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ABSTRACT

The Alberta Discrete Activity Monitor System (ADAMS) is a
geheralized system designed to apply computer control to discrete,
real-time operafions. Typical applications include pilant start-up
and shutdown, system checkout, and recurring functions such as
those associated with batch operations. ADAMS is designed to assist
with each phase of project development from management level plan-
ning, through detailed project speéification and testing, to regular
implementation and optimization.

The distinguishing feature of ADAMS {s that it uses the
network analysis concepts popularized by critical path methods (CPM)
as a basis for project planning and real-time operation. ADAMS
accepts a coded version of the same network developed during the
project planning stage and uses it in conjunction with "activity
~latest start times" (calculated by a standard, offline CPM analysis)
to control the online scheduling of each activity. This eliminates
the need for the user to program the sequence in which activities
should be executed, and separates the detailed specification of the
activities from the project planning. It also permits ADAMS to
initiate activities in accordance with real-time requirements rather
than deﬁending on an apr16r1 fixed sequence.

ADAMS contains features which aid the computer system
engineer, the applications engineer, and the process operator but the
function of e&ch are kept distinctly separate. The computer system

enginegr is presented with a modular program that separates online



and offline functions. ADAMS is designed to run on real-time process
computers in either a timeshared or dedicated environment. It has
been written to be independent of any particular application and is
relatively independent of the computer hardware and software system
on which it is run. The coding used by the application engineer in
implementing the functions to be accomplished by each activity is a
"£{11-in-the-blanks" procedure designed to assist non-computer
oriented personnel. He must simply select an appropriate series of
generalized routines for each activity from a library of unit
functions and specify the required parameters. The process operator
is kept fully informed by messages originating within ADAMS or in
the user specified activities, and can take over complete or partial
control of the operation at any time. Manual and automatic opera-
tions can be intermixed and ADAMS can also communicate with and con-
trol other application programs such as direct digital control (DDC)
systems.

ADAMS has been implemented successfully on an IBM 1800
computer operating under the multi-programming executive (MPX) system.
Its usefulness has been demonstrated by application to the start-up
of a pilot plant evaporator, including transfer to DDC control for
continuous operation.

The present ADAMS programs do not contain all the features
in the recommended design but demonstrate the feasibility of a
generalized approach to the control of discrete activities and is an

excellent basis for the development of a commercial system.
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CHAPTER I
INTRODUCTION

- 1.1 Process Control by Digital Computers

The continued growth of computer control will depend to a
considerable extent on the availability of high level, application-
oriented, software systems. Such systems permit the user to rapidly
implement computer applications with minimum assistance from the
vendor and/or programming specialists. Direct digital control (DODC)
programs(]) and supervisory control systems such as PROSPRO(Z) and
BICEPS(3) are excellent examples of application programs which have
greatly assisted computer control of continuous processes. However,
to date, there has been relatively little effort directed toward the
generalized control of plant functions which consist of single or
repeated sequences of discrete steps such as are found in batch
operations, start-up, system checkout, laboratory applications, etc.

Development in this area has not lagged because of a lack
of potential applications. It has lagged because of the difficulty
in developing a generalized approach. Each application involves
thousands of separate steps that must be programmed. For example,
with DDC a few standard control algorithms can be applied, through
the appropriate selection of parameters, to the majority of industrial
control problems. In contrast, the start-up of each piece of equipment
requires a different sequence of operations and checks. Thus computer
control of discrete activities is more difficult but not impossible.

A very high degree of flexibility is required within such a

system because of the nature of automation. Normally, the first step



would entail automating the existing operating procedures. Future work
would no doubt involve reworking such procedures to take greater advan-
tage of computer capabilities. It is necessary to permit the initial

work plus following changes to be implemented gradually with a minimum

upset of plant operations.

1.2 Objectives of the Study

| The objective of the study is the application of computer
control to process operations consisting of discrete steps such as plant
start-up, shutdown, batch processes or system checkout.

Planning for the system proceeded on the basis that any
particular application would be handled in five distinct phases (see
Figure 1.1):

1. project planning and organization

programming details of project for computer

testing

-hw!\’

implementation
5. project re-evaluation and improvement

The study is directed at aiding work in each of these five
phases to give the prospective user a definite framework or pian for
adopting computer control of discrete operations.

The first specific objective is to make the program as inde-
pendent as possible of the application it controls and of the computer
software and hardware system on which it is to be run. Secondly, the
system is to be designed to assist in developing the initial organiza-
tion of the project as well as handle as many of the complex scheduling

tasks during execution as possible. These contributions would greatly
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reduce the amount of supervision and bookkeeping left up to the user.
Finally, the system should be user oriented in order to reduce the

amount of computer expertise, especially in programming, required of

the user.

1.3 Basic Approach of Project

The first major decision was to use network ana]ysis(4) in
the planning of each application. This widely used tool provides an
excellent managerial/technical interface. A project is defined in
terms of a network of activities. These activities may in turn be
subdivided into networks consisting of more detailed activities; the
activities on the most detailed level of network, for this use, being
composed of programmable steps. The main advantage of defining a job
on various levels is that work on one level of network is independent
of work on more or less detailed levels. Wwork on higher levels only
affects the initiation time of activities on lower levels. Work on
lower levels only defines the method employed within activities on that
particular level and usually does not affect the higher levelst In
other words, the functions and sequencing dependencies of activities
within a level can be planned or changed with minimum or no adjustments
on other levels.

The next decision was to adopt the retwork concept as the

_basis to control the sequencing of activities during execution. This
allows the user to use his most detailed network as input data without
additional instructions to the system concerning the order of sequencing.
The network approach also provides a convenient method of documenting

the project and displaying progress during actual execution. The
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network arrow diagram with present position of execution can easily be
displayed on a computer driven plotter or scope for the operator's
information.

Critical path ana1ysis(4), a network analysis technique, is
used to obtain activity latest start times (LST) to be used as priorities
in sequencing and executing the activities in order to achieve a time
optimal project. Resource allocation policies may also be implemented
in the same manner.

In addition to controlling the initiation of new activities,
it was decided to design the real-time executive to supervise the
execution of any number of activities which could occur concurrently
and to accommodate real-time factors that affect scheduling. For
example, when several activities are ready to be initiated and/or
executed the activity latest start times give a relative idea of which
are more critical. Also, should a particular activity or sequence of
activities fall behind schedule because of wrong apriori estimates of
the time required or because of real-time setbacks (eg. equipment
failure) its priority will become the highest. Hence an ordinarily
non-critical (timing) activity could be given top priority if real-time
events delayed its initiation. A priority system for initiating new
activities is important considering the number of parallel occuring
activities will normally be restricted by core limitations, which in
some cases will necessitate the queuing of low priority activities until
core space becomes available.

Another qecision was to use a "“table driven processor"
approach to implement a high level user language to be used in program-

ming the activities. Basically a set of subroutines was developed to



perform the desired basic functions and the user simply identifies which
subroutine he wishes to execute and supplies the required parameters.

The set contains the basic arithmetic and logic capabilities for control
calculations and decisions, but also has high level functions for

process 1/0, operator communications, and high speed monitoring functions.
Programming is a "fill in the blanks" procedure that is easily learned

without prior computer programming experience.

1.4 Previous Work

As previously explained, work in the field of computer control
of sequential or discrete iype operations is not as advanced as that for
continuous operations. This is mainly because thé complexity arising
from the multitude of details makes the organization and programming
very difficult. Papers on the subject, although very few, are generally
in agreement about the existing difficulties but conclude that computer
control is feasible and can be economical. The need for software
development is emphasized. Some of the more general comments are
expressed below.

Itahara(s) claims the justification for computer control of
batch processes lies in labour reduction and improved productivity.

He emphasizes the difference between batch and continuous operations,
stresses the importance of scheduling equibment to maximize usage,
and states that a major problem is the development of a scheduling
algorithm to achieve efficient opération. The computer's high speed
and ability to swap programs are necessities when controlling several
processes or more than one step in a single process. An extremely

important point made is that the development of software can often



result in costs that surpass those of initial machine investment. Other
major problems are the need for equipment/computer failure diagnostic
programs, the development of a smoothly working system and testing the
system before using it.

Bacher and Kaufman(7), also on the subject of computer con-
trolled batch chemical reactions, developed a prototype computer system
which they state improved product reproducibility and quality.

Carlo-Stella(8) points out that "sequential logic is usually
highly customized to the particular applications". This confirms the
view that development of a generalized program to control such opera-
tions is both needed and difficult.

In an article on automatic plant start-up using computers,
published in 1967, Ba]dridge(g) includes a literature survey which
concludes" practically nothing has been done to apply computers for
the automatic start-up of chemical processeS". Briefly his incentives
for computer control include:

1) errors in human judgement may lead to expensive
losses or hazardous conditions during start-up;

2) design and operatihg cost savings due to tighter
control of transient stages;

3) more time available for steady state operation;

4) extra labour normally required during start-up
can be reduced;

5) feasibility of processes now considered "too lively"
to be handled by operators during start-up or
shutdown.

The work reported by Baldridge included the programming of a start-up
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routine which was tested on a pilot plant. Direct digi£a1 control was
used, a high level language developed and problems such as hot and cold
‘start as We11 as emergency and normal shutdowns were considered.

Little about the program itself was described.

| Nhitman(lo) in discussing start-up of a pump under computer
control underscores the large number of details involved in such
superficially simple operations.

Baker(]]) in a thorough analysis of digital control of batch
processes lists significant differences between batch and continuous
operations which make batch automation very difficult but also makes
the digital control system a potentially péwerful tool. He also
remarks on the lack of technical knowledge in the field and claims
"many commerically available software systems are severely inadequate
for batch automation". He concludes that "usually computer control.

of batch operations has a handsome payout".

Recent papers, describing newly developed high level process

control oriented languages(]2’13), claim to aid the process engineer

in programming sequential confrol programs. Other programs which have
been developed by computer manufacturers(2’3’]4’]5) exclusively for
their own machines have features which enable the project engineer to
write his program. Control of sequential processes is included among
their potential applications.

Of the systems examined, most placed the burden of sequencing
and scheduling in the users' programs. The systems lacked flexibility

required for general usage and none had a framework to assist the user

in project organization.



1.5 Structure of the Thesis

The basis for the system design is outlined in Chapters II
and 111 and a prototype of the system was implemented on an IBM 1800
Data Acquisition and Control System in order to test and evaluate
various design alternatives. The system (ADAMS - Alberta Discrete
Activity Monitoring System) is written in FORTRAN and‘works in a time-
sharing environment under the standard IBM MPX executive(s). ADAMS
can use either the DDC program which has been functional at the
University of Alberta since 1968 or a user supplied program for process
1/0. Practical use of ADAMS obtained by starting a pilot plant
double effect evaporator is outlined in Chapter V.

There is some redundancy of material in each chapter to make
them relatively independent of each other so that the reader can refer
directly to his area of interest.

In conjunction with the thesis, a program user's manual (7)

contains detailed information on ADAMS.



CHAPTER 11
DESIGN FEATURES CONSIDERED ESSENTIAL
FOR GENERAL PROCESS CONTROL PROGRAMS

2.1 Introduction

This chapter is written to outline general design features
which are considered essential for a good process control program.
These programs must be readily adaptable to any process; they must be
general with respect to computing and plant equipment, plus be designed
for use by non-computer oriented staff. The features presented here
are for any program which monitors and/or controls a real-time process,
not hecessarily for discrete processes which are the subject of the
rest of the thesis. The discussion has been summarized from the view-
points of:

1) the project engineering team who are not necessarily
familiar with computer techniques but are familiar with what features
must be implemented to ensure safe, efficient plant operation.

2) the system engineers who are perhaps unfamiliar with
process requirements but who must adapt the program to meet the
requirements of a particular application and to run efficiently on
their real-time computer.

Any programming system should be implemented so that these functions or

interests are kept separate and appear transparent to the other.

2.2 Features Provided for the Project Engineer

This section describes user oriented features considered

important in a real-time program. In general the project engineer
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should not require an extensive knowledge of computer techniques but
will require a thorough knowledge of the plant operation, control
techniques, and process calculations as well as the basic capabilities
of the program he will use.

The general program should be adaptable to a broad range of
computer controlled processes, i.e. it must be adaptable to applica-
tions which vary considerably with respect to size, complexity, time
scale, automatic vs. manual operations, etc. This means that data
required for plant control must be available whether entered by the
operator or entered directly from an instrument. Reading data in some
cases will be required at high frequency, in other cases only a single
piece of information will be required. Both options must be available
to the user.

Good communications must be maintained between the operator
and the control program. The extent of the communications will depend
upon the function of the program but, in general, any error condition§
or significant changes in plant position should be relayed to the
operator automatically. Other information should be available upon
operator request, eg. variables monitored by the program and present
status in program.

Operator control over the program is an essential feature.
The range of such controi could extend from operator approval of all
steps taken by the program, for instance in a testing mode, to mini-
mum documentation informing the cperator of normal progress. The
operafor should be able to interrupt or suspend the program at any time

and then re-initiate it when desired. In doing this the plant should
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not be left uncontrolled or in an unsafe condition.

Control programs should handle real-time problems rather than
function solely on the basis of apriori decisions and sequences. The
programs could simp]y'transfer control to the operator whenever an
unexpected problem arose or could handle the problem automatically.

Every effort should be made to assist the project engineer in
utilizing the program. Development of a high level language oriented
to process control is considered essential. Terms and operations which
are familiar to thelproject engineer should be used. Testing facilities
for online program debugging and other changes should be provided

especially in cases requiring extensive input or complicated sequences

of operations.

2.3 Features Provided for the Computer System Engineer

The cost of developing software support for individual appli-
cations has dictated a need for generalized programs which are readi]y
adaptable to accommodate various types and sizes of plant operations,
various computer operating systems and various types of software
support. In addition, they must be easily used by a project engineer
with little or no computer experience.

Techniques that can be used to aid system generality include
modular construction, distinct easily changed software interfaces
between the program and external hardware or software, and the use of
widely supported computer languages. In some cases these techniques
will be less efficient than ones employed in a system designed for one
particular application but the loss in efficiency is offset by a gain

in generality.
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By programming distinct functions into individual modules the
various capabilities of the program become clearly defined. Should it
be required to add or modify modules the task is then better defined
and the work is concentrated on a particular area of the system rather
than requiring changes throughout the system. Modules are particularly
helpful when making changes to program size and configuration.

Software interfaces are merely small modules which handle
1/0 between the application program and the system hardware or system
support programs (see Figure 2.1). Such interfaces facilitate changes
when implementing the pkogram on different computer systems or when
changes are made to the computer system on which it is presently
running.

Normally, high level languages (eg. FORTRAN compiler) are
supported by more than one type of computer and hence programs written
in such languages can be used more widely. As mentioned, such
languages are inefficient when compared to assembler coding, however,
efficiency has been sacrificed for generality.

To assist the user in programming the supplied system a method
of coding should be made available in terms which are familiar or easily
understood by him. The coding should incorporate symbolic referencing
where possible, eg. symbolic references to 1/0 device addresses. Error
diagnostics are essential and "self-documenting" coding reduces the work
greatly.

In some cases it will be necessary to replace hardware or
system executive functions available through manufacturers by less

efficient but more general programming. This is especially apparent in
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the field of operator communications which can tie up the CPU with
relatively siow operation. On specific systems I/0 is made more
efficient by use of buffering or asynchronous operations. This is
highly dependent upon the computer and to rely on the technique used
by a particular manufacturer would place a severe limit on attaining
a general system.

Another key feature to consider is the provision for future
system expansion and development. A1l possible requirements should
be looked at and even if not provided immediately the system should be
structured to facilitate later addition. Table oriented data areas
which are accessible to many programs and are readily expanded is one
such technique that may be'used.

In programming a process control system, particular attention
should be paid to execution time and efficiency of core usage versus
the type of program. Programs can be categorized as online or offline
and repetitive or once thru. A repetitive online program should be
more carefully designed with respect to execution time and size whereas
an offline program run infrequently, eg. data input, would not have to
be as carefully controlled.

Another consideration in system design is the response time
of a program, the main difference being whether the program is stored
in bulk storage or is core resident. For control of "fast" processes
response time is critical whereas this is not the case if the time
base of the process is hours. Relatively fast responses should be
given to operator requests so that he may proceed quickly about his

Jjob. On the other hand, should the program request operator information,
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it should be at the operator's convenience to enter the response not at

the demand of the computer. This is keeping within the concept that

the computer is a tool and only represents part of the operator's job.
A process control system should recognize that changes

during the maintenahce and optimization phase of a project are essential.

A11 possible considerations should be made to aid these changes rather

than making them an undesirable facet of operation.



CHAPTER III
PHILOSOPHIES, OBJECTIVES, AND POSSIBLE ALTERNATIVES
IN DESIGNING A DISCRETE ACTIVITY MONITOR PROGRAM

3.1 Introduction

This chapter considers the general specifications and features
of a system to implement computer control of discrete processes such as
plant start-up, batch operations, etc. Prob]éms of this nature are
characterized by thousands of steps which must be coordinated into a
dynamic real-time project. The basic objectives of the design plus the
alternatives which were evaluated are presented here.

The discussion in this chapter is organized into the same five
general phases followed in most design projects (see Figure 1.1):

1) overall organization

2) detailed planning

3) testing

4) implementation

5) project maintenance and improvement

Each of these topics is dealt with in the following sections.

3.2 Overall Organization of the Project

In general, most projects are organized and planned on several
levels. The highest, most general level is usually a management
responsibility; the intermediate level involves more detailed design and
specification by engineers; and the most detailed level can frequently
be implemented by technicians. It is important that any organizational

scheme facilitate and coordinate actibn at all these levels. It is not
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desirable to have one approach for project management and another as a
basis for computer application.

In large discrete operations, there are always several inde-
pendent steps which can be done in parallel instead of sequentially.
It is important Fhat the organization show where such conditions exist
so that advantage may be taken of them to facilitate and speed
execution.

The method chosen for organizing the application must also
clearly show constraints such as in sequencing (ordering), resource
allocation, and target dates. When choices within the constraints may
be made, the best choice would result in a time optimal project duration.

Network analysis, a widely accepted management tool with
broad applications in handling projects composed of many levels and
many details has been adopted for project organization.

The volume or amount of detail is the principal factor which
leads to difficulties in organization and coordination of the many
levels of planning. Several levels can easily be seen in one apblica-
tion, eg. start entire plant # start plant feed system # start pump 2
close switch.

The levels within an application must be clearly defined so
that steps or decisions made on one Tevel are independent of any other
levéls. For instance, the time at which a feed system is to be started
is decided relative to other steps in starting the plant. However, on
a more detailed level, the procedure for starting a pump is not
dependent on when the feed system is started. Thus a person planning

the start-up of a plant needs only to decide that the feed system has
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to be started and when; he does not have to know the mechanics of
starting a pump. These details may be assigned to a di fferent level,
i.e. person.

The arrow diagram(4), a graphical repfesentation of the pro-
ject as a network of activities can show a true picture of the steps
involved at any level. It provides a flexible format and is realistic
in representing any concurrent paths within a project. Any constraints
on the project such as sequencing, resource limitations or target dates
may be clearly shown.

Network analysis includes procedures for analyzing and eval-
uating a project. Prominent among these are CPM(4), PERT(4). and
ramps(4) routines.

It is concluded in this work that network analysis techniques

can and should be adopted as the basis for computer control of discrete

events.

3.3 Detailed Planning - Programming

After the overall application has been represented on a broad
scale as a network,in terms familiar to management, it is necessary to
subdivide it into smaller steps or instructions until it is recogniz-
able as individual steps that can be programmed for execution by a com-
puter. This maintains the system concept of breaking any large project
into subsystems until each subsystem is capable of being handled as a
single entity.

It is an objective of this project that the specification of

the individual steps does not require any prior programming knowledge



from the process personnel who have planned the application to this

point. Hence the programming, i.e. implementation of the planning,

20.

must employ techniques which are oriented toward the combuter Tayman.

Even at relatively high levels of programming language the
user is still faced with programming thousands of individual steps.
In order to further assist him, the use of macro level instructions
and symbolic referencing is recommended. In his application there
will be several strings of steps which are identical in function but
specific in where they are applied. For example, turn on power to
pump motor, wait, check for normal operation, proceed or try restart
is the common procedure followed in starting most pumps. The user
should have the ability to combine such recurring steps into a macro
instruction or its equivalent with the necessary parameters to make
it general.

The user should also be able to add instructions specific
to his application to the standard instruction set provided with the
system.

The ability to alter the program steps quickly and easily

is essential. This should not require a complete program reload but

be accomplished by specifying a particular instruction in a particular

activity to be changed. Provision should also be made to change a

parameter or a set of parameters, for example, a desired set of steady

state operating conditions, with a single table entry rather than

having to change the parameters at every point in the program that they

are used.

Four different approaches to producing a user oriented
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computer language have been investigated. They are the assembler,
higher level languages such as FORTRAN which are compiled, the inter-
preter, and the table driven processor. Briefly, some of the advan-
tages and disadvantages of each are:

1) assembier - instructions are converted into machine
language on essentially a one to one
basis. Macro capabilities and compile
time options greatly extend the power
and attractiveness of assemblers.

advantages -assembler programming is highly flexible
and can be very efficient with respect

to the use of core space and execution
time.

disadvantages - assembler coding requires an
experienced programmer.

- a separate assembler is required for
each different computer, i.e. assembler
coding is usually machine dependent.

- programs must be re-assembled after

any alteration, i.e. a complete program

reload.

2) compiler -'instructions are translated from high
level statements to several machine
language instructions, eg. FORTRAN.

advantages -the high level statements require less

programming time and expertise.
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- because of the translation procedure
the statements of a compiler language
can be standardized and thus supported

by several computers.

- disadvantages - conversion to machine language

usually results in lower efficiency
than assembler coding.
- alterations in programs require

recompilation.

interpreter - source code is examined at execution
time and translated into an appropriate
set.of instructions every time it is to
be executed.

advantages -since the program remains in the source
form it is easily modified and edited
online.

disadvantages - often slow since every execution of
an instruction requires time for "inter-
pretation” as well as the extra core

required for the interpreter program.

4) table driven processor - consists of a set of general

routines which have been written in, or
compiled into machine language. Routines
utilize user specified parameters which
are supplied in a standard format or

table.
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advantages -permits online editing of parameters.

-routines written in a compiler or
assembler language are only compiled
or assembled once and only exist in
core or on disk once.

-data deck is of minimum size since only
essential parameters and options are
specified.

-new routines easily added.

-high or low level instructions (routines)
are possible.

disad&antages - general routines are less efficient
(core and execution time) than'a
specific one.

It was decided to sacrifice efficiency in execution time and
core storage for the more user oriented features provided by a high
level, easy to learn, easily modified language. A table driven pro-
cessor was chosen since if is easily implemented and modified itself.
Also the use of a table driven processor lends itself to "fill in the

blanks" type programming which has already proven successful in the

process industries, eg. PROSPRO(Z),

3.4 Normal Program Execution

3.4.1 Introduction

Normally, as shown in Figure 1.1, the phase before execution

is project testing, but for a better understanding of the requirements



in testiﬁg the éxecutidn concepts will be discussed first.

The discussion of the objectives and alternatives which
follows is grouped into the major areas of program development.
3.4.2 Schedulirg of Ac¢tivities

The problem is to supervise, in real-time, a multi-step
project in which the steps are constrained as to sequencing but are
sometimes flexible in that several may be executed simultaneously.
The sequencing of the activities within a project can be affected by
unplanned occurrences. The duration of a project will depend on one
sequence of activities, the critical path, which stretches from the
start to the end of the project. However, because of the possibility
of real-time problems and mistaken apriori estimations of activity
duration neither the critical path nor the project duration should be
assumed.

The scheduling of the activities is a major problem which
should ideally be handled by the monitor program. Besides the con-
straints on the ordering of activities within the network, there can
also be constraints on resources as previously discussed. However,
within all constraints there will sometimes be choices as to which
among several activities to execute and the program should make these
choices with a time optimal project duration as its goal.

If the monitor program can carry out all the activities in
accordance with the user's detailed network diagram then the user's
programming job is reduced to specifying the steps for individual
activities. He does not have to program or arrange activity sequenc-

ing. Also the sequencing and activity specification functions are
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separated, i.e. he can change the sequence of activities by modifying
only the network or he can change the details of any activity alone
without affecting the network.
3.4.3 Efficient Execution of Concurrent Activities
It is frequently desirable to have the computer supervise
several separate activities at one time since in most projects there
are several activities which can be implemented in parallel and there-
fore reduce the time required to complete the project. However, this
raises the problem of how to allocate the CPU time efficiently among
the activities. The simplest approach is to allow only one activity
to be in progress at a time and the task of arranging the order of the
activitiés would be left to the user. This would result in a very
simple program. The more complex program would supervise several
activities at once and as mentioned divide CPU time efficiently among
them.
The implications to the user of the method chosen can be
11lustrated by an example of starting three pumps simultaneously.
The major steps for starting one pump are:
1) turn on power to pump motor
2) wait
3) check for normal operation
4) proceed or try restart
Identifying the various steps by sn(x) for step X in starting pump n
the various basic sequences to carry out the operation are:
1) “single sequential chain"
51(1). S](Z), S](3), S](4). Sz(l). 52(2). 52(3).
52(4), 5301, $3(2), 54(3), 54(4)
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At a minimum, this method will take the sum of the times required to
~ start the three pumps individually and the computer will be idle
during steps such as the wait. Also, a delay in starting pump 1 would
cause equal setbacks in starting pumps 2 arnd 3.
2) "single chain with user control of parallel
sequencing"
5101), $,(1), S5(1), S (2), 54(3), 5(4), $,(3),
S,(4), S4(3), S4(4)
In this case all pumps are started simultaneously but the checking is
done for one pump at a time so a delay in one pump will cause delays
in the one(s) following. Note, however, that one wait period serves
all three pumps. It would be possible to make the checking parallel
but this would require the programmer to set several flags, a task
which should be avoided. This approach to programming discrete
activities has simplified some existing monitor systems.
3) "three distinct chains working in parallel with
monitor controlling the parallel execution"
5;(1), 54(2), 5,(3), 5,(4)
5,(1), 5,(2), 5,(3), 5,(4)
54(1), 55(2), $5(3), S5(4)
The monitor will control execution. If it hits a wait period, it may
go on to another activity (chain of steps). The user specifies the
network which defines the relationship between the three activities
and the steps required in each activity. Since they are the same steps
in this case, he would probably just have to change a few parameters in

order to have the procedure developed for pump 1 also apply to pumps 2
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and 3. Once again it should be noted that the tasks of sequencing and
programming are independent and 'can thus be modified separately.

~ The duration of the longest single activity (critical path)
is the duration of the project. The monitor required becomes a complex
supervisory program but savings in user programming plus overall project
duration make it attractive to the user.
3.4.4 Provisions for Unexpected Real-Time Problems

Real-time problems, besides throwing off apriori estimates of
the critical path and project duration, may also upset plant operation
in interacting applications (eg. if the cooling medium pump to a heat
exchanger fails several minutes after it is started then some of the
-steps following should be "held" rathér than implemented).

Real-time problems in plants are normally handled by 1) shut--
ting down the plant, or 2) holding the plant at a safe status until the
error is fixed, then proceeding.

When under computer control, the possibilities that exist .
are:

1) shutdown a) the plant, or
b) the program and continue on manual
operation
2) total suspension of the monitor
a) correct the situation and re-
| initiate the monitor from the point
of suspension, or
b) correct the situation and direct
the monitor where to re-initiate

execution
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3) partial suspension of monitor
- let the unaffected activities con-
tinue, then re-initiate the sus-
pended ones either at the boint of
suspension or at a new location

Offline plans can be totally disrupted by unexpected occur-
rences so that special provisions in the monitor will be required to
handle them or turn the situation over to the operator to correct
manually. Whatever the case, the plant cannot be left in an unsafe
condition.

Since the computer can execute many activities faster than a
human operator can respond, any scheme to permit operator 1ntervgntion
or partial control must:

1) utilize a system of flags (logic options) which
will force the computer to wait at specified points for instructions
from the operator, or

2) check each step against a list of permissable opera-
tions before implementing it.
Furthermore, the process operator must have the option of changing the
flags or list as he wishes rather than having this done exclusively as
an offline task.
3.4.5 Operator Communications

The process operator must be recognized as the key figure in
controlling the plant. He must know or be able to find out any informa-
tion the computer has about plant conditions or program status. He must

also be able to inform the program of any data or decisions during
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normal execution. During error conditions as discussed in the previous
section, he may have to take control of the plant, correct the situa-
tion, and then return the plant control to the computer program. He
miy also have to direct the monitor to begin execution at any specified
point in the network in case that in fixing the error the plant opera-
tion progresses or regresses without the knowledge of the monitor.

Because of the dynamic nature of discrete operations, an
extensive operator communications system will be essential. Large
aﬁounts and varied types of information transfer can be expected, both
to and from the operator. Some information, eg. error conditions will
have to be relayed immediately. Control statements from the operator
should also be recognized quickly. Less urgent information, eg. logs
and standard progress reports as well as normal operator responses to
programmed questions should not delay activity execution.

A specially designed operator's console used to enter or
retrieve data would be highly beneficial. Certain functions, such as
standard operator program control could be automated via a console.

The console could have cathode ray tube (CRT) displays, NIXIE tubes,
and status registers for fast I1/0. Typewriters would be utilized for
extensive data input and hardcopy output.

Another desirable feature would be to separate messages
intended for the computer system personnel from process messages to the
plant personnel. Separation of error messages from progress reports
and data logs is also preferable.

Accepted methods for efficient 1/0 are buffering and

asynchronous operation between the CPU and I/0 devices. Buffering |
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involves storing the output and sending it out character by character
as fast as the peripheral device can receive it under the control of
an interrupt initiated driver program. Meanwhile the CPU is free to
continue working (with periodic interruptions from the peripheral
device indicating it is ready to accept another character from the
CPU). Asynchrondus operation requires hardware (data channel) which
once initiated carries out the I/0 operation without direct instruc-
tions from the CPU. Both operations require more complex operations
in hardware and/or software.

Although buffering and asynchronous operation are desirable
features, they are not always available. For instance in FORTRAN
'write' statements to the line printer on the IBM 1800 system, program
execution is held up until output is completed. In order to avoid
holding up execution of the monitor program with non-buffered, non-.
asynchronous output it is desirable to hold all non-urgent messages
until activity execution has ended.

When operator response is required, rather than holding up
all execution in the monitor, he should be allowed to enter the data
at his convenience, including the ability to anticipate a question and
enter an unsolicited response. This allows him to go about his other
responsibilities using the computer as a tool rather than scheduling
himself around the computer.

3.4.6 Purpose for a High Speed Monitoring Module

Under some conditions it is desirable that the main control

programs of the discrete activity monitor should only be in core

periodically for a set maximum time rather than be permanently core
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resident. This would be the case in order to start-up a process using
"background" time on a computer that is executing other priority pro-
grams, eg. DDC or in the case of processes requiring several hours for
start-up during which the computer is to be available to other users.

However, in most applications there are several steps that
require higher speed monitoring than could be efficiently provided by
a non-core resident program. A need for a smaller core resident pro-
gram with high speed monitoring capabilities is evident. Such a pro-
gram could be given definite tasks such as checking various critical
points in a plant for alamms, updating high resolution clocks or
timers set by the main program, and 1imit checking of control variables.
A11 tasks would be of short durations but require constant or rapid
surveillance. Then, if a clock times out or an alarm was recognized,
a service program could be called immediately into core to take care of
the situation.

The high speed program would take a very small part of the
total CPU time and core memory, but would allow the larger slower pro-
grams to be suspended'from time to time without endangering the plant,
thus freeing the computer to execute other programs.

3.4.7 Accommodation of Changing Operating Conditions and Procedures

Another unique characteristic of discrete operations is the
wide variety of procedures which must be followed from time to time as
the initial state of the plant and the desired final conditions are
varied even slightly. For instance, there can be multiple starting
(or initial) conditions for any one processing unit and each of these

conditions might require a different start-up procedure. Two approaches



may be taken when such an operation exists:

1) Organize and program a separate network for each
di fferent set of procedures.

2) Define all alternatives as subsets of the most
rigorous or "cold start" procedure. The program could then execute
a specified subset from the one large network. Common data tables
containing frequently changed parameters such as set-points, alarm
limits, and control constants could then also be initialized with
the proper data set before a specific run. This would alleviate the
need to provide separate computer instructions with hard-coded para-
meters for each different procedure. A monitor system which used
data easily accessed by multiple utility programs would greatly
facilitate this feature.

3.4.8 Basic Operations to Provide in the Instruction Set of the
Discrete Activity Monitor |

32.

The basic operations required of a discrete activity monitor

can be divided into two categories. The first applies to any process

control program: standard process I/0 features, arithmetic and logi-

cal operations for control calculations and 1imit checking plus a
certain amount of program communication. The second category is

restricted to more discrete operations:

a) logical operations - choices as to procedure in the

network.
b) wait periods - wait for a specified time or until
some condition occurs.

c) extensive operator communications
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d) ability to execute user written (eg. FORTRAN)
programs at certain points in the network.

An option, the equivalent of "in-line coding", to allow the
addition of statements from another computer language, eg. FORTRAN
would add to the computing power available in the system.

Even if all these features are provided it is still important
to make provision for the addition of user specified instructions

particularly on the macro level.

3.5 Program Testing/Debugging - Operator Training

Prior to implementing a computer controlled application, 1;

will be necessary to insure that there are no errors in the network
logic or activity programming. In order to find some errors, it will
be necessary to simulate actual operation and this should be possible
without affecting normal plant operation and preferably without.having
the long wait periods required in real execution.

Execution in a test mode should allow the user to change the
program online without altering the entire data set. Options such as
table dumping and stepping through the execution would help in tracing
errors in trouble spots. The ability to re-execute any portions of
the network without having to execute the whole network would also
save much time in debugging.

In order not to affect the process during a test run, the
user's program would not be allowed to send process output or change
any constants in normal programs which might be controlling the plant
while a test is in progress. The test mode would be used as new pro-

cedures were adopted before actual implementation. This would permit a
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gradual evolution from manual to automatic control.

A1l the facilities available as test options would permit and
be extremely helpful in operator training. An operator could execute
the program in test mode and learn the various options, features, and

methods employed without endangering normal plant operation.

3.6 Project Maintenance and Improvement

The final phase to consider in the development of a project
is the constant updating and improving of the overall application.
Several of the procedures established in the present manual operiting.
mode will probably be changed after experience is gained with computer
control. Also, normal changes to process conditions will require up-
dating in the programming.

Changes will be made within the program to better accommodate
a specific application. Features which aid the user in evaluation of
the performance of the system and his programming will be essential.

In general, features which record usage of various system functions

plus log actual values of variables, eg. activity durations, which are
initially estimated by the user would be required. Any error conditions
or uncommon operations should also be recorded for later analysis.

An outstanding feature of the network concept'is that parts of
the network can be debugged and implemented at a time. The application
can thus be set up in modules and implemented as required rather than
having to wait until the entire project is complete. In view of the
large size of most applications, and the usual shortage of trained

manpower, this is an extremely important feature.
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The following chapter contains the description of ADAMS, a
prototype program based on the design discussed in this and the pre-
ceeding chapter. ADAMS was used to evaluate some of the alternatives

and was implemented to include a majority of the basic concepts con-

sidered essential in a discrete activity monitor.



CHAPTER 1V
ADAMS - ALBERTA DISCRETE ACTIVITY
MONITORING SYSTEM

4.1 Introduction

This chapter deals specifically with the ADAMS program, a
working prototype developed as a part of the work to apply computer
control to process operations consisting of discrete steps such as
plant start-up. The chapter first presents an overall view of ADAMS,
then deals with each general phase involved in implementing the
system on some application. Project organization, detailed planning,
features of the ADAMS program, testing, and project optimization are
each discussed in detail in order to inform a user how to implement
the ADAMS program to his application. The section on the ADAMS pro-
gram is intended to give the user enough information about its
functions and concépts to use it intelligently. Program details are

documented in the ADAMS program user's manual(]7).

4.2 Overview of ADAMS

The user's first step in implementing ADAMS is to represent
his application, eg. startfup, as a network of activities where each
activity performs an independent function (see Figure 4.1(a)). Next
the activities are programmed using ADAMS unit functions (see Figure
4.1(b) and (c)). Unit functions are a set of routines available in
the ADAMS program which permit a high-level, user oriented, program-
ming approach. A CPM analysis calculates apriori estimates of
activity latest start times which along with the network specifica-

tions and unit functions for each activity form the basic input data
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files required by ADAMS. Several offline, or batch processing type,
utility programs are available to facilitate data input, system
initialization, etc.

The principal online or real-time programs which comprise
the ADAMS system are designed to run in-a timesharing or multi-
programming environment. However, a small, core resident, high speed
monitor performs frequent checks on critical variab]es in the process
and updates any high resolution timers required for the application.
The ADAMS real-time executive, used to schedule and execute the
activities, is composed of two larger programs which are executed at
a user specified interval but for not more than a set period of time,
eg. they could be run every minute with a 5 second maximum execution
time.

Activity scheduling is automatically handled by the ADAMS
executive which, within the constraints of the network specified by
the usef, strives for a time optimal project duration. This relieves
the user of a significant amount of programming found in some systems
of this type.

In addition to the executive and high speed monitor, pro-
grams have been written to make operator communications and program
control possible. This permits the user, in the initial programming,
to include messages to the operator concerning progress in the network
as well as asking the operator to enter information, eg. a desired
setpoint, which is not available during the programming. The operator-
may also request program status, etc. aﬁd, if he chooses, eg. during

error conditions, to halt or hold various parts of network execution.
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Hence the operator can still intervene in the programmed sequence to
overcome any unexpected real-time problems, a feature which is highly
desirable in any process control program.

The ADAMS program also contains a test mode which permits
execution of the program without affecting any part of the plant.
The several options available in the test mode facilitate program
debugging and operator training.

Provisions which encourage system and user program modifi-
cation to facilitate project re-evaluation and optimization complete

the overall project design approach considered essential in adopting

new systems such as ADAMS.

4.3 Organization of the Application to be Supervised by ADAMS

Network analysis techniques are employed for project
analysis, organization, and coordination. The concepts used are
important not only in the organizational phase, but have been utilized
to a high degree in the on-line portions of the ADAMS program.

‘Initially it is necessary to define exactly which steps must
be taken and the order in which they must be carried out to achieve n
the desired end. This, considering the thousands of steps involved
on a detailed level of planning plus the many interactions present a
formidable managerial problem.

Network diagrams (see Figure 4.1(a)) provide a flexible,
realistic, approach for modelling the application. The arrow diagram
defines all the possible interactions and sequencing restrictions
within the network but does not define a fixed sequence or timetable

of activities. This is important since any relatively complex project
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contains several orders in which it could proceed, some of which are
more advantageous than others with respect to shortening overall
project duration or optimizing use of physical resources.

The project is set up using increasing levels of detail.
For instance consider start-up of a large chemical process. At the
highest level of planning, management personnel would consider the
overall problem and construct an arrow diagram illustrating the
sequence in which the various component unit processes should be
started, eg. unit 5A then units 5C and 6E simultaneously. These steps
could then be separately sent to other groups for more detailed plan-
ning. Each group would then draw a network diagram defining what is
involved at that lower level, eg. in starting unit 5A (a distillation
column) one activity is to start the feed system. The activities on
this level could once agéin be divided and a network drawn for each,
eg. in starting the feed system for unit 5A an activity is to start
pump P-28. Thus the activities become progressively more detailed
until they can be defined by instructioné to ADAMS, i.e. the unit
functions. The overall network can then be assembled from its
various subnetworks until the total project is represented on the
most detailed level.

An important feature of this concept is that work on one
level is independent of work on other levels. Using the above example,
assume group 1 is assigned unit 5A and group 2 has unit 5C. A higher
level of planning has decided that unit 5A is to be started first,
relative to unit 5C, and this decisioh could be changed'without

affecting the planning of groups 1 or 2. Similarly group 1 might
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decide to change the time at which the feed system should be started,
how it is started, or how pwmp P-28 is started and can do this with-
out affecting group 2 or the group planning on 2 higher level. Con-
sequently, work can proceed on several levels simultaneously without
conflict. Once the highest level of planning decided that unit 5A
had to be started its planning could proceed, allowing work on the
feed system to begin and eventually planning for the start-up of pump
P-28 would begin. .

The most detailed level at which an activity must be defined
is dependent upon the level of ADAMS unit functions available to the
user. This final level of detail defines the actual activities
scheduled and executed by ADAMS. A single activity is assumed to be a
string of unit functions that are to be executed sequentially although
the user may initiate parallel steps provided he looks after the
sequencing himself. However, as described in the example of starting
three pumps simultaneously (see Section 3.4,3), it is easier to allow
thé system to handle parallel steps.

The final step in project organization is to estimate the
daration of each activity and then perform a CPM analysis on the net-
work. This can be done manually or by any standard CPM program which
generates the estimated overall duration of the project plus the
latest start times (LST) for each activity. The LST is the latest
time an activity may begin without extending the estimated project
duration. The LST's indicate the relative priority of uninitiated
activities and are used by the ADAMS executive in an effort to achieve

a time optimal overall project duration.
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The organizational phase is now finished. The project 1is
defined as a network of activities and a priority, i.e. the LST, has
been obtained for each activity. The next phase will include pro-
gramming each activity in temms of unit functions and entering the
data into the appropriate ADAMS files.

4.4 Activity Programming

Once an activity has been defined it is programmed by
selecting the appropriate series of ADAMS unit functions (see Table
4.1). Unit functions are simply sepirate generalized routines which
make up a table driven processor used to implement a user oriented
programming language within ADAMS. The user merely specifies which
unit function(s) he wants in the activity and provides the proper
set(s) of arguments, i.e. the unit function identification number and
parameters (see Figure 4.1(c)). Hence a unit function is dependent
on a particular apﬁlication only in 1ts set of user specified
parameters.

Unit functions give the user low level capabilities such as
basic arithmetic operations used for control calculation; plus logic
operations which will compare and branch to any specified unit function
within the activity. uUnit functions also provide higher level
capabilities such as process 1/0 or "wait" for a \given period. Alsb
on a high level, unit functions can be used to drive other ADAMS
modules, in particular for operator communications and high speed
monitoring.

Although several generally applicable unit functions‘are

included in ADAMS, it is very simple to add new ones. Hence should a
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TABLE 4.1
LIST OF STANDARD UNIT FUNCTIONS
AVAILABLE IN ADAMS

U.F. ID. NO. FUNCTION

1 START ACTIVITY
END ACTIVITY
WAIT N SECONDS (LOW RESOLUTION)
PERFORMS INTEGER AND REAL ADDITIONS
PERFORMS INTEGER AND REAL SUBTRACTIONS
PERFORMS INTEGER AND REAL MULTIPLICATIONS
PERFORMS INTEGER AND REAL DIVISIONS

UNCONDITIONAL OR LOGICAL SKIP +N UNIT
FUNCTIONS

9 SET UP HIGH RESOLUTION TIMERS OR REQUEST HIGH
SPEED MONITORING AND LIMIT CHECKING OF SOME
PROCESS POINT, OPTION TO EXECUTE A SPECIFIED
ROUTINE WHEN TIMER EXPIRES OR AS RESULT OF
LIMIT CHECKING

10 CHANGE OR READ ANY WORD, OR BITS IN ANY WORD,
IN A SPECIFIED DDC CONTROL LOOP

n SENDS MESSAGES AND WILL WAIT FOR REPLY FROM
OPERATOR

. 12 PROCESS OUTPUT ANALOG OR DIGITAL
13 PROCESS INPUT ANALOG OR DIGITAL

0 ~N OO0 o & W N
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user find repeated use for a particular routine normally accomplished
using several unit funttions or requires a unit function specifically
tailored to his application he may write and add his own unit func-
tions. Thus both the efficiency and the capability of the ADAMS
language can be increased.

After the activities are programmed the network data
(initial and terminal event numbers), the CPM results (activity latest
start times) plus the activity programming (unit function ID's and
parameters) must be input to the appropriate ADAMS bulk storage
tables. The input program used for this function reads the data from
cards (see Figure 4.2) and performs error diagnostics on it before
plaéing it in the proper file.

 General error checks such as for the correct type (integer
or real) and number of Parameters are included in the ADAMS prototype
Program. Other more explicit error checks could be added by the user.
Also a symbolic method of addressing widely used parameters, eg.
process 1/0 points, logical device numbers, etc. should be added.
Then if a certain Parameter is changed the user would not have to go
through every unit function to see which anes use that parameter.

A final, as yet unmentioned type of input involves messages
which are provided by the ADAMS system or are included by the pro-
grammer for operator communication during the online execution. AN
such messages are stored in a library and can be accessed by the
operator communications module.

Having input the data, the user may now run the ADAMS pro-
gram either in the test or normal operating mode.
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* SEQUENCE TABLE * **

— B8] 0 732 122 341 1 9 11 ™
732 1 122 19 *k

122
341

19 ok

N N

173 7 908 565 24 39 46 187 **
908 1 7 66 *k

7 1 173 483 69 112 **

173 2 489 565 84 176 **

489 2 138 112 **

138 1 [B65] O77] [F%]
(5851 (3] ** ‘ |

L— Delimiter indicating end of data set

Latest start time for activity
138-565

Terminal event number for activity
138-565

Number of activities terminating at
initial event 565

- ’ ‘ Initial event number for activities
876-732, 876-122, 876-341

Control card indicating network
definition data follows

a) Data defining network

... continued



* ACTIVITY PARAMETER TABLE *  **
'A' 876 732 1 **

—/1 ke
_{2 *k
[-—--———-Unit function to complete activity

Unit functions which make up activity 1 unit
function per card

—Unit function to start activity

'A' indicates new data, card contains header
information for activity 876-732 with a
latest start time of 1

Control card indicating activity specification
data follows

'A' 876 122 9 **

'‘A' M 7 66 **
1 ** “Start Activity" unit function

13 0 2 2 1425 1 **

o Wk "Terminate Activity" unit function

[—* END OF DATA * :**

Control card indicating no further data

Unit function to read analog input point 1425
in activity 341-7

b) Data defining which unit functions to be executed in each activity

Figure 4.2. EXAMPLE OF INPUT DATA FOR NETWORK*USED TO
EXERCISE ADAMS

* network shown in Figure 4.1.
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4.5 ADAMS Online Programs

ADAMS is composed of several programs (see Figure 4.3) each
of which have separate functions. The heart of the system is the
ADAMS real-time executfve which handles the scheduling and execution
of the activities. It is run at a user specified frequency for not
more than a set maximum execution time. Supporting programs such as
the high speed monitor which executes at a much higher frequence and
the operator communications program, which is queued as required,
can be requested to perform their functions from within the executive;
i.e. by the unit functions. Another group of programs such as the
operator communications module used for data input and programs
which permit operator control over the executive are requested by the
operator himself. |

The ADAMS system makes use of an existing direct digital
control (DDC) program at the University of Alberta for process moni-A
toring and analog input/output operations. This program is core
resident and operatgs at a higher interrupt level than ADAMS. In
applications such as plant start-up it is assumed that control will be
transferred to DDC once the discrete start-up operations are completed.
The ADAMS interface to the DDC program could be easily changed to
accommodate an equivalent user's program.

The various functions in ADAMS have been modularized into
separate programs and have been given separate priorities and allow-
able execution times (see Figure 4.4) in ordef to run in a time-
sharing or multi-programming environment which supports background
work. The overall system is highly table oriented and uses in core

table overlays from bulk storage files extensively. A detailed
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* Note: under multi-programming executive system these functions
can be overlapped.

Figure 4.4. ADAMS TIMESHARING STRUCTURE
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explanation of the tables used and how they are updated from files
is available in the ADAMS program user's manua1(17).

The online execution may begin after the network data, CPM
analysis results, unit function I.D.'s and parameters, and the
messages for the ADAMS library have been entered. Normally the first
phase would involve testing ADAMS, however, for the sake of clarity
the details concerning normal operation will be discussed first.

Each of the major functions provided in the ADAMS system is described
in the following sections.
4.5.1 ADAMS Real-Time Executive

Activity Scheduling

The scheduling of activities (i.e. deciding when execution
should be initiated) is controlled by the network data which is
stored in the sequence table. The sequence table defines which
activities have to complete before any particular activity may be
initiated. Becausé of the large table size only a small portion of
the sequence table is core resident at any time. The complete table
in bulk storage "read only" files remains unaltered throughout the
execution. The core version or segment of the table is constantly
updated as progress is made through the network. The in-core
sequence table is flagged and manipulated to indicate activity status:

1) activities required to have completed before
initiation

2) not initiated

3) in progress

4) completed

When an activity can be initiated, i.e. when there are no
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more activities to complete before it may be initiated, its name
(initial and terminal event numbers) and priority (latest start time)
are transferred into a buffer. This buffer may hold several
activities which have been given the go ahead for execution but have
not as yet been entered into the execution table. Should room not be
available in the execution table the inftiated activities are queued
until an activity in the execution table completes. Activities are
moved in order of their latest start times when such space becomes
available. Hence critical activities are started while the remainder
are queued.

Queuing the activities in order of their latest étart times
gives the executive the flexibility required in controlling a real-
time process. The latest start times are interpreted as a relative
criterion for starting one activity versus another. Hence if an
activity in an ordinarily non-critical string of activities falls
behind schedule in the real-time execution, its latest start time
will indicate when it is more important to start it than an activity
on a more critical path as estimated offline. This means the
executive will give an ordinarily lower priority activity preference
of execution if by doing so the overall project duration may be
shortened.

As activities are completed their status is updated in the
sequence table in core and parts of the core table are periodically
overlayed by the succeeding parts from the files.

Activity Execution
Once an activity name has been transferred from the buffer

into the execution table it can be processed. The table may hold
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several activities at once and all will be processed concurrently.
Because of the high speed of the CPU the number of activities which
can be executed concurrently is usually limited by the amount of
core space allocated to the table. The activities in the table are
Processed in order of their latest start times so the more critical
activities are given more CPU time if so required.

The execution table (see Table 4.2) in core represents a
small portion of the table contained in a 'read only' file. For
each activity in the core table, there is a certain amount of heédér
information such as the activity name, latest start time, flags to
indicate the activity's status plus a real and an integer register
which can be accessed by unit functions within that activity so that
information may be passed from one unit function to another, even if
they are not both in core at the same time. The remaining part of
the table holds one or more unit functions for that activity.

As new activities are initiated and as the processor steps
through the strings of unit functions the core table is updated by
information overlays from the files. Hence the more unit functions
the table can hold (a system variable restricted by core space) the
less frequent the overlays. The more activities the table can hold
the fewer activities have to be queued, therefore, the better the
chance for shortening overall project duration. The desirable number
of activities the table should hold can be determined by examining
the sub-critical paths of the network. For example, if four sub-

critical paths have overall durations similar to the critical path,

room for five activities would be recommended.
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when activity execution begins (see Figure 4.5), the most
critical activity is procéssed first. The executive executes one
unit function after another within an activity until:
1) the activity is terminated,
2) a "wait" (explained below) is encountered, or
3) the time allotted for activity execution expires.
In cases (1) and (2) the execution is switched to the next highest
priority activity and it is processed in a similar manner. The
execution continues until all the activities have been processed and
are in a suspended state or as mentioned in case (3) the allotted
time expires.
The "waits" referred to above include any operation in
which the CPU would be rendered inactive such as during slow I/0
operations. This includes operator communications and waits within
an activity (eg. wait for five minutes or wait until variable one
reaches a value of N). When a unit function containing such an opera-
tion 1s encountered, it can initiate action and then tell the execu-
tive to begin processing the next activity. If an operation involv-
ing a wait is expected to be fairly short (eg. analog process 1/0)
the executive can be instructed to process the next unit function
in the next activity then return to the first activity immediately.
A1l the instructions to the executive are contained in the unit
functions and require no programming by the user.
In short, activity execution has been designed to handle
concurrent activities, processing them on a priority basis, and to
overlap wait periods in any activity with executable operations in

others. This avoids delays in execution of one activity due to a
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LEGEND

(1) Activity execution begins, executive goes to first activity
in table, i.e., most critical activity as table is arranged
in order of latest start times.

(2) Get pointer which indicates which unit function should be
executed next.

(3) Execute unit function.
(4) Unit function completed, go to next unit function.

(5) Encountered "long wait" unit function, eg. low resolution
wait N sec. or wait for operator response, go to next activity.

(6) Encountered "short wait" unit function, eg. high resolution
wait N sec. or wait for signal from high speed monitor, set
flag to return, go to next activity.

(7)  'Activity complete’ unit function encountered, go to next
activity or return to process any short waft unit function
which have been encountered.

(8) Cdmp\eted last unit function of activity in table, overlay
space in table allocated for unit function by the next unit
function and continue processing activity.

(9) Time allotted for activity execution has expired or no further
unit functions remain to be processed, exit.
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wait in another. Should there be no executable operations the execu-
tive will suspend itself, freeing core for other programs.
4.,5.2 ADAMS High Speed Menitor
In designing the activity execution moduie to run at a set
frequency with a maximum allowable execution time, a problem arose
whenever a situation required continuous surveiilance or high resolu-
tion timing. This would not be possible when the executive had been
sugpended for a long time, eg. fifty-five out of sixty seconds. To
overcome ihis a separate high speed monitor (HSM) module was written.
The HSM is given the highest priority in the ADAMS system, is core
resident, and is typically executed every one or two secondé.
The monitor has three separate functions which can be
requested by the user via the appropriate unit function:
1) update timers
2) digital input with bit checking
3) DDC status bit checking |
Depending upon the result of the bit checking, or a timer timing out,
the HSM can carry out any of four user selectable routines:
1) initiate digital output, eg. open a switch
2) change a word or bit in a DDC loop
(this provides a very wide range of control
options)
3) set a flag for the ADAMS executive
4) queue a specified user written program
As mentioned, options within the HSM are selected by special
unit functions. For instance a user may request a timer be set up so

that in 37 seconds a particular routine is executed. The unit
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funétion gives the necessary parameters to the HSM which 1ooks after
the rest. The high speed monitor is also used for process status
checking. It carries out its own digital input but relies on the DDC
program to take care of the analog input and associated 1limit check-
ing of the value received. These functions can be used as process
alarms or as signals to ADAMS that a certain process condition has
been achieved, eg. when the level reaches L2 switch the pump off.

The HSM is composed of two modules, the first does the
timer updating and process status checking, the second contains the
routines and is executed only when requested by the first module.
Module one would normally be core resident, executed at a one or two
- second frequency; module two could be kept in bulk storage if core
restrictions were a problem.

The capability provided by the HSM to carry out long
periods of waiting or monitoring external to the actual unit func-
tion execution means that operations initiated by unit functions
can be continued:

1) when other unit functions are being processed so
that concurrent activities are feasible

2) when the main ADAMS executive has suspended so
that action may be taken at any time required on

either a preprogrammed or "polled interrupt"

basis.
4.5.3 Operator Communications
A complete and efficient communications system between the
operator and ADAMS is of prime importance to the success of the

system. The communications are handled largely by two separate
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modules, one for operator input and one for output from ADAMS.
Messages leaving ADAMS are initiated either by a unit function, 1.e.
the user or by the ADAMS executive to inform the operator of some
change in status. The input module, which is queued by the operator,
stores the iﬁfonnation given by him in bulk storage for subsequent
retrieval by the unit function.
| Two types of messages are sent by the ADAMS executive.
Short system error messages, composed only of a set of parameters,
will be sent directly from within the executive without going through
the large output module. These messages may be decoded to find the
cause and location of the error as well as appropriate error recovery
steps (note: such messages include "table full" warnings which
indicate certain operations have to be queued until table space is
available but do not require operator attention). The second type of
message sent by the executive are longer and utilize the outgoing
message module. Such messages may be delayed slightly since activity
execution is given a higher priority. Such messages quite often are
explanations of the shorter messages described above. Messages
sent by unit functions are also routed through the outgoing message
module.

when a message is to be sent to the dperatof. the unit
function or the executive places certain parameters in a table located
in a fixed cove area. The parameters indicate the jdentification of
the message to be sent, the debug class (explained shortly), the
record number of any file containing data to be sent with the message
and, in the case of & unit function, the location of an operation

complete flag to indicate to the unit function when the message has
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been output or when operator data entry has been completed. The out-
going message module is then queued and executes, whenever core space
can be made available, using the parameters from the table. After it
sends out the message, it may give an operation complete to the
specified flag or if operator response is required it will set up
parameters concerning the identification of the response, the logical
unit it is to be entered on and the location of the operation complete
flag to be set after the input is complete. The module then exits.

When the operator is ready to answer a question posed by a
unit function, he queues the incoming message module. This means |
that at no time does a program in ADAMS demand immediate input and
instead "waits" until the operator 1s ready with the answer. Hence
the executive and other programs may continue while any number of
unit functions are waiting for operator input. The operator enters
the identification number and then the data requested by the unit
function. The message module stores the data in a bulk storage
file and flags the operation complete flag with the record number of
the file in which the data is stored. The next time the executive
processes the unit function, the data can be retrieved and execution
can be continued in that activity.

Other features of the communication system include an
option by which the operator can set flags to eliminate unwanted
messages and another option allows the operator to enter unsolicited
messages. As mentioned each message can be given one of ten debug
levels. The operator may request that all messages on any level be
cancelled. Hence a user could include many messages, especially

valuable for testing or operator training, and then selectively
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cancel them without re-programming his application. The levels may
be turned off and on during real-time execution so should trouble
crop up during execution the operator could allow all the diagnostic
messages to be sent which would normally be filtered ouf. The
option of entering unsolicited responses allows the operator to
anticipate a routine request and answer it before it is asked. This
would allow the operator more freedom to then go about his other
tasks plus saving time in the activity execution.

In summary, a message, with or without a request for opera-
tor response, will not hold up execution of other activities nor will
it hold up execution of other programs. Also the process operator
may enter data at his convenience rather than have to respond
immediately to requests from the computer.

4.5.4 ADAMS Modes of Operation

In order to safegua?d plant operation in times of problems,

eg. equipment failure, three alternatives were considered:
1) suspend or "hold" ADAMS execution
2) restart execution at a safe place in the network
3) shutdown the operation

These options permit the plant operation to be suspended temporarily

to recover from error conditions, then restart the execution or else

shutdown the plant.
Hoid
The hold mode is implemented so that control of the applica-
tion may be withdrawn from ADAMS in whole or part and turned over to
the operator. Three types of holds are available to the operator:

1) hold initiation of events
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2) hold initiation of activities

3) hold execution of activities
The.three holds are designed to give the operator maximum control
‘over and flexibility in the execution. |

An event is a node in the network diagram which marks a
point where one or more activities terminate and one or more
activities may begin. The initiation of an event occurs after all

activities which terminate at that event have completed. The
| placing of a hold on the initiation of an event means that none of
the activities which begin at that event are allowed to be put into
the execution table. Hence a hold on the initiation of events
.allows all activities which have been initiated to complete, but
will not permit new activities to start. This option permits the
operator to implement any network as a series of separate steps.

The second type of hold, an initiation of act1§it1es. has
much the same effect as a hold on initiation of events but it is more
selective. Holding initiation of activities means that any activity
which can be started as a result of another activity(s) completing
s not transferred into the execution table. This does not restrict
the execution of any activities which have already started. This
hold is more selective in that individual activities may be held
whereas for the hold on events several activities could be held when
one event is held. Both holds can be used to freeze parts of or the
entire network at a prespecified location. This would be helpful
to the operator who, after several activities had completed, wanted
to hold further action until he checked out the plant, or correct

some instrument failure, before allowing execution to resume.
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The third hold, on execution of activities, is more useful
f&r correcting problems which have occdrred within a particular
activity. A hold on activity execution halts the execution of unit
functions in the activity at the first "safe" location encountered,
hence this hold actually affects the unit functions. The user has
the option, during activity programming, to set a "not safe to hold"
flag in the unit functions. For instance, in starting a reactor it
might be essential to continue executing the unit functions once a
certain point is reached. The executive will not hold unit functibn
until it has checked to make sure it is in a safe condition. A hold
on execution of activity(s) can be initiated either by the operator
or from within a unit function which has recognized an error (eg.
unit function to change a word in control loop 122 of the DDC pro-
gram cannot find the loop). If the unit function requests a hold,
it 1s placed on a particular activity regardless of the "not safe
to hold" flag since continuing might worsen an error condition.

The ability to place any of the discussed holds on the net-
work, release the holds, and request the present status of the opera-
tion with respect to holds is provided for the operator in a separate
operator queued program. Each of the holds can be put on in three
degrees:

1) to affect the overall network
2) to affect the overall network excepting specified
locations
3) to affect only specified locations.
This gives the flexibility required when only parts of the network

should be held. For example, an operator upon discovering an error
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could hold all activity execution. Then, as he has time to determine
the extent of the error or as the plant recovers he can release cer-
tain specified activities from the hold.
Restart and Shutdown

ADAMS has no provision as yet for automatically restarting
the activity execution in specified locations of the network. This
is considered a necessary function and should be implemented during
further development of ADAMS. At present, the shutdown is envi;aged
as a separate network which would be executed if recovery from an
error condition was not considered feasible. With the present ADAMS
program the user must program his own logical checks on the plaﬁt
operations and specify transfers to specific unit functions or to a

hold mode.

4.6 Testing/Debugging Options in ADAMS
Upon completion of data entry it is possible that errors

might still exist in the 6rgan1zat10n of the project and in program-
ming activities. Several options are available for use under a
"test" mode of execution to find and correct these errors prior to
actual implementation. These options permit the user to omit any
"wait" instructions and to execute ADAMS at computer speed and without
affecting plant operations. Also of importance, the test mode is
designed to facilitate operator training, i.e. familiarize him with
the application under ADAMS computer control.
The basic test options include:
1) divert process output, record on peripheral device.

2) skip over wait periods.

5 dwacry L
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3) divert any changes to DOC loops.

4) step through activities executing one unit function
per activity during each scan of the real-time
executive,

5) online table dumping.

6) online changes to activity unit function paraméter
table (future work).

The test mode can also initiate holds which is particularly
helpful if the operator wishes to follow the execution of one part of
the network at a time.

The test mode is very flexible in that an operator may use
all or any combination of the options. For example, 1t would be
possible for ADAMS to follow a manual operation by diverting any
action which affects the process but allowing monitoring of the
Process and input of information as usual.

Because it is possible to implement chosen sections of an
overall network for computer control, testing is important to debug

new sections while other sections are already running under computér

control.

4.7 Project Maintenance and Optimization

A large number of changes in operating procedures and
conditions can be expected of any real-time process. _

In the application of ADAMS more reliable data will be
available for planners and programmers after executing the project
several times. For example, with better activity duration estimates

more meaningful CPM analysis results can be obtained and the
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scheduling of activities by the real-time executive will have more
effect. As the project becomes more stable and reliable under ADAMS
supervision, control limits can be optimized and the overall ADAMS
structure and timing can be tailored to the speEific application of
the user.
Recording of several key variables can be logged by

peripheral programs:

1) activity duration

2) operator interventions

3) system errors

4) various modes of operation used

5) equipment failures

Several of the concepts and features employed in ADAMS

facilitates rather than discourages making changes. As mentioned the
network concept separates the scheduling from the programming. This
means details can be changed easily without changing the network.
Changes to the programming consist of changing routine parameters
which can be done without recompleting or re-assembling the program.
Changes to the ADAMS system have also been considered. The table
driven approach, modular construction, and user specified program

priorities and timing assist the user in modifying ADAMS to fit his

application.
4.8 Summary

Among related systems, ADAMS is unique in that it is
designed around and incorporates network analysis concepts. This

provides a realistic well defined framework around which the user may
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develop his project. The organization of his personnel and project
planning can be divided into independent subsystems for detailed
work, then combined into the overall project. Network analysis is
also utilized in the scheduling and execution of activities by the
ADAMS real-time executive. This feature combined with the ability
of ADAMS to supervise concurrent activities is also unique. A
priority system, based on CPM analysis, insures that jobs which will
evantually determine the project duration are carried out as soon as
possible. The scheduling and execution of several concurrent acti-
vities is automatically handled within ADAMS, The user, after
drawing an arrow diagram for the project, has only to program the
functions within each activity; activity scheduling, a large task
normally programmed by the user, is automatically controlled.

Activity programming is accomplished using a table driven
processor provided within ADAMS. The unit functions or routines
available in the processor are process control oriented and designed
for use by any project engineer. Common process operations and
system concepts such as servicing interrupts are automatically
looked after within the easy to use high level unit functions. The

table driven processor concept permits features such as the following

to be easily added:
| 1) online editing
2) addition of user written instructions
3) self documenting input processor
4) thorough error diagnostics
5) symbolic referencing.
ADAMS is designed to be general and easily implemented on
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any user's system. The use of FORTRAN and techniques to accomplish
system functions such as queuing of operator 1/0 make ADAMS inde-
pendent of any particular system (although less efficient with
respect to core storage and execution time). Modular construction
allows the user to tailor ADAMS to his computer system and his
application. This also allows the user to rewrite any function in
ADAMS to make it more efficient (eg. rewrite into machine language)
without affecting the remainder of the system. For example,
although it has presently run under a timesharing and a multi-
partion executive at the University of Alberta, it could be easily
modified to run on a dedicated computer.

Overall, ADAMS presents a logical pattern for the user to
follow. Well defined stages for project development, programming,
testing and debugging online execution and the inevitable project
optimization and maintenance have been individually considered and
provided. ADAMS represents an attempt to assist the user with all
the major steps in an application and is not restricted to assistance

with the computer aspects.



CHAPTER V
PRACTICAL APPLICATION OF ADAMS:
COMPUTER CONTROLLED START-UP OF A PILOT
PLANT DOUBLE EFFECT EVAPORATOR

5.1 Introduction

The ADAMS programs and design concepts were successfully
tested by simulation and by application to the start-up of a pilot
plant double effect evaporator; ADAMS was first implemented on an
IBM 1800 computer using the TSX operating system. For the simulation
tests the 1800 was 1nterfaced to an analog computer on which a model
had been set up to simulate some aspects of a real process. For
example, there was qnalog 1/0 between the model and the 1800 which
represented process signals or measurements and control signals.

Two DDC control loops were implemented to control variables in the -
model by manipulating other variables. The functions or options
available 1n:ADAMS were extensively exercised using a network designed
especially for this purpose.

Subsequently ADAMS was converted to run under the IBM 1800
MPX operating system. Under TSX all the ADAMS programs ran in the
variable core area (V-core) which had 9.7 K 16 bit words. The entire
core size was 32 K, the remainder of which was occupied by the executive
and other system programs such as the DDC program. The machine size was
expanded to 48 K and the MPX system adopted. Under MPX, the core is
partitioned into several areas which are different sizes and normally
assigned different priorities for the programs executing in them.

Extensive use is made of disk bulk storage and the core swapping ability
of MPX.
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ADAMS is presently composed of 12 coreloads, the largest

of which are the two which form the ADAMS real-time executive. Each
of these require approximately 9.7 K words of core memory which includes
the FORTRAN 1/0 package; 8.5 K is suffice if the FORTRAN 1/0 is included
in the systems program area. The ADAMS programs reside in approximately
50 K words of disk bulk storage. File space, a variable dependent upon
the application for the evaporator start-up, requires approximately
25 K words. During execution the real-time executive was limited to
twenty seconds of CPU time in any forty-five second period and the high
speed monitor was executed every second. These figures, also dependent
on the application, were chosen using the evaporator start-up as an
example.

In order to demonstrate its capabilities when applied to a
real process, ADAMS was used to start up a pilot plant double effect
evaporator. This application is the subject of the balance of this

chapter.

5.2 Evaporator Description

The pilot scale evaporator (see Figure 5.1) concentrates a
blended, preheated, water-trféthylene glycol feed stream from about
.032 weight fraction to a final product normally about .101 weight frac-
tion. The evaporator consists of two effects which are connected in a
forward feed scheme, the product from the first effect becoming the feed
for the second effect which produces the final product. The heat required
' to concentrate the glycol solution is provided by high pressure steam
introduced into the first effect.

The first effect of the evaporator is a calandria type in

which the boiling fluid circulates naturally by convection. The second
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effect is a long tube vertical type in which the fluid is circulated
by an external pump. Other major components of the plant include the
feed (product) storage and blending system, the cyclone separator and
condenser. The feed or product storage consists of four tanks, three
of which hold concentrated glycol solution and one which hqlds water.
The concentrated product from the second effect is cooled and returned
to the solution feed tanks and the condensate from the condenser and
second effect steam chest is returned to the water feed tank. Thé
feed distribution and product recovery configurations can be modified
by repositioning the solenoid and hand valves.

The two feed streams, water and concentrated glyco1 solution,
are pumped from the tanks through steam preheaters and then blended A
into one stream which enters the first effect. Heat is supplied to the
first effect by steam which enters the steam chest from a bui]dihg supply
1ine. After the solution leaves the first effect (typically a § - 10
minute residence time) it is piped to the second effect. The vapour.from
the boiling solution in the first effect is piped overhead to the second
effect steam chest where it serves as the heating medium.

The solution in the second effect is recirculated by a pump
through three, 6 foot, vertical tubes. Heat_transfer is made possible
by a vacuum which is maintained in the condenser and separator and has
the effect of lowering the boiling point of the solution. Heat transfer
is also aided by the forced recirculation of the solution through the
heating tubes. The recirculating solution passes through a cyclone sep-
arator which assists the vapour in escaping from the boiling fluid. The
vepour 1s drawn into the condenser, condensed, and returned to the evapo-

rator feed tank. COncentrated:product 1s drawn off the recirculating
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stream, cooled, and pumped back to the concentrated solution tanks.

Standard operating values are outlined in Table 5.1.

The evaporator is fully instrumented with two concentration
analyzers, three level readings, two pressure readings, nine flowrate
measurements and thirty-seven temperature readings. It has a complete
set of conventional controllers and is also fully interfaced to the
IBM 1800 computer for data acquisition and control functions. Thé
interface includes analog input of 11 key measurements, analog output
to position eleven control valves, and thirty-two digital output points

which provide on-off control for the solenoid valves and pump motors.

5.3 Evaporator Start-Up
5.3.1 Procedure

Introduction

The evaporator start-up procedure discussed below was devel-
oped to demonstrate the overall capability of ADAMS. Hence, as many as
possible of the sequencing and programming options of ADAMS have been
included and the demonstration is designed to make the separate steps
evident to an observer. Several features of the ADAMS programs are
demonstrated in the start-up:

1) Real-time activity scheduling by the executive

2) Queuing of the least critical activities when there

is not enough core to process all activities until
core becomes available

3) Ability to execute activities concurrently

4) Use of the high speed monitor

5) Operator communications system



TABLE 5.1

STANDARD OPERATING VALUES

variable Description

Steam flow

Total feed flow

First effect bottom flow
First effect overhead flow
Circulation rate

Product flow

second effect overhead (separator) flow

Feed concentration

Product concentration

First effect level

second effect (separator) level

First effect pressure

Second effect (condenser) pressure

Total feed temperature
Steam temperature to first effect

Steam temperature to second effect

Value

2.00 1b./min

5.00 1b./min
3.49 1b./min
1.51 1b./min
190.00 1b./min
1.58 1b./min
1.91 1b./min

.032 wt. fraction
.101 wt. fraction

16.00 in.
11.00 in.

6.0 psig
-17.0 Hg

190 degrees F.
277 degrees F.
223.6 degrees F.

74.
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6) Communication with other communication programs
eg. the DDC program
7) Intermixing of manual and computer automated operations
8) System initiated holds
9) Use of non-interruptable strings of unit functions
during critical operations which override normal

timing of the executive.

This start-up procedure assumes that the evaporator is to be
run in the normal forward-feed operating configuration. The control
system used during start-up (see Figure 5.2) manipulates the rate of
feed entering the first effect to quickly establish and maintain the
desired 11quid level. The inter-effect flow is manipulated fn a similar
manner to control the second effect level and the final prodﬁct rate
is fixed. Once start-up has been accomplished, the control system is
reconfigurated by ADAMS to a scheme that is more suitable for continuous
operation (see Figure 5.2). The operator role in the start-up is to
carry out operations which are not handled automatically and to provide
Judgement as to process stability.

Outline of Procedure

The computer first ensures that the evaporator is set up
properly for an automated start-up. The operator is asked to manually
shut off the solenoid valves and then the computer opens the control
relays using digital output (the manual switches and the computer driven
relays are in parallel circuits so both must be open to turn the circuit
off). The operator is then requested to open the hand valves on the

utilities and feed tanks and to set the contro) panel to permit computer

control of the control valves.
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After the standard DDC table has been entered by the operator,
ADAMS makes the 1o0ps inoperable-manual, and configurates them for
start-up. The current output stations, which control the positioning of
the control valves, are switched to the auto position by the operator
and the computer closes all the valves.

The procedure now ensures that steam and cooling water are
supplied to the evaporator. The operator is informed if proper flow-
rates cannot be established so that he may investigate and correct
the sifuation before the start-up is resumed. The pumps on the feed
streams are started automatically and the flows are sensed to ensure
the pumps are working satisfactorily. Once again the operator is
informed of any discrepancies and is requested to investigate the cause.

At this point the operator is requested to open purge vents
on the steam chests of the twb effects and 1ive steam is introduced to
heat the equipment and purge any inerts from the chests.

As the steam is introduced, the level in the first effect
is established by DDC control of the feed flow. The operator is given
a choice of using the inter-effect pump or operating using the natural
pressure differential as a driving force between the effects. If he
requests the use of the pump it will be started by the computer and
checked for satisfactory operatjon in the same manner as the feed
pumps. After the level in the 1st effect reaches a specified minimum
value the 2nd effect level is placed under DDC using the inter-effect
flow to control it. After the 2nd effect level builds up sufficiently,
the recirculation pump is started, the product flowrate placed under

DDC at a fixed setpoint, and the calibration pump is turned on to return

condensate to the water feed tanks.
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After the time specified for steam purging has expired the

operator is requested to close the vent valves and the input steam
flow is put under DDC.

Next the vacuum utility is checked and the vacuum system
and the differential vapour pressure loop are placed under DDC.

At this point all the systems within the evaporator are
running in the start-up mode with tight level control. It is possible
to run indefinitely in this manner, however, further programming is
provided to return the evaporator control systems to its normal
operatihg mode. This is done in two steps. First, the operator is
requested to inform ADAMS when the evaporator has reached steady
state. At this time the control scheme is changed so that the feed
rate is fixed, the first effect level is controlled by manipulating
1nter-effect flow, and the second effect level is controlled by
manipulating the product flowrate. The second step is carried out
after the operator again informs ADAMS that steady state is reached.
The normal integral controller constants are entered into the loops
and the feed preheater system is started under DDC.

The final step in the start-up involves opening the
computer controlled relays on the solenoid to permit manual manipulation.
Explanatipn of the Activities

The functions of each activity within the network (see

Figure 5.3) are more fully described below.

Activity 1 - 10. The ADAMS operator communications system is used to
{nform the operator that ADAMS has begun the evaporator start-up.
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Activity 10 - 20. The operator is requested to enter the DDC table
for evaporator control and acknowledge when it is in. The system will
halt further execution of this activity until the operator responds
but will continue processing any other parallel activities (in this
case Activity 10 - 30). When the table is in, all the loops are made
non-operable and manual and a message is sent out informing the operator
of the present status of the loops. This ensures that if the loops

were already present, they are initialized to an inactive condition.

Activity 10 - 30. This activity contains the instructions to the
operator which must be carried out manually in order to prepare fhe
evaporator for start-up. The system waits until the operator acknowl-
edges that the steps are complete. Basically this involves opening
manual valves on the utilities to the evaporator and setting the feed

and product recovery systems to the desired configuration. Also the
control panel must be switched to the DDC mode to permit computer con-
trol of the automatic valves. Normally the evaporator is in the correct
configuration so the operator will just enter that manual preparation

1s complete. At this point the system continues and turns off aTl computer
driven relays fér the various sd]enoids on the evaporator and then turns
on the main power supply to the evaporator. These operations are carried

out by the "process output" unit function using the digital output
option.

Activity 20 - 30. This is a dummy activity to ensure that both

activities 10 - 20 and 10 - 30 have completed before activity 30 - 50
is allowed to start. A dummy activity is used only to show sequencing
dependencies and takes zero time. It is composed of a start activity

and a stop activity unit function.
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Activity 20 - 40. The two DDC loops which control the levels in the

first and second effects are reconfigurated for start-up. Extensive
use is made of the change loop option of the DDC communication unit
function. The'main changes made to each of the loops are to lower the
scan rate from thirty-two to sixteen seconds, to change manipulated
variables to the start-up configuration, to enter control constants
for tight level control (ie. a high proportional constant with no
integral action), and to change flags which specify what action is
taken when the high or low limits on error, 1npu£. or output of the
DDC loops are exceeded. The last change is made in view of the severe
control action which could be taken with the high proportional control
constants. Examples of changes to whole words and to individual bits
within the DDC table are contained in this activity. When the changes

are complete a message informing the pperator of the new loop status is

sent.

Activity 30 -v50. A message requesting that the operator verify that
the current output stations are in the auto mpde js issued. The
current output stations drive the I/P transducers which in turn drive
the control valves to the desired positioné. Upon operator verifi-
cation, the unit function for process output, in this case DAC pulsed
anolog output, is used to zero the current to all control valves. The
same unit function is then used to open the solenoid (digital output)

which allows instrument air to the controller and valves. The operator

is informed of the action.

Activity 40 - 50. Dummy activity (see activity 20 - 30).
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Activity 50 - 60, 50 - 70. These are used to ensure that steam and
cooling water are available to the evaporator. The activities are
similar and hence will be discussed together. The activities use a
variety of unit functions, including accessing and changing the DDC
table, digital output, utilization of some of the mathematical options,
waiting in the high speed monitor, branching between unit functions
within an activity, and operator communications. The activities also
include the option which overrides the normal execution of the real-
time executive (ie. running at a set frequency for a maximum interval
in core). This safety feature holds the executive in core to process
an activity which 1s considered to be in too hazardous a position to
be left unattended. This option is invoked through one of the unit
function parameters.

The procedure used in both activities is to make the controll-
ing DDC loop operable, open the solenoid valve on the supply line,
open the control valve on the supply line and using the reading obtained
from the DDC loop decide whether there is sufficient flow. After the
control valve is opened a short wait is implemented using the high speed
monitor unit function. The flowrate is then obtained from the DDC loop
and compared‘to a fixed value. If it is not sufficient the procedure is
repeated up to three times. The counter for the number of times the
action.has been retried is maintained by the programmer in one of the
registers provided for each activity. If a satisfactory flow has not
been established after the three attempts the control valve is closed
and a message is sent to the operator informing him of the difficulty
and requesting his intervention. The time between the opening and

closing of the control valve is considered hazardous and hence all the
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unit functions involved in this part of thelactivity are flagged

"unsafe to leave unattended". This forces the executive to keep
processing the activity until the valve is closed. After the operator
checks out the situation he may requést the system to retry the
_procedure or he may tell it that everything is functional and the
procedure may be bypassed. If the flaw is detected satisfactorily

the control valve is closed and a message stating so is sent.

Activity 50 - 80, 50 - 90. These ‘are very simildr to activities

50 - 60 and 50 - 70 except they are used to determine whether the
feed water and feed solution pumps have been started successfully.

One minor difference is that in addition to opening the feed solenoids
and bypass solenoids on the feed system the pump is also started by
the computer using digital output. After the pump is started the
procedure for detecting the feed flows is identical to that used

in detecting the steam and cooling water flow.

Activity 60 - 70, 70 - 80, 80 - 90. These are dummy activities.

Activity 90 - 100. This activity is used to warm the evaporator
equipment and purge any inerts from the steam chests by injecting
steam slowly for a couple of minutes with the purge valves in an
open position. Since the purge valves are manually controlled
operator confirmation that they are open is requested and then

the steam control valve is opened using pulsed DAC output to the
current output stations (COS). The operator is then told he may
place the COS on manual and close the control valve and purge valve

whenever he feels the operation is complete. The DDC loops controll-
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ing the condensate levels are then made operable and automatic to centrol
the steam condensate levels in the steam chests. Cooling water flow

through the condenser is also initiated.

Activity 90 - 110. Liquid levels in the first and second effects are
established and the remaining pumps are started. The procedure

used is to "fi11" the evaporator using the feed flow as a manipulated
variable. The first effect level control loop and its slave are made
operable and automatic. While the level is being established the oper-
ator is asked whether or not the inter-effect pump will be used and to

set the hand valves around the pump to the proper configuration. When

the operator hqs responded and the level in the first effect has built

up sufficiently the second effect level control is started using the inter-
effect flow as a manipulated variable. The inter-effect pump (if required)
is also started by a computer actuated relay. The operator is informed

as the levels are put under DDC. When the second effect level is donsid- |
ered satisfactory the recirculation pump and the calibration pump are

started automatically with the product flow at a fixed rate.

Activity 100 - 130. The steam and feed water flowrates are controlled
at fixed setpoints.

Activity 110 - 120. The vacuum utility is connected to the evaporator.

The same procedure employed in activities 50 - 60 and 60 - 70 is used
in this activity.

Activity 120 - 130. The vacuum system is placed under DDC and brought
to the norinal operating level. The differential vapour pressure control

of the veni from the second effect steam chest is also started. After
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waiting briefly to allow a vacuum to be established in the system
thé second effect vent solenoid is obened. This purges the vapour
spaces of any inerts and thereby improves heat transfer. The high
speed monitor is used to time the duration which the solenoid is

left open and then to close it automatically.

Activity 130 - 140. A1l systems (excepting the feed preheat) in

the evaporator have now been started under the start-up control
scheme. The evaporator is quite safe running in this mode and may
be left so indefinitely by halting the execution of ADAMS at this
point. If the operator wishes he may allow execution to continue

and the evaporator will be brought to the normal control scheme.

This is done in two phases, the first being the change from using the
flows into the effects to control the levels to using the flows exiting
the effects to control the levels. This is done after thg operator
has acknowledged that the process is in a stable condition and the
change can be made safely. Once this change is made, the operator
again is requested to indicate when the process has stabilized. The
normal control constants for proportional plus integral action are
then entered in place of the constants for tight level control. The

feed preheater system 1s also placed under DDC and the start-up is
complete.

Critical Path Analysis

* The final stage of planning is the estimation of the
activity durations and the subsequent CPM analysis. Table 5.2
confains the estimates of activity durations and the corresponding

activity latest start times. These have been obtained through a



TABLE 5.2
ACTIVITY DURATION AND LATEST START TIMES

Activity Names Durations
( Tggth HR)

1 10 1
10 20 58
10 30 63
20 30 0
20 40 12
30 50 3
40 50 0
50 60 17
50 70 15
50 80 16
50 90 14
60 70 0
70 80 0
80 90 0
90 100 103
90 110 107
100 130 7
110 120 10
120 130 22
130 140 29

85.

LST
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64
83
64
95
95
97
96
98
12
112
12
14}
12
244
219
229
251
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few trial runs but could change as more reliable data is obtained

from.the start-up.

5.3.2 Programming the Start-Up

Several of the general features of ADAMS discussed in pre-
vious chapters, are clearly illustrated by this application.

The most obvious is the ease with which a few unit functions
can be used to aécomplish a relatively complex task, i.e. that the high
Tevel capabilities of ADAMS unit functions are extremely powerful.

The desirability of being able to implement "macro" type
procedures (unit functions) has also become apparent. This is par-
ticularly noticeable in starting pumps, an operafion which is repeated
five times in this application. The additfon of a user written "start
pump" macro type procedure for the general situation would be highly
advantageous. Unit functions which would work from a list are also
recommended. For example, in activity 10 - 20, all the DDC lobps are
made non-operable and manual, each step requiring a separate unit function.
One unit function which would execute a given 1ist would be more efficient,
both from a programming standpoint and during execution.

Several activities demonstrate the ease of intermixing manual
operator functions with computer controlled functions. This capability
is necessary in applications where dutomation progresses from a par-
tially manual to a more automated state, or when it is not feasible to
allow computer control of some functions. This is the case in activity
10 - 30 during which the operator must position certain hand valves and
ensure the control panel is set up for computer control. Most of these

tasks could be automated by installation of appropriate hardware and
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computer interfaces. However, complete automation would be difficult
to justify economically.

The usefulness of the "not safe to hold" flags which can
be set in the unit function programming is obvious in activities such
as 50 - 60. In this case the steim valve is opened to test whether
there is flow into the evaporator. It is important that this valve
be closed before the executive suspends operation since this could
leave the process in an unsafe condition.

In general, experience with unit functions has proven them

to be easily and effectively used.

5.3.3 Testing/Debugging

The test mode has been used extensively and is particularly
helpful in debugging the unit function programming while the evaporator
is operating normally. The most useful features in such a case are the
"trap process output" and "cancel changes to the DDC table" options.
For example in activities 10 - Zo(and 10 - 30 the computer makes the
control loops for the evaporator inoperable and manual and shuts off
all the solenoids, pump motors and the main power.supply. Normal
operation would have to be suspended if these test options were not
available in ADAMS.

The ability to bypass waits is also a desirable feature
during testing. Waits for a specified period of time may be ignored
to speed testing.

Another option used extensively during testing was to step
through an activity executing one unit function per scan. This was
useful in activity 10 - 30 when several solenoid valves are turned off.

Each operation could be checked out to make sure the correct action was
obtained.
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An option, particularly useful in conjunction with stepping
through activities, is the ability to dump system tables which indi-
cate how the system is working. The operator may select any output
device he wishes to receive the dumps, thus not interfering with
the operator's 1/0 device. Examination of these tables by a system
analyst could point out several types of difficulties the system
might be having with an application.

It was found that the hold options were used extensively
during testing, both to isolate complicated areas within the netwdrk
for inspection using the table dump options or to slow the network
execution to the point where an operator could follow it closely for
training purposes. An example of both these cases begins at event
50 which initiates the activities which start the feed streams, test
for steam, and test for cooling water. During normal execution the
four activities occur almost simultaneously making it very difficult
to follow individual steps. By initiating an overall hold and then
releasing it activity by activity the operator can follow the execution
closely.

The test mode was found to be very flexible in that all

or a combination of test options can be put in effect at any one time.

5.3.4 Implementation

At present the ADAMS programs have been written and debugged
on both TSX and MPX systems.
The example of the evaporator start-up as just described

was programmed, successfully tested and debugged, and can now be used

at any time.
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5.3.5 Improvement of the Start-Up

As with any new project, it is expected that several changes
will be made to the planning, programming, etc. of the start-up procedure
as experience is gained. ADAMS has been specifically designed to
facilitate such changes.

Activity duration estimates (see Table 5.2) are expected
to be altered. This will mean the real time ekecutive will become
more effective in scheduling the activities as more reliable durations
are used in the CPM analysis. This will be particularly felt in cases
where activities have to be queued due to a lack of core table area
required for activity processing.

Unit function parameters are,aﬁso expected to change.

For instance activity 120 - 130 purges the inerts from the evaporator
through the vacuum system for a set period of time. This time can
»easily be changéd‘if so desired.

The start-up procedure itself might be changed. For
example activity 130 - 140 contains steps which allow steam to enter
the feed preheaters. This is presently one of the final steps in the
start-up. It would be possible and perhaps more efficient to allow
this step to occur as steam is introduced to the first effect. This
could easily be done by removing the pertinent unit functions from
activity 130 - 140 and placing them in activity 100 - 130.

The systems approach which is the basis of ADAMS permits a
variety of changes to be made easily while affecting the rest of the

application to a minimum degree.
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5.4 Experience with the System

The application of ADAMS as a working system to the start-
up of the evaporator took place over a span of approximately one year.
During this time the author was employed at an industrial computer
installation and therefore was able to compare ADAMS to commercially
developed systems. It is felt that KDAMS has a sound design basis
which offers significant advantages over other appfoaches. The standard
of programming, testing and debugging aids, and documentation, also
compare favorably with industrial systems.

The use of ADAMS to achieve a computer controlled plant
-start-up has proven a successful project. The usefulness of computer
control in this application is part&cularly obvious in assisting new
students who are unfamiliar with the evaporator pilot plant. The natural
pitfalls of computer control such as not being programmed for real
time failures and removal of normal operator judgement can easily be
circumvented by ADAMS since it allows intermixing of manual and auto-
matic operations as well as suspension of automated procedures when
necessary. During the past year of actual operation ADAMS has proven
to be safe, efficient, rapid, and repeatable. Naturally, with
experience, several steps and safety checks were added to the start-
up procedure. These changes were incorporated smoethly, with only
isolated parts of the overall procedure being affected, as they would
have to be for success in a commercial environment.

Various features of the original design of ADAMS such as
more extensive input checking and data manipulation facilities and
a process operator's console have been deliberately omitted from the
existing programs due to time limitations but are recommended for

industrial use.
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5.5 Conclusion

Based on the use of ADAMS during its development, i.e.
the tests using the analog model and the implementation of the
evaporator start-up it is concluded that

1) The network approach is well defined and easy to use.

2) Unit functions are effective and relieve much of the

programming load.

3) The ADAMS programs work as designed.

4) ADAMS has been proven suitable for meaningful

applications and has great potential for

commercial applications.
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CHAPTER VI
RECOMMENDATIONS AND CONCLUSIONS

6.1 Recommendations

The objective of this work was to des:lgn and implement a
system to apply computer control to operations composed of discrete
steps. The prototype program based on the ADAMS design has esta-
blished the feasibility of several useful concepts such as the use of
network diagrams. However, practical experience has also confirmed
the need for several of the design specifications discussed in this
thesis but not yet implemented in the program. It is felt that the
success of ADAMS thus far warrants additional work to the existing
program in order to make it more flexible with respect to recovering
from process problems and more adapt_able to a process's changing
operating procedures and conditions. The present system should also
be improved with respect to user-system interaction, i.e., improved
cmnication and system documentation features. More specifically,
the major areas for future development are considered to be:

1) Installation of an ADAMS operator's console which
would include digital readout, CRT displays, status switches, and
commonly requested options on individual demand switches.

2) Utility programs to implement features such as:
editing the activity parameter table as it resides in storage, print-
ing formatted process logs on demand, and compiling records of
system usage.

3) An operator control program to re-initialize and
restart execution of a network at any desired location to aid in

recovering from error conditions.
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4) Changes to the real-time executive to allow the
execution of subsets of a network. This would provide the flexi-
bility required to handle situations such as the "cold" and "hot"
initial conditions during start-up applications or the possibility.
of several batches being run on the same or different reactors
requiring slightly different operating procedures. This flexibility
would permit the user to represent several conditions as subsets of
the most complex network rather than programming each of them inde-
pendently. This feature could aiso be used tn conjunction with
point 3 to aid process restarts.

5) The establishment of a common data area which '
would contain frequently changed parameters used by the unit functions.
Hence, rather than having to modify a parameter within every unit
function that uses it the particular parameter could be stored in
;he common table and changed only once.

6) ‘Hhen users, who are not familiar with ADAMS, start
implementing new applications a data input processor will become
essential. Since it is the interface between the applications
engineer and the ADAMS programs any improvements to the processor
will be of direct benefit to the user. Refinements would include
its own CPM analysis program, specific error diagndstics for each
unit function and symbblic referencing.

7) Existing unit functioh§ in ADAMS can be either
"permanently” core resident or stored in bulk storage and "loaded
on call". An extension to the input processor could be made so that
the user has the ability to generate "in-line coding", i.e., his

coding would be compiled, stored and executed in the same manner as
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a regular unit function.

Several other minor recommendations plus a more detailed

discussion of the implementation of the above points are included
in the ADAMS program user's manual(17).

6.2 Conclusions

1) ADAMS, which has been successfully used to start
up a pilot scale double effect evaporator, has demonstrated that the
application of computers to the control discrete operations is
feasible and practical.

2) Use of network anﬁlysis techniques offers advan-
tages: 1in the implementation of an executive which handles the
scheduling and execution of steps én a real-time basis; in that it
permits sEparation of the'proéect planning from the detailed activity
specification or coding; and because it reduces the amount of pro-
gramming required of the user. '

3) The most important design specifications for a
discrete activity monitor system include: a systematic approach for
the planning and coordination of large projects both on the management
level and on the detailed level required for execution on a computer
system; an online executive which can cope with unexpected occurrences
without endangering the operation; extensive provision for operator
intervention and communication; features which permit thorough offline
testing of the user's application and facilitate modification to
to accommodate changing operating conditions and procedures.

4) The feasibility of a monitor, generalized with
respect to the computer system on which it is run and to the applica-
tion which 1t controls has been successfully demonstrated by the



existing ADAMS project.
5) ADAMS represents a starting point for the develop-

ment of a commercial system for industrial use.
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