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Abstract

Process industries involve processes that have complex, interdependent, and some-

times uncontrollable/unobservable features that are subject to a variety of uncertain-

ties such as operational fluctuations, sensory noises, process anomalies, human in-

volvement, market volatility, and so forth. In the face of unpredictability, industrial

applications strive to exhibit consistent operational excellence in terms of product

quality, economic benefits, process safety, and environmental sustainability. These

operational criteria necessitate intelligent solutions to a wide range of operations that

can be enhanced without requiring substantial modelling effort. Reinforcement learn-

ing (RL), as a data-driven method, can provide a practical answer to such issues by

employing various types of sensory information.

A robust interface tracking algorithm is the first contribution of this thesis. In con-

trast to existing methods, which rely on hand-crafted features, the proposed algorithm

provides a tracking methodology comprised of convolutional neural and long short-

term memory networks that are jointly optimized for interface tracking. Without any

explicit models or restrictive assumptions, this structure integrates neighbouring spa-

tial and spatiotemporal elements. Unlike supervised/unsupervised learning methods,

the proposed RL-based tracking algorithm requires only a few images that can be

labelled quickly and accurately by a user or a sensor. This agent outperforms some

of the existing methods in terms of robustness, which is one of the most important

requirements in state estimation and control. Finally, by employing a dimensionality

reduction technique, our work contributes to deep learning-based RL solutions.
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The second contribution aims to develop an RL-based safe controller while tak-

ing safety requirements into account. The suggested approach combines a deep

actor-critic agent with random setpoint initialization and a Lagrangian-based soft-

constrained learning scheme to achieve this goal. The example demonstrated that

the soft-constrained approach can provide smooth state transitions while accelerat-

ing the offline training phase with several workers. In addition, an exploration metric

inspired by the set theory was developed.

The third contribution takes into account the constrained uncertain reward/cost

function, which is often employed in RL and process control. A reduced signal-to-

noise ratio in a process can permanently deteriorate the control policy and result in

poor tracking/control performance. Taking sensory noise into account, the proposed

method models the reward/cost function as a dynamic process, along with transition

and observation models. Using a constrained particle filter, the proposed method

estimates the first and second moments of the constrained reward.

The fourth contribution addresses the problem of dimensionality increase during

online skew state estimation. Although a closed skew-normal distribution increases

the degree of freedom in state estimation, its location and scale parameters increase

in size at the end of each filtering stage. This problem slows down the inferential

calculation, making closed-form solutions impractical and online inference infeasible

in the long term. With the rigorous formulation of dimensionality reduction as an

optimization strategy, empirical analyses were carried out to compare various sta-

tistical distance functions and optimization techniques. Finally, the proposed skew

estimation scheme was applied to problems involving reward estimation and state

estimation.

The fifth contribution proposes an autonomous PID tuning scheme. Since complex

industrial plants can utilize thousands of control loops with unknown models, tuning

the PID controllers can be time-consuming. This algorithm is based on a constrained
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contextual bandit that tunes the PID controllers starting with step-response models

and gradually learning the plant model mismatch through online interaction.

The sixth contribution is the development of an autonomous MPC tuner and its

integration with an autonomous advanced control infrastructure. Although various

traditional approaches may design MPC parameters offline, there can be significant

performance deterioration due to model plant mismatch or operational changes. Ad-

ditionally, establishing specific performance criteria using complex functions can be

difficult. However, using smart trial-and-error, the proposed RL agent can produce

optimal solutions to such challenges. This modular, model-independent agent, can

be pre-trained on step-response models and then integrated into more complicated

schemes. By integrating all agents, controllers, and filters, this contribution also

includes a proof of concept of an autonomous process control scheme.
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Chapter 1

Introduction

Process industries involve processes with complex, interconnected, and sometimes
difficult-to-control or to-observe properties that are subject to numerous uncertain-
ties such as operational variations, sensory noise, process abnormalities, human in-
volvement, market fluctuations, etc. Considering product quality, economic bene-
fits, process safety and environmental sustainability, industrial applications aim to
demonstrate continuous operational excellence in the face of uncertainties. These
operational criteria necessitate smart solutions to a vast variety of processes that can
be improved through an autonomous scheme with various filters, state estimators,
and controllers. However, such an ideal solution requires extensive modelling of each
process unit, which is not realistic since the real-world problem might be too complex
to be modelled explicitly. As a data-driven method, reinforcement learning (RL)
can provide a practical alternative to such challenges by utilizing different types of
sensory information. This chapter gives an overview of the essentials in the existing
literature, as well as the reasoning for the proposed autonomous industrial control
approaches.

1.1 Motivation

Process monitoring and control are necessary for the safe, optimal and eco-friendly
operation of an industrial process. Such operations may be achieved through first-
principle process modelling for accurate behaviour prediction. However, it can be
challenging to develop detailed first-principles models due to process complexities.
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Although data-driven models provide a practical and perhaps more convenient alter-
native to developing first-principle models, the predictive abilities of the model, and
hence the performance of a controller that uses this model, will depend heavily on the
data quality. In addition, differences in process behaviour, types of uncertainty and
operational frequency add another layer of complexity to data-driven model develop-
ments. This thesis develops robust and safe RL agents in the face of unknown system
dynamics and in the presence of process and sensory uncertainty. These topics will
be covered in depth in the following subsections.

1.1.1 Operational Variations

Industrial processes utilize numerous raw materials with varying feed compositions
that need to be continuously processed. In addition, the physical environment, sea-
sonality, multi-modality, human interaction, and higher-level decisions made by the
planning departments create operational variations that can impact the environment,
safety, and process economics. Fig. 1.1 shows a typical gain change in an auto-
regressive process due to changing operational conditions. Such gain changes can
impact the controller performance, resulting in reduced operational performance if
not addressed properly.

An autonomous scheme should either be robust to these changes or adapt to them
to achieve smooth and effective operation. For robustness, classical methods model as
many scenarios as possible during the design of model structures. Some design options
include employing multi-modal or nonlinear models or using stochastic models to
evaluate various operational scenarios [1]. Alternatively, modern techniques involve
machine learning methods that utilize complex functions to approximate the system
model/controller with the help of diverse data points. The intuition behind this
approach is to maintain the reliability of the approximate function through ‘learned
experience’. Below are some examples to highlight the difference between classical
and modern techniques. Consider an operator that recently joined the organization
to control a reactor without prior reactor operation knowledge.

1. Classical techniques would suggest describing the process behaviour under cer-
tain operating conditions by using process flow diagrams and physical rules.
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Figure 1.1: Time-series evolution of a state, x, with a gain change due to operational
conditions at time = 50. Note that the slope of the process drastically changes due
to the gain change.

This approach is equivalent to designing a controller/estimator for multiple
operational modes.

2. Modern (learning-based) techniques would suggest showing the historical input-
output data to the operator and asking the operator to make predictions and
update them according to the new data when needed. This approach is equiv-
alent to identifying a system model using data.

Both these techniques have limitations when unknown circumstances are encoun-
tered. For example, classical techniques might fail since their strict assumptions and
unknown models might not tolerate uncertainty in novel circumstances, and machine
learning techniques might fail due to their unrestricted update mechanisms or if their
objective is not defined appropriately. A third technique would be combining the
physical rules, process diagrams (including causal networks), and data to obtain a
hybrid methodology. This thesis, however, will not expand on the hybrid methods.
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1.1.2 Sensory Uncertainty

The most important element of data-driven modelling/learning or model update is
the process data that is obtained through various types of sensors. A sensory device
converts a physical phenomenon into a representation that an operator can evaluate
[2]. The representation can be numerical or physical. For example, the lighting
condition in a room can be measured through cameras, the pressure of a liquid tank
can be measured through digital differential pressure sensors, the temperature of a
gas tank can be measured through an analogue manometer, and the acidity of a liquid
can be measured through a pH probe or pH strips. Each of these sensors/indicators
has different types of uncertainty associated with them. For example, a pressure
sensor attached to a tank can have static noise, and a test involving a pH strip will
be affected by human interaction. Although there are various types of sensors, this
thesis focuses on the digital ones that can connect to an electronic device (e.g., a
computer) for further processing.

The properties and sources of sensory uncertainty depend on the type of sensors.
For example, vibrations, temperature, the material of the sensor, electrical/magnetic
interference, and deposition can have drastic impacts on measurements obtained from
the sensors. Such effects change the statistical properties of a signal obtained from
the process. Fig. 1.2-a shows different types of noise obtained during operation. Fig
1.2-b shows that the underlying signal value (shown as the blue line) has a sharp
peak without any uncertainty. However, noise reduces the reliability of the sensor
by increasing the variance. For efficient control and autonomous operations, such
sensory noise should be addressed by appropriate methods.

1.2 Background Literature

This section provides background material on the algorithms described in the thesis.
The literature review constitutes operational variations and sensory uncertainty, as
motivated in the previous section.
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Figure 1.2: Different types of sensory noise in time-series data. a) yt = xt = 10
represents the ground truth signal (ideal case without noise), the orange dots show the
signal with Gaussian noise, the green dashed line represents the signal with Truncated
normal noise, and the red dotted dashed line shows the signal with closed skew normal
noise. b) Histogram of the time-series data. Note that the sharp blue peak shows the
ideal signal has a mean value of ten without uncertainty. The other signals need to
be processed to estimate the unknown ground truth.

1.2.1 Operational Variations

Classical techniques address operational variations, nonlinearity and multi-modality
by using multiple linear models, or linear parameter varying models with gain schedul-
ing [3, 4]. In these approaches, a system/controller is modelled/designed through
multiple models or a single model that varies as a function of a scheduling variable.
The scheduling variable can vary according to time, state, or other indicator vari-
ables. For example, if there are seasonality effects on the process of interest due
to temperature/lighting conditions, time can be used as an indicator. On the other
hand, the operating points (e.g., different liquid levels) can have significant impacts
on process dynamics if the system gain depends on them. In this case, the current
operating point can be used as the scheduling variable. If these multiple models or
gain scheduling result in discontinuities in the state/action space, there can be un-
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desired sudden jumps in the process variables. Therefore, they should be designed
and smoothened carefully. Alternatively, nonlinear models can be used to address
the above-mentioned abruptness challenges [5]. For example, neural networks have
shown promising results over the past decade in terms of model accuracy and general-
ity [6]. In addition to these modelling approaches, which can be applied to controllers
through modifications, automatic update mechanisms can improve resilience against
process uncertainty. For example, various PID auto-tuners have attracted industrial
attention due to their practicality [7]. However, these approaches have not considered
the saturation problem.

Recent developments in process control and computer science have shown that
reinforcement learning with nonlinear functions (such as neural networks) can be an
alternative to the above-mentioned approaches [8]. A reinforcement learning agent
corresponds to a decision-maker in classical control/optimization to improve the cur-
rent status of the process. The agent generates an action for the current state to
maximize future rewards while dynamically interacting with the process. The infor-
mation obtained during this interaction is used to improve a control policy through
Bellman’s optimality criteria [9]. Often, the information constitutes observed reward
and state values, which makes the agent superior to model-based approaches like dy-
namic programming since the agent is process-agnostic. However, model-free agents
are sensitive to data, policy and reward design due to process uncertainties. This
thesis will propose to regularize the agent’s behaviour through prior knowledge of the
process to achieve effective autonomous learning infrastructures.

1.2.2 Sensory Uncertainty

Sensory uncertainty can be addressed through hardware or software adjustments. For
example, accumulating dust on a level measurement sensor in a dusty tank can re-
duce accuracy. In this case, one should service the hardware. On the other hand,
inevitable signal noise affects sensors, which can be reduced through a set of cal-
culations (i.e., filtering software). These calculations depend on the properties of
the sensor, process, sensor design, and other interferences, which influence the noise
statistics. The most straightforward and practical approach is to use a moving aver-
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age filter [9] that updates the current estimation based on the previous one and the
sensory measurement (instead of using the sensory measurement directly). However,
this averaging method cannot assess the uncertainty associated with the measurement
and can result in poor performance. Bayesian filters and smoothers can provide more
accurate estimates through rigorous mathematical calculations while incorporating
prior process knowledge [10]. However, their online implementation is computation-
ally expensive. Kalman filtering converts the infinite-horizon Bayesian filtering into
a tractable estimation through Markovian assumptions [11]. Although Kalman fil-
tering is a remarkable technique that can be used in numerous industrial processes,
its performance deteriorates if the distribution of the measurement differs from the
Gaussian distribution assumption. For example, sensory interference can skew the
measurement distribution, or mathematical operations (e.g., constraint enforcement)
can truncate the distribution, thus affecting the statistics of the variables of inter-
est. Fig 1.3 shows various distributions, including the ones without the normality
and symmetry properties. In the presence of skewed noise, filters can utilize distri-
butions such as skew-t [12], Gumbel [13], normal-skew mixture [14], etc. However,
these filters normally require high computation. Closed skew-normal distribution
(CSN) is another skewed distribution, which generalizes the Gaussian distribution
with additional skewness, location and scale parameters [15]. Its closure property
under linear transformation and the Bayesian rule makes it a viable alternative to
the Gaussian distribution in the presence of skew measurements. In addition to these
sensory challenges, mathematical operations (like constraint utilization) can result in
asymmetric distributions like the truncated normal distribution, which have been ad-
dressed through various filters [16,17]. In addition to these classical techniques, neural
networks have been used to address sensory uncertainty without explicit models [18].
In addition to noise reduction, recursive neural networks can provide robustness in
the presence of missing data, bounded noise, and visual uncertainties in a camera ap-
plication [19]. Considering these criteria, optimal filtering of the process measurement
is a necessary element of robust and autonomous control.
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Figure 1.3: Illustration of the normal (N ), closed skew-normal (CSN), and truncated
normal (TN ) distributions. The normal distribution is often used due to its conve-
nience during mathematical derivations. However, sensory interference can result in
skewed distributions, which is illustrated using the closed skew-normal distribution,
and mathematical operations can yield variables with truncated normal distribution.
Kalman filtering can fail when properties like normality and symmetry are no longer
valid.

1.3 Thesis Outline

Following the presentation of motivation and the analysis of background material in
Chapter 1, the thesis continues by discussing each of the problems and their solutions
in the following chapters.

The literature review on actor-critic reinforcement learning algorithms and a ro-
bust interface tracking technique are discussed in Chapter 3. The presented approach
focuses on the instrumentation level, which is the lowest level of the control hierar-
chy. The suggested approach offers an end-to-end interface tracking methodology
by using a convolutional long short-term memory network. This structure integrates
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the nearby spatial and spatiotemporal aspects without any explicit models or restric-
tive assumptions. The proposed RL-based tracking algorithm requires significantly
fewer images than supervised/unsupervised learning techniques, and these images can
be quickly labelled by a user (manually) or a low-uncertainty sensor such as a pressure
sensor (automatically). In terms of robustness, which is one of the key requirements
in state estimation and control, this agent performs better than some of the existing
techniques. Finally, by employing a dimensionality reduction technique to demon-
strate the value functions of the high-dimensional states as a performance indicator,
our study contributes to deep learning-based RL solutions.

Chapter 4 aims to create an RL-based safe controller while taking into account
operational constraints such as safety requirements. To accomplish this, the suggested
method combines a deep actor-critic agent with random setpoint initialization and
a Lagrangian-based soft restricted learning scheme. The experimental studies show
that the soft-constrained approach can provide smooth state transitions with low
variance in control actions, while several workers accelerate the offline training phase.
In addition, an exploration metric based on set theory was proposed.

Chapter 5 focuses on the constrained nature of the uncertain quadratic/non-
quadratic cost function employed in RL and process control. This chapter demon-
strates how lowering the signal-to-noise ratio in a process irreversibly degrades track-
ing/control performance. Taking sensory noise into account, the proposed method
models the reward/cost function as a dynamic process, along with transition and
observation models. The proposed method uses a constrained particle filter to esti-
mate the first and second moments of the constrained reward. Furthermore, to save
computational time, the constrained estimations are calculated in several threads of
a computer’s processing unit.

Chapter 6 analyses the dimensionality increase problems in online state estimation
by using skew distributions. Although a closed skew-normal distribution enhances
the degree of freedom in state estimation, its position and scale parameters increase
in size at the end of each filtering phase. This challenge slows down the inferential
process, making closed-form/analytical formulations impossible to derive and online
inference impractical over time. Following the formal formulation of dimensionality
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reduction as an optimization strategy, empirical studies were carried out to com-
pare various statistical distance functions and optimization techniques. Finally, the
proposed skew estimation scheme was applied to problems of reward and state esti-
mation.

Chapter 7 offers a practical solution to the PID tuning problem. Because complex
industrial plants can have thousands of control loops of varying types, calibrating PID
controllers can be a time-consuming task with unknown system behaviour. Inspired
by the actor-critic paradigm, this chapter designed a constrained contextual bandit
that autonomously adjusts the PID controllers using simple step-response models.
The proposed agent was deployed in a distributed control scheme after a preliminary
offline training phase to learn the model plant mismatch through online interaction.
This chapter also presents a methodology for MPC tuning by adjusting the weight
parameters in the MPC objective function.

Chapter 8 focuses on linking the methodologies and theories developed in the
previous chapters and integrating them into an autonomous control automation in-
frastructure. Implementing non-linear/non-quadratic functions or modifying perfor-
mance criteria using complex functions might be complicated. The proposed au-
tonomous control automation infrastructure may provide optimal solution alterna-
tives to such issues through intelligent trial-and-error. Because of the modular nature
of the infrastructure and the model-agnostic character of the agents, these agents can
be trained on simulated system models and integrated into the infrastructure, high-
lighting the versatility of the methodologies developed in this thesis. This chapter also
demonstrates the robustness of the proposed methodologies in the presence of various
uncertainties and disturbances in an experimental setup. Furthermore, challenging
aspects of autonomy and automation are discussed in this chapter.

Chapter 9 outlines the findings drawn from the various proposed models and
algorithms. This chapter also discusses potential future work.

1.4 Main Contributions

The main contributions of the thesis are outlined in the following points.
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1. An RL-based robust interface tracking methodology that utilizes convolutional
networks and actor-critic technique is proposed. The resulting algorithm is
tested against numerous elements of visual disturbance.

2. An RL-based low-level process control method with soft constraints for safety is
developed. The proposed algorithm is implemented in a pilot-scale experimental
setup.

3. An online and constrained particle filter for robust state estimation under trun-
cated state and measurement noise is developed. The proposed algorithm is
integrated into reward estimation in an RL problem.

4. An online and skew Kalman filter for robust state estimation under skewed mea-
surement noise is rigorously derived and implemented in real-time estimation
and control.

5. An autonomous PID tuner with operational soft constraints is developed and
implemented in a pilot-scale distributed control system in real-time.

6. An autonomous MPC tuner is proposed and integrated into a complex pilot-
scale control infrastructure.

7. A proof of concept of an autonomous process control system through a pilot-
scale experiment setup by combining various proposed algorithms.

11



Chapter 2

Mathematical Background

This chapter provides a review of the various algorithms employed in the meth-
ods proposed in this thesis. As discussed, although each proposed method creates
an individual element of an autonomous scheme, their combination forms a robust
decision-making scheme. Chapter 3 develops an actor-critic interface tracker that
uses convolutional and long short-term memory networks, and hence mathematical
foundations of each of these are presented in detail. Chapters 3, 4, 5, and 7 use the
actor-critic reinforcement learning methodology, whose mathematical background is
described here. Chapter 6 develops an online skew filter, and this chapter intro-
duces its offline counterpart and Kalman filtering. Chapters 6 and 7 involve model
predictive controller, which is also presented in this chapter.

2.1 Regression Analysis and Neural Networks

An example of pattern recognition is curve fitting, as shown in Fig. 2.1, where the
goal is to estimate the pattern in the blue dots’ sinusoidal behaviour that is given in
Eqn. (2.1).

y = sin(3πx) +N (0, 0.05) (2.1)

where N (0, 0.05) represents a Gaussian variable with mean zero and standard devia-
tion of 0.05. After observing these noisy data points, one can develop a mathematical
model to express the noise-free behaviour of the sinusoidal wave. In this example, a
nonlinear model structure is selected to highlight the importance of prior knowledge.
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Figure 2.1: A prediction for y = sin(3πx) + N (0, 0.05). The green curve shows an
estimation due to accurate model selection.

This model is in the form of ŷ = sin(Aπx), where A represents the parameter(s)
to be estimated. This estimation can be done by minimizing an error function that
indicates the disparity between the function ŷ(x,A) for any A and the data points
present in the training set. A straightforward choice of error function is given by the
sum of the squares of the error (SSE) between ŷ(x,A) for each data point x, and the
corresponding target values y. Such an error function is shown in Eqn. (2.2)

ε(A) =
1

2

N∑
n=1

[ŷ(xn, A)− yn]2 (2.2)

where 1/2 is introduced for convenience in the calculation. This error function is
non-negative and would be zero if ŷ(x,A) strictly passes through each data point,
y. Following these properties, A can be found by using an optimization method.
The most primitive way is to randomly choose an A value, evaluate Eqn. (2.2), and
repeat it until a desired error value ε(A) < δ is achieved, where δ is a user-defined
threshold. However, randomizing the value of A can be time-consuming, and more
efficient methods can result in satisfactory accuracy. For example, gradient descent
can update A in the direction of the negative gradient of the error value as shown in

13



Eqn. (2.3).
At+1 = At − ηt∇Aε(At) (2.3)

where t ≥ 0 is the iteration step, ηt > 0 is called the learning rate, and A0 is often
initialized randomly such that ε(A0) ̸= 0. This recursive calculation continues until
At+1 ≈ At, which results in a locally optimal point in the parameter-error space.
Following this numerical optimization, Afinal ≈ Afinal−1 = 2.996 can be found as
shown in Fig. 2.1. Despite an insignificant disparity, due to numerical difference, the
green line captures the overall trend of the observed data points. This example shows
that a parameterized function can satisfactorily explain the underlying behaviour of
y = sin(3πx) given an input data point, x. Moreover, iterative numerical methods
(like gradient descent) can be used to adapt to small variations over time, where the
true value of A (i.e., Atrue = 3 in the abovementioned example) is non-stationary.

However, as mentioned earlier, these model structures might be unknown in com-
plex problems. In such cases, one can parameterize another function, ŷ = f(AT , x),
where the transpose operator indicates that A is a set of parameters (instead of a
scalar), and f is a continuous, differentiable and nonlinear function with a user-
defined arrangement in A, as shown in Fig. 2.2. The structure of the neural network
and its optimization function can vary according to implementation. For example,
convolutional networks provide more robust and computationally efficient solutions,
and recursive (e.g., long short-term memory) networks offer more powerful feature
representations compared to vanilla neural networks.

x1

Input
layer

A
(1)
1

A
(1)
2

A
(1)
3

Hidden
layer 1

A
(2)
1

A
(2)
2

Hidden
layer 2

ŷ1

Output
layer

Figure 2.2: A neural network structure with an input (x), five weights (A), and an
output (ŷ). The subscripts indicate the identity of the weight, and the superscripts
stand for the layer identity.
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2.1.1 Convolutional Neural Networks

Process industries use various types of sensors such as for pressure, temperature
and image measurements. This variety makes designing a unified monitoring/control
structure challenging since the numerical values obtained through these sensors can
vary. For example, an ideal thermocouple can measure any temperature from 0K to
∞K. However, an RGB image is a graphical representation of three matrices with
each element representing the intensity of red, green, and blue colour channels. Each
of these channels includes an intensity value that ranges between 0-255 for an 8-
bit sensor. Fig. 2.3a demonstrates a colour image of an industrial plant, and Fig.
2.3b explicitly shows the numerical values of the red, green, and blue channels of
that image. Additionally, the temperature obtained from a single thermocouple is
a scalar value; however, an RGB camera has (W × H × 3)-elements, where W and
H represent the width and height of the camera (camera resolution). Each of these
elements represents a sensory measurement and contains local information that cannot
be extracted through basic neural networks. Inspired by parameter learning (shown in
Eqn. (2.3)) and classical image processing techniques that use basic matrix operations
with certain types of filters, convolutional neural networks (CNNs) learn the filter
parameters. Table 2.1 shows an edge detection filter, and Table 2.2 presents a task-
agnostic filter representing a kernel of a CNN, with learnable parameters, θ. During
learning, a CNN takes an image as an input and outputs abstract features for further
calculations. Such networks are invariant to small perturbations and transformations
and are preferred for dimensionality reduction, local feature extraction and noise
filtering [20].

Table 2.1: A common 3 × 3 filter for edge
detection. 1 0 −1

1 0 −1
1 0 −1


Table 2.2: A 3× 3 filter of a CNN.θ1 θ2 θ3

θ4 θ5 θ6
θ7 θ8 θ9


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(a) A color image of an industrial process. (b) Matrix representation of the three
channels of Fig. 2.3a.

Figure 2.3: Representations of color (RGB) images.

2.1.2 Long Short-Term Memory Networks

Unlike the static data shown in Fig. 2.1, industrial processes often involve dynamic
data with temporal connections. For example, in a video, each image frame is con-
nected to the previous frames. Furthermore, physical processes frequently entail
retention time, which results in transitional behaviour such as gradual temperature
increase, where the current temperature value is dependent on the prior temperature
values and the heating source. Temporal data in continuous time have the following
form.

dy(τ)

dτ
= f(y(τ), u(τ), w(τ)) (2.4)

where f , y, u, w, and τ are a function, noisy observation, exogenous input, noise, and
time, respectively. Since the digital measurements are obtained at discrete timesteps,
Eqn. (2.4) can be discretized as follows.

yt+1 = fD(yt, ut, wt) (2.5)

where t and fD represent the discrete sampling instant and a discretized function,
respectively. This relationship can be captured via a parameterized recurrent network,
which models the temporal relationship as shown in Eqn. (2.6).
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it = σ(xtW
xi + ht−1W

hi)

ft = σ(xtW
xf + ht−1W

hf )

ot = σ(xtW
xo + ht−1W

ho)

gt = tanh(xtW
xg + ht−1W

hg)

Ct = σ(ft ◦ Ct−1 + it ◦ gt)

ht = ot ◦ tanh(Ct) (2.6)

where the superscripts denote the layer identity, ◦ denotes the Hadamard product,
U and H are the weights, σ and tanh are the activation functions (which add non-
linearity), i, f, o, g, C, and h stand for input gate, forgetting gate, output, candidate
state/modulation gate, cell state and hidden state. x corresponds to the input-output
data. Bias terms, which can increase the degree of freedom of the network, are ignored
for simplicity.

A common technique to train neural networks (i.e., updating its parameters) is
using gradient-based approaches as long as the network is differentiable. However, the
computational complexity of the gradient operation increases as the network grows.
Due to recent advancements in computer science, automatic differentiation became
one of the most popular techniques [21]. This technique applies the chain rule on
the network with respect to its parameters, starting at the output of the network.
Consider an input sequence {x1, ..., xT}, and the following output and error equations
for the LSTM described in Eqn. (2.6).

ŷt = softmax(W hzht) (2.7)

εt =
1

2
(yt − ŷt)2 (2.8)

where softmax is an activation function. Automatic gradient methods apply the
chain rule to pass the spatio-temporal information through the network. For simplic-
ity, derivatives with respect to the final step will be shown. Taking the derivative of
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the error (loss) function with respect to ŷt and W hz yields [22]:

dŷt = yt − ŷt (2.9)

dW hz =
T∑
t

htdŷt (2.10)

dhT = W hzdŷT (2.11)

dot = tanh(Ct)dht (2.12)

dCt = (1− tanh(Ct)2)otdht (2.13)

dft = Ct−1dCt (2.14)

dCt−1 = dCt−1 + ft ◦ dCt (2.15)

dit = gtdCt (2.16)

dgt = itdCt (2.17)

(2.18)

Considering the sigmoid and tanh functions, backpropagation from t = 1 to t = T

can be derived as follows.
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dW xo =
T∑
t

ot(1− ot)xtdot (2.19)

dW xi =
T∑
t

it(1− it)xtdit (2.20)

dW xf =
T∑
t

ft(1− ft)xtdft (2.21)

dW xc =
T∑
t

(1− g2t )xtdgt (2.22)

dW ho =
T∑
t

ot(1− ot)ht−1dot (2.23)

dW hi =
T∑
t

it(1− it)ht−1dit (2.24)

dW hf =
T∑
t

ft(1− ft)ht−1dft (2.25)

dW hc =
T∑
t

(1− g2t )ht−1dgt (2.26)

dht−1 = ot(1− ot)W hodot + it(1− it)W hidit

+ ft(1− ft)W hfdft + (1− g2t )W hcdgt +W hzdzt−1 (2.27)

Following these derivations, the objective function can be written in compact form
as follows.

L(x,A) = min
A

T∑
t

1

2
(yt − ŷt)2 (2.28)

where A = {W xo,W xi, ,W xf ,W xc,W ho,W hi,W hf ,W hc,W hz}. Consider L(t) = εt

and take the derivative of the loss function at t = T with respect to CT and at
t = T − 1 with respect to CT−1.

∂L(T )
dCT

=
∂L(T )
∂hT

∂hT
∂CT

(2.29)

∂L(T − 1)

dCT−1

=
∂L(T − 1)

∂hT−1

∂hT−1

∂CT−1

+
∂L(T )
dCT−1

(2.30)

=
∂L(T − 1)

∂hT−1

∂hT−1

∂CT−1

+
∂L(T )
dhT

∂hT
∂CT

∂CT
∂CT−1

(2.31)
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where the chain rule, shown in Eqn. (2.31), can be rewritten as follows.

dCT−1 = dCT−1fT ◦ dCT (2.32)

More information regarding the backpropagation in an LSTM network can be
found in [22]. Furthermore, there are numerous variants of recurrent networks [23,24]
for different tasks. Some examples include gated recurrent networks [25], convolu-
tional LSTMs [26], bidirectional LSTMs [27], etc. Since the LSTMs retain temporal
information while learning significant features in the input data, they can provide
robust estimations given the historical data.

2.2 State Estimation with Closed Skew-Normal Dis-
tribution

The former sections described the fundamentals of data-driven techniques that will be
covered in this thesis. However, neural network-based estimations often provide point
estimations in the state/action space, which ignore the uncertainty associated with
the data. Moreover, most neural networks inherently ignore the temporal connection
between the data points. State estimation techniques provide a probabilistic scheme
based on the Bayes rule to address uncertainty while considering the time-related
details. Unlike data-driven techniques, state estimation utilizes prior information
related to the process. Although there are various filtering and smoothing techniques,
this thesis focuses on online variants for practicality. A challenge with the analytical
techniques covered in this section is the dimensionality issue. That is, these techniques
do not scale up feasibly (due to the amount of time required for calculations and
the virtual space needed to store the variables of interest) when the dimensions of
the state/action spaces increase. For example, a Kalman filter calculates an n × n

covariance matrix for an n-dimensional state space, which should be considered if the
states constitute, for example, pixels of a large image. In such cases, dimensionality
reduction techniques (e.g., principal component analysis [28]) can be used to pre-
process the data, or numerical estimation methods can be preferred for approximate
solutions.
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2.2.1 Kalman Filtering (KF)

Industrial processes involve physical or chemical processes that evolve over time.
A fundamental property in such processes is their dynamic nature, which can be
measured through various sensors. This property can be mathematically expressed
through a discrete-time state-space model as shown in Eqns. (2.33) and (2.34).

xt+1 = Atxt +Btut + Etϵt (2.33)

yt = Ctxt +Dtut + Ftψt (2.34)

where xt ∈ Rn is the true state, and ϵt ∼ N (0,Σϵ,t) and ψt ∼ N (0,Σψ,t) are the state
and measurement noises respectively. At, Bt, Ct, Dt, Et, and Ft are system matrices
that regulate the contribution of each element to the state/measurement and can be
determined by using various system identification techniques [29]. After estimating
the parameters, the true state can be estimated by combining the state-space model
and measurements through Bayes’ rule.

Bayesian filtering aims to find the distribution of xt at time t given the historical
measurements up to t, which is shown as follows:

p(xt|y1:t) (2.35)

Following its initialization with a prior distribution p(x0), a Bayes filter can predict
the state, xt, and update its prediction through the noisy measurement, yt. The
predictive distribution can be calculated by the Chapman-Kolmogorov equation as
follows.

p(xt|y1:t−1 =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.36)

After receiving a noisy measurement, the posterior distribution of the state can be
obtained by using Bayes’ rule as shown below.

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

(2.37)

A Kalman filter simplifies the Bayesian filtering by assuming the Markovian property,
linear state and measurement models with Gaussian state and measurement noises.
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The Markov property states that given xt−1, the current state, xt, and its future
values, xt+1:t+∞, are independent of the past prior to the time step t− 1, as shown in
Eqn. (2.38) [30].

p(xt|x1:t−1, y1:t−1) = p(xt|xt−1) (2.38)

After considering Dt = 0 and Et = Ft = 1, for simplicity, Eqns. (2.39) and (2.40)
can be written as:

p(xt+1|xt)=N (xt+1|Atxt +Btut,Σϵ,t) (2.39)

p(yt|xt)=N (yt|Ctxt,Σψ,t) (2.40)

Following these probabilistic relationships, the Kalman filter can be derived as
follows [31]:

x̂−t = At−1x̂
+
t−1 +Bt−1ut−1 (2.41)

P−
t = At−1P

+
t−1A

T
t−1 + Σϵ,t−1 (2.42)

Kt = P−
t C

T
t (CtP

−
t C

T
t + Σψ,t)

−1 (2.43)

x̂+t = x̂−t +Kt(yt − Ctx̂−t ) (2.44)

P+
t = (I −KtCt)P

−
t (2.45)

where (·)− and (·)+ represent a priori and a posteriori estimates, andKt is the Kalman
gain respectively. Note that if Ct = 1 and Dt = 0, then estimating ŷt is equivalent to
estimating x̂t.

Under the normality assumption, a Kalman filter can be used to estimate the state
of interest. However, measurements can be skewed due to instrumentation and the
properties of the noisy signal. In such cases, the normal distribution cannot model
the underlying dynamics, and hence, a different filter is needed.

2.2.2 CSN Distribution

Although a Kalman filter is commonly used with Gaussian noise assumption, sensory
measurement can be significantly affected by instrumentation (such as interference
in sensors). For example, physical obstacles can cause asymmetric/skewed measure-
ments [32]. In such cases, the performance of a Kalman filter can deteriorate due to
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the filter’s normality assumption. A skew filter can address this challenge by utilizing
asymmetric (e.g., skew-t, Weibull or skew-normal) measurement distributions. An
alternative distribution is the closed skew-normal (CSN) distribution that generalizes
the Gaussian distribution by adding skewness into the model. Some representative
examples are shown in Fig. 2.4.
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CSN(2, 1, [5], [0.6], [0.5])
CSN(2, 1, [2], [0.6], [0.5])

Figure 2.4: A Gaussian (N (2, 1)) and various CSN distributions. A CSN with zero
skewness (the third parameter) is equivalent to a Gaussian distribution, as shown
with the orange dots.

Moreover, a CSN distribution is closed under linear transformations, and a con-
volution or Bayesian inversion operation as long as the distributions involved in these
operations are also CSN [33]. The closedness property makes a CSN a viable candi-
date distribution for recursive estimations via the Bayesian framework. However, the
dimensionality of the skew parameters of a CSN increases following the measurement
update step. Due to this issue, the mean of the resulting CSN cannot be calcu-
lated analytically, and the CSN parameters cannot be feasibly stored during online
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operations.

2.3 Model Predictive Control

The purpose of state estimation is to calculate the statistics of the process variables
given noisy measurements. The estimated state then can be utilized in control to
improve the performance of the process while maintaining safety. Model predictive
control (MPC) is a practical method to achieve optimal performance in the presence
of accurate system models.

min
ut

J(ut) = min
ut

NP−1∑
k=0

||x̂t+k − xt+k,sp||2Q[1]
k

+ ||ut+k − ut+k,ref ||2λk + ||∆uk||
2

Q
[2]
k

+ ||x̂t+N − xt+N,sp||2Q[3]
N

(2.46)

s.t. Eqns. (2.33), (2.34),

umin ≤ ut ≤ umax, ∀t

x̂min ≤ x̂t ≤ x̂max, ∀t

x̂0 = E[x̂], x̂ ∈ X , u ∈ U (2.47)

where J is a quadratic cost function that is minimized at every discrete time step
with ut = {u(0), u(1), ..., u(NC − 1)}. xt,sp and ut,ref are state and action setpoints,
∆u = (ut+1−ut) is a control velocity term, NP and NC are the prediction and control
horizons, (·)min and (·)max are the lower and upper limits respectively. k is a discrete
time step, Q[1]

k , Q[2]
k , Q[3]

N and λk are the square weight matrices, and X and U are the
state and action spaces, respectively. After the input sequence, ut (i.e., the open-loop
optimization solution) is calculated according to Eqn. (2.48), the first control action,
ut = u(0) ∈ ut, is sent to the plant. This strategy is also known as the receding
horizon control.

ut = argmin
ut

J(ut) (2.48)

As shown in Eqn. (2.47), an MPC can handle various constraints in linear/nonlinear
form given linear/nonlinear system models. However, in the presence of constraints,
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the resulting optimization problem cannot be solved analytically, necessitating the
use of numerical methods.

2.4 Reinforcement Learning

Unlike MPCs, which use the process model directly, machine learning methods require
training a neural network based on process data. That is, the data used in MPC is
the current feedback from the system, which is an estimation of the state of interest.
Although a conventional time-invariant MPC provides a locally optimal controller
output at each step, it does not handle variations in the operational conditions since
it does not have an update mechanism.

Inspired by model-based dynamic programming [34] and animal learning, rein-
forcement learning (RL) provides an alternative framework to optimal control by
training an agent in the process environment [35]. The agent optimizes a control
policy while interacting with the environment. The policy defines the behaviour of
the agent given a state during the interaction. After an action is selected according
to the policy, it is implemented in the environment, and the agent receives a reward
signal, indicating the goodness of the decision. Although the agent can learn a pol-
icy offline (through historical data) [36], this thesis will cover online/recursive RL
algorithms that can learn autonomously without explicit system knowledge or any
process model.

2.4.1 Markov Decision Process

Sequential problems require optimal decisions with temporal order. Considering the
complex nature of the environment, the outcomes of the actions of an agent are
often uncertain. The Markov decision process (MDP) is a probabilistic framework
for sequential decision making where the agent receives a state, x ∈ X , chooses an
action u ∈ U , receives a reward r and the next state x′ ∈ X . This framework assumes
the Markov property, where the information in the next time step depends only on
the current time step, as shown in Fig. 2.5. The system dynamics are governed by
a transition probability function, p(x′, r|x, u), and the agent’s goal is to maximize a
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return function, G, which is shown in Eqn. (2.49).

Xt

Rt+1
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Xt+1
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Xt+2

Rt+3

Ut+2

Figure 2.5: A graphical representation of the Markov decision process. The next
state and the reward depend only on the current state and action. The capital letters
indicate that the state, action and reward are random variables.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.49)

where the capital letters denote that the reward is a stochastic variable, and γ ∈ [0, 1]

is a weight that controls how much future gains will contribute to the return function.
During its interactions with the environment, the agent samples its actions from a
stochastic policy, π(u|x), the performance of which is tracked using a value function.
There are two kinds of value functions: v(x) and q(x, u), and the type depends on
the policy evaluation approach. Learning can be performed by solving the Bellman
equations iteratively, as illustrated in Eqns. (2.50)-(2.51) [37].

vπ(x)=Eπ [Gt|Xt = x]

=Eπ [Rt+1 + γGt+1|Xt = x] , ∀x ∈ X

=
∑
u

π(u|x)
∑
x′

∑
r

p(x′, r|x, u) [r + γEπ [Gt+1|Xt+1 = x′]]

=
∑
u

π(u|x)
∑
x′

∑
r

p(x′, r|x, u) [r + γvπ(x
′)] (2.50)

qπ(x, u)=Eπ [Gt|Xt = x, Ut = u] , ∀x, u ∈ X × U

=
∑
x′

∑
r

p(x′, r|x, u)

[
r + γ

∑
u′

π (u′|x′) qπ(x′, u′)

]
(2.51)
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where E[·] represents the expected value of a random variable. Eqns. (2.53) can be
used to find the optimal value functions after the recursions.

v∗(x)=max
π

vπ(x), ∀x ∈ X (2.52)

q∗(x, u)=max
π

qπ(x, u), ∀x, u ∈ X × U

=E [Rt+1 + γv∗(Xt+1)|Xt = x, Ut = u] (2.53)

Finally, Eqn. (2.54) may be used to calculate the optimum (also known as greedy)
policy.

π∗(x) = argmax
u

q∗π(x, u) (2.54)

However, because the system model, p (·), is often unknown, Eqns. (2.50) and (2.51)
cannot be solved analytically. The lack of p(·) in RL and the existence of π(·) in MPC
are crucial differences. That is, the agent learns the value function from the data and
stores it in memory, whereas the MPC recalculates it at each step using the system
model. As a result, an RL agent learns to control and can save computational time
upon learning.

2.4.2 Value-based (Critic-only) RL

Initial implementations used the value-based (critic-only) methodology [38, 39] to
solve control problems. In these methodologies, actions are derived directly from a
value function, which predicts the long-term outcomes of a specific policy. The state
value function (shown in Eqn. (2.50)) is the expected return obtained from state x
while following policy π. The action-value function (shown in Eqn. (2.51)) is the
expected return after taking action u in state x and following the policy π thereafter.
The optimal value functions, v∗(·) and q∗(·) (shown in Eqns. (2.52) and (2.53)) are
the unique value functions that maximize the value of every state.

Value-based methodologies, during policy evaluation, estimate V (x) ≈ vπ(x) or
Q(x, u) ≈ qπ(x, u) for the current policy and improve the policy iteratively. A common
example is greedily selecting actions with respect to the updated value function.

Although dynamic programming (DP) [34] and Monte Carlo (MC) techniques
can be used to solve an RL problem, these methods are computationally infeasible,
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need to wait until an episode ends, have high variance, or require a perfect system
model. Temporal difference (TD) methodology provides a practical alternative to
these algorithms by combining the bootstrapping (estimating the values by using the
previously estimated values) ability of DP and the model-free nature of MC. As a
result, TD algorithms can update their policies before an episode ends. Two examples
of state and action-value function update rules are given in Eqns. (2.55) and (2.56).

V (Xt) ← V (Xt) + α(Rt+1 + γV (xt+1)− V (xt)) (2.55)

Q(Xt, Ut) ← Q(Xt, Ut) + α(Rt+1 + γQ(xt+1, Ut+1)−Q(Xt, Ut)) (2.56)

where “←” represents the update operation. Note the similarity between the value
function update rules and the update rule in Kalman filtering (shown in Eqn. (2.44)),
where (Rt+1+ γV (Xt+1)), V (Xt), and α in TD learning respectively correspond to yt
(measurement), x̂−t (prediction), and Kt (Kalman gain) in state estimation.

Built upon the TD learning methodology, two RL algorithms, namely SARSA
(state-action-reward-state-action) and Q-learning [35], have shown promising results
in process control applications [40–42]. These algorithms differ in terms of their policy
evaluation/improvement strategies. For example, SARSA is an on-policy algorithm
since it improves its policy that is used to make decisions. In contrast, the Q-learning
algorithm is off-policy since it improves a policy different from that used to generate its
data. The policy improvement steps are shown in Step 3.c.iii of Algorithm (2.1) and
Step 3.b.iii of Algorithm (2.2) [35]. These steps show that the SARSA algorithm uses
Ut+1 in the process and updates the Q-function by using it. However, the Q-learning
algorithm performs an additional greedy action selection to find U and updates the
action-value (Q) function by using U . Since U is not used to control the system (but
is used to update the Q-function), it can act as an additional exploration factor in Q-
learning. On the other hand, the optimal Q-function can result in aggressive control
actions, which can compromise safety, as Sutton and Barto showed [35] through a
cliff walking problem. Therefore, it is the practitioners’ responsibility to select and
test the algorithm considering mathematical and safety requirements.

The terminal state in RL can be defined based on an event or time. Some ex-
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Algorithm 2.1 SARSA algorithm.
1. Hyperparameters: α ∈ (0, 1], discount factor, γ ∈ [0, 1], an exploration prob-

ability, ϵ ∈ [0, 1].
2. Initialize Q(x, u)∀x ∈ X , u ∈ U arbitrarily.
3. Repeat for each episode

(a) Initialize Xt

(b) Choose Ut for Xt using policy derived from Q(·).
(c) Repeat for each step in the episode until Xt is terminal:

i. Take action Ut, observe Xt+1, Rt+1

ii. Choose Ut+1 given Xt+1 using policy derived from Q(·).
iii. Q(Xt, Ut)← Q(Xt, Ut) + α(Rt+1 + γQ(Xt+1, Ut+1)−Q(Xt, Ut))

iv. Xt ← Xt+1, Ut ← Ut+1

Algorithm 2.2 Q-learning algorithm.
1. Hyperparameters: α ∈ (0, 1], discount factor, γ ∈ [0, 1], an exploration prob-

ability, ϵ ∈ [0, 1].
2. Initialize Q(x, u)∀x ∈ X , u ∈ U arbitrarily.
3. Repeat for each episode

(a) Initialize Xt

(b) Repeat for each step in the episode until Xt is terminal:
i. Choose Ut for Xt using policy derived from Q(·).
ii. Take action Ut, observe Xt+1, Rt+1

iii. Q(Xt, Ut)← Q(Xt, Ut) + α(Rt+1 + γmaxU Q(Xt+1, U)−Q(Xt, Ut))

iv. Xt ← Xt+1
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amples of the terminal state include but are not limited to an ‘unsafe’ state (when
the temperature of a reactor reaches a certain value), a specific time step (when the
plant has been operated for x hours), and average return value (when the agent has
achieved a specific performance metric). If the hyperparameters are selected appro-
priately, SARSA and Q-learning algorithms will asymptotically converge their opti-
mal values [35]. Successful SARSA and Q-learning applications have been reported
in [43–46].

A challenge with SARSA and Q-learning algorithms is that the action value func-
tion is stored as a look-up table, where the Q-value is represented explicitly for each
state-action pair. On one hand, large discretization steps can reduce the accuracy
of the Q-table. On the other hand, selecting small discretization steps makes it in-
feasible to store and update the Q-table for large or continuous state/action spaces.
Therefore, for large state/action spaces, a practical solution is to use approximate
value functions, such as V (x|ω) or Q(x, u|ω), instead of storing v (x) or q (x, u) for
each state-action pair. The parameters of the value functions are specified by ω in
this case. A variety of applications have utilized deep neural networks to train RL
agents in large/continuous state spaces [47–53]. Nevertheless, the value-based RL al-
gorithms often generate discrete and deterministic actions (which can be insufficient
for continuous state-action space control problems) and have been reported to be
divergent for large-scale problems [54, 55].

2.4.3 Policy-based (Actor-only) RL

Process industries often involve large/continuous action spaces with stochastic state
transitions. Policy-based (actor-only) methods [56–58] learn stochastic and continu-
ous actions by parameterizing a policy, πθ(u|x, θ), and directly optimizing it by using
a performance metric, as demonstrated in Eqn. (2.57).

J2(θ) = max
θ

Eπθ [Gt|θ] (2.57)

where J2(θ) is the agent’s objective function. As stated in Eqn. (2.58), the policy
update rule can be obtained by using the policy gradient theorem [35].

∆θ = θt+1 − θt = αGt∇θ ln πθ(Ut|Xt, θt) (2.58)
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where α denotes the learning rate. Although policy gradient methods can converge to
at least locally optimal policies, learn continuous actions and ‘fuzzy’ strategies that
are a mixture of different actions, and often converge better than the value-based
methods, they generally suffer from higher variance than the value-based methods.
To reduce the variability during learning, REINFORCE algorithm modifies the policy
gradient algorithm as shown in Eqn. (2.59) [59].

∆θ = α(Gt − b(Xt))∇θ ln πθ(Ut|Xt, θt) (2.59)

where b(Xt) is a baseline independent on the action, Ut. Sutton et al. have modified
this methodology further by replacing the actual return with the action value function,
qπ(Xt, Ut) as shown in Eqn. (2.60) [60].

∆θ = α(Qπ(Xt, Ut)− b(Xt))∇θ ln πθ(Ut|Xt, θt) (2.60)

Although Eqn. (2.58)-(2.59) update θ in the direction of high return values, α
and G remain crucial for θ to converge. Furthermore, |∆θ| = |θt+1−θt| ≥ 0 if |G| ≥ 0

or |∇ ln π| ≥ 0. Moreover, Qπ in Eqn. (2.60) is the expected return, which is initially
unknown. Despite these challenges, policy-gradient methods have been applied to
continuous action spaces in various domains [61–67].

2.4.4 Actor-Critic RL

Similar to a student-teacher pair or generative adversarial networks (GANs) [68] that
utilize generative and discriminative networks, actor-critic algorithms generate control
actions and examine the outcomes by using a scalar reward signal without any labels
[55, 69–71]. As shown in Fig. 2.6, these algorithms combine policy and value-based
methods via an actor and a critic respectively. The actor and the critic can be
represented as two neural networks, π(u|x, θ) and V (x|ω) (or Q(x, u|ω)), respectively.
This value-assisted policy learning methodology reduces θ variability while promoting
convergence to optimal policies [35,72]. Although various actor-critic algorithms have
been proposed to solve the optimal control/RL problems, an early example combines
the policy gradient with state-value estimation [35], as shown in Eqn.(2.61).

31



(a)
Value-based

(b)
Policy-based

(c)
Actor-critic

x (state)

state-value

x action-value

u (action)

V(x)

Q(x, u)

x

policy

π(u|x)

x

Q(x, u)
or V(x)Critic

Critic

Actor

Actor

Critic

π(u|x)

u

Figure 2.6: Comparison of value, policy and actor-critic based RL. The value-based
methods derive the policy based on the value functions (which estimate the future
return values), the policy-based methods directly optimize the policy, and the actor-
critic methods simultaneously learn the policy and the value functions.

θt+1 − θt = α(Gt − V (Xt, ω))∇ ln π(Ut|Xt, θt)

= α(Rt+1 + γV (Xt+1, ω)− V (Xt, ω))∇ ln π(Ut|Xt, θt) (2.61)

Initially, V (Xt, ω) ̸= (Rt+1+γV (Xt+1, ω)) since ω is often a set of randomly initialized
parameters. As a result, high values of (Rt+1 + γV (Xt+1, ω)) will result in large ∆θ.
However, as V (Xt, ω) approaches (Rt+1 + γV (Xt+1, ω)), the variability in θ decreases
over time [73].

This subsection focuses on the most commonly used model-free algorithms that are
represented in Table 2.3. Some of these methods use entropy regularization, whereas
others take advantage of heuristic methods. A common example of these methods
is the ε-greedy approach, where the agent takes a random action with a probability
ε ∈ [0, 1). ε = 1 corresponds to random search since it learns a policy but does
not utilize the learned policy in the decision-making process. Other exploration tech-
niques include but are not limited to introducing additive noise to the action space,
introducing noise to the parameter space, utilizing the upper confidence bound, etc.
The readers can see [40] for more detail. The actor-critic algorithms are summarized
as follows:
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Table 2.3: A comparison of the actor-critic algorithms based on the type of action
spaces & the exploration method. The state space can be either discrete or continuous
for all of the algorithms.

Algorithm Action Space Exploration
DDPG Continuous Noisy actions

A2C or A3C Discrete/Continuous Entropy regularization
ACER Discrete/Continuous Entropy regularization
PPO Discrete/Continuous N/A

ACKTR Discrete/Continuous N/A
SAC Continuous Entropy regularization
TD3 Continuous Noisy actions

2.4.4.1 Deep deterministic policy gradient (DDPG)

The DDPG algorithm [74] has been proposed to generalize discrete, low-dimensional
value-based approaches [39] to continuous action spaces. This algorithm uses two
deep neural networks, namely the deep policy gradient (DPG) and deep Q-learning
algorithms, to map the states into actions and estimate the action-value function (Q-
function) respectively. The resulting architecture is shown in Fig. 2.7. Similar to the
policy update methodology shown in Eqn. (2.61), this algorithm updates the policy
by using the derivative of the Q-function with respect to ω. This update rule helps the
agent maximize the expected return while improving the value estimation and policy.
In addition to this improvement, this algorithm utilizes copies of the actor (π(u|x, θ)
and critic (Q(x, u|ω)) as target networks (π(u|x, θ′) Q(x, u, ω′)). After observing a
state, real-valued actions are sampled from the actor network and are mixed with a
random process (e.g. Ornstein-Uhlenbeck Process, [75]) to encourage exploration as
shown in Eqn. (2.62).

Ut = π(Ut|Xt, θ) +OUt (2.62)

where dOU = −(OUη)OUdt+ σdWt, OUη > 0 and σ > 0 are tuning parameters, and
Wt is the Wiener process. Note that the OU process is a correlated noise, but the
use of white noise has also been reported for exploration purposes [76]. The agent
stores state, action, and reward samples in an experience replay buffer to break the
correlation between consecutive samples to improve learning. It minimizes the mean
square error of the loss function to optimize its critic, as shown (for one sample) in
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Figure 2.7: A schematic of the DDPG algorithm. The solid lines show the data flow,
and the dashed lines show the update mechanism.

Eqn. (2.63), and updates the policy parameters using the policy gradient shown in
Eqn. (2.64).

L = (Rt + γQ (Xt+1, π(Xt+1|θ′)|ω′)−Q (Xt, Ut, ω))
2 (2.63)

∇θ(Q(X, θ(X)) = ∇UtQ(Xt, π(Ut|Xt, θ)|ω)∇θπ(Xt|θ) (2.64)

The target networks are updated using a low-pass filter, as shown in Eqn. (2.65)

[ω′, θ′]T ← τddpg[ω, θ]
T + (1− τddpg[ω′, θ′]T (2.65)

where τddpg is the filter coefficient that adjusts the contribution of the observation
(ω and θ, which are a function of the empirical/observed reward) and the previous
values of the target parameters. Since the value function is learned for the target
policy based on a different behaviour policy, DDPG is an off-policy method.
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2.4.4.2 Asynchronous advantage actor-critic (A2C/A3C)

Instead of storing the experience in a replay buffer that requires memory, this scheme
involves local workers that interact with their environments and update a global net-
work asynchronously, as shown in Fig. 2.8. This update scheme inherently increases
exploration since the individual experience of the local workers is independent [73].
Instead of minimizing the error based on the Q function, this scheme minimizes the
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Figure 2.8: Multiple worker scheme in the A3C algorithm. Local workers interact
with their environment and update a global network. Using a single A3C worker
results in an A2C agent.

mean square error of the advantage function (A or δ) for critic update, as shown in
Eqn. (2.66).

At = δ = Rt + V (Xt+1|ω)− V (Xt|ω) (2.66)

In this scheme, the global critic is updated by using Eqn. (2.67) and the entropy of
the policy is used as a regularizer in the actor loss function to increase exploration,
as shown in Eqn. (2.68).

dωG ← dωG + αc∇ωL
δ (xt|ωL)2 (2.67)

dθG ← dθG + αa∇θLδ (xt|ωL) ln π (ut|xt, θL) + βπ (ut|xt, θL) ln π (ut|xt, θL)(2.68)

where initially dθG = dωG = 0. Left arrow (←) represents the update operation, αc
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and αa are the learning rates for critic and actor respectively, ∇ is the derivative
with respect to its subscript, and β is a fixed entropy term that is used to encourage
exploration. Subscripts L and G stand for the local and the global networks respec-
tively. Multiple workers (A3C) can be used in an off-line manner and the scheme
can be reduced to a single worker (A2C) to be implemented online. Even though
the workers are independent, they predict the value function based on the behaviour
policy of the global network, which makes A3C an on-policy method.

2.4.4.3 Actor-critic with experience replay (ACER)

ACER was proposed to address sample inefficiency of A3C and improve learning
stability [77]. The algorithm utilizes ‘truncated importance sampling with bias cor-
rection, trust region policy optimization, stochastic ‘duelling’ network architectures,
and the Retrace algorithm [78]. the ACER algorithm modifies the policy update rule
shown in Eqn. (2.61) for a trajectory {X0, U0, R1, µ(·|X0), ...Xk, Uk, Rk+1, µ(·|Xk)}

and calculates the importance weighted policy shown in Eqn. (2.69).

∆θ =

(
k∏
t=0

ρt

)
k∑
t=0

(
k∑
i=0

γirt+1+i

)
∇θ log πθ(Ut|Xt) (2.69)

where ρt = π(Ut|Xt)
µ(Ut|Xt)

is the important weight, and µ and π are the behaviour and
the target policies respectively. To reduce the variance, the algorithm estimates the
action-value of the policy by using the Retrace algorithm shown in Eqn. (2.70).

Qret(st, at) = Rt + γη̄t+1[Q
ret(Xt+1, Ut+1)−Q(Xt+1, Ut+1)] + γV (Xt+1) (2.70)

where the truncated importance weight, η̄t = min {c, ρt}, and c is a clipping constant.
The algorithm updates the actor and critic using the clipped trust region policy
optimization technique and the Retrace algorithm shown in Eqns. (2.71) – (2.75).
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Qret = Rt+1 + γV (Xt|θ′) (2.71)

g = min{c, ρt}∇ϕθ′ (Xt) log f(Ut|ϕθ′(Xt))(Q
ret(Xt, Ut)− Vω(Xt))

+

[
1− c

ρ′t

]
+

(Q(Xt, U
′
t|ω′)− V (Xt|ω′))∇ϕθ′ (Xt) log f(U

′
t|ϕθ′(Xt)) (2.72)

k = ∇ϕθ′ (Xt)DKL[f(·|ϕθ(Xt))|f(·|ϕθ′(Xt))] (2.73)

∆θ = ∇θ′ϕθ′(x)

(
g −max

{
0,
kTg − δ
||k||22

}
k

)
(2.74)

∆ω′ = (Qret −Q(Xt, Ut|ω′))∇ω′Q(Xt, Ut|ω′)

+ min{1, ρt}(Qret(Xt, Ut)−Q(Xt, Ut|ω′))∇ω′V (Xt|ω′) (2.75)

where f represents a sampling distribution, ϕ is a neural network that generates the
statistics of f , ρ′t =

f(U ′
t|ϕθ′ (Xt))

µ(U ′
t|Xt)

, and DKL is the KL divergence. Because of its Retrace
algorithm, ACER is an off-policy method.

2.4.4.4 Proximal policy optimization (PPO)

The trust region policy optimization (TRPO) algorithm suggests maximizing a soft-
constrained objective function shown in Eqn. (2.76)

max
θ
JKL = max

θ
E
[
πθ(Ut|Xt)

πθold(Ut|Xt)
At − βDKL[πθold(Ut|Xt)|πθ(Ut|Xt)]

]
(2.76)

where β is a weight for the KL divergence term, At is the advantage estimate that
represents how good the agent’s actions are, as shown in Eqn. (2.66), and the KL
divergence creates a lower bound on the performance of π. However, using a fixed
weight, β, in the objective function shown in Eqn. (2.76) can result in large policy
updates. To avoid abrupt changes in the policy, the PPO algorithm suggests [79]
clipping the surrogate objective function as shown in Eqn. (2.77).

JCLIP(θ) = E
[
min

(
r (θ)At, clip (r (θ) , 1− ϵ, 1 + ϵ)At

)]
(2.77)

where θold represents the old policy parameters, r(θ) = πθ(u|x)
πθold (u|x)

, and ϵ is the clipping
constant. Then, the algorithm includes a KL penalty and a value loss function in the
objective function, which results in Eqn. (2.78)
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JPPO = E[JCLIP − c1JVF + c2H] (2.78)

where c1 and c2 are weight coefficients,H = E[− log π(Ut|xt, θ)], and JVF = (V (Xt|ω)−

V (Xt|ω′))2. The resulting architecture of the PPO algorithm is shown in Fig. 2.9.
Due to the practical advantages of these modifications, PPO and its variants have
been one of the most commonly used algorithms to solve control problems [80].
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Figure 2.9: A schematic of the PPO algorithm. The solid lines show the data flow,
and the dashed lines show the update mechanism.

2.4.4.5 Actor-critic using Kronecker-factored trust region (ACKTR)

Classical gradient descent/ascent algorithms, such as the general policy gradient al-
gorithm (shown in Eqn. (2.61)), update the parameters by solving the optimization
function shown in Eqn. (2.79).

∇θJ(θ) = Eπ[
∞∑
t=0

Ψt∇θ log π(Ut|Xt|θ)] (2.79)

where Ψ is the magnitude of the update, which is often selected as Gt, Q(Xt, Ut|ω), or
At. Such RL algorithms aim to maximize a non-convex function, J(θ), in the steepest
ascent direction while calculating ∆θ such that J(θ +∆θ) is maximized. In general,
the goal is to keep ||∆θ||z = (∆θT z∆θ)0.5 < 1, and z is a positive semidefinite matrix.
The result of this optimization problem is in the form of ∆θ ∝ z−1∇θJ(θ), with z = I,
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as shown in Eqn. (2.61). Instead of gradient descent algorithm [81] to optimize the
actor and the critic networks, ACKTR [82] utilizes second-order optimization, which
provides more information. That is, z = F ̸= I, where F is the Fisher informa-
tion matrix, which is challenging to calculate, store and invert. ACKTR overcomes
the computational complexity by using Kronocker-factored approximation [83,84] to
approximate the inverse of Fisher information matrix (FIM) that, otherwise, scales
exponentially with respect to the neural network parameters. Moreover, ACKTR
keeps a track of the Fisher statistics, which yields better curvature estimates. The
resulting algorithm updates the parameters as shown in Eqn. (2.80).

∆θ = αF−1∇θδ (2.80)

where F = Ep(τ)[∇θ log π(Ut|Xt, θ)(∇θ log π(Ut|Xt, θ))
T ], and τ is shown in Eqn.

(2.81).

τ = p(X0)
T∏
t=0

π(Ut|Xt)p(Xt+1|Xt, Ut) (2.81)

where p denotes the probability distribution functions. As a result of these improve-
ments, ACKTR has shown successful results in various applications [85–87].

2.4.4.6 Soft actor-critic (SAC)

Unlike methods like A3C and PPO, which use the entropy of the policy as a loss reg-
ularizer [73,79,88,89], SAC augments the reward function with the entropy term (as
shown in Eqn. (2.82)) to encourage exploration while maintaining learning stability.

J(θ) =
∑
t∈T

E(xt,ut)∼π [R (xt, ut) + αH (πθ (·))] (2.82)

where θ represents the parameters of the policy, and α is a user-defined (fixed or time-
varying) weight to adjust the contribution of the entropy, H. This scheme relies on
both Q(·, ϕ) and V (·, ω) functions to utilize the soft-policy iteration. The parameters
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of the neural networks are updated as shown in Eqns. (2.83) –(2.85).

∇ωJV (ω) = EXt∼D[0.5(V (Xt|ω)− EUt∼πθ [Qϕ(Xt, Ut)− log πθ(Ut|Xt)])
2]

= ∇ωV (Xt|ω)(V (Xt|ω)−Qϕ(Xt, Ut)− log πθ(Ut|Xt)) (2.83)

∇ϕJQ(ϕ) = E(Xt,Ut)∼D[0.5(Qϕ(Xt, Ut)− Q̂(Xt, Ut))
2]

= ∇ϕQϕ(Xt, Ut)(Qϕ(Xt, Ut)−Rt+1 − γVω′(Xt+1)) (2.84)

∇θJπ(θ) = ∇θ log πθ(Xt|Ut) + (∇Ut log πθ(Xt|Ut)−∇UtQ(Xt, Ut))∇θfθ(ϵ|Xt)

(2.85)

where Ut is evaluated at fθ(ϵ|Xt), ϵ is a noise vector, and Q̂(Xt, Ut) = Rt+1 +

γEXt+1 [Vω′(Xt+1)]. Similar to DDPG and PPO, SAC stores the transitions in a replay
buffer, indicated as D, to address sample efficiency. This approach has also been re-
ported [72, 90] to improve the robustness of the policy against model and estimation
errors. Besides enhancing the exploration, this off-policy training methodology has
been used in several control and optimization applications [91–93] and reported to
improve stability since it utilizes target networks.

2.4.4.7 Twin delayed deep deterministic policy gradient (TD3)

TD3 is an extension to the DDPG algorithm [76]. It addresses error propagation
(which is a non-trivial challenge in statistics and control [94]) due to function ap-
proximation and bootstrapping (i.e. instead of an exact value, using an estimated
value in the update step). To reduce the overestimation bias, the scheme predicts
two separate action-value functions and prefers the pessimistic value to update the
network parameters, avoiding sub-optimal policies. TD3 utilizes target networks,
delays the update to the policy function, and uses an average target value estimate
by sampling N -transitions from a replay buffer to reduce variance during learning.
The scheme introduces exploration by adding Gaussian noise to the sampled actions
and performs policy updates using the deterministic policy gradient [57]. As a re-
sult of these modifications, TD3 has been considered one of the state-of-the-art RL
algorithms in control and optimization [95–100].
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2.4.4.8 More Application Examples from the Process Control Literature

Though the above-mentioned algorithms provide general solutions to control prob-
lems, they may remain inadequate for more complex or specific tasks. Several other
algorithms have been proposed to address these shortcomings. For example, [101]
has extended the discrete actor-critic method, which had been proposed by [69], to
continuous time and space problems via Hamiltonian-Jacobi-Bellman (HJB) equa-
tion [34, 102]. This proposed algorithm has been tested in an action-constrained
pendulum and a cart-pole swing-up problem. [103] has employed an actor-critic al-
gorithm on a constrained MDP with detailed convergence analysis. [104] has show-
cased four incremental actor-critic algorithms based on regular and natural gradient
estimates. [105] has introduced natural actor-critic (NAC) and demonstrated its per-
formance on the cart pole problem and a baseball swing task. [106] has presented a
continuous time actor-critic via converse HJB and tested the convergence in two non-
linear simulation environments. [107] has proposed an online actor-critic algorithm
for the infinite horizon and continuous time problems with a rigorous convergence
analysis and linear and nonlinear simulation examples. [108] has proposed an incre-
mental, online and off-policy actor-critic algorithm. The proposal has analyzed the
convergence qualitatively and supported it with empirical results. Moreover, the TD
methods have been compared with gradient-TD methods that minimize projected
Bellman error [35]. [109] has proposed an actor-critic-identifier that could provably
approximate the HJB equation without the knowledge of system dynamics. After the
learning step, the scheme showed improved process stability. However, this algorithm
required knowledge of the input gain matrix. [110] has used a nominal controller as
a supervisor to guide the actor and to yield a safer control in a simulated cruise
control system. [111] has proposed to learn the solution of an HJB equation for a
partially unknown input-constrained system without satisfying the persistent excita-
tion conditions while preserving stability. By considering the Lyapunov theory, [112]
has designed a fault-tolerant actor-critic algorithm and tested its stability on the Van
der Pol system. [113] has formulated an input-constrained nonlinear tracking problem
by using the HJB equation and a quadratic cost function to define the value func-
tion. The scheme has obtained an approximate value function with an actor-critic
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algorithm. [114] has combined classification and time-series prediction techniques to
solve an optimal control problem and showcased the effectiveness of the proposed
algorithm on a simulated continuous stirred tank reactor (CSTR) and a simulated
nonlinear oscillator. The mean actor-critic algorithm, introduced in [115], estimates
the policy gradient using a smooth Q-function, averaging over the actions to reduce
variance. The algorithm has demonstrated promising results on Atari games, which
can be extended to stochastic process control applications. [116] has utilized an event-
triggered actor-critic scheme to control a heating, ventilation, and air conditioning
(HVAC) system. In addition, more recent studies on different actor-critic algorithms
and their applications have been reported in [40, 117–126].

2.4.4.9 Techniques to Improve Actor-Critic Algortihms

Several methods have been proposed to improve value estimation in RL [127–129],
which can be used in actor-critic algorithms. Moreover, different techniques [77,130]
have been reported to improve the sample efficiency (i.e. to reduce the amount of
data needed to learn the optimal policy). Unlike these techniques that used experi-
ence replay [131] or supervised data [132], ”parallel learning” makes use of multiple
randomly initialized workers (local networks) that interact with different instances
of the environment independently to reduce the variance in the policy during learning.
These workers have the same infrastructure as a global network, and after collecting
k-samples, the workers’ individual experience is used to update the parameters of the
global network. This reduces the amount of memory used and improves exploration
because workers have independent trajectories. Task distribution can be performed
via multiple machines [133] or multiple central processing unit (CPU) threads of a
single computer [73]. Fig. 2.8 shows an example of this implementation for the A3C
algorithm where each worker interacts with its environment to generate the experi-
ence that is used to update the global network. A single worker represents the A2C
algorithm in this structure.

The optimal policy and the optimal critic are different in each process and they are
often unknown a priori. Monte Carlo-type methods calculate empirical return (given
in Eqn. (2.49)) at the end of the process (or an episode), which may be lengthy
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and noisy. Similar to Pavlovian conditioning [134] in psychology, temporal difference
(TD) learning predicts the value of the current state. Unlike Monte Carlo methods,
it makes predictions for a small horizon, as low as one step. This converts the infinite
horizon problem into a finite horizon prediction problem. Instead of calculating the
expected return, the critic network can be updated using k−step ahead estimation of
temporal difference error, δ, as shown in Eqn. (2.86).

δ (xt|ωL) =
k−1∑
i=0

(
γiRt+i + γkV (xt+k|ωL)

)
− V (xt|ωL) (2.86)

Here, δ is the temporal difference error for state x at a discrete sampling instant, t,
given critic parameters of the local network wL and k represents the horizon length. If
k approaches infinity, the summation terms converge to the empirical return given in
Eqn. (2.49). Baseline V (xt|ωL) is used to reduce the variance compared to the policy
gradient algorithm [35]. At the end of k steps, parameters of the global network (i.e.
θG and ωG) are updated using Eqns. (2.67) and (2.68).

In addition to the abovementioned topics, some outstanding research topics in-
clude but are not limited to state/reward prediction, constraint enforcement on
state/action spaces, sample efficiency (using samples/models), process safety, learn-
ing/process stability, robustness, episodic/continual learning, and exploration/exploitation.
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Chapter 3

Actor–Critic Reinforcement
Learning and Application in
Developing
Computer-Vision-Based Interface
Tracking ∗

This chapter synchronizes control theory with computer vision by formalizing object
tracking as a sequential decision-making process. A reinforcement learning agent suc-
cessfully tracks an interface between two liquids that is often a critical variable to
track in many chemical, petrochemical, metallurgical and oil industries. This method
utilizes less than 100 images for creating an environment, from which the agent gener-
ates its own data without the need for expert knowledge. Unlike supervised learning
methods that rely on a huge amount of parameters, this approach requires much fewer
parameters which naturally reduces its maintenance cost. Besides its frugal nature,
the agent is robust to environmental uncertainties such as occlusion, intensity changes
and excessive noise. From a closed-loop control context, an interface location-based
deviation is chosen as the optimization goal during training. The methodology show-
cases reinforcement learning for real-time object-tracking applications in the oil sands
industry along with the presentation of the interface tracking problem.

∗This chapter has been published as: Dogru, O., Velswamy, K. and Huang, B., 2021. Actor–
Critic Reinforcement Learning and Application in Developing Computer-Vision-Based Interface
Tracking. Engineering, 7(9), pp.1248-1261.
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3.1 Introduction

Oil sands ore contains bitumen, water and minerals. Bitumen is a high-viscosity
hydrocarbon mixture, which can be extracted through several chemical and physical
processes. The product is further treated in upgrader units or refineries ( [135]) to
obtain more valuable by-products (e.g. gasoline, jet fuel, etc.). Oil sands are mined
from open pits and loaded into trucks to be moved into the crushers ( [126]). Following
this, the mixture is treated with hot water for hydro-transporting it to the extraction
plant. Aeration and several chemicals are introduced to enhance the process. In
the extraction plant, the mixture is settled down in a primary separation vessel
(PSV). A water-based oil sands separation process is summarized in Fig. 3.1.

Upgrading

Bitumen
Oil Sands Mines Bitumen, Fines, Water

Air, Chemicals, Hot water

Tailings Bitumen

Un-recovered Bitumen

Unit
Froth Treatment

Unit
Extraction

Water, Solids

Minerals

Solids

Water

Refineries

Tailing Ponds

Figure 3.1: A simplified illustration of water-based oil sands separation process. PSV
is in the extraction unit.

During the separation process inside the PSV, three layers are formed: froth,
middlings and tailings as shown in Fig. 3.2. An interface (will be called FMI
henceforth) is formed between the froth and middlings layer. Its level with reference
to the PSV unit influences the quality of the extraction.

To control the FMI level, it is crucial to have reliable sensors. Traditionally, differ-
ential pressure (DP) cells, capacitance probes or nucleonic density profilers are used
to monitor its level. However, they are either inaccurate or are reported to be unreli-
able ( [136]). Sight glasses are used to manually monitor the interface for any process
abnormalities. To utilize this observation in closed-loop control, [136] proposed using
a camera as a sensor. This scheme utilized an edge detection model with particle
filtering on the images to obtain the FMI level, using which feedback control was
established. More recently, [137] combined edge detection with dynamic frame differ-
encing to detect the interface. This method directly uses an edge detection technique
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Figure 3.2: A schematic of PSV. During the separation process, three layers are
formed. The camera is used to monitor the interface between the middlings and the
froth layers to control the FMI level optimally.

to detect the interface along with a frame comparison mechanism that estimates the
quality of the measurement and also detects faults. [138] used a mixture of Gaussian
distributions to model the froth, interface and middlings appearances and predicted
the interface using spatio-temporal Markov random field. Despite these techniques
addressing several challenges, utilizing models based on the interface appearance or
behaviour, they fail to address the sensitivities to uncertain environmental conditions
such as occlusion and excessive/non-Gaussian noise.

Supervised learning (SL) methods try to build a map from input (i.e. image,
x) to output (i.e. label, y) data by minimizing a cost (or loss) function. Usually,
the cost function is convex and the optimal parameters are calculated by applying a
stochastic gradient descent algorithm ( [81,139]) to the cost function. Unsupervised
learning (UL) methods, on the other hand, are used to find the hidden features
in the unlabeled data (i.e. uses x only) ( [140]). The goal is usually to compress
the data or find similarities within the data. Nevertheless, UL techniques do not
consider the impact of the input on the output, even if there exists such a causal
relationship. In computer vision, these methods are implemented using convolutional
neural networks (CNN). CNN is a parametric function that applies convolutional
operation on the inputs. It can extract abstract features by processing not just
a pixel, but also its neighbouring pixels. It is used for classification, regression,
dimensionality reduction, etc. ( [141–144]). Even though it has been used for decades
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( [145–147]), only lately has it gained significant popularity in different domains (
[148–151]). This is owing to the developments in hardware technology ( [152]) and
data availability ( [153]). Parallel to these, recurrent neural network (RNN) is used for
time-series prediction, where the previous output of the network is fed back into itself
( [154]). This can be considered a recursive matrix multiplication. However, vanilla
RNN ( [155]) suffers from diminishing or exploding gradients, because it repeatedly
feeds the previous information back into itself leading to uneven back propagated
data sharing in between hidden layers. Therefore it tends to fail when the data
sequence is arbitrarily long. To overcome this issue, more complex networks such
as long short-term memory (LSTM) ( [156]) and gated recurrent unit ( [157]) were
proposed. These networks facilitate data transfer between hidden layers to make
learning more efficient. More recently, a variant of LSTM called convolutional LSTM
(ConvLSTM, [158]) has been reported to improve LSTM’s performance by replacing
matrix multiplications with convolutional operations. Unlike fully connected LSTM,
ConvLSTM receives an image rather than one-dimensional data and utilizes spatial
connections that are present within the input data and enhances estimation. Networks
with many layers are considered deep structures ( [159]). Various deep architectures
have been proposed ( [160–164]) to enhance the prediction accuracy even further.
However, these structures suffer from over-parameterization (i.e. number of training
data points is less than the number of parameters). Several regularization techniques
(e.g. dropout, L2 etc.) ( [148]), as well as transfer learning (also called fine-tuning)
methods ( [165,166]), try to find a workaround to improve the network’s performance.
However, the transferred information (e.g. network parameters) may not be general
enough for the target domain. This becomes significant especially when training
data is not sufficient or their statistics are significantly different. Moreover, currently
efficient transfer learning for recurrent networks remains an opportunity.

Reinforcement learning (RL) ( [35]) combines the advantages of both of the
techniques and formalizes the learning process as a Markov decision process (MDP).
Inspired from animal psychology ( [167]) and optimal control ( [34,37,168–171]), this
learning scheme involves an intelligent agent (controller). Unlike SL or UL methods,
RL does not rely on an off-line/batch dataset but generates its own data by interacting
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with the environment. It evaluates the impacts of its actions by considering immediate
consequences and predicts the value via roll-out. Hence, it is more suitable for
real or continuous processes, where decision-making for complex systems is involved.
However, in data-driven schemes, data distribution may be significantly different
during training, which may cause a high variance of estimations ( [35]). Actor-
critic methods have been proposed ( [55,69,104]) to combine the advantages of value
estimation with that of the policy gradient. This approach segregates the agent
into two parts: actor decides which action to take, critic estimates the goodness
of that action using an action-value ( [74]) or a state-value ( [73]) function. These
methods do not rely on any labels or system models. Therefore, exploration of
the state/action space is an important factor that affects the agent’s performance.
In system identification ( [29, 172, 173]), this is known as an identification problem.
Different methods address the exploration issue ( [35, 72, 73, 174–179]).

As a subfield of machine learning ( [180–182]), RL is used in but not limited
to process control ( [37, 40, 119, 126, 183–187]), game industry ( [39, 131, 188–194]),
robotics and autonomous vehicles ( [195–198]).

FMI tracking can be formulated as an object-tracking problem, which can be
solved in one or two steps using detection-free or detection-based tracking approaches
respectively. Previous works ( [199–201]) used RL for object detection/localization
that can be combined with a tracking algorithm. In the case of such a combination,
the tracking algorithm also needs to be reliable and fast for real-time implementa-
tions. Several object-tracking algorithms, including multiple object tracking using
RL, have been proposed ( [202–207]). The schemes proposed combined pre-trained
object detection with RL-based tracking or a supervised tracking solution. These
simulations were carried out under ideal conditions ( [208, 209]). The performance
of object detection-based methods often depends on detection accuracy. Even if the
agent learns to track based on a well-defined reward signal, one should ensure that
the sensory information is (or their features are) accurate. Model-based algorithms
often assume that the object of interest has a rigid or a non-rigid shape ( [137]) and
the noise or the motion has a particular pattern ( [136]). These assumptions may not
hold when unexpected events occur. Therefore a model-free approach may provide a
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more general solution.
Since a CNN may extract abstract features, it is important to analyze it after

training. Common analysis techniques utilize the information of the activation func-
tions, kernels, intermediate layers, saliency maps, etc. ( [161, 210–212]). In the
RL context, a popular approach has been to reduce the dimensions of the observed
features using t-distributed stochastic neighbour embedding (t-SNE, [213]) to visu-
alize the agent in different states ( [189, 214, 215]). This helps cluster the behaviour
with respect to different situations that the agent encounters. Another dimension-
ality reduction technique, namely uniform manifold approximation and projection
(UMAP, [216]), projects the high dimensional input (which may not be meaningful
in Euclidean space) into Riemannian space. This way, the dimensionality of nonlinear
features can be reduced.

Fig. 3.3 illustrates a general control hierarchy in process industries. In a continu-
ous process, each level in the hierarchy interacts with the other at different sampling
frequencies. The interaction starts at the instrumentation level, which affects the
upper levels significantly. Recently, [126] proposed a solution for the execution level.
However, addressing other levels remains challenging. Here, a novel interface tracking
scheme based on RL that is trained for a model-free sequential decision-making agent
is being proposed. This chapter

• focuses on the instrumentation level to improve the overall performance of the
hierarchy,

• formulates interface tracking as a model-free sequential decision-making process,

• combines CNN and LSTM to extract spatio-temporal features without any ex-
plicit models or unrealistic assumptions,

• utilizes DP cell measurements in a reward function without any labels or human
intervention,

• trains the agent using temporal difference learning that allows the agent to learn
continuously in a closed-loop control setting,

• validates robustness amidst uncertainties in an open-loop setting,
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Figure 3.3: A general control hierarchy in process industries. RTO refers to real-time
optimization, MPC is model predictive control, and PID stands for the proportional-
integral-derivative controller.

• analyzes the agent’s beliefs in a reduced feature space.

This chapter is organized as follows: preliminary information is provided in Section
3.2, interface detection is formulated in Section 3.3, training and test results are
presented in Section 3.4 in detail, and conclusions are drawn in Section 3.5.

3.2 Background

Reinforcement learning is a rigorous mathematical concept ( [34, 35, 37]), where an
agent learns a behaviour that maximizes an overall return in a dynamic environ-
ment. Similar to a human being, the agent learns how to make intelligent decisions
by considering future rewards. This implies contemplating temporal aspects of the
observations, unlike simple classification or regression approaches. This allows RL to
be used under uncertain conditions ( [169]) with irregular sampling rates. Its versatile
nature makes it adaptive to different environmental conditions and allows it to be
transferred from simulation environments to real processes ( [197]).

3.2.1 Markov Decision Processes (MDPs)

Markov decision process formulates discrete sequential decision-making processes via
a tuple,M, that consists of ⟨X ,U ,R, P, γ⟩, where x ∈ X , u ∈ U , r ∈ R ⊂ R are the
state, action and reward respectively. P (x′, r|x, u) is the system dynamics, or state
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transition probabilities, which may be deterministic or stochastic. It satisfies Markov
property ( [217]), i.e. the future state depends solely on the current state, not the
history prior to that. In this work, system dynamics are unknown to the agent to
make this approach more general. Discount factor γ ∈ [0, 1) is a weight for the future
rewards to make their summation bounded. Stochastic policy, π(u|x), is a mapping
from the observed system states to the actions.

In an MDP, the agent observes a state x0 ∼ σ0, where σ0 represents the distribu-
tion of the initial states. It then selects an action u ∼ π(u|x) that carries the agent
to the next state x′ ∼ P (x′, r|x, u) and yields a reward r ∼ P (x′, r|x, u). By utilizing
the sequence (i.e. x, u, r, x) the agent learns a policy, π, that leads to maximizing
discounted return, G, as defined in equation (3.1) ( [35]).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (3.1)

where t represents a discrete time step. The state-value, vπ(x), and the action-value
functions, qπ(x, u), are calculated using Bellman equations (3.2)-(3.3).

vπ(x) = Eπ [Gt|Xt = x] , ∀x ∈ X

= Eπ [Rt+1 + γGt+1|Xt = x]

=
∑
u

π(u|x)
∑
x′

∑
r

Pr (x′, r|x, u) [r + γvπ(x
′)] (3.2)

qπ (x, u) = Eπ [Gt|Xt = x, Ut = u] , ∀x, u ∈ X × U

=
∑
x′

∑
r

Pr (x′, r|x, u)[
r + γ

∑
u′

π (u′|x′) qπ (x′, u′)

]
(3.3)

After the value functions are estimated for each state, the optimal value functions
can be found using equations (3.4) and (3.5).

v∗π(x) = max
π

vπ(x), ∀x (3.4)

q∗π(x, u) = max
π

qπ(x, u), ∀x, u ∈ X × U

= E[Rt+1 + γv∗(Xt+1)|Xt = x, Ut = u] (3.5)
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Following that, the optimal policy, π∗, can be found as

π∗(x) = argmax
u

q∗π(x, u) (3.6)

For large-scale problems, linear or nonlinear function approximation techniques can
be used to find approximate value functions by Q̂(x, u|ω), V̂ (x|ω) or both, where ω
is the parameters of the approximation. These structures are also called critic. This
work focuses on the state-value estimation and simplifies its notation as V (·).

3.3 Formulating the interface tracking as a sequen-
tial decision making process

3.3.1 Interface Tracking

A model is a mathematical means of describing the process dynamics that can occur
either in a physical/chemical/biological system ( [218]) or in a video ( [219]). The
models derived for images often suffer from inaccuracies when there is an unexpected
event (e.g. occlusion). To overcome this, either the information from the last valid
observation is used in the next observation ( [137]) or the images are reconstructed
( [219]). Though these may substitute actual measurements for a short period of
time, prolonged exposure can deteriorate closed-loop stability. As a consequence, if
the FMI’s level is too low, the bitumen from the froth layer drains into the tailings.
This lowers the product quality and creates environmental footprints. In contrast, if
its level is closer to the extraction point, the solid particles in the froth being extracted
complicate downstream operations ( [136]). Since deviations in the FMI level affect
the downstream processes, it is important to regulate the FMI at an optimum point.

Reinforcement learning can address inaccuracies during occlusion and excessive
noise. This can be done by combining DP cell measurement or measurement from any
other reliable instrument with the current FMI prediction by the agent to provide an
accurate cost in the reward function, without external labels such as bounding boxes,
during the training phase. Removing the dependence upon such labels minimizes
human error. To achieve this, an agent can move a cropping box on the vertical axis
over the PSV’s sight glass and compare its center with the DP cell measurement.
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Figure 3.4: A frame (I) obtained using camera. (a) Sizes of the image (H ×W ) and
the cropping box (N ×W ). (b) Sizes of the cropping boxes (N ×M) and the initial
cropping box positions. (c) An example occlusion with its ratio, ρ.

Based on this deviation, the agent can move the box to an optimal position, where
the center of the box matches that of the FMI. This deviation-minimizing feedback
mechanism is inspired by control theory and it can enhance an image-based estimation
using the measurement obtained from the real process.

Consider a gray-scale image, I, sampled from a video stream as I ∈ RH×W with
arbitrary width, W , and height, H, which captures the entire PSV. Consider a rect-
angular cropping box, B ∈ RN×M , that has an arbitrary width, M and height N ,
where {N : N = 2ẑ − 1, ẑ > 1 ∈ N} and ẑ is the center of the rectangle. An example
image and a cropping box are shown in Fig. 3.4-a. This rectangle crops I at ẑ into
a size of N ×M . For the sake of completeness, H > N and W = M . Consider an
interface measurement obtained from a DP cell at time t as z. Note that the DP
cell is used only in the off-line training of the RL agent and can be replaced by other
interface measurement sensors, which are considered to be accurate in off-line labo-
ratory environments. Components of the MDP for this problem then can be defined
as:
States: The pixels inside the rectangle, x ∈ B ⊂ X ⊆ I. These pixels may be
thought of as N ×M independent sensors.
Actions: Move the center of the cropping box up or down by 1 pixel, or freeze.
u ∈ U = {−1, 0, 1}.
Reward: The difference between the DP cell measurement and the position of the
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center of the box (with reference to the bottom of the PSV), at each time step, t
given in equation (3.7).

Rt = −|zt − ẑt| (3.7)

The relation between ut and ẑt is given as equation (3.8).

ẑt = ẑ0 +
t−1∑
i=0

ui (3.8)

where ẑ0 is an arbitrary initial point, and the summation term represents the actions
taken up to the t-th instant (ui = +1 for up, ui = −1 for down).
Discount factor: γ = 0.99.
The goal of this agent is to generate a sequence of actions to overlay the cropping box,
B, on the vertical axis of the PSV with the interface at its center. To achieve this,
the agent needs to make long-term planning and preserve the association between its
actions and the information obtained from DP cell measurement. The flowchart of
the proposed scheme is shown in Fig. 3.5. In addition, Fig. 3.6 shows the networks
in detail. More details about the ConvLSTM layer can be found in [158]. Unlike the
previous works ( [137, 138]) that make predictions in the state space, this approach
optimizes the value and the policy spaces, by using equations (2.86), (2.67), and
(2.68) respectively. Moreover, the CNN and ConvLSTM layers are updated by using
equation (3.9).

Ψ ← Ψ+ 0.5× αc∇ΨL
δ (·|ΨL)

2 (3.9)

+ 0.5× αa∇ΨL
δ (·|ΨL) ln π (·|ΨL) + βπ (·|ΨL) ln π (·|ΨL)

where Ψ = [ψCNN , ψConvLSTM ] represents the parameters of the CNN and the Con-
vLSTM layers. This scheme trains the entire network end-to-end by using only the
TD error. Multiple workers ( [73]) that are initialized at different points (Fig. 3.4-b)
can be used to improve the exploration and hence generalization.

After a sub-optimal policy is found, the agent is guaranteed to find the interface
in a limited time-step k, independent of the initial point as shown in Lemma 1.
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Figure 3.5: Flow diagram for proposed learning process. The update mechanism
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equation (2.86). Detailed structures of CNN, ConvLSTM, Actor and Critic are given
in Table 3.1.
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Lemma 1 () At any time t, for a constant zt, with

P = 1, ∃k : zt −

(
ẑ0 +

k∑
i=0

ui

)
= 0

(∀u ∼ π(·|θ∗)) ∧ (∀x, u ∈ X × U), as k → N ,
for (k ≤ N < |X | ≪ ∞) ∧ (∀z0, zt ∈ Z ≡ |X |).

Assume ẑ0, zt ∼ Z , ∥zt − ẑ0∥∞ ≤ |X | ≪ ∞ and sub-optimal parameters θ∗, ω∗ are
obtained using iterative stochastic gradient descent over a continuous policy function
π (·|θ∗). V (·|ω∗) is a Lipschitz continuous critic network, parameterized by ω, and
estimates the value of policy π (·) for a given state.
∵ ui ∼ π (·|θ∗) , |zt − ẑ0| ≥ |zt − ẑ0 − u0| ≥ |zt − ẑ0 − u0 − u1|

⇒ Vπ∗
(
x

′
= x (ẑ0 + u0)

)
≥ Vπ∗ (x (ẑ0)).

Similarly,
Vπ∗
(
x

′′
= x (ẑ0 + u0 + u1)

)
≥ Vπ∗ (x (ẑ0 + u0))

∵ ∥zt − ẑ0∥∞ ≪∞, lim
k→N≪∞

zt −

(
ẑ0 +

k∑
i=0

ui

)
= 0

This derivation can be extended to a variable zt ∈ Z .

3.3.2 Robustness to occlusion via training

CNNs interpret the spatial information by considering the connectivity of the pixels
and this improves robustness up to a certain point. However, this does not guarantee
robustness to occlusion and the agent may fail, even though a good policy is obtained
under normal conditions. To overcome this issue, the agent may be trained using syn-
thetically occluded images during the training phase. Another way is to re-calibrate
a policy (that is trained by using occlusion-free images) with occluded images.

An occluding object, Ω, with an arbitrary pixel intensity, κ ∈ [0, 255], can be
defined as {Ω: Ω ∈ RH×(N×ρ)}, where E[Ω] = κ. ρ ∈ [0, 100%] represents the ratio
of occlusion, as shown in Fig. 3.4-c. If ρ = 1, the agent observes only the occlusion
in that video frame (i.e. xt = Ω if ρ = 100%). After defining its size, the ratio of
occlusion can be sampled from an arbitrary probability distribution (i.e. continuous
or discrete, e.g. Gaussian, uniform, Poisson etc.). During training, the duration of
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the instance at which the occlusion appears may be adjusted arbitrarily. These can
be stochastic or deterministic. That is, the occlusion may appear at a random (or
specific) time for a random (or particular) duration. If multiple workers are used,
different occlusion ratios at different time instances with different durations may be
introduced to each worker. This improves the diversity of the training data, which
makes the processing time efficient because the agent does not need to wait for a long
time to observe different types of occlusion.

3.4 Results and Discussion
3.4.1 Experimental Setup

A lab-scale setup that mimics an industrial PSV is used for the proposed scheme.
This setup allows for the movement of the interface to the desired level using pumps
shown in Fig. 3.7. Two DP cells are used to measure the interface level based on the
liquid density as described in [138].
Data acquisition and simulation creation: Images were obtained using D-Link
DCS-8525LH camera at 15 frames per second (FPS). From the 15 FPS footage, a rep-
resentative image for each second was obtained. Hence, 80 images from 80 consecutive
seconds were obtained with necessary down-sampling. These images were processed
to showcase the PSV portion, void of unwanted background. They are then con-
verted into gray-scale images. The DP cell measurements (for the same contiguous
time period as the images), which are available in terms of water head (water-in) are
converted to pixel positions as given in [137]. After each action is taken, the video
frame changes. Every action the agent takes generates a scalar reward, which is later
utilized to calculate the TD error that gets used in training the agent’s parameters.

3.4.2 Implementation Details
3.4.2.1 Software and network details

Both training and testing phases were conducted using an Intel Core i7-7500U CPU
at 2.90 GHz (2 cores, 4 threads), 8 GB RAM at 2133 MHz, and 64-bit Windows
using Tensorflow 1.15.0. Unlike deeper networks (e.g. [163]) that consist of tens of

57



PSV

Water

Oil

DP
Bottom

Water 
Feed Pump

Oil
Feed Pump

Oil
Outlet Pump

Water
Outlet Pump

DP
Top

Water 
Tank

Oil
Tank

Camera

Figure 3.7: Experimental PSV setup.

millions of parameters, this agent consisted of fewer parameters as summarized in
Table 3.1. This prevents over-parameterization and reduces the computational time
significantly, with the disadvantage of the inability to extract higher-level features
( [220]). After each action was taken, the cropping box was resized to 84x84 pixels.
Adam optimizer with a learning rate of 0.0001 was used to optimize the parameters
of the agent (including CNN, ConvLSTM, actor, and critic), in a sample-based man-
ner. This momentum-based stochastic optimization method has been reported to be
computationally efficient ( [221]).

Table 3.1: Structure of the Global Network (same as workers).

# Layer type Output Dimension Filter size # of parameters
1 Convolutional 20× 20× 16 8× 8 1040
2 Convolutional 9× 9× 32 4× 4 8224
3 Convolutional LSTM 9× 9× 32 3× 3 73856
4 Fully Connected (Actor) 3 7776
5 Fully Connected (Critic) 1 2592

Total 93488

3.4.2.2 Training without occlusion

A3C algorithm was used during the experiments to reduce the training time and im-
prove exploration, and convergence to a sub-optimal policy during learning ( [73]). All
of the initial network parameters were sampled randomly from a Gaussian distribu-
tion with zero mean and unit variance. Off-line training was performed after creating

58



a continuous trajectory of the interface level by manually ordering 80 unique im-
ages, as shown in Fig. 3.8. This trajectory was then repeatedly shown to the agent
for 470 steps for 2650 episodes (i.e. an episode consists of 470 steps). At any time,
the agent observed only the pixels within the cropping box. The cropping box of each
agent was initialized at four different positions as shown in Fig. 3.4-b. The agent’s
goal was to minimize the deviation of the center of the cropping box with respect to
the DP cell measurements, given a maximum velocity of 1 pixel/step. The agent was
not exposed to occlusion during training and was capable of processing 20 FPS (i.e.
computational execution time) for 4 workers.

3.4.2.3 Fine-tuning (FT) with occlusion

The global network parameters were initialized using the parameters obtained at the
end of the training without occlusion. The local networks initially shared the same
parameters as the global network. All of the training hyperparameters (e.g. learning
rate, interface trajectory etc.) were kept unchanged. The images used in the previous
training phase were overlayed with occlusion, whose ratio, ρ, was sampled from a
Poisson distribution, as shown in equation (3.10). The distribution, Pois(x, λ), is
given in equation (3.11).

ρ ∼ ρmax − Pois(x, λ)
10

× 100% (3.10)

Pois(x, λ) =
e−λλx

x!
(3.11)

Equation (3.10) bounds ρ between 0 and ρmax = 80% at the beginning of an episode.
The shape factor is arbitrarily defined as λ = 1. In each episode, occlusion occurs at
the 200th step to the following 200 steps with a probability of 1. The intent behind
fine-tuning is to make sure the agent is robust to the occlusion. The agent, with
4 workers, was trained for an arbitrary amount of 730 episodes until the episodic
cumulative reward improved.
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Table 3.2: Definition of noisy images based on their identities. ⊙ represents the
Hadamard product.

Identity of
noisy image Noisy image Condition

1 It = It + ν ⊙ ζ t < 300
2 It = It ⊙ (1 + ν ⊙ ζ) 300 ≤ t < 700
3 It = It ⊙ (1 + ν ⊙ 2× ζ) 700 ≤ t

3.4.2.4 Interface tracking test

For a 1000-step episode, the agent was tested using a discontinuous trajectory that
contained previously unseen images that were either noiseless or were laden with
Gaussian noise, ν ∈ RH×W ∼ N (0, 1), in three ways as shown in Table 3.2. These
images were also occluded using a synthetic occlusion, whose constant intensity was
arbitrarily selected as the mean of the image (i.e. κ = 128) while the occlusion ratio
varied linearly from ρ = 20% to 80%.

3.4.2.5 Feature analysis

To illustrate the effectiveness of the network, a previously unseen PSV image was
manually cropped starting from the top of the PSV to the bottom. These manually
cropped images were then passed one-by-one through the CNN prior to training, the
CNN trained as in Section 3.4.2.2, and the CNN fine-tuned as discussed in Section
3.4.2.3 to extract the features. These spatial features, ϕs, were then collected in a
buffer of size 9×9×32×440, from which the reduced dimension (2×440) features are
obtained using UMAP ( [216]). These lower-dimensional features will be represented
in Section 3.4.6.

3.4.3 Training

The best policies are obtained at the end of training and fine-tuning when there was
no improvement in the cumulative reward for 500 consecutive episodes. Fig. 3.8
shows the trajectories using these policies. Position of the cropping box is initialized
with its center at 60% of the PSV’s maximum height. At the end of this phase, the
agent tracked the interface with a negligible amount of offset. An example obtained

60



0 100 200 300 400
Time/step

40

45

50

55

60

65

Le
ve

l/%

DP cell reading
BFT
AFT

Figure 3.8: Training results at the end of training (2650 episodes) and fine-tuning
(3380 episodes).

Table 3.3: Pixel- and level-wise MAE at the end of training and fine-tuning.

MAE pixel MAE level
After training 4.9852 1.1382

After fine-tuning 4.9597 1.1324

from the 80th step is shown in Fig. 3.9-a. The green star represents where the agent
thinks the interface is for the current frame.

3.4.4 FT re-calibration for occlusion

Fine-tuning improved the agent’s overall performance, even for the occlusion-free
images, by reducing the level-wise mean average error (MAE) by 0.51% as summarized
in Table 3.3. This indicates that the agent adapts to the new environmental conditions
without forgetting the previous conditions. This was due to the improvements in the
value estimation and the policy, which started from near-optimal points. Note that
the minimum value for the MAE is limited by the initial position of the cropping box
as shown in Fig. 3.8.

Fig. 3.10 shows the cumulative rewards from one of the workers during training
and after fine-tuning as shown in solid and dash-dot lines respectively. Note that the
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a b
Figure 3.9: (a) Training result at the 80th frame. (b) Test result after fine-tuning with
80% occlusion and excessive noise, at the 950th step. The white boxes represent the
cropping box that the agent controls. The stars represent the center of the cropping
box, the circles are the exact interface level. The pentagon is the bottom of the
occlusion, which looks like the FMI.

Without 

occlusion

With 

occlusion

Figure 3.10: Cumulative rewards. The graph shows that the agent can learn the
occlusion and track the interface successfully.
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initial decrease during fine-tuning was caused by the occlusion because the agent was
not able to track the interface level when the occlusion occurred. This new feature
was learned successfully by the closed-loop reward mechanism within 400 episodes.
Note that the final cumulative reward obtained at the end of fine-tuning is almost the
same as that obtained at the end of training. This is because the cumulative reward
represents only the tracking performance during training, and depends on the initial
position of the cropping box as shown in Fig. 3.8. This value can be zero only if the
center of the box and the DP cell measurement overlap completely at the beginning of
the episode and the agent tracks the interface without any offsets during the episode.
The necessity of fine-tuning is more pronounced when the agent is exposed to unseen
environmental conditions such as excessive noise and occlusion as discussed in Section
3.4.5.

3.4.5 Test

Before fine-tuning (BFT): The initial test was conducted at the end of the initial
training (i.e. the 2650th episode as shown in Fig. 3.10). Note in the testing (on-line
application) phase, DP cell information is not being used and the RL agent works on
its own. In fact, even if a DP cell is available, in the field application environment it
will not be accurate. Fig. 3.11 shows that the agent was robust to up to 50% occlusion
and additional noise prior to fine-tuning. This is a significant improvement over the
existing schemes, all of which do not address occlusion. The reason for this is that the
neural networks extract more abstract features than edge and histogram information,
in both spatial and temporal domains. This is due to the convolutional operations
that also smooth out disturbances and improve the agent’s overall performance.

On the other hand, any further increase in the occlusion ratio resulted in a failure
to track the interface. Since occlusion is of lighter intensity, policy naturally moved
towards the bottom of the PSV (where pixels of higher intensity were abundant) to
find the interface.
After fine-tuning (AFT): Re-calibrating the agent for occlusion improved its per-
formance significantly as seen from its ability to track the interface more accurately
(shown in Fig. 3.11). Additional noise caused its performance to degrade when the
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interface offset between the consecutive frames was around 5%. However, the agent
was successful when this interface offset was reduced to 2.5% as shown in Fig. 3.11.
This is because the excessive noise corrupts the image significantly and the agent fails
to locate the interface. An example frame obtained at the 950th frame is shown in
Fig. 3.9-b. It should be noted that the noise is accompanied by 80% occlusion. This
makes the tracking problem more challenging since the amount of useful information
extracted by the agent from the image is significantly reduced. That is, only 20%
of the pixels can be used to locate the interface. This performance is due to CNN
and ConvLSTM combination. Fig. 3.12 shows the agent’s beliefs (predicted by the
critic) about the states (obtained from an unseen frame) using parameters obtained
from a random network (solid), after training (dash-dot) and after fine-tuning (dot).
According to equation (3.2), this figure defines the value of a state, assuming that
the best trajectory towards the interface level would be generated by the policy. Fig.
3.12 also shows that prior to any training, the value predicted for any state is similar.
However, during training, the agent regrets being in bad states and the DP cell read-
ings reinforce that moving the cropping box closer to the interface (i.e. vertical solid
line) yields better value than being further away from it. At the end of fine-tuning,
with more data, the agent further improves its parameters and therefore its actions
to move the cropper box so that it becomes more accurate. This goes to show that
the agent tries to improve its actions based on a constantly changing belief (value).
Note that the increase in AFT after a deviation value of 200 corresponds to the yel-
low pentagon in Fig. 3.9, which looks like an interface and causes an increase in the
value function. However, the value obtained from that part is lower than that of the
interface, meaning that the agent is more confident when it is close to the star, rather
than the pentagon.

3.4.6 Understanding the network: feature analysis

The training and test results focused on the progress of the learning and control
abilities of the agent. These alone may not be sufficient to explain whether the
agent’s decisions are meaningful given an observation in the form of an image.

Fig. 3.13 shows the reduced dimensionality as a two-dimensional graph by repre-
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Figure 3.11: Test results: tracking. ρ is the occlusion ratio. E.g., ρ = 0.8 means that
the image is occluded by 80%.

senting the values of the corresponding cropped images (obtained in Section 3.4.2.5)
using gradual intensities of colour. The curve (from left to right) corresponds to the
cropped images from top to bottom of the PSV tank side glass as explained in Section
3.4.2.5. The coloured pentagons in Fig. 3.13-a–c correspond to three points in Fig.
3.13-d. According to the results, the features obtained from the network prior to
training are similar to each other without any particular arrangement. However, as
training proceeds, features with similar values get closer. Combining Fig. 3.13 with
Fig. 3.12, it could be inferred that the CNN was able to extract the features in a
meaningful way. This is despite using unlabeled data in a model-free context owing
to the RL methodology. This was possible because the texture and pixel intensity
pattern of each cropped image was successfully converted into the value and the pol-
icy functions by employing a CNN-ConvLSTM combination. Also, the reward signal
obtained from the DP cell (which was used as a feedback mechanism) trained the
agent’s behaviour.
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Figure 3.12: Test results: value function versus deviation from the interface.

(d)

Figure 3.13: Dimensionality reduction applied on the features of the states x∈ X
obtained from an unseen image. The features are obtained using the parameters
obtained from a random (a), trained (b), fine-tuned networks (c). The data points
are then coloured by their corresponding values. Three regions that correspond to
the top and the bottom of the tank and the FMI are highlighted on the unseen image
(d). As the agent trains, the extracted features from similar regions get clustered
closer in the Riemannian space.
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3.5 Conclusion

This chapter proposed a novel RL scheme that targets the instrumentation level of
the control hierarchy in order to improve the performance of the entire structure.
To achieve this result, interface tracking was formulated as a sequential decision-
making process that requires long-term planning. The agent was composed of a
CNN and ConvLSTM combination that does not require any shape or motion models
and is hence more robust to uncertainties in the process conditions. Inspired by the
feedback mechanism used in control theory, the agent utilized readings from DP cells
to improve its actions. This technique removes the dependencies on explicit labels
that are required for SL schemes. The agent’s performance during validation using
untrained images under occlusion and noise showed that the interface can be tracked
under up to 80% occlusion and excessive noise. An analysis of the high-dimensional
features validated the agent’s generalization of its beliefs around its observations.
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Chapter 4

Online Reinforcement Learning for
a Continuous Space System with
Experimental Validation ∗

In this chapter, an RL-based low-level controller with safety constraints is developed.
Although various RL agents exist, this thesis explores a data-driven approach to learn
a constraint function based on process-specfic criteria. During training, the agent
learns an optimal policy with the guidance of the regularizing constraints. Moreover,
several training strategies are studied to achieve effective exploration, which is a
crucial concept in the RL literature. The proposed approaches are implemented on a
pilot-scale experimental setup to demonstrate their effectiveness.

4.1 Introduction

Reinforcement learning (RL) has received increasing attention in recent years with
significant applications in games ( [39,189,222,223]), optimization ( [224,225]), control
( [226–228]), and autonomous operations ( [229, 230]). As a combination of optimal
control ( [169]) and animal psychology ( [167]), this scheme was designed as a trial and
error trade-off. In a problem that is solved using RL, an agent observes a set of states
(e.g., temperature, pressure, position, etc.) of an environment (e.g., a chemical
plant, a simulation model, etc.). The agent takes an action (e.g., manipulating

∗This chapter has been published as Dogru, O., Wieczorek, N., Velswamy, K., Ibrahim, F.,
Huang, B. (2021). Online reinforcement learning for a continuous space system with experimental
validation. Journal of Process Control, 104, 86-100.

68



a process variable), receives the next state and a reward and utilizes these in a
sequential manner to improve its decisions over time. This improvement works toward
optimizing a long-term goal ( [40]).

Generic supervised learning (SL) schemes (regression/ classification) ( [150, 231])
cater to approximate solutions based on parameterized functions. Usually, optimiza-
tion here constitutes of the level of accuracy achieved with each sample based on
an offline, labeled dataset. On the contrary, an RL agent directly interacts with
an environment. An environment can be defined as a real system or a model of a
system that an agent can act in. Such an environment yields an immediate reward
and attains a new state based on the action provided by the agent’s policy, governed
by the system dynamics. Unlike SL schemes that minimize an immediate loss (e.g.
Euclidean norm), RL considers the future impacts of the agent’s actions.

Throughout the learning, the agent tries to find the best actions for each state.
Systems with small state/action spaces can be represented using lookup tables (i.e.,
Q-tables [35]). These tables constitute of states, actions and their action-value esti-
mates. Action-value indicates how good an action is given a state and this type of
learning is called Q-learning ( [38]). Initial schemes involved a brute force type ap-
proach (testing all combinations of state-action pairs in a discrete state/action space
environment) to obtain the most viable pairs. However, tabular methods are not suf-
ficient to represent continuous state/action space due to the curse of dimensionality
( [102]), since these were treated as exact dynamic programming problems. Func-
tion approximators address this issue by bringing a generalized approximate solution
into the picture. Due to their capabilities in representing complex functions, neural
networks ( [232]) have been preferred as nonlinear function approximators ( [222]).

The action space is in the purview of the agent’s estimation of an action. In de-
terministic cases, this action is obtained as a point estimate, whereas, in stochastic
schemes, a distribution of the probable actions is provided. An action is later sam-
pled from this estimated distribution. The states’ trajectories are influenced by such
choice of actions. A thorough generalization of the RL agent can be made possible
only via proper coverage of the state/action space. Though thorough coverage of
the continuous states/action spaces is impossible, neural network-based methods can

69



provide an approximate generalized solution to the learning problem. In this case,
exploration plays a major role in the neural network-based RL solutions.

Exact solutions to the problems represented by Q-tables can be obtained using
temporal difference (TD) learning, Monte Carlo sampling, or dynamic programming
methods. These iterative methods require initial estimates of the action-values. Often
the initial estimates are not the same as the true value, hence a thorough exploration
of the state/action spaces is necessary. This is similar to the identification problem
in process control, where sufficient exploration of the system dynamics is required to
control the system successfully. Scoring better rewards using known actions is called
exploitation of the explored spaces and there is a trade-off between exploration and
exploration.

Exploration in Q-tables may be achieved by initializing the action-values with
values that are higher than the possible rewards (i.e., biasing the initial estimates)
for those state-action pairs ( [35]). Upper confidence bound (UCB) action selection
( [233]) can be used to encourage selecting less frequently selected actions for better
exploration in the multi-bandit problems ( [234]). However, these methods cannot be
used for continuous space control problems. Alternatively, ε-greedy action selection
is one of the simplest methods for exploring continuous state/action spaces. In this
method, instead of taking an action that gives the maximum reward at a state, the
agent takes a random action with a probability of ε (specified by the user, [35]). It
is also possible to use a decaying ε scheme, so that the agent reduces the amount of
exploration by time while exploiting the already-discovered actions. Exploration can
also be enhanced by perturbing the state space and selecting actions from a Boltzmann
probability distribution ( [174]). As an alternative, perturbing the parameters of
neural networks may also result in efficient learning ( [175]). Combination of a model-
based and a model-free algorithms has been reported for a continuous control task
( [179]) where the model-based part produced a trajectory (for a finite horizon), which
was then optimized by the model-free part by means of action samples. Though there
are significant advances in the literature ( [176–178]), exploration is still an open
challenge for continuous state/action space in real-time process control applications.

Q-learning has been implemented on Atari games ( [176]) with high dimensional
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discrete space environments using neural networks (Deep Q Network or DQN). How-
ever, nonlinear function approximators may diverge or yield unstable learning ( [39])
and DQN may be insufficient for continuous control tasks ( [79]). It has been shown
that the instability due to function approximation can be reduced and a sufficient
learning can be obtained more quickly ( [74]) by using an agent consisting of two ele-
ments: actor and critic. Instead of estimating an action-value only, the agent samples
an action (actor) and estimates an action-value based on this decision (critic). This
two-element structure has also been used in computer vision applications. For ex-
ample, generative adversarial networks (GANs) employ a generator element (actor)
that produces an image and a discriminator element (critic) that decides whether
this image is similar to a labeled image ( [68]).

In addition, asynchronous advantage actor-critic (A3C) algorithm ( [73]) involves
multiple workers that are allocated to different threads of a central processing unit
(CPU). As shown in Figure 4.1, these workers interact with their own environments
and transfer their experience to a global network, asynchronously. Due to this non-
synchronous training, at any time t, the experience that the global network acquires
is different from that of the other workers. This type of trainings reduces the depen-
dence of the workers on each other, hence improving the exploration. The agent may
be trained using a single set point for several hours. However there is no guarantee
that the learning will be sufficient to track multiple set points. Moreover, the agent
may show unstable behaviour tracking different set points. To overcome this issue
and to improve exploration, a single set point ”trajectory” (SSPT) can be used to
train all the workers. However, such a training scheme may be inadequate to obtain
a generalized agent for different regions of operation. In order to improve general-
ization and enhance exploration further, one possible approach is to take advantage
of the independence of the workers and train them on different set point trajectories
(MSPT). Another possible approach consists of training the workers gradually: start-
ing from a single set point, then leveraging to a single set point trajectory, afterwards
to different set point trajectories. Inspired from [235], this agent is called the proximal
agent (PA) in the following sections.

The proposed work in this chapter investigates the differences between these three
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Figure 4.1: Graphical representation of asynchronous (A3C) and synchronous (A2C)
advantage actor-critic algorithms.

approaches to find the best approach for training. In addition, it demonstrates how
state constraints can yield a safer control.

Originally developed for computer based environments, such as simulations and
games, A3C scheme requires multiple instances of the environment class for its execu-
tion. However, in process industries, with no two plants being identical, such scheme
becomes inconvenient for real-time learning. A predecessor of this scheme, advantage
actor-critic (A2C), can be utilized in such scenario as the nearest possible alternative.

In the RL literature, the above-mentioned methods (i.e., Q-learning, A3C, A2C)
are called ‘model-free’, meaning that the agent interacts directly with the environment
without prior knowledge of the system dynamics, and does not have to update any
process models (unlike model-based methods, [236, 237]). It learns a policy (also a
critic in the actor-critic setups) to best act in its environment, based on trial and error.
Instead of solving a model or making plans (without executing actions), the agent
collects state, action and reward information to improve its behaviour in an iterative
manner. To avoid locally optimal policies, the policy and the value functions are
usually randomly initialized ( [238]). This leads to random actions during the initial
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stages of interaction with the process. However, such nature of this learning approach
may compromise the safe operation of chemical processes and is often time-consuming.
Instead, an explicit system model -which cannot be modified by the agent- can be
used for agent interactions during simulation-based training.

Process safety is often satisfied by taking safe actions according to the predicted
states by using a system model ( [112, 239]), or expert data ( [240]), which may not
be available in all situations. On the other hand, data-driven schemes provide flexible
solutions by introducing constraints in the reward or in the loss function to obtain
a desired behaviour. These schemes have been used either for exploration ( [72,
73]), providing smoother policy updates ( [88]), avoiding undesired outcomes ( [241]),
or other problem-specific requirements. Even though constrained Markov decision
processes have been extensively investigated ( [103, 242, 243]), their application in
real-time processes is still a challenge in the field, which will be addressed in this
chapter by using a soft-constrained learning scheme ( [241]).

In addition, nonlinearity is an inherent characteristic in most chemical processes.
To achieve closed-loop control for such processes, the process model is linearized.
However, an RL agent may obtain computationally feasible solutions (by using au-
tomatic differentiation methods, [244]) without linearization (as nonlinearities are
introduced by means of activation functions, [245]).

For industrial continuous process control, proportional-integral-derivative (PID)
controllers and model predictive controllers (MPC) are preferred either due to their
simplicity or ability to handle constraints at both the low level and the supervi-
sory level along with their optimality respectively. However, PID controllers re-
quire frequent tuning, and real-time optimization using MPC for nonlinear, dynamic,
large-scale, multiple-input multiple-output (MIMO) systems could be computation-
ally costly ( [246]). Recent works prove that an RL based solution may overcome
some of the challanges faced by these controllers when dealing with complex pro-
cesses ( [195, 247]).

In earlier works, the use of a long-short-term-memory- (LSTM-) based RL agent
to control air conditioning systems was reported ( [119]). Also, control of linear
single-input single-output (SISO) and MIMO systems in simulation environments
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using RL was demonstrated ( [183]). RL agents have been used to tune PID and
directly control temperature of a simulated continuous stirred tank reactor (CSTR)
with discrete state and action spaces ( [184]). A model-based RL approach has been
utilized to control a quadrotor ( [248]) and more recently, a hierarchical RL based
control of a gravity separation vessel is presented ( [126]). [249, 250] used RL-based
controllers for various chemical processes. Moreover, [187] demonstrated that RL can
be used to achieve plant-wide control for a vinyl actate monomer process.

To deal with numerous practical issues, such as exploration, safety and sample
efficiency, corresponding strategies will be proposed in this work. To best illustrate
these strategies, online RL-based control of a MIMO, multi-modal, nonlinear, dy-
namic hybrid tank system ( [251]) will be represented in both simulated and exper-
imental environments. The exploration of state/action spaces and sample efficiency
are improved without using any explicit knowledge of the learning process. That is,
the agent is not forced to visit unseen parts of the environment by means of neither
state-visitation frequency ( [252]), nor the value/policy function. The environment
here, consists of a continuous state/action space.

This work reports an end-to-end RL solution of a nonlinear process with contin-
uous state and action spaces by:

1. using meta-heuristic model parameter optimization by using experimental data
for an experimental three-tank system with hybrid nonlinear dynamics (Step
1),

2. utilizing three different approaches on the simulation level to explore the state/action
space (Step 2),

3. comparing the exploration performances of different agents using the extent of
exploration (EoE),

4. in silico asynchronous advantage actor-critic (A3C/A-A2C) implementation to
control the water levels in the tanks,

5. online learning (A2C) using the best in silico policy on the real process with a
socket connection system ( [253]) (Step 3),
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Figure 4.2: Flowchart for the end-to-end implementation. SSPT refers to single set
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6. introducing a soft-constrained scheme to maintain the states within the safe
operational range.

This summary is illustrated in Figure 4.2.
This chapter is organized as follows. In Section 4.2, RL and Markov decision

process (MDP) are introduced. A soft-constrained learning scheme and a novel per-
formance criterion, extent of exploration (EoE), are shown in Section 4.3. The hybrid
tank’s first principles model is described together with the related parameter estima-
tion using the metaheuristic bat algorithm in Section 4.4. Results and discussion are
presented in Sections 4.5 and 4.6 respectively. Conclusions are summarized in Section
4.7.

4.2 Reinforcement Learning

Reinforcement learning is a nature-inspired machine learning paradigm, where an
agent learns a policy that maximizes a reward in a dynamic environment. The learning
is based on “intelligent” trial and error, and the agent considers the future impacts
of its actions. These properties distinguish RL from other machine learning methods
and make it suitable for sequential decision-making under uncertainty ( [169]).
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4.2.1 Markov Decision Processes (MDPs)

An RL problem can mathematically be represented using an MDP,M = ⟨X,U,R, P, γ⟩,
where x ∈ X, u ∈ U , r ∈ R ⊂ R are the state, action and reward respectively.
P (x′, r|x, u) defines the state transition probabilities (i.e., process model), which are
unknown to the agent for model-free RL. γ ∈ [0, 1) is the discount factor, and π(u|x)
is the policy that maps the states to the actions that define the behaviour of the
agent.

The agent starts at a state x and chooses an action u ∼ π(u|x), which yields a
scalar reward, r, and makes the agent transition to a successor state, x′ ∼ P (x′, r|x, u).
Following this sequence (i.e., x, u, r, x), the agent takes a new action and the process
continues. During this process, the agent’s aim is to learn a policy, π, that maximizes
the discounted future reward ( [35]), Gt, from time step t, which is given in equation
(4.1).

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+k+1 (4.1)

The ‘effect of the future consequences’ by the agent’s current actions can be ad-
justed by changing γ. The state-value, vπ(x), and the action-value, qπ(x, u), can be
calculated using Bellman expectation equations (4.2)-(4.3).

vπ(x) = Eπ [Gt|Xt = x] , ∀x ∈ X (4.2)

qπ(x, u) = Eπ [Gt|Xt = x, Ut = u] , ∀x, u ∈ X × U (4.3)

Note that equation (4.2) does not include the action information, thus cannot
be used alone to find the best policy. However, its approximated value is used as a
baseline in actor-critic algorithms as will be discussed in Section 4.3, and it may be
used to modify the properties of the Markov decision process also will be discussed
in Section 4.3.2. After the value functions are estimated for each state, the optimal
value functions can be found using equations (4.4) and (4.5).
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v∗π(x) = max
π

vπ(x), ∀x ∈ X (4.4)

q∗π(x, u) = max
π

qπ(x, u), ∀x, u ∈ X × U

= E[Rt+1 + γv∗π(Xt+1)|Xt = x, Ut = u] (4.5)

Note the relationship between v∗ and q∗ that is shown in equation (4.5). Following
that, the optimal policy, π∗, can be found as

π∗(x) = argmax
u

q∗π(x, u) (4.6)

4.3 Formulating control as an RL problem

Value-based methods use value functions to obtain optimal policies, whereas policy-
based methods directly optimize the policy, π(u|x, θ). In the latter case, a neural
network, parameterized by θ is optimized using gradient ascent on E[Gt]. However,
stability, sample efficiency and variance are the main challenges of these methods.
Actor-critic methods ( [55, 69]), combine policy-based and value-based methods to
address these problems by employing two networks that are responsible for 1) choosing
actions (i.e., actor network, parameterized by θ) and 2) estimating the value
function (i.e., critic network, parameterized by ω). The networks are trained
consecutively to yield better estimates of the policy and the value functions. Several
algorithms have been proposed to solve discrete space control problems [40], which are
not suitable for continuous space problems. Unlike those methods, the asynchronous
advantage actor-critic (A3C) algorithm ( [73]) can solve continuous space problems
and it consists of multiple workers (with their own actor and critic networks) that
asynchronously update a global network. Unlike the Monte Carlo type of approaches
that calculate the return for the entire episode and update the global network at the
end of each episode, the A3C algorithm updates the global network using k samples
(i.e., state, action, reward) via rollout. The value function is estimated at every k
steps with a fixed policy. This scheme decreases the variance of the estimates ( [73])
compared to ”Vanilla” policy gradient algorithm ( [35]).
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Initially, the global network parameters (i.e., θG and ωG) are sampled from a
normal distribution with mean zero and variance one. The global and the worker
networks share the same parameters (i.e., θG = θL, ωG = ωL), where the subscripts
L and G represent the worker and the global networks, respectively. Following this
initialization, the workers start interacting with their own environments indepen-
dently. They generate their own data and make a k-step policy evaluation by using
equation (4.7). At the end of k steps (i.e., also called buffer), the global critic and
actor-network parameters are updated using equations (4.8) and (4.9).

δ (xt|ωL) =
k−1∑
i=0

(
γiRt+i

)
− V (xt|ωL) (4.7)

dωG ← dωG + αc∇ωL
δ (xt|ωL)2 (4.8)

dθG ← dθG + αa∇θLδ (xt|ωL) ln π (ut|xt, θL) + βπ (ut|xt, θL) ln π (ut|xt, θL) (4.9)

where t represents a discrete time step that the agent is in, β is a fixed weight for the
entropy term (i.e., π ln π) and adjusts the degree of exploration, and k is the buffer
size. Initially, dωG = dθG = 0.

The states constitute the observable process variables, the actions are the manip-
ulated variables, and the reward is a function of the states and the actions as will be
explained in Section 4.4.

4.3.1 Constraint-free Learning

This learning scheme was carried out using three schemes to study the agents’ explo-
ration abilities. In each scheme, the agent consists of a global and four local networks
trained as follows:
Single set point trajectory (SSPT): The control goal of this scheme is to train
each worker to track a single set point trajectory.
Multiple set point trajectory (MSPT): The control goal of this scheme is to
train each worker to track a different set point trajectory in order to cover most of
the state space.
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Proximal agent (PA): Inspired by [235], a proximal agent consisted of four local
networks (workers) was trained gradually. The motivation is to (1) utilize the in-
formation obtained in the earlier stages of the training to speed up the training, (2)
increase the complexity of the control task gradually to improve generalization and
yield a better control performance. First, every worker is trained on a single pair of
set points (Phase 1), followed by training on single set point trajectories (Phase 2),
and lastly on four unique set point trajectories (Phase 3).

It should be noted that this concept is different from the proximal policy opti-
mization (PPO) algorithm ( [79]).

4.3.2 Soft-constrained Learning

Obtaining a constrained nonlinear controller for a nonlinear process is challenging.
This involves a multitude of optimization procedures, rendering it infeasible for lower-
level implementation ( [254]). At higher levels, in real-time optimization, the prob-
lem persists even with offline optimization and it becomes cumbersome owing to the
complex plant dynamics. An offline optimized online strategy with soft constraints
being considered during offline training is proposed. This scheme greatly improves
constraint satisfaction on observable states while remaining model-free.

Here, the optimization (4.4) is converted into a constrained problem as shown in
equation (4.10)

v∗π(x) = max
π

vπ(x), ∀xs.t. Jπc ≤ ξ (4.10)

where Jπc = E[C(x)] represents expectation of constraint C, and ξ is the penalty
threshold. Instead of solving this problem as a hard-constrained optimization prob-
lem, equation (4.10) can be relaxed as shown in (4.11).

v∗π(x) = max
π

[vπ(x)− Λ (Jπco − ξ)] , ∀x (4.11)

where Λ is a dynamic weight and is used as a Lagrange multiplier with an initial value
of zero. The update rule for the dynamic weight is given by equation (4.12).
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Λnew = Λold + αco
∑
episode

|C1 + C2| × ξ (4.12)

where αco = 1 × 10−6 is the learning rate for the weight of the constraints that is
empirically selected to minimize the mean squared error (MSE) during learning. C1

and C2 represent the constraints on the pumps (p1 and p2). Their relationship is
given as:

Ci =

{
|pi − 1|, if pi > 1

|pi|, otherwise
, for i = 1, 2 (4.13)

As mentioned below the summation term in equation (4.12), Λ is updated at
the end of each episode using all constraint breaches as shown in equation (4.13).
Convergence analysis of the method and the related proofs have been provided in
[241].

4.3.3 Extent of Exploration

The Jaccard index or intersection over union (IoU) is used to measure similarity
between two sets and is defined in equation (4.14).

J(A,B) =
|A ∩ B|
|A ∪ B|

(4.14)

where the numerator and the denominator correspond to the intersection and union
of the sets respectively. This index has been used in computer vision ( [255]) and
keyword similarity assessment ( [256]). Inspired by this concept, an agent’s explo-
ration performance can be benchmarked using extent of exploration that involves
discovered, against the total operational range of state/action spaces considered. Be-
cause the total operational range is limited by physical constraints, here, an empirical
limit is considered. Therefore the total operational range is assumed to be a feasible
set and it can be normalized between zero and one.

In general, EoE can be defined as given in equation (4.15).

EoE =
D

T
(4.15)
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(a)

(b)

(c)

Figure 4.3: EoE for a) 1-D, b) 2-D, c) 3-D state spaces

where
D =

∫
· · ·
∫ 1

0

f (d1, . . . , dn) dd1 . . . ddn ∈ Rn (4.16)

is the discovered portion of the total feasible operation range, T,

T =

∫
· · ·
∫ 1

0

g (t1, . . . , tn) dt1 . . . dtn ∈ Rn (4.17)

for n-dimensional state/action spaces. Infinitesimal discrete elements of the states/
actions for arbitrary functions, f and g, are represented by ddi and dti (for i = 1, ..., n)
respectively. Practically, D and T can be calculated using the sum of finite points
obtained from the process, too. However, it should be noted that this would affect the
precision of the calculation. In this work, the resolution of EoE calculations for action
and state spaces have been empirically determined as 1×10−5%−1 and 1×10−5cm−1,
respectively.

For one dimensional state spaces, D and T represent segments (Figure 4.3-a). For
a two-dimensional (2-D) state-space, they are ‘areas’ (Figure 4.3-b). Likewise, they
correspond to ‘volumes’ for 3-D state-spaces (Figure 4.3-c). For the sake of simplicity,
the figure illustrates the state spaces only, however, the calculation is the same for
action spaces. EoE is bounded between 0 (no exploration) and 1 (full exploration).
It provides a scalar representation of the coverage of the state/action space.
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Figure 4.4: Piping and Instrumentation Diagram (P&ID) of the Hybrid Three-Tank.

4.4 The Hybrid Tank System

Process Description and Functionality: As shown in Figure 4.4, the hybrid
three-tank (HTT) system ( [251]) constitutes of three identical cylindrical tanks in-
stalled at the same level, a storage tank below, and two pumps whose outflows (Qp1

and Qp2) enter tanks 1 and 3 respectively. Valves V3 (for tanks 1 and 2) and V4
(for tanks 2 and 3) control the interactions at the mid level at 15.3 cm. Valves V1
(for tanks 1 and 2) and V2 (for tanks 2 and 3) control the interactions at the top
level at 30.6 cm. All these valves are kept open (enabling interaction) throughout the
reported simulation and experiments.

There is also a provision for interaction in the bottom level of tanks through valves
V6 (tanks 1 and 2) and V8 (tanks 2 and 3) respectively. However, these interactions
are blocked by closing the valves.

All three tanks have a discharge pipe each at the bottom to drain water into the
storage tank. Each pipe is equipped with a solenoid valve and the tanks are equipped
with overflow protection leading into the storage tank.
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Differential pressure transmitters (DPTs) are used to measure the water levels in
the three tanks.
System Equations: Considering the system configured in Figure 4.4. The first
principle model of the HTT, based on mass balance is provided in equations (4.18)–
(4.20) whose variables and the parameters are all defined in the nomenclature provided
in Table 4.1.

Table 4.1: Nomenclature and the variables used in the differential equations.

Symbol Definition Value/unit
g Gravitational constant 983.991 cm

s2

H1,2,3 Water level in tank 1, 2, and 3 cm
QTanki Total flow rate into tank i cm3

s

Qp1,2 Flow rate of left and right pump cm3

s

p1,2 Speed of left and right pump %

K1,2 Pump coefficient of left and right pump cm3s−1

%

QVn Flow rate through valve n cm3

s

ATank Cross-sectional area of tank 180.54 cm2

AV Cross-sectional area of valve 0.385 cm2

HV1,2 Height of valve 1 and 2 center from the tank 30.6 cm
Ψ, Ψ̃, Ψ Experimental, simulation, mean experimental data
HV3,4 Height of valve 3 and 4 center from the tank 15.3 cm
CV1,2 Drain coefficient of valves 1 and 2 0.26
CV3 Drain coefficient of valve 3 0.29
CV4 Drain coefficient of valve 4 0.33
CV5 Drain coefficient of valve 5 0.78
CV7 Drain coefficient of valve 7 0.69
CV9 Drain coefficient of valve 9 0.82

83



dH1

dt
=

QTank1

ATank
(4.18)

QTank1 = QV1 +QV3 +QV5 +Qp1

QV1 = CV1 × AV × sign(max(H2 −HV1 , 0)

−max(H1 −HV1 , 0))√
2g |max(H2 −HV1 , 0)−max(H1 −HV1 , 0)|

QV2 = CV2 × AV × sign(max(H2 −HV2 , 0)

QV3 = CV3 × AV × sign(max(H2 −HV3 , 0)

−max(H1 −HV3 , 0))√
2g |max(H2 −HV3 , 0)−max(H1 −HV3 , 0)|

QV4 = CV4 × AV × sign(max(H2 −HV4 , 0)

−max(H3 −HV4 , 0))√
2g |max(H2 −HV4 , 0)−max(H3 −HV4 , 0)|

QV5 = −CV5 × AV ×
√

2× g ×H1

dH2

dt
=

QTank2

ATank
(4.19)

QTank2 = −QV1 −QV2 −QV3 −QV4 +QV7

QV7 = −CV7 × AV ×
√
2× g ×H2

dH3

dt
=

QTank3

ATank
(4.20)

QTank3 = QV2 +QV4 +QV9 +Qp2

QV9 = −CV9 × AV ×
√
2gH3

−max(H3 −HV2 , 0))√
2g |max(H2 −HV2 , 0)−max(H3 −HV2 , 0)|

Qp1 = K1 × p1, Qp2 = K2 × p2
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Figure 4.5: RL infrastructure. The agent observes the water levels, changes the pump
speeds and receives the rewards as a function of the performance metrics.

where pump coefficients K1 = 1.470 and K2 = 1.435 were calculated experimentally
to convert percentage pump speeds p1 and p2 for pumps 1 and 2 respectively. These
percentage pump speeds correspond to the actions taken by the agent.
Definition of the state, action, and reward: The state vector for the non-
constrained control is defined as:

xTt = [H1, H2, H3, H1,sp, H3,sp]
T (4.21)

For the constrained control, to capture the system dynamics effectively, this vector is
augmented as:

xTaug,t = [H1, H2, H3, H1,sp, H3,sp, p1, p2]
T (4.22)

where Hi (i ∈ {1, 2, 3}) are the water levels in the tanks as described in the
nomenclature. Hj,sp (j ∈ {1, 3}) are the set points in tanks 1 and 3 respectively.

The actions could be defined either in position form (i.e., the output of the agent
is the value of the manipulated variable) or in velocity form (i.e., the output of the
agent is the change in the value of the manipulated variable). However, position form
may cause chattering, oscillations, and aggressive control, especially if the process
drifts. The velocity form, on the other hand, provides a smoother transition between
the states during learning and is more robust to the drifts. Thus it is used in this
work. The actor network outputs two normal distributions, and the actions are
sampled from them

(
i.e., ∆pi ∼ N (µi, σi) for i = 1, 2

)
. The sequential decision

making process is summarized in Figure 4.5.
The immediate reward, at time step t, used in equation (4.7) is provided in

equation (4.23).
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Rt = −λ (ϵ1 + ϵ3)− η (∥∆p1∥+ ∥∆p2∥) (4.23)

where ϵ1,3 = {∥H1 −H1,sp∥ , ∥H3 −H3,sp∥} are the deviations of the levels from their
corresponding set points for tanks 1 and 3 respectively. ∆pi represents the change in
the pump speed for i = 1, 2. λ = 0.05 and η = 0.25 are the weighting factors that
are empirically selected to minimize the MSE during learning. This reward function
is similar to the quadratic cost function (QCF ), which is widely used in classical
control, as shown in equation (4.24) ( [34]).

QCF = (xt − xt,sp)T λ (xt − xt,sp)

+ (ut − uref )T η (ut − uref ) (4.24)

where xt,sp is the set point, and uref is a reference for the input. Equations (4.23)
and (4.24) minimize the deviation from the set point and the control effort. The
similarity between these functions reemphasizes the connection between RL and the
control theory.
Identifying System Parameters: In order to obtain a high-fidelity model of the
process represented in equations (4.18), (4.19), (4.20), the drain coefficients are es-
timated (CVi) using a metaheuristic bat algorithm with the procedure as described
in the literature ( [257, 258]) using real process data. The optimal coefficients are
estimated using a zero derivative scheme to obtain the L1 norm of the prediction
error for all three levels. This is shown in equation (4.25).

CVi = argmin
CVi

1−

∥∥∥∑N
k=1 Ψ

T
k − Ψ̃T

k (CVi)
∥∥∥
1

Ψ
T

k

 (4.25)

where N = 1441 is the number of samples, ΨT
k = [H1, H2, H3]

T
k , Ψ̃T

k =[
H̃1, H̃2, H̃3

]T
k
, ΨT

k =
[
H1, H2, H3

]T
k
represent experimental data, simulation data,

and the mean of the experimental data at the k-th time step respectively. The
simulation data refers to data calculated from simulation of the process through
equations (4.18), (4.19) and (4.20). The model has been validated against process
measurements as indicated in Figure 4.6.
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Figure 4.6: First principle model validation.
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(the slopes) reflects the multi-modality of the HTT system.

Multi-Modality and nonlinearity of the System: Valves V1-V4 (shown in Fig-
ure 4.4) connect the tanks and change the operation mode based on the liquid level.
Consequently, there are three major modes in tanks 1 and 3 as shown in Figure 4.7
with the Hi and Qpi relationship. Controlling a process with such behaviour may
require an adaptive controller, which introduces further design challenges. Alterna-
tively, RL can generalize the solution to be robust to such variations once trained.

Similarly, as shown in equations (4.18)–(4.20) the system has some nonlinearities,
which may require an additional linearization step while using a classical control
methodology. However, the model-free nature of the RL agent inherently addresses
such nonlinearities owing to the generalization capabilities of neural networks and the
actor-critic algorithm ( [232]).

4.5 Experimental Validation

This section discusses the implementation details for the discussed schemes, illus-
trates the common learning and control metrics that are used in both simulated and
experimental environments, and represents the EoE by using heatmaps of the state
& action spaces. Moreover, a robustness test is performed to showcase the potential
of an RL agent in coping with uncertainties.
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4.5.1 Implementation Details

Even though the information given in Sections 4.3 & 4.4 is general, the performance
of the discussed algorithms may vary from one problem to another, depending also on
the implementation steps (such as the hardware/software that is being used). This
subsection explains the implementation in detail for the sake of clarity.

4.5.1.1 Hardware and software

The training program was developed by using Python 3.7, and Tensorflow 1.14.0 was
used to instantiate and train the neural networks. The training was conducted on a
Lambda deep learning workstation with an Intel Core i9-9820X CPU (10 CPU cores)
at 3.30 GHz, 64 GB DDR4 RAM at 2666 MHz under 64-bit Windows 10 operating
system.

4.5.1.2 Experimental setup

Real-time communication between the RL agent and the HTT was established using
a socket connection to an Opto22 server ( [253]). This server acted as the data
acquisition system through which the process measurements were transmitted. A
block diagram representation of the experimental setup is shown in Figure 4.8.

4.5.1.3 Agent networks

The agent consists of an actor and a critic neural networks. The neural network
architecture for the actor is shown in Figure 4.9. The actor constitutes of an input
layer which is fed by a normalized input state vector, a dense hidden layer with 200
neurons, and an output layer from which the normalized increment of the pump flow
rate distribution (the action) is obtained. A sample from this distribution is the
change in pump speed. This value is converted into flow rate and is added to the
current flow rate.

Similarly, the critic comprises of an input layer, a hidden layer with 100 neurons,
and an output layer. The critic estimates a scalar V (xm|ω) from its normalized input.

A sample time of 5 seconds is utilized. Based on the update rules provided in
equations (4.8) and (4.9), the critic is updated first followed by the actor. This is
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Figure 4.8: Experimental setup. The connection between the HTT system and the
algorithm was established by using an Opto22 Server.

because the critic receives measurements from the environment and defines a goal
for the actor. Then the actor improves its behaviour according to this goal without
diverging. Different strategies, such as the shared parameters ( [259]), can be used for
other control tasks.

Both networks are updated using the RMSProp ( [260]) optimizer. The hyper-
parameters for the two networks are provided in Table 4.2.

As indicated previously in Section 4.3, three different exploration schemes are uti-
lized to train an agent from a random initialization point, namely SSPT, MSPT, and
PA. Each agent encompasses the asynchronous infrastructure of four local networks
and a global network comprise this agent as shown in Figure 4.1. The actor-critic
network pairs in each worker are initialized from a random position in their param-
eter space. Training constitutes of episodes, each of which constitutes of a five hour
closed-loop simulation based on the first principle model of the HTT (shown in equa-
tions (4.18)–(4.20)). With a control objective of tracking set points in tanks 1 and 3,
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Figure 4.9: Actor architecture.

Table 4.2: Hyper-parameters for learning

Hyper-parameter Title Value
γ Discount factor 0.95
αa Actor learning rate 1× 10−4

αc Critic learning rate 1× 10−3

αco Constraint learning rate 1× 10−6

β Entropy factor 0.011
max |∇| Maximum gradient norm 10

k Maximum samples in buffer 100
max |∆p| Maximum action bound 5%
min σ Minimum standard deviation 0.0001
max σ Maximum standard deviation 0.1
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the agent is deployed. The first scheme of exploration constitutes of the utilization of
the SSPT scheme. During each episode, the tracking scheme assigns the same varying
set points to all workers, every 10 minutes. This is repeated for the MSPT scheme,
the second scheme, except that unique set point trajectories are employed for each
worker and are updated using similar time intervals. The third scheme (PA) trains all
workers gradually, one-by-one. Here, the policy is randomly initialized and trained by
using a single set point (Phase 1). The resulting policy is subject to further learning
by using an SSPT scheme (Phase 2) and then an MSPT scheme (Phase 3).

4.5.1.4 Constrained Learning

Apart from the SSPT, MSPT, and PA settings that did not constitute of any con-
straints, a new agent with the augmented state vector and reward function is trained.
The network parameters are randomly initialized before training the agent. This
agent utilizes a dynamic Lagrangian multiplier, Λ, as described in Section 4.3.2. This
multiplier adjusts the reward signal with respect to the degree of constraint violation,
and provides safer learning, which is of concern in real applications.

4.5.2 Simulation Results

The episodic rewards for the PA scheme are shown in Figure 4.10. The initial episodic
rewards in each case depict the gradual learning that the policy has achieved based on
each phase of the learning employed. As seen in Figure 4.10, the cumulative reward
for Phase 1 of the PA agent (SSP) converged to a larger (better) value than any other
training phase. This is because the given set point remains constant throughout the
duration of the episode, which makes the control problem less challenging. Each
subsequent phase has a larger initial episodic reward.

A broader comparison of all proposed schemes using episodic rewards is depicted
in Figure 4.11.

It can be observed that the PA scheme is immediately effective and reaches 90%
of its maximum performance quicker than the other schemes. Though it indicates
that this scheme is more sample efficient than the other schemes, learning quickly
may reduce the generalization ability, hence affect its control performance.
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Figure 4.10: PA scheme episodic cumulative rewards.

Figure 4.12 provides a spatial heat map of the state/action space for the three
schemes. The space coverage of the SSPT scheme is limited because the control task
here involves a single set point trajectory. Although the MSPT and the PA schemes
have similar heatmaps, the MSPT scheme explores more than the other schemes.
Note that the grid lines appear in the state space due to the interaction between
the tanks. The EoE of each scheme is provided in Table 4.3. The table shows that
the MSPT scheme yielded the highest exploration value despite the PA scheme also
involved an MSPT training phase. This is because the network parameters in the
MSPT scheme were initialized randomly, whereas each consecutive phase of the PA
training constituted of the network parameters obtained at the end of the previous
phase, which limited the exploration ability of the agent for this problem.

Amongst the schemes proposed, the MSPT from random initialization point shows
the highest EoE as the result of an increased entropy in the policy. This is seen in
Figure 4.12-b and c.

Another interesting observation in Figures 4.12-d, e and f is the appearance of
grid line type heat maps. These distinct features represent the modal variation in
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the actual values. The proximal agent converges to 90% of its maximum performance
quicker than the other schemes.

Table 4.3: EoE of different schemes. Though the PA scheme reaches its maximum
performance quicker than the other schemes, the MSPT scheme explores the most.

Training Session Action Space State Space
SSPT 0.19944 0.25670
MSPT 0.38709 0.50827

PA Phase 1 0.08418 0.08030
PA Phase 2 0.08686 0.11773
PA Phase 3 0.26038 0.38118
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Figure 4.12: Heat maps obtained from different training schemes. The MSPT scheme
results in the highest exploration (b), (e) as indicated by the EoE in Table 4.3. Grid
lines that appear in the state space (i.e., d, e, and f) are a result of the multi-modal
structure of the system, owing to the interaction between the tanks.
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Table 4.4: Performance metrics from validation - Simulation

SSPT MSPT PA

MAE / cm H1 1.571 0.697 0.686
H3 4.137 0.744 1.204

MSE / cm2 H1 4.450 2.125 1.958
H3 24.205 2.299 3.167

Variance p1 0.385 0.404 0.275
p2 0.746 0.328 0.377

the process, owing to the interaction the tanks 1 and 3 have with the tank 2. Explo-
ration of these regions to improve the policy further emancipates the generalization
of the policy. This aspect fortifies such schemes for multi-modal processes, which are
prominent in chemical process systems.

Based on the three training schemes, three policies were obtained. To validate
these policies, a servo tracking for a set point trajectory that is distinct from train-
ing is utilized. Based on repetitive simulations, the average performance metrics
(MSE, mean absolute error (MAE), and variance in manipulation) were obtained and
provided in Table 4.4.

Table 4.4 shows that average MAE and MSE values for MSPT scheme are lower
than that of PA scheme. Although training an agent using three phases that improve
successively may lead to a faster convergence as shown in Figure 4.11, this scheme
does not necessarily improve the control performance. In fact, for this problem,
training an agent using MSPT scheme provided a better control in terms of the error
metrics as shown in Table 4.4 and in Figure 4.13. The SSPT scheme deviated from
the set points significantly in both tanks. Although the PA scheme converged to its
maximum performance quicker than the other schemes, it could not remove the offset
completely. Moreover, MSPT showed the highest variation in the pump speed to
minimize the deviation from the set points. These are because the SSPT and the PA
schemes did not explore the state/action spaces as much as the MSPT scheme did.
EoE values of these schemes are shown in Table 4.3.
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Figure 4.13: Validation of final policies from the three training schemes - Simulation.
Though the PA scheme converges to 90% of its maximum performance quicker than
the other schemes (as shown in Figure 4.11, it yields offsets during control. The
SSPT-based agent tends to diverge from the set points in both tanks. On the other
hand, MSPT agent shows the best controlling performance in terms of the deviation
from the set point.

4.5.3 Robustness Test - Simulated

Though the agent is able to control the water levels in the tanks, it is important
to observe the robustness of the resulting policy to the process uncertainties after
learning. The tested policy is obtained from the MSPT scheme, because it yielded
the highest EoE. It is tested by inducing a ±10% variation to the pump coefficients
(i.e., K1 and K2). The agent has been exposed to this variation through the test but
not during learning. The visualization of servo tracking under such uncertainties is
provided in Figure 4.14. The performance metrics are provided in Table 4.5.

Overall, the learned MSPT policy was able to control the levels without significant
errors, oscillations or overshoots. These show that even though the agent did not
experience such changes during the training, its policy was able to adapt to the
perturbation in the action space.
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Figure 4.14: Robustness test using the MSPT policy - Simulation. ±10% variation
is induced to the pump coefficients at the beginning of the test. The MSPT agent
successfully adapted to these changes without any significant deviations.

Table 4.5: Performance metrics from robustness test of MSPT policy- Simulation.
The agent was able to control the pumps without any significant errors.

Ideal p1 +10% p1 -10% p2 +10% p2 -10%

MAE/cm H1 0.558 0.582 0.637 0.608 0.573
H3 0.570 0.613 0.636 0.516 0.567

MSE/cm2 H1 2.362 2.263 2.559 2.463 2.352
H3 1.805 1.827 1.870 1.596 1.918

Variance p1 0.0518 0.0627 0.0545 0.0603 0.0571
p2 0.0542 0.0594 0.0502 0.0498 0.0475

4.5.4 Real-time Experimental Results

Owing to its performance, the policy obtained from the simulation using MSPT
scheme is utilized for the online learning. Since only one instance of the HTT real-
time experiment is available in reality, asynchronous learning is limited to learning
through simulation. Its single agent variant, the A2C algorithm is utilized for online
learning. It consists of one global policy and only one worker (constituting of a policy
and the HTT experiment for the environment). The experimental setup is depicted
in Figure 4.8.

During online learning, the behavioral policy is randomly initialized and generates
losses based on its interaction with the HTT experiment. To ensure safe operation
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Figure 4.15: Finite state machine design of real-time online learning application in
Python©

Table 4.6: Results before/after online A2C learning.

Before After

MAE/cm Tank 1 0.632 0.506
Tank 3 0.746 0.641

Variance Pump 1 1.085 1.109
Pump 2 1.079 1.103

and avert communication failures or faults, a Mealy-Moore finite state machine (FSM,
[261]) based application is designed. This is shown in Figure 4.15. Here, each circle
indicates a state of operation while the arrows indicate the conditions for transition
from one state to another. Also, the tasks carried out during transition or within the
state are depicted.

During online training, the episodic training is again carried out. Multiple sequen-
tial episodes constituting of two hours each are carried out on the experimental setup
with multiple inter-episodic updates of the policy using rollout. The servo tracking
results from the entire 32 hours of online learning are shown in Figure 4.16, and the
related metrics are provided in Table 4.6.

It can be observed that during the online learning, the agent continues to be
reliable and does not produce abnormal actions which could otherwise throw the
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Figure 4.16: Online learning using A2C scheme on experimental setup.

closed loop process into instability. The agent also reduces the average tracking error
for both tanks by taking more aggressive actions. This is because the agent adapts
to the behaviour of the real system, which involves measurement uncertainties unlike
the deterministic system model.

4.5.5 Robustness Test - Experimental

In addition to the simulated robustness test shown in Section 4.5.3, unmeasured dis-
turbances are introduced at different time steps by opening valves V6 and V8 (shown
in Fig. 4.4) to demonstrate the effectiveness of the agent. Additional Gaussian noise,
N (0, 0.04), is added to the sensory measurement in order to enhance the uncertainties
and make the control problem more challenging. As shown in Figure 4.17, the agent
is robust to such environmental challenges.

4.5.6 Soft-constrained Learning

The previous result shows in Figure 4.13 that the agent can control the water levels
in a MIMO system. However, during learning in those schemes the agent may try to
maximize the reward without considering physical limits such as the maximum height
in the tank, and operational limits on the pumps’ speed. Introducing hard-state-
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Testing the Policy with Disturbance and Noise

Figure 4.17: Disturbance and noise test using the MSPT policy - Experimental. The
disturbances are introduced by simultaneously opening valves V6 and V8 for 15, 30
and 35 seconds respectively. Additional noise, N (0, 0.04), is added to enhance the
sensory uncertainties throughout the experiment. The results show that the agent is
robust to such environmental conditions.

constraints may prevent the agent from learning or experiencing the consequences
of visiting the states beyond these constraints. Soft-constraints, on the other hand,
sacrifice this ’never-visit’ condition while preserving feasibility and letting the agent
learn these states. Moreover, the dynamic weight factor (i.e., Λ in equation (4.11)),
makes the agent be aware of how far it is from the limits.

Figure 4.18 shows that the set points are tracked in a stable manner by the soft
constrained scheme. Also, the statistical results over ten simulations indicate that
the agent, on average, violates the constraints 25 times in the first episode of the
training phase. Meanwhile, it avoids taking actions that lead to unsafe states after
training, with no violations during validation. These show that the agent learns
not to violate the constraints while maintaining a satisfactory control performance.
This scheme allows the introduction of constraints on any observable state. Such an
adaptation would promote constrained real-time optimization based on state-specific
operational regions using a model-free approach. Hence, this scheme becomes an
important augmentation to obtain a model-free constrained policy.
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Figure 4.18: Constrained scheme - test.

4.6 Discussion

Alternative to the A3C scheme, various model-free algorithms such as deep determin-
istic policy gradient (DDPG, [74]), soft actor-critic (SAC, [72]), twin delayed DDPG
(TD3, [76]) can be used to solve the same control problem. These algorithms differ
in terms of their action selection and policy update rules.

For example, DDPG can be used to learn external policies (e.g., a policy defined
by a human expert), which may provide safer control initially. SAC can be used to
enhance the exploration because it maximizes the entropy of the policy similar to the
A3C algorithm. TD3, on the other hand, uses two neural networks for policy evalua-
tion (value estimation), and uses the worst-case value estimate during learning. This
idea takes its roots from the worst-case performance under uncertainty methodolo-
gies in the robust control literature ( [262,263]). TD3 also keeps track of the network
parameters to ensure learning stability.

A3C, however, achieves similar control performance compared to the above-mentioned
algorithms with fewer hyper-parameters, promotes exploration and allows the user to
parallelize the simulation environments to reduce the training duration.

In addition to this low-level control application, the scheme can be utilized in
higher levels of the control hierarchy ( [264]) by adjusting the interaction frequency
of the agent. This may increase the efficiency of plant-wide optimization strategies
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while preserving safety and process stability.

4.7 Conclusion

Since approximation-based reinforcement learning requires interactions starting with
a random control policy, its direct real-time implementation on processes may be
unsafe because of taking possibly detrimental initial actions. Furthermore, thorough
state/action space exploration is necessary to obtain a truly generalized control policy.
This becomes more important while dealing with nonlinear/multi-modal chemical pro-
cesses. This chapter proposes use of three different progressive reinforcement learning
schemes to learn the control policy using a first principles model of a hybrid three-
tank system. The control problem is then reformulated into a constrained scheme to
obtain a safer control policy. It presents the control related results and also studies
the extent of exploration (EoE) as a measure of the state/action space exploration
illustrated in the form of heatmaps. The best performing scheme is success-
fully implemented online on the real-time hybrid three-tank system through Opto-22
socket connection. The results obtained demonstrate the efficacy of pre-training us-
ing simulation in finding an initial stable policy for online, real-time learning, paving
way to the possibility of implementation on industrial processes parsimoniously.
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Chapter 5

Reinforcement Learning with
Constrained Uncertain Reward
Function Through Particle
Filtering ∗

This chapter presents the constrained filtering approach considering the reward/cost
properties in process control. Advancements in computational sciences have stim-
ulated the use of an abundant amount of data in control and monitoring. Recent
studies have reemphasized that the performance of the data-driven control signifi-
cantly depends on the data quality. This quality is affected by uncertainties such
as process and measurement noises. This study addresses a type of noise commonly
seen in industry, and shows how it degrades the performance of a deep reinforcement
learning (RL) agent. Then, a novel filter is proposed to reduce the effect of this
noise when it causes skewed probabilistic distributions in the reward functions. We
demonstrate that the RL policy can be improved by using a constrained filter with
a combination of the optimal filtering and RL concepts. The proposed algorithm
is applied to a pilot-scale separation process that resembles an industrial separation
vessel. The experimental results demonstrate the proposed algorithm can improve
the process operation efficiency.

∗This chapter has been published as O. Dogru, R. Chiplunkar and B. Huang, ”Reinforce-
ment Learning With Constrained Uncertain Reward Function Through Particle Filtering,” in
IEEE Transactions on Industrial Electronics, vol. 69, no. 7, pp. 7491-7499, July 2022, doi:
10.1109/TIE.2021.3099234.
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5.1 Introduction

Rapid developments in technology and data availability in different domains have
caused a paradigm shift in research as well as in the process industry. Complex
control problems today are often solved by black-box methods that are data-driven.
This is because the state-of-the-art techniques have made it possible to process high-
dimensional data in real-time. Despite the practicality of these techniques, this data-
driven era has its challenge: data reliability.

Similar to the classical control techniques [34], the learning-based methods aim
to find the best set of parameters, which can describe the data accurately. These
parameters can be used either to reconstruct data under different operating conditions
[144] or to map an input data to its label [142]. In system identification and control
[29, 172], such supervised and unsupervised learning techniques are used to develop
time-series models, fault detection monitors and control [265, 266]. Reinforcement
learning (RL), on the other hand, formulates these control/monitoring tasks as a
sequential decision-making process and builds a model adaptively [35, 37]. Here, an
agent tries to improve a performance metric by interacting with an environment as
shown in Fig. 5.1-a. In addition to their impressive performance in playing games
[39, 73], RL algorithms have also shown remarkable progresses in the control field
[40, 119, 126, 187, 267–273].

Independent of the type of methods, the learning may be considered solving an
optimization problem with an associated reward function. The reward can be binary,
multinomial, continuous variable, or a combination of them [274]. For complex prob-
lems, it may be challenging to design a proper reward, especially in the presence of
uncertainties. These uncertainties may be due to physical conditions that affect the
sensory readings, human error, or adversarial attacks [275, 276]. Such uncertainties
have been reported to degrade the model/controller performance [275], and need to
be taken care of rigorously.

This study considers a type of uncertainty, which is caused by the sensors that
are utilized in the reward function. When the noise is Gaussian and the system is
linear, the Kalman filter (KF) provides the optimal estimate for the target variable
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Figure 5.1: (a) Schematic of the generic RL algorithms. The agent observes a state
and takes an action that results in the next state and the reward. (b) The proposed
filtering scheme. The system emits a noisy reward, r̃, instead of the noise-free r.
The constrained filter removes the noise by considering the reward boundaries and
outputs an estimate of the true reward.

[31, 277]. However, non-Gaussian and nonlinear problems require more advanced
solutions such as the nonlinear and constrained state estimation methods [278–281].
Some of these methods, (e.g., the PDF truncation mentioned in [279]) result in biased
estimates. Besides these methods, several studies have considered the robustness
in RL by developing the system model or augmenting the reward to account for
uncertainties [282]. However, these methods are either too general or do not take
the constraints on the observation probability distributions into account. Ignoring
this important information can deteriorate the performance and robustness of the
estimation.

This study, on the other hand, utilizes a novel constrained particle filtering
[283–286] scheme, targeting a type of reward that is commonly used in control ap-
plications. This is necessary in order to achieve an unbiased policy, improve sample
efficiency, and prevent numerical issues while updating the parameters (e.g., when
using the stochastic gradient descent). The proposed scheme formulates the reward as
a dynamic variable and considers constraints on both its transition probability and
its observations to achieve certain properties of the reward functions such as non-
negativity etc. In addition to reducing the variance of the estimation, this method
maintains robustness. The contributions of this chapter are as follows:

• formulating the reward value as a dynamic process with its transition and ob-
servation probabilities,

106



• estimating the constrained reward by using a state and observation-constrained
filter,

• demonstrating the importance of the proposed method by using an experimental
case study,

• showcasing the robustness of the proposed method in the presence of noise and
outliers,

• applying the constrained filter in an asynchronous scheme by using multiple
workers [73],

• quantitatively and qualitatively analyzing the proposed scheme by considering
the filtering, learning and tracking aspects in an RL setting through a pilot-scale
experiment.

The remainder of this chapter is organized as follows: A detailed background
information is provided in Section 5.2, the proposed method is described in Section
5.3, the results are discussed in Section 5.4, and the concluding remarks are presented
in Section 5.5.

5.2 Background

An RL agent learns an optimal policy by interacting with the environment and receiv-
ing a reward signal [34,35]. This signal is obtained by sensors and may contain noise
inherently. This study proposes a method to obtain robust policies for detecting an
interface when the reward uncertainty has a skewed distribution. In this section, the
fundamentals of RL, actor-critic RL, optimal control, and state (reward) estimation
are presented.

5.2.1 Markov Decision Process (MDP)

Generally, a control problem can be represented as an MDP that is denoted asM =

⟨X ,U ,R, p, γ⟩, where ⟨·⟩ denotes a tuple. At a discrete time, t, the agent observes a
state, xt ∈ X , and takes an action ut ∈ U . The system, whose model is represented
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as p(x′, r|x, u), moves the agent to the next state while emitting a reward signal
rt+1 ∈ R ⊂ R. The model-free algorithms assume that this model is unknown to the
agent. The discount factor, γ ∈ [0, 1], is a weight that determines the contribution
of the future rewards. From a digital signal processing point of view, it behaves
like a low-pass filter. The agent’s goal in an MDP is to learn how to maximize the
discounted return (5.1).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (5.1)

where the capital letters indicate that the reward is a stochastic variable.
During its interactions with the environment, the agent samples its actions from

a stochastic policy, π(u|x), whose performance is measured by using a value function.
The type of value function can be selected based on the policy evaluation technique.
The learning can be performed by recursively solving the Bellman equations (5.2)-
(5.3) [37].

vπ(x) = Eπ [Gt|Xt = x]

= Eπ [Rt+1 + γGt+1|Xt = x] , ∀x ∈ X

=
∑
u

π(u|x)
∑
x′

∑
r

p(x′, r|x, u)

× [r + γEπ [Gt+1|Xt+1 = x′]]

=
∑
u

π(u|x)
∑
x′

∑
r

p(x′, r|x, u) [r + γvπ(x
′)] (5.2)

qπ(x, u) = Eπ [Gt|Xt = x, Ut = u] , ∀x, u ∈ X × U

=
∑
x′

∑
r

p(x′, r|x, u)

[
r + γ

∑
u′

π (u′|x′) qπ(x′, u′)

]
(5.3)

where E[·] is the expectation of a random variable. These equations assume the
Markov property, where the future values depend only on the current values, and are
independent of the past given the current values.

Following the previous step, the optimal value functions can be found by using
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equations (5.4) and (5.5).

v∗(x)=max
π

vπ(x), ∀x ∈ X (5.4)

q∗(x, u)=max
π

qπ(x, u), ∀x, u ∈ X × U

=E [Rt+1 + γv∗(Xt+1)|Xt = x, Ut = u] (5.5)

Finally, the optimal (also called the greedy) policy can be obtained by using equation
(5.6).

π∗(x) = argmax
u

q∗π(x, u) (5.6)

However, the system model, p (·), may not be available, and hence cannot be used
in equations (5.2) and (5.3). In addition, finding exact values of v (x) or q (x, u)
may not be feasible in large/continuous space control problems. Approximate value
functions, V (x|ω) or Q(x, u|ω), can replace the exact solutions to overcome these
challenges, where ω denotes the parameters of the value functions. Section 5.2.2
explains how to utilize these functions to learn optimal policies.

5.2.2 Actor-Critic Reinforcement Learning

The value functions mentioned in the previous section are also called a critic, by
which the optimal policy is obtained indirectly [38,39]. Alternatively, a policy can be
parameterized as π(Ut|Xt, θt), and directly optimized. This technique is called policy
gradient, and it optimizes the parameters as shown in equation (5.7).

θt+1 = θt + αGt
∇π(Ut = ut|Xt = xt, θt)

π(Ut = ut|Xt = xt, θt)
(5.7)

where α is the learning rate, and θ represents the parameters of the actor [35].
As an extension of the policy gradient and value-based techniques, actor-critic

algorithms address estimation variance and slow learning problems by combining
both techniques. Several actor-critic algorithms have been proposed [73, 74, 76] and
applied to various control problems [120,125], which will not be detailed in this study.
Nevertheless, one common feature of these methods is that they minimize a variant of
the TD-error (δ) to improve the critic (equation (5.8)) and the actor (equation (5.9))
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networks [76, 129].

dωnew←dωold + αc∇ωδ(·|ω)2 (5.8)

dθnew←dθold + αaδ (·|ω)∇θ ln π (·, θ) (5.9)

with δ=y − h (5.10)

where αc and αa represent the learning rates of the critic and the actor, respectively.
d· denotes the increment of the parameters. The networks are updated by using the
backpropagation [73]. y represents an observed value function, and h corresponds
to a predicted value function. For the asynchronous advantage actor-critic (A3C)
algorithm, these can be calculated as:

y=rt+1 + γV (xt+1|ω′) (5.11)

h=V (xt|ω) (5.12)

where ω′ indicates that the parameters are the value determined in the previous time
instant, and ω stands for the parameters to be updated [129]. Note that the only
information that comes from the environment is the reward signal, rt+1, and the value
function is predicted through the deep networks. Updating the network parameters
as such improves the learning stability [76]. Nevertheless, the uncertainties in the
reward value will still affect the value functions, TD-error, the policy, and finally, the
control performance.

This study investigates a type of practical reward functions and its uncertainties,
as will be discussed in the next section.

5.2.3 The Reward Function

The reward in RL is a performance metric that may be either binary (e.g., whether
a goal is achieved or not) or continuous (e.g., the mean square error), and can be
obtained either sparsely (at the end of an episode) or frequently (at every sampling in-
stant). Practically, it may give information about ”product quality”, ”deviation from
an operational point”, ”control effort”, ”how long an agent has survived”, ”whether
the agent achieves a goal or not” etc.

110



x-SP

r1

r2

arg max=0

Figure 5.2: Geometric representation of various types of reward. Note that both
equations are concave, and have a maximum value of 0 when there is no deviation.

From the optimal control point of view, the reward may be formulated as the
quadratic cost function as commonly used in model predictive control (MPC) or
linear quadratic regulator (LQR). A simplified version of the quadratic cost is defined
as shown in equation (5.13)†.

r1t = − (xt − SPt)T Qt (xt − SPt) (5.13)

where SP represents the desired/reference/setpoint value, Q is a square weight matrix
that determines how much a particular state will contribute to the reward function,
and (·)T represents the transpose operation.

One advantage of using the quadratic form is that the reward function becomes
twice differentiable, which is beneficial for Jacobian/Hessian-based optimization tech-
niques. It is also smooth and concave, which helps to find the optimal values. How-
ever, a quadratic reward can be sensitive to uncertainties in sensory measurements,
particularly uncertainties with large magnitudes. Therefore, using a lower-order re-
ward may be more beneficial in the presence of uncertainties. In this study, the
L1-norm (equation (5.14)) is used to make the agent more robust to outliers and
noise.

r2t = − |xt − SPt|1 (5.14)

Note that both equations (5.13) and (5.14) have a maximum value of 0‡ theoretically,
and are shown geometrically in Fig.t 5.2.

†This is the weighted and squared L2-norm. In fact, the quadratic cost function does not have
a negative sign in control due to the minimization operation. It can also include an action term. To
connect the reward used in RL & the cost used in optimal control, and for the sake of simplicity,
here it is shown as a negative function. See [29,172] for more information.

‡That is, when x = SP
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The noise is inherent and cannot be avoided regardless of what norm to be used.
These challenges motivated this work to develop a type of Bayesian filter for esti-
mating the reward in the presence of uncertainties. The theory behind the proposed
filtering method is explained in Section 5.2.4.

5.2.4 State (Reward) Estimation

A state in a system completely represents the internal status of the system at any
time [31]. In real systems, the true values of the states may not be known due to un-
certainties, and some of the states may not be observed due to hardware limitations.
These issues make the system/control design challenging in practice. State estima-
tion, in this context, refers to optimally estimating a state by using some uncertain
observations. Inspired by the state estimation methodology, the goal of this work is
to estimate the true/hidden reward given its noisy observations.

Let p(rt|rt−1) and p(r̃t|rt) represent the transition and the observation probability
distribution functions (PDFs) of the reward respectively. The objective is to estimate
p(rt|R̃t), where R̃t = [r̃1, r̃2, ..., r̃t]

T is the noisy reward observations up to time, t.
The estimation could be performed by using a Kalman filter if p(rt|rt−1) and p(r̃t|rt)
are Gaussian PDFs. However, in typical RL tasks, these PDFs are skewed. This
property introduces tractability challenges, which require advanced solution methods,
as will be discussed in Section 5.3.

5.3 Interface Tracking Under Uncertainty

To give a practical background of this work, separation processes are a key element in
the oil sands industry because both the product quality and the environmental impact
depend on their efficiency [126,137]. One of the main separation processes is through
a primary separation vessel (PSV), where bitumen is separated from impurities such
as water and solids [287]. This physical process involves complex interactions due to
operational conditions and feed properties. It is controlled by measuring the interface
level (by utilizing a pressure sensor) and manipulating the process flow rate, such that
this level is kept at a particular point to optimize the product quality. Therefore, it is

112



PSV

Water

Oil

DP
Bottom

Water 
Feed Pump

Oil
Feed Pump

Oil
Outlet Pump

Water
Outlet Pump

DP
Top

Water 
Tank

Oil
Tank

Camera

(a) (b)

I

c
x

DP Noisy r, r

DP

True r } }
~

u

~

Figure 5.3: (a) The pilot-scale PSV setup. A mixture of oil and water is fed into
the PSV tank, while the level is monitored by using two differential pressure (DP)
sensors as well as a camera. The true level is indicated with the blue dot, whereas
its noisy measurement is shown as the green dot below. (b) An image, It obtained
by using the camera. The agent observes the pixels, xt, inside the orange box. Then,
it takes an action, ut, which either moves the box up/down by 1 pixel or does not
move. Following this, it observes xt+1 from It+1, and calculates the reward (r̃t+1 by
using D̃P t+1, instead of DPt+1). The time steps are not shown in the figure for the
sake of simplicity.

crucial to monitor the level accurately. The pilot-scale system to mimic this process
is shown in Fig. 5.3-a.

The camera shown in Fig. 5.3-a obtains an image, It, in which a virtual moving-
box (with a center, ct) is drawn as shown in Fig. 5.3-b. The pixels within this box are
cropped and sent to the RL agent as the state, xt. The agent moves the box to ct+1

by sampling an action from its policy, i.e., ut ∈ {+1, 0,−1}px. ∼ π(ut|xt, ω). The
camera obtains the next image, It+1, from which the next states, xt+1, are cropped.
Parallel to this, the DP sensors measure the level and send it to the agent for the
reward calculation, as shown in equation (5.15).

r̃t+1 = −|D̃P t+1 − ct+1| (5.15)

where ct+1 represents the center of the box after the action is taken, and D̃P t+1 is the
corresponding level measurement from the pressure sensors. Note that this reward
representation is equivalent to equation (5.14), and the reward is maximum when the
center of the box and the DP sensor measurement overlap, i.e., when D̃P t+1 = ct+1.
Note that the DP sensors are only used in the training phase as a reference of the
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Figure 5.4: A flowchart of the proposed method. The gray boxes indicate a general RL
scheme without filtering. The proposed method is highlighted as the blue box. The
solid and the dashed lines indicate the data and the gradient flows respectively. CNN
and ConvLSTM represent convolutional neural and convolutional long-short term
memory networks respectively. The images, I, are obtained from the experiment by
using a camera together with their corresponding noisy pressure sensor measurements,
D̃P . The agent observes a cropped image, xt, moves the cropper box according to its
policy. ϕs and ϕt represent the spatial and temporal features obtained from the neural
networks respectively. The noisy reward is calculated according to equation (5.15).
Then, the reward is filtered according to equations (5.19) and (5.20). TD-error is
calculated by using this filtered reward estimate.

level.
In the ideal case, the level measurements should be noise-free, as shown with a

blue dot in Fig. 5.3-b. However, in real applications, there is inherent noise, and the
pressure sensors provide a noise-corrupted D̃P t+1 instead of DPt+1. Common filtering
techniques to estimate the true value of a random variable given its noisy measure-
ments include but are not limited to Kalman filtering (and its variants) [31,288,289],
average filtering [290], etc., which do not consider the constraints and skewness of the
distribution function (such as non-positiveness of a quadratic reward) that may exist
on both the reward and observations. This study considers the interface tracking
problem as an MDP that satisfies the Markov property for the states and the reward.
The following random-walk type of Markovian evolution of the reward function is
considered in this study:

rt+1 = rt + et (5.16)

r̃t = rt + νt (5.17)

s.t. rt+1, rt, r̃t ≤ 0 (5.18)

where e and ν represent uncorrelated lumped state and the observation noises ow-
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ing to uncertainties such as DP cell measurement errors, with variances σe and σν

respectively. Equation (5.16) shows that the consecutive rewards have similar values
because the level in the PSV can be considered as a slow dynamic process [137].

The non-positiveness of the reward that would skew the uncertainty distributions
(as shown in equation (5.15)) makes this estimation problem challenging, especially
when the reward is close to zero (or maximum). To overcome these challenges, this
study proposes a constrained estimation scheme by using a truncated normal distri-
bution that captures skewness, where the reward transition is a truncated normal
distribution with a PDF that is shown in equations (5.19) and (5.20) [291].

p(rt+1|rt) = TN(rt, σe,−∞, 0) =
ϕ( rt+1−rt

σe
)

σeΦ(
−rt
σe

)
≤0

(rt+1) (5.19)

p(r̃t|rt) = TN(rt, σν ,−∞, 0) =
ϕ( r̃t−rt

σν
)

σνΦ(
−rt
σν

)
≤0

(r̃t) (5.20)

where TN denotes the PDF of a truncated normal distribution, ϕ and Φ are the PDF
and cumulative density functions (CDF) of a standard normal distribution, and is the
indicator function respectively. Equation (5.19) represents the true reward dynamics
and equation (5.20) is the PDF of the observed noisy reward. The truncated normal
distribution can represent the non-positiveness as shown in Fig 5.5-a. However, filter-
ing cannot be performed analytically by using the PDFs in equations (5.19) and (5.20)
since they are truncated Gaussian distributions. Thus, this study develops a particle
filter (PF) to approximate the a posteriori distribution of the reward function.

As shown in Fig. 5.4, at each time instant, a frame and its corresponding DP
sensor measurement are obtained from the experiment by means of a camera and the
DP sensor, respectively. The agent observes a portion of the image, xt and takes an
action, ut, which moves the cropping box as discussed earlier. The corresponding
noisy reward is obtained by using equation (5.15), and is filtered through equations
(5.19) and (5.20). The filtered reward estimate is then used to calculate TD-error,
which is used to train the entire structure. The CNN and ConvLSTM layers are
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updated by using equation (5.21) [270].

Ψ← Ψ+ 0.5× αc∇ΨLδ (·)2 (5.21)

+0.5× αa∇ΨLδ (·) ln π (·) + Ξπ (·) ln π (·)

where Ψ = [ψCNN , ψConvLSTM ] represents the parameters of the CNN and the Con-
vLSTM layers. Ξ is a weight coefficient that adjusts a penalty to encourage action
diversity. L represents the local networks. Additional explanation about the sampling
procedures will be provided in Section 5.4.1. More details about the experimental
procedure and the neural networks have been provided in [270].

5.4 Results and Discussion

The proposed algorithm should filter the reward function while respecting its con-
straints, compromising neither the learning nor the tracking abilities of the agent.
This section explains the details of the implementation, compares the filtering perfor-
mances of different techniques, and finally presents the results from both the learning
and tracking point of view.

5.4.1 Implementation Details

Images from the pilot-scale experimental setup were obtained using D-Link DCS-
8525LH camera at 15 frames per second (FPS). From the 15 FPS footage, a repre-
sentative image for each second was obtained. Hence, 80 images from 80 consecutive
seconds were obtained with necessary down-sampling [270]. These images were then
paired with their corresponding pressure sensor readings.

Off-line training was performed after creating a continuous trajectory of the inter-
face level by manually ordering 80 unique images with their corresponding pressure
sensor readings. This trajectory was then repeatedly shown to the agent following
an approach as proposed in [270]. At any time, the agent observed only the pixels
within the cropping box. More details about the dynamic environment can be found
in [270].

The detailed proposed algorithm is shown in Algorithm 5.1. As shown in the
algorithm, first of all, the vanilla A3C algorithm [73] utilizes N -local networks and a
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Algorithm 5.1 Interface Tracking Under Uncertainty by using the A3C algorithm
1. Input: αa, αc, γ, Tmax
2. Global network parameter vectors ωG and θG, and global shared time-step
T ← 0

3. Worker-specific parameter vectors ωL and θL, and worker time-step t← 1

4. Randomly initialize ωG and θG

5. Instantiate N cropping boxes that are located at cLt
6. Repeat until T > Tmax

• Reset gradients dω ← 0, dθ ← 0

• Sync. workers’ parameters θL = θG, ωL = ωG

• tstart = t

• Receive an image It, observe xt = Crop(It, c
L
t )

• Repeat Until t− tstart = tmax

(a) Sample an action from the policy ut ∼ π(ut|xt, θL)
(b) Move the cropping box to cLt+1 = cLt + ut

(c) Receive It+1, observe xt+1 = Crop(It+1, c
L
t+1)

(d) Calculate noisy r̃t+1 = −|D̃P t+1 − cLt+1|
(e) Filter the noisy reward, r̂t+1 = PFL(r̃t+1)

(f) Update t← t+ 1, and T ← T + 1

• V ′ =

{
0, if t− tstart = tmax

V (xt|ωL), otherwise, bootstrap from last state
• For j = t− 1 to tstart

– Calculate, δ ← r̂j + γV ′ − V (xj|ωL)
– Accumulate gradients wrt. θL : θ ← dθ +∇θL log π(uj |xj , θL)δ
– Accumulate gradients wrt. ωL : dω ← dω +∇ωL(δ2)

• Asynchronously update: θG ← θG+ αa dθ, and ωG ← ωG+ αcdω

7. Output: π
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global network, denoted as the superscripts L and G in Algorithm 5.1, respectively.
These local networks interact with the video starting at different points and promote
data diversity. Given this, the proposed scheme can be used with multiple workers. In
this article, four local networks can result in rapid convergence, while not increasing
the computational complexity drastically. During the test phase, a single worker is
used as there is only one environment available.

Then, the Crop(I, c) function takes in an image It and crops it at a scalar position
ct. The output matrix, xt, has a smaller size compared to It. The cropping operation
removes the redundant pixels naturally and reduces the computational burden signif-
icantly. Although a single image could be used during learning, the agent receives a
new image after each action in testing or application. Therefore, the agent learns the
dynamic features of the separation process (e.g., the movement of the liquid, small
variations in lighting, and sensory noise in the image), and generalizes it.

Furthermore, the filtering step in Algorithm 5.1 is a constrained one due to the
non-positiveness of the reward, which is achieved through a particle filtering based on
the dynamic model (5.16)-(5.18). The recursive steps of the PF method are shown
in Algorithm 5.2. There are various PF methods available in the literature that vary
depending on their resampling schemes (i.e., steps 5 and 12 in Algorithm 5.2.) [292].
For example, the systematic re-sampling scheme is one of the computationally efficient
methods, and the residual sampling has been reported to reduce the variance due to
re-sampling [283]. In this study, a sequential importance resampling (SIR) particle
filter with Np = 500 particles is used, for which the multinomial re-sampling scheme
[31] yields a lower mean squared prediction error compared to the other schemes.
Note that this step does not change the proposed method conceptually, and hence,
a different type of re-sampling scheme may also be used. Moreover, the particle
weights can be updated autoregressively as shown in [292]. σe = 0.016 and σν = 0.008

in the algorithm correspond to the noise variance in the reward transition and the
observation, respectively. These values result in the lowest MSE value empirically
but may depend on the system dynamics.

Note that although this work focuses on estimating a scalar reward, the pro-
posed method can be used for estimating higher dimensional rewards (as in [293]).
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In this case, computational burden and the accuracy should be considered. Either
less complex resampling techniques can be chosen or filtering can be parallelized
on central/graphics/tensor processing units o reduce the computational time [294].
Regularization techniques like roughening or prior editing can be used to improve
accuracy [31].

Since the proposed scheme involves both filtering, learning, and tracking, the
corresponding results are shown separately in the following sections. Section 5.4.2
compares the proposed filter with the average filter [290] and the vanilla Kalman [277]
filter.

Algorithm 5.2 Particle filtering with Multinomial Resampling, rt̂ = PF (rt̃)

1. input rt̃
2. if t==1 then Sample Np-particles from a truncated normal distribution,
P
Np×1
1 ∼ TN(r̃1, σe,−∞, 0)

3. else
• Observe r̃t
• Predict: PNp×1

t ∼ TN(Pt−1, σe,−∞, 0)

• Calculate the weight vector, αNp×1 =
ϕ
(

r̃T−PT
σν

)
σνΦ(−r̃T

σν
)

• Normalize the weights, α = α
max(α)

• Re-sample, Pt = Resample(Pt, α)
4. end if
5. Calculate the sample mean of the particles, r̂t = P̄ t

6. Output: r̂t

5.4.2 Results: Particle Filtering

The initial step in the proposed scheme is to apply the particle filter. As mentioned in
the previous sections, this filter takes the constraints as well as the skewed distribution
into account in both the reward transition and the observation uncertainties. To
demonstrate the effectiveness of the proposed scheme, a set of noisy observations are
also filtered by using the average filter (AVG) [290], the vanilla Kalman filter [31] and
the truncated Kalman filter (TKF) [279].
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TN(rt+1|rt)

TN(rt |rt)

PF

rt

rt

TN(r16|r15) TN(r26|r26)

Figure 5.5: Proof of the “constrained filtering” concept. The blue dots are the noisy
observations, r̃, the black curve is the true reward, r, the green line is the estimation
of the PF. The horizontal line at r = 0 represents the constraint. (a) Schematic of the
proposed method. The blue PDF represents the reward transition, and the green one
is for the observation. Note that at any time step both the reward and the observation
functions are constrained to zero. (b) Comparison of an average (AVG, the brown
dots), the Kalman [31] (KF, the red dashed line), a truncated Kalman (TKF, the
orange dash-dotted line) [279], and the proposed particle filter (PF, the green line),
with MSE values of 0.0067, 0.0064, 0.0011 and 0.0006 respectively. Note the overall
performance of the PF is better than the other algorithms. To demonstrate the
effectiveness of the constrained filtering, some adversarial disturbance points (outliers)
are introduced between t = [130, 140]. Note that when the observations are positive,
the Kalman and the avg. filters make unconstrained estimations, whereas the TKF
and PF estimations are bounded to zero. Moreover, TKF makes biased estimations
since it truncates the distribution after estimation, whereas the PF truncation is
considered during the estimation.
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In the original implementation, the average filter utilizes the value function in
the prediction step. In this comparison, its simplified version is used by ignoring the
effect of the value function. The average filter is defined in equation (5.22).

r̂t+2 = r̂t+1 + β(r̃t+1 − r̂t+1) (5.22)

where β is a fixed weight and r̂1 = r̃1. In the example of this article, β = 0.1 yielded
the lowest MSE.

During the comparison, in addition to the constrained observation noise, 10 pos-
itive adversarial observations or outliers are introduced at t = [130, 140]. As shown
in Fig. 5.5-b, both the average filter and the Kalman filter violate the constraint,
whereas the TKF and PF with truncated normal distributions avoid the constraint
violation. In addition, TKF results in biased estimates because it truncates the esti-
mation after the update step, which is not optimal. On the other hand, the proposed
PF estimates the reward more accurately since it takes the constraints into account
during both the prediction and the update steps as shown in equations (5.19) and
(5.20). Note that the particles within the “adversarial attack” or outlier region have
zero weights for the PF. The MSE values up to t = 125 for the AVG, KF, TKF and
PF are 0.011, 0.012, 0.010, and 0.005, respectively. This indicates that the proposed
method outperforms the abovementioned methods in terms of accuracy. Hence, it
will be adopted in the following experiments.

5.4.3 Results: Learning with PF

One of the main challenges in deep RL is that the noise may deteriorate the policy
performance [275]. Several heuristic schemes have been proposed to mitigate this
problem [76,295]. However, the error introduced by the noise in the reward is naturally
skewed and should be constrained in control problems. Moreover, the numerical issues
related to the noise may also reduce the sample efficiency or even stop the learning
completely. By considering these, the benefit of the proposed scheme is investigated
from various perspectives.

Consider three policies, π1-π3, trained on the same visual but with different reward
data. That is, π1 was trained without any noise. π2 was subject to two Gaussian noises
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N (0, 0.01) and N (0, 0.05) in the reward transition and the observation, respectively.
While training π3, the same noises as π2 are used while the PF is used as a filter to
reduce the noise effect.
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Figure 5.6: Performances of three policies during training. (a) Episodic return (equa-
tion (5.1)) is a common performance metric. In the ideal case, it should converge to
zero, however, the maximum value is -5 in this problem due to the initial position of
the cropping box. As shown in the figure, the noise corrupts π2 initially and delays
the learning of a good policy significantly. It also has a lower asymptotic return
compared to the other policies. On the other hand, π3 results in a closer asymptotic
performance to π1 due to the PF. (b) The A3C agent tries to minimize the TD-error
by optimizing the critic loss shown in equation (5.8). The figure shows that π1 and π3
can minimize the value loss quickly, however, the noise in π2 causes huge value losses,
especially between episodes 1000 and 2000. (c) Since the policy is also optimized by
using the TD-error, its loss should be stable to avoid numerical issues. π1 and π3
demonstrate similar performances in terms of the policy loss as expected. However,
the excessive noise causes π2 to become unstable between episodes 1000 and 3000.
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As shown in Fig. 5.6, the noise deteriorates the learning performance significantly.
It causes the agent to converge to an optimal policy notably later, increases the
value loss remarkably, and makes the policy loss function unstable. On the other
hand, the proposed PF approach reduces the variation originating from the DP sensor
measurements and yields a better overall performance during the training.

5.4.4 Results: Interface Tracking

The ultimate goal of this study is to track the interface by using an RL agent. This
section tests the agent’s performance during the testing phase without further train-
ing.

During the test phase, the agent was subject to a discontinuous interface trajectory
that consisted of previously unseen images. At this testing/application phase, the
agent utilized only the image frames without relying on the DP sensor measurements.
The agent was also subject to excessive noise and occlusion (whose magnitude is
denoted as ρ) to make the tracking task more challenging. The experiment follows
the same procedure as that of [270].

Fig. 5.7 shows that the policy trained in the presence of sensory noise (i.e.,
π2) tracks the interface successfully when the occlusion magnitude is below 30%.
However, its inconsistent actions result in biased tracking afterwards. On the other
hand, π1 and π3 track the interface more accurately up to an occlusion magnitude
of 60%. π3 demonstrates a slightly better performance at 60% occlusion, while the
overall performance of π1 is the best within the three policies in terms of the mean
absolute error. However, policy π1 is trained in the absence of any noise, which is not
realistic. As a result, policy π3 as proposed in this chapter demonstrates its superior
and practical performance.

5.5 Conclusion

Even though data-driven techniques are becoming popular in industries, many RL
schemes consider noise-free signals during training. However, noise is inherent in real
processes, and its properties depend on the type of system of interest. Such challenges
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Figure 5.7: The tracking performance of the agent by using the three policies on
a discontinuous trajectory. The black line represents the actual position of the in-
terface, the coloured lines represent the center of the cropping box by using the
corresponding policies. ρ = 0.5 indicates that 50% of the box is visually blocked
between t = [400, 500]. Note that when the amount of occlusion is low, both policies
perform similarly. However, when the amount of occlusion increases, π2 starts be-
having inconsistently and yields a biased tracking performance. On the other hand,
π1 and π3 track the interface closely, and result in lower MAE values.
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require robust solutions as represented in this work.
This study has focused on one of the common rewards in control systems, namely

the L1-norm. The behaviour of this type of reward in the presence of noise was
explained.

An estimation scheme for constrained states and observations was developed by
using a particle filter. Furthermore, the proposed scheme was successfully integrated
with a multi-worker RL agent by using noisy sensory data. The impacts of noise on
the RL agent have been qualitatively and quantitatively studied, by evaluating the
training and test performances through a pilot-scale experiment. Despite the studied
reward being L1-norm, the proposed scheme can be extended to other norms.
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Chapter 6

Skew Filtering for Online State
Estimation and Control ∗

This chapter proposes a skew filtering scheme for online state estimation and control.
Process optimization and control can become challenging when the measurements
are affected by irregular noise. Classical approaches utilize Gaussian methods like
Kalman filtering to alleviate the sensory noise. However, many industries involve
skewed noise in their processes. While the closed skew-normal (CSN) distribution gen-
eralizes a Gaussian distribution with additional parameters, its dimension increases
during recursive estimation, making it impractical. Even though there exist some
techniques for the solution, they are typically either too complicated or inaccurate
for higher-dimensional problems. This study proposes a novel online optimization
scheme to reduce the dimensionality of a CSN distribution while considering the
properties of the complete empirical distribution. Since the objective function used
during the optimization step considers the geometry of the metric space, the proposed
scheme achieves higher accuracy without sacrificing computational efficiency. After
finding the reliable combination of objective function and optimizer, the proposed
filter is applied to two real-time pilot-scale experiments. The results indicate that it
is beneficial for recursive state estimation in the presence of skewed noise.

∗This chapter has been submitted to IEEE Transactions on Industrial Informatics as O. Dogru,
R. Chiplunkar and B. Huang, ”Skew Filtering for Online State Estimation and Control”.
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6.1 Introduction

Industrial processes require safe, economically feasible operation while providing op-
timal production. To satisfy such requirements, sensory measurements are utilized in
monitoring and control applications. However, these measurements are often affected
by physical limitations that reduce the measurement quality. Various techniques have
been developed to quantify and mitigate the noise such that the operational require-
ments are met efficiently and effectively. A common assumption in such techniques is
that the state of interest and the sensory measurements exhibit Gaussian properties.

In the presence of Gaussian noise in both state and measurements, one can obtain
an optimal estimation by using a Bayesian filter, or particularly a Kalman filter [296].
Because the Kalman filter consists of simple linear operations, the algorithm can be
applied in both online and offline settings, which is favourable in various applications.
Although assuming Gaussian behaviour provides effective solutions while estimating
the variables of interest, the noise affecting state and measurements may not be
completely Gaussian. In this case, more complex filters with additional assumptions
and modifications may be needed.

This study focuses on a type of continuous probability distributions, where a
Gaussian distribution is generalized with non-zero skewness. This property can be
found in variables that range from truncated Gaussian to normal distributions. Some
examples of variables with such properties can be found in the domains of actuarial sci-
ence [297], aerospace engineering [298], biology [299], chemical engineering [300,301],
climatology [302], communication/electronics [32], defence [303], earth sciences [304],
economics/finance [305], forestry/remote sensing [306], mathematics [307], process
systems and control [14, 308], and statistics [309]. In the presence of noisy measure-
ments, Bayesian estimation with distributions like skew-t [310] or Weibull can provide
optimal estimations for these variables. Despite that these distributions can explain
the skewness of the variables, they may not be sufficient to recover the actual dis-
tribution due to their low degree of freedom, or they may not have a closed-form
solution in the estimation scheme, which increases the complexity and computational
burden [311].
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On contrary, a CSN distribution is a function with five parameters that generalizes
the normal distribution. This generalization accounts for nonzero skewness as well
as different location and scale information that can further adjust the shape of the
distribution [312]. The CSN distribution is closed under the linear transformation of
CSN variables, marginalization, and Bayesian inversion [313]. These properties are
vital in developing recursive filtering schemes for linear dynamic systems characterized
by skewed noises. [298] provides an overview of the filtering schemes for linear systems
with CSN noise. Additionally, several methods such as ensemble filter [298], unscented
Kalman filter [307], etc. have been developed for nonlinear systems with CSN noise.
Although a CSN filter can provide effective estimations given the noisy observations,
it suffers from increasing dimensionality during recursive Bayesian estimation that
makes the filter impractical for online implementations. Despite several approaches
that have been proposed to solve the dimensionality problem, they either introduce
the skewness indirectly in the initial state [314] or consider partial information about
the distribution of interest [300], which may yield suboptimal estimates.

This chapter, on the other hand, proposes a numerical optimization technique to
overcome the increasing dimensionality problem without loss of generality. Since the
proposed technique takes the entire CSN distribution into account at every time step,
it provides optimal approximations to the actual high-dimensional distribution. In
addition to online state estimation, the filter can also be used to develop advanced
controllers such as reinforcement learning (RL) agents or model predictive controllers
(MPC). The contributions of this study are as follows:

• Developing a dimensionality reduction technique for online skew state estima-
tion,

• Theoretically and empirically comparing different objective functions and opti-
mization tools for the proposed method,

• Utilizing the proposed filtering scheme in online RL and MPC applications,

• Quantitatively analyzing the proposed scheme by considering both filtering and
control through two pilot-scale experiments.
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In addition to these contributions, detailed background information is provided in
Section 6.2, the proposed method is described in Section 6.3, the results are discussed
in Section 6.4, and the concluding remarks are presented in Section 6.5.

6.2 Background

A process can be controlled by using different techniques such as learning-based or
model-based controllers if the state of interest is available at all time steps. Since
the practical control or monitoring schemes rely on noisy measurements, an accurate
state estimation scheme is required to achieve satisfactory control performance. This
study develops an optimal state estimator in the presence of skew measurement noise
and applies it to real time state estimation and control problems.

6.2.1 Kalman Filtering (KF)

Physical processes may be represented by a discrete-time state-space model as shown
in Eqns. (6.1) and (6.2).

xt+1 = Atxt +Btut + Etϵt (6.1)

yt = Ctxt +Dtut + Ftψt (6.2)

where xt ∈ Rn, ut ∈ Rq, yt ∈ Rp are the state, action, measurement respectively.
t, ϵt and ψt, respectively, represent the discrete time step, state, and measurement
noises. At, Bt, Ct, Dt, Et, and Ft adjust the contribution of each element to the
state/measurement and can be determined by using a proper system identification
method [29].

In practice, the true value of the state of interest, xt, may be unknown. Based
on Bayes’ theorem, KF can be used to calculate the estimated state, x̂t, optimally in
the presence of Gaussian state and measurement noise. The filter, at each time step,
estimates a mean and covariance for the state of interest given the noisy measurement.
Note that if Ct = 1 and Dt = 0, then estimating ŷt is equivalent to estimating x̂t.
After simplifying the state space model as Dt = 0 and Et = Ft = 1, the Kalman filter
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can be derived as follows [31]:

x̂−t = At−1x̂
+
t−1 +Bt−1ut−1 (6.3)

P−
t = At−1P

+
t−1A

T
t−1 + Σϵ,t−1 (6.4)

Kt = P−
t C

T
t (CtP

−
t C

T
t + Σψ,t)

−1 (6.5)

x̂+t = x̂−t +Kt(yt − Ctx̂−t ) (6.6)

P+
t = (I −KtCt)P

−
t (6.7)

where (·)− and (·)+ represent a priori and a posteriori estimates respectively. Kt is the
Kalman gain, and Σϵ,t and Σψ,t are the known state and measurement covariances.

6.2.2 Closed-Skew Normal (CSN) Distribution

The multivariate CSN generalizes the Gaussian distribution by introducing skewness
into Gaussian models and was introduced in [312]. Consider two random vectors,
τ ∈ Rn2 and ξ ∈ Rq2 . Joint probability density function (PDF) of τ and ξ can be
written as:

[
τ
ξ

]
∼ Nn2+q2

([
µτ
µξ

]
,

[
Στ Γτξ
Γξτ Σξ

])
(6.8)

where µτ and µξ are location vectors, and Στ ,Γξτ and Σξ are covariance matrices.
Then, the CSN variable, x, can be defined as x = [τ |ξ ≥ 0] with a distribution
function given in Eqn. (6.9).

x ∼ p(x) = p(τ |ξ ≥ 0) =
p(ξ ≥ 0|τ)p(τ)

p(ξ ≥ 0)

= [1− Φ(0;µξ,Σξ)]
−1[1− Φ(0;µξ|τ ,Σξ|τ )]ϕ(τ ;µτ ,Στ ) (6.9)

where Φ and ϕ are the cumulative distribution function (CDF) and PDF of an n2

dimensional Gaussian, respectively. A multivariate CSN can be parameterized as
shown in Eqn. (6.10).

CSNn2,q2(µ,Σ,Γ, ν,∆)

= [Φq2(0; ν,∆+ ΓΣΓT )]−1Φq2(Γ(x− µ); ν,∆)ϕn2(x;µ,Σ) (6.10)

where Γ is the skewness, µ and ν are the location, and Σ and ∆ are the scale param-
eters, respectively. It can be noted that setting Γ = 0 reduces the CSN distribution
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to a Gaussian distribution and hence, CSN distribution generalizes the Gaussian dis-
tribution.

6.2.3 Online Control Examples: Model Predictive Control
(MPC) and Reinforcement Learning (RL)

After estimating the state of interest in the process, a controller can be used to better
achieve the desired performance. For example, an MPC [315–317] is a model-based
advanced controller that finds the optimal controller action given a state. This state
is fed into a model that predicts the future behaviour of the system. An optimizer
(often quadratic), then finds the best controller actions that would yield the optimal
performance. Although the sense of optimality depends on the market and can vary
significantly, a common optimality measure can be formulated as shown in Eqn.
(6.11).

QCFt = ||xt − xt,sp||2Qt
+ ||ut − ut,ref ||2Rt

(6.11)

where QCF is a quadratic cost function that is to be minimized at every discrete time
step. xt,sp is a setpoint that is defined by a user or a production planning program.
ut,ref is a nominal/reference control action, which can also be zero or take the previous
action, depending on the controller design. Qt ∈ Rp×p and Rt ∈ Rq×q adjust the
importance of the state and action in QCF. QCF aims to find a balance between the
state (often a product) quality and the controller effort (related to the energy spend).
Although this formulation works when states are directly measured, xt may not be
available in practice. Instead, ŷt = Ctx̂t is inferred from noisy measurements and
utilized in the control task. The resulting optimization problem can be defined as:

J(ut) =

NP∑
k=1

||ŷt+k − yt+k,sp||2Qk
+

NC−1∑
k=0

||ût+k − ut+k,ref ||2Rk

s.t. Eqns. (8.1), (8.2)

umin ≤ ut ≤ umax, ∀t (6.12)

where J is the cost function, k is a discrete time step, ysp is the setpoint for the
observations, NP and NC are the prediction and control horizons, and umin and umax
represent the input constraints respectively. The receding horizon strategy calculates
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a sequence of ut = {u(0), u(1), ..., u(NC − 1)} (which is the solution to the open-loop
optimization problem) and implements the first control action, ut = u(0) ∈ ut, in the
plant as represented in Eqn. (6.13).

ut = argmin
ut

J(ut) (6.13)

An advantage of using an MPC is that it can handle various constraints. However,
the resulting optimization problem cannot be solved analytically in the presence of
constraints, and thus, numerical methods are needed.

RL-based controllers provide alternative solutions to MPC either relying or with-
out relying on models to control the process [40, 318–322]. In the model-free setting,
an agent interacts with the process by taking the best actions given the current states.
Unlike MPC, the agent constitutes a policy, π(ut|xt), which is learned through inter-
action with the process. During this interaction, a reward signal, rt ∈ R, is obtained
by using sensors, and the agent’s goal is to maximize the reward over time by min-
imizing the temporal difference (TD) error. Table 6.1 presents the TD-error in the
most commonly used RL algorithms.

Table 6.1: TD-error in the most commonly used RL algorithms.

Algorithm TD-error
DDPG [74] rt + γQ(xt+1, π(xt+1)|Ξ′)−Q(xt, ut|Ξ)

A2C/A3C [73]
∑k−1

i=0 γ
irt+i + γkV (xt+k|Ξ′)− V (xt|Ξ)

TD3 [76] rt + γmini=1,2 γQΞ′
i
(xt+1, ut|Ξ′

i)−Q(xt, ut|Ξi=1,2)

where Ξ represents the approximated function parameters to be trained. V and Q are
the value estimations for the state and the state-action pair, respectively. γ ∈ [0, 1)

is a discount factor that adjusts the contribution of the value and reward functions.
Because the state, action, and reward information is utilized in TD-error without
any system models, the performance of the agent heavily depends on the accuracy
of the sensor that inevitably degrades due to noise, as has been discussed in [323].
This study demonstrates the benefits of the proposed method by using a reward
(state) trajectory obtained from an asynchronous advantage actor-critic (A3C) agent.
However, the proposed method can be used in any online RL algorithm that involves
noisy state or reward measurements in real-time.
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Regardless the type of controller, accurate sensory information is required to ef-
fectively control the system. There is extensive literature about KF, MPC and KF.
Since this study focuses on improving the filtering scheme in the presence of skew
noise, the details are skipped. More information about KF, MPC and RL can be
found in [289, 324–326].

6.3 Optimal Dimensionality Reduction for Online
Implementation

Similar to the Kalman filter, CSN parameters can be calculated recursively [298].
Assume ϵt ∼ N (ϵt; 0,Σϵ) and ψt ∼ CSN(ψt;µψ,Σψ,Γψ, νψ,∆ψ). For the sake of
simplicity in notation, assume that the statistical properties of ϵ and ψ do not vary
over time. The prediction step for the corresponding CSN filter can be derived as
shown in Eqn. (6.14) [298].

x̂−t = At−1x̂
+
t−1 +Bt−1ut−1

P−
t = At−1P

+
t−1A

T
t−1 + Σϵ

Γ−
t = Γ+

t−1ωt

ν−t = ν+t−1

∆−
t = ∆+

t−1 + Γ+
t−1(I − ωtAt−1)P

+
t−1Γ

+T
t−1

with ωt = P+
t−1A

T
t−1(At−1P

+
t−1A

T
t−1 + Σϵ)

−1 (6.14)

Furthermore, the update step can be derived as follows [298]:

x̂+t = x̂−t +Kt(yt − Ctx̂−t − µψ)

P+
t = (I −KtCt)P

−
t

Γ+
t =

[
Γ−
t

−ΓψCt

]
ν+t =

[
ν−t − Γ−

t (x̂
+
t − x̂−t )

νψ − Γψ(yt − Ctx̂−t − µψ)

]
∆+
t =

[
∆−
t 0
0 ∆ψ

]
(6.15)
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In addition, the expected mean of the state of interest can be calculated as [327]:

E[xt|xt ∼ CSN(xt; x̂+t , P+
t ,Γ

+
t , ν

+
t ,∆

+
t )]

= x̂+t + P+
t Γ

+T
t

ϕ(0; ν+t ,∆
+
t + Γ+

t P
+
t Γ

+T
t )

Φ(0; ν+t ,∆
+
t + Γ+

t P
+
t Γ

+T
t )

(6.16)

Note that the dimension of the parameters that introduce skewness is increased
by one at the end of each update step. This complicates the solution because one
cannot derive Eqn. (6.16) analytically when the dimension continuously increases
(when q2 > 1). In addition, this inevitable increase causes memory issues that make
the skew filter impractical for online implementation.

This study proposes a numerical optimization solution to the dimensionality in-
crease problem by approximating the two-dimensional (2-D) CSN distribution,
CSNn2,2(x;µ,Σ,Γ, ν,∆), at the end of each update step. Consider a 1-D CSN,
CSNn2,1(x; Θ) where Θ = {θ1, θ2, θ3, θ4, θ5} represents its unknown parameters. The
goal is to find the best parameters, Θ∗ = {θ∗1, θ∗2, θ∗3, θ∗4, θ∗5} , such that the differ-
ence between the two CSN distributions is minimized. Since n2 is constant during
optimization, it is ignored for the sake of simplicity in notation. A simple solu-
tion to this problem is to minimize the difference between Φ1(θ3(x − θ1); θ4, θ5) and
Φ2(Γ(x−µ); ν,∆) (the CDF components of the 1-D and 2-D CSNs) since the dimen-
sionality increase is observed in the CDF. However, this solution may miss the useful
information that ϕ(x;µ,Σ) contains.

This study presents an alternative and effective solution where Θ is calculated
by considering the five parameters in the distributions. Different distance/divergence
indicators such as the Kullback-Leibler (KL), Jensen-Shannon (JS) divergence, total
variation distance (TVD), Hellinger distance, density norms etc. can be used to
approximate the high-dimensional CSN. However, these indicators do not consider the
underlying space geometry and may yield nonsymmetric, discontinuous, or inaccurate
results due to their properties, as shown in [328]. They can reduce the reliability of
the filter or can make it diverge during the estimation.

Based on transport theory, the Wasserstein distance (WD) [329] calculates the
deviation between two distribution functions while addressing the above-mentioned
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issues, and it can be derived as shown in Eqn. (6.17).

dW(CSN1,CSN2) =

[∫ 1

0

|F−1
1 (z1|·)− F−1

2 (z1|·)|ζ dz1
]1/ζ

=

[∫ ∞

−∞
|F1(z2|·)− F2(z2|·)|ζ dz2

]1/ζ
(6.17)

where ζ is the order of the WD, F−1
1 (·) and F−1

2 (·) are the quantiles, and F1(·) and
F2(·) represent the CDFs of CSN1(·) and CSN2(·) respectively as shown in Eqn. (6.18).
For notational simplicity, the function parameters are ommitted in Eqn. (6.17).

F1(x; Θ) =

∫ ∞

−∞
CSN1(x; Θ, z3)dz3

F2(x;µ,Σ,Γ, ν,∆) =

∫ ∞

−∞
CSN2(x;µ,Σ,Γ, ν,∆, z4)dz4. (6.18)

Note that CSN1 and CSN2 are assumed to be in the Wasserstein space, W , which
makes the WD more effective than the Euclidean distances like the norm functions.
Although the WD can be used for any distribution function, the term “CSN” is
and will be used for simplicity and demonstration purposes. By definition, the WD
satisfies the following useful metric properties:

d(CSN1,CSN2) = 0 ⇐⇒ CSN1 = CSN2 (6.19)

d(CSN1,CSN2) = d(CSN2,CSN1) (6.20)

d(CSN1,CSN2) ≤ d(CSN1,CSN3) + d(CSN3,CSN2) (6.21)

By using ζ = 1 for simplicity and the considering equal integration step, dz, the
optimization function can be formed as shown in Eqn. (6.22).

min
Θ
d(Θ) = min

Θ

[∫ ∞

−∞
|F1(z|Θ)− F2(z|·)| dz

]
(6.22)

Moreover, the optimization function and the properties would be valid in the presence
of discrete random variables. Depending on the design criteria, constraints can be
implemented on Θ, which will not be considered in this study.

The nonlinear optimization problem shown in Eqn. (6.22) can be solved opti-
mally by using numerous optimization techniques including sample or gradient-based
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methods. This study utilizes the sequential quadratic programming (SQP) [330] ap-
proach due to its simplicity and generality. For example, in the presence of prior
knowledge about Θ, constrained optimization can be applied to find Θ∗ by using
SQP. We will also compare it with several optimization techniques such as particle
swarm (PS) [331], conjugate gradient (CG) [332], Nelder-Mead [333], BFGS [334],
L-BFGS-B [335], COBYLA [336], and trust region [337] algorithms empirically.

The state estimation algorithm with skew dimensionality reduction is given in
Algorithm 6.1.

Algorithm 6.1 Online State Estimation with Skew Dimensionality Reduction by
Using the SQP Algorithm

1. Input Σϵ,t, µψt ,Σψt ,Γψ,t, νψ,t,∆ψ,t, At, Bt, Ct, ut−1, yt.

2. Initialize x+0 = E[x0], P+
0 = E[(x0 − x+0 )(x0 − x+0 )T ], Θ0 = Θinit

3. For each t
• Observe a skew measurement, yt = system(ut−1)

• Predict the variables of interest using Eqn. (6.14)
• Update the variables of interest using Eqn. (6.15)
• Obtain Θt = SQP(x̂+t , P+

t ,Γ
+
t , ν

+
t ,∆

+
t ,Θt−1) according to Eqn. (6.22)

• Calculate the mean using Eqn. (6.16)
4. Output E[CSN(x+t ; Θt)]

Note that the SQP algorithm requires an initial set of parameters, Θinit, that can
be tuned based on process knowledge or via a Monte Carlo simulator on a system
model. After the initialization step, the proposed algorithm uses the previous param-
eter set, Θt−1, to calculate the current parameter set, Θt, in order to reduce computa-
tional complexity. In the case of sample-based optimizers, Θinit is not required, and
Θt−1 does not need to be used in Step 6 of Algorithm 1; however, the sample-based
optimizers may require additional exploration/exploitation hyperparameters.

Due to its computational efficiency, this simple yet effective algorithm can also
be used in real-time controllers. In the following sections, an MPC (whose details
are given in Algorithm 6.2) will be utilized in a pilot-scale experiment. Due to its
simplicity and computational efficiency, the MPC optimizer will be SQP, too. Note
that the type of the optimizers does not affect the fundamental concepts explained
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previously. Therefore, the optimizers can be substituted by other optimization al-
gorithms depending on the accuracy, computational efficiency, etc. that may differ
based on the process of interest.

Algorithm 6.2 Online MPC with Skew Dimensionality Reduction by Using the SQP
Algorithm

1. Input xt,sp, Q,R, umin, umax, NP , NC ,Algorithm 6.1

2. For each t

• Observe a skew measurement, yt
• Predict the state, E[CSN(x̂+t ; Θ)] = Algorithm 6.1(·) (proposed solution)

3. Obtain NC-inputs, u = SQP(Q,R,E[CSN(·)], umin, umax, xt,sp)

4. Pick the first input, ut = u(0)

5. Implement the input in the system to the noisy measurement yt+1 = System(ut)

Note that the optimizer in Algorithm 6.2 requires a system model, which is equiv-
alent to the model used in Algorithm 6.1 and is not mentioned explicitly for the sake
of simplicity. Details of the SQP algorithm can be found in [330].

Algorithm 6.3 Online RL Reward Filtering with Skew Dimensionality Reduction
by Using the SQP Algorithm

1. Input RL agent,Algorithm 6.1

2. For each t

• Observe a situation, st
• Take an action, ut = Agent(st)
• Receive a skew reward and the next situation yt, st+1 = System(ut)

• Predict the reward (proposed solution), ŷ+t = E[CSN ] = Algorithm 6.1(·)
• If Update: Then, Update agent’s parameters (e.g., a neural network, Q-

table, etc.) by using ŷ+t .

Algorithm 6.3 represents a general data flow in RL agents and solution to reward
(considered to be the state) filtering by using the proposed method. In this example,
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an RL agent interacts with a system in real-time by observing a “situation”, st, taking
an action ut, and receiving a skew reward yt. Note that the situation corresponds to
the “state” in the RL literature, which is renamed for notational simplicity. Note that
we will showcase a reward filtering example shortly, which is essentially equivalent
to state filtering without loss of generality. Although the proposed method has been
tested by using an A3C agent, it can be used to remove the skew noise independent
of the type of agent.

6.4 Results and Discussion

The proposed method was tested on two pilot-scale experiments, which represent
industrial chemical processes. Implementation details, the experimental setup, and
the results obtained by using the proposed online skew filtering and control approaches
will be presented in this section.

Note that the CSN noise in this study will be assumed to be zero-mean as shown
in Eqn. (6.23). In the presence of biased noise, the filters may need to be improved
by incorporating a bias correction mechanism.

E[ψ] = µψ + ΣψΓ
T
ψ

ϕ(0; νψ,∆ψ + ΓψΣψΓ
T
ψ)

Φ(0; νψ,∆ψ + ΓψΣψΓTψ)
= 0, ∀t (6.23)

For comparison purposes, an online median and average filter ( [35]) will be used as
shown in Eqn. (6.24) and (6.25) respectively.

ŷ+med,t =
{
yt, if t < N

MED(yt−N , ..., yt−1, yt), otherwise
(6.24)

ŷ+avg,t = ŷ+avg,t−1 + β(yt − ŷ+avg,t−1) (6.25)

where MED is the median operator, N ≥ 3 is the window size, β is a fixed weight,
and ŷ+avg,0 = y0. As shown in Eqn. (6.26), the mean squared error (MSE) will be
utilized to measure the estimation and control quality.

MSE =
1

N

N∑
t=1

(xt − Yt)2 (6.26)

where Yt represents the predicted state, ŷt, for state estimation and setpoint, xt,sp,
for control. This study aims to minimize the prediction and control errors, MSEP
and MSEC respectively.
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Figure 6.1: Experimental, pilot-scale PSV setup. The black liquid (a water mixture)
represents the middlings, the white liquid (oil) mimics the froth layer in the industrial
setup.

6.4.1 Implementation Details

The estimator/controller computers have Intel Core i7-4790K CPU (4 CPU cores) at
4.00 GHz, 8 GB DDR4 RAM at 1600 MHz under 64-bit Windows 10 operating system.
The filtering and control algorithms were designed in Python v3.7 by using the steps
presented in Algorithms 6.1 and 6.2. An open source library, SciPy v1.5.4, was used
to design the optimization algorithms. During calculations, real-time communication
between the computers (estimator/controller) and experimental setup was established
using a socket connection to an Opto22 open platform communication (OPC) server.
Nonetheless, the generality of the proposed method does not depend on the type of
connectivity. More information about the experimental setup has been given in [338].

6.4.2 Application 1: Online Reward Estimation for the RL
Agent in a Primary Separation Vessel (PSV)

The primary separation vessel is a key component in the oil sands industry, where
an interface between two liquids is the target variable to be detected and tracked
accurately [326]. The tank is schematically shown in Fig. 6.1.

[323] developed a robust interface tracking algorithm, where an RL agent receives
a noisy nonlinear reward at each step. Since this reward is utilized for online learning
of the agent, it is crucial to reduce the noise effectively in real time.
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Without the loss of generality, consider the reward is the state of interest to be
estimated (i.e, rt = xt), which can be modelled by using Eqn. (6.27).

xt+1 = xt + ϵt

yt = xt + ψt (6.27)

where ϵt ∼ N (ϵt;µϵ,Σϵ) and ψt ∼ CSN(ψt;µψ,Σψ,Γψ, νψ,∆ψ). Because the RL agent
tries to maximize the reward, rt = xt ≤ 0 and yt ≤ 0 are often preferred to provide
feasibility in control applications [323,326,338]. Due to this property, when the noisy
reward magnitude is low, the resulting reward becomes a truncated variable [323].
Inspired from [32,298], we mimic an engineering problem where the sensory measure-
ments are contaminated with skew noise. Since the CSN distribution can generalize
the distributions ranging from truncated Gaussian to regular Gaussian, the synthet-
ically added observation noise, ψ, was chosen to follow a CSN distribution. The
proposed algorithm will be used to recover the hidden state (true reward) efficiently,
as will be discussed in the following paragraphs.

As one of the key components of this study, different distance measures are com-
pared under skew noise with (Γ = 10,Σ = 5), (Γ = 50,Σ = 4) and (Γ = 100,Σ = 20).
For optimization, the SQP algorithm was used at this step. As shown in Table 6.2,
the Wasserstein-1 distance consistently yielded the lowest MSE for these problems,
whereas some of the other functions resulted in either higher MSE or divergence. In
addition to this quantitative difference, note that WD’s theoretical properties provide
quantitative improvements as mentioned previously.

Then, different optimizers were compared in terms of their accuracy and compu-
tational speed while using WD as the objective function. As shown in Table 6.3, the
SQP algorithm yielded the lowest MSE and execution time compared to the other
optimization algorithms due to its simplicity. On the other hand, the other optimizers
either caused higher MSE or diverged. Note that some of these optimization schemes
were designed for constrained optimization, and thus, the results may differ when
there are constraints on Θ. Nevertheless, all tested methods yielded a solution of less
than a second for each execution, which showed that all of them could be used for
online estimation for systems that have a sampling time of five seconds. In addition,
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(a) Comparison of Different Optimization Methods

Observed data
Actual state
ps MSE:2375.6498
Nelder-Mead MSE:37.1763
CG MSE:70.2931

BFGS MSE:55.8369
L-BFGS-B MSE:1559.7816
COBYLA MSE:1738.9274
SLSQP MSE:1.2283
trust-constr MSE:801.0235
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Time/Step

(b) Comparison of Median, Average, Kalman and Skew Filters
Observed data
Actual state
Median,                            MSE = 3.3732
AVG,  = 0.3,                  MSE = 2.0242
KF,                                   MSE = 2.4823
CSN (proposed method), MSE = 1.2283

Figure 6.2: Comparison of different a) optimizers b) filters for online state estimation
under skew noise with (Γ = 10,Σ = 5). a) Note that all the algorithms except
the SQP algorithm diverged during estimation. The SQP algorithm yielded the best
performance. b) Median filter showed the worst performance, followed by the Kalman
filter. Note that the proposed method significantly outperformed the other methods
in terms of estimation accuracy.

Table 6.2: Comparison of different objective functions to minimize the difference
between CSN1 and CSN2(i.e., to be used as d in Eqn. (6.22)). Fwd, Rev, Symm-KL
represent the forward, reverse and symmetric KL divergence respectively. Note that
they are compared under different noise magnitudes with eleven different random
seeds, and the MSE is in px. † indicates that at least a trial diverged with a NaN
value.

Objective fcn. MSE for
Γ = 10,Σ = 5

MSE for
Γ = 50,Σ = 4

MSE for
Γ = 100,Σ = 20

χ2 [339] NaN NaN NaN
Bhattacharyya [340] 1.36E+04 ∓ 1.54E+04 1.51E+04† ∓ 3.10E+03 NaN

TVD [341] 2.46E+01 ∓ 4.06E+01 NaN 1.62E+02 ∓ 1.58E+01
Symm-KL [342] 6.79E+14† ∓ 1.92E+15 1.41E+01 ∓ 1.36E+00 4.94E+04† ∓ 1.27E+05
Fwd-KL [343] 4.74E+30 ∓ 1.50E+31 1.41E+01 ∓ 1.33E+00 6.40E+01 ∓ 6.82E+01
Rev-KL [343] 2.58E+04 ∓ 8.13E+04 7.30E+00 ∓ 1.20E+00 5.78E+16† ∓ 9.30E+16

JS [344] 3.06E+01 ∓ 1.63E+00 5.72E+00 ∓ 5.82E-01 4.07E+01 ∓ 7.66E+00
Hellinger [345] 2.72E+17† ∓ 8.15E+17 6.76E+00 ∓ 6.34E-01 8.58E+04 ∓ 2.52E+05

L2 [346] 2.95E+01 ∓ 5.42E+00 9.08E+02 ∓ 1.63E+03 5.73E+01 ∓ 9.21E+00
L1 [346] 1.92E+00 ∓ 3.73E-01 6.76E+00 ∓ 6.34E-01 7.14E+01 ∓ 1.04E+01

Energy [347] 3.16E+01 ∓ 4.34E+00 5.71E+00 ∓ 5.81E-01 1.94E+01 ∓ 4.24E+00
Wasserstein-1 (Best) 1.27E+00 ∓ 2.40E-01 8.57E-01 ∓ 1.69E-01 1.23E+01 ∓ 3.23E+00
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Table 6.3: Comparison of different optimization algorithms under different skew noises
for 100 data points. The results are averaged over eleven different random seeds, and
the MSE values are in px. † indicates that at least a trial diverged with a NaN value.

MSE for
Γ = 10,Σ = 5

MSE for
Γ = 50,Σ = 4

MSE for
Γ = 100,Σ = 20

Avg. Execution
Time/s

PS 1.99E+03† ∓ 8.84E+02 1.23E+03† ∓ 8.41E+02 2.33E+04† ∓ 8.59E+03 25.04 ∓ 2.45
COBYLA 1.31E+03 ∓ 6.75E+02 1.88E+02 ∓ 5.31E+01 7.37E+02 ∓ 6.31E+01 8.66 ∓ 2.95
BFGS 7.48E+01 ∓ 6.82E+01 5.75E+01† ∓ 9.62E+01 6.14E+01 ∓ 9.64E+00 8.69 ∓ 21.11

L-BFGS-B 5.10E+02 ∓ 6.76E+02 1.10E+01 ∓ 8.12E-01 9.14E+01 ∓ 1.14E+02 50.39 ∓ 42.85
Trust-region 6.90E+02 ∓ 2.71E+02 1.11E+01 ∓ 8.12E-01 3.66E+02 ∓ 2.40E+01 1.84 ∓ 0.16
Nelder-Mead 3.39E+01 ∓ 7.42E+00 5.91E+00 ∓ 5.88E-01 2.49E+01 ∓ 7.35E+00 32.25 ∓ 5.05

CG 1.12E+02 ∓ 1.41E+02 1.06E+01 ∓ 7.94E-01 3.50E+01 ∓ 7.07E+00 2.36 ∓ 1.92
SQP (Best) 1.27E+00 ∓ 2.40E-01 8.57E-01 ∓ 1.69E-01 1.23E+01 ∓ 3.23E+00 1.66 ∓ 0.13

Table 6.4: Comparison of the MSE ∓σ values (in px.) of the proposed CSN filter and
the existing filters under different noises obtained from eleven different random seeds.
Median-N represents an online median filter with a window size of N ≥ 3. AVG is a
moving average filter with β = 0.3, which yielded the lowest MSE value in β = [0, 1].

MSE for
Γ = 10,Σ = 5

MSE for
Γ = 50,Σ = 4

MSE for
Γ = 100,Σ = 20

Median-4 3.12E+00 ∓ 5.10E-01 2.05E+00 ∓ 3.43E-01 4.80E+01 ∓ 8.08E+00
Median-3 2.94E+00 ∓ 4.70E-01 1.90E+00 ∓ 3.04E-01 4.51E+01 ∓ 6.92E+00
AVG 1.80E+00 ∓ 3.42E-01 1.19E+00 ∓ 2.15E-01 2.57E+01 ∓ 4.42E+00
KF 2.05E+00 ∓ 3.44E-01 1.31E+00 ∓ 2.07E-01 2.42E+01 ∓ 4.14E+00
CSN

(Proposed method) 1.27E+00 ∓ 2.40E-01 8.57E-01 ∓ 1.69E-01 1.23E+01 ∓ 3.23E+00

the noise properties and skewness parameters could affect these results, which should
be considered during the design phase.

After observing that the SQP method yields the lowest error and the lowest com-
putational time, different filters were compared against the SQP-CSN filter under
different noise conditions. As shown in Table 6.4, the median (Eqn. (6.24)) filter
has higher error values than the other filters because it starts estimation after N ≥ 3

steps. When the skewness increases, the Kalman filter performs slightly better than
the average filter. Nevertheless, the median and average filters are not traditional
state estimation methods and do not consider the covariance information. On con-
trary, the skew filter yields the lowest error consistently because it is the most flexible
method within the compared methods.

Fig. 6.2 summarizes the experimental state estimation study, where the median
filter results in the largest MSE and the proposed method outperforms the other
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Figure 6.3: Piping and instrumentation diagram (P&ID) of the HTT system. In this
study, only left tank and the corresponding instruments (left pump, V1, V3 and V5,
LT1) are used for the sake of simplicity.

methods. Overall, the SQP algorithm combined with WD consistently yielded the
best solution in terms of computational time and accuracy under different noise con-
ditions for the real time RL application. Therefore, this combination will be used in
the MPC implementation in the following section.

6.4.3 Application 2: Online Level Control in the Hybrid
Three Tank (HTT) System via an MPC

The hybrid tank system consists of three identical cylindrical tanks, a storage tank,
two pumps, three pressure (level) sensors and nine valves, as shown in Fig. 6.3. The
goal of this system is to control the level of the liquid at the desired setpoints in Tanks
1 and 3. In this study, only the left tank will be used. Since the proposed filter and
the MPC are multivariate, the method can be extended to multiple tanks trivially.

Four different skew noises were synthetically introduced to the system with varying
skewness and scale parameters to mimic realistic filtering problems with asymmetric
noise [298, 299], Γψ ∈ {1, 2} and Σψ ∈ {5, 10}. The MPC employed the predicted
state values that resulted from the Kalman and the proposed skew filter.
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Table 6.5: Prediction and control errors (in cm) by using the Kalman filter and the
proposed filter. The standard deviation for ten experiments was found to be ∓0.03
cm.

Γ = 1
Σ = 5

Γ = 1
Σ = 10

Γ = 2
Σ = 5

Γ = 2
Σ = 10

KF+MPC MSEP 12.52∓0.03 29.78∓0.03 10.28∓0.03 22.37∓0.03
MSEC 13.95∓0.03 27.24∓0.03 12.25∓0.03 21.75∓0.03

CSN+MPC MSEP 12.35∓0.03 25.68∓0.03 10.02∓0.03 22.17∓0.03
(Proposed Method) MSEC 13.02 ∓0.03 26.27∓0.03 11.86∓0.03 20.51∓0.03

The results are presented numerically in Table 6.5. As the table shows, the pro-
posed method outperforms the Kalman filter in all the tested scenarios in both MSEP
and MSEC . This happens because the additional parameters provide flexibility to the
filter while the optimizers find the best CSN parameters and control actions. Because
the proposed method improves the prediction first, the control performance is also
improved since the MPC utilizes these improved predictions. Since the optimiza-
tion method is SQP, the process can be controlled online without any computational
overheads.

The experimental results showed that the proposed dimensionality reduction method
can yield accurate estimation when WD is combined with SQP while avoiding the
dimension increase problem. Due to the simplicity of the utilized approaches, the pro-
posed methodology provides practical solutions to real-time estimation and control
problems. Both experimental studies showed that the proposed method outperforms
existing filtering techniques, which highlights the effectiveness of the method.

6.5 Conclusion

Online controllers are required to enhance process safety and provide optimal pro-
duction. However, these controllers utilize noisy measurements that have been tradi-
tionally assumed to be Gaussian. Unlike this general assumption, various industrial
applications may involve skewed noises that can be represented by closed skew-normal
distributions, whose recursive estimations become challenging due to the dimensional-
ity increase. Although several attempts have been made to address this issue, optimal
online estimation is still an open challenge.
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Inspired from the optimal transport theory, this study developed an online di-
mensionality reduction technique while considering the entire empirical distribution.
In addition to proposing a novel methodology for online skew state estimation, this
work provided both theoretical and empirical insights about the proposed method.
After comparing different objective functions, it is found that a combination of WD
and SQP provides the best performance in both estimation and control. Finally, the
proposed scheme was implemented in two experimental setups for real-time RL and
MPC applications.

Overall, the proposed method can be beneficial for reducing the dimensionality of
multivariate CSN distribution for online applications. Furthermore, it can be utilized
in multivariate estimation and advanced control.
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Chapter 7

Reinforcement Learning Approach
to Autonomous PID Tuning ∗

This chapter proposes an autonomous methodology for PID tuning based on RL
theory. Many industrial processes utilize proportional-integral-derivative (PID) con-
trollers due to their practicality and often satisfactory performance. The proper
controller parameters depend highly on the operational conditions and process un-
certainties. This study combines the recent developments in computer sciences and
control theory to address the tuning problem. It formulates the PID tuning problem
as a reinforcement learning task with constraints. The proposed scheme identifies an
initial approximate step-response model and lets the agent learn dynamics off-line
from the model with minimal effort. After achieving a satisfactory training perfor-
mance on the model, the agent is fine-tuned on-line on the actual process to adapt
to the real dynamics, thereby minimizing the training time on the real process and
avoiding unnecessary wear, which can be beneficial for industrial applications. This
sample-efficient method is tested and demonstrated through a pilot-scale multi-modal
tank system. The performance of the method is verified through setpoint tracking
and disturbance regulatory experiments. At the end of this chapter, the contextual
bandit-based PID tuning methodology is extended to RL-based MPC tuning where

∗This chapter has been published as Dogru, O., Velswamy, K., Ibrahim, F., Wu, Y., Sun-
daramoorthy, A.S., Huang, B., Xu, S., Nixon, M. and Bell, N., 2022. Reinforcement learning
approach to autonomous PID tuning. Computers & Chemical Engineering, 161, p.107760., and a
portion of this chapter has been presented at the 2022 American Control Conference with a pub-
lication Dogru, O., Velswamy, K., Ibrahim, F., Wu, Y., Sundaramoorthy, A.S., Huang, B., Xu,
S., Nixon, M. and Bell, N., ”Reinforcement Learning Approach to Autonomous PID Tuning,” 2022
American Control Conference (ACC), 2022, pp. 2691-2696, doi: 10.23919/ACC53348.2022.9867687.
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an agent adjusts the weights of the objective function of an MPC. Later, the method-
ology is integrated into an autonomous automation system. The experimental results
will be shown in the following chapter for completeness.

7.1 Introduction

Modern industries rely on complex processes that need to be operated efficiently and
environmentally friendly. Advanced control schemes, such as model predictive con-
trollers, provide effective solutions to achieve such goals [348, 349]. However, model
identification for such schemes may be challenging due to ever-changing process con-
ditions, uncertainty and complexities. Although these controllers deliver satisfactory
performance, their operation also heavily depends on the PID control performance in
the lower layer of the control hierarchy, which can vary over time.

PID controllers [350] provide stable, robust and simple solutions to control prob-
lems. In their simple form, PID controllers have three parameters, which reduce
the design effort and hence, make them preferable over more complicated controllers.
Their simplistic nature makes them applicable to numerous real-world problems [351].
However, their parameters are process-specific and require careful and continuous
tuning.

Optimality is a general term that depends on the current market demand. For
example, the goal of a plant may be a function of the resource availability, and
the specifications. Other factors, such as physical conditions and the age of the
equipment, also determine whether these goals are achievable. In addition, some
equipment (e.g., fire extinguisher systems) may need to have aggressive behaviour
due to safety concerns. On the other hand, highly nonlinear, reactive or noisy systems
may need smoother control policies. Thus, a universal PID parameter setting does
not exist. Instead, several methods have been proposed to obtain the optimal PID
parameters for the process of interest [352].

The most primitive tuning method is trial-and-error. In this method, PID pa-
rameters can be arbitrarily adjusted according to the system response. However, this
method requires skilled experts and may damage the equipment if not done carefully.
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Similarly, rule-based methods [353,354] focus on various signal properties such as the
decay ratio, settling/rise times etc. For example, Ziegler-Nichols method [353] pushes
the system to an unstable state and adjusts the parameters based on some practical
rules. On contrary, model-based methods [355–359] use an approximate process model
(e.g., a first order plus time delay (FOPTD) model [360]) to adjust the aggressive-
ness/robustness. Though these methods may provide sufficiently good parameters,
frequent tuning may still be necessary in the case of operational variations.

On-line tuning schemes have been proposed to incorporate these process variations
during operation. Earlier examples include but are not limited to continuous cycling
method [353], relay auto tuning [361], and step test method [353]. These methods
excite the system from a steady state to an oscillatory one, and re-tune the parame-
ters. However, these prolonged methodologies may not be acceptable for slow (e.g.,
chemical) processes.

Owing to the above-mentioned attributes of the RL methodology, it has been
employed in various process control and optimization problems [119, 126, 187, 198,
248–250, 338, 362–364]. Several works have reported the use of RL for PID tuning
in simulated environments [365, 365–371]. However, they either assume having a
complete system model, propose complicated solutions, do not consider safe training,
or are only applied to simulated processes. Similarly, [372] developed an algorithm for
a simulated process by using random search, which may result in frequent excitation of
the system. [373] recently developed a shallow network-based scheme to learn the PID
parameters more quickly but with low exploration capability due to its incremental
form. Nonetheless, in many industries, the information about the system may be
limited to step test data. In addition, general RL schemes may not be used in real-
time industrial applications due to safety concerns. Some examples to address the
safety issue include off-line learning [374], model-based [112] and expert-based [240]
methods. However, they may not be sufficient when the system model is inaccurate
or the data is not sufficiently diverse. As an alternative, constrained RL has been
proposed to limit the agent’s behaviour during the learning [242, 243]. This scheme
introduces a Lagrangian penalty into the general RL goal and promotes safety on-line.
Thus, it makes the RL solution more applicable to real-world problems.
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As an extension to the existing non-constrained RL-based tuning schemes, this
study utilizes an on-line constrained RL technique for safe and autonomous PI tun-
ing. The proposed method also simplifies the problem formulation by relying on a
contextual bandit approach without need to assume Markovian transitions of the
state. Utilizing a simple step-response model makes the proposed method an easy-
to-utilize tool for the practitioners. Unlike the existing methodologies, the proposed
method utilizes an entropy-based systematic exploration scheme and is employed in
an experimental setting to demonstrate its efficiency and real-time applicability. The
multi-modal control tasks are used to showcase its effectiveness in the presence of
setpoint-dependent nonstationarities.

For simplicity and considering many industrial PID controllers take PI form, this
chapter will focus on PI tuning. The proposed approach can be extended to a full
PID controller by including one additional parameter following the same procedure.
As shown in Fig. 7.1, the agent observes a setpoint, changes the PI parameters and
receives a reward signal depending on the performance given the new PI parameters.
The agent combines multiple objective goals to provide PI tunings for any given set-
point that the users wish the PI controller to control, and explores the state space
safely. The main contributions of this study are summarized as follows: Formulat-
ing the PI tuning as an on-line RL problem. Constraining the PI parameters and
process variables to achieve safe operation. Modeling the system as a step-response
model, and gradually learning the model plant mismatch by on-line tuning thus sig-
nificantly reducing the online training time. Demonstrating the feasibility of the pro-
posed method by using simulated and more importantly experimental case studies.
Presenting the general practically through an industrial distributed control system
(DCS), namely, DeltaV.

The remainder of the chapter is organized as follows: Detailed background infor-
mation is provided in Section 7.2, the proposed method is described in Section 7.3,
the results are discussed in Section 7.4, the proposed methodology is extended to
MPC tuning in Section 7.5, and the concluding remarks are presented in Section 7.6.
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Figure 7.1: Schematic of the proposed scheme. The agent observes the setpoint and
adjusts the PI parameters. It calculates the cumulative error (return) at the end of
an episode and improves its policy.

7.2 Background

The goal of an RL agent is to obtain an optimal policy by means of smart trial-and-
error. This involves an interaction with the environment that emits a reward during
the process. In this study, an RL agent is used to tune a PI controller optimally
while considering safety rules. This section explains the background of the relevant
techniques in detail.

7.2.1 PID Controllers

In its simplest form, a digital PID controller in the velocity form can be written
as: [352]

∆MVt = Kc

[
(εt − εt−1) +

∆t

τI
εt +

τd
∆t

(εt − 2εt−1 + εt−2)

]
(7.1)

with ε = SP − CV (7.2)

where ∆MV represents the difference of the manipulated variable (MV. That is,
the controller output or process input), Kc is the proportional gain, τI is the time
constant, τd is the derivative constant, ∆t indicates the sampling period, and ε is the
difference between a setpoint (SP ) and the controlled variable (CV ) respectively.

Many engineering problems have noisy sensory measurements. To avoid chattering
controller outputs, which may cause unstable process behaviour, the derivative term
is often ignored. This simplification also reduces the number of parameters to be
tuned, which can be beneficial practically. In fact, the majority of basic industrial
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feedback controllers are PI controllers due to their simplicity and practicality [351].
The resulting PI controller can be written as:

∆MVt = Kc

[
(εt − εt−1) +

∆t

τI
εt

]
(7.3)

7.2.2 PID Tuning

In addition to the design criteria that were discussed above, optimality of PID con-
trollers depends on their parameters. Hence, they should be found optimally and
tuned continuously with an effective tuning method to maximize the profit and
safety. Earlier studies focused on various model-based, heuristic, and data-driven
techniques [7, 355–359, 375–382]. Detailed reviews of additional techniques can be
found in [383–389]. Nevertheless, identifying system models, ensuring optimal per-
formance while using heuristic techniques, and achieving general solutions with data-
driven techniques may be challenging and time consuming. RL can provide an alter-
native model-agnostic solution by learning how to tune the controller through smart
trial-and-error. Furthermore, it allows the users to include state constraints to im-
prove safety, which is crucial for industrial applications.

7.2.3 Contextual Bandits

A contextual bandit agent observes a state, xt ∈ X , of an environment at time t,
and takes an action ut ∈ U , where X and U are the state space and the action
space respectively [35]. During this interaction, the agent receives a reward signal,
rt+1 ∈ R ⊂ R, by using the sensory information. Note that the subscript of the reward
signal indicates that the reward is obtained after taking an action. The agent’s goal
is to find the best policy, π∗(u|x), that is an optimal mapping from states to actions
while maximizing the reward. Note also that contextual bandits [35] simplifies the
RL problem without the need to consider the Markovian state transitions.

In the presence of finite state and action spaces, the policy can be represented as
a table, in which the rewards obtained for each state-action pair during the interac-
tion are saved. However, forming a table becomes challenging for large or continuous
state-action pairs due to the curse of dimensionality. An alternative approach is to
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parameterize the policy by θ, and optimize it directly by using the rewards. Follow-
ing the policy gradient theorem [35], the policy update rule for πθ = π(u|x, θ) of a
contextual bandit agent can be written as shown in equation (7.4).

θt+1 = θt + αRt+1∇ ln π(Ut|Xt, θt) (7.4)

where α is the learning rate, and the capital letters denote random variables. Al-
though equation (7.4) updates θ in the direction of high reward values, convergence
of θ depends on α and R. Moreover, θt ̸= θt+1 if R ̸= 0 or ∇ ln π ̸= 0. Inspired
from the actor-critic methodology [69], a parameterized baseline, V (x, ω), can be in-
troduced to reduce the variability in θ and speed up convergence [73]. The modified
policy update rule can be defined as shown in equation (7.5).

θt+1 = θt + α(Rt+1 − V (Xt, ω))∇ ln π(Ut|Xt, θt) (7.5)

At the beginning, V (·, ω) ̸= R since ω is often a randomly initialized parameter
set [73]. Hence, large (Rt+1 − V (Xt, ω)) results in aggressive updates in the policy
parameters, θ. However, when V (·) converges to R, variability in θ will decrease over
time [73].

In addition to the abovementioned modifications to the policy gradient theorem,
multiple worker-based asynchronous learning schemes can be used to reduce the learn-
ing duration significantly [73] because multiple workers interact with their own en-
vironments to allow simultaneous learning while introducing data diversity. These
local workers share their knowledge with a global network asynchronously during the
off-line training phase, as shown in Fig. 7.2 [323,326,338]. During on-line implemen-
tation, only the global network can be used. There are other techniques to improve
learning such as utilizing multiple critics, target networks, delayed updates, etc. [76],
which are not covered in this study.

Thus, updating the policy by using contextual bandit avoids the necessity of the
Markovian state transition assumption and simplifies the learning task. In addi-
tion, using the critic concept of RL as a learnable baseline reduces the variance and
improves convergence speed during policy learning without introducing theoretical
challenges, resulting in an overall practical scheme.
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Figure 7.2: The asynchronous learning scheme that promotes data diversity and in-
creases off-line training speed. N -workers simultaneously interact with their environ-
ment, predict the value function, and update a global network’s and their parameters
according to equations (7.13) and (7.14). During on-line implementation, only the
global network can be used.

7.3 Constrained PI Tuning with On-line Learning

The PI tuning task can be represented as a contextual bandit problem [390] due to
its simplicity. The goal of the PI tuning task can be defined as finding the best PI
parameters by maximizing the reward function while respecting the constraints. The
key elements for the proposed RL-based PI tuning problem can be defined as follows:
States: x = SP or final CV. The agent observes the operating point of the process
output as the state. Owing to the PI control, the operating point can also be consid-
ered as the setpoint of the PI control, which is given by a user. Note that the agent
has the knowledge of the SP (which is equal to CV at steady state), which makes the
agent adaptive to different setpoints and/or operational conditions.
Actions: u = [Kc, τI ]

T . The agent adjusts the PI parameters, Kc, τI , given observa-
tions, x.

The goal of the agent is to find the best PI parameters given a setpoint. In
addition, several process constraints should be satisfied in order to address the safety
concerns. To achieve this, a constrained value function optimization for the policy
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can be defined as follows:

v∗π(x) = max
π

vπ(x), ∀x ∈ X

s.t. Vπ,C ≤ ξ (7.6)

where vπ is the value function for πθ, Vπ,C = Eπ[C(x)] is the expected constraint C,
and ξ is a penalty threshold. A solution to this problem is obtained by Lagrangian
relaxation as shown in equation (7.7).

v∗π(x) = min
Λ≥0

max
θ

[vπθ(x)− Λ (Vπθ,C − ξ)] , ∀x (7.7)

where Λ is a dynamic Lagrangian coefficient with an initial value of zero and θ rep-
resents the policy parameters. Note that the goal of this method is to learn a policy
quickly while learning Λ slowly to guarantee convergence. The learning goal is to find
a feasible saddle point with respect to Λ and θ [241]. The value function estimation
with constraints can be re-defined as:

Vπ(x,Λ) = Eπ[Gt|X0 = x]

= Eπ

[
∞∑
t=0

R(Xt, Ut)− ΛC(Xt, Ut)|X0 = x

]
= V − ΛVπ,C (7.8)

Note that the constrained value function (Vπ(x,Λ)) can be estimated by using the
reward function and the constraint violations only, which makes this method conve-
nient for data-driven constraint imposition [338]. If V (∀π) is bounded, every local
minima of Vπ,C is feasible, and equation (7.9) is satisfied; then, Vπ(x,Λ) converges
to a feasible solution almost surely. Convergence analysis of the method and related
proofs have been provided in [241, 391].

∞∑
t=0

αco,t =
∞∑
t=0

αa,t =∞,
∞∑
t=0

(α2
co,t + α2

a,t) <∞,
α2
co,t

α2
a,t

→ 0 (7.9)

where αco and αa are the learning rates for the Lagrangian coefficient and for the
policy, respectively. Equation (7.9) shows that the constraints should be learned at
a lower rate compared to the policy for the value function to converge to a feasible
solution. To ensure safe exploration of the PI controller parameters, the constraints,
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C, are imposed on the values of the PI parameters (Kc and τI), and on the process
variables CV and MV as shown in equation (7.10).

Ci =


0, if omin ≤ CC ≤ omax

|CC − omin|, if omin > CC

|CC − omax|, if omax < CC

(7.10)

for i ∈ {1, 2, 3, 4}, with

omin =


Kc,ref − 1
τI,ref − 1

0
0

 , CC =


Kc

τI
CV
MV

 , omax =

Kc,ref + 1
τI,ref + 1
1.1× SP
1.1×MV


(7.11)

where o represents the upper and lower boundaries of exploration regions as will be
discussed later in this section. Kc,ref and τI,ref are the initial reference PI parameter
values such as those calculated from certain PI tuning rules based on step-response
models or values retrieved from an existing PI controller. MV is the steady state MV
value at the corresponding setpoint of the output. The value 1.1 is set in Equation
(7.11) for illustration purpose and it can be adjusted according to the actual constraint
requirements. Similarly, the value 1 is set for the PI parameter constraints and can
be adjusted.

o(1) and o(2) constrain the PI parameters, whereas o(3) and o(4) regulate CV
(regarding SP ) and MV (according to MV ) respectively. Note that these are not
hard constraints but they can be tightened by tuning the corresponding weights.
They regularize the agent as an addition to the reward function and can provide a
safer operation [338].
Return: Gt. Considering minimization of the deviation from the setpoint and satis-
fying the constraints, the sum of rewards and constraints represents the return, which
can be defined as:

Gt = −
∑
UI

[(CV − SP )2 +W
[
C1,C2,C3,C4

]T
Λ] (7.12)

where UI is the update interval, and W represents the weight coefficients. These
values are selected empirically and can be tuned depending on the control task to
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Figure 7.3: The proposed safe exploration of the PI parameters. Kc,ref and τI,ref are
the pre-determined reference PI parameters. These parameters can be obtained by
using a step-response model. At any time t, the agent is penalized if the PI parameters
are outside the unit exploration boundary.

obtain the desired behaviour. Although there is no state transitions in the contextual
bandit setting, time step, t, is used to clearly define the parameter update rules. In an
episode, the RL-level x is static, but the lower-level process variables (MV,CV ) are
dynamic. In this study,W will be increased during learning to provide safer operation.
In equation (7.12), the first term is the integral squared error (ISE, with a fixed time
step) that indicates the reward, R. The second term represents the constraints, where
C1 and C2 keep the PI parameters within a pre-defined exploration region. This region
is shown geometrically in Fig. 7.3. C3 and C4 constrain CV and MV respectively.
Violating C results in lower returns. When converging of learning and respecting of
these constraints, the final return value will consist only of ISE.

After defining the RL elements and formulating the PI tuning problem as an
RL task, a major challenge is to train the agent. Data-driven models may produce
general solutions, however training them may require humongous number of samples.
Moreover, initial policies may not be safe or robust enough to be deployed in the real
process. A solution to this challenge can be using a system model for preliminary
training. However, sufficiently accurate models may not be available in practice. As
an alternative to such models, less accurate step-response models can be obtained and
are commonly available through a simple test, which can be used to train an initial
policy. After the policy is obtained through off-line trainings, it can be further tuned
on-line and improved by interacting with the real process. This methodology will
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Figure 7.4: The proposed training and deployment methodology. Step 1: Two initial,
less accurate system models are obtained by using step-response tests. Step 2: A PI
tuning method is used to obtain the initial PI parameters. Step 3: Off-line training
through simulation is carried out to obtain the initial policy, π1, until it satisfies the
desired properties at Step 3. At Step 4, π1 can be tuned on-line to learn the real
system dynamics.

reduce the training time significantly and provide effective policies without risking of
damaging the equipment. The flowchart of the proposed method is illustrated in Fig.
7.4.

The proposed method consists of four steps. In the first step, depending on
the nonlinearity of the process, two or more step-response models can be obtained,
which may only be valid within a limited operational range. Industrial processes are
typically nonlinear or multi-modal. This is why we consider two or more of the locally
approximate linear step-response models or the models corresponding to two or more
of the modes for the multi-modal process. These models can also be used to obtain
rough knowledge (such as a nominal control action value) about the system.

In Step 2, a PI tuner or certain tuning rules can be used to obtain a reference
range for the PI parameters. Alternatively, this step may be substituted by an ex-
pert’s knowledge on the process for the initial PI parameters. This study determines
[Kc, τI ]ref according to one of the estimated step-response models following the IMC
tuning rule [352].
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In the third step, the agent uses the reference PI parameters and the step-response
models to train itself through the off-line simulations to achieve a satisfactory simu-
lation performance. This step can be repeated until the agent passes the test criteria,
which greatly saves subsequent on-line tuning time and prevents the potential risk of
equipment damage due to extensive training duration.

After the policy meets the desired specifications in Step 3, it can be deployed on-
line on the real physical system of interest. Since the proposed method is on-line, the
agent can tune the PI controller further in real-time while updating itself to adapt to
the real process dynamics. On-line tuning can occur at once if the real process is time
invariant or continuously if the process has varying operating conditions that cause
change of its dynamics. In this study, the agent will be on-line fine-tuned for multiple
operating conditions to demonstrate the performance improvement effectively. To
improve safety, the constraints term can be weighted more by increasing W at the
beginning of this step. After the on-line tuning is completed, the agent will be capable
to provide a suitable set of PI parameters for any setpoint given by users, as will be
discussed in Sections 7.4.7 and 7.4.8.

Based on equations (7.5) and (7.8), and the entropy-based exploration scheme
proposed in [73], the parameter update for the proposed method is given as:

ωt+1 ← ωt + αc∇ωδ
C(·|ω)2 (7.13)

θt+1 ← θt + αaδ
C (·|ω)∇θ ln π (·, θ) + βπ (·) ln π (·) (7.14)

with δC = Gt − V (Xt|ω) = (Rt+1 −WCTΛ− V (Xt, ω)) (7.15)

Λt+1 ← max(0,Λt + αco(Eπ,Λt [C]− ξ)) (7.16)

where δC is the constrained temporal difference (TD) error for a static environment,
ω represents the critic parameters. αc = 1× 10−3, αa = 1× 10−4 and αco = 1× 10−6

are the learning rates of the critic, policy, and the Lagrangian coefficient respectively.
αc > αa > αco is necessary for the feasibility of the proposed solution [241]. δ is the
modified TD-error, which determines the direction of the parameter update. β is the
entropy coefficient that adjusts the exploration extent (the randomness degree of the
policy distribution). In this study, it will be decreased at the end of off-line training
to improve the stability of learning. In theory, the policy (π(·, θ)) and critic (V (·, ω))
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can be parameterized by using various types of approximate functions [20, 35]. In
this study, neural networks are utilized to capture relationships between the setpoint,
value function and PI parameters that are considered to be nonlinear. As mentioned
earlier, multiple workers can speed up learning; and in this study, two workers will be
used during off-line training. During on-line implementation, only the global agent
can be used in real control applications.

Algorithm 7.1 PI Tuning by using the proposed algorithm.
1. Input αa, αc, αco, Tmax, SP (or SPs), UI, [Kc, τI ]ref , β, W , ξ
2. Global network parameter vectors ωG, θG, ΛG, and global shared time-step
T ← 0

3. Worker-specific parameter vectors ωL, θL, ΛL, and worker time-step t← 1

4. Initialize ΛG = 0, Randomly initialize ωG and θG

5. Initialize the PI parameters and the Environment (Env.) arbitrarily
• Reset gradients dω ← 0, dθ ← 0, dΛ← 0

• Sync. workers’ parameters θL = θG, ωL = ωG, ΛL = ΛG tstart = t

• Uniformly sample a random setpoint, SP ∼ SPs

• Observe the state xt = SP

• Sample an action from the policy ut = [Kc, τI ]t ∼ π(xt, θL)

• Update the controller parameters UpdateController(ut)
• k = 0 to UI

(a) ∆MVk = Controller(), Controller outputs ∆MV
(b) MVk =MVk−1 +∆MVk, MV is updated
(c) Env(MVk), MV controls the system

• Gt = Eqn. (7.12), Receive the return.
• Calculate, δC = Eqn. (7.15)
• Accumulate policy gradients wrt. θL : dθ ← dθ + ∇θL(log π(ut|xt, θL)δC +

βπ(·) log π(·))
• Accumulate critic gradients wrt. ωL : dω ← dω +∇ωL(δC)2

6. Accumulate constraint difference dΛ← −(WCT − ξ)
7. Asynchronously update: θG ← θG + αadθ, ΛG ← ΛG + αcodΛ, and ωG ←
ωG + αcdω.

8. Update t← t+ 1, and T ← T + 1

9. until T > Tmax

10. output π
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Table 7.1: User-defined parameters for the proposed algorithm.
Parameter Definition Data Type Guide

αc, αa, αco
Learning rates
αc > αa > αco.

Floating Point (Scalars) Smaller values mean faster convergence.
Recommended values: 10−3, 10−4, 10−6, respectively.

β Entropy coefficient. Floating Point (Scalar) A larger β implies more exploration.
Tmax Maximum number of episodes. Integer (Scalar) A larger Tmax implies more training time.
UI Number of steps in an episode. Integer (Scalar) Preferably close to process settling time.

omin, omax Lower and upper limits for the constraints. Floating Point (Vectors) Given variable constraint.

W Constraint weights. Floating Point (Vector) A larger W implies more penalty on the
corresponding variable if violating its constraint.

ξ Constraint threshold. Floating Point (Scalar) Tolerance to constraint violation.
SPs Setpoint sets. Floating Point (Vector) Desired setpoint.

[Kc, τI ]ref Reference PI values. Floating Point (Vector) Existing PI controller parameters or
initial tuning according to any PI tuning rule.

7.4 Results and Discussion

As described in the earlier sections, the proposed method identifies step response
models, obtains reference PI parameters and operational knowledge, offline trains
a policy using these approximate models, and online tunes the policy in the real
process. Therefore, the hyperparameters listed in Algorithm 7.1 (denoted as inputs)
should be defined by the user before using the proposed algorithm. A user friendly
guideline about their selection is provided in Table 7.1. The proposed algorithm tunes
the PI parameters while minimizing the deviation of the response from the setpoint
and respecting the operational constraints. After describing the processes in the case
studies, implementation details, the network, learning results, sensitivity analysis, and
simulated and experimental test results under process uncertainty and disturbances
are presented in this section. To demonstrate the generality and effectiveness of
the proposed method, a simulated and two experimental case studies are used in
this section. These systems show multi-modal behaviour according to the setpoint.
The experimental studies showcase that given reference simple models, the proposed
method can be used to tune PI controllers in different settings in real-time.

7.4.1 Simulated Case Study: a Parameter Varying System
(PVS)

A first-order parameter-varying system, P (s), is considered and shown in equation
(7.17).

P (s) =
A1 sin(ΩSP ) + B1

(A2 sin(ΩSP ) + B2)s+ 1
(7.17)
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where A1 = 8, A2 = 11, Ω = 0.3, B1 = 2, B2 = 6. The gain and the time constant
of this system are a function of the setpoint, thus varying during the experiments.
These variations make the system suitable to test the proposed adaptive method.
The above-mentioned values can be tuned to mimic the nonlinearity or change of the
gain and the time constant.

Before off-line training (Step 1): Two step-response models were developed
by conducting step-response tests at two setpoints, SP ∈ SPs1 = {1, 2}. Some
gain mismatch was deliberately introduced to represent the inaccuracy of the iden-
tified step-response models. (Step 2): Then, the initial [Kc, τI ]ref were determined
according to one of the step-response models following the IMC tuning rule [352].

During off-line training (Step 3): A random setpoint was sampled from a
uniform distribution, SP ∼ U(SPs1), and the agent was trained on two distinct step-
response models for the agent to be trained in the environment of varying operating
conditions. These models were interpolated from the two step-response tests.

This step ensures that the agent gains sufficient experience before it is deployed
in real-time for on-line tuning without risking the process.

On-line tuning (Step 4): During on-line tuning, a random setpoint was sampled
from another uniform distribution, SP ∼ U(SPs2 = {4, 5}), to demonstrate the
adaption to the real process by the proposed scheme. The gains used in this study
are geometrically shown in Fig. 7.5. In addition, the penalty coefficient, W , was
increased from 1,000 to 2,000 to improve safety.

7.4.2 Experimental Study: a Multi-Modal, Nonlinear Tank
System (TS)

A tank system (TS) with three modes [338] is shown in Fig. 7.6. The storage tank
contains water that can be moved into Tank 1 by means of a pump. Valves V1-V2 are
used to move the water into Tank 2, which changes the system dynamics according to
the water level. As the level increases, the process gain decreases. This multi-modal
behaviour makes the controller design more challenging. Valves V3 and V5 were
kept open to avoid overflowing. Valve V4 was opened for 20 seconds to introduce
disturbance during the test.
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Figure 7.5: Gain and time constant of PVS that is shown in equation (7.17) with
respect to setpoint. The green stars and the orange triangles indicate the gains used
during off-line training and on-line tuning phases respectively. Note the deviation of
the stars from the true gain and time constants reflects the model mismatch between
the off-line training and on-line tuning phases.

Mode1

Figure 7.6: P&ID of the tank system. Storage tank contains a water that is pumped
into Tank 1 by using a pump. Tank 1 has three modes due to operating valves V1 and
V2 that remove the water from Tank 1 into Tank 2. Mode1 ∈ [0, 15.3]cm, Mode2 ∈
[15.3, 30.6]cm, and Mode3 ∈ [30.6, 41.3]cm, where each mode increase reduces the
process gain. Valves V3 and V5 were kept open to create a continuous process. Valve
V4 was opened to introduce disturbance during the test phase.
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Before off-line training (Step 1): Two step-response models were developed
by conducting step-response tests with the first set of setpoints (SP ∈ SPs3 =

{2, 10}). These tests were deliberately chosen to mimic the industrial cases where
only inaccurate models that cannot represent the complete process dynamics are
available through step tests. (Step 2): Then, [Kc, τI ]ref were determined according to
one of these models following the IMC tuning rule [352]. Note that these calculated
PI parameters were used to provide an initial tuning and can be obtained by using
any other PI tuning rule.

During off-line training (Step 3): The inaccurate step-response models (that
were interpolated from the two step-response tests) were used to train the agent within
the first set of setpoints (SP ∈ SPs4 = [2, 10]) in the off-line simulations. During
off-line training, the agent learns the relationship between the switching setpoints and
the PI parameters.

Generally, the agent parameters of the approximated function (e.g., the neural
network) are randomly initialized and may not be sufficient to control the system of
interest. This step, as proposed in this work, ensures the neural network parameters
are improved before the real-time implementation. Additionally, this step can utilize
multiple workers, saves training time, and prevents the equipment from a risk of
getting damaged due to the initial random explorations of the agent.

On-line tuning (Step 4): If the agent (π1) is ready for the real-time deploy-
ment, the multiple worker scheme should be converted into a single one in the actual
implementation as there is only one real environment available. Then, π1 can be
on-line tuned to learn the multi-modal behaviour as well as the uncertainties of the
real physical system.

In this study, the agent was online-tuned by using setpoints, SP ∈ SPs5 =

{11, 12, 20}. Note that there is a valve below Mode2 that reduces the process gain
as shown in Fig. 7.6. Therefore, the system behaviour is setpoint-dependent (multi-
modal) and the agent learns this multi-modality during on-line training. After on-line
tuning the agent for about one day of real-time experimentation, its PI parameter
suggestions were used in the test phase. The on-line tuning duration can differ (e.g.,
vary from 1 to 24 hrs) depending on the complexity of the process and uncertainties
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Kc, I
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Figure 7.7: PI tuning in different configurations for level control of a process. Top:
Socket connection uses a velocity form PI controller. Bottom: level controller is
cascaded with a flow controller to enhance safety. The cascade controlling scheme
and DeltaV implementation mimics an industrial setup. The agent in both cases
tune only the level controller, and these configurations demonstrate the effectiveness
of the proposed method.

as well as how much mismatch between the step-response model and the real process
and how tightly the PID is to be tuned. For the sake of diversity and to demonstrate
how general the proposed method is, two agents will be trained in the TS.

7.4.2.1 Agent with Socket Connection

This agent tuned a velocity-form PI controller that was connected to the experiment
directly. This implementation showcases how the agent adapts to the changes in the
simplest controlling scheme as shown in Fig. 7.8, where the agent directly tunes the
parameters of a level PI controller parameters (PIlevel). For simplicity, the weight
coefficient (W ) was kept constant during online tuning while reducing β to limit the
exploration. V4 was opened for 20 seconds to introduce disturbance during the test.
This implementation will be called TS-a.

7.4.2.2 Agent with DeltaV Connection

In contrast to the previous case, cascaded controllers are preferred in various industries
to improve safety, avoid wearing of the equipment, reduction of disturbances etc. A
related example is shown in Fig. 7.8, where the process is indirectly controlled by
using a flow PI controller (PIflow), which receives a reference signal from PIlevel.
In this case the ‘optimum’ PIlevel parameters depend on those of PIflow, therefore
they will be different from those of TS-a for the same system. Although there is a
broad literature about cascade controller tuning [392–399], this work fixes the PIflow
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parameters and tunes only PIlevel. Therefore, the proposed method is still considered
noncascade controller tuning. In addition, the controller can be in the position form.
Since the agent is model-free, it can tune a PI controller in the position form as shown
in Eqn. (7.18).

MVt =MV +Kc

[
εt +

∆t

τI

t∑
j=1

εj

]
(7.18)

As will be discussed in Section 7.4.3, the RL-based algorithm is used to tune a PI
controller that is implemented in an industry standard DCS known as the DeltaV
system [400]. Similar to the simulated case, W will be increased from 5,000 to 10,000
while reducing β in this case study. This implementation will be called TS-b. Overall,
these implementations demonstrate that the agent can tune PI controllers in various
configurations, starting from a simple step-response model.

7.4.3 Implementation Details for both Simulated and Exper-
imental Systems

Pseudocode of the proposed algorithm is provided in Algorithm 7.1†. As shown in
Fig. 7.2, the algorithm consists of N = 2-workers that interact with their own envi-
ronments during off-line training. The number of workers is limited by the available
computational resources. At the on-line implementation phase, only a single worker
can be used. These workers can be any differentiable function that can approximate
complex functions. In this case study, the workers were feed-forward neural networks
with their own setpoints to improve data diversity and exploration. The reference PI
parameters, [Kc, τI ]ref , can be obtained by using any method as described in Section
7.2.2. During off-line training, an episode consisted of UI = 1000 steps. The sampling
time for the PI controllers of PVS and TS was one and five seconds, respectively.

After off-line training the agents in the simulated environments, the agents were
on-line tuned for around a day. The on-line tuning time can vary depending on the
quality of the step-response models used for the off-line training. Note that the on-
line tuning was conducted on the actual process and resulted in improvements in the

†The source code is given in https://github.com/oguzhan-dogru/RL_PID_Tuning. The user-
defined hyperparameters are summarized in the algorithm’s caption and the README.md file of
the source code.
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Figure 7.8: The Python RL-based algorithm tunes the DeltaV-PI parameters via the
DeltaV OPC server that also enables the PI to manipulate TS-b via the Opto22 OPC
server.

policy as shown in the result section.
The proposed RL-based tuning scheme is applicable to different types of industrial

DCS. This study uses DeltaV as an example to illustrate the connection due to its
broad applicability in the industry. The main advantages of using such DCS are
that it can continuously run an entire plant at peak performance, synchronize control
strategies, inputs, and outputs safely and securely while optimizing production. The
proposed method can be directly plugged into the existing control schemes without
major changes. The DeltaV Application station is equipped with a DeltaV Open
Platform Communications (OPC) server that, on the one hand, connects the RL-
based tuning algorithm to the DeltaV-PID controller and tunes its parameter via a
Client-Server OPC communication protocol, as shown in Fig. 7.8. A Python package
known as OpenOPC is used to connect the code to the DeltaV OPC server, and a
Matrikon OPC UA Tunneller is used to bridge between the 32-bit DeltaV OPC server
and the 64-bit Python code. On the other hand, the DeltaV OPC server enables the
smartly tuned DeltaV-PID to manipulate the pumps of TS-b via another OPC server
(Opto22). This connection is known as Server-to-Server OPC communication.

Real-time communication between the RL agent and the TS was directly estab-
lished using a socket connection to an Opto22 server and to the DeltaV DCS through
Open Platform Communications (OPC) servers. A computer with Intel Core i5-4590
CPU (4 CPU cores) at 3.30 GHz, 8 GB RAM at 1600 MHz under 64-bit Windows 7
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operating system was used for the on-line tuning phase. The offline learning phase
was conducted on a Lambda deep learning workstation with an Intel Core i9-9820X
CPU (10 CPU cores) at 3.30 GHz, 64 GB DDR4 RAM at 2666 MHz under 64-bit
Windows 10 operating system. More information about the experimental setup can
be found in [338].

7.4.4 Details of the Agent Network

In this study, the agents consisted of deep neural networks, whose results may depend
on the hyperparameters. This subsection presents the network details as well as the
hyperparameters that have been used throughout the study.

Fig. 7.9 demonstrates the details of the network. The agent consisted of 300
hidden and 5 output neurons. The PI parameters were sampled from a Gaussian
distribution that is parameterized by the policy outputs. The variance of this dis-
tribution decreased over time, which made the PI parameters more consistent over
the time it is trained. The critic outputs a scalar that estimates the value of the
setpoint (i.e., V (SP |ω)). To train the agent, a modified policy gradient method [73]
was used. Alternative policy gradient based methods (e.g., deep deterministic policy
gradient [74] or proximal policy optimization [79]) can be used to obtain the PI pa-
rameters. Note that these methods may suffer from longer training time or learning
instability. Because it promotes efficient learning, RMSprop [260] algorithm was used
to optimize the agent’s parameters (as shown in equations (7.13) and (7.14)). The
above-mentioned structure and hyperparameters resulted in consistent results over a
variety of trials in both PVS and TS, as will be shown in Section 7.4.6. Nonetheless,
they can be adjusted further if the system of interest is significantly different.

7.4.5 Results: Learning

During the learning, the entropy coefficient, β (shown in equation (7.14)), was de-
creased to reduce the randomness of the policy and to improve the stability of learn-
ing. As shown in Fig. 7.10, β was reduced at the end of off-line training, which could
alternatively be reduced continuously through learning.
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Figure 7.9: A neural network structure that represents the agent. The input (SP ) is
fed into the policy and critic networks that consist of 200 and 100 neurons respectively.
The outputs are fed into nonlinear ReLU6 [401] activation function. The policy
outputs a mean (that comes from tanh function) and a variance (that comes from
softplus function). PI parameters are sampled from a Gaussian distribution, which is
parameterized by using these mean and variance values. Critic, on the other hand,
outputs a scalar value function with linear activation.

Table 7.2: Simulated sensitivity analysis for PVS with varying parameters. ‘Result’
indicates whether the related hyperparameters affected the results positively (+),
negatively (-), or not significantly (NS).

Agent name Network update interval Fixed entropy coef.,
β

Activation function
(for σ)

Setpoint scale (SS),
SP=SP/SS Number of workers Result

PVSb
(Baseline) Every 10 Episodes 3× 10−2 softplus 10 2

M1 10 3× 10−2 softplus 10 4 NS
M2 10 3× 10−2 softplus 10 8 NS
M3 5 3× 10−2 softplus 10 2 NS
M4 20 3× 10−2 softplus 10 2 NS
M5 10 4×10−2 softplus 10 2 NS
M6 10 5×10−2 softplus 10 2 -
M7 10 1×10−1 softplus 10 2 -
M8 10 3× 10−2 sigmoid 10 2 NS
M9 10 3× 10−2 ReLU 10 2 Did not learn
M10 10 2×10−2 softplus 10 2 +
M11 10 1×10−2 softplus 10 2 +
M12 10 3× 10−2 softplus 5 2 NS
M13 10 3× 10−2 softplus 20 2 NS
M14 10 5×10−3 softplus 10 2 +
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Figure 7.10: Learning and constraint curves for (a) PVS and (b) TS. The entropy
coefficient was decreased during learning to improve the consistency of the policy.
After the off-line training phase, the entropy coefficient was set to β = 10−7. Then,
the agent was tuned on-line to adapt to the true system dynamics. The figures show
convergence for both the cases. Note that both the case studies had different set-
points during the off-line training and on-line tuning phases that affected the system
dynamics. This change in the dynamics caused reduction in the returns for both the
cases.
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Figure 7.11: Distribution of constraint violations as a function ofW over twelve trials.
The mean values for the constraint violation were 120, 116 and 104 forW = 500, 1, 000
and 2, 000 respectively. The dashed lines demonstrate the up-scaled distributions.
The shift in the distribution indicates that increasing W can improve safety in terms
of constraint satisfaction.

Figure 7.12: Comparisons of PVSb with (a) M9 and (b) M11. Note that the ReLU
function prevented the agent from learning. On the other hand, return became more
consistent as the entropy was decreased from 0.03 to 0.01. Therefore, an entropy
annealing scheme was chosen during training.

7.4.5.1 Simulated Case

For the simulated system, namely, PVS, two sets of setpoints (SPs1 and SPs2) were
used during off-line training and on-line tuning to improve the setpoint diversity.
Note that the system gain and time constant were increased during on-line tuning to
simulate varying system behaviour. As shown in Fig. 7.10a, off-line training ended
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Figure 7.13: Simulated step response tests for PVS at SP = 5 (which was used during
on-line tuning). The dashed lines indicate alternative PI tuning methods, the solid
lines indicate the agent. Note that the tuning parameters other than the ones that
were suggested by the on-line tuned agent were obtained at SP = 1. The change
in the setpoint caused significant oscillations for other tuning methods whereas the
agent proposed PI parameters that yielded safer and smoother transitions with lower
error. Note that the optimizer results in lower ISE, however, it overshoots the SP by
more than 10%, which is not desired. The agent suggested slower and more aggressive
controller parameters, before and after on-line tuning respectively.
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Figure 7.14: Experimental step response tests for TS-a at SP = 20 (which corre-
sponds to Mode2 and was used during on-line tuning). The red boxes highlight the
disturbance that has been introduced by using V4. The dashed lines indicate alter-
native PI tuning methods, the solid lines indicate the agent. Note that when the
setpoint increases, the process gain and the time constant increase. Note that the
compared methods and the agent before on-line tuning resulted in slower responses.
The changes in the system dynamics make the agent choose higher gains and lower
time constants during on-line tuning to minimize the error. C3 helps minimizing the
ISE while C4 preventing extremely aggressive actions at SP = 20. Note that the
agent-tuned controllers can handle the disturbance more quickly without oscillations.
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Figure 7.15: Experimental step response tests for TS-b at SP = 20 (which corre-
sponds to Mode2 and was used during on-line tuning). The dashed lines indicate
alternative PI tuning methods, the solid lines indicate the agent. Note that when
the setpoint increases, the process gain and the time constant increase. Additionally
these parameters were tuned for the direct control through PIlevel, which caused os-
cillations when PIflow was introduced. Owing to the constraints introduced during
learning, the agent avoids oscillations after six hours of training.
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at episode 8,750 with a high return value. Then, the agent started interacting with
the new environment (the actual process) that initially yielded lower returns owing
to the mismatch between the step-response model and the actual process. After some
initial exploration, the agent converged to an optimum point. At the initial phases of
on-line tuning, the agent violated the constraint threshold, ξ, since the PI parameters
suggested at SPs1 were not best fit for SPs2. After increasingW from 1,000 to 2,000
at the beginning of the on-line tuning phase, the violations decreased from 113 to 109.
Nevertheless, the violations decreased over time for both cases as the agent adapted
to the new dynamics.

As shown in Fig. 7.11, the mean values for the constraint violation were 120, 116
and 104 for W = 500, 1, 000 and 2, 000 respectively, over twelve simulations. The
results show that increasing W can provide safer operation by reducing constraint
violation.

7.4.5.2 Experimental Case

For the experimental system, namely, TS, sets of setpoints SPs4 and SPs5 were used
during off-line training and on-line tuning respectively since they correspond to dif-
ferent modes in the tank. As shown in Fig. 7.10b, off-line training ended at around
episode 15,000 with a high return value. Then, the agent started interacting with
the real environment that yielded lower returns (similar to the previous case). After
realizing the changes in the system, the agent gradually improved its performance
by finding better PI parameters while respecting its constraint threshold. Since the
socket implementation (TS-a) and the offline training utilized the same control struc-
ture, the agent did not violate the constraints, however it started from lower return
values compared to TS-b. On the other hand, the initial PI parameters resulted in the
DeltaV implementation (TS-b), causing oscillations and constraint violations. After
adapting to the process changes, the agent avoided oscillations, resulting in safer and
more efficient control. Similar to the PVS, increasing W resulted in a decrease in the
constraint violations from seven to two for W = 5, 000 and W = 10, 000 respectively.
This is because the cascade control structure changes the optimum PI parameters.
Increasing W made the agent regret its aggressive actions. Note that in both the
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cases the agent improved its performance by respecting the constraint threshold, ξ.
Overall, the results showed that annealing entropy coefficient, β, improved the

convergence. Moreover, in industrial applications, a short on-line tuning time is
desired. As shown in Fig. 7.10, the policies converge to their optima in around a day
of on-line tuning because they had been trained on the step-response model. As such,
even utilizing inaccurate models still helps the agent learn the system dynamics faster,
which is an appealing solution for industrial applications in the sense of reducing the
on-line tuning time.

7.4.6 Sensitivity Analysis

Properties of a stochastic policy may depend on the hyperparameters of the neural
networks. An experimental sensitivity analysis was performed on PVS (at the off-
line training stage) to find the optimal strategy and hyperparameters to obtain a
consistent policy. After creating a baseline (PVSb), some of the hyperparameters
were deliberately changed. This analysis was performed prior to using the agent in
the on-line phase and in TS. As shown in Table 7.2, most of the hyperparameters
did not affect the consistency significantly. Using the rectified linear unit (ReLU)
function for the standard deviation of the policy prevented the agent from learning at
all. On the other hand, the policy was found to be sensitive to the entropy coefficient
(β). In particular, lower β values resulted in more consistent policies. This is because
the entropy term regularizes the exploration of the policy. When the entropy is
higher, the policy tends to take more diverse actions. For the sake of brevity, only
comparisons among PVSb, M9 and M11 are shown graphically. As demonstrated in
Fig. 7.12, changing the activation function from softplus to ReLU prevented the agent
from learning due to the non-smoothness of ReLU. Moreover, the agent became more
consistent over time after reducing the entropy coefficient. Note that the results may
vary depending on the system of concern.

7.4.7 Simulation Case: PVS Step Test

Before and after the on-line tuning phase, a setpoint was fed into the agent to ob-
tain its PI parameter suggestions. To demonstrate the effectiveness of the proposed
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method, a step test in the setpoint for the closed-loop process was conducted at
SP = 5. The true system model was used during the test to mimic a practical sce-
nario (note that inaccurate step-response models at SPs1 were used during off-line
training). During the tests, the step magnitude was standardized as one for the sake
of comparability.

As shown in Fig. 7.13, a major result is that the agent’s performance is better than
the methods available in the literature [376, 377] in terms of error and step-response
behaviour. This is because the compared methods provided PI parameters that were
determined based on SPs1. These PI parameters caused significant overshoots and
oscillations at SP = 5. Since the agent was offline trained in the same model,
its PI parameter suggestions before on-line tuning yielded a similar ISE value as
the compared methods. However, the controller performance was improved after
on-line tuning since the agent adapted to the changes. After this adaptation, the
agent suggested PI parameters that resulted in lower error values while respecting
its constraints. Additionally, the optimizer-based PI parameters resulted in lower
ISE, but higher overshoots that are undesired. This is because the optimizer greedily
minimizes the ISE without taking the soft constraints into consideration.

7.4.8 Experiment Case: TS Step Test

In the testing phase, we mimic an actual industrial application scenario in the sense
that the agent has been trained as a mature tuning expert. At this phase, one only
needs to specify a desired setpoint value since the agent is able to provide appro-
priate PI parameters without further trial and error. Thus, during this experiment,
a setpoint was given to the agent to obtain the corresponding PI parameters. The
procedure was repeated before and after the on-line tuning phase to showcase the
adaptiveness of the proposed method. SP = 20 was selected for the test phase.
Besides, V4 was opened to introduce disturbance to TS-a.

As shown in Fig. 7.14, the agent before on-line tuning suggested PI parameters
similar to the ones suggested by the compared methods. The optimization-based
tuning method resulted in two oscillations due to its aggressiveness. AMIGO and IMC
methods yielded similar results, whereas the one-third method resulted in a delayed
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overshoot. Note that during on-line tuning (in Mode1 and Mode2), the decrease in the
process gain results in a slower response, which increases the error if the PI parameters
are not adjusted. After on-line tuning, the agent recommended more aggressive PI
parameters to reduce the error at higher setpoints while respecting the constraints.
This recommendation reduced the rise time significantly when the setpoint increased.
In addition, C3 helped minimizing ISE while C4 helped avoiding aggressive actions,
providing a better overall performance. Additionally, agent-tuned controllers handled
the disturbance more quickly.

In contrast, as shown in Fig. 7.15, the initial parameters suggested by the agent
and other tuning methods resulted in oscillatory behaviour because they were ob-
tained for direct control through PIlevel. Despite this difference, the agent was able
to adapt to the differences introduced by PIflow in TS-b after six hours of on-line
tuning. The results emphasize the versatility of the proposed method that can adapt
to changes in the control strategy starting from simple step-response tests.

As a result of the proposed constrained PI tuning scheme, the agent improved its
overall performance. These results also show that the agent adapts to process changes,
and thus the proposed method can be beneficial for tuning PID for multi-modal or
varying dynamic processes.

7.5 MPC Tuning as a Reinforcement Learning Prob-
lem

This section extends the autonomous PID tuning to an autonomous MPC tuning
methodology and integrates it into a more complex control structure in the following
chapter of the thesis. In the presence of considerably accurate models, the controller
can be tuned to reject disturbances, track setpoints, or have a specific transient per-
formance [402]. However, controller tuning can include more complex aspects (such
as economic or safety conditions to be satisfied) that can have nonlinear relationships
between the controller parameters and the objective functions, which are used to con-
trol the system. It is challenging to mathematically model them. Such scenarios make
closed-form solutions to finding optimal controller parameters impractical, which can
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result in poor control performance.
RL methodology provides a data-driven alternative to controller tuning and can

train initial policies from simplified models. Furthermore, the agents can use non-
linear, non-quadratic, economic, and/or safety-based arbitrary reward functions. Through
an intelligent search of the state/action spaces and Bellman’s optimality principles
discussed in the previous section, the agent can look for solutions to controller tuning.
The following points are assumed for the RL environment.

1. The offline environment is stochastic with Gaussian noise and linear time-
invariant. This assumption mimics realistic noise and ensures the optimum
set of parameters for the same system does not change over time.

2. The rewards are semi-infinite. That is, rt ∈ (−∞, 0], ∀t. This assumption
ensures a bounded maximum value for the maximization operation shown in
Eqn. (7.19).

3. The real system model is similar to but different from that of the offline model.
This assumption rationalizes the RL-based MPC tuning since an offline-learned
policy can be online fine-tuned in the real system. Also, it supports Assumption
1 because when Assumptions 1 and 4 hold, the set of parameters obtained from
offline training will be reasonable ones to start with in the real system.

4. The state transitions follow the Markovian property. That is, the next state
does not depend on the previous states given the current state and the action.
This assumption makes temporal difference learning applicable without storing
the previous state-action pairs, rationalizes the RL-based MPC tuning, and
reduces the computational complexity.

J2(θ) = max
θ

Eπθ [Gt|θ] (7.19)

Given these assumptions, the MDP is defined with the following elements.
State, xA2τ = ∆J = Jτ − Jτ−1 ∈ R1: It represents the change in the MPC

observed N -step cost function. That is, the low-level states and actions in the MPC
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cost function are substituted with their observed values as shown in Eqns. (7.20) and
(7.21). A2 represents the agent’s name to distinguish its elements (e.g., state, action,
reward, time) from the low-level ones.

Jτ−1 =
∑N−1

k=0

[
||xt+k − xt+k,sp||2

Q
[1]
N

+ ||ut+k − ut+k,ref ||2λN + ||∆uk||2
Q

[2]
N

]
+||xt+N − xt+N,sp||2

Q
[3]
N

(7.20)

Jτ=
∑2N−1

k=N

[
||xt+k − xt+k,sp||2

Q
[1]
2N

+ ||ut+k − ut+k,ref ||2λ2N + ||∆uk||2
Q

[2]
2N

]
+||xt+N − xt+N,sp||2

Q
[3]
2N

(7.21)

where · represents the observed value, and τ ∈ {N, 2N, 3N, ...} is the discrete time
step of the agent. For simplicity, N is kept unchanged in this study. However, the
methodology can be applied to varying N with appropriate adjustments to reflect the
contribution of varying N in J . Note also that the MPC weights are the final values
in the horizon. This property indicates that the MPC weights are kept constant for
the N steps, and the agent changes λ at the end of N steps (at t = {N, 2N, 3N, ...})
during learning.

Actions, uA2τ = [λ(1), λ(2)] ∈ R2: Although an MPC has multiple parameters
(i.e., Q[1], Q[2], Q[3], λ,N , and sometimes another explicit horizon, NC , for the control
input sequence), this study focuses on tuning the λ parameter for proof of concept.
Another reason for this simplification is that the Q-weights, in the MPC optimization
step, adjust the relative importance in the presence of λ. Therefore, given the im-
provement in the MPC observed performance, the agent estimates the MPC weights,
λτ . Since xA2τ+1 = f(xA2τ , uA2τ ) and x2N = f(xA2τ , xN , u

A2
τ , uN), this setup satisfies the

Markovian property in multiple levels and is suitable for an RL solution.
Reward, rA2τ+1 ∈ R1

−: Reward is the only supervisory signal that monitors the
agent’s performance given the state-action pair. As shown in Eqn. (7.22), the re-
ward function determines the magnitude of the parameter update during the policy
optimization step.

θt+1 = θt + α(Gt − V (Xt, ω))∇ ln π(Ut|Xt, θt)

= θt + α(Rt+1 + γV (Xt+1, ω)− V (Xt, ω))∇ ln π(Ut|Xt, θt) (7.22)
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In this study, the agent’s goal is to produce MPC weights such that xt and ut (i.e.,
the controlled and manipulated variables) are within safe limits, and the product yield
is maximized, as shown in Eqn. (7.23).

−rA2τ+1=
2N−1∑
k=N

[1cond1 |xt+k − xt+k,sp|+ 1cond2 |ut+k − ut+k,ref |

+|xt+k − xt+k,sp × (1 + c1)|] (7.23)

with cond1=(xt+k > xt+k,sp × (1 + c1)) ∨ (xt+k < xt+k,sp × (1− c1)) (7.24)

and cond2=(ut+k > ut+k,sp × (1 + c2)) ∨ (ut+k < ut+k,sp × (1− c2)) (7.25)

where c1 = 0.1 ∈ C and c2 = 0.999 ∈ C adjust the magnitude of the limits of the safe
zone/tube, and C = (0, 100]%.

7.6 Conclusion

Despite ever-advancing control technologies, PID controllers are an indispensable el-
ement in industrial applications due to their practicality and simplicity. Although
they provide robust and stable solutions, their parameters may require frequent tun-
ing due to uncertainties and operation condition changes. Classical methods rely on
system models or various rules to tune PID controllers, where autonomous tuning is a
major challenge. This study has proposed an end-to-end methodology, starting from
inaccurate step-response models, which may be the only available model for many
complex processes. Following the simple tuning procedure, the initial or reference PI
parameters were obtained by using an off-line tuning rule to provide a baseline for the
RL agent. The proposed off-line tuning step can be convenient for many industries
where the on-line tuning may be costly. At the on-line tuning phase, the agent can
safely improve its performance within a shorter period by interacting with the real
environments that involve sensory uncertainties. Additionally, the proposed scheme
has been tested successfully on a pilot-scale experiment by using industry standard
connectivity schemes with a DCS in the loop, to highlight its applicability poten-
tial. Consequently, this scheme can be beneficial for industries where continuous
identification of complex processes is challenging, human tunings are expensive, and
on-line learning from scratch is costly or risky. This work imposes soft constraints
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on the variables in the reward function. One of the future research directions is a
consideration of hard constraints through a direct optimization of lower-level process
variables.

181



Chapter 8

Experimental Implementation of
Autonomous Automation System.

This chapter integrates the previous chapters to propose an autonomous advanced
control architecture for a pilot-scale experimental setup as a proof of concept. The
architecture consists of a state estimator agent (described in Chapters 1 and 3), a
model predictive controller (described in Chapter 4), two PID controllers (described
in Chapter 5), an MPC tuner (described in Chapter 5), a planner/setpoint optimizer,
and a plant to be controlled efficiently and safely. Such an autonomous system re-
quires optimal sequential decision-making under uncertainty, whose components will
be discussed in this section. Similar examples can be seen in the robotics sector,
where various data is obtained using sensors and processed using high-performance
hardware (such as graphical processing units) to calculate optimal trajectories and
low-level actions in robots and autonomous cars.

8.1 Introduction

Model predictive control (MPC) is a modern technique that optimizes a constrained
control trajectory over time through a dynamic system model with multiple in-
puts/outputs [403]. These models can be input/output, step, and impulse response
models and the constraints can be enforced on both state and action spaces [404].
The controller can improve a process by using an objective function that can be a
weighted mixture of low-level process variables, auxiliary terms that target economic
benefits, etc. [405–407]. Moreover, special types of MPC have been proposed to ad-
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dress control-specific subjects, such as robustness and stability [408, 409].
Although an MPC can be used to maximize product yield [410], improve safety,

and/or reduce environmental footprint, several factors limit its usability. For ex-
ample, accurate system models might not be available for complex systems, the hard
constraints make the optimization problem intractable (requiring numerical optimiza-
tion techniques that can be time-inefficient or inaccurate), or the weight matrices in
the objective function need to be tuned for desired control performance. Though sev-
eral studies and practical workarounds address some of these challenges, weight tuning
is an open research subject that has been investigated through numerous methodolo-
gies, including optimization [411–417], heuristics [418,419], gradient descent with line
search [420], H∞ loop shaping [421], controller matching [422], etc.

On the other hand, reinforcement learning (RL) approaches provide an alterna-
tive solution to weight tuning by combining optimal control theory and data-driven
learning [35]. In the RL methodology, an agent interacts with its environment to
find the best policy, which maximizes the agent’s goal. This goal can be encoded in
a reward signal by experts, and the agent can optimize this policy by associating the
reward signal with the state-action pairs. Unlike heuristic adaptive methods, an RL
agent integrates statistical learning and Bellman’s optimality principle to consider
the future outcomes of the current action. A few approaches have been proposed
to tune MPC through RL methodology, including a work reported in [423], which
tunes the weight matrices for state and action contribution to the MPC cost. The
authors have proposed to use Q-learning and showed promising closed-loop perfor-
mance in a simulated environment. Moreover, the authors of [424] have used the
soft actor-critic algorithm to tune the MPC prediction horizon for a control problem
in a collision avoidance environment. Another study proposed to use the TD3 algo-
rithm and showed their agent could achieve an expert-like performance in a simulated
vehicle-control environment [425].

As proof of concept, this work, on the other hand, simplifies the MPC tuning
problem by tuning only the action weight matrix (namely λ). The contributions of
this chapter are as follows:

• Proposing a simple yet effective operating point optimizer (Agent 3) that con-
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siders economic and environmental aspects of the operation.

• Integrating the MPC tuning agent (Agent 2, developed in the previous chapter)
into an autonomous control scheme that consists of an interface tracking agent
(Agent 1), a Kalman filter, an operating point optimizer agent (Agent 3), an
MPC, and a PID controller.

• and realizing the resulting structure in a pilot-scale experimental plant.

The remainder of this chapter is structured as follows: Section 8.2 provides de-
tailed background information, Section 8.3 describes the proposed method, Section
8.4 discusses the empirical outcomes, Section 8.5 outlines the challenges of imple-
menting autonomous process automation systems, and Section 8.6 concludes with
remarks.

8.2 Background

This chapter is an integration of techniques developed in the previous chapters.
Therefore, the background theory and methodology of state estimation and control
elements are revisited in this section.

8.2.1 State Estimation and Model Predictive Control

Physical processes may be represented by a discrete-time time-invariant state-space
model, as shown in Eqns. (8.1) and (8.2).

xt+1 = Atxt +Btut + Etϵt (8.1)

yt = Ctxt +Dtut + Ftψt (8.2)

where xt ∈ Rn, ut ∈ Rq, yt ∈ Rp are the state, control, and measurement respectively.
t, ϵt and ψt, are the discrete time, state noise, and measurement noise, respectively.
At, Bt, Ct, Dt, Et, and Ft are gain matrices with proper dimensions. In this chapter,
the following simplifications will be considered: Ct = Et = Ft = 1 and Dt = 0.
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A state estimation method can recover the unknown state of interest, xt in the
presence of noisy measurements. For example, a Kalman filter estimates the mean
and covariance for the state of interest as follows [31]:

x̂−t = At−1x̂
+
t−1 +Bt−1ut−1 (8.3)

P−
t = At−1P

+
t−1A

T
t−1 + Σϵ,t−1 (8.4)

Kt = P−
t C

T
t (CtP

−
t C

T
t + Σψ,t)

−1 (8.5)

x̂+t = x̂−t +Kt(yt − Ctx̂−t ) (8.6)

P+
t = (I −KtCt)P

−
t (8.7)

where (·)− and (·)+ represent a priori and a posteriori estimates respectively. Kt

is the Kalman gain, and Σϵ,t and Σψ,t are the known state and measurement noise
covariances.

In practice, an MPC can be used to achieve the desired process performance
[315–317]. In this study, an MPC will solve the optimization problem shown in Eqns.
(8.8) and (8.9).

min
ut

J(ut) = min
ut

N−1∑
k=0

||x̂t+k − xt+k,sp||2Q[1]
k

+ ||ut+k − ut+k,ref ||2λk + ||∆uk||
2

Q
[2]
k

+ ||x̂t+N − xt+N,sp||2Q[3]
N

(8.8)

s.t. Eqns. (8.1), (8.2),

umin ≤ u ≤ umax, ∀t

x̂min ≤ x̂ ≤ x̂max, ∀t

x0̂ = E[x̂], x̂ ∈ X , u ∈ U (8.9)

where J is a quadratic cost function that is to be minimized at every discrete time
step with ut = {u(0), u(1), ..., u(N − 1)}. ŷt = Ctx̂t is the estimated state. xt,sp and
ut,ref are state and control action setpoints, ∆u = (ut+1 − ut) is a velocity term,
N is the prediction horizon, and (·)min and (·)max are the lower and upper limits.
Q

[1]
k ∈ Rp×p, Q[2]

k ∈ Rq×q, Q[3]
N ∈ Rp×p and λk ∈ Rq×q are the weight matrices in

diagonal form, and X and U are the state and action spaces, respectively. After the
sequence, ut (i.e., the solution to the open-loop optimization problem) is calculated,
the first control action, ut = u(0) ∈ ut, is sent to the plant.
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8.2.2 PID Control

Although an MPC provides optimal control action to the plant, this action variable
can have large variations. Therefore, it is appropriate to filter this action by using
various filtering approaches. This study uses a PID controller to adjust the behaviour
of ut calculated by the MPC. That is, instead of sending ut to the actual plant, it is
sent to a PID controller, more specifically a PI controller. The resulting digital PI
controller can be written as: [352]

MVt=MV̄ +Kc

[
εt +

∆t

τI

t∑
j=1

εj

]
(8.10)

with ε=ut −MVt (8.11)

whereMVt is the control action sent to the plant, MV̄ is a steady state bias term, Kc

is the proportional gain, τI is the time constant, ∆t indicates the sampling period,
εt is the difference between a setpoint determined by the MPC (ut), and the ma-
nipulated variable (MVt) measured by using the flowmeter. The resulting MPC-PID
combination is shown in Fig. 8.1.

MPC PID+-
ut MVtEstimated States εt

To the PlantFrom the Plant
Figure 8.1: MPC-PID Combination.

Reinforcement learning modifies the control problem by substituting the controller
with an agent and learning a policy instead of calculating the optimal trajectory at
each time step. A Markov decision process, M = ⟨X ,U ,R, p, γ⟩, is a stochastic
process that mathematically represents the environment to be controlled, where ⟨·⟩
is a tuple. In this setting, the agent observes a state, xt ∈ X , and takes an action
ut ∈ U . As a consequence, the system evolves according to p(x′, r|x, u), while emitting
a reward signal, rt+1 ∈ R ⊂ R. Model-free algorithms consider p(·) to be unknown to
the agent, making the learning process data-driven. In the MDP, the agent’s purpose
is to learn how to maximize the discounted return, G, which is shown in Eqn. (8.12).

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (8.12)
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where γ ∈ [0, 1] is a weight that governs the contribution of future benefits to the
return function, and capital letters indicate that the reward is a stochastic variable.
The agent samples its actions from a stochastic policy, π(u|x), whose performance
is monitored using a value function, during its interactions with the environment.
The type of value function can be chosen based on the policy evaluation approach.
Learning can be accomplished by recursively solving the Bellman equations as shown
in Eqns. (8.13)-(8.14) [37].

vπ(x)=Eπ [Gt|Xt = x]

=Eπ [Rt+1 + γGt+1|Xt = x] , ∀x ∈ X

=
∑
u

π(u|x)
∑
x′

∑
r

p(x′, r|x, u)× [r + γEπ [Gt+1|Xt+1 = x′]]

=
∑
u

π(u|x)
∑
x′

∑
r

p(x′, r|x, u) [r + γvπ(x
′)] (8.13)

qπ(x, u)=Eπ [Gt|Xt = x, Ut = u] , ∀x, u ∈ X × U

=
∑
x′

∑
r

p(x′, r|x, u)

[
r + γ

∑
u′

π (u′|x′) qπ(x′, u′)

]
(8.14)

where E[·] denotes the expectation of a random variable. These equations assume the
Markov property, which asserts that future states rely solely on present states and
are independent of past ones. Following the recursions, the optimal value functions
can be found by using Eqns. (8.15) and (8.16).

v∗(x)=max
π

vπ(x), ∀x ∈ X (8.15)

q∗(x, u)=max
π

qπ(x, u), ∀x, u ∈ X × U

=E [Rt+1 + γv∗(Xt+1)|Xt = x, Ut = u] (8.16)

Finally, Eqn. (8.17) may be used to calculate the optimum (also known as greedy)
policy.

π∗(x) = argmax
u

q∗π(x, u) (8.17)

The system model, p (·), however, might not be available, making Eqns. (8.13)
and (8.14) invalid. Moreover, in large/continuous space control problems it might
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not be possible to determine exact values of v (x) or q (x, u). To address these issues,
approximate value functions, V (x|ω) or Q(x, u|ω), might take the place of exact
solutions. Here, ω specifies the parameters of the value functions.

Although value functions can result in effective policies, the agent can directly
learn a parameterized policy, πθ(u|x, θ), by maximizing the expected return, as shown
in Eqn. (8.18).

J2(θ) = max
θ

Eπθ [Gt|θ] (8.18)

where J2(θ) is the objective function. The policy update rule can be derived by
applying the policy gradient theorem [35], as shown in Eqn. (8.19). For simplicity of
notation, πθ(·) will be represented as π(·).

θt+1 = θt + αGt∇ ln π(Ut|Xt, θt) (8.19)

where α is the learning rate. Although θ is updated by Eqn. (8.19) in the direc-
tion of high return values, α and G are still important for θ to converge. Moreover,
|∆θ| = |θt+1 − θt| ≥ 0 if |G| ≥ 0 or |∇ ln π| ≥ 0. Through a parameterized base-
line, V (x, ω), the actor-critic technique integrates value-based methodologies and the
policy gradient theorem. This combination decreases θ variability and promotes con-
vergence. Eqn. (8.20) shows how to define the modified policy update rule.

θt+1 = θt + α(Gt − V (Xt, ω))∇ ln π(Ut|Xt, θt)

= θt + α(Rt+1 + γV (Xt+1, ω)− V (Xt, ω))∇ ln π(Ut|Xt, θt) (8.20)

Initially, V (Xt, ω) ̸= (Rt+1 + γV (Xt+1, ω)) since ω is often a set of randomly initial-
ized parameters [73]. As a result, high values of (Rt+1 + γV (Xt+1, ω) will result in
aggressive modifications of policy parameters, θ. However, when V (Xt, ω) approaches
(Rt+1 + γV (Xt+1, ω), the variability in θ decreases over time [73].

8.3 Autonomous Process Automation

Autonomous process control involves sequential and complex processes that require
intelligent and optimum decision-making strategies due to safety, optimality, and
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environmental concerns. This subsection integrates an MPC with a Kalman filter and
multiple RL agents operating at different levels in the control hierarchy, as shown in
Fig. 8.2.

Production Level (Agent 3)

Supervision Level (Agent 2)

Execution Level (MPC, PID)

Instrumentation Level
(Agent 1)

Plant

Figure 8.2: An autonomous control hierarchy with the elements used in this work.
Agent 1 [326] is an interface tracking agent that estimates the state of interest, cas-
caded MPC and PID [426] control the state of interest, Agent 2 tunes the MPC
parameters, and Agent 3 optimizes the operating point at the uppermost control
level.

To provide an autonomous infrastructure, this chapter integrates the techniques
developed in the previous chapters. The elements of the infrastructure include Agents
1-3, an MPC, a PID controller, and a Kalman filter. The process flow diagram (PFD)
of the resulting infrastructure is shown in Fig. 8.3.

8.3.1 Agent 1

Agent 1 is an interface tracking agent that observes individual images and moves a
NB×MB-sized virtual box, B, the center of which represents the interface, x(2) [326].
Its MDP is defined as follows:

States, xA1t ∈ B = RNB×MB
+ : Intensity of pixels within the virtual box, with

NB = 42 and MB = 157.
Actions, uA1t ∈ {−1, 0, 1} px.: Move the virtual box’s center by one pixel up or

down, or stop.
Reward, rA1t+1 ∈ R−: The disparity in the measurement of the DP cell and the

position of the center of the box (with reference to the bottom of the PSV), given in
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PSV System Agent 1 Kalman
Filter

MPC

PID x2

Agent 2

Agent 3

Pressure Sensor

x(2)sp

Image x(2)

{u(2),u(4)}MPC

MVT
PID

MVT
Constant

x(2)̂

{λ(1),λ(2)}

{u(2),u(4)}PID

{u(1), u(3)}constant

Recycle Pumps

x(1)̂

Figure 8.3: A simplified PFD of the autonomous control infrastructure. The au-
tonomy refers to safe and optimum control of the two states, x(1)(top level) and
x(2)(interface level). Agent 1 receives a PSV image and predicts the interface level,
x(2). A pressure sensor monitors the top level, x(1). A Kalman filter uses a
model to filter these estimations, and sends its predictions, x(1)ˆ and x(2)ˆ to the
MPC. Agent 2 observes the MPC performance and tunes the MPC parameters,
λ(1) and λ(2). Agent 3 observes the interface and estimates its operating point,
x(2)sp to maximize the recovery rate. The PID controllers receive the MPC out-
put and adjust the control input to provide smoother transitions. The resulting
outputs, {u(1)constant, u(2)PID, u(3)constant, u(4)PID are sent to the pilot-scale experi-
mental setup and the Kalman filter.

Eqn. (8.21).
rA1t+1 = −|x(2)t − x̂(2)t| (8.21)

x(2)t is the actual interface level and x̂(2)t is the center of the box at t.

8.3.2 Agent 2

Agent 2 tunes the MPC controller by observing a performance metric and changing
the MPC control action weight. Its MDP has the following elements:

State, xA2τ = ∆J = Jτ − Jτ−1 ∈ R1: It represents the change in the MPC
observed N -step cost function. That is, the low-level states and actions in the MPC
cost function are substituted with their observed values as shown in Eqns. (8.22) and
(8.23). A2 represents the agent’s name to distinguish its elements (e.g., state, action,
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reward, time) from the low-level ones.

Jτ−1 =
∑N−1

k=0

[
||xt+k − xt+k,sp||2

Q
[1]
N

+ ||ut+k − ut+k,ref ||2λN + ||∆uk||2
Q

[2]
N

]
+||xt+N − xt+N,sp||2

Q
[3]
N

(8.22)

Jτ =
∑2N−1

k=N

[
||xt+k − xt+k,sp||2

Q
[1]
2N

+ ||ut+k − ut+k,ref ||2λ2N + ||∆uk||2
Q

[2]
2N

]
+||xt+N − xt+N,sp||2

Q
[3]
2N

(8.23)

where · represents the observed value, and τ ∈ {N, 2N, 3N, ...} is the discrete time
step of the agent. For simplicity, N is kept unchanged in this study. However, the
methodology can be applied to varying N with appropriate adjustments to reflect the
contribution of varying N in J . Note also that the MPC weights are the final values
in the horizon. This property indicates that the MPC weights are kept constant for
the N steps, and the agent changes λ at the end of N steps (at t = {N, 2N, 3N, ...})
during learning.

Actions, uA2τ = [λ(1), λ(2)] ∈ R2: Although an MPC has multiple parameters
(i.e., Q[1], Q[2], Q[3], λ,N , and sometimes another explicit horizon, NC , for the control
input sequence), this study focuses on tuning the λ parameter for proof of concept.
Another reason for this simplification is that the Q-weights, in the MPC optimization
step, adjust the relative importance in the presence of λ. Therefore, given the im-
provement in the MPC observed performance, the agent estimates the MPC weights,
λτ . Since xA2τ+1 = f(xA2τ , uA2τ ) and x2N = f(xA2τ , xN , u

A2
τ , uN), this setup satisfies the

Markovian property in multiple levels and is suitable for an RL solution.
Reward, rA2τ+1 ∈ R1

−: Reward is the only supervisory signal that monitors the
agent’s performance given the state-action pair. As shown in Eqn. (8.24), the re-
ward function determines the magnitude of the parameter update during the policy
optimization step.

θt+1 = θt + α(Gt − V (Xt, ω))∇ ln π(Ut|Xt, θt)

= θt + α(Rt+1 + γV (Xt+1, ω)− V (Xt, ω))∇ ln π(Ut|Xt, θt) (8.24)

In this study, the agent’s goal is to produce MPC weights such that xt and ut (i.e.,
the controlled and manipulated variables) are within safe limits, and the product yield
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is maximized, as shown in Eqn. (8.25).

−rA2τ+1 =
2N−1∑
k=N

[1cond1 |xt+k − xt+k,sp|+ 1cond2 |ut+k − ut+k,ref |

+ |xt+k − xt+k,sp × (1 + c1)|] (8.25)

with cond1 = (xt+k > xt+k,sp × (1 + c1)) ∨ (xt+k < xt+k,sp × (1− c1)) (8.26)

and cond2 = (ut+k > ut+k,sp × (1 + c2)) ∨ (ut+k < ut+k,sp × (1− c2)) (8.27)

where c1 = 0.1 ∈ C and c2 = 0.999 ∈ C adjust the magnitude of the limits of the safe
zone/tube, and C = (0, 100]%.

8.3.3 Agent 3

Agent 3 optimizes the operating region for the interface by observing the interface (es-
timated by Agent 1) and changing the operating point for the MPC. Its methodology
is inspired by [126] and MDP is defined as follows:

State, xA3ττ = x(2)ττ ∈ R1
+: Interface level location, estimated by Agent 1. In this

study, it is assumed that the interface level location will converge to the setpoint and
reach a steady state. Since the controllers change this location during the operation,
the location is a dynamic term, and this state respects the Markov property.

Actions, uA3ττ ∈ R1: Change in the operating point, Iττ = x(2)ττ,sp = x(2)ττ−1,sp+

uA3ττ .
Reward, rA3ττ+1 ∈ [0, 100]%: The reward is a function of environmental footprint

and recovery rate, which are often the main aspects during primary separation vessel
(PSV) operation in the oil-sands industry [326]. More specifically, if the interface
level is too high (with respect to an oil/bitumen outlet), the water and solids mix
into the high-value bitumen, lowering the product quality and risking the downstream
equipment. On the other hand, if the level is too low, the bitumen can mix into the
tailings stream and result in environmental damage. Therefore, there is a safe and
optimum operation range in the PSV operation, as shown in Fig. 8.4.

The resulting reward function for the PSV experiment is given in Eqn. (8.28).

rA3ττ+1 =


x(2)ττ ×−14.286 + 857.14 if 60 > x(2)ττ ≥ 55

100 if 53 > x(2)ττ > 42
x(2)ττ × 8.33− 250 if 42 ≥ x(2)ττ ≥ 30

0 otherwise

(8.28)
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Figure 8.4: Reward Design for Agent 3. If the level is too high (with respect to a fixed
oil/bitumen outlet, shown as the black dashed line), the product quality decreases
and the water-solid mixture can potentially damage the equipment, which is indicated
as zero contribution to the reward function. If the level is too low, the bitumen can
mix into the tailings stream, damaging the environment, which is indicated as minus
a hundred contribution to the reward function.

8.4 Results and Discussion

This section presents the agents’ offline and online learning curves that demonstrate
the agents’ adaptability and experimental control results in the integrated infrastruc-
ture. Note that these agents interact with the environment at different frequencies.
That is, 1

t
= 1

0.5
s−1, 1

τ
= 1

1.5
s−1 (during offline training), 1

τ
= 1

400
s−1 (and once after

online tuning), 1
ττ

= 1
400
s−1.
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8.4.1 Learning Results

Agent 1 was trained on an experimental video clip with a random and continuous
trajectory to learn the interface dynamics from the visual data, as described in [326].
Then, the agent was fine-tuned online with synthetic occlusion and lighting changes
for visual robustness.

As shown in Fig. 8.5, during offline training, the agent converged to an effective
policy that resulted in near-zero return values following initial exploration. The offset
was due to the initial location of the virtual box. After offline training, the agent was
exposed to synthetic occlusion and lighting abnormalities that initially deteriorated
its performance. However, the agent quickly adapted to these visual changes and
converged to high rewards again. This behaviour shows that the agent can quickly
learn effective policies and adapt to further changes as an intelligent decision-maker.

0 200 400 600 800 1000 1200 1400 1600
Episodes

−200

−175

−150

−125

−100

−75

−50

−25

0

Return

Training
Fine-tuning with Occlusion & Lighting Changes

Figure 8.5: The learning curve of Agent 1. The agent converges to an optimum point
after around 170 episodes. At around the 1000th episode, the agent yields poorer
performance due to synthetic occlusion and lighting abnormalities. After around 50
episodes, the agent converges to higher returns.
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Agent 2 was trained on a first principles state-space model with synthetic Gaus-
sian noise that mimics the pilot scale experimental setup. To demonstrate the adap-
tation from the simulated to the real environment, a model-plant mismatch was
deliberately introduced.

In the PSV experiment, there are two low-level states, namely the interface level
and the top level. The primary goal is to maintain the interface level at the desired
region as shown in Fig. 8.4. Moreover, the top level should also be at safe levels to
avoid overflows, which makes this control a secondary objective. The experimental
setup has four controlled pumps, four flow rates attached to their pipes, and two
pressure sensors (DP cells). In this study, only the bottom DP cell is used to correct
the top-level estimation. For simplicity, the oil and water feed rates are fixed at 50%.
The resulting experimental setup is graphically shown in Fig. 8.6 and mathematically
represented in Eqn. (8.29).

xt+1 = Axt +But[
x(1)
x(2)

]
t+1

=

[
x(1)
x(2)

]
t

+

[
χ −χ χ −χ
0 0 χ −χ

]
u(1)
u(2)
u(3)
u(4)


t

(8.29)

yt = xt[
y(1)
y(2)

]
t

=

[
x(1)
x(2)

]
t

(8.30)

where x(1) is the top level, ytot and y(2) are measured by using the bottom DP cell
and the camera respectively, and the details of u and the overall control structure
are shown explicitly in Figs. 8.3 and 8.6. Since the system does not evolve when
the pumps do not work, A = I. Moreover, χ = 50Ts

3Atank
is identified through system

identification and experimental validations [29] where Ts is the sampling time, and
Atank = 706.86 is the circular area of the tank .

Although the real process has four pumps, resulting in a four-input-four-output
equation set, only the two pumps are controlled via MPC and PID in practice to
mimic an industrial setup. The training phase of Agent 2 involves computationally
expensive calculations, including the combination of a Kalman Filter and MPC. To
speed up the training phase of the agent, the simulated state-space model was sim-
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Figure 8.6: PSV Experimental Setup. The used equipment is highlighted using black
colour. For simplicity, oil and water feed rates (u(1) and u(3)) are fixed to 50%. The
bottom DP cell and the camera provide the measurements for the top and interface
levels respectively. The MPC and PID control the water and oil outlet pumps.

plified to a two-input-two-output system. Furthermore, to show the effectiveness and
adaptive nature of the RL methodology, a model-plant mismatch was introduced by
deliberately modifying the A and B matrices (as shown in Eqn. (8.31)) before offline
training. [

x(1)
x(2)

]
t+1

=

[
0 1

−0.25 0.5

] [
x(1)
x(2)

]
t

+

[
0.8 0
0 0.4

] [
u(2)
u(4)

]
t

(8.31)

After the prior training, the agent was online fine-tuned in the experimental setup
to learn the model-plant mismatch. As shown in Fig. 8.7, the agent conducted ini-
tial exploration until around the 17500th episode and then converged to a maximum
return with a mean value of -800. Then, the agent was further trained on the exper-
imental setup for 264 episodes, which yielded near-zero returns, indicating no tube
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violations. This is because the simulated uncertainty was greater than the experi-
mental uncertainty, which resulted in less frequent tube violations.

0 2500 5000 7500 10000 12500 15000 17500 20000
Episodes

−1200
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Offline Training w/ Simulated Uncertainty
Online Fine Tuning

Figure 8.7: The learning curve of Agent 2. Following an initial exploration, the agent
converged to an optimum point after around 17500 episodes. After 264 episodes of
online tuning in the experimental setup, the agent showed no significant violations,
resulting in near-zero returns values.

Agent 3 aims to optimize a setpoint while maintaining it within a safe and
optimal region. At a high level, this RL problem can be simplified to manipulating
a random variable to keep it within a region while observing the reward, shown in
Eqn. (8.28). To speed up the training of this agent while providing a broad range of
experience, this agent was trained on a simulated random walk model that represents
the interface movement as shown in Eqn. (8.32).

x(2)ττ,sp = x(2)ττ−1,sp + uA3ττ (8.32)

where uA3ττ ∈ [−5, 5]cm to prevent aggressive actions (large changes in the setpoint).
During this agent’s training phase, x(2)ττ,sp was initialized at uniformly random points
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outside the safe region to encourage exploration. That is, the agent was forced to start
at setpoints that resulted in low-reward values and improve the reward by moving
into the safe and optimal region.

0 2500 5000 7500 10000 12500 15000 17500 20000
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Figure 8.8: The learning curve of Agent 3. The agent started exploring the state-
action spaces until around the 1500th episode. Later, it converged to higher returns
and yielded high recovery rates.

As shown in Fig. 8.8, this agent initially improved its performance but could not
maintain it. Following further exploration until the 1500th episode, the agent found
better operating points, resulting in higher recovery rates. These results show that
a simplified state-space model can act as a quicker learning environment in terms of
both wall clock time and the number of samples/episodes compared to larger state-
space models or more complicated models.

8.4.2 Experimental Control Results

After observing convergence in all the agents’ learning curves, they were integrated
and utilized in the experimental setup to demonstrate closed-loop autonomous per-
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formance.
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Figure 8.9: Integrated control results with the agents and the controllers. a) The
Kalman filter accurately estimated the top level, and the MPC-PID combination
resulted in insignificant deviations from the user-defined setpoints. b) The agent
accurately estimated the interface by using the images, and the Kalman filter slightly
reduced its variance. Agent 3 kept the interface within the maximum recovery range,
and the tube constraints were never violated by the MPC-PID combination. c-d) The
MPC and PID never violated the related flow rate boundaries. e-f) Agent 2 performed
initial exploration in the real system and learned that the low MPC weights yielded
better performance. At around the 800th time step, the agent output two average
MPC weights for the system.

As shown in Fig. 8.9-a) The Kalman filter successfully estimated the top level,
and the MPC-PID combination caused minor deviations from the user-defined set-
points. b) Using the images obtained from the PSV system, Agent 1 predicted the
interface with small deviations, and the Kalman filter marginally reduced its variance.
Agent 3 kept the interface within the maximum recovery range, and the MPC-PID
combination never exceeded the tube constraints. c-d) The MPC and PID never
surpassed the flow rate boundaries. e-f) Agent 2 conducted preliminary exploration
in the real system and discovered that lower MPC weights resulted in better perfor-
mance. The agent generated two average MPC weights for the system around the

199



800th time instant, and those weights were used after that instance.

a) Setpoint 1 b) Occlusion at Setpoint 1

c) Setpoint 2

Figure 8.10: Camera snapshots of the closed-loop control in the presence of camera-
and pressure-sensor noise, occlusion, and lighting changes (indicated with a yellow
arrow at the top right corners of the subfigures). The center of the white box denotes
the level estimated by Agent 1. a) The interface level is at the lower setpoint (which
is shown as the orange line and determined by Agent 3), Agent 1 tracks the interface
accurately and sends its estimation to the controllers, and the controllers keep the
interface at the setpoint. b) An occluding object is introduced at the same setpoint.
Agent 1 accurately tracks the interface level. c) Agent 3 moves the setpoint to a
higher level within the safe region. As a result, the controllers move the interface to
this new setpoint (indicated by the cyan line). Agent 1 provides reliable estimations
by tracking the interface accurately.

Some instances of these time-series results are also shown in Fig. 8.10. Fig.
8.10-a shows that the interface level was at the lower setpoint (shown as the orange
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line and estimated by Agent 3), Agent 1 precisely tracked the interface and pro-
vided its estimation to the controllers, and the controllers maintained the interface
at the setpoint. Even though the PSV was partially blocked by an object (shown in
Fig. 8.10-b), Agent 1 provided accurate level estimations. In addition, Fig. 8.10-c
shows that Agent 3 changed the setpoint within the safe area. As a consequence, the
controllers relocated the interface to this new setpoint (indicated by the cyan line)
while Agent 1 provided the correct estimations of the interface. These results proved
the concept of an autonomous control scheme in an experimental setup, which can be
beneficial for process industries involving multiple controllers, filters, state estimators,
and agents that involve nonlinear objective functions and unknown system dynamics.
These results also showed that such accurate tracking/control/optimization results
can be achieved starting with simplified simulated models and learning the model-
plant mismatch without compromising the safety of the process.

8.5 Challenges of Experimental Implementation of
the Autonomous Process Automation System

This chapter has provided a proof of concept for process autonomy with some crucial
elements in process control. However, intelligent or autonomous process automation
constitutes intermediate and more complex processes that work in ‘harmony’. One can
think of this harmony as sequential teamwork of software and hardware, where the
end of a process leads to a new one continuously and optimally, which is challenging
to attain. One of the most primitive examples of such sequences can be sets of logic
defined by operators via programmable logic controllers (PLCs), where the computer
monitors some key process variables and switches between conditions. However, in
this example, since these conditions are defined by the operator considering a limited
number of situations, process optimality and safety can be compromised. A better
alternative is to define higher-level objectives and extensively investigate all possible
scenarios to improve safety and optimality. Other challenges include implement-
ing hard constraints since their selection and enforcement require process knowledge
and often a process model. Selecting/developing appropriate system identification
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methodologies while incorporating prior expert information can result in successful
applications toward full autonomy. Another challenge with data-driven methods is
the extensive training time, demonstrated in earlier chapters, where the model-free
agents can require millions of training data points. Some solutions to this problem
include pre-training the agents offline (using approximated process models or digital
twins) since the agents’ parameters are randomly initialized, using model-based RL
agents where the agent learns from both sampled data and the process model, using
a long sequence of historical data, or using sparse agents. Nevertheless, system iden-
tification is a substantial challenge at this step too. Although the agents provided in
this thesis demonstrate increased robustness due to the type of neural networks (e.g.,
convolutional networks), another challenge is the disturbance rejection capabilities of
the agents, overlooking which can deteriorate learning and process stability. Since
these instabilities also impact the training time, disturbance rejection should be care-
fully handled. Moreover, fault detection, tolerance, and recovery are crucial aspects of
process control. An autonomous process automation system should be capable of de-
tecting a fault (ideally in advance), being tolerant to detected/undetected ones, and
recovering from the resulting undesired events (e.g., instability, over/undershoots,
offsets etc.). Finally, commissioning an autonomous process automation system is
complex and requires multi-disciplinary teams to cooperate at each implementation
step. After planning the project and designing, installing, testing, and calibrating
the hardware and software, it is the practitioners’ responsibility to ensure the process
variables and decisions made by the agents/controllers are within the desired limits.
For example, consider a case where an operator controls a process in ‘manual mode’,
and the operator wants to deploy a controller that has passed multiple tests consid-
ering noise, unmeasured/measured disturbances and various dynamics in simulated
environments but in the actual process. In this case, the operator should continu-
ously monitor the process, gradually introduce the new element (control action or
state estimation) to avoid abrupt changes in process variables and be ready to in-
tervene in case of unexpected process behaviour. This gradual introduction can be
achieved by using filters (e.g., low-pass) and switches. Another case is the shutdown
and startup of a process, where the process moves from a steady state to a transition
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state. Since there can be nonlinear, impulsive, or reverse dynamics, it is crucial to
maintain smooth transitions during the shutdown and startup phases. The following
list summarizes the abovementioned challenges to highlight some of the possible ex-
tensions to this thesis. Note that addressing a challenge could resolve another one
due to their similarity.

• Process safety and optimality,

• Constraints,

• Training time,

• Disturbance rejection, learning and process stability,

• Optimality,

• Fault detection, tolerance, and recovery,

• Commissioning.

8.6 Conclusion

This study demonstrated the feasibility of autonomous control in process industries.
The control structure incorporated nonlinear/piecewise linear, continuous/discontinuous,
quadratic/non-quadratic, symmetric/asymmetric reward, and state functions. The
research also showed that the RL agents could be used on various types of data with
diverse sizes, indicating that the RL is a scalable approach that could be used at
multiple levels of the control hierarchy. Using observed values in the cost function
emphasizes the RL methodology’s adaptability and model-free nature, as opposed to
traditional techniques. When the agents are used with well-studied approaches such
as MPC, they may produce robust control, which can enhance safety and production
performance in process industries.
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Chapter 9

Concluding Remarks

This chapter summarizes the findings of the proposed methodologies and their appli-
cation in numerous case studies. In addition, several prospective research endeavours
in this area are highlighted.

9.1 Conclusion

The overarching premise investigated in this thesis is intelligent decision-making under
uncertainty toward autonomous industrial control. As a result, all of the proposed
techniques concentrate on certain aspects of reinforcement learning. Computer vision,
state estimation, and process control are the three concepts investigated here. Each
of these tasks is prevalent in many industrial processes and is complicated in nature,
requiring the utilization of smart algorithms to execute them. A combination of the
presented chapters results in an autonomous control mechanism, which is an essential
component toward full autonomy in process industries.

The first contribution, presented in Chapter 3, is the literature review on actor-
critic reinforcement learning algorithms and a robust interface tracking algorithm.
The proposed algorithm targets the lowest level in the control hierarchy, namely,
the instrumentation level. Unlike the existing methods, the proposed algorithm pro-
vides an end-to-end interface tracking methodology consisting of convolutional and
convolutional long short-term memory networks. This structure combines the neigh-
bouring spatial and spatio-temporal features without any explicit models or strict
assumptions. Unlike the supervised/unsupervised learning methods, the proposed

204



RL-based tracking algorithm requires a significantly small number of images that can
quickly be labelled by a user (manually) or a low-uncertainty pressure sensor (auto-
matically). This agent showcases superior performance compared to existing methods
in terms of robustness, which is one of the main requirements in state estimation and
control. Finally, this work contributes to deep learning-based RL solutions by using
a dimensionality reduction technique to illustrate the high-dimensional states’ value
functions as a performance indicator.

The second contribution, provided in Chapter 4, aims at designing an RL-based
safe controller by considering the operational limitations, such as safety criteria. To
achieve this goal, the proposed approach combines a deep actor-critic agent with ran-
dom setpoint initialization and a Lagrangian-based soft-constrained learning scheme.
The case studies shows that the soft-constrained scheme can provide smooth state
transitions with low-variance actions, while multiple workers accelerate the offline
training phase. Furthermore, an exploration metric was proposed inspired by the set
theory.

The third contribution, shown in Chapter 5, targets the constrained nature of
the uncertain quadratic/non-quadratic cost function that is commonly used in RL
and process control. This chapter shows that the reduction in the signal-to-noise
ratio in a process irrecoverably deteriorates the control policy and results in poor
tracking/control performance. Considering the sensory noise in processes, the pro-
posed method formulates the reward/cost function as a dynamic process with its
transition and observation models. Unlike the frequentist inference methods (with
a point estimate), the proposed method estimates the first and second moments of
the constrained reward by using a constrained particle filter. Furthermore, the con-
strained estimations are calculated in multiple threads of a computer to reduce the
computational time.

The fourth contribution, shown in Chapter 6, considers the dimensionality in-
crease in online state estimation through skew state estimation. Although a closed
skew-normal distribution increases the degree of freedom in state estimation, the di-
mensionality of its location and scale parameters increase at the end of each filtering
step. This issue slows down the inferential calculation, making obtaining closed-
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form/analytical solutions impossible and online inference infeasible over time. After
mathematically formulating the dimensionality reduction as an optimization method,
empirical analyses were conducted to compare numerous statistical distance func-
tions and optimization techniques. Finally, the proposed skew estimation scheme
was utilized in reward estimation and state estimation problems.

The fifth contribution, introduced in Chapter 7, aims at finding a practical solution
for the PID tuning problem. Since complex industrial plants can utilize thousands of
control loops of various natures, tuning the PID controllers can be a tedious task with
unknown system behaviour. Inspired by the actor-critic methodology, this chapter
developed a constrained contextual bandit that autonomously tunes the PID con-
trollers by using step-response models that are straightforward to obtain. Following
a preliminary offline training phase, the proposed agent was deployed in a distributed
control scheme to learn the model plant mismatch through online interaction.

The sixth contribution, described in Chapters 7 and 8, focuses on developing an
autonomous MPC tuner and integrating it with an autonomous advanced control in-
frastructure. Although several classical methods can design MPC parameters offline,
there could be significant performance degradation due to model plant mismatch
or variations in operational conditions. Furthermore, implementing non-linear/non-
quadratic or customizing the performance criteria through complex functions can be
challenging. However, the proposed actor-critic approach can provide optimal solu-
tion alternatives to such problems through smart trial-and-error. Due to its modular
and model-agnostic nature, such an agent can be trained on approximate system
models and be integrated into more complex schemes, which highlights the proposed
method’s versatility. This chapter combines the necessary elements of an autonomous
robust control scheme by integrating an interface tracking agent, a Kalman filter, an
operating point optimizer, a model predictive controller, an MPC tuner, and a cas-
caded PID controller.

In summary, complete process autonomy can be achieved by combining state esti-
mators, controllers and parameter optimizers at different layers of the control hierar-
chy. All these elements have unique structures, frequencies and targets, which makes
the overall infrastructure too complex to model. Hence, smart data-driven algorithms
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with substantial process knowledge and algorithmic improvements, as shown in this
thesis, can provide beneficial, tractable and scalable solutions to industrial process
control.

9.2 Future scope

This section describes the several research areas that might be pursued in terms of
additions and enhancements to the methodology described in the thesis. It should be
noted that the following research directions would enhance not only offline but also
online learning.

9.2.1 Stable Online Learning

The data-driven algorithms provided in the RL-oriented chapters rely on parame-
terized policies that are trained simultaneously with parameterized value functions
that regularize learning. This combination improves the stability of RL agents, unlike
supervised/unsupervised learning methods, which directly optimize a single set of pa-
rameters by using an objective function (e.g., regression/classification loss functions).
Nonetheless, accurate learning techniques often require a large number of parame-
ters, which increase the number of data points needed and deteriorate the stability
during recursive learning. Due to technological advancements, a parameterized com-
plex function (like a neural network) can be trained via automatic differentiation (also
called “autograd”) methods; however, the optimizers’ hyperparameters (such as learn-
ing rate) significantly impact the stability. Although some regularization/scheduling
techniques (e.g., learning rate annealing) have shown excellent empirical performance
in global competitions and collaborative engineering events (e.g., “hackathons”), hy-
perparameter selection is an outstanding research topic. To address such challenges,
Bayesian inference (e.g., a Kalman filter) can be infused into value/policy learning.
Note that in recursive parameter estimation, the learning rate is the scalable, non-
adaptive, and deterministic equivalent of the Kalman gain.
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9.2.2 Model-Based, Sparse Learning

Although the proposed agents sample data points by using simulated models during
offline training, the agents cannot access the underlying model structure or modify
them. Since the system models are unknown to the agents, learning often requires a
considerable amount of data (around millions of data points). When simulation mod-
els become more complex or involve intermediate calculations (e.g., the constrained
nonlinear trajectory optimization steps in the MPC tuner), the dependency on data
points significantly prolongs the learning time. Model-based learning can be uti-
lized in learning to reduce learning time (through “imaginary/simulated” trajectory
generation) and provide more robust policy/value functions through control-based
approaches (like H∞ methods). However, the validity of the model in the presence
of few data points is a significant challenge due to the accuracy and stability of the
model. In addition, learning global models requires retaining and optimizing us-
ing past information (as in Bayesian optimization), which can be infeasible in terms
of computation. Some of these identification/learning challenges can be addressed
through sparse parameterization (of the agents and system models) and Bayesian
inference (e.g., a Kalman filter).

9.2.3 Robust Learning/Control

The agents/controllers often use sensory information that is pre-processed by a filter
(like a moving average/Kalman filter). Although some types of neural networks (e.g.,
convolutional networks) can be insensitive to input variations -in fact, a neural net-
work acts as a non-linear low-pass filter on the input data-, data-driven learning might
suffer from high variations in the input data. As an alternative to convolutional or
statistical filters, spectral filters can decompose the input into its varying-frequency
elements. Such a spectral filter can be integrated into learning by considering the
uncertainties in the state and reward functions.
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