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Abstract

As the volume of data on the Web or in databases increases, data integration is becoming

more expensive and challenging than ever before. One of the challenges is entity resolution

when integrating data from different sources. References with different representations but

referring to the same underlying entity need to be resolved. And, references with similar

descriptions but referring to different entities need to be distinguished from one another.

Correctly de-duplicating and disambiguating these entities is an essential task in prepar-

ing high quality data. Traditional approaches mainly focus on the attribute similarity of

references, but they do not always work for datasets with insufficient information. How-

ever, in relational datasets like social networks, references are always associated with one or

more relationships and these relationships can provide additional information for identifying

duplicates.

In this thesis, we solve the entity resolution problem by using relationships in the re-

lational datasets. We implement a relational entity resolution algorithm to resolve entities

based on an existing algorithm, greatly improving its efficiency and performance. Also,

we generalize the single-type entity resolution algorithm to a multi-type entity resolution

algorithm for applications that require to resolve multiple types of reference simultaneously

and demonstrate its advantage over the single-type entity resolution algorithm. To improve

the efficiency of the entity resolution process, we implement two blocking approaches to

reduce the number of redundant comparisons performed by other methods. In addition,

we implement a disk-based clustering algorithm that addresses the scalability problem, and

apply it on a large academic social network dataset.
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Chapter 1

Introduction

In this chapter, we first give an overview of the data integration and challenges during

the integration process in Section 1.1. Section 1.2 introduces the entity resolution problem,

various challenges, and approaches that use attributes and relationships for entity resolution.

In Section 1.3, we describe the applications that motivate us to propose algorithms for

entity resolution. Section 1.4 lists the contributions we have achieved in this thesis, and

Section 1.5 defines the terms that are used frequently in the thesis. Finally Section 1.6 gives

the organization of this thesis.

1.1 Data Integration

As the volume of data increases, there is an urgent need to intelligently analyze the data

and transform the information into useful knowledge. Data mining is one such process that

employs intelligent methods to extract hidden knowledge from various datasets. Companies

use data mining to analyze the shopping behavior of customers and arrange promotion

activities, governments use it to predict the epidemiological trends and make precautions

accordingly, and sociologists use it to analyze the behavior of social communities and find

social problems and solutions [2, 4, 13].

While data mining is essential and useful in various domains, we have to be aware that the

quality of the knowledge mined from datasets is highly dependent on the quality of these

datasets. A dataset that is incomplete, noisy and inconsistent may result in conclusions

that do not truly reflect the underlying truth and lead to false decisions. So we need to

pre-process datasets to create a complete, clean and consistent dataset prior to any data

mining tasks.

Very often, the datasets to be analyzed come from multiple heterogeneous sources such as

databases, flat files or the Web, and need to be integrated and cleaned first. Data integration

is one such process to integrate data from these sources into a clean and coherent dataset.

Though the process seems straightforward, a number of issues need to be considered during
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Figure 1.1: A data integration process [11].

the integration process. Bleiholder and Naumann [11] categorize these issues into three

phases as shown in Figure 1.1. The first phase is the schema mapping which resolves

the schema level inconsistency. In different datasets, the schemata that describe the same

domain may have different names and result in schema level inconsistency. For example,

surname may be used to represent last name in one dataset, while family name may be used

to represent last name in another dataset. Also, state and province may be used to describe

addresses in different datasets. The second phase is the duplicate detection which aims to

resolve the tuple level inconsistency. Sometimes, one real object may have several different

descriptions in the dataset and this may cause tuple level inconsistency. For example, in

the bibliographic dataset, an author called Richard R. Muntz may have several different

representations such as R. R. Muntz, R. Muntz, or Richard Muntz ; Simply integrating them

without eliminating these duplicates will result in data with redundancy. The third phase is

the data fusion which aims to solve the attribute level inconsistency. When the duplicates

of an object are merged, the value of their attributes may be incomplete or conflict with

each other.

In this thesis, we mainly focus on issues raised during the duplicate detection phase

(which we refer to as entity resolution). For every dataset, we assume that the schema level

inconsistency has already been resolved and all the datasets are formatted using a common

format. Also, we are not concerned about the data fusion phase after the entity resolution.

1.2 Entity Resolution

Entity resolution is a process to resolve duplicated representations (references) of real ob-

jects (entities). It has received considerable attention and has been addressed as record

linkage [52, 68], duplicate detection [51, 59], hardening soft databases [19], the merge/purge
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problem [37] and reference matching [49]. The duplication problem arises when different

references referring to the same entity exist in the same dataset and are described by similar

or different attributes. For example, in personal information management (PIM) systems,

a person may have a tuple in one dataset with name, age, home address and other personal

information, and a tuple in another dataset with name, company address, and education

background. Given these datasets, the task of entity resolution is to map the references to

their underlying real entities, and to group them together so that all the references referring

to the same entity are put in the same group.

In principle, entity resolution is easy. Any pair of references that have similar attributes

may be potential duplicates. The more similar their attributes are, the more likely they are

duplicates. Given a similarity measure and a threshold, we compare each pair of references

and compute their similarity score using the similarity measure. If the similarity score of

this pair is greater than the given threshold, then the two references are considered to be

duplicates. Though the basic process is simple, there are several aspects that make entity

resolution challenging [31].

Accuracy. The accuracy of entity resolution depends on several factors. First, unique

identifiers like Social Security Number (SSN) may not be provided to link references in one

dataset with references in other datasets, and references referring to the same entity may

have different attributes. Furthermore, references with the same attributes may represent

different entities. For example, according to DBLP 1 at the time of writing, there are

16 authors called Wei Wang from different institutions. In addition, other factors like

typographical errors, use of abbreviations and misuse of data cleaning tools can also make

entity resolution more complicated and difficult.

Efficiency. The efficiency of the entity resolution for large datasets is always a concern

for applications that require high performance. As discussed, the entity resolution process

is a process of pair-wise comparisons of potential duplicates; Since every reference in the

dataset may be a potential duplicate of one another, this will result in O(n2) computational

cost and a naive approach that compares every pair is impractical.

Privacy. The privacy of information is strongly connected with the approaches of

entity resolution. Through entity resolution, we can collect information that cannot be

disclosed from only one dataset [70]. Take the PIM system for example, if an approach

can connect a person’s personal information with their work-related information, then more

information about this person that could not be found before, can be uncovered. So through

entity resolution, policies or rules can be proposed to protect the privacy of information by

analyzing the approaches of entity resolution.

In this thesis, we only address the issues of accuracy and efficiency, and leave the privacy

1http://www.informatik.uni-trier.de/∼ley/db/index.html
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issue for future work.

1.2.1 Entity Resolution Using Attributes

An intuitive way to measure the similarity of two references, is to measure the similarity

of their attributes such as names, addresses and so on. Most traditional approaches adapt

this measurement and they are referred to as attribute-based approach. The accuracy of

these attribute-based approaches is greatly dependent on the similarity measures employed.

In this thesis we are only concerned about the generic string similarity measures since

the similarity of most non-string attributes like numbers is easy to compute. To measure

the string similarity, a number of generic string similarity measures have been proposed for

various cases, and many approaches using these measures for entity resolution are developed.

We will cover most of them in the related work.

Although attribute-based approaches are commonly used for entity resolution, there are

still several problems with them. First, it is difficult to determine an appropriate merging

threshold for the similarity measures. Second, for the references with the same attributes

but referring to different entities, the attribute-based methods cannot distinguish them from

one another.

1.2.2 Entity Resolution Using Relationships

For datasets on which attribute-based approaches can not achieve high accuracy, relation-

ships can be used to further improve the resolution results. In practice, there are many

datasets with rich relationships between references. For example, in bibliographic datasets,

we have co-authorship relationship between collaborators, and publishedIn relationship be-

tween papers and venues. Also in social networks, each individual may be involved in several

different relationships such as friendship, marriage relationship or membership. These re-

lationships can be viewed as additional properties of references in the datasets and can

help with entity resolution. Since the relationships are specific to entities, the references

referring to the same entity should exhibit some similarity in the relationships they involve.

For example, researchers tend to collaborate with researchers they are familiar with, and

individuals prefer to join the same groups their friends have joined in. The similarity can

be used to help identify and distinguish references.

Given the additional properties (relationships) of references, the relational entity reso-

lution is to seek evidence in relationships to resolve duplicates. In this thesis, we refer to

the evidence as relational similarity. Usually, the relational similarity is measured by the

number of common entities connected to a pair of potential duplicates. For example, we

can compute the relational similarity of two author references by counting the number of

coauthors they share. One challenge of measuring this relational similarity is to find out the
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shared entities. For example, it is difficult to compare the coauthors just using their names

since some authors cannot be uniquely identified by name. We need to know if the shared

coauthors are really the same authors rather than different authors with the same name. So

the resolution of one pair of references may affect the resolution of other related references.

To solve this problem, we need to do the entity resolution collectively and iteratively. By

collectively, references can be resolved jointly instead of independently, and the resolving

results can be propagated to related references. By iteratively, the propagated information

in one iteration can be used to further improve the accuracy of entity resolution in following

iterations.

A requirement of many data integration tasks is to resolve multiple types of references in

the dataset. Also, references in the dataset are often involved in several relationships with

other types of references such as the publishedIn relationship between paper references and

venue references, and writtenBy relationship between paper references and author references.

The result of resolving one type of reference may provide additional information for the

resolution of another type of reference. For example, if two paper references are considered

to be duplicates, then the venues in which the papers are published can also be considered

as the same venue. In this thesis, we generalize the idea of single type relational entity

resolution to multi-type relational entity resolution, in which the types of references and

the relationships between references are expanded from one type to multiple types. Each

resolution result is propagated to other references through the relationships it involves and

every pair of references can exploit all their relationships to measure their similarity.

1.3 Motivation

Our motivation for the work in this thesis mainly comes from the ReaSoN (REseArch

SOcial Networks) project. Before introducing the motivation, we first give a description of

the ReaSoN project.

ReaSoN

ReaSoN is a project that develops an environment to support the analysis of the researchers’

social network and provides information to research communities. The ReaSoN social net-

works consist of two basic networks: the co-authorship network in which nodes are authors

and edges are the co-authorships formed through the collaboration on scientific papers, and

the citation network in which nodes are papers and edges are the citations between papers.

In addition, several other graphs can be derived from the basic networks such as the venue

citation network, in which nodes correspond to venues and a link v1 → v2 indicates that

venue v1 has published papers that cite the papers in v2. Similarly, we can build a graph

that reflects the collaboration between research institutions.
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Figure 1.2: An example from the ReaSoN dataset in the format: <title, authors(affiliation if
available), venue, year>.

Figure 1.3: The ground truth of the example dataset. All the references referring to the same
entity are grouped together.

Building these graphs from ReaSoN dataset seems straightforward, what we need to do is

to extract relationships between references, and to use the relationships and the references to

construct the graph. However, the task is not as easy as expected for the following reasons.

First, the ReaSoN dataset contains a number of duplicates and these duplicates are

difficult to resolve using attribute-based approaches. The ReaSoN dataset is consisted of

data from several different sources: DBLP, ACM Digital Library and Google Scholar, and

these datasets have a large portion of overlaps on publications in the database community.

Thus there will be a number of duplicates for authors, papers and venues.

Consider the example in Figure 1.2 from the ReaSoN dataset. The example dataset

contains six paper records from the ReaSoN dataset. Each paper record contains four types

of references: paper, author, venue and affiliation, of which the affiliation information is not

available for all authors. The ground truth in Figure 1.3 shows that there are duplicates for

authors, papers, and venues. In addition, some of the duplicates are difficult to detect. For

example, W. Wang in P2 refers to the same author as Wei Wang in P3 ; However, from
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the name of these two author references, we cannot conclude that they are the same author.

And similarly for W. Wang in P5 and Wei Wang in P6. Moreover, Wei Wang in P3, P4

has the same name as Wei Wang in P6, but the ground truth tells us that they are different

authors. In addition, it is also difficult to determine if MOBICOM is the same venue as

Conference on Mobile Computing and Networking or if UCLA refers to the same affiliation

as University of California, Los Angeles.

Second, we need to resolve entities of multiple types. As introduced, the academic social

graphs contain several types of references: author, paper, venue and affiliations, each of

which may have duplicates in the dataset. To build a clean graph with high quality data,

we need to propose an entity resolution approach for multiple types of entities.

Third, the efficiency of entity resolution may be a challenge for the ReaSoN dataset which

contains 35,878,709 references that are too large to be handled by current entity resolution

approaches. A more efficient and scalable approach is needed to resolve the entities in the

ReaSoN dataset.

1.4 Contribution

Given these requirements and challenges, we build our own entity resolution system for

ReaSoN based on an approach proposed by Bhattacharya and Getoor [8], and we make

several improvements over their approach. Below are the contributions we make in this

thesis.

First, we generalize Bhattacharya and Getoor’s approach so that the algorithm can be

applied to multiple types of references. Their approach improves the accuracy of entity

resolution over attributed-based approaches by combining relationships and attributes of

references. However, it resolves only one type of reference (which is the author reference).

Also, for each resolution decision, only one relationship is used even though there may be

other relationships available between the pair of references. To adapt it to our requirements,

we generalize the single-type entity resolution approach to a multi-type resolution approach,

and for each pair of references, we consider all the relationships the pair of references is

involved in.

Second, we implement two blocking methods to improve the efficiency of the approach

using the idea proposed by McCallum et al. [49]. The methods split the whole dataset into

small overlapping partitions, each of which contains only references that are similar to each

other. Using the partition strategy, the number of redundant comparisons will be greatly

reduced and thus the efficiency of the entity resolution process can be improved.

Third, we change the entity resolution process of Bhattacharya and Getoor and get rid of

some unnecessary data structures to further improve the space efficiency of their approach.

The original approach uses a priority queue to speedup the merging process; However, we
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find that the entity resolution can be performed in an iterative way so that the additional

information is not needed for the resolution process.

Finally, we propose a record level blocking method to split the whole dataset into small

partitions that are both attribute and relational independent, and we convert our multi-

type entity resolution algorithm to a disk-based algorithm so that our algorithm is scalable

for very large datasets. In addition, we apply our algorithm on the ReaSoN dataset and

produce a clean dataset for ReaSoN.

1.5 Terminology

Before moving to the details, we first give definitions to some terminologies that will be

used in the rest of the thesis. Unless stated otherwise, all the terms mentioned in this thesis

conform to the following definitions.

• Entity. An entity is a real-world object that could be observed or perceived in different

forms. In the ReaSoN dataset, all the entities we have are the author, paper, venue

and organization.

• Reference. Reference is a mention or representation of an entity such as the name

of a person or organization. An entity may be observed in several representations and

each representation is a reference of the entity. For example, in the ground truth of the

example dataset, Wang1 and Wang2 are the entities, and the names in the rectangles

are references of Wang1 and Wang2.

• Cluster. A cluster is a logical container or set in which references are labeled with

the same class according to some rules. In this thesis, a cluster is a set of references

that refer to the same entity. The task of clustering is to group the references of each

entity into a separate cluster.

• Record. A record is a bibliography entry which contains all the information of a

paper such as title, year, authors, venue and others.

1.6 Organization

The remainder of this thesis is organized as follows; We first review most important literature

about entity resolution in Chapter 2. Chapter 3 formalizes the entity resolution problem

and describes how we generalize the current approach to the multi-type entity resolution

approach. In Chapter 4, we describe two blocking methods for improving the efficiency,

and an optimized clustering process for improving the space efficiency. Chapter 5 describes

datasets for the experimental evaluation and presents the experiment results. Then in

Chapter 6, we introduce the record level blocking technique and describe the approach for
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large-scale entity resolution. Finally, we conclude in Chapter 7 by summarizing the thesis

and presenting the future works that arise from our research.
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Chapter 2

Related Work

Entity resolution, also known as record linkage [52, 68] and object reconciliation [25], is

a topic that has received considerable attention in both academia and industry recently.

A large number of approaches have been proposed and implemented in the statistics and

computer science community [68, 69, 56, 38, 8, 5, 25]. In this chapter, we review some of the

important studies related to our work which include approximate similarity measures for

attribute comparison, various entity resolution algorithms, techniques addressing efficiency,

and frameworks or models that integrate different measures to gain better accuracy and

so on. A more thorough analysis of literature on entity resolution problem is given by

Winkler [69] and Elmagarmid et al. [27]. Also Getoor and Diehl [32] review more studies

that explore link relationships in the relational datasets for entity resolution.

2.1 Overview

In 1950s, the problem of record linkage was originated in the “follow-up” statistics of families

by Newcombe et al. [52] as the problem of grouping together references of a particular

individual or family from one or more data sources based on their attribute similarity. Then

Fellegi and Sunter [29] formally developed a mathematical model to formalize the record

linkage problem. Thereafter, a large number of approaches have been proposed based on

the Fellegi-Sunter model [9, 37, 49, 64].

The goal of entity resolution is to identify references that refer to the same real-world

entity from one or more data sources. In principle, the process of entity resolution is

simple; It compares potential duplicates using a similarity measure and merges the pairs

if their similarity score is greater than a given threshold. In reality, however, the process

involves more than matching and merging. A complete entity resolution system consists

of at least three components: 1) a standardization component, 2) an entity identification

component, and 3) an evaluation component. The standardization component employs some

pre-defined rules or domain-dependent knowledge to transform the attributes of references
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into an unified format for later comparison. Then the entity identification component uses

similarity measures to detect duplicates. Finally, the evaluation component evaluates the

performance and accuracy of the resolution step. For each component, a number of problems

may arise during the process and a number of approaches have been proposed to address

them. We will discuss most of the problems and the corresponding approaches in the

following sections.

2.2 Data Standardization

When integrating data from different sources, many issues may cause the inconsistency

problem in the dataset. Datasets from different sources are usually collected by different

organizations using different methods and tools. The format used in one dataset may not be

the format used in other datasets, and these data sources may follow different conventions.

For example, the name John Smith in one paper may be spelt as Smith, John in another

paper. These inconsistencies can greatly affect the accuracy of the resolution results. Thus,

a data standardization process prior to the resolving process is needed. Here we introduce

generic approaches for standardizing names, addresses and so on.

Herzog et al. [38] separate the parsing process from the standardization process and

introduce various methods to address the problem of data standardization and parsing.

Mainly, they introduce the following methods: the standardization of spellings which re-

places spelling variations of words with a common consistent spelling, consistency of coding

which converts different representations of attributes into an uniform unit or coding scheme,

and integrity checks on attribute values such as checking the month of a year or days of

a month. Borkar et al. [12] develop a tool to automatically split unformatted texts into

structured segments. Their approach builds a probabilistic model based on Hidden Markov

Models (HMM) that incorporates various information of the dataset including the sequence

of elements, their length distribution, and other external data dictionaries. Churches et

al. [17] and Christen et al. [16] use a combination of lexicon-based tokenization and HMM

to standardize the names in medical records and show an improvement of accuracy over the

rule-based systems.

In the domain of digital library, several approaches are also proposed to extract citation

metadata like author, title, venue and other information from the citation strings. Day et

al. [24] adopt an ontological knowledge representation framework for automatic citation ex-

traction which can represent complicated structures and perform matchings like hierarchical

matching or regular expressions. Cortez et al. [66] also propose a method using a knowledge

base. Their methods differ from others in that they build the knowledge base automatically

and extract the metadata without supervision. Also, they exploit the context within the

citation string and the context between citations within a paper for better extractions.
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2.3 Attribute Similarity Measures

Given a pair of references, most traditional entity resolution approaches employ generic

string similarity measures or domain specific measures to compute the attribute similarity

and make decisions based on the similarity score. A great number of similarity measures

have been proposed for computing string similarity. They are basically divided into three

categories [27]: character-level similarity measures, token-level similarity measures, and

phoneme-based similarity measures.

2.3.1 Character-Level Similarity Measures

Character-level similarity measures match strings character by character. The Levenshtein

distance [46] (also known as Edit Distance) is one of the most commonly used measures

for string similarity. It models the transformation from one string to the other in three

operations: insertion, deletion, and substitution. The edit distance between two strings is

then given by the minimum number of operations required to transform one string to the

other. Waterman et al. [67] generalize the edit distance by allowing multiple deletions and

insertions to handle strings that are either truncated or shortened. Furthermore, for strings

with mismatches at the beginning and at the end, Smith and Waterman [61] extend the edit

distance by assigning lower costs to the characters at the beginning and the end of a string

than in the middle because they observe that it is less likely to make mistakes in the middle

of a string than at the beginning and the end.

The edit distance and its variants work well for most strings; However, they may not be

suitable for strings like names of persons or companies. For example Martha and Marhta

refer to the same person though one name has a spelling error. Using the edit distance

measure, their string similarity is only 0.67 because two operations are needed to transform

one name to the other and the total length of the name is six. Thus this pair of references

is unlikely to be considered as duplicates. To solve this problem, The Jaro distance [39]

and its variant the Jaro-Winkler [56] distance were proposed. According to these measures,

two characters from string s1 and s2 respectively, are considered matching if their distance

is within ⌊max (|s1|,|s2|)
2 ⌋ − 1. Then Martha and Marhta are exactly matched. To show the

difference between names, the transposition is introduced to measure the transformations

between strings. Transposition is defined as half the number of characters that match but

in different sequence order. For Martha and Marhta, the transportation is one because only

one switch of “t” and “h” is needed to transform one string to the other, and the final

Jaro-Winkler distance is 0.94, which can much better reflect the true similarity.

For strings with typographical errors, the N-gram [65] is another technique from the

natural language processing area. The strings to be compared are first converted into a set

of tokens (N-grams), each of which has N characters; Then the similarity can be measured
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by comparing the two set of N-grams.

2.3.2 Token-Level Similarity Measures

Token-level similarity measures focus on the common terms shared by strings instead of

characters. In the information retrieval area, token-level similarity measures are heavily

used by search engines for comparing documents or retrieving documents for given queries.

One measure is the cosine similarity with the Vector Space Model [58]. The basic idea is

to represent strings using vectors in which the components are the term frequency-inverse

document frequency (tf-idf) weight [58] of each token in strings, and then the similarity is

computed as the product of these vectors. Cohen [18] describes a system named WHIRL

which employs this similarity measure for entity resolution. One problem with this measure

is that it ignores the similarity between tokens and does not work for strings with spelling

errors. Bilenko [10] addresses this problem by proposing the SoftTF-IDF measure, which

considers not only the shared tokens but also the similarity of tokens. Gravano et al. [35]

introduce an approach that combines the N-gram technique and the tf-idf weighting scheme

to solve the spelling error problem. For a thorough analysis of these similarity measures,

Cohen et al. [20] give a detailed comparison based on results from several real datasets.

2.3.3 Phoneme-Based Similarity Measures

While the above measures focus on the spelling aspect of strings, some strings may be

phonetically similar but not similar in spelling such as Smyth and Smis. For this problem,

several phonetic similarity measures [15] are proposed based on phonetic codings such as

Soundex [57], NYSIIS [62], ONCA [33], Metaphone [54], and Double Metaphone [55]. These

measures first convert strings into codes using a phonetic coding scheme based on their

pronunciations, and then compare them by matching their phonetic codes. Only strings

with the same phonetic code are considered to be duplicates.

2.4 Standard Entity Resolution Approaches

After standardizing the datasets and choosing the similarity measures, the next step is to

match every pair of potential duplicates and resolve the duplicates. To compare references,

the entity resolution process is modeled as a probabilistic model in which the probability

is the normalized similarity score of two references between 0 and 1. Depending on the

similarity score and the given threshold, pairs of references are labeled as match, possible

match and non-match. Newcombe et al. [52] were the first to recognize duplicate detection

as a Bayesian inference problem. Fellegi and Sunter [29] formally give a theory for the

problem, which combines linkage rules with the probability to resolve entities. In the next

section we introduce various approaches based on the probabilistic model and its variants.
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2.4.1 Similarity-Based Approaches

Using the probabilistic model, a similarity-based approach identifies duplicates by measur-

ing the probability that two references are duplicates through similarity measures. Sev-

eral approaches have employed similarity-based measures to detect duplicates. Monge and

Elkan [50, 51] propose several string matching algorithms for detecting duplicated records

in the database. They first introduce a basic field matching algorithm which treats fields

as a sequence of atomic strings (sorted) and computes the matching score by counting the

number of matched strings. To address the problem of abbreviations and ordering of strings,

they propose a recursive field matching algorithm which compares every pair of strings and

chooses the maximum score as the similarity score of two strings. Cohen [18] implements

the WHIRL system that uses the cosine similarity measure, together with the vector space

model, to measure the similarity of records.

Chaudhuri et al. [14] propose a fuzzy similarity measure to match tuples in databases.

They define three transformation operations: token replacement, token insertion, and token

deletion, each of which is associated with a cost. The similarity of two tuples is then

measured by computing the cost required to transform one tuple into the other using these

operations. Note that this method is different from the edit distance in that the fuzzy

matching function focuses on token level operations while the edit distance operates at the

character level.

2.4.2 Rule-Based Approaches

The probabilistic model enforces pre-defined rules on references. For example, a rule can be

defined like this: if the similarity of two references is greater than threshold θ1, then they

are considered to be duplicates; Otherwise if the similarity is less than threshold θ2, then

they are not duplicates. The rule-based approaches aim to categorize references using these

pre-defined rules or rules learned from training datasets.

Fellegi and Sunter [29] propose to use linkage rules for entity resolution and describe a

theory of properties of the optimal linkage rule and the way to construct the rule. Hernández

and Stolfo [37] suggest the use of an equational theory to model the logic of domain equiv-

alence. In their system, the rules for their test data are first described and evaluated using

a declarative rule language and then converted into a more efficient C implementation. The

logic of these rules is expressed using well chosen similarity measures and thresholds like

those introduced above. Figure 2.1 shows an example of rules defined in their method.

Lee et al. [45] describe a knowledge-based cleaning framework for duplicate identification.

They build their knowledge base using a set of rules such as duplicate identification rules,

merge/purge rules, update rules and alert rules. Each rule is in the form of if <condition>

then <action> in which the action is fired when the condition is met. Jin et al. [40]
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Figure 2.1: A simplified rule in English to illustrate the equational theory [37].

also use the rule-based decision model to detect duplicates. Galhardas et al. [30] describe

another data cleaning framework which aims to separate the logical expression of the data

transformation from their physical implementation. They define a declarative language

based on logical data transformation operators and use this language to describe the data

cleaning problem at the logical level. One advantage of this method is that it can simplify

the testing and deployment of rules.

2.4.3 Supervised-Learning-Based Approaches

A problem with similarity-based and rule-based approaches is that the weights of different

attributes and the threshold for optimal resolution results are difficult to decide. Also,

some references may require different measures for different attributes. Manually choosing

the measures or weights for each attribute is not only tedious but apt to produce errors.

In the presence of some labeled samples, a number of supervised learning approaches that

incorporate the properties of datasets into the similarity measures are proposed for entity

resolution.

Bilenko et al. [10] compare several similarity measures on different benchmark datasets,

they found out that no single similarity measure can perform the best in all cases. They

propose to use similarity vectors of two references to train a binary support vector ma-

chine (SVM) classifier and use the classifier’s confidence in the match class as a new similarity

measure for references. Tejada et al. [64] describe an object identification system consisting

of two learner components: a mapping rule learner that learns to find the most important

attributes and the best combination of attributes for mapping objects, and a transformation

weight learner that learns the weights for a set of predefined string transformations for each

attribute. Other approaches [21, 59, 71] also employ supervised learning methods to train

a probabilistic model like decision tree, Bayesian network or SVM, and later use the model

to identify duplicates. Zhu et al. [71] use a genetic algorithm to adaptively learn the costs

for each string edit operation of the edit distance.
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2.4.4 Active-Learning-Based Approaches

One problem with supervised learning techniques is that a large training dataset is required

to train a classifier and preparing such a training dataset that contains enough negative

or positive representative cases is difficult. To reduce the size of training datasets and

still achieve high accuracy, some methods have been proposed using active learning tech-

niques [22].

An active learner starts with a small labeled training dataset and a large pool of unlabeled

data items. It then actively picks out the important records that when labeled will improve

the performance of the learner during the learning process. Each time new labeled records

are added into the training dataset, the learner will be retrained. ALIAS [59] is a learning-

based duplicate detection system which aims to minimize the size of labeled datasets. For

ambiguous instances that are difficult to resolve, they introduce an uncertainty score for

each instance and propose a classifier independent way to measure the uncertainty score of

instances. Using the uncertainty score, the system picks out the most uncertain instances

to be manually labeled and retrains the learner based on the users’ feedback. Tejada et

al. [64, 63] use a similar strategy for learning mapping rules. A mapping-rule learner in

their system actively chooses the most informative candidate mappings and thus reduces

the number of training examples.

2.5 Relational Entity Resolution Approaches

Most traditional entity resolution approaches rely heavily on the attributes; However, when

the attributes are not enough to uniquely identify the references, these approaches will not

work properly. Recently, with the increasing number of relational datasets, many approaches

focus on exploring the links or relationships between entities for entity resolution.

In relational datasets like databases with key-foreign key constraints, or datasets of social

networks, references are often involved in several relationships and these relationships can

provide additional information to help with entity resolution. Ananthakrishna et al. [3] use

the dimensional hierarchy derived from the key-foreign key relationship in data warehouses

as extra information to identify duplicates. Also they propose to propagate the merging

results from level to level through a top-down traversal approach so that the process can

benefit from prior results. Bhattacharya and Getoor [6, 8] propose an iterative entity res-

olution approach which combines the attribute and linkage similarity to resolve entities

iteratively. Furthermore, they explore several relational similarity measures like Common

Neighbors, Jaccard Coefficient, Adamic/Adar Similarity, Adar Similary with Ambiguity Es-

timate, and Higher-Order Neighborhoods. Parag et al. [60] use a collective model to solve

the entity resolution problem; They build undirected graphical models for the datasets based
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on conditional random fields (CRF) in which nodes are record nodes (binary nodes of pairs

of records) and attribute nodes (pairs of attributes and their similarity score), and edges are

the connections between record nodes and attribute nodes. Using the model, the optimal

inference can be performed in polynomial time by computing the min-cut of the graph.

However, the granularity of their graph (nodes on attribute level) makes their approach

difficult to scale for large datasets.

Dong et al. [25] propose a reference reconciliation algorithm that exploits the relation-

ships among different types of references. They model the relationships as a dependency

graph in which the nodes are similarity between references, and edges are the dependency

relationship between the resolution result of reference pairs. Then entities are iteratively

resolved and the resolving results are propagated along the dependency graph. One prob-

lem with their approach is that building the dependency graph is expensive and may not

scale for large datasets. Kalashnikov et al. [43] also use the relationships between refer-

ences to construct a graph in which the nodes are entities and edges are the relationships

between them. They measure the relational similarity of potential duplicates by computing

the confidence weight for each possible path between nodes.

More recently, Kalashnikov et al. [44, 41] apply the relational entity resolution algorithm

on people disambiguation using the relationships extracted from the web such as the co-

occurrence of references and the hyper-links between them. Furthermore, they develop the

WEST (Web Entity Search Technologies) system [42] to improve the searches of people over

the Internet. The system employs several approaches: a GraphER approach which disam-

biguates people by analyzing the social network extracted off the web pages, an EnsembleER

approach which uses supervised learning to combine results of multiple base ER systems,

and a WebER approach which further improves the GraphER approach by collecting from

the Web a large amount of additional information about the entities in the system.

Bhattacharya and Getoor [7] formulate the multi-type entity resolution using the bibli-

ography dataset and explore some preliminary work on using relationships between multiple

types of references. However, their results mostly focus on how relational clustering out-

performs attribute-based clustering, and no experiments are carried out to evaluate the

accuracy and efficiency of the multi-type entity resolution approach, especially no results

show that it is the multi-type relationship or the single-type relationship that improves the

clustering results.

2.6 Techniques For Improving Efficiency

In addition to the accuracy of entity resolution algorithms, efficiency is another challenge

for entity resolution, especially when the datasets are large. In real datasets, most reference

pairs are not duplicates, and comparing them will waste plenty of time and resources. A
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number of approaches have been proposed to reduce the number of unnecessary comparisons

and improve the efficiency.

2.6.1 Sorted Neighborhood Method (SNM)

Sorted Neighborhood Method (SNM) is a method proposed by Hernández and Stolfo [37] to

effectively reduce the number of comparisons by limiting the similarity measures on a small

portion of the datasets. The method can be summarized in three steps. The first step is to

choose representative attributes of references and compute a key for each reference based

on these attributes. The second step is to sort the dataset over the key. And the last step

is to move a fixed size sliding window over the sorted references and comparing references

within the same window. For example, if the size of the sliding window is w, then every

reference is compared with its previous w−1 references. As the window moves forward, the

first reference in the window will slide out.

As we see, the accuracy of the SNM method depends on the quality of the keys chosen.

A poorly-chosen key will filter out a lot of true duplicates. Also, the size of the window is

very important. For references with a large number of duplicates, a small window size will

result in the same result as that of a poorly-chosen key, and a large window size will bring in

too much unnecessary comparisons. To solve this problem, they implemented a multi-pass

sorted neighborhood method which runs the SNM method independently several times and

each time the references are sorted using a different key and a small window size. Finally

the final result is computed by merging the results from the multi-pass.

2.6.2 Canopies

McCallum et al. [49] propose the use of Canopies for partitioning datasets. The basic idea is

to use an inexpensive approximate distance measure to roughly partition the whole dataset

into a number of overlapping subsets which are referred to as canopies and then employ

standard similarity measures to compare references within the same canopy. For attributes

with text values, they propose to use an inverted index to efficiently construct canopies.

This technique is also used in [21, 8] for reducing the computational cost. Cohen and

Richman [21] propose to use the cosine similarity together with the tf-idf weighting scheme

as the approximate distance measure. Gravano et al. [34] implement the approximate string

joins in database framework using the positional N-gram which can find more potential

duplicates that cannot be found using tf-idf. Chaudhuri et al. [14] also employ N-grams to

build an error tolerant index for quickly retrieval of potential candidates.

Nin et al. [53] introduce a semantic blocking technique for building canopies. In their

method, each canopy is initialized with a reference and then iteratively expanded by merging

relational connected references until no more references can be added. This technique can
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avoid typographical errors since the canopies are built using semantic context (relationships)

rather than string similarity measures. However, for datasets that are not highly connected,

this method may not work well.

2.7 Tools for Entity Resolution

Over the past few years, a number of tools and products for entity resolution have been

developed in the research community and the commercial market.

Febrl 1 (Freely Extensible Biomedical Record Linkage) [15] is an open-source tool that is

used for entity resolution and provides a platform for researchers to evaluate various entity

resolution techniques or conduct their own experiments. As an entity resolution system,

Febrl implements several components: a component for data cleaning and standardization,

a component for Hidden Markov Model training, and a component that consists of several

attribute similarity measures like phonetic name encoding and approximate string compar-

ison. In addition, researchers can add their own measures and resolution algorithms in the

tool.

TAILOR [26] (Record Linkage Toolbox) is a record linkage toolbox that implements

most of the state-of-the-art tools and models in the literature for entity resolution. The

system adapts a layered design and consists of four layers: a searching methods layer for

efficiency which implements several blocking methods including sorting blocking, hashing

bocking, and sorted neighborhood approaches, a comparison functions layer which contains

several similarity measures like Hamming distance, Edit distance, Jaro’s distance, N-grams

and Soundex code, a measurement tools layer which provides several performance metrics to

assess the accuracy and performance of different entity resolution algorithms, and a support-

ing tools layer that provides additional functionality. In addition, the toolbox implements

several machine learning models for entity resolution such as a induction model, a clustering

model and a hybrid model.

GRLS [28] (Generalized Record Linkage System) is an entity resolution system based

on Fellegi-Sunter probabilistic linkage theory. It implements the entity resolution in three

phases: a searching phase which generates potential pairs using criteria provided by users, a

decision phase which applies linkage rules to potential pairs and a grouping phase to group

records that are considered to refer to the same entity in the decision phase. In addition,

GRLS provides a framework for users to test linkage parameters and perform queries.

On the commercial market, IBM has developed several products 2 for information inte-

gration. They provide solutions to standardize data files, validate and enrich data elements

using trusted data like postal records and address information; Also they match records

1http://sourceforge.net/projects/febrl/
2http://www-01.ibm.com/software/data/integration/
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across different data sources and identify duplicates. Trillium Software 3 provides solutions

for data quality including data cleaning and standardization, entity de-duplications and

identification, and address validation. Google Fusion Tables 4 is an experimental system

that focuses on data management and collaboration like merging multiple data sources,

querying and visualizing the datasets and Web publishing.

3http://www.trilliumsoftware.com/
4http://tables.googlelabs.com/
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Chapter 3

Multi-Type Relational Entity
Resolution

In this chapter, we introduce the entity resolution approach that uses multiple relationships

to resolve multiple types of references. Section 3.1 gives a formal definition of the entity

resolution problem. Section 3.2 introduces the graph model adopted for modeling the re-

lational dataset. In Section 3.3, we describe the details of the multi-type relational entity

resolution approach including the clustering algorithm, the bootstrapping process, and the

iterative relational clustering process. Section 3.4 describes the similarity measures used in

our approach. Finally Section 3.5 discusses how the constraints enforcement can help with

the entity resolution.

3.1 Problem Definition

Notation

We first give the notation for formalizing the entity resolution problem. The input of the

approach is a relational dataset consisting of a set of records. Let D = {rec1, rec2, . . . , recn}

be the dataset, in which reci is a record. Each record reci = {ri1, ri2, . . . , rik} is a biblio-

graphic entry corresponding to a paper, and each entry contains several references rij such

as author, paper, venue and so on. Associated with each reference are its type rij .T and a

set of attributes {rij .A1, rij .A2, . . .}. Examples of type are author, paper, venue, etc. Each

reference has only one type, and at least one attribute; and the number of their attributes

varies according to their types and data sources.

Besides the input dataset, we also have a ground truth dataset for evaluating the accuracy

of our approach. Let E = {e1, e2, . . . , em} be the set of entities in D. Each entity ej =

{rj1, rj2, . . .} has a set of references referring to it. The same as references, each entity has

a type ej .T and a set of attributes {ej.A1, ej .A2, . . .}.

Figure 3.1(a) shows the references in the example dataset using the notation defined
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Figure 3.1: References in the example dataset and the ground truth.

above. The dataset Ds = {P1, P2, . . . , P6} contains six records, each of which consists of

several references. As shown in the figure, all the references follow the same schema: a

reference type and a set of attributes. Note that relationships between references are not

presented there, and we will show them in the graph model later.

The Objective of Entity Resolution

Given the dataset D, the goal is to find, for each entity, all the references referring to it and

then group those references together. Formally, it is to partition the dataset D into a set of

clusters C = {C1, C2, . . . , Cm}, in which each cluster Ci = {ri,1, ri,2, . . . , ri,k} consists of a set

of references referring to the same entity ei and no references in other cluster Cj refer to ei.

For the example dataset, the ideal partition is the ground truth given in Figure 3.1(b).

3.2 Graph Model for Relational Entity Resolution

To measure the relational similarity of references, we first need to model the relationships

between references. The intuitive way is to build a graph of the dataset in which nodes

are references and edges are relationships between references. Note that the nodes may be

different types of references instead of single type, and they could be different references

such as author and paper. Also, depending on the types of references, the relationships

between references can be different such as co-authorship and writtenBy.

Figure 3.2 shows such a graph for record P1. This graph model is commonly used by

different approaches [25, 43]. The advantage of this graph model is that different types of
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Figure 3.2: Graph model used by other approaches [25, 43].

references and all the relationships are modeled and can be accessed directly. However, the

problem is that too much information needs to be maintained. For example, for record P1,

we need to store 5 nodes and 5 edges in the graph. Considering datasets with millions of

references, the approaches using this graph model will not work properly in that case.

To simplify the problem, we use the hyper-edge model proposed by Bhattacharya and

Getoor [8] instead of the graph model shown above. A hyper-edge model is a model using

hyper-edges to model the relationships in records, in which the references are the nodes

associated with the hyper-edge. One problem with Bhattacharya and Getoor’s approach is

that they only consider one type of reference (author) in their approach. To adapt it for the

multi-type entity resolution, we generalize the model to allow multiple types of reference.

So for each hyper-edge (record), the nodes (references) associated with it are not just one

type, but all the types of references in the record.

Here we illustrate how we build the graph model and how this graph model helps with

the entity resolution, For each record reci = {ri1, ri2, . . .} in the dataset, we create a hyper-

edge Hi = {ri1, ri2, . . .}, on which are the references in record reci. To facilitate accessing

neighbors on the hyper-edge, each reference rij has an attribute rij .H = Hi which is the

hyper-edge rij is associated with. Thus instead of storing all the neighbors in a set for access,

we access neighbors through the hyper-edge. Also the relationships between references can

be inferred from the types of the connected references.

(a) (b) (c)

Figure 3.3: Process of the relational entity resolution using hyper-edge graph model.

Figure 3.3a shows the initial hype-edge-based graphs Hk and Hj for two records re-

spectively. From the figure we can see that no graph is connected with one another at
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Figure 3.4: Agglomerative hierarchical clustering process.

the initial stage, this is because no references are matched and merged so far. As dupli-

cates are found and merged, the graphs (hyper-edges) are then connected by these merged

references as shown in Figure 3.3b. Then we can use the connected graphs to seek more

relational information (common neighbors) for references to further improve the resolution

results (Figure 3.3c). By iteratively repeating this process, we can resolve the duplicates

and ultimately reach our goal of entity resolution.

Given the graph model for relational entity resolution, we then describe how the model

can be used for measuring relational similarity and resolving duplicates.

3.3 Multi-Type Relational Entity Resolution

In this section, we describe the approach for resolving multiple types of entities using re-

lationships. We begin by introducing the agglomerative hierarchical clustering algorithm.

Then we introduce the bootstrapping process which uses the attributed-based method to

initialize some connections between graphs. After the bootstrapping, we illustrate how we

use relationships for entity resolution. At last we describe the iterative clustering process

for further improving accuracy of entity resolution. The ideas of using agglomerative hi-

erarchical clustering, bootstrapping and relationships were proposed by Bhattacharya and

Getoor [8]. However, they only explore these ideas on single type of reference (author), and

we, in this thesis, extend them for multiple types of references.

3.3.1 Agglomerative Hierarchical Clustering (AHC)

Entity resolution is a process of matching potential duplicates and merging true duplicates.

According to the definition of clustering [36]: “the process of grouping a set of physical

or abstract objects into classes of similar objects is called clustering”, and “a cluster is

a collection of data objects that are similar to one another within the same cluster and

are dissimilar to the objects in other clusters”, the entity resolution process is a natural

clustering process in which each group of results generated by the clustering process is a

cluster.

For clustering, we employ the agglomerative hierarchical clustering algorithm [36] to
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input : R = {r1, r2, . . . , rn}
output: C = {c1, c2, . . .} AND ci = {ri,1, ri,2, . . .}

//Cluster initialization. Initialize each cluster with a reference.1

C = {c1, c2, . . . cn} and ci = {ri};2

//Graph model initialization.3

initializeGraphModel(C);4

//blocking.5

foreach ci ∈ C do6

Si = findPotentialDuplicates(ci);7

end8

//Bootstrapping.9

foreach ci ∈ C do10

bootstrapping(Si, ci);11

end12

//Relational clustering.13

while there are new clusters merged do14

foreach ci ∈ C do15

foreach si ∈ Si do16

simScore = similarity(ci, si);17

if simScore ≥ merge-threshold then18

newCluster = merge(ci, si);19

add newCluster to C;20

notify neighbors and similar clusters of ci and si;21

remove ci and si from C;22

end23

end24

end25

end26

return C;27

Algorithm 1: Algorithm for the memory-based entity resolution

resolve the references. The basic process of AHC is shown in Figure 3.4. Given a set

of references and similarity measures, the algorithm starts by placing each reference in a

separate cluster (step 1). During the clustering process (step 2), the algorithm uses similarity

measures to match pairs of potential duplicates and merge the pairs that are considered

to be true duplicates (pairs with similarity score greater than a given threshold). This

process repeats iteratively until no more clusters can be merged or a termination condition

is satisfied (step 3). The final sets of clusters are the results of the clustering algorithm.

Algorithm 1 gives a high level description of our approach based on the AHC algorithm.

The input is a set of references in the dataset and the output is the final clustering results

of the algorithm. The first step is to initialize a set of clusters with one reference per

cluster (Line 2). Also we initialize the graph model for the records in the dataset (Line

4). Lines 6-8 show the blocking process which aims to improve the efficiency by reducing

unnecessary comparisons, the details of blocking will be introduced in Chapter 4. After the
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Figure 3.5: The graph model of the example dataset in the initial state.

blocking, we execute the bootstrapping process (Lines 10-12) and the relational clustering

process (lines 14-26) which will be introduced in the following sections.

3.3.2 Graph Model Initialization

The first step of our entity resolution approach is to initialize the graph model. For each

record, we build a simple graph using a hyper-edge. The nodes on the edge can be paper

references, author references and venue references. Note that the affiliation is associated with

the author reference rather than the hyper-edge. The initial graphs for the example dataset

are shown in Figure 3.5 in which all references are initially placed in a separated cluster

and separated from each other. The r13, r24, r33 and r34 are affiliations of the corresponding

author references.

3.3.3 Bootstrapping

At the initial stage, each reference is placed in a separated cluster, and these graphs are not

connected to each other; However, some initial connections between graphs are needed to

measure the relational similarity of references. Bootstrapping is one such process aiming to

boost some initial connections by merging clusters with high attribute similarity.

The bootstrapping uses the attribute-based approach for duplicates resolution, which

matches and merges references according to their attribute similarity. Given a pair of

references, an attribute similarity measures and a merging threshold, the attribute similarity

score is first computed for the pair of references; If the similarity score is greater than

the given threshold, then this pair of references is considered to be duplicates and thus is

merged together; Otherwise, we continue to process the next pair. Considering the facts

that a decision cannot be adjusted once it is made during the clustering process (which

is one drawback of the AHC algorithm), and that the merging decisions made during the

bootstrapping will affect the results of the relational clustering, a high accuracy of the

bootstrapping results needs to be maintained so that the following clustering process will

not be affected much by the false positives.

Algorithm 2 describes the details of the bootstrapping process. The input is a set
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input : C = {c1, c2, . . . , cn}
output: C

foreach ci ∈ C do1

mergeSet.add(ci);2

//Si is a set of potential duplicates of ci obtained via blocking.3

foreach sij : Si do4

if merged(ci, sij) then5

continue;6

end7

score← simA(ci, sij);8

if score ≥ mergeThreshold then9

mergeSet.add(sij);10

end11

if score < removeThreshold then12

remove(Si, sij);13

remove(S(sij), ci);14

end15

end16

if size of mergeSet ≤ 1 then17

continue;18

end19

cnew ← merge(mergeSet);20

add(C, cnew);21

for mergedCluster : mergeSet do22

remove(C, mergedCluster);23

end24

end25

Algorithm 2: The Bootstrapping Step.
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Figure 3.6: The bootstrapping result of the example dataset.

of clusters initialized with one reference per cluster, and a set of potential duplicates for

each cluster retrieved through the blocking. The bootstrapping goes through the set of

clusters once (not iteratively). For each cluster ci, we compare it with its potential duplicate

sij (Lines 4-16). Lines 5-7 check if ci and sij have been compared before, if so we ignore

them and continue to process the next potential duplicate; Otherwise, we compute their

attribute similarity score (Line 8). If the score is greater than the given merging threshold

mergeThreshold, we add the reference into the merging set mergeSet (Lines 9-11). To

improve the efficiency, we define a removing threshold removeThreshold which is used to

filter out pairs of references with similarity score less than removeThreshold (Lines 12-15).

After comparing ci with all of its potential duplicates in Si, we then check if any clusters

should be merged (Line 17). If not, we continue to handle the next cluster; Otherwise,

we merge the clusters in mergeSet into a new cluster and remove the merged clusters from

cluster set C.

In the motivating example dataset, we can infer that Richard R. Muntz (r12) in P1 and

Richard Muntz (r23) in P2 refer to the same author using their name attributes, and the

same for Jiong Yang (r31) in P3 and Jiong Yang (r42) in P4 since they share exactly the

same first name and last name. For author references with abbreviated first name like W.

Wang, J. Yang, and V. Srinivasan, it is difficult to tell if they refer to Wei Wang, Jiong

Yang, and Vikram Srinivasan respectively because the abbreviated first name may be used

by other authors with the same last name. However, compared to W. Wang and Y. Wang,

we are more confident that V. Srinivasan and Vikram Srinivasan refer to the same author

since Srinivasan is an uncommon last name in the dataset. Also we believe M. Motani and

Mehul Motani are the same author for the same reason. So through the bootstrapping, we

can identify some duplicated references. Figure 3.6 gives the bootstrapping result of the

example dataset.

One may argue that Wei Wang (r41) in P4 and Wei Wang (r61) in P6 have the same

name and should be merged as that of Jiong Yang (r31) in P3 and Jiong Yang (r42) in
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P4 ; However, they are not the same author according to the ground truth (Figure 3.1(b)).

In fact, W. Wang (r21) in P2, Wei Wang (r32) in P3, and Wei Wang (r41) in P4 refer to

the Wei Wang in the University of North Carolina, while W. Wang (r51) in P5 and Wei

Wang (r61) in P6 refer to the Wei Wang in National University of Singapore.

Apparently, these ambiguous names cannot be distinguished during the bootstrapping

process using attribute-based approaches. In next section, we will introduce the approach

using relationships to further improve the results of entity resolution.

3.3.4 Iteratively Relational Entity Resolution

As introduced before, the relationships between references can provide additional informa-

tion for entity resolution. In this section, we introduce how we use relationships to resolve

duplicates and how we propagate the merging results through the iteratively clustering

process.

Relational Clustering

As Figure 3.6 shows, the separated local graphs are connected somehow after the bootstrap-

ping. For example, P1 and P2 are connected through r12 and r23, P1, P3, and P4 are

connected by author Jiong Yang (r11, r31, r42). Also some references that were not related

before, may have new evidence to show they are true duplicates, such as the co-authorship

between author references, the publishedIn between paper and venue references, and the

writtenBy between paper references and author references.

For the example dataset, through the co-authorship, we can infer that r11 (Jiong Yang)

and r22 (J. Yang) are the same person since they both colloborate with the same author

Richard Muntz (r12 and r23). Also r32 (Wei Wang) and r41 (Wei Wang) refer to the same

person because they collaborate with Jiong Yang (r11, r31, and r42). Similarly, it is the

same for r51 (W. Wang) and r61 (Wei Wang). Figure 3.7 shows the result of the first round

relational clustering. The highlighted nodes and edges are the merged references and the

relationships used for clustering.

Iterative Clustering

From the illustration above, we can see that the context of references is not static. When

two references are merged, their neighbors and similar references get new information and

need be re-evaluated. For example, when r12 (Richard R. Muntz ) and r23 (Richard Muntz )

are merged, their neighbors r11 (Jiong Yang) and r22(J. Yang) which were irrelevant be-

fore, now get connected through the merged references and can be merged because of the

shared neighbor (Figure 3.8). So the intermediate resolution results can be used to further

improve the clustering results. To propagate the merging results, we cluster the references
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Figure 3.7: The first round clustering result of the example dataset.

Figure 3.8: The second round clustering result of the example dataset.

iteratively instead of separately. Each time when a pair of references is merged, we notify

their neighbors and related references and re-evaluate them in the next iteration.

In the example dataset, we apply the propagation strategy on the result of the first

round clustering. When references r11 (Jiong Yang) and r22 (J. Yang) are merged, the

merging information is propagated to their affiliations r13 (UCLA) and r24 (University of

California, Los Angeles) respectively, and results in the merging of r13 and r24. Also,

after the first round clustering, author reference r21 (W. Wang) now shares a common

neighbor Jiong Yang with r32 and r41 (Wei Wang), and can be merged for their relational

similarity. Similarly, paper references r55 and r65 are merged because of the three shared

author references and the paper reference.

This clustering process repeats until no duplicates can be found any more. Figure 3.9

shows the final results of the iterative clustering. So through various relationships, infor-

mation propagation and the iterative process, we can resolve the duplicates for multi-type

entities simultaneously.
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Figure 3.9: The final clustering result of the example dataset.

Implementation

Algorithm 1 (Lines 13-26) gives the process of the iteratively relational clustering. In every

iteration, we compute the similarity score (which combines attribute similarity and relational

similarity) of each cluster ci and its potential duplicate si. For the pair of references with

similarity score greater than the merging threshold, we merge them into a new cluster, and

then remove them from cluster set C. The different between the relational clustering process

and other method is that for each merged pair of clusters, we notify their neighbors and

related potential duplicates. By doing so, these affected clusters will be re-compared with

their potential duplicates. Also, those unaffected clusters will not be considered again so

that unnecessary comparisons can be avoided and the process can converge finally.

3.4 Similarity measures

The accuracy and efficiency of the entity resolution algorithm greatly depend on the meth-

ods employed for comparing and merging references. In this section, we introduce various

similarity measures used in our approach including attribute similarity measures, relational

similarity measures and their hybrid.

3.4.1 Name Ambiguity

Before introducing the similarity measures, we first describe the ambiguity of author names.

Recall that in the motivating example, we merge V. Srinivasan in P5 and Vikram Srinivasan

in P6 because their names are very similar and not ambiguous. But the similar names W.

Wang in P5 and Wei Wang in P6 are not merged because we think they are common

names and may represent different entities. So a natural question is how to determine if a

given name is ambiguous.

We use the name ambiguity measure introduced by Bhattacharya and Getoor [8] in which

the name ambiguity is defined as the probability that a name is shared by different entities.
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In our datasets, the author names are mainly in two forms: F. Last with initial first name

and full last name, and First Last with the full name. For names in the form F. Last, the

name ambiguity is indicated by the number of distinct names (same last name and different

first name) in the dataset. For example, W. Wang is considered as ambiguous because it

is shared by three distinct names Weining Wang, Wenqiang Wang and Wei Wang. In our

approach, we define a name as ambiguous if it is shared by at least two distinct authors.

For names in form First Last, we do not define their ambiguity as a whole; Instead, we

measure the ambiguity of its first name and last name which is computed as the number of

distinct names using them divided by the number of total names using them. Then when we

compare a pair of author references, we incorporate this ambiguity into their name similarity

like multiplying the similarity by a coefficient less than 1.0.

3.4.2 Attribute Similarity Measures

Attribute similarity measures are employed to compute attribute similarity for references.

The similarity score is then used for reference resolution decisions. In our datasets, the

attributes of references are strings such as the paper title, author names and others, so we

are only concerned about the string similarity measures.

Given a pair of references ri and rj with a set of attributes ri.Ak and rj .Ak respectively 1,

let simA(ri, rj) be the attribute similarity of ri and rj , and simstr(ri.Ak, rj .Ak) be the string

similarity of ri and rj ’s attribute Ak. The attribute similarity of ri and rj is computed as

the summation of the string similarity of each attribute as follow.

simA(ri, rj) = w1 ∗ simstr(ri.A1, rj .A1) + w2 ∗ simstr(ri.A2, rj .A2) + . . . (3.1)

in which w1, w2, . . . are the weights assigned to each attribute according to their importance.

Usually, the weights can be tuned manually by the domain experts or learned from a labeled

dataset. In our approach, we manually choose the weights that can be used to achieve best

accuracy.

Although we use the same measure to compute the string similarity, the way to compute

the similarity of papers and authors is still different. For papers, the string similarity

measure can be applied on the title directly and the formula to compute the string similarity

is as follow:

simstr(str1, str2) =
EditDistance(str1, str2)

max(length(str1), length(str2))
(3.2)

For authors, the situation is slightly different. First, the author names are usually very

short. Second, a lot of names are provided with initial names like J. Yang. These features

make the edit distance not work well directly on them. Thus we split the name into different

1Here we assume the pair of references has the same number of attributes. For the reference that does
not have the attribute of the other reference, we add the attribute with a null value.
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parts, then measure the similarity score for each of them, and combine these scores together

as the final attribute similarity score of the author references. The formula is defined as

follow:

sim(name1, name2) = α ∗ simstr(firstname1, f irstname2)

+ β ∗ simstr(middlname1, middlname2)

+ (1 − α− β) ∗ simstr(lastname1, lastname2)

in which the α, β, and (1−α−β) are the weights for each part of the name. Note that if the

firstname or lastname of the two references is exactly the same and is ambiguous according

to our measurement of name ambiguity , we will decrease their similarity score by a value

between 0.0 and 1.0.

3.4.3 Relational Similarity Measures

Relational similarity measures are used to assess the relationship similarity between refer-

ences, and can provide additional information for entity resolution. Several measures have

been evaluated in [8] such as Common Neighbors, Jaccard Coefficient, Adamic/Adar Simi-

larity, AdarName, and Higher-Order Neighborhoods, of which we choose Jaccard coefficient

as our relational similarity measure for the following reasons. First, Jaccard coefficient has

been shown to outperform other measures except AdarName; Second, the AdarName which

performs best can only be used for author entity resolution and we need to resolve other

references such as papers.

Jaccard coefficient is a measure for computing the similarity between two sets. For any

reference pair (ri, rj), as the graph model shows, each reference has a set of neighbors that

can be collected through the hyper-edges. We let Nbr(ri) = {ri1, ri2, . . .} be the neighbors

of ri, and Nbr(rj) = {rj1, rj2, . . .} be the neighbors of rj ; Then ri and rj are considered as

relational similar if they share at least one common neighbor, and we measure the relational

similarity by the Jaccard coefficient which is defined as the size of the intersection divided

by the size of union of the two sets of neighbors. The formula is given as follow:

simR(ri, rj) = Jacc(ri, rj) =
| Nbr(ri) ∩Nbr(rj) |

| Nbr(ri) ∪Nbr(rj) |
(3.3)

Depending on the requirements of the entity resolution task and the relationships available,

the relational similarity measures are divided into single-type relational similarity measures

which measure the Jaccard Coefficient of only one type of neighbors such as the co-authors,

and multi-type relational similarity measures which measure the Jaccard Coefficient of sev-

eral type of neighbors of the given reference such as co-authors, papers or affiliations.
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Single-type Relational Similarity Measures

Single-type entity resolution is required in many situations such as personal information

management or demographic census where the main task is to reconcile duplicated person

references. In the co-authorship social network, only the author references need to be

resolved and the relationship commonly used is the co-authorship [8].

We can use Function 3.3 to compute the single-type relational similarity. However, there

are some restrictions on the references and their neighbors which are listed as follow:

• ri.T = rj .T .

• ri1.T = ri2.T = . . . = rj1.T = rj2.T = . . .

First, only the same type of references can be compared. Second, the type of the references’

neighbors should also be the same. For instance, the neighbors of W. Wang in paper record

P2 are Nbr(W.Wang(P2)) = {J.Y ang(P2), RichardMuntz(P2)} rather than the set like

{V LDB(P2), J.Y ang(P2)}.

Multi-type Relational Similarity Measures

The multi-type relational similarity is computed by combining the similarity scores of all

the relationships the pair of references is involved as follow:

simR(ri, rj) = w1 ∗ simR1
(ri, rj) + w2 ∗ simR2

(ri, rj) + . . . (3.4)

in which the R1, R2, . . . refer to the relationships between ri and rj . w1, w2, . . . are the

weights for each type of relationships. The same as the attribute similarity measure, the

weights for each type can either be learned from training data, or manually set by domain

experts. Some relationships have higher weight than others, such as writtenBy relationship

which is more important than the co-authorship since sharing a paper is a stronger proof

than sharing a co-author.

3.4.4 Hybrid Measures

In some cases, neither of the above similarity measures works well separately. To achieve

higher accuracy, we use the hybrid measure proposed in [8] which combines the attribute

similarity measure and relational similarity measure. Let sim(ri, rj) be the similarity of

reference ri and rj , it is formulated as follow:

sim(ri, rj) = µ ∗ simA(ri, rj) + (1− µ) ∗ simR(ri, rj), 0 ≤ µ ≤ 1 (3.5)

in which the attribute similarity simA(ri, rj) is computed through Function 3.1, and rela-

tional similarity simR(ri, rj) is computed by Function 3.3 or Function 3.4. µ is the weight

of attribute similarity and (1 − µ) is the weight for relational similarity. We can see that

the similarity is attribute-based if µ is set to 1.0, and fully relation-based if µ is set to 0.0;
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3.5 Constraints Enforcement

Up to this point, we always seek for positive evidence either from attributes or relationships

for entity resolution. Sometimes, negative evidence can also help with the resolution. Con-

straints enforcement [25] is one part of the entity resolution system that uses these negative

evidence (which is referred to as constraint) under certain circumstances to prevent from

making false decisions. In bibliographic domain, a common constraint is that authors in one

paper are distinct from one another. So if two references share a hyper-edge, they should

not be merged even their similarity score is high. Also, in the citation network, one paper

should not cite a paper twice and papers published later than this one. The constraints

vary in different domains. In our approach, we check the constraints on authors during the

clustering process and set clusters that violate the constraints to be non-mergeable by either

removing them from each other’s set of potential duplicates or set their similarity score to

0.0.

3.6 Summary

For multiple types of references, relationships between different types of references can

help resolve these references simultaneously. In this chapter, we formalize the multi-type

entity resolution problem, and introduce the hyper-edge graph model for the relational

clustering algorithm. Also we describe the agglomerative hierarchical clustering algorithm

and the clustering process including the bootstrapping process for boosting connections and

relational clustering process that uses relationships to improve the entity resolution.

For the pair-wise decisions during the clustering process, the correctness of the decision

is greatly dependent on the similarity measures employed. The attribute similarity measures

and relational similarity measures used in our approach, and a hybrid measure that combines

these two similarity measure are introduced in this chapter. In addition, we discuss the

constraints enforcement involved during the clustering process.

In the next chapter, we will introduce various methods for improving the efficiency of

our entity resolution approach.
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Chapter 4

Efficiency of Relational Entity
Resolution

The previous chapter describes the multi-type entity resolution algorithm which mainly

focuses on improving the accuracy. While high accuracy is crucial for entity resolution,

the efficiency is also an important aspect many applications are concerned about, especially

when handling large datasets. In this chapter, we introduce approaches aiming to improve

the efficiency of the algorithm. Section 4.1 introduces two blocking methods that help

reduce unnecessary comparisons, and Section 4.2 describes the improvement over a relational

clustering algorithm.

4.1 Blocking

As introduced before, the entity resolution is an iterative process of matching and merging

references. For each reference, its potential duplicates can vary greatly depending on dif-

ferent standards. In principle, every reference in a dataset can be considered as a potential

duplicate of others. For a dataset with n references, it will result in O(n2) comparisons

which are too high and impractical for large datasets with millions of references such as the

ReaSoN dataset, and even worse if the similarity measures are expensive and the dimensions

of data attributes are high. In reality, the average number of duplicates per entity is far

less than the total number of references in most datasets. This means that most of the

comparisons are redundant. In this section, we use a technique named blocking to reduce

these redundant comparisons.

Blocking, also referred as canopies [49], is a technique that uses inexpensive approximate

similarity measures to split a large dataset into small overlapping partitions. References that

are strongly similar according to the similarity measures are grouped together in the same

partition, and references that are less similar will be distributed into different partitions. We

consider all the references in the same partition as potential duplicates of one another and

references in different partitions as distinct. Also, we only compare the references within the
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same partition so that the number of comparisons can be greatly reduced and the efficiency

of the algorithm gets improved. Note that the overlapping partitions allow one reference

to appear in several partitions, by which we can achieve higher recall rate. For example,

suppose Jiong Yang is a potential duplicate of Jiong Yan, and Jiong Yan is a potential

duplicate of Jiang Yan; However, Jiong Yang and Jiang Yan may not be considered as

potential duplicates by the blocking filter since both their first names and last names are

different. To handle this case, we put Jiong Yan in both partitions so that we can still group

Jiong Yang and Jiang Yan via Jiong Yan if later on we consider them as true duplicates.

A good blocking approach requires a good approximate similarity measure which can

efficiently group the potential duplicates and separate unrelated references. For references

with string attributes, most inexpensive similarity measures are based on the inverted index,

which is a data structure commonly used in the information retrieval area. The inverted

index stores the mapping from tokens to the documents containing them, and through

the mapping, we can retrieve the documents containing the given terms efficiently. In the

following part, we describe two inverted-index-based approximate string similarity measures,

a simplified one for author references, and a complicated one for both paper references and

author references.

4.1.1 Naive Inverted-Index-Based Blocking

Considering that most author names have at most three parts: first name, middle name,

and last name, two names sharing the same initial first name and the full last name are very

likely to refer to the same author. Using this observation, we can define our blocking filter

for author references as follow: author reference ri is similar to author reference rj if and

only if ri.A and rj .A have the same initial first name and full last name.

To filter author references using an inverted index, we format each name as F-LAST

in which F is the initial first name and LAST is the full last name. The terms in the

index are names in format F-LAST and the documents are the references with the same

F-LAST name. Here the document id is the reference id and the content of the document

is the value of their attributes. The advantage of this method is that we can retrieve the

potential duplicates for one reference efficiently and do not need to compute any similarity

(the similarity measure is built into the inverted index). And one drawback is that we have

to sacrifice some accuracy for datasets with spelling errors.

4.1.2 Vector Space Model (VSM) Based Blocking

Although the naive inverted-index-based blocking approach works well for author names, it

is not suitable for longer strings like paper titles. In this section we introduce the VSM-

based blocking technique. Vector Space Model [58] is an algebraic model that represents
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documents by vectors. Each vector consists of weights of terms in the document which are

computed using the tf-idf weighting scheme [58]. Given documents d1 and d2, let V(d1) and

V(d2) be the vector representations of documents d1 and d2 respectively. The similarity of

d1 and d2 is computed as the cosine similarity of the two vectors [48]:

sim(d1, d2) =
V(d1) · V(d2)

| V(d1) || V(d2) |
(4.1)

And the weights of terms in the vectors are computed using the tf-idf [48] as follow:

tft,d =
Nt,d∑n

k=0Ntk,d

(4.2)

idft = log
| D |

dft

(4.3)

tf -idft,d = tft,d × idft (4.4)

in which t is the term, d is the document, D is the document set, n is the total number of

terms in d, Nt,d is the frequency of t appeared in d, and dft is the number of documents

that contain term t.

For paper references or author references, their attributes are considered as the docu-

ments, then the potential duplicates of a reference ri can be retrieved using the VSM-based

approach as the following process. First, we retrieve from the inverted index the documents

that share common terms with ri. Then we compute the similarity score of reference ri

and the retrieved documents using the above VSM-based similarity measure and rank these

documents by the similarity scores. The final potential duplicates of reference ri are the

documents with similarity score greater than a given threshold.

The advantage of this approach is that it ranks the retrieved references according to

their relevance to reference ri so that the potential duplicates retrieved are relevant, while

the drawback is that the approach is more expensive than the naive inverted-index-based

approach because it needs more computations such as the tf-idf weights and the cosine

similarity.

Figure 4.1: The indexing and blocking results for the example dataset.

Figure 4.1 shows a blocking example in which (a) shows the inverted index built for the

author references and (b) shows the potential duplicates of two author references.

The blocking methods improve the efficiency by reducing redundant comparisons prior

to the phase of entity resolution. To achieve higher improvement, we then focus on the

entity resolution phase and optimize the clustering process. In next section, we introduce

an optimized iterative clustering process over the approach of Bhattacharya and Getoor.
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Find similar references using blocking1

Initialize clusters using bootstrapping2

for cluster ci, cj such that similar(ci, cj) do3

Insert < sim(ci, cj), ci, cj > into priority queue4

end5

while priority queue not empty do6

Extract < sim(ci, cj), ci, cj > from queue7

if sim(ci, cj) less than threshold then stop8

Merge ci and cj to new cluster cij9

Remove entries for ci and cj from queue10

for each cluster ck such that similar (cij , ck) do11

Insert < sim(cij , ck), cij , ck > into queue12

end13

for each cluster cn neighbor of cij do14

for ck such that similar (ck, cn) do15

Update sim(ck, cn) in queue16

end17

end18

end19

Algorithm 3: The relational clustering algorithm proposed by Bhattacharya and
Getoor [8].

4.2 Improvement of Iterative Clustering Process

As introduced in Chapter 3, a crucial step during the clustering process is to notify clusters

that are related to the merged clusters and to re-compute the similarity between these

affected clusters and their potential duplicates. Since the computation of similarity takes

most of the time during the clustering process, effectively and accurately choosing pairs to be

re-computed is very important to the entity resolution process. In this section, we describe

the improvement over the clustering process proposed by Bhattacharya and Getoor. We

start by briefly introducing their algorithm and the data structure used in their approach.

4.2.1 Clustering Algorithm of Bhattacharya and Getoor

To effectively update the similarity of references, a max priority queue [23] is used as their

underlying data structure. Max priority queue is a data structure used to organize a set

of elements in a binary tree structure. Each element in the priority queue consists of two

clusters and their similarity score, and the element with the highest similarity score is always

kept at the top of the queue so that the pair of most similar references can be obtained

directly. Figure 4.2(a) lists a priority queue for our example dataset. We can see that the

entry with the highest similarity score is always at the top of the queue.

Algorithm 3 lists the algorithm proposed by Bhattacharya and Getoor [8]. After the

blocking and bootstrapping steps (Lines 1-2), a priority queue is created and initialized

with all pairs of potential duplicates and their similarity score (Lines 3-5). Then the clus-
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Figure 4.2: The priority queue and data structure used in BG’s approach. Each entry in the
priority queue contains an entry index, a pair of clusters and their similarity.

tering process is repeated until the priority queue becomes empty (Line 6) or the maximum

similarity in the queue is less than the given threshold (Line 8). Lines 11-18 give the steps

for notifying similar clusters and updating the similarity of clusters in the queue.

To propagate the merging results and update the similarity efficiently, three additional

lists are maintained for each cluster ci: a list of similar clusters that contain potential

duplicates of references in ci, a list of neighboring clusters that share hyper-edges with

references in ci, and a list of indexes to their entries in the priority queue for cluster ci.

The first two lists are used to access the similar clusters and the neighboring clusters of

the merged clusters; And the third list is used to update the similarity score of the affected

clusters. Figure 4.2 lists all the data structures used in their approach, Figure 4.2(a) is the

priority queue, in which each entry contains an entry index, two clusters, and their similarity.

Figure 4.2(b) gives two examples of the data structure maintained for each cluster, which

include the cluster id, attributes, a list of neighbors, a list of similar clusters and a list of

indexes to the entries in the priority queue.

4.2.2 Drawbacks of Bhattacharya and Getoor’s Algorithm

Apparently, Bhattacharya and Getoor’s method is time efficient for retrieving clusters and

updating similarity. This is a good strategy as long as the dataset is small and can be loaded

into the main memory for processing. However, for large datasets and systems with limited

memory, this strategy may not work properly because too much information needs to be
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Figure 4.3: Two examples for the data structure used in our approach.

maintained for each cluster. To reduce the memory consumption of the clustering algorithm,

we optimize their clustering process by eliminating some unnecessary data structures.

In Algorithm 3, when two clusters are merged, the similar clusters and neighboring

clusters of the merged clusters are re-evaluated immediately (Line 11 and Line 14 in Al-

gorithm 3), and the similarity between them and their potential duplicates is re-computed

and then updated in the priority queue (Line 11-18). However, the similarity of a pair is

not used until its entry is extracted from the top of the priority queue. Furthermore, the

similarity score becomes useless after it is used for making decisions. This means that the

computation of the similarity score can be postponed until the moment we need them, and

also the similarity score does not need to be maintained.

Based on the above observation, we replace the priority queue with a status for each

cluster that indicates the availability of new information, and postpone the computation of

similarity to the time it is needed (the next iteration). In addition, the list of neighboring

clusters is not maintained since all the neighbors can be obtained quickly through the

hyper-edges of cluster ci. Figure 4.3 lists the data structure used in our optimized clustering

process, from which we can see that the priority queue, entry indexes and the list of neighbors

of each cluster are eliminated. Instead, we use just a status flag to indicate the availability

of new information.

4.2.3 Implementation of Our Iterative Clustering Algorithm

Algorithm 4 presents a detailed implementation of our clustering algorithm. In the im-

plementation, each cluster ci has a status ci.hasHint to mark if there is any new infor-

mation (which is referred to as hint) available. For example, when Richard R. Muntz in

P1 and Richard Muntz in P2 are merged, the merging result (hint) is propagated to their

neighbors, and the status of Jiong Yang in P1 and J. Yang in P2 is updated with hasHint

set to true.

The input of the clustering algorithm is the set of cluster generated from the bootstrap-

ping and the output is a final cluster set with all the true duplicates resolved. The algorithm

iterates the set of cluster repeatedly until no more clusters can be merged. In each iteration,

we go through the set of clusters once. For each cluster ci, Lines 3-5 check if there is any

new hint for cluster ci available. If not, the algorithm continues to handle the next cluster;

Otherwise, the cluster ci is compared with its potential duplicates si (Line 8). For the pairs
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input : C : Output of the bootstrapping
output: C : Final cluster set

while there is new clusters merged do1

foreach ci ∈ C do2

if ci.hasHint = false then3

continue;4

end5

//Si is the set of potential duplicates of ci.6

foreach si ∈ Si do7

simScore← similarity(ci, si) ;8

if simScore ≥ threshold then9

newCluster← merge(ci, si);10

add(C, newCluster);11

remove(C, ci);12

remove(C, si);13

//Nbr(newCluster) is a set of neighboring clusters of newCluster.14

foreach ni ∈ Nbr(newCluster) do15

ni.hasHint = true;16

foreach sni ∈ S(ni) do17

sni.hasHint = true;18

end19

end20

foreach sj ∈ S(newCluster) do21

sj .hasHint = true;22

end23

//Here we replace ci with newCluster.24

ci ← newCluster;25

end26

end27

//The new hint has been used, so set the hasHint to false.28

ci.hasHint = false;29

end30

end31

Algorithm 4: Iterative Relational Clustering
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with similarity score greater than the threshold, we first merge them into a new cluster and

then remove them from the cluster set C (Lines 10-13).

The key difference between our clustering process and that of Bhattacharya and Getoor

is shown in Lines 15-23. When traversing the neighbor sets (Lines 13-18), we just mark the

hasHint of affected clusters as true rather than computing the similarity between them and

their potential duplicates immediately. For each of the neighboring clusters, we further up-

date the status of their similar clusters (Lines 17-19) so that these clusters are re-considered

in the next iteration. Note that we stop the resolution propagation at the similar clusters of

the neighbors. On one hand, the neighbors and their similar clusters may not be merged and

then the results do not need to be propagated further; On the other hand, if some neighbors

and their potential duplicates are merged, it should be their responsibility to propagate

their resolution results. The same as the neighboring clusters, we only update the status of

similar clusters of ci (Lines 21-23) of the merged clusters.

4.3 Summary

Efficiency is another important indicator of a good entity resolution approach besides the

accuracy. For the pairwise comparison based clustering approach, reducing the redundant

comparisons and optimizing the clustering process are two efforts we can make to improve

the efficiency of our approach. In this chapter, we first describe two blocking methods

to reduce the redundant comparisons, one for author references, and one for both paper

references and author references. Then we analyze the clustering algorithm introduced by

Bhattacharya and Getoor, and propose an iterative clustering algorithm to improve the

efficiency by reducing the usage of additional data structures. In the next chapter, we will

give the experimental evaluation about the accuracy and efficiency of our entity resolution

approach.
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Chapter 5

Experimental Evaluation

In this chapter, we describe experiments carried out for evaluating the accuracy, efficiency

and scalability of our entity resolution algorithm, and discuss the results. Section 5.1 in-

troduces the datasets used for evaluation. Section 5.2 describes the dataset preprocessing.

Section 5.3 introduces the metrics used for evaluating the algorithms. And Section 5.4

presents and analyzes the results of these experiments.

5.1 Datasets

The datasets used in our experiments can be divided into two categories: datasets for

benchmarking, and datasets for scalability measurement. The datasets for benchmarking

contain references to be resolved and manually labeled answers. The datasets for scalability

measurement contain references but no ground truth is provided.

Table 5.1 lists the basic information of these datasets. Columns papers and authors list

the number of paper references and author references, and columns unique papers and unique

authors give the number of entities in the ground truth for paper and author respectively.

Columns venues and affiliations show the number of references for venue and affiliation.

N/A indicates that the number for the current column is unknown in the given dataset.

The first three datasets: CiteSeer, arXiv and DB, are used for benchmarking. The datasets

DBLP, ACM DL, ACM Citation and Google Scholar constitute the ReaSoN dataset which

is used for measuring the large-scale entity resolution approach. More details about these

datasets are given below.

CiteSeer Dataset

CiteSeer is a scientific digital library that focuses primarily on the literature in computer

and information science 1. It was developed at the NEC Research Institute, Princeton,

New Jersey and now hosted and maintained at Pennsylvania State University. The dataset

1http://citeseer.ist.psu.edu
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papers unique
papers

authors unique
authors

venues affiliations

CiteSeer 1,504 875 2,892 1,165 N/A N/A
arXiv 29,555 N/A 58,515 9,200 N/A N/A
DB 116,455 N/A 291,006 N/A 96,706 N/A

DBLP 1,221,236 N/A 3,082,861 N/A 1,221,138 N/A
ACM DL 1,217,844 N/A 2,467,773 N/A 945,388 1,158,426

ACM Citation 5,886,251 N/A 12,823,152 N/A 5,574,378 N/A
Google Scholar 68,674 N/A 162,663 N/A 48,925 N/A

ReaSoN 8,394,005 N/A 18,536,449 N/A 7,789,829 1,158,426

Table 5.1: Datasets used for evaluation. Datasets CiteSeer, arXiv and DB are used for
benchmarking. ReaSoN is consisted of datasets DBLP, ACM DL, ACM Citation and Google
Scholar. Columns papers, authors, venues and affiliations represent references, and columns
unique papers and unique authors represent entities.

we use is a small portion of the entire library with 1504 paper references and 2892 author

references. All the papers and authors have been manually labeled with a cluster id that

uniquely identifies the true entities of the references. The attributes available in the CiteSeer

dataset include the title for papers and the name for authors. Other information like year,

venue and affiliation are not provided. Table 5.2 lists a sample of the dataset.

aid a c id norm name full name a no pid p c id title
6 10 aamodt a Aamodt, A 0 673 4701 Knowledge...

10 10 aamodt agnar Agnar Aamodt 0 1018 6602 Case-Based...
11 10 aamodt agnar Agnar Aamodt 0 671 4701 Knowledge...

Table 5.2: A sample record in the CiteSeer dataset.

In the sample, aid is the author id, a c id is the author cluster id, norm name is the

normalized name with the last name followed by the first name and middle name. full name

is the author name in the paper, a no is the order of the author in the paper, pid is the

paper id and p c id is the paper cluster id. Due to space limitation, we did not list the full

title. The CiteSeer dataset was originally created by Giles et al., and then hand-clustered by

Aron Culotta and Andrew McCallum in University of Massachusetts, Amherst, and further

cleaned by Indrajit Bhattacharya and Lise Getoor in University of Maryland. It can be

download from their website 2.

arXiv dataset

arXiv is an e-print service 3 which provides access to papers in Physics, Mathematics, Non-

linear Sciences, Compute Science, Quantitative Biology, and other fields. It is owned and

operated by Cornell University. The dataset we use is a subset of publications in high

energy physics. It was originally used in KDD Cup 2003 [1]. David Jensen at University of

2http://www.cs.umd.edu/projects/linqs/projects/er/DATA/citeseer.dat
3http://arxiv.org
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Massachusetts, Amherst labeled the ground truth of authors on part of the dataset which

was further cleaned by Indrajit Bhattacharya and Lise Getoor in University of Maryland.

The arXiv dataset contains 29,555 paper references and 58,515 name references referring to

9,200 authors. The format of the dataset is the same as that of CiteSeer dataset. The only

difference is that arXiv dataset does not have paper titles available. It can be download

from Lise Getoor’s website 4.

DBLP

DBLP 5 provides bibliographic information on major computer science journals and pro-

ceedings. Initially it focused on papers in DataBase systems and Logic Programming and

now gradually expands to other fields of computer science 6. DBLP is maintained by Michael

Ley at University of Trier. As of June 2009, the dataset contains more than 1.2 million bib-

liographic records. The version we use contains the records up to June 2009 with 1,221,236

paper references, 3,082,861 author references and 1,221,138 venue references. Each record

contains attributes of papers like title, author name, year, venue and so on. A sample

record of DBLP is given in Figure 5.1. A snapshot of DBLP can be downloaded from their

website 7.

Figure 5.1: A sample record in the DBLP dataset.

The DBLP dataset consists of a set of records with one paper per record. Each paper

has a key that uniquely identifies it in the dataset. All the author names in DBLP come

with the full first name and last name. Initial or full middle names are also given for some

authors. Booktitle is the venue where the paper is published, and the crossref field refers

to the bibliography of the conference. More details about DBLP is introduced by Michael

Ley [47].

4http://www.cs.umd.edu/projects/linqs/projects/er/DATA/arxiv.dat
5http://www.informatik.uni-trier.de/∼ley/db/
6http://www.informatik.uni-trier.de/∼ley/db/about/faqdblp.html
7http://dblp.uni-trier.de/xml/
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ACM Digital Library

ACM Digital Library (ACM DL) 8 is a collection of publications from ACM journals,

newsletter articles and conference proceedings on computer science. The dataset we use

is compiled of bibliography information of most publications in the digital library, and con-

tains 1,217,844 paper references, 2,467,773 author references, 945,388 venue references, and

1,158,426 affiliation references. For each bibliography record, ACM DL provides informa-

tion like paper title, author name, year, venue, DOI and so on. Appendix 7.2 lists a sample

record in ACM DL and gives detail description of the record. In addition to the basic infor-

mation that other datasets provide, ACM DL also contains affiliations for some authors and

citations of papers. The ACM DL dataset is a proprietary dataset which we had a license

to use for 2 years.

ACM Citation

ACM citation is a dataset consisted of the papers cited by papers in ACM DL. As de-

scribed above, the citations of a paper are a list of citation string rather than a formatted

bibliography record. To build the dataset, we first extract from the citation strings the

metadata information of papers like titles, author names and venues using the Flux-Cim

algorithm[66]. After the conversion, the ACM Citation dataset obtained contains 5,886,251

paper references, 12,823,152 author references and 5,574,378 venue references. Figure 5.2

lists a sample record.

Figure 5.2: A sample record in ACM citation dataset.

The string is the original citation string in the ACM DL, and the author name, paper

title, venue fullname, year, pages and volume are the attributes extracted from the citation

8http://portal.acm.org/dl.cfm

47

http://portal.acm.org/dl.cfm


string. The author name in ACM Citation datasets are provided with the full last name

and initial or full first name, middle names are available for some of them.

Google Scholar dataset

Google Scholar is a freely-accessible scientific paper search engine developed by Google. It

provides scholars with a vast volume of information about scientific literature across several

fields. Given the title of a paper, Google Scholar can retrieve a list of related publications

ordered by a relevance descending ranking. The snippet of each result contains the number

of citations the paper received and hyper-links to those citations. Following the link, we can

further retrieve information about those citations which include title, year, author names

and probably venues. Due to length limitation, Google Scholar may omit or shorten some

information like venue so that the information of papers may not be complete. In this thesis,

we construct a dataset through Google Scholar. We first compile a collection of papers in

the Database area from DBLP. Then for each paper Pi, we retrieve the papers that cite Pi,

and extract their information. A sample of extracted records is shown in Figure 5.3. This

is also a proprietary dataset obtained through semi-automated crawling which we have no

right to release.

Figure 5.3: A sample record in Google Scholar dataset.

In the Google Scholar dataset, the id is the key in the DBLP record. The cites in

the citedby part refer to the papers that cite the given paper. The author name and venue
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name need to be further split and processed. After the cleaning, we construct a dataset that

contains 68,674 paper references, 162,663 author references and 48,925 venue references.

ReaSoN dataset

The ReaSoN dataset is composed of the DBLP, ACM DL, ACM Citation and Google Scholar

datasets. The whole dataset contains 8,394,005 paper references, 18,536,449 author refer-

ences, 7,789,829 venue references and 1,158,426 affiliation references.

DB dataset

With no ground truth labels available, measuring the accuracy of the clustering algorithm

on the ReaSoN dataset is not practical, especially for such a large dataset. Instead of

accurately evaluating the algorithm, we adopt an approximate measurement by measuring

an approximate accuracy of the algorithm on a small sample dataset of the ReaSoN dataset.

The papers in the sample dataset are chosen from a number of database venues (Appendix

7.2). The correctness of the clustering on this sample dataset is judged manually.

The process to construct the sample dataset is straightforward; We collect a list of venues

in the database community, and then add papers in these venues from different sources to the

sample dataset. The final dataset (DB dataset) contains 116,455 paper references, 291,006

author references, and 96,706 venue references. To measure the accuracy, we randomly

choose several last names, and pick out the author references with these last names. Then,

we label these author references manually. The partial ground truth for DB dataset contains

140 entities and 1518 references.

Other properties of these datasets

The basic information of these datasets like the domain, source, and format and so on is

given above. For entity resolution, there are some other properties that may help determine

parameters for clustering. We list some of them for the three datasets in Table 5.3 and give

a detailed explanation for each property. The ReaSoN dataset is not listed because it is not

used for the benchmark.

CiteSeer arXiv DB
average authors/paper 1.92 1.98 2.50

percent single author ref 22.39% 19.62% 10.10%
percent amb author ref 15.81% 9.94% 10.10%

percent amb single author ref 3.18% 0.0% 0.98%
percent amb author entity 0.26% 4.11% 13.57%

Table 5.3: Some statistics of the datasets.

Average number of author references per paper (average authors/paper).

For relational clustering, authors are connected through the co-authorship. Each paper
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acts as a link and the number of author references in the paper determines the number of

relationships. Thus the larger the average number of author references in each paper, the

more relationships an author reference will be involved on average, and the more we can

gain from using these relationships.

Percentage of author references with no collaborators (percent single author ref).

As just stated, more author references in a paper mean more relationships to use. In other

words, the author references with no coauthors can not use the co-authorship for duplicate

resolution. If there are no other types of relationships that can help in this case, the only

fact we can rely on is the attributes which are the names of the author references. So

counting the percentage of single author references can predict how much we need to rely

on attributes.

Percentage of author references with ambiguous names (percent amb author ref).

A name (last name and first initial) is considered ambiguous if it is shared by at least two

author references or entities [8]. In these datasets, many first names are provided with only

the initial letter instead of the full name and this ambiguity makes the author references

difficult to be distinguished from one another. So the percentage of author references with

ambiguous name is an indicator of the ambiguity of datasets.

Percentage of single author references with ambiguous names

(percent amb single author ref).

For author references with ambiguous name, some of them could be correctly resolved using

relationships. However, for those author references with no collaborators, it will be very

difficult to identify them. A high percentage of this kind of references will decrease the

clustering accuracy a lot.

Percentage of author entities with ambiguous names (percent amb author entity).

This percentage is different from that of author references. The percentage of author entities

with ambiguous name is the number of entities with ambiguous name divided by the total

number of entities while the percentage of author references with ambiguous name is the

number of references with ambiguous name divided by the total number of references. And

these two numbers should be considered when we decide the threshold for the attribute

similarity. For example, if the percentage of author entities with ambiguous name is very

low, then we can lower the threshold since most of the author references refer to the same

entity. Otherwise, an appropriate threshold should be chosen for similarity measures.

5.2 Data Preprocessing

As introduced above, these datasets from different sources are in different formats, some

attributes in the record may have different names. For example, the ACM DL dataset uses

venue fullname and venue name to represent venue while the DBLP dataset uses journals
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and even booktitle to refer to venues. So prior to the entity resolution, we need a schema

mapping to transform the different schemas into an uniform format to eliminate the incon-

sistency at the scheme level. Since the format of datasets is fixed, and all the mappings can

be enumerated, we simply pre-process the datasets using hard-coded mappings. Figure 5.4

shows a sample record in the uniform format.

Figure 5.4: A example of a record in the common format.

In addition to the schema mapping, we assign a unique id for each reference in the

dataset. As shown in Figure 5.4, there are paper id, venue id, author id and affi id, each of

which has encoded its data source and reference type in the id. Take the venue id 241 for

example, the 2 indicates that the reference is from the ACM DL dataset, and 4 indicates it

is a venue reference, and the left 1 is the id assigned for this venue reference. Through this

encoded unique id, we can not only identify references globally, but also obtain their data

source and reference type easily. In the future work, we will eliminate the type member of

each reference and use the id instead to get the reference type.

5.3 Evaluation Metrics

5.3.1 Accuracy Metrics

As many other entity resolution approaches [8, 25, 43] do, we assess the accuracy of our

entity resolution algorithms with precision, recall, and F-measure, in which the F-measure

is defined as the harmonic mean of precision and recall. To be more specific, we use the

same metric as that used by Bhattacharya and Getoor [8] since we compare the accuracy of

our approach with that of their approach.

As a pairwise comparison approach, we measure the accuracy of algorithms by counting
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the number of pairs of true duplicates found. Recall that the ground truth set and the

answer set are actually partitions of references in the dataset. To evaluate the accuracy, we

first get the set of distinct pairs of references in these clusters. For example, if a result set

R = {< r1, r2 >, < r3, r4, r5 >} contains two clusters, then the set of distinct pairs we get

is P = {(r1, r2), (r3, r4), (r3, r5), (r4, r5)}. We let T be the set of pairs of references in the

ground truth, and A be the set of pairs of references in the answer set. Then the precision

is computed as follow:

precision =
| T ∩ A |

| A |

and Recall is

recall =
| T ∩ A |

| T |

and F1 is

F1 = 2 ∗
(precision ∗ recall)

(precision + recall)

Note that we are only concerned about the pair-wise decisions; For example, the author

entity Jiong Yang in the example dataset has 4 references, then there are 6 different reference

pairs in set T by pairing each reference with others in the cluster.

One problem with this metric is that those references without any duplicate will not

be counted. Thus the metric will not reflect the true precision for clusters with cardinality

1. For example, suppose we have a dataset D = {< r1 >, < r2 >, < r3 >, < r4, r5 >},

in which only r4 and r5 are duplicates, and the clustering algorithm obtains a result with

each reference in a separate cluster {< r1 >, < r2 >, < r3 >, < r4 >, < r5 >}. Using our

pairwise metric, both precision and recall are zero; However, the truth is that we only made

one mistake and the precision and recall of the algorithm should be higher.

Though with this problem, we still use the pairwise accuracy metric for the following

reasons; First we can compare our result with that of Bhattacharya and Getoor; Second, the

accuracy is distorted only when a large portion of references do not have duplicates in the

datasets. According to the statistics, those references with no duplicates in the CiteSeer and

arXiv datasets are 24.4% and 5.2% respectively which we believe do not affect the accuracy

very much.

5.3.2 Performance Metrics

The other aspect we are concerned about is the performance of the entity resolution approach

on various datasets. To assess the performance, we measure the execution time and the

memory consumption of these algorithms. For execution time, we use the CPU time for

the time spent on a certain process or task. For memory usage, we measure the maximum

memory consumed during an execution process. The unit is ms (milliseconds) in CPU time

and Mb (Megabytes) for memory respectively. The algorithms are written in Java and run
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on Sun’s JVM 6.0. All execution time and memory are reported on a Dell server with

two 1.9GHz Quad-Core AMD Opteron Processors and 32G of memory. Also, unless stated

otherwise, all the programs are single-threaded.

5.3.3 Similarity Functions and Thresholds

For our algorithms, different similarity functions and thresholds are employed for blocking,

matching and merging respectively. Appropriate parameters for the similarity functions and

thresholds are very important to the accuracy and efficiency of the algorithms. For attribute

similarity functions, we employ the same set of measures for the same type of references

in all datasets. For author references, different weights are assigned to different parts of

a name. Specifically, we set weights wfirst = 0.35, wmiddle = 0.10 and wlast = 0.55 when

measuring the similarity of author names. For paper references, their attribute similarity is

measured by the string similarity of their titles, however, we decrease their title similarity

by 0.8 if the year of papers is different. For the relational similarity, we only measure the

writtenBy relationship similarity for papers, and for authors, we measure both writtenBy

relationship and co-authorship relationship. As introduced in Chapter 3, we combine the

attribute similarity and relationship similarity together to form the final similarity score

of two references. The weights for attribute and relationship similarity are different for

different datasets and we will specify them in each of the experiments.

Besides the weights for similarity measurement, the threshold is also another key param-

eter for blocking and entity resolution. For blocking, the blocking threshold is set to 0.2 for

the CiteSeer dataset and the arXiv dataset, and to 0.15 for the DB dataset. The detailed

methods for determining the blocking thresholds are given in the experiment section. As for

entity resolution, the threshold varies depending on different datasets since the ambiguity

of these datasets is different, and we will list these thresholds in each experiment.

For these parameters mentioned above, we manually tune each of them and choose the

value that can help obtain the best accuracy and efficiency. In addition, we compare our

results with that of Bhattacharya and Getoor. For accuracy, we use the results reported

by them. For efficiency, to be fair, we re-execute their code on these datasets and use the

results reported by our machine.

5.4 Experiments and Results

In this section, we describe the experiments for evaluating the accuracy and efficiency of

algorithms proposed in our approach and analyze their results.
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5.4.1 Accuracy of Bootstrapping

The main goal of bootstrapping is to initialize connections for the initial graph models and

provide relational evidence for relational clustering. Since the result of bootstrapping will be

propagated to the clustering step, the precision of the bootstrapping step is very important

and should be maintained at a high value.

Datasets
Accuracy

Precision Recall F1

CiteSeer 0.9996 0.9244 0.9605
arXiv 0.9936 0.9120 0.9510
DB 0.9944 0.7403 0.8487

Table 5.4: Accuracy of the bootstrapping step on CiteSeer, arXiv and DB dataset.

Figure 5.4 shows the accuracy of the bootstrapping step on different datasets. The

merging thresholds of bootstrapping for datasets CiteSeer, arXiv and DB are 0.50, 0.59

and 0.66 respectively. For datasets CiteSeer and arXiv, the precision of bootstrapping is

maintained above 99%, and the highest recall obtained is above 90%, of which the recall

on CiteSeer is slightly higher. We can see that attribute-based approaches can achieve high

accuracy for some datasets. The reason is that the ambiguity of these two datasets is very

low. Recall that in CiteSeer dataset, only 3 of 1165 entity names are ambiguous and in

arXiv dataset 4.11% names are ambiguous. Thus the threshold for the attribute similarity

can be set to a low value to tolerate some false positives. However, on DB dataset the recall

is only 74.03% which is much lower than that on CiteSeer and arXiv. In Table 5.3, we

can find that 13.57% of the names in DB dataset are ambiguous, which means that setting

a lower threshold will bring in many ambiguous references that do not refer to the same

entities, and thus result in lower precision.

Though we have obtained high accuracy for some datasets during the bootstrapping

step, a higher accuracy should be achieved using relationships according to our hypothesis.

In the next section, we will measure the accuracy of the multi-type relational clustering

algorithm and verify if the relationships can further improve the result of entity resolution.

5.4.2 Accuracy of Multi-Type Relational Clustering

In this experiment, we compare three clustering algorithms: attribute-based clustering,

single-type relational clustering and multi-type relational clustering. The single-type rela-

tional clustering is applied only on author references, and the multi-type relational clustering

is applied on both the paper references and author references. The accuracy of these algo-

rithms on the three benchmarking datasets is reported below.

The following tables show various results on the three datasets. AC means Attribute-

based Clustering and RC means Relational Clustering. Single-type RC is the relational

54



clustering on single type of reference and Multi-type RC is the relational clustering on

multiple types of references. BG’s RC is the relational clustering algorithm proposed by

Bhattacharya and Getoor.

Datasets
Accuracy

Precision Recall F1

AC 0.9963 0.9840 0.9901
Single-type RC 0.9996 0.9912 0.9955
Multi-type RC 0.9988 0.9940 0.9964

BG’s RC N/A N/A 0.9950

Table 5.5: Accuracy of different clustering algorithms on CiteSeer.

Table 5.5 shows the accuracy results of different algorithms on CiteSeer dataset. The

weights for the relationship similarity and attribute similarity are 0.6 and 0.4 respectively,

and the merging threshold is 0.20. The first three rows list the results of our algorithms,

and the last row shows the best accuracy reported by Bhattacharya and Getoor [8].

As the results show, the attribute-based clustering can achieve over 99% accuracy (F1

measure). However, the single-type RC can achieve higher accuracy (99.55%) which in-

dicates that more true duplicates can be found using relationships. For example, in the

CiteSeer dataset, references 23. K. Marriott and K. Marriott refer to the same author

entity, but cannot be identified using just the name since their first names are different (23

vs K). However, the common neighbor P. Stuckey they share (co-authorship) can provide

evidence for their merging.

We have already seen that references with coauthors can use the co-authorship to help

resolve duplicates. Then a natural question is how to resolve the pairs of references that

do not share any coauthors. Results in multi-type RC tell us that using multiple types

of relationships can further improve the accuracy. In some cases, the potential duplicates

that do not share coauthors may share papers. In other words, the merging of two paper

references can infer that all the authors in these two papers are identical respectively. Finally,

we compare our results with that reported by Bhattacharya and Getoor [8]. From the results,

we can see the F1 measure of our multi-type RC algorithm outperforms BG’s RC though

not too much. Note that all algorithms show very high accuracy on the CiteSeer dataset.

Datasets
Accuracy

Precision Recall F1

AC 0.9868 0.9636 0.9750
Single-type RC 0.9904 0.9748 0.9826

BG’s RC N/A N/A 0.9850

Table 5.6: Accuracy of different clustering algorithms on arXiv.

Table 5.6 lists the accuracy of algorithms on the arXiv dataset. The weights for the

relationship similarity and attribute similarity are 0.75 and 0.25 respectively, and the merg-
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Datasets
Accuracy

Precision Recall F1

AC 0.9944 0.7403 0.8487
Single-type RC 0.9433 0.9274 0.9353
Multi-type RC 0.9426 0.9366 0.9396

Table 5.7: Accuracy of different clustering algorithms on DB.

ing threshold is 0.235. Since the paper title is not provided, no result of multi-type RC is

reported. The same as that on CiteSeer, the single-type relational clustering outperforms

the attribute-based clustering in both precision and recall.

Table 5.7 lists the accuracy of different algorithms on the DB dataset. The weights

for the relationship similarity and attribute similarity are 1.00 and 0.00 respectively which

means we use only the relationship similarity to obtain the best accuracy, and the merging

threshold is 0.012. We can see that the accuracy is increased from 84.87% to 93.53%

through the relational clustering. Especially the recall is greatly improved. To explain why

the result on the DB dataset is so different from that of the CiteSeer and arXiv datasets,

we revisit some properties shown in Table 5.3. The average number of authors per paper

in DB dataset is 2.50 which is higher than the 1.92 and 1.98 of the other two datasets, also

the percentage of author references without collaborators is the lowest of the three datasets

(10.10% vs 22.39% and 19.2%). This two numbers indicate that the references in DB dataset

are more connected and less isolated. So more relationships are available and the accuracy

of relational clustering (Single-type RC and multi-type RC) is much higher than that of the

AC. Notice that the multi-type RC does not outperform single-type RC very much. We gain

the recall while sacrifice the precision. This means that the merging of paper references does

not contribute much to the resolution of author references, or put it another way, most of the

papers with duplicates have two or more author references and the author references can use

the co-authorship relationship instead of the writtenBy relationship to resolve duplicates.

In the above experiments, we measure the accuracy of the bootstrapping step and our

relational clustering algorithms. In the following sections, we will evaluate the efficiency of

the blocking methods and the modified clustering process and check if they can improve the

entity resolution process.

5.4.3 Blocking Methods

In the experiments for evaluating blocking methods, we first explore how the blocking thresh-

old affects the results of blocking and the accuracy of clustering algorithms. Then we give

a detailed comparison about the two blocking methods.

We choose Lucene, a high-performance text search engine9, to implement the VSM-

9http://lucene.apache.org/

56

http://lucene.apache.org/


Based Blocking, and HashMap to implement the inverted index for Naive Inverted-Index-

Based Blocking. As discussed in Section 4.1, an appropriate threshold for the approximate

similarity measure is important for retrieving the set of potential duplicates of each reference.

A high threshold will filter out references that should exist in the set and reduce the recall

of the entity resolution, while a low threshold will bring in many unrelated references and

increase the number of unnecessary comparisons.

 50

 60

 70

 80

 90

 100

 110

 0  0.2  0.4  0.6  0.8  1

P
er

ce
nt

ag
e

Blocking threshold

recall
precision

Figure 5.5: Precision and Recall of the cluster-
ing algorithm on CiteSeer dataset given differ-
ent blocking thresholds.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  0.2  0.4  0.6  0.8  1

N
um

be
r 

of
 c

om
pa

ris
on

Blocking threshold

Figure 5.6: The number of comparisons during
the clustering process on CiteSeer dataset given
different blocking thresholds.

Figure 5.5 shows the relationship between the clustering accuracy and the blocking

threshold on the CiteSeer dataset. From the figure, we can see that the precision is kept at

a very high level (above 99%) for most values of the threshold and almost not affected by

the varying threshold, this is because no matter how the blocking threshold changes, the

clustering algorithm is always applied on the same dataset, and the only difference is that

different thresholds produce different subsets of the whole dataset. Furthermore, the higher

the threshold is, the less unrelated references we have in each reference’s set of potential

duplicates and the higher of the precision. This can be observed from the precision curve in

the figure. On the other hand, the recall is decreasing greatly when the threshold becomes

greater than 0.2. The reason is that higher threshold filters out more related references that

should be in the set of potential duplicates. To achieve high accuracy, a threshold value

around 0.2 will be a good choice for author clustering on the CiteSeer dataset.

In addition to the precision and recall, we also count the number of comparisons made

during the clustering process for different blocking thresholds. Figure 5.6 reveals their

relationship. The number of comparisons increases rapidly as the threshold decreases from

0.2 to 0.0, and does not change much when the threshold is greater than 0.2. This conforms

to the analysis above. Thus, to balance the accuracy and efficiency of the blocking methods,

we need to choose an appropriate threshold so that we can gain high accuracy with little
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loss of efficiency or vice versa.

One problem with determining the blocking threshold is that the best value is always

unknown until we finish running the algorithm on the dataset for all the possible thresholds.

This is not an issue for those small datasets; However, for large dataset like ReaSoN, it will

take several days for just one iteration on each threshold, and a precise measuring of the best

threshold will not be possible. To solve this problem, we adopt an approximate method.

We randomly choose a sample dataset from the large dataset and determine the threshold

using the experiments above on the sample dataset.

As analyzed in Section 4.1, the VSM-Based Blocking does not perform efficiently on refer-

ences with short attribute strings, and we propose the Naive Inverted-Index-Based Blocking

which may outperform the VSM-Based Blocking for the author reference resolution. To

compare the accuracy and efficiency of the two blocking methods and measure which one is

better than the other, we apply both blocking approaches on the three datasets. Table 5.8

gives the results. Note that for each dataset, the bootstrapping and clustering algorithms

and the parameters are the same for both blocking strategies.

Precision Recall F1 time(s) memory(MB)
Lucene(CiteSeer) 0.9996 0.9914 0.9955 2.47 56.74
HashMap(CiteSeer) 0.9997 0.9649 0.9820 0.68 25.63
Lucene(arXiv) 0.9904 0.9748 0.9826 50.21 619.82
HashMap(arXiv) 0.9927 0.9660 0.9792 8.35 187.60
Lucene(DB) 0.9173 0.9462 0.9318 564.70 4542.42
HashMap(DB) 0.9433 0.9274 0.9353 24.02 1185.94

Table 5.8: Accuracy and efficiency of different blocking approaches on CiteSeer, arXiv and
DB dataset.

From the results in the table, we can see that the accuracy of Naive Inverted-Index-

Based Blocking is lower than that of VSM-Based Blocking on CiteSeer dataset and arXiv

dataset. This is because some last names with spelling errors can not be indexed using the

Naive Inverted-Index-Based Blocking and results in the low recall. Although the recall is

slightly lower, the precision is higher than that of the VSM-Based Blocking. This result is

as expected since the Naive Inverted-Index-Based Blocking can locate the similar references

more accurately. For the DB dataset, we can see that the accuracy of Naive Inverted-Index-

Based Blocking is slightly higher than that of the VSM-based blocking. this is because the

DB dataset is more ambiguous than the other two datasets and the potential duplicates

retrieved by the VSM-Based Blocking contain many ambiguous references; This results in

the much lower accuracy of the VSM-based blocking.

Though the VSM-Based Blocking outperforms the Inverted Index-Based Blocking slightly

on the accuracy, their efficiency is exactly the opposite. The blocking time using Lucene

on CiteSeer dataset is 2.47 seconds which is almost 4 times more than the 0.68 seconds of
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HashMap. The difference on arXiv and DB datasets is much more than that on CiteSeer

dataset. In addition, the memory usage of HashMap is far less than that of Lucene. In short,

the VSM-Based Blocking can achieve a little higher accuracy than the Naive Inverted-Index-

Based Blocking, but it requires much more time and memory during the blocking process.

In applications that efficiency is more important than accuracy, we can sacrifice a little

accuracy on the clustering by adopting the Naive Inverted-Index-Based Blocking approach.

5.4.4 Efficiency of Relational Entity Resolution

In addition to the blocking methods, we also measure the time efficiency and the space

efficiency of the relational clustering algorithms. Here we report the execution time of the

clustering algorithm on all the benchmarking datasets. The time we count is the sum of the

time spent on the bootstrapping and the relational clustering.

CiteSeer arXiv DB
AC 0.26 3.77 14.54

Single-type RC 0.49 7.12 70.84
BG’s AC 0.60 92.30 2908.73
BG’S RC 2.70 378.37 6849.95

Table 5.9: Execution time of different algorithms for author references on datasets CiteSeer,
arXiv and DB (in CPU Time).

Table 5.9 lists the clustering time of AC, Single-type RC and BG’s results [8]. The

execution time is reported with parameters setting for the best accuracy. For CiteSeer, not

only our attribute-based clustering algorithm outperforms that of BG, but our relational

clustering algorithm improves the execution time more than 5 times as that of BG and

achieves better accuracy. As the number of references increase in the arXiv and DB datasets,

our algorithm reduces the clustering time even more than that of BG without any loss in

accuracy.

CiteSeer arXiv DB
AC 103.42 996.20 1692.00

Single-type RC 119.14 998.31 2212.30
BG’s AC 27.86 879.00 Out of Memory
BG’s RC 40.09 1653.00 Out of Memory

Table 5.10: Memory usage of different algorithms on datasets CiteSeer, arXiv and DB (in
Megabytes).

Although no memory usage is reported in Bhattacharya and Getoor’s experiment [8],

we re-execute their code on these three datasets on our machine and report the memory

consuption in Table 5.10. The memory usage reported here is the peak memory consumed

during the execution process. We can see from Table 5.10 that though our algorithms

require more memory on the CiteSeer datasets, as the number of references increases, the
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memory usage of BG’s algorithm increases much faster than ours, especially for the relational

clustering. This result can verify the improvement of the optimization of the clustering

process.

CiteSeer DB
Single-type RC(Paper) 0.14 3.89
Single-type RC(Author) 0.49 70.84
Single-type RC(Sum) 0.63 74.62

Multi-type RC 0.56 73.16

Table 5.11: Comparison of execution time of single type clustering and multi-type clustering
algorithm (in CPU time).

We have already shown that the relational clustering can further improve the accuracy

over the attribute-based approaches, here we compare the efficiency of the multi-type RC

and the single-type RC. Table 5.11 lists the results on CiteSeer and DB datasets. The arXiv

dataset is not included here because no paper titles are provided. Rows 1 and 2 are the

clustering time of single type RC for paper references and author references in CiteSeer

and DB datasets respectively. Row 3 is the total execution time of the relational clustering

algorithm spent on different types of references. The last row lists the time of multi-type

clustering on the two datasets.

Intuitively, the multi-type RC should take more time than that of single-type RC. In

addition to the time spent on each single type of references, multi-type RC needs to compute

relational similarity of different relationships. However, the results show that the multi-type

RC spends even less time than that of the single-type RC. The reason is that using different

relationships for entity resolution sometimes can reduce the expensive comparisons of rela-

tionships between the same type of references. For example, if two papers are considered

as the same paper, then all the authors of these two papers are the same and there is no

need to use co-authorships several times (each time for one author) to resolve the authors.

To sum up, the multi-type relational clustering algorithm can improve the accuracy of the

clustering without any loss of time efficiency or even with improvement.

5.4.5 Scalability of Relational Entity Resolution

Although we have improved the efficiency and memory usage of our algorithms, we are not

sure if these algorithms are scalable when time or memory resources are limited and the

datasets to be resolved are very large. To evaluate the scalability, we measure the execution

time and the maximum memory usage of the algorithms on datasets with different sizes.

Figure 5.7 shows the execution time of the algorithm on subsets of the arXiv and DB

datasets. From the figure, we can see that the time of clustering increases almost linearly

with the size of datasets. Also, in Figure 5.8, the maximum memory consumed by the
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algorithm shows the same trend as that of the execution time. As shown, the memory-

based clustering algorithm is not scalable for large datasets with millions of references.

5.5 Summary

For entity resolution, accuracy and efficiency are two important factors of good algorithms.

In the experiments, we evaluated the accuracy of our multi-type relational clustering algo-

rithm and showed that the relationships can be used to greatly improve the accuracy of

entity resolution, especially for datasets with rich relationships. For efficiency, we compared

two blocking methods for reducing the number of redundant comparisons, and showed that

the Naive Inverted-Index-Based Blocking can achieve higher accuracy than the VSM-Based

Blocking. Also we showed that the efficiency of our algorithms outperforms that of Bhat-

tacharya and Getoor by several times. Finally, we measured the scalability of our clustering

algorithm and found that the execution time and memory consumption are linear propor-

tional to the size of the datasets. In the next chapter, we will describe a record level blocking

algorithm to address the scalability problem of our current entity resolution approach.
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Chapter 6

Large-Scale Entity Resolution

The experiments have shown that our approach is not scalable for large datasets. In this

chapter, we introduce a record-level blocking technique to address the scalability problem

for large datasets. Section 6.1 gives an introduction of approaches for the large-scale entity

resolution and Section 6.2 describes the record level blocking method. Section 6.3 briefly

describes how we resolve the entities for each small partition, and Section 6.4 introduces a

disk-based approach for merging results of those partitions. Finally Section 6.5 ends with a

summary.

6.1 Introduction

Given the increasing volume of data, a large number of datasets have grown to the size

that cannot be processed using the current approaches (which we refer to as memory-based

approaches in the following sections). For example, the ReaSoN dataset has 35,878,709

references, and in the experiment, our improved clustering algorithm requires about 2G of

memory for 300,000 references. Apparently, the memory-based approaches are not scalable

for large datasets, and we need a solution to handle these large datasets.

Most approaches addressing the scalability problem of entity resolution use the Sorted

Neighborhood Method [37], Canopies [49] or their variants which we have introduced in

the related work. These approaches work well for large datasets when the attribute-based

approaches are employed for entity resolution, since attribute-based approaches rely on

attributes of references and the small partitions obtained through blocking are attribute

independent so that they can be handled one by one without referring to references in other

partitions.

However, for approaches that use relationships for entity resolution, the above blocking

methods do not work for large datasets because the partitions are not relationally inde-

pendent of one another, and references in other partitions may be needed when we resolve

references in one partition. For instance, in the example dataset, Jiong Yang in P1 and J.
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Yang in P2 are put in the same partition for their similar attributes, but the names of their

coauthors Richard R. Muntz and Richard Muntz are dissimilar from either of them and are

put in another partition. Thus we need to load all the relational dependent partitions into

memory when we process one partition. Furthermore, these relational dependent partitions

cannot be accessed sequentially because they may be randomly distributed in the disk.

In this section, we introduce a record level blocking method which incorporates the

relationships of references into partitions. The blocking techniques we discussed above

focus on references, and we refer to them as reference level blocking, while this new blocking

method focuses on records, and we refer to it as record level blocking. Recall that when we

initialize the graph model using records, all the relationships are formed within each record.

Thus by splitting the dataset by records, we can get partitions that are not only attribute

independent but also relational independent.

Our approach for the large-scale entity resolution can be summarized in three steps; We

first use the record level blocking method to split the whole dataset into small overlapping

partitions, then we apply the memory-based clustering approach on each of the small par-

titions. And finally we integrate the results of all the partitions into a single result set. In

following sections we will describe each of the steps in details.

6.2 Record Level Blocking

Blocking is a technique to split the whole dataset into small partitions according to some

approximate similarity measures. Record level blocking is one such blocking technique that

applies the measures on records. Figure 6.1 gives an example of how record level blocking

works.

Figure 6.1: A sample partition initialized from record. The records are a set of records that contain
similar references to references in record like paper, author1, author2 and venue.

To construct a partition, we start from a record that contains several references. For

each reference ri in the record, we retrieve all the records that contain similar references to

ri. As shown in Figure 6.1, we retrieve the records containing similar references to paper,

author1, author2 and venue, and then put them in the same partition. In other words, we
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Figure 6.2: Examples for illustrating the process of record level blocking.

put records that are similar to each other in the same partitions. Here we define two records

reci = {ri,1, ri,2, . . .} and recj = {rj,1, rj,2, . . .} to be similar if record reci has at least one

reference ri,k that is similar to a reference rj,k in record recj .

Using the record level blocking, we can easily build partitions for records based on the

two reference level blocking techniques we developed. Though the basic process is the same

as that of the reference level blocking, there are still several differences. In the following

sections, we will describe the details of the record level blocking.

6.2.1 Indexing Datasets

Similar to the reference level blocking, the record level blocking uses inverted index as

the data structure to index the datasets and builds different indexes for different types of

references in the datasets. One may argue that it is much easier to build just one index

for the entire dataset. However, we make our choice for the following reason. Suppose that

if we build only one index for the whole dataset, then each record instead of reference is

considered as a document. This makes it difficult to judge if two records are similar because

the similarity threshold is hard to choose. A high threshold will filter out records that are

similar in short author names, while a low threshold will bring in records that share only

several common words in title but are not similar at all. Thus using one index will reduce

the recall of the result. Instead, building indexes for different types of reference can help

retrieve more relevant records.

To build the index, we treat the attributes of every reference ri as a document, and

the id of the record containing reference ri instead of the reference id as the document

id. Figure 6.2(a) shows an example of the inverted index for authors in P2 which lists the

mappings from terms in the attributes of references to the record containing these references.

For example, the document list of W consists of records P2 and P5 which contain the name

W. Wang.

6.2.2 Building Blocks

After building indexes of the dataset, the next step is to build blocks, a set of overlapping

partitions of the dataset that are both relational and attribute independent of each other.
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input : Rec = {rec1, rec2, . . . , recn}, in which reci = {ri1, ri2, . . . , rik}
output: A set of blocks.

blockId = 0;1

foreach reci ∈ Rec do2

recordSet = ∅;3

//Retrieve similar records for each of the references in reci.4

foreach rij ∈ reci do5

S(sij) = getSimilarRecord(rij);6

end7

//Merge all the set of similar records.8

S(reci) = ∪jS(sij);9

foreach sij ∈ S(reci) do10

//Check if these two records have been compared before.11

if hasCompared(reci, sij) = true then12

continue;13

end14

recordSet.add(sij);15

end16

if recordSet.isEmpty() = true then17

continue;18

end19

recordSet.add(reci);20

blockId++;21

//Output blocks to the disk.22

output(blockId, recordSet);23

//Update the global map.24

foreach rec ∈ recordSet do25

globalMap.add(rec, blockId);26

end27

end28

Algorithm 5: The process of building blocks.
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To build blocks, we first need to retrieve and group the similar records. Figure 6.1 have

already illustrated the general idea of retrieving similar records for a given record reci. Here

we describe more details of the implementation. Algorithm 5 gives the process of building

blocks. We traverse all the records in the dataset once. For each record reci, we first create

a record set to store the records that we will put in a block. Then we retrieve similar records

S(sij) for each reference rij in reci (Lines 5-7) using the reference level blocking techniques.

After that, we merge the similar records of record reci to construct the set of similar records

S(sij) of sij . Figure 6.2(b) gives an example of similar records for references r21, r22 and

r23 in record P2, and the similar record set of record P2. Also Figure 6.2(c) lists all sets of

similar records for records in the example dataset.

Now we have a set of similar records S(reci) for each record reci; However, the process

is not just putting all the similar records together to form a block since a lot of record pairs

will be compared several times. For example, in Figure 6.2(c), if we put the similar records

of each record together, then the record pairs <P2,P3>, <P2,P4>, <P3,P4> in the first

block are also in the other blocks, which means that there will be five more redundant

comparisons on these pairs of records.

In order to reduce as many unnecessary comparisons as possible and further clean the

initial blocks, we employ a global map to keep the history of built blocks and a cleaning

rule to help with the construction of blocks. The global map maps each record reci to the

list of blocks containing reci. Using the global map, the cleaning rule is defined as follow:

if the lists of blocks of two records reci and recj share a common block, then reci and recj

are already in the same block and should not be added into a new block again.

Lines 10-16 show the building process for each block. We first check if reci has been

compared with its similar record sij before (Line 12). If yes, we continue to process the next

similar record; Otherwise, we add sij into the record set recordSet of reci. After checking

each similar record of reci, we then examine the recordSet, if recordSet is an empty set

which means that reci has already been in the same block with its similar records, then

there is no need to create a block (Lines 17-19); Otherwise, we create a new block, and

add reci to it (Line 20) and serialize the block to disk (Lines 21-23). At the same time, we

update the global map with the new block.

The final blocks built using the global map and cleaning rule for the example dataset

are shown in Figure 6.3. We may notice that the pair P5 and P6 appear in three different

blocks. This is because P3 and P4 have never been compared with P5 and P6 before.

This problem can not be avoided using our current strategy. One method is to use another

global map for the comparison history in the memory-based clustering to further avoid the

redundant comparisons. However, we have not implemented this method in this thesis.
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Figure 6.3: Blocks for the example dataset. Figure 6.4: Segments for the example dataset
with different segment size.

6.2.3 Building Segments

Recall that the purpose of record level blocking is to split the dataset into partitions so that

each partition can be handled independently by the memory-based entity resolution algo-

rithm. The blocks constructed above are one such partition and can be used for clustering.

However, we notice that the total number of blocks is four which is too large given that the

total number of records in the dataset is only six. So for very large dataset like ReaSoN, the

number of blocks will be too large and the number of references in each block iiss too small

that clustering them one by one cannot make full use of the memory and CPU resources.

To make full use of the available resources, we further group blocks into segments and let

the segments be the processing unit of the memory-based algorithm instead of blocks. The

process to build segments is straightforward. We first give the size of each segment as SEG-

MENT SIZE. Here the size of a segment is defined as the number of records in the segment.

Next we go over the blocks obtained above, and continuously add the blocks into a segment

until the number of records in the segment gets closest to the defined SEGMENT SIZE,

then we create a new segment and repeat the segment building process. Figure 6.4 gives

two examples of segment with different SEGMENT SIZE, from which we can see that some

of the repeated comparisons can be further eliminated.

Deciding the segment size is not easy and depends on several factors. In our implemen-

tation, we define the segment size according to the available memory and number of CPU

cores. For example, with a server of 32G memory and 8 CPU cores, we allocate 4G memory

for each segment and schedule 8 clustering threads to run concurrently for each segment.

Though this configuration of assigning resources seems to work well intuitively, the CPUs

are still not fully used in our experiments. One possible reason is that there is plenty of

time spent on I/O operations. Also, the thread’s context switching may be an overload.

In addition, whether 4G x 8, 8G x 4 or other configurations are better or worse than our

current configuration has not been verified and needs to be explored in future works.
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Figure 6.5: Illustration of the process of merging clusters in Source to Target.

6.3 Relational Clustering

After we split the large datasets into overlapping partitions that are both attribute and

relational independent, the next step is to apply the memory-based entity resolution al-

gorithm on each of the partitions (segments), and to produce a corresponding clustering

result. As discussed in the segment building process, the segments here are both relational

and attribute independent of each other and can be scheduled to be resolved concurrently.

6.4 Merging Results

Given the clustering result of each segment, the last step is to merge these results into a

final result set. Ideally when all the duplicates are resolved correctly, the merging process

is simply computing the transitive closure over the results of segments. In fact, any false

decision made during the clustering process may bring more mistakes during the merging

process. For example, if author reference W. Wang is correctly merged with Wei Wang in

one cluster but falsely merged with Weining Wang in another cluster, then grouping Wei

Wang with Weining Wang through W. Wang will be a false decision. Thus before merging

two clusters that share any common references, we first need to compare their attribute

similarity. In addition, the result sets are too large (same size as the whole dataset) to be

loaded in memory for an one-time merging. To solve this problem, we propose to use a

disk-based approach to merge the result sets.

The disk-based approach introduces a target file for storing the merged clusters to help

with the merging process. For each clustering result of a segment (which is stored in a source

file), we first load the source file into memory, and then we sequentially compare the clusters

in the target file with that in the source file and merge clusters that meet our merging rules.

At last we write back the new merged clusters into the target file. Note that clusters in the

target file that are merged in this round, are also removed from the target file. Once all the
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Figure 6.6: Illustration of the process of merging clusters with conflicts in Source to Target.

results are processed, the clusters in the target file will be the final clustering results for the

dataset.

Figure 6.5 shows the typical scenario for integrating the results in a source file to a final

target file. From the figure, we can see that ref1 is merged with ref2 in the source file

and with ref5 in the target file. Meanwhile, ref2 and ref20 are in the same cluster in the

target file and so do ref5 and ref10 in the source file. If no false decisions are made in

the clustering process, then by iteratively expanding a cluster Ci with references that are

duplicates of the references in Ci, we can obtain the final clusters for all the references as

shown in the target file on the right in Figure 6.5. However, for results with false positives,

we need to further check the attributes of clusters. Thus we define two merging conditions

as follow: 1) clusters should have at least one reference in common, 2) The similarity score

of representative attributes1 of clusters should be higher than a given threshold. For the

cluster that meets the first condition but fail the second one, we simply ignore the cluster in

the source file but remove the references shared by them from this cluster. For example, in

Figure 6.6, clusters cluster-s2 and cluster-t1 share a common reference ref5, and we assume

the attributes of cluster-s2 are not similar to that of cluster-t1. To resolve this conflict, we

remove ref5 from cluster-s2 and create a new cluster cluster-t4 for other references in

cluster-s2.

6.5 Summary

Entity resolution for very large datasets is an important task for many applications espe-

cially for web applications. Resolving entities using both attributes and relationships can

improve the accuracy of entity resolution. In this chapter, we propose a record level block-

ing method that splits the whole dataset into small partitions that are both attribute and

1Choosing the representative attribute of a cluster is domain dependent. In our case, we choose the
representative attribute of the cluster from references in DBLP first, then ACM DL, and then the attribute
shared by most references in the cluster, and then the one with longest string.
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relational independent. Then we apply the memory-based entity resolution algorithm on

each of partitions, and integrate results of those partitions into the final clustering result. In

addition, we explore methods to optimize the size of partitions while maintaining accuracy,

and use disk-based method for merging results that cannot be accomplished in memory.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the contributions we have achieved in this thesis and discusses

possible future works that can further extend or improve my current work.

7.1 Conclusions

Entity resolution, which aims to resolve the tuple level inconsistency during the data inte-

gration process, is a crucial step for preparing data of high quality. Most approaches adopt

pairwise comparisons for entity resolution. Traditional approaches use attributes to resolve

duplicates and can achieve good results on some datasets. Recently, relationships are used

to further improve the accuracy of entity resolution. In this thesis, we generalize the single

type relational entity resolution algorithm proposed by Bhattacharya and Getoor [8] to a

multi-type algorithm that can exploit multiple relationships of references and resolve mul-

tiple types of references simultaneously, and show that the multi-type relational algorithm

can achieve the same high accuracy of single type relational algorithm.

As the volume of datasets increases, the efficiency and scalability of these algorithms

are also important for entity resolution systems, especially when the datasets are large.

Blocking is a commonly used technique to reduce the unnecessary pairwise comparisons and

thus improve efficiency by partitioning large datasets into independent small subsets. We

implemented two blocking methods, a Naive Inverted-Index-Based Blocking method that

exploits the advantage of inverted index for efficiently retrieving similar references, and

a Vector Space Model Based Blocking which combines the cosine similarity measure and

the tf-idf weighting scheme to further rank and filter the potential duplicates. The former

method is specific for author references and performs much more efficiently with little loss

of accuracy, and the later one works for both author references and paper references and

achieves higher accuracy while with much loss of efficiency.

In addition to reducing the redundant comparisons, we also work on optimizing the

relational clustering process proposed by Bhattacharya and Getoor [8]. We propose to use
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an iterative clustering process which postpones the propagation of merging results to the

time they are needed. By this iterative clustering process, the similarity scores of references

that are affected by new merged references do not need to be updated immediately and thus

can reduce the memory space for these intermediate results and avoid some unnecessary

computations.

For datasets that are too large to be loaded into memory for resolution, scalability is a

concern for entity resolution process. Entity resolution algorithms that work well in memory

can not be easily ported into disk-based algorithms when relationships are required for

relational clustering. We propose a record-level blocking technique to adapt our in-memory

clustering algorithm to a disk-based algorithm. The record-level blocking partitions the

large datasets into small subsets which are both attribute and relational independent of

each other. Using the disk-based entity resolution approach, we resolve the duplicates in

the ReaSoN dataset and build an integrated dataset for the ReaSoN project.

To conclude, in this thesis, we use multiple relationships among references to improve

the accuracy of entity resolution and explore various methods to improve the efficiency of

the process. Though we only apply these approaches on the bibliographic datasets, the idea

and methods can be extended and used in other fields like Natural Language Process (NLP)

and Personal Information Management (PIM). Take applications in NLP for example, our

relational clustering methods can use relationships like co-occurrence to help with the named

entity recognitions and relationships identification between entities.

7.2 Future Work

The exploration of relationships for entity resolution and various methods for improving

efficiency have accomplished some results that are satisfactory, they also lay groundwork for

future work. There are a number of challenges that are worth to address in the near future.

First, the parameters and thresholds in the clustering algorithm are all tuned manually.

In order to obtain the best accuracy, we have to try a number of possible parameters which

is tedious and time-consuming. In the experiments, we found that these parameters are

related to several properties of the datasets. So building a model to map the properties to

the parameters or using machine learning techniques to learn the best parameters will be

worth a try.

Second, we can explore more graph properties to help with the clustering. Currently,

the only graph property used is the neighborhood relationships (the relationships within a

record), we can explore with nodes that are not just one degree away, but two or more. For

example, two similar references that refer to the same entity may be connected through a

path with more than two nodes.

Third, a system that can tolerate and correct mistakes is needed. In some circumstances,
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two merged references may be found later to refer to different entities; However, due to the

problem with the agglomerative hierarchical clustering algorithm, two references can neither

be divided nor swapped once they are merged. This problem not only decreases the accuracy

of our algorithm, but propagates the mistakes to other related references. Thus a model

that can undo or auto-correct decisions that we mistakenly made will be beneficial for the

entity resolution process.

Fourth, the current algorithm cannot resolve datasets incrementally. Whenever a new

dataset is added, the clustering process needs to be restarted from scratch with all datasets.

The reason is that when the clustering is finished, all the relationships between references

will be lost so that these relationships can not be used when the new dataset is added. Thus

we need to an incremental approach to preserve relationships during the clustering process

and reload them when needed.

Finally, the relational datasets are becoming more common either from the social net-

works or graphs built from the Web. We can apply our relational algorithm on other domains

like Natural Language Processing to de-duplicate entities through the co-occurrence rela-

tionship, and disambiguate person names on the web based on the web structure of the web

pages.
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Appendix

Appendix A

Figure 1: A sample record of ACM Digital Library.
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Figure 1 lists a sample record in ACM Digital Library in XML format. Each record

contains the type of the paper(PUBTYPE), title(TITLE), author name(AUTHEDIT)

in three parts, last name(lname), first name(fname), and middle name(mname). Other

information is also given, such as year(PUBYEAR), venue name(JRLNAME, JRLAB-

BREV), volume(JRLVOL), issue(JRLISS), pages(SPAGE) and citations in the refer-

ence part(REFERENCE).

Appendix B

Venue

SIGIR Forum (ACM SIGIR Forum)
SIGKDD Explor. Newsl. (ACM SIGKDD Explorations Newsletter)
SIGMOD Rec. (ACM SIGMOD Record)
SIGWEB Newsl. (ACM SIGWEB Newsletter)
TODS (ACM Transactions on Database Systems)
TOIS (ACM Transactions on Information Systems)
TWEB (ACM Transactions on the Web)
CIKM (Conference on Information and Knowledge Management)
DaMoN (Data Management On New Hardware)
DMKD (Data Mining And Knowledge Discovery)
DOLAP (Data Warehousing and OLAP)
DPDS (International Symposium on Databases for Parallel and Distributed Systems)
GIR (Workshop On Geographic Information Retrieval)
GIS (Geographic Information Systems)
IHIS (Interoperability Of Heterogeneous Information Systems)
IPSN (Information Processing In Sensor Networks)
ISIS (Information Quality in Informational Systems)
IRP2PN (Information Retrieval In Peer-To-Peer Networks)
JACM (Journal of the ACM)
KDD (Conference on Knowledge Discovery in Data)
MDM (International Conference On Mobile Data Management)
MMDB (ACM International Workshop On Multimedia Databases)
MobiDE (International Workshop on Data Engineering for Wireless and Mobile Access)
OODS (International Workshop on Object-Oriented Database Systems)
PODS (Symposium on Principles of Database Systems)
SAC (Symposium on Applied Computing)
SIGIR (Annual ACM Conference on Research and Development in Information Retrieval)
SIGMOD (International Conference on Management of Data)
VLDB Journal (The International Journal on Very Large Data Bases)
UIMC (Conference On Ubiquitous Information Management And Communication)
VLDB (Very Large Data Bases)
WIDM (Workshop On Web Information And Data Management)
WSDM (Web Search and Web Data Mining)
WWW (International World Wide Web Conference)
ER (International Conference on Conceptual Modeling / the Entity Relationship Approach)
ICDE (International Conference on Data Engineering)
EDBT (Extending Database Technology)
ICDT (International Conference on Database Theory)
RIDE (Research Issues in Data Engineering)
DOOD (Deductive and Object-Oriented Databases)
TKDE (Transactions on Knowledge and Data Engineering)
DKE (Data & Knowledge Engineering)
WWW Journal (World Wide Web Journal)

Table 1: List of venues in DB dataset.
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