
compréhensive theoretical solution is not yet available for general
loading conditions.

In this chapter inelastic beam~column problems and inelastic
buckling problems are solved using the formulations developed in
Chapter V. Inelastic beam-column problems are solved by Formulation
2 (discussed in Section 5.2.6) using an iterative incremental tech-—
nique, and inelastic buckling problems are solved as an eigenvalue

solution for dritical length by both Formulations 1 and 2.

6.2 In-plane Behaviour of Inelastic Beams

The term 'in-plane' behaviour is used to describe behaviour
in which the deflection of the shear centre is in a principal direction

of the cross section. In order to verify the model, and the solution

124
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technique, the in-plane behaviour of simple beam-columns has been
studied. The bending moment acting at any section of a beam-column
is composed of the primary moment Mo (i.e. the static moment computed
from original geometry), and the secondary moment (i.e. moments result-
ing from a change in the equilibrium equations due to the deflection
of the member). For in-plane problems the secondary moment is expressed
as Pv where v is the deflection in the principal direction. Assuming
a portion of the member becomes plastic, the deflection v increases
and the seéondary moment becomes a proportionately larger component
of the resisting moment. Eventually the beam-column is unable to
support an increase of primary moment and thereafter the value of pri-
mary moment decreases as the deflection increases. For this type of
problem, lateral and local buckling are assumed to be prevented, and
the strains and displacements are assumed to be small.

The incremental finite element equation of Chapter V expressed
as Equation 5-1 and Equation 5-31, may now be applied to beam-column
problems by using the procedure outlined in Section 5.2.1.

For any iterate Equation 5-1 can be written as
T
[rg], + [RG1 T {ar} = (B} (6-1)

where {E}n is the vector of unbalanced residual nodal forces for the
current configuration. This vector is evaluated, as described in

Section 5.2.1, as
{e}, = (R} - (P} - [K,] {r} (6-2)

where {R} is the vector of total applied loads; {F}n is the vector of
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resisting forces resulting from the stress resultants in the current
configuration, computed as described in Section 5.6.2; and [KG]n {r}n
represents the vector of forces resulting from the change in geometry
from the original configuration, as discussed in Section 5.2.1.

In the case of in-plane beam-column response, with constant
axial load, [KG] is constant. When {R} is applied to the structure,
the response is {r}l = {Ar}l for the first iterate, which can be

computed from equation
-, T
[kg]; + [ko11(a ;3 = {E}, = (R}, (6-3)

After the first and succeeding iterates, nodal point displacements are
updated by adding the incremental displacements to the previous dis-
placements. Strains and stresses are then computed from the total
displacements.

In general the incremental equation is given by Equation 6-1
and iteration is repeated until the structure is in equilibrium with
the applied forces. In the solution scheme [Kg] is kept unchanged for
some iterations, as discussed in Section 5.2.1, until the rate of con-
vergence begins to deteriorate, at which time the matrix is updated
with properties based upon the current displacements. This is a
modified Newton-Raphson procedure. Since the nature of the problem is
very sensitive to the applied forces and the type of stress-strain
curve, an under-relaxation factor was used on the residual force vector.
The procedure may diverge if the matrix is not updated often enough.
This was also observed by Haisler (30) and Stricklin.

As has already been stated in Section 5.3 a linear variation

of axial displacements is incapable of establishing equilibrium of
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axial forces with variable section properties.

| To achieve a balance of axial load at the end nodes of the
elements, an additional degree of freedom at the mid-point of an
element was introduced. Equilibrium is obtained as follows. Consider

an element k whose resisting axial forces at node p and q are denoted

by P§ and Pg and an adjacent element (k+l), whose axial forces are
r§+%nd P§+1. The unbalanced force at the k+1th'node is Pg*l - Pi. For

inelastic problems, Pt ¥ Pg for a linear variation of curvature and a
constant axial strain. Hence the unbalanced force PE - Pg on the
element k was equilibrated by a force at the midpoint of the element k.
Iteration was carried out until this unbalanced axial force at the
center node was reduced to an arbitrarily small quantity and the axial
loads at each end node were balanced. It was possible to achieve this
condition because of the linear variation of axial strain. The axial
stiffness with this additional degree of freedom is derived in Appendix

A.

6.3 Solutions of Typical In-plane Inelastic Problems

E-1 Inelastic Bending of Simple Beam~Column of Rectangular Cross Section

An inelastic bending analysis was carried out for a cantilever
beam of rectangular cross section, with dimensions and loading as shown
in Fig. 6.1l. The stress-strain curve of Fig. p.la was used in the
numerical solution of all problems with the values of E, ES shown in
Table 6-3a. The element idealization is also shown in the figure. For
a constant axial load and a specified displacement at the free end,
the reaction Q at the free end, where the transverse displacement is

specified, determines one half the loading corresponding to the
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displacement of a simply supported beam-column with a concentrated
load at the center. The load vs end deflection curves are shown in
Fig. 6.1 for the cases of P/Py = 0; P/Py = 0,152; P/Py = 0.632.
Moment curvature relationships are also shown and compared with
theoretical values in Fig. 6.2. The results are compared with second
order elastic and second order rigid plastic solutions in Fig. 6.1,

E~2 1Inelastic Bending of a Simple WF Beam—-Column

As in example E-1, one half of a simply supported beam-
column with a concentrated load at the center was simulated by the
cantilever shown in Fig. 6.3. Displacement was again specified at
the free end. The figure shows the load vs deflection plot for both
strain hardening and elastic-ideally plastic cases, and compares the
results with the second order rigid plastic solution.

E-3 Beam-Column: Moment at one end

The behaviour of a beam-column, shown in Fig. 6.4, is
represented by relating the applied moment, Mo’ to the end rotation,
90. The beam was subjected to an axial load of 0.49 Py’ which was
kept constant. An end moment M0 was applied about the major axis of
the member at one end. The solution was obtained by specifying the
displacement 60 and iterating with this as a displacement boundary
condition. Instability is demonstrated by the decrease in moment
capacity beyond the maximum value. The figure shows the comparison
of experimental and computed end rotation curves. The discrepancy
between theoretical and experimental results is consistent with that

of Kauren (73) and Galambos who reported a computed maximum value

for Mo/Mp of 0.55 compared with the experimental value of 0.60.
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E~-4 Beam—Column with equal End Moments

The section analyzed was an 8WF3l with residual stress
distribution as shown in Fig. 6.5. P was kept constant at 0.7Py.
Hence the column is inelastic from the beginning of loading. Half
the beam is considered because of symmetry. End A was free to move
vertically and loading was applied by imposing an end rotation.
Very small increments in rotation were specified at this end and
iteration was carried out to find the equilibrium configuration.
The end moment - rotation curve is shown in Fig. 6.5 and compared
with the curve given in the Lehigh University design aids (57).
(The Lehigh University design aid is based on Oy = 36ksi,

Ore = 0.3 o_, and no strain hardening.) Convergence of this problem

was slow and hence the solution scheme was not carried out beyond the

peak.

6.4 Solution of General Beam-Column Problems

In the examples of Section 6.3, all displacements except
those in the y-z plane were suppressed. Some examples of the more
general beam-column problem, in which out-of-plane displacements also
occur, are presented in this section.

E-1 Twist of An Inelastic Beam-Column

In order to test the behaviour of the model when inelastic
torsional response occurs, a cantilever WF beam, as shown in Fig. 6.6,
was subjected to applied axial loads of 40k at each node and a torque,
MT’ applied at the free end. The analysis of this problem was prin-
cipally carried out to test the convergence of the bimoment in the

inelastic range. No theoretical solution is available for comparison,
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but convergence of unbalanced forces was achieved.

E-2 1Inelastic H-Columns under Biaxial Bending

A 14WF43 section with a doubly eccentric axial logd, applied
at accentricities of e = 0.5" and ey = 5", and L/ry = 117, was analysed
and compared with the results obtained by Harstead (32) and Birnstiel,
et. al., (11). Their procedure is given in Table 6-1. This problem
involves coupling of axial deformations, bending deformations about
two axes, and nonuniform torsional deformation in the inelastic range
of Beam-column response. The load was incremented until the displace-
ments no longer converged. Fig. 6.7 shows the load and midpoint dis-
plécement relationships. Unlike the case of the problems discussed in
Section 6.3, boundary displacement increments cannot be adopted for
loading, since the adjustment of the end displacements in the proper
ratios is difficult. The procedure of incrementing the forces yielded
results until a maximum load was attained, but numerical difficulties
did not permit an evaluation in the unloading region. The results
agree well with Birnstiel's analysis.

E-3 1Inelastic Lateral Response with Initial Imperfections

An 8WF31 beam-column with the residual stress distribution
shown in Fig. 6.8 was analyzed while subjected to a constant axial load
of 120 kips (P/Py = 0.4) and with an initial lateral displacement of
u = 0.01 sin 7 z/L. A beam-column solution was carried out until, with
an end moment of 440 inch-kips, the residual force resultants no longer
converged. Moment vs in-plane and out-of-plane response is shown in
Fig. 6.8. For the same problem the eigenvalue solution yields a criti-
cal length of 100" for end moments of 480 inch-kips, and this is shown

as an upper bound in the figure.
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6.5 Inelastic Buckling

6.5.1 Formulation of Problem

Inelastic buckling (or bifurcation) analyses can be carried
out if it is assumed that, as for the beam-column problems, a reason-
able estimate of the load carrying capacity may be obtained by employ-
ing Shanley's (62) tangent modulus concepts. The basic assumption is
that no strain reversal occurs, and therefore the effective incremental
stiffness at any section may be determined from the instantaneous tan-
gent modulus values at all parts of the cross section. Since the stress
in the member is essentially uniaxial, the effective strain, for the
determination of tangent moduli, is considered to be the longitudinal
strain. The incremental section properties may then be computed by a
transformed area concept, as discussed in Section 5.2.3 and 5.5.

In addition to the above, the following assumptions are made
for bifurcation problems:

1. The members are initially straight and prismatic.

2. The projection of the cross section on a plane normal to the
centroidal axis does not distort.

3. Displacements of a point may be obtained by superimposing warping
displacements on plane section displacements, each of which are
consistent with simple beam theory (54,68,74).

4. The residual stress distribution satisfies statics.

5. Variation of the longitudinal stress across the plate thickness
may be neglected.

6. The effect of prebuckling displacements on the equilibrium equa-
tions may be neglected.

7. Boundary conditions are such that the structure remains statically
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determinate.
8. The stress-strain curve is trilinear (Fig. DQla).

It should be noted that it is due to assumptions 1) and 6)
that the more realistic but numerically more difficult, beam-column
problem is convefted to a bifurcation problem. The remaining assump-
tions are the same as those used for beam-columns, except for (7).

A bifurcation loading condition has been attained if it is
possible to determine nontrivial solutions to Equation 5-31, for
{AR} = 0. The condition required to satisfy this requirement is that

the determinant of the coefficient matrix is equal to zero, i.e.
det {[K§]+[KG]} = 0 (6-4)

if [Kg] were indépendent of load and [KG] were linearly
dependent on load the critical loading could be obtained from a stand-
ard eigenvalue analysis. However, for an arbitrary cross section,
subjected to arbitrary loads the matrix [K:] is highly sensitive to the
loading condition after inelastic response has been initiated.

The critical loading may now be determined in a number of
ways. Fukumoto (22,23) has evaluated the determinant and extrapolated
or interpolated this value to determine the loading for which Equation
6-4 is satisfied. Harris and Pifko (31) have used an iterative
approach on the load and found the load level for which the eigenvalue
was one. The procedure used in this dissertation is to iterate for an
éigenvalue to determine the critical length rather than the critical

load.

65.2 1Inelastic Buckling by Direct Method
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For any arbitrary statically determinate loading, equilibrium
is established, including the effects of inelastic material response
but neglecting the effect of displacements on the equilibrium equations,
by an iterative procedure detailed in Table 6.2. Knowing the strain
throﬁghout the member the tangent stiffness matrix [Kg] can be esta-
blished as outlined in Section 5.5 and detailed in Appendix E. The
prebuckling stress resultants can also be established by simple inte-
gfation as detailed in Appendix D3. This permits the evaluation of
[KG] as detailed in Appendix E.

An examination of the stiffness matrices in Appendix E shows

that Equation 6-4 may be written as

[k, ]+ [k,] + [k,11 {ar} + [K.] {ar} = {aR}  (6-5)

where Kl’ K2 and K3 contain terms dependent on the inverse of L, L2

and L3 respectively. Noting that]KG]is proportional to the inverse
of L, defining the critical length Lc as Lc = A, and factoring X;
the condition for the existence of nontrivial solutions of Equation

6-5 with {AR} = 0 may be written as

—1-2- [[K3] + A[KZJ + Az[Kljll {Ar} = - [KG] Ar (6-6)

This equation may be abbreviated as

1
2 [k (A )]]ar = - [K] ar (6-7)
i+l

For any general problem under any general loading, assuming a value for
Ai’ an eigenvalue solution will yield Ai+l' Equation 6-~7 may be iter-

ated until Ai+1 = Ai at which time the critical length has been
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determined. When the equations corresponding to Su, Sv and §¢

[Kg] matrix are uncoupled from that of 6w, these uncoupled equations
do not depend on A. Hence the first iterate of Equation 6-7 gives the
exact solution for critical length. When the tangent properties are
assumed to be the same all along the length, then also the first
iterate will lead to an exact solution for critical length. Only such
problems are considered in this dissertation since no solutions with
the more general coupling are available for comparison.

It should be noted that the procedure described for the
solution of Equation 6-7 is only valid if [KG] is proportional to the
inverse of L and therefore the stress resultants must remain constant
at each node as the member length is scaled. A simultaneous scaling
of the transverse loading is required to satisfy this condition.

Since stress resultants are not proportional to loading for statically
indeterminate inelastic structures the method is applicable only to

statically determinate structures.

6.5.3 Inelastic Buckling by a Beam-column Approach

In order to account for prebuckling deformation, a beam-
column equilibrium configuration can be established for any trial
loading, by the procedure discussed in Section 6.2. Knowing the
deflections, the total moment at any section may be computed and the
tangent flexural stiffness and geometric stiffnesses may be evaluated
as discussed in Section 6.5.2. Solving the eigenvalue problem, a
critical length can be determined from one iterate of Equation 6-7.

If this critical length is the same as the actual length of the column

the trial loading is the critical one. If the critical length is
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gréater (less) than the actual length, the true loading level is less
(greater) than the critical state. In this case the load may be
incremented (decremented) and the resulting eigenvalue problem is
solved by successive trials until A = 1. This procedure is time con-
suming and expensive and hence has not been generally adopted in the
present investigation. However, the procedure was used for example

E-2 of Section 6.4 and the results are shown in Fig. 6.19 where they

are compared with those from the methods of Section 6.5.2.

6.6 Solution of Inelastic Buckling Problems

E-1 Flexural and Lateral Torsional Buckling of Double Angle Strut

Double angle struts are used in building structures as com—
pression members in trusses. They are usually subjected to axial load
and the secondary bending moment arising from the connections is neg-
lected. The details of the section analyzed and the residual strain
distribution are shown in Fig. 6.9a and Table 6-3b. The St-Venant
torsional stiffness, GKT’ was kept at the elastic value in order to
compare with the results obtained by Nuttall(53). Nuttal's solution
was obtained by imposing a uniform axial strain, evaluating transformed
section properties numerically and solving the normal stability equa-
tions for critical length. For this particular problem the yy axis
buckling strength virtually coincided with the lateral torsional buck-
ling strength, since (l—e;/rg) is approximately one throughout the
loading range. Fig. 6.9b shows the plot of o/cy values against the
slenderness ratio, L/rx, for lateral torsional buckling and xx axis
buckling. The influence of the residual stress and the significance
of the inelastic response is apparent. The results obtained from the

finite element analysis agree with the results of Nuttall.
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E-2 Flexural and Lateral Torsional Buckling of Hat-shaped Sections

Hat shaped sections are often used as chord members of open
web steel joists. The dimensions of the section analyzed, the normal-
ized warping coordinates and the residual stress distribution are shown
in Fig. 6.10a, b and'c, respectively. Critical buckling occurs about
thé minor axis as shown in Fig. 6.11. Critical lengths for lateral
torsional buckling are also computed and compared with the results
obtained by Heaton (33).

E-3 Inelastic Lateral Buckling of a Doubly Symmetric Section

The inelastic beam buckling curve for an 8WF31l section sub-
jected to equal end moments is shown in Fig. 6.12. This curve consists
dflthree parts. The first and last part of the curve represent classi-
cal elastic buckling with E=E and E=ES respectively. The intermediate
portion of the curve represents buckling in the inelastic range and is
applicable when some parts of the cross section have yielded while
other parts are elastic. The strain hardening and elastic curves are
hyperbolas which do not intersect. The curve for inelastic buckling
provides a transition between these two idealizations. The St. Venant
constant was assumed to vary linearly with the transformed area. A
solution of the problem was obtained by Galambos (25). The importance
of the residual stress distribution is again demonstrated and the
comparison is reasonably good.

E-4 1Inelastic Lateral Buckling of Mono-Symmetrical Sections

The double angle section of E-1 was analysed for inelastic
lateral buckling. The inelastic buckling curve is shown in Fig. 6.13.

Only a theoretical elastic buckling solution is available for comparison.
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E-5 Inelastic Lateral Torsional Buckling of an Unsymmetrical Section

(example 1)

In the case of mono or doubly symmetric sections the response

of the beam-column is in-plane until the buckling occurs. But in the
case of unsymmetrical sections the beam will deflect laterally and
twist from the start of the application of the load. The eigenvalue
solution of the problem will give an upper bound for the load since
prebuckling deformations are neglected. Fig. 6.14 shows the inelastic
lateral torsional buckling of an angle section (67) subjected to end
moments. The experimental point of Thomas and Leigh is shown on the
plot. The discrepancy is probably due to the fact that prebuckling
deformations have been neglected.

E-6 Inelastic Lateral-Torsional Buckling of an Unsymmetrical Section
(example 2)

Results for a similar type of problem to example E-5 are

shown in Fig. 6.15, for the inelastic lateral torsional buckling of
an unsymmetrical section when one channel is placed over the other.
An elastic solution to this problem was obtained (in E-4 of Section
3.3.3). No comparitive solution is available.

E-7 Inelastic Lateral Torsional Buckling of Beam-Columns (Axial Load-

Equal Eccentricity)

Fig. 6.16 shows a comparison of the finite element analysis
for inelastic torsional buckling of an 8WF31 beam-column, under an
axial load with constant eccentricity, with that of Galambos (24).
Since the secondary moment due to prebuckling deformation is neglected
the inelastic properties are assumed to be the same at all sections.
Hence properties for only one section need be calculated. The results

of the finite element analysis agree well with those of Galambos.
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E-8 1Inelastic Lateral Torsional Buckling of Beam-Column with Moment

Gradient
Fig. 6.17 compares the critical end moment required to pro-

duce lateral torsional buckling of an 8WF31l, subjected to constant
axial load, to that obtained by Fukumoto (22,23). In contrast to the
preceding comparative solutions, Fukumoto's solution included the
effect of in-plane prebuckling displacements in arriving at an equili-
brium configufation. The critical load is then determined as that for
which the determinant vanishes. In the finite element analysis an
eight elements idealization is used and the results are compared with
Fukumoto's analysis. The effect of prebuckling displacements is
apparently small. |

E-9 _Inelastic Lateral Buckling of a Wide Flange Beam Subjected to a

Central Load

In Fig. 6.18 the critical moment vs slenderness ratio curve
is shown for an 18WF50 beam subjected to a central load. A large
reduction in the buckling strength results when the presence of
residual stress initiates inelastic behaviour. The curves are com-
pared with Massey's, et. al., (48) recommended curve obtained from a
theoretical analysis. Massey used MFP/My = 1.05 to 1.06 and MP/My =
1.14 to 1.15, which are applicable to most wide flange sections, where
MFP is thg bending moment at which the flanges are fully yielded. 1In
Massey's analysis, residual stress distribution is not taken into
account. In the present analysis, the computed points assume the
loads act through the shear centre. When the load is considered to
act at the top or bottom flange the problem must be solved by a trial

and error solution for the critical length.
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E-10 1Inelastic Lateral Torsional Buckling with Biaxial Bending

An inelastic buckling analysis was carried out for the beam-
column problem of example E-2 of Section 6.4. Fig. 6.19 shows a plot
of critical loads for biaxial bending of the section determined from an
éigenvalue analysis and neglecting prebuckling deformations. The
curves are drawn for two cases: a) without residual stress b) with
residual stress. .In addition to the eigenvalue analysis of Section
6.5.2, the method of Section 6.5.3 was also applied. For a column
length of 221" (L/rx = 37.6) and a load of 125 kips the critical length
obtained was 283 inches, showing that the load level was below the
ultimate load. At P = 134 kips the critical length was found to be
226 inches indicating that 134 kips was very near to the ultimate load.
However, the critical load based upon the eigenvalue analysis and
neglecting prebuckling deformation (i.e. the method of Section 6.5.2),
is 27% greater than beam-column result obtained by either the method
of Section 6.5.3 or 6.4. In such situations the effect of prebuckling

displacement cannot be ignored.

6.7 Summary and Conclusions

| In this chapter the inelastic equations derived in Chapter V
have been applied to a variety of problems. Inelastic beam—column
problems were solved by a modified Newton-Raphson technique. Although
this technique was shown to yield good results for in-plane problems
and yields results for a more general biaxial bending beam-column
problem, which corresponds to the only known available solution of
this problem, the technique is difficult to apply. Problems solved in

this way require considerable computing time and it is necessary to
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input information controlling the load step size and under-relaxation
parameters, in addition to a criterion for updating the coefficient
matrices.

The solution of inelastic stability problems neglecting pre-
buckling deformation, was shown to yield results which compare well
with existing solutions in the literature, for a wide variety of appli-
cations. The determination of maximum load carrying capacity, including
the effects of prebuckling deformations by the method of Section 6.5.3,
yields the same results as the beam-column solution of Section 6.5.4,
and at the same time yields an upper bound to the carrying capacity at

any stage of the analysis.
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TABLE 6-1

Birnstiel's Procedure for Solution of H-Columns Under Biaxial Bending

1.

10.
11.

12.

Assume trial values of curvatures corresponding to Mx’ My’
Ww and axial strain

Numerically integrate the curvatures to determine the dis=—
placed position of the column

Calculate the values of internal bending moment and axial
load at each station. Because the values of axial force
differ (in the inelastic range) select tﬁe value at mid
point as the control value of P

On the basis of the displaced position and P compute the
external bending moment at each station

Compare external moments with internal moment. If they do
not agree adjust curvatures corresponding to Mx and My
Repeat steps 2 to 5 until convergence is attained in step 5
Determine external torque at each station

Compute internal torque at each section v

Compare external torque to internal torque. If they do not
agree adjust d2¢/dz2 and integrate numerically to determine
¢

Repeat 7 to 9 until convergence is attained in step 9
Repeat 6 and 10 until convergence is attained in 5 and 9
Repeat steps 1 to 11 until the desired displacement or

ultimate carrying capacity is attained
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TABLE 6-2

ALGORITHM FOR DETERMINING INELASTIC CRITICAL LENGTHS

Step 1. Determine Static Stress Resultants

(a) Subdivide the member into elements of equal length.

(b) Compute the elastic section properties A, Ix’ Iy, Ixy’
KT’ I, and Ix and Iy, where
I = 1a-1.2/11) (6-8a)
X X xy' Xy
f = 1a-1_%11) (6-8b)
y y Xy Xy

with C and S located at the centroid and shear centre
of the section, (Fig. 2.1).
(c) Solve for displacements, with [KG] =0 and[ks] deter-
mined from elastic properties.
(d) Compute stress resultants f, ﬁx, ﬁy and ﬁw at each
node for this small deflection solution.
Note: The stress resultants determined in this way are those which

" equilibrate the external forces.

Step 2. Determine Strains (Iteratively) Which Produce Static Stress

Resultants

(a) Compute strains from the initial approximate displace-

ments, as
- ' "o o_ " o oan o
€ Ve Ty Vg mxus et e (6-9)

(b) Calculate stress resultants, P, Mx’ M.y and W&, (see

Appendix D) for the given strain distribution.
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Table 6-2 (cont'd)

(e)

(d)

(e)

(£)

Compute the unbalance in stress resultants, as

P = P-pP (6-10a)
M, o= ®-u (6-10b)
M =M -M (6-10c)
y y 'y
W o= W -W (6-10d)
(] w [\

*
Compute equivalent unbalanced stress resultants, P ,

* * *
M ,M and W about C and S, where
X y w

P =P (6-11a)
AP 6-11b

W= " (6-11b)
* —

M =M -M 1 /1 (6-11c)
x X y xy''y
* —-— —-—

M =M -M I /I

y Yy x xy''x

Estimate strain increments from the equation

*
P* M M W _
e, = = +-2y 4 T x4+ LT (6~12)
i A 2 I
I 1 W
X y
and a new approximate strain, as
€ = g, + Ae (6-13)

i+1 i i

Iterate on steps (2-b) to (2-e) until the unbalanced

stress resultants are negligible.



144

Table 6-2 (cont'd)

Note: A set of strains have now been determined which will provide
stress resultants to equilibrate the external forces, assuming
the prebuckling displacements have negligible effect on the

equilibrium equations.

Step 3. Computation of Tangent and Geometric Stiffness Matrices
(a) The'tangent stiffness matrix, [Kz], of Equation 6-4 may
now be evaluated as outlined in Section 5.3.1 and
detailed in Appendiceé D and E.
(b) The geometric stiffness matrix, [KG], of Equation 6-4
may now be evaluated as outlined in Chapter 5

detailed in Appendices D and E.

Step 4. Solution for Critical Length
(a) Equation 6-7 is solved for A, to determine the critical

length LC = ML, as described in the solution procedure.
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A p'% 5 p
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| (g )
0 p“"(%; A
S S A,

N N
. 2 N ks A

TABLE 6.3c NOMENCLATURE FOR LOADING
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CHAPTER VII
SUMMARY AND CONCLUSIONS

A general approach to the elastic and inelastic analysis of
thin-walled members of arbitrary open cross section has been presented
using finite element analysis.

Both incremental and total equilibrium equations have been
derived, using the principle of virtual work, which are applicable to
elastic and inelastic analysis. For the elastic case, a special
application of the formulation is the numerical determination of
critical loading, and the associated mode shapes which may be deter-
mined from an eigenvalue solution. The eigenvalue énalysis essentially
neglects the prebuckling deformations. However, initial imperfections
have been introduced into the model, and by using an incremental
iterative procedure, the nonlinear load-deflection response, rather
than critical load, has been obtained and numerical comparisons were
made.

The displacement functions utilized in the beam and beam-
column analyses were augmented for symmetrical wide~flange sections
by representing local buckling patterns with the shape functions shown
in Chapter IV. By coupling the local and member buckling, numerical
results verified the validity of the classical approach showing that
for these sections, the interactive effect is small, and local and
member buckling are initiated as relatively detached phenomenon over
most of the range of loading.

Two formulations have been developed for the inelastic

problems. The inelastic beam—column problems were solved by an
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iterative incremental technique based on an equilibrium balance of
applied loads and resisting forces in the current configuration of
the structure. These problems were found to be very sensitive to the
type of stress strain curve and applied forces in the inelastic range
and hence an under relaxation factor was used on the residual force
vector. The convergence of these problems was slow when the load was
near the peak load. In spite of the use of a modified Newton-
Raphson's procedure the solution was found to be most expenéive from
the standpoint of computer expenditure.

Inelastic buckling problems were solved using standard
elgenvalue solutions to evaluate the critical length. This procedure
is applicable to thin-walled prismatic members, with arbitrary shaped
open cross section, for any statically determinate loading condition,
with a trilinear stress-strain curve and including the effects of
residual stress. The analysis is capable of predicting lateral,
torsional and lateral-torsional buckling modes, and yields reasonable
results for large classes of problems. The formulations which were
developed, were found to yield the same results. It is shown in
Appendix B that for the class of problems investigated in this
dissertation it is unnecessary to include the higher order terms in
the initial stress and stress-strain increments unless investigating
the post-buckling behaviour, since the maximum load carrying capacity
will normally be obtained before these higher order terms have any
significant effect.

Even though only single member problems are solved in this
work, the same formulation may be applied to solve for instability of

planar frames composed of arbitrary open thin-walled
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 sections. However, more efficient numerical techniques must be

developed before geometric and material non-linearities of the types
considered in this dissertation can be practically incorporated into

the design process.
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APPENDIX A

DETAILS OF ELASTIC FORMULATION

A-1 Expressions For Torque and Bimoment

The twisting stress resultant, or torque, about the arbi-

trary point S of Fig. 2.1, was defined in Section 2.1 as

M, = J {ozy x - ex) -0, (y - ey)} dA (2-1f)
A

Let p be the distance from S to A, and let r and r be the projec-

tions of p on the tangent at A and the perpendicular to the tangent

at A, respectively, as shown in Fig. 2.1. Then r and r  may be

written as

2]
L]

(y - ey) sin o + (x - ex) cos o (A-1a)

La]
"

o - ey) cos a - (x - e ) sin a (A-1b)

where o is the angle between the y axis and the tangent at A.
Substituting the expressions for components of shearing
stress, from Equations 2-4, into Equation 2-1f, and simplifying with

Equation A-la, we may write

Mt = J Oun (r - £) dA (A-2)
A

where £ is the coordinate orthogonal to n. The approximation is
required since Equations 2-4 are not exact.
If °zn is assumed to vary linearly through the thickness we

may write
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A g%
Gzn ozn 2 n 3 (A-3)
where o;n is the deviation of the stress at £ = t/2 from that at A,

as shown in Fig. A.l. Substituting Equation A-3 into Equation A-2,

and treating A as an arbitrary point, yields
F g* £
M = f oAn rtds + 2 f 20 g (A-4)
E

where s is a coordinate along the midsurface contour (Fig. 2.1).

Equation A-4 may be written symbolically as

Moo= Mo+ TSV/Z (A-5)

where Mw is known as the warping torque and TSV is known as the St.
Venant torque. A study of torsion of general cross-section (69)
shows that the torque resisted by shear stresses perpendicular to

the contour is also Tsv/2 so that we may write the total torque as

Mt = Mw + Tsv (A-6)

If it is understood in the following that czn is the shear
stress along the midsurface contour, Mw may be evaluated as follows.

By definition

F
M = J ozn t rds (A-7)
E

Integrating by parts, with B as the origin of the coordinate s, yields

F

A . qF 3 A
M, = [J r ds %n t]E - f 3;‘(cznt)(f r ds) ds (A-8)

E B

Recognizing that Ozn must be zero at E and F, and using the equilibrium

-



relationship
3(o_t)
9 z
9s (ozn t) + oz 0 ’
Equation A-8 may be written as
a [F -
Mw = - {f g, Yep dA}
E
where we define
_ A
Wgp = -J r ds
B
This may also be written as
_ A A B
Wgp = —{J rds—f rds}=—(w-wB)
E E
where
A
wy E f rds = w
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(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

is the sectorial coordinate of point A with respect to the origin E

and the pole S.

The bimoment stress resultant, Ww is defined as the quantity

being differentiated in Equation A-10, i.e.

Equation A-6 may now be written as

M, = -W +T
t w LAY

(A-14)

(A-15)
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A-2 Derivation of Stress Resultants in Terms of Displacements

To convert the equilibrium Equations 2-2, 2-8 or 2-20 to
displacement equations of equilibrium, it is necessary to express the
stress resultants, P, Mx’ My and Mt’ in terms of displacements. This
may be accomplished by deriving an expression for strain , as follows.

The in-plane displacements at any point A on the midsurface
cohtour are illustrated in Fig. 2.1, and may be expressed in terms of

the displacements at the arbitrary reference point S, as

<
L]

A 2 + (x - ex) ) (2-5a)

u = u - (- ey) ¢ (2-5b)

If Ny is the displacement at A in the (positive) tangential direction

then

= Vvycosa-u sin o (A-16)

A A

Substituting Equations 2-5 into Equation A-16, and simplifying with

Equation A-la, yields

Ny = Vg COS O -u sin o + r¢ (A-17)

Using assumption 1, of Section 2.2, we may now write

W oo (A-18)

Substituting Equation A-17 into Equation A-18, and using the relationms

(see Fig. 2.1)

sin a = - (A-19a)
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- Yy -
cos o s (A-19b)
results in
%§ = -V %§ - %§ - r¢' (A-20)

Integrating, from B to an arbitrary point A, yields

g = -Vl O -y -ul Gomxp) e (@) (a-21)

where SB has been defined in Equations A1l and A-12. Equation A-21

may also be written as

L
]

- v ' - ' _
A WSy v - xul + Wep o) (A-22)

where

= ' ' -
W wp + yg Vg t %5 u (A-23)

The longitudinal strain may now be obtained from the kinematic
relationship in Equation A-22 by differentiating with respect to z.

For an elastic material the resulting stress is

= r _ "o o_ n - " -
9, E v, Evy v E x u + E Wep ¢ (A~24)

The primary stress resultants, required in Equations 2-20, may now be
evaluated, for an elastic response, by substituting Equation A-24 into
the definitions of Equations 2-la, 2-1b, 2-lc and A-1l4. This results

in
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[ ] '
y dA Wa,dA Ewé~\

P JdA Jx dA J J9ss
M x dA  |x%da dA r; xdA ~Eu"
y i |%sB s
= r 7 (A-25)
2 - "
Mx Jy dA fxydAw jy dA ‘wSBydA —EvS
W voda [o..xds [s..yaa [22.as | | &ev
w SB SB S o

Each integral in the matrix defines a property of the cross—-section

which is designated by the notation below.

( P A AX AY S Ew'
(1] [
M Ax 1 I S ~Eu"
y y Xy wy s
P = (A-26)

- - "
MX A y IyX IX wa E VS
1"

\wm S, swy S x I, E¢

The expressions for the stress resultants contained in Equation A-26
may now be substituted directly into the equilibrium Equations 2-20,
although it leads to considerable simplification if the off-diagonal
terms are made to vanish by properly selecting the reference points.
Selecting C as the centroid, and the axes as principal axes,

results, by definition, in

Ax = Ay = I =0
y Xy

The sectorial linear static moments, wa and Smy vanish if the point §
is located at the shear center. To establish the location of this

point, the distance r in Fig. 2.1 may be expressed as
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r = r -e cos o —-—e_ sina (A~27)
o x y

Using the definition A-1ll and the relations A-19 we may then write

A

Wep = —j T ds + e Gy - yB) - ey (x - xB) (A-28)
B

Substituting into the definitions of Equation A-26 and assuming the

centroidal location of C and principal orientation of the axes, the

requirements that § and S  vanish are
: wx wy

Swy = I BéB xdA = f Wep X dA ~ eI = -~ I w x dA
CE
- eny = 0 | (A-29a)
S IESB'ydA= fECBydA+ex1x= —JwCEydA
+ exIx = 0 (A-29b)

Solving for the location of the shear center yields

S
ey = - ——L(:J[j c (A— 303)
y
wac
ex = —I-— (A-30b)
X

Where wac and Swyc are identified with the corresponding integrals in
Equations A-29.

The sectorial static moment, Sw’ will vanish 1f the point B
is selected at a sectorial centroid. To locate such a point we use

the definition from Equations A-26 and Equation A-12 to write
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F F F
S = J w,, dA = - f w dA + f w, dA = 0 (A-31)
E

1 F
wg = % j w dA (A-32)

In accordance with the accepted nomenclature, when S is the shear center
and B is a sectorial centroid, BéB is designated as E;, the normalized
unit warping.

Sincé all the off-diagonal terms in Equatioh A-25 and A-26
have now been made to vanish, the displacement derivatives are easily
expressed in terms of stress resultants and Equation A-24 may be written

as

W

w - .
y + E; W, (A-33)

N
|
+
%h4<z
"

+
i e

For thin-walled elastic sections the stress resultant TSv may

be written as (68)
- | -—
TSV = GK¢ (A-34)
where

K = Jbt3/3 (A-35)

A-3 Residual Stress and Strain

If residual strain exists in the section the total strain may

be written, using Equation A-22, as



188

. = v "o_ " - n
! €, W, T Y Vg T xug + SB " + €

R (a-36)

where €r is the residual strain. The stress, for elastic response is

then

= | no_ " n
a E v, Ey vy E x ug + E SB " + o

2 (A-37)

R

The residual stress distribution must satisfy the following equili-

brium requirements

f Op dA = f op ¥ dA = I op X dA = 0 (A-38)
A A A
and
1"t ] ] 1
me + Tsz + (Mp¢ ) =0 (A-39)
where
We = J op Wy dA (A-40)

A

and Tsz is the residual St. Venant Torque.

A-4 Virtual Work Derivation of Equilibrium Equations

The virtual work equilibrium equations for members of thin-
walled open cross-sections may be derived from Equation 2-16; on
substitution of the relevant form of displacements, from Equations
2-5 and A-22; using the appropriate assumptions for the stress field,
expressed by Equations 2-19 and 2-4; integrating over the area of the
section; and making use of the definitions of stress resultants.

Equation 2-16 has been written symbolically as Equation 2-17
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) (Il + I, -1 = 0 (2-17)

2 3)

where Il’ 12, and 13 are defined in Equations 2-18. The operation of
taking the variation is carried out separately for each of the inte-
grals as follows.

Expanding I1 for the nonzero stress components yields

Il = J {ozx(w,x + u’z) + crzy(w’y + v,z) + g, w’z} dv (A-41)

v

substituting for the displacements from Equations 2-5 and A-22, yields

awSB
= v gt - - 11! ]
I, I[ozx{us ' (- ey) mug et o }
v
i
+o  {vi+¢' (x-e) -vl +4¢' ZsB }
zy s X s 3y
v _ " o_ n - " X
+0, {wc y vy - X ug + Wgp $"1] dv (A-42)
Using Equations 2-4 this may be written as
L
= ! - -
I, J J L % o' {(y ey) gin o + (x ex) cos a}
o A
3w oW
v oUsB dx SB dy.
+ 92n o dx ds + Yy ds)}
r "o " - " -
+0, (wc y vy - X ug + wep "] dA dz (A-43)

The terms in %n add out by virtue of Equations A-la and A-11l. Inte-
grating the remaining o, terms and using the definitions of the stress

resultants, yields
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‘ £
= t "o_ " " -
I, f [p wi - M vl My ul + W4 ] dz (A-44)

(o]

Expanding 12 for the nonzero stress components yields

I, = f {sz(u,x u, + Vox v’z) + ozy(u,y u, + v’y v,z)} dv
v
1 2 2
+ 2 f oz(u’z + v’z) dv
v
+~l {20 _w_w _+20 w w +o0o w2 } dv (A-45)
2 ZX X  ,2Z ZY Y ,Z zZ ,z
v

The last integral in this equation contains product terms in w displace=-
ment gradients and is considered of higher order.
Substituting the displacement assumptions into the first two

integrals of Equation A-45 yields

e
2 " I J logg 05 + 4" (x - e)) ~ 0, d(uy = ¢'(y - e))}dA da
o A

£
+ f j [o, {u! - (v - ey)¢'}2 +o {vl + (x - ex)¢'}2] dA dz
o A

£
[ (Vx ¢ v; - Vy ) u; + Trn ¢ ¢') dz
o

£

P, 42 2 Yo vt

+ f G2+ 2+ 26 ule -2 v 4"
[o]

M ¢'2

+-% (2 My v; o' - 2 Mx u; ') + —BE—-] dz (A-46)
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where the stress resultan.t.'rrn is defined as

T = J o] r_ dA (A-47)
Zn n

This stress resultant has not been included in any set of beam equa-
tions to the author's knowledge. It is presumed small and omitted from

the final equations.

The integral I3 is evaluated by assuming Qs qy, and m act

along the S axis and m s my, and q, act along the C axis. Then

= . ' ' -

13 f (qxus + qus + 9w, + mt¢ + m v + myus) dz (A~48)
L

Adding Equations A-44, A-46 and A-48; dropping the Trn term; and aug-

menting the equation by the virtual work due to St. Venant torsion;

Equation 2-17 becomes

J {Pow' =M _68v'-M Su'+W 6¢" +V ¢ 6v'
c X s y s w X s
L

+ Vx v; 8¢ - Vy ) Gu; - Vy u; ¢ + P u; Gu; + P vé GVé
+ P ey ug S¢' + P ey ¢"6u; -P e, v; S¢' - P e, ¢’ 6vé

- Mx u; S¢' + My v; S¢' - Mx ¢' Gu; + My ¢' Gv; + Mp o' 8¢
+ T 6&¢' - (qx Gus + qy GVS + q, 6w, + m, ¢ + m# Sv;

sv

' = -
+ my Gus) dz 0 (A-49)
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P gx_ Mx Ww'— 2
Mb = I{ 3 tTXYTYAT e 4+ oR} p” dA
A y X w
= 2‘1 +M C +M C +W C.+ o] 2 dA (A-52)
Ap X X Yy ¥y w W R P
A
where
Cx = Hx/Ix - 2 ey (A-53a)
C = H/I -2 A-53b
y y/ . e, ( )
Cw = Hw/Iw (A-53c)
2 2
Hx = Jy(x + y7) dA (A-53d)
i A
2 2
Hy = x(x" +y7) da (A-53e)
A
H = (o (2+y2) dA (A-53£)
w n
A
I = I_+1I + A(e 2 + e 2) (A-53g)
P X y .S y

Equation A-52 is valid only when C is the centroid, S is the shear
center and the axes are principal axes of the Section. Expressions for
the numerical evaluation of all the necessary section properties, for

any arbitrary thin-walled section, are given in Appendix D.

A-6 Evaluation of Element Flexural Stiffness Matrix [ks] and

Geometric Stiffness Matrix [kG]

It was assumed in Section 2.7 that continuous displacements
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are given in terms of nodal displacements by Equations 2-23. The

interpolating functions may be expressed as

<(1-382+28%, (8-28%2+8Y, 38%-228%,

£ =

@3 - %> (A-54a)
<fl> = <(1 - B), B> (A-54b)
<f)> = <(28-1) (8 -1), -4 8(B -1), B(28 - 1)> (A-54c)

where the nondimensional coordinate; 8 and the nodal vectors {u}, {v},
{¢} and {w} are defined in Fig. 2.6.

To obtain Equation 2-25 from Equation 2-24 it is necessary
to carry out the integration in Equation 2-24, assuming A, Ix’ Iy’ Iw’
P, Mx, My, e s ey all vary linearly 4n the form

= A + (A - -
AC o ( q Ap) B (A-55)

where p and q are adjacent nodal numbers, the integrated matrices may

all be written in terms of coefficient matrices of the form

1
mnjq | s t _
[k, °1 = f 87 (£} < £ > ds (A-56)
o
where m, n = the degree of the interpolation vector (see Equations
A-54); s and t indicate the order of differentiation of the respective
vectors; and j is the exponent of 8. The numerical values of these

matrices for specific values of s, t, m, n and j are given in Table A-2.
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The matrices arising from Equation 2-24, which are designated

symbolically in Equations 2-27 and 2-28, then become

330

3
2 331
3 [kuu] - Iyp [k22 ]+ (1y - 1 ) [k ] (A-57a)
L (k3207 + (L, - L) [15;'] (A-57b)
E vv Xp
3
Ja _ 330 _ 331
g Lkyyl Ip LK ko5 ] + (Tyq = Iyp) (k5571 + GK
[k 330] +6 ® -F )[k331] (A-57c¢)
L ~ 1220 221
E Uod = A, [ 1+ @ -a) [k77] (A-57d)
te,] = el = 2 [G701+ @ -2) [k71]  (a-57e)
te,,] = e, I = v £kl + [k D
_ 330 330
Mep LE L7 ] + "o Syp [ 1+ @ q yp
331
2 Pp e + Pp e )[k ]+ (P - p)
(eyq = 2yp) [k332] (A-57€)



£[gv¢] -
330 330
(k771 -2 b Cxp ki1 1 -
+P e )[k331]
P
P I
tlgy,d = ¢ A * Mo S T Y0 Cyp
P I
330 q_pp
[kll 1+ (¢ A.p + qu Xp
P I

+w ¢ )} [k + (e, -

wp wq

1 I
P4 __ _PP -
¢ A A ) + (qu Mxp)(cx

q P

+ M -M c -¢C + (W
( yq YP)( yq YP) ( wq

332
Couq = Cup )} [k37°]

In Equation A-57c

K = (K +M G
. ( . pRp/ )

where

P

T _ 330 331
ey J° = v, Ll 1+ [ D+

- 2P e
P X

196

- e )[k332] (A-57g)

-C )

Xp

- W
wp

)

(A-57n)

(A-58a)

(A-58b)
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and K is St. Venant's constant.
If the thin-walled beam is supported on an elastic medium
suitable spring constants may be added into the flexural stiffness

matrix.
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Geometric Boundary
Natural Boundary Conditions Conditions
at z =0 or z = £ at z=0 or z= £
P=0 Sw =0
c
' v ' " - -
(Mx+Vx¢+PvS Pe ¢ +My¢) 0 §v =10
M =0 sv' =0
X
L ' ' "y - =
M Vy¢ + P ug + P ey o Mx ¢") 0 6us 0
M =0 Su' =0
y s
(W' +Pe u' -Pe_ v'-M u
w vy s X 8 X s
t | = =
+My vg M 9"+ T, =0 8¢ 0
. r
Wm =0 §¢' =0
TABLE A-1

BOUNDARY CONDITIONS




36 3 -36 3 12 6 -12 6
| 3 4 -3 -1 6 4 -6 2
3o[k33°] -3 -3 36 -3 [kggo] = -12 -6 12 -6
3 -1 -3 4 6 2 -6 4
18 3 -18 0 6 2 -6 4
3 1 -3 -0.5 2 1 -2 1
3o[k331] -18 -3 18 0 [k 331] -6 -2 6 -4
0 -5 0 3 4 1 -4 3
“15 -3 -15 3 72 15 -72 -6
3 0 -3 .5 15 4 -15 -3
30[k33°] 15 3 15 -3 210[k332] = =72 -15 72 6
3 -5 3 0 % -3 6 18
6 3 -4 1 1 2/3 -1 1/3
(¢P7= -8 4 8 - 33 = -4 -3 4 -8/3
4 1 -4 3 3 2/3 -3 1/3
7 -8 1 3 -4 1
3[k 220] -8 16 -8 6[k 221] -4 16 -12
1 -8 7 1-12 11
TABLE A-2

COEFFICIENT MATRICES
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FIGURE A1 SHEAR STRESSES IN A THIN-WALLED BEAM
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APPENDIX B

COMPARISON OF ELASTIC FORMULATIONS

B-1 Introduction

The governing equations of this dissertation were derived
from the principle of virtual work. It has been shown in Chapter II
and Appendix A that the total equilibrium equations, Equations 2-20,
are essentially the same as those of Vlassov (74). However, the
incremental equilibrium equations, derived ffom virtual work following
the procedure of Biot (10) and developed by Felippa (19), Murray (50),
Hofmeister et al (34), and others, differ, from the potential energy
derivation, in the higher order terms.
The most consistent derivation of nonlinear terms in finite
element formulations is based upon the potential energy approach and
due to Mallet and Marcal (43). The objectives of this appendix are
a) to compare the present method of formulation with that of Mallet
vand Marcal;

b) to indicate the modifications required in the virtual work formu-
lation to make it correspond to the incremental formulation of
‘Mallet and Marcal;

c) to demonstrate by numerical comparison that, for members of thin-
walled open sections, the formulation adopted ih this dissertation
yields reliable results in the range of interest. The beam-column

formulation of Mallet and Marcal is used for this comparison.

B-2 Formulation of Beam-Column Equations

B-2-1 Virtual Work Formulation
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The incremental equilibrium equation described in Chapter II,

is given by Equation 2-14 which may be written in the following

notation
- 1
I Gij G(eij) dv + J cij 6(eij) dv = f ti Gui ds (B-1)
v v s
where
0 1 2
eij eij + eij + eij (B-2)
and egj, eij, eij contain linear terms in displacement increments and
product terms of initial and incremental displacements, respectively,
i.e.:
e0 = L(u + u, ) (B-3a)
ij i,j i
el =y (B-3b)
13 Yk,i Yk, 3
e2 = 15(— + u ) (B"‘3C)
13 3% S 9% B ' B "

In Table B-1 linear incremental formulations are compared for the in-
plane beam-column problem
a) when only first order terms are included in ;ij and eij

b) when the higher order terms are included in o,, and e

13 1]

B-2-2 Mallet and Marcal's Formulation

The strain energy for the beam element is written as

U = I E(w,z YV, + vfz/Z)2 dv (B-4a)

v

s 2



where
[ 1 0 0
[123] = 0 0 0
| 0 0 I/A
0 v 0
s2Z
[nl] = Vo2 v, 0
) 0 0
) 0 0
~ - 2
[nz] = 0 3/2(v’z) 0
o 0 0
and
<d> = <w s V s V
4 2 22

For equilibrium

SU+SW = 0

Hence equilibrium equation is

N

[ <se tealig) + B2 18,7 + B [3,10(a) a2 + ou

£

- o BRI B a1+ B G a
2
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(B-4b)

(B-4c)

(B-44d)

(B-4e)

(B-4£)

(B-5a)

(B-5b)

Retaining only linear terms in the “increments in displacements, the

incremental equilibrium equation may be written as

j sad [EA [ﬁS] + EA [ﬁll + EA [62113 {Ad} dz + {saW}

£

(B-6)



et e

- [ o BRI+ BT+ B0 e

' 2
where
[ 1 0 0
[ks] = 0 0 0
) 0 I/A
) v 0
2
[nl] = v’Z W,z 0
| 0 0 0
[0 0 0
~ - 2
[nz] = 0 3/2(v’z) 0
0 0 0
and
<d> = <w s V s V
sZ ’2 222
For equilibrium
U+ 6W = 0

Hence equilibrium equation is

AN

f <8d> [EA[iS] + %ﬁ [ﬁl] +-§é [ﬁz]]{d} dz + &W

4
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(B-4b)

(B-4c)

(B-4d)

(B-4e)

(B-4f)

(B-5a)

(B-5b)

Retaining only linear terms in the “increments in displacements, the

incremental equilibrium equation may be written as

f sad [EA [128] + EA [n;] + Ea [n,115 {4d} dz + {saW}

L

(B-6)
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Equation B-6 is the same as the incremental equilibrium equation

developed by using the virtual work formulation for case b (Table B-1).

Expressing [d] in terms of the generalized coordinates {8}

through a linear transformation of the form
{a} = [o] {8} (B-7)
the potential energy is
U= < [ [K]+ ¢ [5,]+ 35 (6,11 (8} (B-8a)
2 -8 6 -1 12 =72
The equilibrium equation is
[[kg] + %{Ei] + %{Eé]]'{s} +1{Q} = 0 (B-8b)

where {Q} is the vector of generalized forces associated with the {B}
displacement coordinates.

The incremental equilibrium equation is

[[kg] + [n,] + [0,]} {28} + {aQ} = o© (B-8c)
where

L .

(6] = | = [0]" [kg] [o] 4z - @ow
£ T on

(] = | v I [4,] [0] e (8-9b)
i - |

(5] = | w3 [3,] [0] e (3-90)

B-2-3 Comparison of Formulations

The derivations in Chapter II and Appendix A show that by
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ignoring the initial displacement matrix, and using only first order
terms in Eij’ oij and eij (as in Table B-1, case a) the virtual work
formulation is consistent with the formulation of the classical beam
equations normally applied to stability problems. These equations
may be regarded as examples of the lowest level of nonlinear equations
in the heirarchy of nonlinear formulations discussed by Mallet and
Marcal. In this work the term "virtual work equations" refers to sets
of equations derived by assumptions consistent with those for case a,
of Table B-1. The term 'potential energy equations" refers to sets

of equations derived in a manner consistent with the derivation of

Mallet and Marcal, or case b, Table B-1.

B-3 Nonlinear Analysis of Beam-Columns

In Section B-2 a comparison was made of the nonlinear terms
arising in the virtual work and potential energy formulations. The
question arises as to the range of reliability of the virtual work
formulation. Some indication of this is achieved by comparing the
numerical result for a typical in-plane beam-column problem. Such a

comparison is carried out in the following.

B-3~-1 Mallet and Marcal's Linear Incremental Formulation

Using the nomenclature of Mallet and Marcal, the linear

incremental potentlal energy formulation is written as
[[xg] + [v,] + [N,])= {ar} = (4R} (B-10)
where element matrices are given by

[k = [r1" (k] [r] (B-11a)
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[a,] = [r]" [m;] [1] (B-11b)
[n,] = [r1* [3,] [1] (B-11c)

and [Eé], [Ei], [Eé] and [T] are specified in Figs. B.1, B.2, B.3, and
B.4 respectively. The vector of generalized coordinates, {B}, specifies

the centroidal displacements through the relations

&
[

and

. 2 3

The generalized coordinates are related to the nodal displacements, {r}

through the transformation
{8} = [1] {r} (B-13)

where

.{r}T = < Vp’ exp’ wp’ Vq: exq, Wq > (B-14)

The total equilibrium equation may be written as

(k] + 3 N1+ 5 5,11 {2} = (&} (B-15)

The solution to this set of equations was obtained by a Newton-Raphson
procedure where iteration was carried out until the unbalanced nodal

forces, {E}, evaluated as

{E} = R} - [k 5[N]+ 3 [N,T] (x) (B-16)
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were negligible. A flow chart of this procedure is shown in Fig. B.5.

B-3-2 Incremental Virtual Work Formulation

The incremental virtual work equations may be written as
[[xg] + [k 1] {ar} = {aRr} (B-17)

The element geometric stiffness matrix, [Eé] for the generalized coor-
dinates is obtained by summing [Ei] and [Ez] of the previous formulation,
with 84, 85, and 66 equal to zero and 82 = P/AE. This is equivalent to
discarding the matrix [Hz] and retaining only the 3x3 main diagonal

_ submatrix in the definition of [Ei].

The total equilibrium equation is written as
[[kg] + [K,1] {r} = (R} (B-18)

The solution to this set of equations was also obtained by a Newton-
Raphson procedure where iteration was carried out until the unbalanced

nodal forces, {E} evaluated as
{E} = (R} - [[KS]+ [k, 11 {z} (8-19)
were negligible.

B-4 Numerical Results

The beam-column shown in Fig. B.6 was subjected to an
increasing axial load and a constant transverse load of 5 kips applied
at the central point, A. The contribution of the matrices [KS] and
[KG] to the equilibrium of point A is shown in Fig. B.6. The stiff-

ness of the structure approaches zero as P/Pcr approaches 1.
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The same beam-column was analyzed by the method of Malletb
and Marcal. The contribution of the matrices to the equilibrium of
the transverse force at A are shown in Table B-2. The results are
also plotted in Fig. B.7.

A comparison of the ioad deflection plots by the two methods
is shown in Fig. B.8. While it is apparent that the second order
incremental stiffness matrix [Nz] or a suitable equivalent must be
included to analyze post-buckling behaviour, it is also apparent that
the pre-buckling behaviour may be closely approximated by omitting
these terms. In addition, inelastic material response may be expected
to occur prior to any significant stiffening effect from the difference
in the large displacement terms between the matrices [N1] and [Nz].

It is therefore concluded that the inclusion of inelastic material
response is more significant for this class of problem than the

inclusion of higher order geometric effects.

B-5 Summary and Conclusion

It has been shown that the virtual work formulation can be
made to correspond to the linear incremental potential energy formula-
tion by including the higher order terms in the expression for initial
stress, and stress and strain increments.

It is seen from numerical results that it is unnecessary to
include the higher order terms unless investigating the post-buckling
behaviour. Because of the influence of inelastic material response
the maximum load carrying capacity will normally be attained before
these higher order terms have any significant effect.

It has also been shown that the virtual work formulation

employed is consistent with the classical differential equation



formulation of the problem.
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Fig. B.1 FLEXURAL STIFFNESS (GENERALIZED COORDINATES)

215



B =) | s = s B s

s

oh

(2,4)
(2,5)
(2,6)
(4,4)
(4,5)
(4,6)
(5,5)
(5,6)

(6,6)

Fig.

216

0 0 0 0 0 0
0 0 0 n1(2,4) n1(2,5) nl(2,6)
0 0 0 0 0 0

0 my(42) 0 n(4,4) n (4,5 1, (4,6)

0 El(s,z>

o

31(5,4) 31(5,5) 31(5,6)

o

0 21(6,2) 31(6,4) 31(6,5) 31(6,6)

- _ 2 3
n, (4,2) = EA (B, L+ 858" +8, L)

5
2 .4, ,3,.3. .4
ny (5,2) = EA (8, &%+ 38 £+ 2 s, 2%

3 Ps
- 3.3 4.9 5
n, 6,2) EA (s4 £ + > 35 27+ 5 86 £
= EAKBZ
T (5,4) = EA 228
1 2 2
n, (6,4) = EA L3
1 o 2
_ 4 3
= 3EAL 8,
-_— _é 4
n, (6,5) = 3 EAL" g,
_ 3 5

B.2 FIRST ORDER INITIAL DISPLACEMENT MATRIX




217

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
] = 0 0 0 B,(4,4)  T,(4,5) ,(4,6)

2% 2% 2%
0 0 0 32(5,4) 1,(5,5) 32(5,6)
0 0 0 n,(6,4) 10,(6,5 n,(6,6)
| _

712(4,4) = %(Bi L+ % B§£3 +% Bgﬂs + 28485152 + 385861’.4 + 284861,3)
- Bzz."z 2,4 9 2,6 . 4 3. 12 5.6 4
n2(4,5) = 3¢ 7+ 852 +5 B6£ +3 34352 +=5 55361. + 7 34662 )
| g2 ¢3
Ry 4,6) = S+ T e’ + 5 et + 88" + 26,80 + £ 8,800
n,(5,5) = %EZ(4,6)
- 812;£4 4,26 .9 2,8 4 5. 12 7 6
n2(5,6) = 9¢( 7t 551& +3 36!, + 35 84851 + =5 85861’, + 8486/& )

g2 2’
ny(6,6) = ¢ e % 32['7 + gl + ¢ E‘4851‘6 + 12 85868 + 5 8,850

0,(5,4) = n,(4,5)
0,(6,4) = 1,(4,6)

52(6,5) = 32(5,6)

Fig. B.3 SECOND ORDER INITIAL DISPLACEMENT MATRIX



(1]

) 0 1 0 0
1
0 0 -3 0 0
1 0 0 0 0
0 1 0 0 0
_3 .2 o 3 1
£2 L 22 £
21 o .2 1
2 22 2 22

Fig. B.4 TRANSFORMATION MATRIX RELATING GENERALIZED

COORDINATES TO ELEMENT DISPLACEMENTS

o Lo

218



219

START

@ [v] = [N] =0
@ [kJ1 =0

Y
FOR EACH ELEMENT FORM [Eé]
i 4
™ SET {AR}
[ )
{E} = {AR}

@) [k ]+ N1+ [N1] {ar} = (B}
@ [[xg]l + [k.11 {ar} = {E}

Y

r = r. + Ar
n n~-1 n

3
FOR EACH ELEMENT FORM
(7,1, [3,], [7]
Y
(1) Assemble [ks], [nl], [nz]
(2) Assemble [ks], [kG]

(1) {E}
(2) {E}

Y
(R} - [[r] + 50N, T + 3N, 114x)
(R} - [[k.] + [K,1] {x}

y
Check {E} = 0 N0 |

Yes

Display the Solution

Y

STOP
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APPENDIX C

DERIVATION OF MATRICES FOR LOCAL BUCKLING

The element stiffness matrices appearing in Equation 4-22 are
obtained by substituting Equation 2-23, 4-17 and 4-21 into 4-14; integrating
carrying out the variation; and grouping terms associated with each set
of virtual nodal displacements. Assuming the moment is constant in an
element length for the evaluation of the geometric stiffness of a plate
segment, this results in the following set of equilibrium equations.

EI M
Y o3 P r.3 1 xi 3 3 314
3 [y, Mul + 5 k3,1 (w} - = [k}, (o} - v, [k, + K7, (¢}

+¢, [0, () + 0y [T (P} = ®} (c-1a)
M
3 P 3 i3 3, .31
22 7 D) b+ 3 Iy ] o3 + v, [rgg + k7] (0)
+C) [K J B +c [Kll] ) = (R} (C-1b)
EA 1 )
=g &1 Wl = R (C-1¢)

¢ L P I xi 3

M
3 31 R 3 31
- v, [kg; + Kyp] {u} + —{r (k7,1 () + v [k, + kj;] (v}

+ c4.[K ] {vp} * ¢, [x BRI (®,) (c-1d)
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Db D (l -v) d
‘ t f 2 w
{323 [x,1+ 53 bf 21 9011 [e,]

Dbbf 2 Db(l v)

+ e [, + 35 (&, 1+ ( 21 ) 9o£ le,]
D £ D d3

+ ¥ [A] + —"’—'ﬁ’——3—2— [B] +

210b§d 32x105¢ b 900 £ b

2D vd (o, +0 ) 3

3
(0,-0.) t d
w W b w w b 't' ww
+ —X [D] + [F] + [H]
225£b§ 64x3150 bZ 2 64x3150 b2 2

f

v
ot Cl[M]{z} +-cz[M]{g} + CA[M]{Q}

A
+ C, [NI{x} + c,[N]{u} + c [N]{g} = {Ré} (C-1e)
where = 3 .
[x7, ]
M] = (C-2a)
| [o]
0]
[x] = (C-2b)
3
(k3,1
Yy
C1 = ble (C-3a)
P dw Aw % wa /2
G = @, Atm, T (C=3b)
£ x
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P dw A.W M.x wa
C; = G5, atm T/ (€-3¢)
f f
PI p wa Mx dw wa
% = @%."7m. " 5. 1% (C=3d)
£ f f x
PI p wa Mx dw wa
¢S = G, "3m. tus 0/t (C-3e)
£ f f "x
Md
= 2P - - XW -
o + o, = % o, ~ 0, = Ix (C-3f)
3 3 3 31 : 330
The matrices [Kll], [K22]’ [Klo], [Kll] are the same as [Kll 1,

3307 3307 331
22 1» K30 15 [Kyy

[%.,)s (%), (%1, [%,,1, 6,1, [q,], [al, [8], [c], [0], [¥], [u]

[k ] derived in Appendix A in Table A-2. The matrices
are shown in Tables C-1, C~2, C~3, and C-4. The notation A.W designates

the area of the web and Ix is the moment of inertia of the web.
w
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[a]

(8]

TABLE C-2

(1248 176 432

32 104
1248
SYM.
1536 768 -1536
512 -768
1536
SYM.

-104
=24
-176
32

768
256
-768
512

624
88
216
=52
1248

-1152
=576

1152

-576
1536

88
16
52

176
32

=576
-384
576
-192
768
512

216
52
624

432
104
1248

1152
576
-1152
576
~1536
-768
1536
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-176

-576 |
-192
576
-384
768
256
-768
512 |




[c] =

[p] =

TABLE C-3
[ 1152 96  -1152 96
128 -96 =32
1152 -96
128
SYM.
[ 144 72 -144 72
16 -12 -4
144  -72
16
SYM.

128

72
16

288
24
-288
24
-1152

1152

229




[F]

(1]

™~ 4608 384
512

SIM.

1152 96
128
SYM.

[o]

TABLE C-4
-4608 384 -3456 -288 3456
-384 -128  -288 -384 288
4608 -384 3456 288 -3456
512  -288 96 288
4608 384 -4608
512 -384
4608
-1152 96
-96 -32 (o]
1152  -96
128
-1152  ~96 1152
-128 96
-1152
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-288
96
288
-384
384
-128
-384
512 |

32
96
-128
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APPENDIX D

CALCULATION OF SECTION PROPERTIES AND STRESS RESULTANTS
FOR THIN-WALLED SECTIONS

D-1 Introduction

In the evaluation of the stiffness matrices for elastic
sections, carried\out in Appendix A, Section A-6, it is necessary
to know the section properties. In the evaluation of the stiffness
matrices for inelastic analysis, carried out in Appendix E, it is
necessary to know the section properties of the transformed section.
Once the transformed section has been determined, the evaluation of
section properties is identical to that of any arbitrary elastic
section. These section properties are always referred to the
centroid, shear center and principal axes of the effective elastic
(transformed) section.

In this appendix the method of determining the transformed
section is diéscussed in Section D-2, and the equations for numerically
evaluating section properties are specified in Section D-3. Equations
for numerically evaluating stress resultants, which are required in
the calculation of [KG] and in the evaluation of the unbalanced force

vector for inelastic analysis, are given in Section D-4.

D-2 Determination of Transformed Section

The strain at any point of a thin-walled section is due to
axial, bending and warping displacements, together with any residual
strain, and for any set of nodal displacements may be evaluated from
Equation A-36. If the residual strain distribution varies in some

arbitrary manner, as shown in Fig. D.lb, then it can be approximated
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by linear segments as shown in Fig. D.lc. For equilibrium

J or dA = 0 (D-1la)
A
J Op ¥ dA = 0 (D-1b)
A
I op X dA = 0 (D-1¢)
A

Considering any plate segment which has a linear variation of
residual strain, by superposition, the total strain distribution will
also be linear in the segment. The stress strain curve used is shown
in Fig. D.la. It is tri-linear, where the slopes of the three seg-
ments are designated as E = elastic modulus; Ep = plastic modulus;
and Es = strain hardening modulus. To approximate the idealized
stress strain curve for mild steel, Ep may be set equal to zero.

Considering a segment under a linear variation of strain, as
shown in Fig. D.2, when € and €3 have the same sign, e, and ¢, may be

A B

in any of the three strain ranges.

G st €y > €t (D-2a)
< < < <

ey €5 st Ey €a st (D-2b)
< < < <

0 €g ey 0 €y sy (D~2¢)

Hence there are nine combinations of strain distribution when €p and

€g are of the same sign in a segment, and there will be nine other
combinations of the strain distribution when € and €p are of opposite
signs. 1In each segment the incremental moduli are determined from the

strain distribution, assuming no strain reversal. This divides the
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plate segment into, at the most, five regions as shown in Fig. D.2.
It is now possible to transform the section and evaluate section

properties of the transformed area.

D-3 Evaluation of Section Properties

To determine the section properties, consider the segment of
a plate of a thin-walled section under linear straiq distribution as
shown in Fig. D.2. As stated above, for any arbitrary segment, there
are at most five possible regions in which modulii are different. The
moment of inertia of the thin-wall about its y-axis is very small and
hence in order to formulate tangent properties it is sufficiently
accurate to modify the thickness between the corresponding regions by
the modular ratio. Areas and moments of inertia of each region of the
plate segment are calculated about the centroidal axis of the trans-
formed segment. Moments of inertia of each plate segment are then
transformed to the global axis orientation. A similar computation
may now be performed to determine the centroid and moments of inertia
of the total cross section by summing the properties for all the
segments. Let C be the centroid of the transformed area and 0 an
arbitrary origin of coordinates X and Y. Referring to Fig. D.3b, we

may write for the centroid

>4
|
[

n n
( X )/ ( ) (D-3a)
¢ = L AROICE A

n n

() ¥.)/¢( ) (D-3b)
C k=lAk K kzlAk

<
i
"

where Ak, ﬁk’ and Yk are the transformed area and distances to the
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transformed centroid of the kth plate segment, and there are n piate
segments. The section properties with respect to the &, § axes of

Fig. D.3b are

) D a9
I = I + ¢ (D-4a)
® el xxk kel Ak k
n n 2
I = I + D-4b
y kZ yyk kzl e B (i)
n n .
Ly = kzl Lok ¥ kzl A X Y (D-4c)
tan 2 a = 2 Iﬁ§ / (I§ - Ii) (D-44d)
2 2
I = I~ cos o+ I~ s8in” a - I~~ sin 2 a (D-4e)
3 X y Xy
2 2
I = I~ co8 a+ I~ sin a + I~~ sin 2 o (D-4f)
n y X Xy

where o is the inclination of the principal axes, (£ and n), with
reference to the original axes and is positive if it is anticlockwise
from the x axis.

In order to locate the shear center, choose C as the origin
and CE as the initial radius. For straight segments, sectorial area
coordinates at the beginning and the end points of each region of the
plate may be computed, from the definition of the sectorial coordinate
in Equation A-13, as twice the sectorial area with respect to the

initial radius, CE. This is evaluated, see Fig. D.3b, as

wj = w, + xj vy - yj X, (D-5)
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The sectorial static moment and the sectorial linear statical moment
‘about the x and y axes, with C as the origin and CE as the initial

radius, are defined (see Equations A-29, A-30 and A-31) as

F
SGE = J w dA (D-6a)
E
F .
Sw}EE = f wy dA (D"‘6b)
E
F
Swfa = J w x dA (D-6¢)
E

The coordinates of the shear center, E; of the transformed section may
then be determined by the following equations, which are Equations

A-30 for non-principal axes directions,

2
2

Sectorial area coordinates, w, are now calculated with respect to the
shear center S and with SE as the initial radius, by a similar com-
putation to that in Equation D-5.

A principal radius, §‘B', is defined as one for which the

sectorial coordinates satisfy the following equation (see Equation A-31)

Sw = J w3 dA = O (D-8a)
A
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where

r ds (D-8b)

el
wl
i
!
0>

becomes the principal sectorial coordinate of point A. Choosing Egh.
as the principal sectorial coordinate with S as the origin and SB' as
the principal radius the principal sectorial static moment, Sw , will
therefore be zero. The quantity GEB' is usually called the normalized

unit warping or the normalized warping coordinate, and designated as ;;.

Now
A
_(;n = EEB' = -f r ds (D-9a)
B'
A
= - f rds + C (D-9b)
E
= ~-w+C (D-9¢)

Hence the normalized warping coordinate may be computed by subtracting
the constant C from the w values and changing sign.

Equation D-8a requires C to be
F
1
c = N fwdA (D-10)
E

The principal sectorial moment or simply sectorial moment of Inertia

Iwn is now given by

F
I = JIJ 2 A (D-11a)
E

which for the type of section shown in Fig. D.3b can be expressed as
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w) /3 (D-11b)

where w, represents the normalized warping coordinate at junction i;
r indicates the region of the segment; and n is the number of segments.
If it is assumed that G is proportional to E, St. Venant's

constant may be calculated by modifying the width. It is therefore

n 5
*
R, = ._})_ RN "1:: (D-12a)
k=1 r=1
where
*
br = Etbr/E (D-12b)

Other properties which are necessary for the elastic analysis of the
thin-walled structures, are those appearing in Equation 2-24 and are
derived for elastic sections in Appendix A, Section A-2.

In these equations

I, = I.+ 1.+ A(;‘:2 + §r2) . (D-13)
x s S

where i_ and y_ are the coordinates of the shear centre with reference
S S
to centroidal axes, Fig. D.3; and,

2 ~
Cr = (H~r I~ = Ha Ina I~ I~ = IN.) -2 D-1l4a
g = I - H Loy /(I I - I T (D-14a)
ZA ~ .
C~r = H~ I~ = H~ I~~ I~ I~ -1 -2 D-14b
LR il S I C Aol S o) % (D-14b)
Cw = Hw / Imn (D-14¢)

By referring to Fig. D.4 the constant Hﬁ’ H§ and Hm may be
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evaluated as

]
ne-—1g

H& = j X (ﬁz + §2) dA
A 1
x, Lt
i 2 2 2
+ =75 4 51 -L"+ 2 6;]):' (D-15a)

[]
e~

a . y.Lt
H = f 7 &2 +5%) da [}41-— 2 6% - 12 + 4 %

12 i j
A k=1
y, Lt
i 2 2 2
+—T5 46y -1+ 2 §j)—l (D-15b)
w,Lt
[ = a2 a2 ~ v 22 2
Bo= j w (" +y7) da = ) 5 (26 - LT+ 4 6j)
k=1
A b
6, Lt -
i 2 .2 2
tz Gy - LT+ 2 6)) (D-15¢)

For elastic sections the coordinates X, y are identical to x and y

and E} S are the same as C and S (Fig. D.3a). The reference axes

x and y through C of elastic section, the shear center S of the elastic
section, the principal axes £ and n through C of transformed section,
and the shear center S of the transformed section, are shown in

Fig. D.3c.

D-4 Evaluation of Stress Resultants

Assuming the strain is known, the stresses are calculated in
each region of the plate segments. The stress resultants may then be
evaluated numerically, in the C, S and x-y reference system, from their

definition, as follows (see Fig. D.5)
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n 5
= = 1 -
P = f o, dA = El rzl 5b. t (o, + ojr) (D-16a)
A
n 5 brtk
M= J o,y dA = kzl rgl 2 [cir(yjr + Zyir)
A
+ Gjr(yir + Zyjr)] (D-16b)
I
MEchdA= ~ o, (x, + 2x,)
y z 24 2. 6 ir “jr ir
A k=1 r=1
+ ojr(xir + 2xjr)] (D-16c¢)
~ rzl %brtk[ ~ ~
W = J wo dA = g, (W, + 2w, .)
w A z k=1 =1 6 ir T ir ij
+ ojr(wir + ijr)] (D-16d)

where r = plate region; n = number of plate segments; k = plate segment

index; t, = plate segment thickness; br = plate region length; and

k

@ = the normalized warping coordinate with respect to S.

The quantity Mp may be evaluated about S as

4
n 5 b_t

k *2 *2 2

M o= ) )V =10, (0,5 +20,- -b)
[iF4 k=1 r=1 12 ir* ij jr r
*2 *2 2

+ ojr(Apjr + Zpir - br)] (D-17)
*

*
where pir and p are the distances of the ith and jth nodal points of

jr
the region with respect to S.
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APPENDIX E

DETAILS OF INELASTIC FORMULATION

E-1 Introduction

In this appendix the tangent and geometric stiffness matrices
are derived, in Section E-2, for 'Formulation 1' of Section 5.2.5, and
in Section E-3, for 'Formulation 2' of Section 5.2.6. The section
properties and stress resultants for the evaluation of tangent and
geometfic stiffness matrices have been determined as detailed in

Appendix D.

E-2 Derivation of Tangent Stiffness and Geometric Stiffness Matrices

For Formulation 1 (Section 5.2.5)

Since variations in incremental displacements are taken with
respect to the reference points in the original undeformed configuration
the tangent stiffness matrix contains coupled terms. The terms con-
tributing to the tangent stiffness in the virtual work equation Equation
5~5 are given by

t T T T T
[(EA™ w' 6w' - EA” y_ v" éw' - EA” x_u" éw' + ES ¢" éw'
c ¢ o s ¢ o s ¢ W c
o

T

- EA? y w' v + EIC v" 6v" + EIL u" 6v" - ES ¢" Sv"
o c s X s 8 Xy s '8 wx s
- EA? x w' su" + EIT v' su" + EIT u" su" - EST ¢" Su
o ¢ s Xy 8 s y 8 s wy s
T T T T
+ ' " o_ " no_ " " " " -
ES w' 6¢ ES vy 8¢ ES,y Uy 84" + EL o" 8¢ Yldz (E-1)

where

A = J dA (E-2a)



where
3
£ T q_ 4T 330 331
g [egud = I, [kpy 1+ (I I o) [kgy]
3 y
£ 1T T (330 T 331
5 gyl = Ty Do 1+ (I Lyp) [¥2p]

3
L T 7. T 330 T 331
E [ku¢] {Sva iy 1+ (Squ wyp ) Ly D

320 321]}

2
£ T AT
£ Dol = (%) [T T+ (@x) - @x)) [k

3
=00 = 1 D901+ (- 1) Do)

L nly- ~sT [ T 331
B Lyl = (8, [y 1+ (S = Supp) Ky 1}

22 T (320 321
= 1= -ty op 1+ (' olq " &'y o) Hor B

3
£, = 1 0901+ (g - 1) D3]

E ¢

2
25 T 1 _ (T 320 321
g Lk d = s, D71+ (s - s, wp) (k3771

L 1T 2T 1,220 221
£ bg)- A0+ @l - 82

1 = [k T
[g, ] = [, 1"
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(E-6a)

(E-6b)

(E-6¢)

(E-6d)

(E-6e)

(E-6f)

(E-6g)

(E-6h)

(E-61)

(E-63)

(E-6k)

(E-62)
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[, ] = [, 1" (E~6m)
F 1 = [l T (E-6n)
1 = [l 7 (B-60)
[k ] [, 1" (E-6p)

The coefficient matrices in Equations 5-6 have been defined in
Appendix A, Séction A-6.

The matrix [kG] is the same as the geometric stiffness
matrix of an element for the elastic case, i.e. Equation 2-28, except

for the submatrix [g¢¢], which may now be expressed as

L = .330 = = 331
where
K, = Kp + (Mps)p/G (E-7b)

Hence the incremental equilibrium equation for an element may be

written as
T
[l ] + [k 1] {arg} = {aRp} (E-8)

which is Equation 5-9.

After transformation and assembly, Equation E-8 becomes
[[K:] + [ko11 {ar} = {am} (E-9a)

which is Equation 5-31. Grouping terms from these matrices we may

write
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3
L T I 330 - 331 _
£ T _ 220 221
E-[kww] = A.p [ ] + (A - A ) [k ] (E-11d)

The matrix [kG] is the same as in Equation 2-28 provided M_,

My are replaced by M Mn and e s ey by e, and en. However, the

g’ 3

submatrix ] is now given by

[g¢¢

33l]

4 - ¥ 330 _
G lBge] = K [k 1+ ® -%) [k (E-12a)

The relationship between MpS in Equation E-7b and Mp;-in

Equation E-12b is given by

o _ _ _ 2
Mbs = Mps + ZMy(bx ex) + 2Mx(by ey) + P{(bx ex)

+ Gy - ey)2 - 26, - e) (x, + %) - 20, - &) (7, + 50} (E-13)

where X,» ¥, are the coordinates of the instantaneous centroid with
respect to the original centroidal reference axes, and §;, §; are the
coordinates of the instantaneous shear centre with respect to the
instantaneous centroidal axes parallel to the original reference
axes (see Fig. 5.3 and Fig. D.3b).

Hence the incremental equilibrium equation for an element is

again written as



[
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[[k:] + [k 1] farg), = (8R.) (E-142)

Using the transformation matrix, derived in Section 5.4.3 for

'Formulation 2', which is shown in Table 5-1, Equation E-l4a becomes
[Cr1" 01 (73 + [11° [k,] [T1] (ar,}, = (am)) (E-14b)
s G E°G RE G
After assembly, Equation E-14b becomes Equation 5-31, namely
[[Kgl + [k, 1}-{ar} = {aRr} (E-15)

which is the incremental equilibrium equation for beam-column problems.
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