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Abstract

Performance of the operating processes may change by time due to uncertainties

and process condition changes. Hence, online operating performance assessment has

attracted attentions from academia and industry. One of the main ingredients of per-

formance assessment is optimality assessment. On one hand, the optimal condition

for an operating process can be estimated by known process optimization methods as

an initial design. On the other hand, performance may alter from the optimal design

due to disturbances, process condition changes or product driven operating mode

changes. As a result, optimality assessment, i.e., monitoring the operating process

performance in terms of optimality is of great importance. The main objective of

this thesis is to develop a general framework for optimality assessment in multi-mode

systems with non-Gaussian behavior by employing probabilistic principal component

regression (PPCR) method.

High dimensionality of the process datasets, multiple operating regions caused by

uncertainties and simultaneous missing inputs and outputs due to the device fail-

ure or delays in measuring certain variables are some of the challenges in optimality

assessment. Mixture semi-supervised probabilistic principal component regression

(MSPPCR) model is employed that inherently addresses high dimensionality, multi-

modal behavior and missing outputs. In addition, it is developed under expectation

maximization (EM) framework in order to deal with simultaneous missing inputs and

outputs. The proposed model is capable of making the most use of all available in-
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formation for predictive model building.

In many processes, steady state operating modes do not follow Gaussian distri-

bution since they have different operating regions that are caused by uncertainties.

Due to the lack of information regarding operating regions, a hierarchical mixture

PPCR method is proposed in order to automatically estimate the number of operat-

ing regions, and the parameters are estimated through maximum a posteriori (MAP)

principle under EM framework that incorporates prior distributions. This method

is based on a divisive hierarchical algorithm; however, a merging step is proposed in

order to control splitting steps and avoid overestimation of the number of mixture

components. Due to its hierarchical nature, a prior knowledge of the possible range

of the number of components is not required compared to the traditional methods.

Moreover, it is capable of detecting overlapped components because of utilizing min-

imum message length criterion (MML) as the selection criterion.

A probabilistic framework for optimality assessment and non-optimum cause di-

agnosis for multi-mode processes with non-Gaussian behavior is proposed. In this

framework, operating regions are compared with operating modes that are caused

by uncertainties and known governing factors, respectively. Density based clustering

(DENCLUE) method is modified and improved for offline operating mode detection.

In addition, a predictive operating modes classifier is built based on modified mixture

discriminant analysis (MclustDA) method, and it is incorporated with process knowl-

edge in order to improve estimation. For optimality analysis and prediction, MSP-

PCR model is employed for steady state modes, and dynamic principal component

regression (DPCR) is employed for transitions. A probabilistic framework through

sequential forward floating search (SFFS) method is adopted for non-optimum cause

diagnosis. The proposed method is capable of optimality assessment for general high

dimensional multi-modal systems with non-Gaussian behavior.
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Finally, the performance and validity of the proposed methods are verified through

various numerical, simulation and industrial examples.
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Chapter 1

Introduction

1.1 Motivation

Industrial processes are affected by disturbances or process condition changes that

result in the deviation of their performance. As a result, developing methods of online

operating performance assessment is of great importance in both academia and indus-

try. Many methods have been investigated for process optimization in order to find

the optimal condition for process operation. However, the process performance may

deviate from the initial design due to uncertainties and process condition changes.

Monitoring the process performance on optimality is called optimality assessment.

Moreover, safety assessment is another important ingredient of the performance as-

sessment. Safety analysis based on qualitative and quantitative methods as well as

process monitoring have been investigated in many studies; hoewever there are few

studies on optimality assessment.

Some challenges are associated with optimality assessment of industrial processes.

First, high dimensionality of the process datasets is common in data driven analysis.

Second, in many practical problems, the optimality index related variables are often

measured slowly compared to other process variables. Moreover, some input variables

may have missing values due to the device failure and so on. Third, in many pro-

cesses, main operating modes do not follow uni-modal Gaussian distributions due to

non-Gaussian disturbances. In other words, in each operating mode, there are several

operating regions that are caused by uncertainties. Fourth, the change of operating
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mode happens in some processes because of the operating condition changes, different

product demands, etc that causes different steady state modes and transitions. The

main objective of this thesis is to address the above mentioned issues associated with

optimality assessment based on statistical data driven modeling methods and develop

a systematic algorithm for it.

1.2 Thesis outline

The rest of this thesis is organized as follows:

In chapter 2, the mixture semi-supervised probabilistic principal component re-

gression (MSPPCR) method is developed in order to tackle high dimensionality, multi-

modal behavior and simultaneous missing inputs and outputs of the process datasets

in optimality assessment. This method is developed based on the expectation max-

imization (EM) algorithm in the case of multi-mode operation, and simultaneous

missing data in both inputs and outputs of the historical dataset. The developed

method is applicable when some input variables have missing data completely at

random in addition to multi-modal and semi-supervised cases that have been inves-

tigated in literature so far. The importance of this chapter is to employ the most

information of all available measurements for model building. The EM algorithm is

employed since it can provide a maximum likelihood solution by iteratively updating

the estimated values for the missing data based on the updated parameters of the

model. Finally, applications on simulation and industrial examples are provided that

have confirmed the validity of the proposed method.

The objective of chapter 3 is to estimate the number of operating regions in non-

Gaussian processes in optimality assessment. This chapter provides a hierarchical

mixture probabilistic principal component regression (MPPCR) method in order to

estimate the number of mixture components in multimode systems. In this chapter

a hierarchical MPPCR method is proposed for automatic estimation of the number

of mixture components. This method is based on a divisive hierarchical algorithm,

and in the initial stage, it starts with the minimum possible number of mixture com-
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ponents. The Minimum Message Length (MML) criterion is employed to make the

decision of splitting components. Moreover, a merging step is introduced in order to

control the splitting steps that prevents from overestimating the number of mixture

components. The EM algorithm is employed to estimate the parameters of the devel-

oped model based on maximum a posteriori (MAP) principle. A numerial example

and an experimental example are provided that have demonstrated the performance.

In chapter 4, a novel method for operating optimality assessment and non-optimum

cause diagnosis is proposed. Kernel density based method for mode detection is

adopted and improved in order to differentiate noise from transition, find true labels,

and also increase the accuracy of estimation of the exact mode change instant. Then

mixture discriminant analysis (MclustDA) method is employed to construct the pre-

dictive opearting modes classifier, and the process knowledge is incorporated in order

to increase prediction accuracy. In each steady state operating mode, the proposed

hierarchical MPPCR is utilized for estimating the number of operating regions that

are caused by uncertainties, and MSPPCR model is employed for optimality analy-

sis and predictive model building. Dynamic principal component regression (DPCR)

model is employed for grade analysis and predictive model building in transitions.

For non-optimum performance, a probabilistic framework through sequential forward

floating search (SFFS) method is proposed for causal variables diagnosis. Finally, the

performance is evaluated through a simulation example.

Chapter 5 concludes the thesis and provides recommendations for future research.

1.3 Submitted Publications

Materials of this thesis have been addressed in the following publications:

1. Submitted as S. Sedghi, A. Sadeghian, B. Huang. “Mixture Semisupervised Prob-

abilistic Principal Component Regression Model with Missing Inputs”. Computers &

Chemical Engineering. (Chapter 2 - Complete Version Except Section 2.4.3)

2. Submitted as S. Sedghi, B. Huang. “Real-time Assessment of Process Operating

Performance”. FOCAPO/CPC 2017. (Chapter 4 - Short Version)
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1.4 Main Contributions

The main contributions of this thesis can be summarized as:

1. Development of MPPCR in order to deal with simultaneous missing inputs and

outputs of the process datasets.

2. Development of hierarchical MPPCR through introducing merging and splitting

steps for automatic estimation of the number of mixture components in multimode

systems.

3. Proposing a novel optimality assessment and non-optimum cause diagnosis

framework for non-Gaussian multimode processes.
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Chapter 2

Mixture Semisupervised
Probabilistic Principal Component
Regression Model with Missing
Inputs

Principal component regression (PCR) has been widely used as a multivariate method

for data-based soft sensor design. In order to take advantage of probabilistic features,

it has been extended to probabilistic PCR (PPCR). Commonly, industrial processes

operate in multiple operating modes. Moreover, in most cases, outputs are measured

at a slower rate than inputs, and for each sample of input variable, its corresponding

output may not always exist. These two issues have been solved by developing the

mixture semi-supervised PPCR (MSPPCR) method. In this chapter, we extend this

developed model to the case of simultaneous missing data in both input and output.

Missing data in multidimensional input space constitutes a significantly more chal-

lenging problem. Missing input data occurs frequently in industrial plants because

of sensor failure and other problems. We develop and solve the MSPPCR model by

using the expectation-maximization (EM) algorithm to deal with missing inputs, in

addition to missing outputs and multi-mode conditions. Finally, we present three

case studies to demonstrate its performance.
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2.1 Introduction

Improving efficiency of industrial processes while respecting the safety standards is

a growing interest. To make a balance between the above mentioned factors, proper

control and monitoring strategies should be designed. Applying advanced process

control methods requires suitable measuring devices.1 On-line measurement devices

are often unreliable and expensive to maintain. Moreover, the key process variables

are usually measured by on-line analyzers or offline sample analysis in laboratory,

and slowly processed measurements of online-analyzer and large delays of laboratory

analysis have negative effects on the outcome of applied control techniques.2

Over the last two decades, soft sensors have been studied and applied for obtaining

key process variables based on developed predictive models.3 Predictive models of

the soft sensors can be based on first principles or based on data. If a model based

on first principles can accurately predict a process, a first principles model-based soft

sensor can be designed; however a detailed first principles based soft sensor model

is generally computationally heavy for real-time analysis.4 Most of the soft sensors

developed so far employ data driven strategies and are designed by extracting infor-

mation hidden in the historical datasets.5 Among the data-driven modeling methods

for soft sensor design, Principal Component Analysis (PCA) or Principal Component

Regression (PCR)6 7 8 , Partial Least Squares (PLS)9 10 , Artificial Neural Networks

(ANN)11 12 and Support Vector Machine (SVM)13 are the most popular ones.

PCA, which is based on dimensionality reduction by introducing latent variables,

has been known as one of the most popular methods in soft sensor design. Since

PCA is a deterministic method, it has been extended to Probabilistic PCA (PPCA)

so that probabilistic inference can be conducted.14 PPCA model has many important

benefits including ease in statistical testing, extending to a mixture of sub-models

and dealing with missing data points and so on.15

Feasibility to develop a mixture PPCA model is an important property since the

single PPCA model only performs well on linear unimodal processes whereas in real

applications, the operating systems are generaly nonlinear. In this case, mixture
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PPCA model can be applied to estimate the nonlinearity by considering the combi-

nation of several linear sub-models. Furthermore, many industrial plants have more

than one operating mode, hence, a single PPCA model is not capable of giving an

accurate estimate of the process. To address these drawbacks, mixture PPCA model

has been introduced in a number of studies15 16 17 .

The other issue in the design of soft sensors is missing data points. Commonly,

both input and output data points are required to design a soft sensor. However,

in many cases, due to the sensor failure or delays in measuring some variables, not

all input and output data points are available. In17 labeled and unlabeled datasets

are introduced. The part of data which containts output measurements is named as

the labeled dataset, and the rest of the missing outputs are named as the unlabeled

dataset. The authors in17 have worked extensively on the mixture semi-supervised

Probabilistic Principal Component Regression (MSPPCR) method for soft sensor de-

sign. In their method, the information of both labeled and unlabeled datasets are

incorporated into the model design. However, their work still does not consider miss-

ing data points in input variables. The extension of the methodology from missing

output only to simultaneously considering missing input and missing output is non-

trivial as evident in the following derivations. Part of the reason for the complexity

is: when only the missing output is considered, the data can be simply classified

into supervised ( available output) and unsupervised ( unavailable output). However,

when there are missing data in the input and since input is multidimensional, some

dimensions have missing data while other dimensions do not have missing data at

any sample. So the data cannot be simply classified as missing or not. The main

contribution of this work is to derive a MSPPCR model that can deal with both

missing input and missing output data.

In data analysis involving missing data, there exists two general approaches to

proceed. One way is to discard the missing data points but doing so will result in loss

of information. The second way is to predict the missing values. The second way,

which is also called imputation, includes case-wise deletion, mean substitution, the

last observation carried forward (LOCF) method, regression imputation, Expectation
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Maximization (EM)-based algorithm and so on18 19 .

In this chapter, we will develop the MSPPCR method based on the EM algorithm

in the case of multi-mode operation, and missing values in both inputs and outputs

of the historical dataset. In addition to multi-mode and semi-supervised cases that

have been studied in literature so far, the developed method is also applicable when

some input variables have missing data completely at random. The significance of

this chapter is to make the most use of all available measurements for building a

model. EM algorithm is selected since it can provide a maximum likelihood solution

and allows us to iteratively update the estimated values for the missing data based

on updated parameters of the model.20

The rest of this chapter is organized as follows. Section 1 provides an overview of

the fundamentals of PCR, Probabilistic PCR (PPCR), and MSPPCR methods. In

section 2, the developed MSPPCR is presented. A numerical simulation example, a

classic multimode problem, the Tennessee Eastman (TE) process, and an industrial

application are studied in section 3. Conclusions are presented in section 4.

2.2 Preliminaries

2.2.1 PCR

PCR involves two stages. In the first stage, principal components (PCs) of the input

(X), called latent variables (T ), are extracted using the PCA method. Then these

latent variables are utilized in the regression equation.

Let X ∈ Rn×m and Y ∈ Rn×r be the input and output datasets, respectively,

where n is the number of samples, m is the number of input variables, and r is the

number of output variables.

The PCR equations in the multivariate regression problem are:21

X = TP T + E (2.1)

Y = TCT + F (2.2)
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where T ∈ Rn×qis the matrix of principal components, q is the number of selected

principal components, P ∈ Rm×q is the loading matrix, C ∈ Rr×q is the regression

matrix between Y and T , and E ∈ Rn×m and F ∈ Rn×r are residuals for the PCA

step and the regression step, respectively.

2.2.2 PPCR

Let X and Y be the input and output datasets with the same properties as mentioned

above for the PCR model. We can present the PPCR model based on the following

generative model:

x = Pt+ e (2.3)

y = Ct+ f (2.4)

where x ∈ Rm×1and y ∈ Rr×1are one data sample of X and Y respectively, P ∈

Rm×qand C ∈ Rr×q are weighting matrices, t ∈ Rq×1is a vector of hidden variables,

and e ∈ Rm×1and f ∈ Rr×1 are measurement noises of input and output variables.

In PPCR, it is assumed that the latent variables are independent and identically

distributed (iid) with Gaussian distribution of t ∼ N (0, I), where I is the identity

matrix. Moreover, Gaussian distributions of e ∼ N (0, σ2
xI) and f ∼ N (0, σ2

yI) are

considered for the measurement noises of input and output variables with the noise

variance as σ2
x and σ2

y , respectively. One can estimate the best model parameters

{P,C, σ2
x, σ

2
y} by maximizing the following likelihood function:

L(X, Y ) = ln p(X, Y |P,C, σ2
x, σ

2
y) = ln

n
∏

i=1

p(xi, yi|P,C, σ
2
x, σ

2
y) (2.5)

To formulate the marginal probability p(x, y), one should integrate out the latent

variable (t) as follows:

p(xi, yi|P,C, σ
2
x, σ

2
y) =

∫

p(xi|ti, P, σ
2
x)p(yi|ti, C, σ

2
y)p(ti) dti (2.6)

To find the optimal solution for the likelihood function, one can use the EM algorithm.

The results have been presented in.22
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2.2.3 MSPPCR

In a MSPPCR, a total of K individual semi-supervised PCR models are incorpo-

rated. In each sub-model represented by k, the number of selected latent variables

is q. Supposing that the sizes of the labeled and unlabeled datasets are n1 and n2

respectively, the MSPPCR model can be expressed as:

xi,k = Pkti,k + ei,k + µx,k, k = 1, 2, ..., K (2.7)

yj,k = Cktj,k + fj,k + µy,k, k = 1, 2, ..., K (2.8)

xi =

{

∑K
k=1 p1(k)xi,k, if 1 ≤ i ≤ n1

∑K
k=1 p2(k)xi,k, if n1 + 1 ≤ i ≤ n

yj =
K
∑

k=1

p1(k)yj,k

where i = 1, 2, · · · , n, j = 1, 2, · · · , n1. µx,k and µy,k are the mean values of the input

and output datasets in kth sub-model. p1(k) and p2(k) are the mixing proportions

of kth sub-model for the labeled and unlabeled datasets, respectively with the con-

straint of
∑K

k=1 p1(k) = 1 and
∑K

k=1 p2(k) = 1. Pk ∈ Rm×q and Ck ∈ Rr×q are

weighting matrices of the kth sub-model, tk ∈ Rq×1is a vector of latent variables, and

ek ∈ Rm×1 and fk ∈ Rr×1are measurement noises of the input and output variables

in the kth sub-model. Similar to the single PPCR model, Gaussian distributions are

assumed for the hidden variables and measurement noises in each sub-model. There-

fore, tk ∼ N (0, I), ek ∼ N (0, σ2
x,kI) and fk ∼ N (0, σ2

y,kI).

One can find the optimal values of the model parameters Θ = {θ}k = {Pk, Ck, σ
2
x,k, σ

2
y,k

, µx,k, µy,k}by maximizing the following likelihood function.

L(X, Y |Θ) = ln p(X, Y |Θ) = ln[p(X1, Y |Θ)p(X2|Θ)]

= ln p(X1, Y |Θ) + ln p(X2|Θ)
(2.9)

where X1 ∈ Rn1×mis the labeled dataset with the corresponding output of Y ∈ Rn1×r,

and X2 ∈ Rn2×mis the unlabeled dataset where its output is not available. The

complete explanation of the algorithm and the results of MSPPCR are available in.17
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2.3 Development of MSPPCR with missing input

data

2.3.1 Model formulation

For the MSPPCR to be developed, we assume that a total of K modes exist, and in

each mode, q latent variables are considered. Similar to MSPPCR,17 n1 out of the

n samples in the dataset are labeled and the remaining n2 of them are unlabeled.

The generative model of the developed MSPPCR is the same as the one stated in

Equations 2.7 and 2.8. Since in this model we are considering the case that some

input variables have their values missing completely at random (MCAR),23 x can be

expressed as xT = [xT
o , x

T
m], where xo and xm are the sub-vectors of variables with

observed and missing data, respectively.24

To illustrate, let us consider an example of a dataset consisting of 4 data points

including 1 output variable and 3 input variables, respectively. Some input and output

variables have missing values, and the data pattern may be shown as:

X =









x11 x12 −
− x22 x23

x31 x32 x33

x41 − −









, Y =









y1
−
y3
−









where ”−” indicates missing values. Since the rearranged form of input is xT =

[xT
o , x

T
m], each input data point xi, i = 1, ..., 4 should be arranged as:

x1 =





x11

x12

−



 , x2 =





x22

x23

−



 , x3 =





x31

x32

x33



 , x4 =





x41

−
−





Thus,

x1,o =

(

x11

x12

)

, x2,o =

(

x22

x23

)

, x3,o =





x31

x32

x33



 , x4,o =
(

x41

)

.

Now return to our derivations. Since it is assumed that the two noise models are

independent of each other, we can have the feature of conditional independence, i.e.

given the latent variables, all inputs and outputs are conditionally independent of
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each other.25 The likelihood of observations (xo, y) for labeled datasets and (xo) for

unlabeled datasets for each individual mode is obtained as follows:

p(xo, y|Pk,o, Ck, σ
2
x,k,o, σ

2
y,k) =

∫

p(xo|tk, Pk,o, σ
2
x,k,o)p(y|tk, Ck, σ

2
y,k)p(tk)dtk (2.10)

p(xo|Pk,o, σ
2
x,k,o) =

∫

p(xo|tk, Pk,o, σ
2
x,k,o)p(tk)dtk (2.11)

As defined earlier, indices o and m stand for observed and missing parts of the

variables, respectively. For example Pk,o ,σ2
x,k,o are the weighting matrix and noise

variance in the kth sub-model corresponding to the observed inputs, respectively.

Since we have assumed that some input variables are missing completely at ran-

dom, we have not considered the missing variables in the likelihood function. In other

words, those missing variables could have been simply removed. Although this is a

simple approach and can be solved by MSPPCR, it does not make the best use of

available data. As a result, we resort to the EM algorithm for maximum likelihood

estimation since it can handle the missing data points.20 In the EM algorithm, we

maximize the expectation of the complete data log-likelihood instead of only maximiz-

ing the likelihood of observed data. This algorithm consists of two steps, expectation

and maximization, which are iterated until convergence. In the expectation step, we

find the expected value of the complete data log-likelihood given the old parameters.

In the maximization step, we maximize the derived expected value with respect to the

model parameters Θ = {θ}k = {Pk, Ck, σ
2
x,k, σ

2
y,k, µx,k, µy,k} and update their values

from the previous iteration.

Let X1 = [x1, x2, ..., xn1
]T ∈ Rn1×m, Y = [y1, y2, ..., yn1

]T ∈ Rn1×rbe the la-

beled dataset, X2 = [xn1+1, xn1+2, ..., xn]
T ∈ Rn2×m be the unlabeled dataset, X =

[x1, x2, ..., xn]
T ∈ Rn×q be complete input data and T = [t1, t2, ..., tn]

T ∈ Rn×q be

latent variables values. Note that the complete input data means assembly of all

input variables, i.e. they contain input variables with and without missing data. The

complete log data likelihood function can be expressed as:

L(X, Y, T, k|Θ) =L(X1, Y, T, k|Θ) + L(X2, T, k|Θ)

= ln p(X1, Y, T, k|Θ) + ln p(X2, T, k|Θ)
(2.12)

12



To employ the EM algorithm, we consider T , k, and X as hidden variables. Al-

though X consists of observed and missing inputs, we treat entire X as hidden. The

treatment of X derived below will automatically assign observed X as determinis-

tic one with zero variance so that they are equal to the measured values as will be

seen shortly. As a result, the Q function of the EM agorithm, which is the expected

value of the complete data log-likelihood with respect to the joint distribution of

hidden/missing variables k, T and X given Y , Xo, and Θold, can be expressed as:

Q =EX,T,k|Y,Xo,Θold
[ln[p(X, Y, T, k|Θ)]]

=EX,T,k|Y,Xo,Θold
[ln[

n1
∏

i=1

p(xi, yi, ti, k|Θ)]] + EX,T,k|Xo,Θold
[ln[

n
∏

i=n1+1

p(xi, ti, k|Θ)]]

=

n1
∑

i=1

K
∑

k=1

p(k|xi,o, yi,Θold)

∫ ∫

ln[p(xi,k, yi, ti,k|k,Θ)p1(k)]p(xi,k, ti,k|yi, xi,o, k,Θold)dxi,kdti,k

+
n
∑

i=n1+1

K
∑

k=1

p(k|xi,o,Θold)

∫ ∫

ln[p(xi,k, ti,k|k,Θ)p2(k)]p(xi,k, ti,k|xi,o, k,Θold)dxi,kdti,k

=

n1
∑

i=1

K
∑

k=1

p(k|xi,o, yi,Θold)
{

ln p1(k) + Eti,k|yi,xi,o,k,Θold
Exi,k|yi,xi,o,ti,k,k,Θold

[ln p(xi,k, yi, ti,k|k,Θ)]
}

+
n
∑

i=n1+1

K
∑

k=1

p(k|xi,o,Θold)
{

ln p2(k) + Eti,k|xi,o,k,Θold
Exi,k|xi,o,ti,k,k,Θold

[ln p(xi,k, ti,k|k,Θ)]
}

(2.13)

Note that the indices i , k , m, o stand for the ith data point, kth sub-model, missing

part and observed part, respectively. For example, in the following formulae the vari-

able with the index of i,k,m represents input variables that have missing data of ith

data point from kth sub-model.

In the expectation step, based on the parameters estimated in the previous max-

imization step, we need to determine the posterior probabilities of p(k|xi,o, yi,Θold),

p(ti|yi, xi,o, k,Θold) and p(xi,k|yi, xi,o, ti,k, k,Θold) for the labeled dataset and p(k|xi,o,Θold),

p(ti|xi,o, k,Θold) and p(xi,k|xi,o, ti,k, k,Θold) for the unlabeled dataset. They can be de-

rived based on the Bayes’ rule as follows:
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For labeled dataset:

p(k|xi,o, yi,Θold) =
p(xi,o, yi|k,Θold)p1(k|Θold)

p(xi,o, yi|Θold)
(2.14)

For unlabeled dataset:

p(k|xi,o,Θold) =
p(xi,o|k,Θold)p2(k|Θold)

p(xi,o|Θold)
(2.15)

where xi,o|k,Θold ∼ N (µx,k,o, Pk,oP
T
k,o+σ2

x,k,oI) and yi|k,Θold ∼ N (µy,k, CkC
T
k +σ2

y,kI),

so the distribution of xi,o, yi|k,Θold can be derived as:

xi,o, yi|k,Θold ∼N

(

(

µx,k,o

µy,k

)

,

(

Pk,o

Ck

)(

Pk,o

Ck

)T

+

(

σ2
x,k,oIo 0o,m
0m,o σ2

y,kIm

)

)

p1(k|Θold) and p2(k|Θold) are the mixing proportions of each sub-model for the labeled

and unlabeled datasets, respectively. The constraints of
∑K

k=1 p1(k|Θold) = 1 and
∑K

k=1 p2(k|Θold) = 1 should be respected and the parameters are computed in the

maximization step. In addition, the denominators need not to be calculated since

they are normalizing constants.

For labeled dataset:

p(ti|xi,o, yi, k,Θold) =
p(xi,o|ti, k,Θold)p(yi|ti, k,Θold)p(ti|k,Θold)

p(xi,o, yi|k,Θold)
(2.16)

For unlabeled dataset:

p(ti|xi,o, k,Θold) =
p(xi,o|ti, k,Θold)p(ti|k,Θold)

p(xi,o|k,Θold)
(2.17)

where, xi,o|ti, k,Θold ∼ N (Pk,oti,k+µx,k,o, σ
2
x,k,oI), yi|ti, k,Θold ∼ N (Ckti,k+µy,k, σ

2
y,kI)

and ti|k,Θold ∼ N (0, I); Therefore p(ti|xi,o, yi, k,Θold) and p(ti|xi,o, k,Θold) are dis-

tributed as Gaussian with means and variances as follows:

For labeled dataset:

E(ti,k|xi,o, yi, k,Θold) = (σ−2
x,k,oP

T
k,oPk,o + σ−2

y,kC
T
k Ck, + I)−1

{σ−2
x,k,oP

T
k,o(xi,o − µx,k,o) + σ−2

y,kCk(yi − µy,k)}
(2.18)
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E(ti,kt
T
i,k|xi,o, yi, k,Θold) = (σ−2

x,k,oP
T
k,oPk,o + σ−2

y,kC
T
k Ck, + I)−1

+ E(ti,k|xi,o, yi, k,Θold)E
T (ti,k|xi,o, yi, k,Θold)

(2.19)

where i = 1, 2 · · · , n1, and for unlabeled dataset:

E(ti,k|xi,o, k,Θold) = (P T
k,oPk,o + σ2

x,k,oI)
−1P T

k,o(xi,o − µx,k,o) (2.20)

E(ti,kt
T
i,k|xi,o, k,Θold) = σ2

x,k,o(P
T
k,oPk,o + σ2

x,k,oI)
−1

+E(ti,k|xi,o, k,Θold)E
T (ti,k|xi,o, k,Θold)

(2.21)

where i = 1, 2, · · · , n2.

For labeled dataset:

p(xi|yi, xi,o, ti, k,Θold) =
p(ti|xi, yi, xi,o, k,Θold)p(xi|yi, xi,o, k,Θold)

p(ti|yi, xi,o, k,Θold)
(2.22)

where i = 1, 2, · · · , n1, and for unlabeled dataset:

p(xi|xi,o, ti, k,Θold) =
p(ti|xi, xi,o, k,Θold)p(xi|xi,o, k,Θold)

p(ti|xi,o, k,Θold)
(2.23)

where i = 1, 2, · · · , n2. Since xT
i = [xT

i,o, x
T
i,m]:

p(ti|xi, yi, xi,o, k,Θold) =p(ti|xi,o, xi,m, yi, xi,o, k,Θold)

=p(ti|xi,o, xi,m, yi, k,Θold)
(2.24)

p(ti|xi, xi,o, k,Θold) =p(ti|xi,o, xi,o, xi,m, k,Θold)

=p(ti|xi,o, xi,m, k,Θold)
(2.25)

Since xi,m is not available, to make the problem tractable the following approximation

may be applied:

p(ti|xi,o, xi,m, yi, k,Θold) ≈ p(ti|xi,o, yi, k,Θold) (2.26)

p(ti|xi,o, xi,m, k,Θold) ≈ p(ti|xi,o, k,Θold) (2.27)

By substituting Equations 2.26 and 2.27 in Equations 2.22 and 2.23 respectively,

we obtain the following approximations:

p(xi|yi, xi,o, ti, k,Θold) ≈ p(xi|yi, xi,o, k,Θold) (2.28)
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p(xi|xi,o, ti, k,Θold) ≈ p(xi|xi,o, k,Θold) (2.29)

To find the distributions of p(xi|xi,o, yi, k,Θold) and p(xi|xi,o, k,Θold), first we need to

find p(xi,m|yi, xi,o, k,Θold) and p(xi,m|xi,o, k,Θold), i.e. the posterior distribution of the

missing input variables. The means and variances of these probability distributions

can be formulated by using the generative model of MSPPCR which was stated earlier.

Equation 2.7 is partitioned into missing and observed parts, hence it can be expressed

as:
(

xi,k,o

xi,k,m

)

=

(

Pk,o

Pk,m

)

ti,k + ei,k +

(

µx,k,o

µx,k,m

)

, k = 1, 2, ..., K (2.30)

The equation for the missing data can be written as:

xi,k,m = Pk,mti,k + ei,k + µx,k,m, k = 1, 2, ..., K (2.31)

Therefore, the sufficient statistics of p(xi,m|yi, xi,o, k,Θold) and p(xi,m|xi,o, k,Θold)

distributions are found by obtaining the expected value and covariance of both sides

of Equation 2.31 as follows:

For labeled datasets:

E(xi,k,m|xi,o, yi, k,Θold) = Pk,mE(ti,k|xi,o, yi, k,Θold) + µx,k,m (2.32)

By substituting the value of E(ti,k|xi,o, yi, k,Θold) using Equation 2.18, we have:

E(xi,k,m|xi,o, yi, k,Θold) = Pk,m[(σ
−2
x,k,oP

T
k,oPk,o + σ−2

y,kC
T
k Ck, + I)−1

{σ−2
x,k,oP

T
k,o(xi,o − µx,k,o) + σ−2

y,kCk(yi − µy,k)}] + µx,k,m

(2.33)

Similarly,

E(xi,k,mx
T
i,k,m|xi,o, yi, k,Θold) = Pk,m[E(ti,kt

T
i,k|xi,o, yi, k,Θold)

− E(ti,k|xi,o, yi, k,Θold)E
T (ti,k|xi,o, yi, k,Θold)]P

T
k,m + σ2

x,k,m

+ E(xi,k,m|xi,o, yi, k,Θold)E
T (xi,k,m|xi,o, yi, k,Θold)

(2.34)

E(ti,k|xi,o, yi, k,Θold) and E(ti,kt
T
i,k|xi,o, yi, k,Θold) are replaced by Equations 2.18 and

2.20, respectively. This results in:

E(xi,k,mx
T
i,k,m|xi,o, yi, k,Θold) =Pk,m(σ

−2
x,k,oP

T
k,oPk,o + σ−2

y,kC
T
k Ck, + I)−1P T

k,m + σ2
x,k,m

+E(xi,k,m|xi,o, yi, k,Θold)E
T (xi,k,m|xi,o, yi, k,Θold)

(2.35)
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where i = 1, 2, · · · , n1, and for unlabeled dataset:

E(xi,k,m|xi,o, k,Θold) = Pk,mE(ti,k|xi,o, k,Θold) + µx,k,m (2.36)

E(ti,k|xi,o, k,Θold) is substituted using Equation 2.20, and the result is:

E(xi,k,m|xi,o, k,Θold) = Pk,m[(P
T
k,oPk,o + σ2

x,k,oI)
−1P T

k,o(xi,o − µx,k,o)] + µx,k,m (2.37)

Similarly,

E(xi,k,mx
T
i,k,m|xi,o, k,Θold) =Pk,m[E(ti,kt

T
i,k|xi,o, k,Θold)− E(ti,k|xi,o, k,Θold)

ET (ti,k|xi,o, k,Θold)
T ]Pk,m + σ2

x,k,m

+ E(xi,k,m|xi,o, yi, k,Θold)E
T (xi,k,m|xi,o, yi, k,Θold)

(2.38)

The values of E(ti,k|xi,o, k,Θold) and E(ti,kt
T
i,k|xi,o, k,Θold) are found using Equations

2.20 and 2.22, respectively, and are then substituted in Equation 2.38. As a result,

we have:

E(xi,k,mx
T
i,k,m|xi,o, k,Θold) =Pk,m[σ

2
x,k,o(P

T
k,oPk,o + σ2

x,k,oI)
−1]P T

k,m + σ2
x,k,m

+E(xi,k,m|xi,o, k,Θold)E
T (xi,k,m|xi,o, k,Θold)

(2.39)

where i = 1, 2, · · · , n2. Therefore, the sufficient statistics of the distribution of

p(xi|yi, xi,o, k,Θold) and p(xi|xi,o, k,Θold) when combining distributions of both miss-

ing and observed variables are derived by following a similar rationale as in:24

For labeled dataset:

E(xi,k|xi,o, yi, k,Θold) =

(

xi,o

E(xi,k,m|xi,o, yi, k,Θold)

)

(2.40)

cov(xi,k, xi,k|xi,o, yi, k,Θold) =

(

0 0
0 cov(xi,k,m, xi,k,m|xi,o, yi, k,Θold)

)

(2.41)

where i = 1, 2, · · · , n1, and for unlabeled dataset:

E(xi,k|xi,o, k,Θold) =

(

xi,o

E(xi,k,m|xi,o, k,Θold)

)

(2.42)
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cov(xi,k, xi,k|xi,o, k,Θold) =

(

0 0
0 cov(xi,k,m, xi,k,m|xi,o, k,Θold)

)

(2.43)

where i = 1, 2, · · · , n2.

In the maximization step, we maximize the expected value of the complete data log-

likelihood with respect to the model parameters. Followings are the maximization

results:

p1(k) =
1

n1

n1
∑

i=1

p(k|xi,o, yi,Θold) (2.44)

p2(k) =
1

n2

n
∑

i=n1+1

p(k|xi,o,Θold) (2.45)

p(k) =
1

n
{

n1
∑

i=1

p(k|xi,o, yi,Θold) +
n
∑

i=n1+1

p(k|xi,o,Θold)} (2.46)

The procedure of deriving Equations 2.44 to 2.46 is similar to that in17 and hence

the details are omitted. Only the final results are given below:

∂E[L(X, Y, T, k|Θ)]

∂Pk

= 0 =⇒

P new
k =

[

n1
∑

i=1

[p(k|xi,o, yi,Θold)(E(xi,k|xi,o, yi, k,Θold)− µx,k)E
T (ti,k|xi,o, yi, k,Θold)]

+
n
∑

i=n1+1

[p(k|xi,o,Θold)(E(xi,k|xi,o, k,Θold)− µx,k)E
T (ti,k|xi,o, k,Θold)]

]

×
[

n1
∑

i=1

[p(k|xi,o, yi,Θold)E(ti,kt
T
i,k|xi,o, yi, k,Θold)]

+
n
∑

i=n1

[p(k|xi,o,Θold)E(ti,kt
T
i,k|xi,o, k,Θold)]

]−1

(2.47)

∂E[L(X, Y, T, k|Θ)]

∂Ck

= 0 =⇒

Cnew
k =

[

n1
∑

i=1

[p(k|xi,o, yi,Θold)(yi − µy,k)E
T (ti,k|xi,o, yi, k,Θold)

]

×
[

n1
∑

i=1

[p(k|xi,o, yi,Θold)E(ti,kt
T
i,k|xi,o, yi, k,Θold)]

]−1

(2.48)
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∂E[L(X, Y, T, k|Θ)]

∂µx,k

= 0 =⇒

µnew
x,k =

[

n1
∑

i=1

p(k|xi,o, yi,Θold)[E(xi,k|xi,o, yi, k,Θold)− PkE(ti,k|xi,o, yi, k,Θold)]

+
n
∑

i=n1+1

p(k|xi,o,Θold)[E(xi,k|xi,o, k,Θold)− PkE
T (ti,k|xi,o, k,Θold)]

]

/
[

n1
∑

i=1

p(k|xi,o, yi,Θold) +
n
∑

i=n1+1

p(k|xi,o,Θold)
]

(2.49)

∂E[L(X, Y, T, k|Θ)]

∂µy,k

= 0 =⇒

µnew
y,k =

[

n1
∑

i=1

p(k|xi,o, yi,Θold)[yi − CkE(ti,k|xi,o, yi, k,Θold)]
]

/
[

n1
∑

i=1

p(k|xi,o, yi,Θold)
]

(2.50)

∂E[L(X, Y, T, k|Θ)]

∂σ2new
x,k

= 0 =⇒

σ2new
x,k =

{

n1
∑

i=1

p(k|xi,o, yi,Θold)
[

(E(xi,k|xi,o, yi, k,Θold)− µx,k)
T

(E(xi,k|xi,o, yi, k,Θold)− µx,k)− 2ET (ti,k|xi,o, yi, k,Θold)

P newT
k (E(xi,k|xi,o, yi, k,Θold)− µx,k)

+trace[P newT
k P new

k E(ti,kt
T
i,k|xi,o, yi, k,Θold)]+

+trace[cov(xi,k, xi,k|xi,o, yi, k,Θold)]
]

+
n
∑

i=n1+1

p(k|xi,o,Θold)
[

(E(xi,k|xi,o, k,Θold)− µx,k)
T

(E(xi,k|xi,o, k,Θold)− µx,k)− 2ET (ti,k|xi,o, k,Θold)

P newT
k (E(xi,k|xi,o, k,Θold)− µx,k)

+trace[P newT
k P new

k E(ti,kt
T
i,k|xi,o, k,Θold)]

+trace[cov(xi,k, xi,k|xi,o, k,Θold)]
]}

/

{

m[

n1
∑

i=1

p(k|xi,o, yi,Θold) +
n
∑

i=n1+1

p(k|xi,o,Θold)]
}

(2.51)
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∂E[L(X, Y, T, k|Θ)]

∂σ2new
y,k

= 0 =⇒

σ2new
y,k =

{

n1
∑

i=1

p(k|xi,o, yi,Θold)
[

(yi − µy,k)
T (yi − µy,k)− 2ET (ti,k|xi,o, yi, k,Θold)

CnewT
k (yi − µy,k) + trace[CnewT

k Cnew
k E(ti,kt

T
i,k|xi,o, yi, k,Θold)]

]}

/

{

r(

n1
∑

i=1

p(k|xi,o, yi,Θold))
}

(2.52)

We iterate the equations over the expectation and maximization steps until the pa-

rameters converge to their optimal values.

2.3.2 On-line predictions

Soft sensor can be constructed based on the developed MSPPCR model. Let us

assume that xnew is the new data point in online application. At first, we find the

posterior probability of each operating mode as follows:

p(k|xnew,Θ) =
p(xnew|k,Θ)p(k|Θ)

p(xnew|Θ)
(2.53)

Then we compute the estimated latent variable t̂k,new corresponding to each operating

mode as:

t̂k,new = (P T
k Pk + σ2

x,kI)
−1P T

k (xnew − µx,k) (2.54)

The predicted output corresponding to each mode is:

ŷk,new =Ck t̂k,new = Ck(P
T
k Pk + σ2

x,kI)
−1P T

k (xnew − µx,k) + µy,k (2.55)

The final predicted value of the output computed by weighting over all K modes is:

ŷnew =
K
∑

k=1

p(k|xnew,Θ)ŷk,new (2.56)

Finally, by comparing with the real outputs y, one can evaluate the performance of

the soft sensor using root mean squared error (RMSE), R squared test, etc.
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2.4 Case studies

In this section, we will demonstrate the validity of our developed model. In the first

part, the developed algorithm is illustrated by a numerical example. In the second

part, the method is evaluated through the TE simulation process.

2.4.1 Numerical example

A numerical dataset is simulated using the following model:

xk = Pktk + ek

yk = Cktk + fk
(2.57)

Considering a three operating mode problem, the values of k are either 1,2 or 3.

There are six input and one output variables in each operating mode. The simulated

number of latent variables is three. Pk and Ck are weighting matrices of dimensions

6 × 3 and 1 × 3, respectively that are selected randomly. tk is the latent variable

vector in each operating mode and follows a Gaussian distribution of N (0, I). ek and

fk are input and output measurement noises in each mode, and also follow Gaussian

distributions with zero mean and variance of 0.012 , i.e. σ2
x,k = 0.012 and σ2

y,k = 0.012

In each operating mode, 1500 data samples are generated, where 1000 data points

are from the training set and the remaining 500 are from the validation set. To sim-

ulate a multi-rate problem, 90 % of the output data points are removed. Hence, 90

percent of the dataset is unlabeled and 10 percent is labeled. Moreover, to evaluate

the performance of the developed MSPPCR, 10 percent of the input variables are also

removed randomly (MCAR). Note that missing points are randomly selected and can

be from any of the six variables.

After applying the proposed MSPPCR, the estimated priors of each operating

mode, 0.3291, 0.3334, and 0.3374, are very close to the real value of 1/3 for each. To

evaluate the proposed model, its performance is compared with another method in

which MSPPCR is applied after the missing variables have been simply replaced by
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their mean values. Hereafter, we call it the mean replacement method for simplic-

ity. By applying the mean replacement method, priors of each operating mode are

estimated as 0.6202, 0.1853 and 0.1945 which are significantly different from the real

values. Therefore, the proposed method can identify the corresponding modes much

more accurately than the mean replacement method.

To evaluate the model performance, its prediction accuracy is tested on the val-

idation dataset. Using the proposed method the R2 of the prediction is 0.9954 and

its RMSE is 0.0937. On the other hand, using the mean replacement method, R2

is 0.8301 and RMSE is 0.5699. The trends of predicted and real values for the two

methods are shown in Figures 2.1-2.4 for comparison.

Figure 2.1: Comparison of predicted and real values using the proposed method
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Figure 2.2: Comparison of predicted and real values using the mean replacement
method

Figure 2.3: Comparison of predicted and real values using the proposed method
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Figure 2.4: Comparison of predicted and real values using the mean replacement
method

The performance of the two mentioned methods is summarized in Table 2.1. It

can be seen that our proposed method has a better performance compared to the

mean replacement method in all aspects. This includes better detection of modes,

higher prediction performance and lower prediction error.

Table 2.1: Comparison of the performance of two methods

Method Estimated priors R-squared RMSE

Developed MSPCR [0.3291,0.3334,0.3374] 0.9954 0.0937
Mean Replacement [0.6202,0.1853,0.1945] 0.8301 0.5699

2.4.2 Tennessee Eastman benchmark process

TE process benchmark has been widely used for the testing of various methods in

process control, monitoring, optimization, etc. The model was first developed by26

based on the industrial process of TE chemical company. The process includes five

main units: a reactor, a product condenser, a vapor-liquid separator, a recycle com-

pressor and a product stripper. The purpose of this process is to produce two main

products, G and H, from four reactants A, C, D and E. Besides, F, a by-product,
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might be produced under non-ideal situations. Note that reactants and products are

in gaseous and liquid phases, respectively, and all reactions are exothermic and irre-

versible. The process has 12 manipulated variables and 41 measured variables out

of which 22 process variables are measured continuously, and 19 components vari-

ables have slow rate measurement. There are six operation modes based on the three

different G/H mass ratios.26 The schematic of the process is shown in Figure 2.5.

Figure 2.5: The schematic diagram of Tennessee Eastman process22
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Since the open loop process is unstable, we have applied the decentralized control

strategy developed by.27

To evaluate the performance of the developed model as a soft sensor, we have

simulated three different operating points in mode 1 of the TE process in which G/H

mass ratio is 50/50.26 This leads to three different modes with the same production

demand caused by changing the set points of some process variables. The selected

set points are shown in Table 2.2.

The aim of our soft sensor design is to predict the percentage of product compo-

Table 2.2: Properties of stable modes

Stable mode 1 2 3 (◦C)

Reactor pressure (kpa) 2800 2700 2750
Seperator level set point (%) 50 70 60
Reactor temperature (◦C) 122.9 130 135

nents F, G and H in purge gas based on the other 22 commonly measured variables.

We have simulated each operating mode for 37.5 hours, and the sampling period is

0.05 hours. Therefore, we have collected 750 data points in each operating mode and

selected 500 for training and the remaining 250 data points for validation. Finally,

we have 1500 data points of all operating modes for training and 750 for validation.

Moreover, since the output variables are assumed to be slow rate measurements, 90

percent of them are removed. To evaluate the performance of the proposed method in

dealing with missing data points, 10 percent of the input variables are also removed

with the MCAR mechanism.

Based on the above mentioned data-set, the developed MSPPCR model is built. The

estimated prior probabilities of operating modes, 0.3333, 0.3339, and 0.3327, are very

close to the real prior probabilities of 1/3 for each mode. The posterior probabilities

of each mode for data points are given in Figure 2.6. The results show that the de-

veloped model detects the operating modes accurately despite having missing input

and output data.
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Figure 2.6: Posterior probabilities of each mode estimated by the developed MSPCR

The validation dataset is used to test the model prediction accuracy. The com-

parison plots of real and predicted values are given in Figure 2.7 . The results of the

developed soft sensor for this case study are summarized in Table 2.3. Based on the

simulation results, one can see that the proposed model has acieved high accuracy

in predicting quality variables, i.e. for all three outputs it shows high values for R-

squared tests and low values for RMSE in the validation dataset. In addition, it has

correctly detected the operating modes to which each data point belongs. Therefore,

in addition to dealing with missing outputs, this method can also handle data with

missing input variables.
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Figure 2.7: The comparison plots of real and estimated values

Table 2.3: Performance of the designed soft sensor

Purge component R-squared RMSE

F 0.9979 0.2489
G 0.9793 0.2552
H 0.9272 0.2621

2.4.3 Industrial Application

Oil is known as an essential raw material for the organic chemistry and its mixture

composition varies depending on the location it is produced. Its main components

are Hydrocarbons, Sulphur compounds, Nitrogen compunds and Oxygenates. There

are many methods such as hydrotreating to remove acidic compounds and impurities

in order to improve properties of the streams. Hydrotreaters are the well known units

in petroleum refineries where reactions convert organic nitrogen and sulfur into NH3

and H2S as well as producing light hydrocarbons.

One of the most common applications of hydrotreating is Naphtha Hydrotreaters.

In Naphtha Hydrotreaters Olefinic and Diolefinic feedstock compounds are saturated

and the Sulfur and Nitrogen content is reduced in order to improve the quality of

Naphtha product.28 The schematic of the process is shown in Figure 2.8.
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Figure 2.8: The schematic diagram of Naphtha Hydrotreater28

The objective is to build a model to continuously predict the sulfur content of the

product that is not frequently available and the available data is not reliable due to

uncertainties. The data set consists of a total of 10197 data samples including 222

input and 1 output variables with the average sampling period of 30 minutes. The

dataset is partitioned into two parts of training (7397 samples) and validation (2800

samples). 14 of the variables that are highly correlated with the output are selected as

regressors. To construct the model, number of principal components and modes are

selected as 11 and 2, respectively. In offline training, corresponding outputs of 1432

samples (≈ 19%) are not available. To evaluate the performance of the proposed

method in dealing with missing data points, the predictive model is built in the

following conditions:

1. Considering the original data set

2. Removing 10 percent of input variables (MCAR) in offline training

3. Removing 10 percent of input variables (MCAR) in online validation
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For the above mentioned conditions, MSPCR model is constructed, and in the

case of having missing inputs, both the developed method and the mean replacement

method are employed. The comparison plots of real and predicted values for each

condition are given in Figures 2.9-2.13. Note that output values are normalized. The

results of the developed soft sensors are summarized in Table 2.4.

Figure 2.9: Condition 1: the comparison plots of real and estimated values

Figure 2.10: Condition 2: the comparison plots of real and estimated values (the
developed MSPCR method)
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Figure 2.11: Condition 2: the comparison plots of real and estimated values (the
mean replacement method)

Figure 2.12: Condition 3: the comparison plots of real and estimated values (the
developed MSPCR method)
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Figure 2.13: Condition 3: the comparison plots of real and estimated values (the
mean replacement method)

Table 2.4: Performance of the designed soft sensor

Condition method R-squared RMSE

1 MSPCR 0.5411 0.2989
2 Developed MSPCR 0.5009 0.3117
2 Mean Replacement 0.4452 0.3286
3 Developed MSPCR 0.5204 0.3055
3 Mean Replacement 0.3974 0.3425

Based on the results, the developed method has achieved higher accuracy, i.e.

higher values for R-squared test and lower values for RMSE in estimating sulfur

content in comparison with the mean replacement method for both conditions 2 and

3. In addition, the performance of the soft sensor employing the proposed method has

slightly changed compared to the condition 1 that there are not any missing inputs.

As a result, the proposed method can deal with missing inputs in addition to missing

outputs.
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2.5 Conclusion

In this chapter, we have extended the existing MSPPCR model to the most general

solution including multi-mode, missing output and missing input problems. Since in

reality, we regularly have missing inputs in addition to missing outputs, by using the

EM algorithm, we have extended the MSPPCR model to deal with missing data in

both inputs and outputs. Therefore, this work makes the general PPCA methodology

more applicable for solving real industrial problems. Compared to the traditional

methods of missing data treatments such as using the mean value of variables, this

method has a better performance in mode detection and quality variable prediction.

We have presented three case studies, and all have confirmed the improved accuracy

of our developed model.
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Chapter 3

Unsupervised Hierarchical
Mixtures of Probabilistic Principal
Component Regression

PPCR is a probabilistic counterpart of PCR which is based on dimensionality reduc-

tion. In order to deal with nonlinearities as well as multi-mode behavior, it has been

extended to mixture PPCR (MPPCR). To build a model for a multi-mode system,

the associated problem with MPPCR is to estimate the number of mixture compo-

nents. In this chapter, we propose a hierarchical MPPCR approach for automatically

estimating the number of components. This method is based on a divisive hierarchi-

cal algorithm, and initially starts with the minimum possible number of components.

At each stage, the decision for splitting the components is made based on the Min-

imum Message Length (MML) criterion. In addition, a merging step is proposed

for detected highly overlapped components that controls the splitting step perfor-

mance. Furthermore, the developed hierarchical MPPCR model is solved through

maximum a posteriori (MAP) principle under the EM algorithm in order to utilize

prior distributions. Finally, two case studies are presented to demonstrate the model

performance.
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3.1 Introduction

Principal Component Analysis (PCA) is one of the most popular dimensionality re-

duction methods which employs feature transformation techniques. It has been ex-

tended to probabilistic PCA (PPCA) in order to benefit from probabilistic features.14

PPCA has many important advantages including feasibility to construct a mixture

of sub PPCA models.15 Extending to a mixture of sub models enables this method

to be applied on nonlinear systems (considering several linear sub-models) as well

as multi-mode systems16 as opposed to the single PPCA model, which has a good

performance only on single unimodal processes.

To estimate the parameters of the mixture PPCA (MPPCA) model, the EM

algorithm is usually employed to maximize the likelihood function. However, this

algorithm suffers from an initialization problem. In other words, its performance is

highly sensitive to initial parameters, and it is probable to converge to a local max-

imum. Initialization techniques have been investigated in a number of studies29 30

.In general, initialization methods can be classifed as deterministic or stochastic.31 In

deterministic methods, the initial values are specified by employing primary cluster-

ing algorithms such as hierarchical clustering32 33 . On the other hand, in stochastic

methods, different starting values are tried, and the solution with the highest likeli-

hood value is selected.34 Since there is no single method with the best performance

for all applications, a proper initialization technique is selected based on the problem

considered. For example, emEM and RndEM, as stochastic methods, have better

performance for overlapped mixture components, while hierarchical and K-means

clustering methods are preferred for well-separated components31.

The other issue associated with MPPCA is selecting the appropriate number of

mixture components. The problem is similar to the usual trade-off for model order

selection. In other words, selecting too many components may overfit the training

dataset and cause poor performance in prediction, while selecting too few compo-

nents may not provide a good estimation of the true model.35 A common procedure

to address this problem is to estimate the parameters for a set of model candidates,
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and then choose the best model based on the model selection criterion.36

Figueiredo and Jain35 have worked extensively on unsupervised learning of fi-

nite mixture models. They proposed a one stage algorithm to select the number of

components. This algorithm integrates the parameter estimation of the model can-

didates and model selection in one step. It starts with the largest possible number of

components, and then removes the components with the least estimated priors until

the number of components reach the minimum possible number of components. For

a comparison of different model candidates, the minimum message length (MML)

criterion is employed and has shown satisfactory results. Recently, a novel model

selection method for MPPCA was proposed by Zhao.37 In this work, a new hierar-

chical Bayesian information criterion (BIC) is proposed, and both one stage and two

stage algorithms are studied. Although the above mentioned methods have shown

good performance in estimating the number of components, a priori knowledge about

the possible range of components is required. In other words, by selecting a wide

range for the possible number of components, these methods will be extensively time

consuming.

A hierarchical approach for building MPPCA was first proposed by Bishop and

Tipping38 to aid in visualization of high-dimensional datasets through latent vari-

ables. The algorithm starts by building a single PPCA model and then increasing

the components in subsequent levels to detect and visualize clusters and subclusters

of the system. In this method, the decision on splitting the components and selecting

the number of offspring of each cluster is made by the user. As a result, although

it is a proper method for visualization, due to its human-driven nature, it may not

be suitable for detecting the number of components. In other words, it is time con-

suming and gives varying results depending on the human decisions.39 Consequently,

the hierarchical MPPCA method was modified by Su and Dy39 to be utilized in se-

lecting the number of components in MPPCA. The authors proposed an automated

hierarchical MPPCA that employs the integrated classification likelihood (ICL) cri-

terion to decide when to split the components, and the procedure is repeated until no

components can be split. This method has shown satisfactory results in experiments.
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However, there are two issues associated with it. First, due to the clustering appli-

cation of the ICL criterion, the method has shown a poor performance in detecting

overlapped components.35 Second, due to its hierarchical nature, when a component

is split, the next level will be performed on new components, and what is done at the

previous level cannot be undone.40

In this chapter, we will develop a hierarchical mixture of PPCR (MPPCR) to

be employed for constructing predictive models. In this developed model, the above

mentioned drawbacks are addressed. First, the minimum message length criterion

proposed by Figueiredo and Jain35 is employed instead of the ICL in order to im-

prove performance in detecting overlapped components. Second, after each splitting

step, highly overlapped components are detected, and a merging step is introduced.

The rest of this chapter is organized as follows. Section 3.2 describes the problem.

In section 3.3, an overview of the fundamentals of hierarchical MPPCA is provided.

In section 3.4, the MML criterion is discussed. Section 3.5 presents the developed

hierarchical MPPCR model. A numerical example and an experimental example are

provided in section 3.6. Conclusions are presented in section 3.7.

3.2 Problem Statement

Mixture models have shown a great performance in describing undefined distribu-

tions, multi-mode systems as well as nonlinear systems by considering several linear

sub-models.29 However, the challenging question is how to find the proper number

of mixtures in order to avoid overfitting caused by selecting too many components,

as well as weak models caused by selecting too few components. A number of meth-

ods have been proposed for selecting the number of components, and these can be

classified into deterministic41 42 43 (such as BIC) and stochastic44 45 (such as Markov

chain Monte Carlo (MCMC)) categories from a computational point of view.35 In

this chapter, we will focus on deterministic methods to find the proper number of

components.

The likelihood function is nondecreasing and is a function of the number of com-
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ponents, which suggests that it cannot be the only criterion for estimating the number

of components. In other words, increasing the number of components increases the

complexity of the model. This results in an increased goodness of fit between the

predicted and observed value of the training dataset, thereby causing over-fitting on

the training dataset. To overcome this problem, the model selection criterion is de-

fined by the sum of the likelihood term (which defines the fit between the model

and training data set) and the penalizing term (which controls model complexity).46

Consider C(θ̂(k), k) as a model selection criterion. The proper number of components

is estimated by the following optimization problem:35

k̂ = argmin
k

C(θ̂(k), k), k = kmin, ..., kmax (3.1)

where θ̂ represents the estimated parameters of a model with k components. The

generic form of the selection criterion is as follows:

C(θ̂(k), k) = − log p(x|θ̂(k)) +N(k) (3.2)

where x denotes the training dataset, and N(k) is the penalizing term of the k com-

ponent model that is an increasing function of k. According to Equation 3.2, the

likelihood term of the criterion function is a nonincreasing function of k (due to its

negative sign), while the penalizing term is increasing by an increment of k. As a

result, the minimization of the criterion gives a conservative answer based on the fit

and complexity.

3.3 Unsupervised Hierarchical MPPCA

The hierarchical representation of MPPCA can be built based on agglomorative,

and also divisive algorithms. In the agglomorative algorithms, the procedure starts

with the maximum possible number of components (kmax), and at each further step,

similar groups are merged. On the other hand, the divisive algorithms start with one

component model, and the number of components increases until a stopping criterion

is satisfied.39 Since determining an optimal value for kmax is not straight forward, and

starting with a large kmax is time consuming, a divisive algorithm is investigated in
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Figure 3.1: Building hierarchical
MPPCA: step 1

Figure 3.2: Building hierarchical
MPPCA: step 2

this thesis.

The divisive hierarchical MPPCA starts with a model of single PPCA, and at

further levels, splits into its offspring. After each component is split, the selection

criterion of each parent is compared with its offspring. The parent is split into its

offspring if the selection criterion of the offspring is more optimal than the parent.

Otherwise, the parent is retained and is not split in subsequent steps. Consider an

illustrative example to clarify the procedure. Generally, each parent can have any

number of offspring, but in the following example we have assumed the number of

offspring is two:

In the first step, the model is considered as unimodal, and the PPCA parameters

are estimated. This model is shown as 1 in Figure 3.1. In the next level, the model

is split into two offspring, and the parameters are estimated using the hierarchical

MPPCA method that will be discussed in the next sections. Finally, the selection

criterion of the parent (1) is compared to its offspring (2,3) in level 2. Here, we assume

that the criterion of (2,3) is more optimal than (1), so the parent (1) is split.

As shown in Figure 3.2, since in step 1 the selection criterion of the offspring

(2,3) is more optimal than their parent (1), the offspring of the component (1), i.e.,

(2) and (3) are retained and considered in this step as parents. In this step, (2) and

(3) are split into their offspring (4,5) and (6,7), respectively, and the parameters of

the offspring components (4,5,6,7) are estimated. Then, the criterion of each parent is

compared with its respective offspring, i.e., the criterion of (2) is compared to (4,5),
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and the criterion of (3) is compared to (6,7). Assume the criterion of (2) is more

optimal than (4,5) while criterion of (3) is less optimal than (6,7). This would result

in component (2) not getting split while component (3) gets split into (6) and (7).

In step 3, based on the previous levels, components (2), (6) and (7) are preserved

as parents. Since component (2) went through the splitting process in step 2, it

will not be further split in the next levels. However, (6) and (7) are split into their

offspring. Assume that the criterion of both components (6) and (7) is more optimal

than (8,9) and (10,11), respectively. This would result in (6) and (7) being the final

components. Therefore, three components are estimated, i.e., (2), (6) and (7). The

schematic of this step is shown in Figure 3.3.

Figure 3.4 provides an overview of hierarchical MPPCA for the above mentioned

example. The algorithm started with one component, and finally three components

namely, (2), (6) and (7), are selected.

Figure 3.3: Building hierarchical
MPPCA: step 3

Figure 3.4: Building hierarchical
MPPCA: an overview

3.3.1 Parameter Estimation: MPPCA

In MPPCA, a total of K PPCA models are incorporated. Consider the number of

selected latent variables in each sub-model (represented by k) is q. The MPPCA

model can be formulated as:

xi,k = Pkti,k + ei,k + µx,k , k = 1, 2, ..., K (3.3)

where xi,k ∈ Rm×1 is one data sample of the input dataset, µx,k is the mean value of

input variables, Pk ∈ Rm×q is the weighting matrix, ti,k ∈ Rq×1 is a vector of hidden
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variables, and ei,k ∈ Rm×1 is the measurement noise of input variables in the kth sub-

model. Gaussian distributions of ek ∼ N (0, σ2
x,kI) and tk ∼ N (0, I) are considered

for the measurement noise of the input and the latent variables, respectively.

One can estimate the best model parameters Θ = {θ}k = {Pk, σ
2
x,k, µx,k} by max-

imizing the likelihood function L(X|Θ). Since direct maximization of the observed

likelihood function is difficult, the EM algorithm is employed for maximum likelihood

estimation. Tipping and Bishop15 have described a detailed explanation in their work.

3.3.2 Parameter Estimation: Unsupervised Hierarchical MP-
PCA

One can incorporate the MPPCA model into a hierarchical framework.38 Assume in

the previous level K components are detected, so there are K components as parents,

and each one (k) is going to be split into gk offspring. The formulation of hierarchical

MPPCA is as follows:

xi,(k,c) = P(k,c)ti,(k,c) + ei,(k,c) + µx,(k,c) , k = 1, 2, ..., K , c = 1, 2, ..., gk (3.4)

where (k, c) represents the offspring (c) of parent (k). The probability density function

can be formulated as:

p(X|Θ) =
K
∑

k=1

gk
∑

c=1

p(k, c)p(X|θk,c) (3.5)

Since the prior probability of the parents p(k) is fixed from the previous level, the

joint probability of k and c, i.e. p(k, c), is separated, and the probability density

function can be expressed as:

p(X|Θ) =
K
∑

k=1

p(k)

gk
∑

c=1

p(c|k)p(X|θk,c) (3.6)

where p(c|k) represents the mixing coefficients for offspring c of parent k and satisfies

the constraint of
∑gk

c=1 p(c|k) = 1. One should formulate the likelihood function to
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estimate the parameters in this level. Since the data points, X, and the indicator

variables of parents, Z, are observed in this level, the likelihood function can be

expressed as:

L = ln(p(X,Z|Θ)) = ln
(

n
∏

i=1

K
∏

k=1

(p(xi|θk)p(k))
zik
)

=
n
∑

i=1

K
∑

k=1

zik ln
(

p(k)

gk
∑

c=1

p(xi|θk,c)p(c|k)
)

(3.7)

Since the expectation of the indicator variables are estimated in the previous level,

the likelihood function can be expressed as:

L =
n
∑

i=1

K
∑

k=1

p(k|xi, θk) ln
(

p(k)

gk
∑

c=1

p(xi|θk,c)p(c|k)
)

(3.8)

where p(k|xi, θk) is constant. To estimate the maximum likelihood, one can use the

EM algorithm. The expected complete-data likelihood can be formulated as:

E(LC) =
n
∑

i=1

K
∑

k=1

p(k|xi, θk)
{

ln p(k) +

gk
∑

c=1

p(c|xi, θk,c, k) ln{p(c|k)p(xi|θk,c)}
}

(3.9)

The optimal parameters can be estimated by maximizing Equation 3.9. More details

are provided by Bishop and Tipping.38

3.4 Minimum Message Length Criterion

Statistical estimation can be considered as a coding process.47 Researchers have ex-

plained the philosophy of minimum encoding methods as follows47 29 :

“We may first estimate the parameters and then encode the data under the assump-

tion that these are the true values. The encoded string must now, however, contain a

specification of the estimated values. Any model is, therefore, only worth considering

if the shortening of the encoded data string achieved by adopting it more than com-

pensates for the lengthening caused by having to quote estimated parameter values.

We thus naturally arrive at a very simple trade-off between the complexity of a model

and its goodness of fit. A more complicated model will usually fit a data-set better
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than a simpler one, enabling a briefer encoding of the data, but this must be paid for

by the cost of the greater number of parameter estimates.”

In this approach, the message length has two parts. The first part contains the

prior knowledge of the parameters θ, and the second part consists of the observed

data X under the assumption that the estimated parameters are the true values. As

a result, the message length can be expressed as:35

Length(θ,X) = Length(θ) + Length(X|θ) (3.10)

The expected message length is expressed in48 35 as follows:

E(Length(θ,X)) = − ln p(θ)− ln p(X|θ) +
1

2
ln|I(θ)|+

c

2
(1 + ln kc) (3.11)

where p(θ) presents the prior probability of the parameters, |I(θ)| presents the ex-

pected Fisher matrix information, c is the number of unknown parameters, and kc is

the optimal quantizing lattice constant for Rc.

By approximating c as 1, kc as 1/12, replacing |I(θ)| by the complete Fisher infor-

mation matrix, and considering the standard Jeffrey’s prior for parameters, Equation

3.11 is reformulated as follows:35

L(θ,X) =
N

2

∑

m:πm>0

ln(
nπm

12
) +

knz
2

ln
n

12
+

knz(N + 1)

2
− ln p(X|θ) (3.12)

where πm denotes the prior probability of each component, N is the number of param-

eters in each component, n is the total number of data points , and knz is the number

of components with non-zero priors. The MML method has shown good performance

as a selection criterion for detecting the number of components in both overlapped

and separated mixtures, and it outperforms other selection criteria.35

3.5 Unsupervised Hierarchical MPPCR

3.5.1 Derivations of the algorithm

In hierarchcial MPPCR the first step starts with a single PPCR model. The details

of the PPCR model are presented in section 2.2.2. In the next steps, each component
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is split into its offspring. In general, the number of offspring can be arbitrarily

selected, however, selecting more than two offspring may result in estimating too

many components. As a result, it is assumed that the number of offspring is two.39

Let X = [x1, x2, ..., xn]
T ∈ Rn×m and Y = [y1, y2, ..., yn] ∈ Rn×r be the input and

output datasets, respectively, and T = [t1, t2, ..., tn]
T ∈ Rn×q be the latent variable

values, where n is the number of samples, m is the number of input variables, r is the

number of output variables, and q is the number of selected latent variables. Assume

K components are detected in the previous level, and in this level each component

(k) is going to be split into gk offspring. Since it is assumed the maximum number of

offspring for each parent is two, the maximum of gk for different k equals two. The

hierarchical MPPCR model can be formulated as:

xi,(k,c) = P(k,c)ti,(k,c) + ei,(k,c) + µx,(k,c) , k = 1, 2, ..., K , c = 1, 2, ..., gk (3.13)

yi,(k,c) = C(k,c)ti,(k,c) + fi,(k,c) + µy,(k,c) , k = 1, 2, ..., K , c = 1, 2, ..., gk (3.14)

where i = 1, 2,..., n, (k, c) represents offspring (c) of parent (k), µx,(k,c) and µy,(k,c) are

the mean values of the input and output datasets in each sub model (k, c), respec-

tively. p(k, c) is the mixing proportions of each sub-model offspring (c) and parent

(k) with the constraint of
∑K

k=1

∑gk
c=1 p(k, c) = 1, and

∑gk
c=1 p(c|k) = 1 for each par-

ent k = 1, 2, ..., K. P(k,c) ∈ Rm×q and C(k,c) ∈ Rr×q are weighting matrices of the

(k, c) sub-model, t(k,c) ∈ Rq×1is a vector of latent variables, and e(k,c) ∈ Rm×1 and

f(k,c) ∈ Rr×1are measurement noises of the input and output variables in the (k, c)

sub-model, respectively. It is assumed that the hidden variables and measurement

noises follow the Gaussian distribution of t(k,c) ∼ N (0, I), e(k,c) ∼ N (0, σ2
x,(k,c)I) and

f(k,c) ∼ N (0, σ2
y,(k,c)I) in each submodel (k,c).

Equation 3.12 is equivalent to a posteriori density by considering a Drichlet-type

prior:35

p(π1, ..., πk) ∝ exp{−
N

2

k
∑

m=1

log(πm)} (3.15)

where πm is p(m). To estimate the parameters Θ = {θ}(k,c) = {P(k,c), C(k,c), σ
2
x,(k,c),

σ2
y,(k,c), µx,(k,c), µy,(k,c), π(k,c)}, the Drichlet prior described in Equation 3.15 for compo-
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nent priors πk,c, and a flat prior for other parameters are assumed, and the maximum

a posteriori (MAP) function is formulated and then maximized by employing the EM

algorithm. Note that in the hierarchical formulation Θ = {Θoffspring,Θparent}, where

Θparent is fixed from the previous level. Since the observed variables are {X, Y, k},

the MAP criterion is as follows:

Θ̂MAP = argmax
Θ

{ln p(X, Y, k,Θ)} = argmax
Θ

{ln p(X, Y, k|Θ) + ln p(Θ)} (3.16)

One can maximize the MAP function using the EM algorithm by considering com-

plete data that includes observed and hidden variables. In this problem, the observed

variables are {X, Y, k}, and hidden variables are {T, c}. Note that the indicators of

parent components that equal the posterior distribution of each parent component,

i.e., p(k|xi, yi,Θparent) are fixed from the previous level, where Θparent denotes param-

eters of the previous level. The three main steps of the EM algorithm, which are

initialization, expectation, and maximization, are described in the following subsec-

tions:

3.5.1.1 Initialization

Initialization has an important impact on the performance of the EM algorithm,

and improper initial values may cause convergence to a suboptimal response. Ini-

tializiation techniques have been investigated in a number of studies and are mainly

classified into deterministic and stochastic methods29 30 31 . In deterministic methods,

the initial values are mainly selected based on clustering methods. In these methods,

the initial values are fixed, and new candidates for initialization are not proposed.

In addition, due to their clustering nature, these methods have shown better perfor-

mance in separated components. On the other hand, in stochastic methods, different

starting values are examined, and the candidate with the highest likelihood value is

selected.31 Based on the problem considered, a proper initialization method can be

selected.

In the problem considered here, stochastic methods are selected because of their

good performance in detecting overlapped components.31 Among available stochastic
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initialization techniques, “xem-EM” is selected since it has shown good performance in

most cases in a comprehensive study of stochastic methods.34 In “1 em-EM” method,

several short runs of the EM algorithm from the random initial values are conducted.

Then the solution of the short run of the EM which maximizes the likelihood function

is selected as the initial values for a long run of the EM algorithm. A short run of the

EM means that the threshold of the convergence is larger than a long run of the EM,

so it stops after a fewer iterations. In “x em-EM” method, “1 em-EM” algorithm is

repeated x times, and the solution with the highest likelihood value is selected as the

final solution.34

3.5.1.2 Expectation

The Q function of the EM algorithm, that is the expected value of the complete data

log-aposteriori with respect to the joint distribution of the hidden variables given the

observed variables and Θold, can be written as:

ET,c|X,Y,k,Θold

[

ln[p(X, Y, T, k, c,Θ)]
]

= ET,c|X,Y,k,Θold

[

ln[p(X, Y, T, k, c|Θ)] + ln[p(Θ)]
]

=ET,c|X,Y,k,Θold

[

ln[
n
∏

i=1

K
∏

k=1

p(xi,k, yi,k, ti,k, k, c|Θ)p(k|xi,yi,Θparent)] + ln[
K
∏

k=1

p(θk)]
]

=
n
∑

i=1

K
∑

k=1

p(k|xi, yi,Θparent)Eti,k,c|xi,yi,k,Θold

[

ln[p(xi,k, yi,k, ti,k, k, c|Θ)]
]

+
K
∑

k=1

ln[p(θk)]

=
n
∑

i=1

K
∑

k=1

p(k|xi, yi,Θparent)

gk
∑

c=1

p(c|xi, yi, k,Θold)

∫

ln
[

p(xi,k,c, yi,k,c, ti,k,c|k, c,Θ)p(c|k)p(k)
]

p(ti,k,c|xi, yi, k, c,Θold)dti,k,c +
K
∑

k=1

gk
∑

c=1

ln[p(θ(k,c))]

=
n
∑

i=1

K
∑

k=1

p(k|xi, yi,Θparent)

gk
∑

c=1

p(c|xi, yi, k,Θold)
{

ln p(c|k) + ln p(k)+

∫

ln[p(xi,k,c, yi,k,c, ti,k,c|k, c,Θ)]p(ti,k,c|xi, yi, k, c,Θold)dti,k,c

}

+
K
∑

k=1

gk
∑

c=1

ln[p(θ(k,c))]

(3.17)

Note that the indices i , k , c denote the ith data point, kth parent component, and cth

offspring component, respectively.
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In the expectation step, the posterior probabilities of p(c|xi, yi, k,Θold) and

p(ti|xi, yi, k, c,Θold) are determined based on the parameters estimated in the previous

M-step, and can be derived based on the Bayes’ rule as follows:

p(c|xi, yi, k,Θold) =
p(xi, yi|k, c,Θold)p(c|k,Θold)

p(xi, yi|k,Θold)
(3.18)

where p(c|k,Θold) is the mixing proportions of each offspring component given its

parent, and the constraints of
∑gk

c=1 p(c|k,Θold) = 1 have been imposed. The posterior

probability of parent (k) and offspring (c) is as follows:

p(c, k|xi, yi,Θold) = p(c|xi, yi, k,Θold)p(k|xi, yi,Θparent) (3.19)

Note that p(k|xi, yi,Θparent) is fixed from the previous level.

p(ti|xi, yi, k, c,Θold) =
p(xi|ti, k, c,Θold)p(yi|ti, k, c,Θold)p(ti|k, c,Θold)

p(xi, yi|k, c,Θold)
(3.20)

where

xi|ti, k, c,Θold ∼ N (Pk,cti,k,c + µx,k,c, σ
2
x,k,cI)

yi|ti, k, c,Θold ∼ N (Ck,cti,k,c + µy,k,c, σ
2
y,k,cI)

ti|k, c,Θold ∼ N (0, I)

Therefore ti|xi, yi, k, c,Θold has a Gaussian distribution with mean and variance as

follows:

For labeled datasets:

E(ti,k,c|xi, yi, k, c,Θold) = (σ−2
x,k,cP

T
k,cPk,c + σ−2

y,k,cC
T
k,cCk,c + I)−1

{σ−2
x,k,cP

T
k,c(xi − µx,k,c) + σ−2

y,k,cCk,c(yi − µy,k,c)}
(3.21)

E(ti,k,ct
T
i,k,c|xi, yi, k, c,Θold) = (σ−2

x,k,cP
T
k,cPk,c + σ−2

y,k,cC
T
k,cCk,c + I)−1

+E(ti,k,c|xi, yi, k, c,Θold)E
T (ti,k,c|xi, yi, k, c,Θold)

(3.22)

3.5.1.3 Maximization

In the maximization step, one can maximize the expected value of the complete data

log-aposteriori with respect to the model parameters. To update the priors of each
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component, consider the expected value of the log-aposteriori in Equation 3.17 and

separate the terms with the proportional value p(c|k) as follows:

l1(c) =
n
∑

i=1

K
∑

k=1

p(k|xi, yi,Θparent)

gk
∑

c=1

p(c|xi, yi, k,Θold) ln p(c|k) +
K
∑

k=1

gk
∑

c=1

ln[p(θ(k,c))]

=
n
∑

i=1

K
∑

k=1

p(k|xi, yi,Θparent)

gk
∑

c=1

p(c|xi, yi, k,Θold) ln p(c|k) +
K
∑

k=1

gk
∑

c=1

ln[β(p(c|k)p(k))

−N

2 ]

(3.23)

Considering the constraint of
∑gk

c=1 p(c|k) = 1, a Lagrange multiplier λ is introduced,

and the updated value of p(c|k) is determined by maximizing the following equation:

l2(c) = l1(c) + λ(

gk
∑

c=1

p(c|k)− 1) (3.24)

Equation 3.25 is derived by setting the derivatives of l2(c) with respect to p(c|k) to

zero:

n
∑

i=1

[p(k|xi, yi,Θparent)p(c|xi, yi, k,Θold)]−
N

2
+ λp(c|k) = 0

=⇒ p(c|k) = −

∑n
i=1[p(k|xi, yi,Θparent)p(c|xi, yi, k,Θold)]−

N

2
λ

(3.25)

Since priors of the components p(c|k) cannot be negative, Equation 3.25 can be ex-

pressed as:

p(c|k) = −
max

{

0,
∑n

i=1[p(k|xi, yi,Θparent)p(c|xi, yi, k,Θold)]−
N

2

}

λ
(3.26)

Considering
∑gk

c=1 p(c|k) = 1, λ can be computed as:

λ = −

gk
∑

c=1

max
{

0,
n
∑

i=1

[p(k|xi, yi,Θparent)p(c|xi, yi, k,Θold)]−
N

2

}

(3.27)

As a result, updated value of the proportions is given by:

p(c|k) =
max

{

0,
∑n

i=1[p(k|xi, yi,Θparent)p(c|xi, yi, k,Θold)]−
N

2

}

∑gk
c=1 max

{

0,
∑n

i=1[p(k|xi, yi,Θparent)p(c|xi, yi, k,Θold)]−
N

2

}

(3.28)
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The prior probability of component (c, k) is computed using the following equation:

p(c, k) = p(c|k)p(k) (3.29)

where p(k) has a constant value from the previous level. The maximization results of

the other parameters are as follows:

∂E
[

ln[p(X, Y, T, k, c,Θ)]
]

∂Pk,c

= 0 =⇒

P new
k,c =

[

n
∑

i=1

[p(k, c|xi, yi,Θold)(xi − µx,k,c)E
T (ti,k,c|xi, yi, k, c,Θold)]

]

×
[

n1
∑

i=1

[p(k, c|xi, yi,Θold)E(ti,k,ct
T
i,k,c|xi, yi, k, c,Θold)]

]−1

(3.30)

∂E
[

ln[p(X, Y, T, k, c,Θ)]
]

∂Ck,c

= 0 =⇒

Cnew
k,c =

[

n
∑

i=1

[p(k, c|xi, yi,Θold)(yi − µy,k,c)E
T (ti,k,c|xi, yi, k, c,Θold)]

]

×
[

n
∑

i=1

[p(k, c|xi, yi,Θold)E(ti,k,ct
T
i,k,c|xi, yi, k, c,Θold)]

]−1

(3.31)

∂E
[

ln[p(X, Y, T, k, c,Θ)]
]

∂µx,k,c

= 0 =⇒

µnew
x,k,c =

{

∑n
i=1 p(k, c|xi, yi,Θold)[xi − Pk,cE(ti,k,c|xi, yi, k, c,Θold)]

}

{

∑n
i=1 p(k, c|xi, yi,Θold)

}

(3.32)

∂E
[

ln[p(X, Y, T, k, c,Θ)]
]

∂µy,k,c

= 0 =⇒

µnew
y,k,c =

{

∑n
i=1 p(k, c|xi, yi,Θold)[yi − Ck,cE(ti,k,c|xi, yi, k, c,Θold)]

}

{

∑n
i=1 p(k, c|xi, yi,Θold)

}

(3.33)
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∂E
[

ln[p(X, Y, T, k, c,Θ)]
]

∂σ2new
x,k,c

= 0 =⇒

σ2new
x,k,c =

{

n
∑

i=1

p(k, c|xi, yi,Θold)[(xi − µx,k,c)
T

(xi − µx,k,c)− 2ET (ti,k,c|xi, yi, k, c,Θold)P
newT
k,c (xi − µx,k)+

trace(P newT
k,c P new

k,c E(ti,k,ct
T
i,k,c|xi, yi, k, c,Θold))

}

/

{

m(
n
∑

i=1

p(k, c|xi, yi,Θold))
}

(3.34)

∂E
[

ln[p(X, Y, T, k, c,Θ)]
]

∂σ2new
y,k,c

= 0 =⇒

σ2new
y,k,c =

{

n
∑

i=1

p(k, c|xi, yi,Θold)[(yi − µy,k,c)
T (yi − µy,k,c)

− 2ET (ti,k,c|xi, yi, k, c,Θold)C
newT
k,c (yi − µy,k)+

trace(CnewT
k Cnew

k,c E(ti,k,ct
T
i,k,c|xi,o, yi, k, c,Θold))]

}

/

{

r(
n
∑

i=1

p(k|xi, yi,Θold))
}

(3.35)

The expectation and maximization steps are iterated over the equations until the

parameters converge to their optimal values.

3.5.2 Splitting Components

At each level, after building the hierarchical model described in section 3.5.1, the

performance of the parent components are compared with its two offspring . If the

two offspring model outperforms their parent model, the parent is replaced by the

offspring. Otherwise, the parent is not split and its model is retained as the best

one.39

In order to compare the performance of parents and their offspring, a proper model

selection criterion should be employed. In this thesis, we selected the MML criterion

that is described in section 3.4. To utilize the MML criterion for each component

in Equation 3.12, the value of log p(X|Θ) for each component should be determined
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using the following equation:

p(X, Y, z|Θ) = p(z|X, Y,Θ)p(X, Y |Θ) (3.36)

where z indicates the origin component of the samples.

ln p(X, Y |Θ) =−
n
∑

i=1

K
∑

k=1

p(k|xi, yi, θk) ln p(k|xi, yi, θk)

+
n
∑

i=1

K
∑

k=1

p(k|xi, yi, θk) ln[p(yi, xi|θk)p(k)]

(3.37)

As a result, the likelihood value corresponding to each component (k) is as follows:

ln p(X, Y |Θ)k =−
n
∑

i=1

p(k|xi, yi, θk) ln p(k|xi, yi, θk)

+
n
∑

i=1

p(k|xi, yi, θk) ln[p(yi, xi|θk)p(k)]

(3.38)

In summary, for component (k), the selection criterion is as follows:

L(θ,X, Y )k =
N

2
ln(

nπk

12
) +

1

2
ln

n

12
+

N + 1

2
+

n
∑

i=1

p(k|xi, yi, θk) ln p(k|xi, yi, θk)

−
n
∑

i=1

p(k|xi, yi, θk) ln[p(yi, xi|θk)p(k)]

(3.39)

And for the offspring of component k, the selection criterion is:

L(θ,X, Y )C(k) =
N

2

∑

(c,k):πc,k>0

ln(
nπc,k

12
) +

knz
2

ln
n

12
+

knz(N + 1)

2

+
n
∑

i=1

knz
∑

c=1

p(c, k|xi, yi, θc,k) ln p(c, k|xi, yi, θc,k)

−
n
∑

i=1

knz
∑

k=1

p(c, k|xi, yi, θc,k) ln[p(yi, xi|θc,k)p(c, k)]

(3.40)

where knz denotes the number of components whose prior probabilities, i.e., πc,k are

larger than zero.
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3.5.3 Merging Components

Despite a good performance of hierarchical MPPCR, due to its hierarchical nature, it

may have some problems in estimating the correct number of clusters. In other words,

when a component is split, the next step is performed on the new estimated compo-

nents, and it is not possibe to undo what is done at the previous level. To overcome

this problem, we have added a step of merging highy overlapped components to this

method. In other words, after each splitting step, the highly overlapped components

(if they exist) are detected and merged. We provide a detailed explanation of the

problem through an illustrative example:

Consider a two dimensional dataset containing three mixture components. Apply-

ing hierarchical MPPCR to this problem may lead to estimating an incorrect number

of mixture components because one of the components may be split into two com-

ponents in the first level. The scatter plot of this example is given in Figure 3.5.

According to this plot, component 2 is split into two components, and since there

is no merging step, in the further level each new component has been split into two

components, and the final number of components is incorrectly estimated as 4.

Figure 3.5: Plot of hierarchical MPPCR example
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In order to overcome this issue, we propose a merging step after each splitting

step. To illustrate, in this example, we apply the merging test at the third level

(when there are four components from two parents that are each other’s sibling).

Component 2 that is split will show a high overlap criterion, so the split components

are merged with each other. The scatter plot in this case is given in Figure 3.6.

Figure 3.6: Hierarchical plot of the developed hierarchical MPPCR example

3.5.3.1 Detecting Highly Overlapped Components

Many methods have been proposed in literature for detecting overlapped clusters, such

as the ridge line method,49 entropy based criterion,50 and misclassification probability

methods.51 Henning51 provides a detailed review of the available methods. Recently

“Directly Estimated Misclassification Probability” method (DEMP+) was poposed

by Melnykov52 and has shown desirable results in detecting overlapped clusters. In

this thesis, we utilize this method for detecting highly overlapped components.

After convergence of the EM algorithm and estimation of the optimal parame-

ters, the posterior probability of each component is calculated. Based on the Baye’s

rule, each observation is assigned to the component that has the highest posterior

probability. Since the (DEMP+) method is based on misclassification probabilities,

this rule can be utilized to compute pairwise misclassification probabilities. Assume a

sampling point xi is originated from component k distribution. The probability that
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xi is misclassified to component j is given as:52

wj|k = p
(

tik < tij|xi ∼ p(xi; θk)
)

(3.41)

where tik and tij denote posterior probabilities computed for sampling point xi based

on components k and j, respectively.

tik = p(k|xi,Θ) =
p(xi|k,Θ)πk

p(xi|Θ)
(3.42)

tij = p(j|xi,Θ) =
p(xi|j,Θ)πj

p(xi|Θ)
(3.43)

By substituting Equations 3.42 and 3.43 into Equation 3.41, we get:

wj|k = p
(

p(xi|j,Θ)πj < p(xi|k,Θ)πk|xi ∼ p(xi; θk)
)

(3.44)

For each two component k and j, their misclassification probability can be computed

as:

wj,k = wj|k + wk|j (3.45)

The value of wj,k can be estimated using Monte Carlo simulations. However, another

approach is proposed by Maitra and Melnykov.53 Consider computing wj|k. In order

to utilize Monte Carlo simulation, a large sample y1, y2, ..., yN is separated from the

Gaussian component k, p(xi; θk), and the posterior probability of component k and j

for each sampling point is computed. As a result, wj|k can be estimated as:

ŵj|k =
1

N

N
∑

i=1

I
(

p(yi|j,Θ)πj < p(yi|k,Θ)πk

)

(3.46)

where I is an indicator function that can have a value of 0 or 1.

The value of the misclassification probability determines the level of overlap be-

tween two mixture components. The relationship between Rand index (cluster sim-

ilarity index) and the level of overlap for different dimensions is provided by Mel-

nykov.52 This value is selected based on the problem. Note that in this problem,

since we wish to detect the component that is incorrectly split, high values for w

should be selected.
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3.5.3.2 Parameter Estimation of Merged Component

The estimation of the parameters of merged components is similar to MPPCR22 with

some fixed components and known priors for all components. Consider the example in

section 3.5.3. After estimating the level of overlap, a high overlap value for component

2 on the right and left sections in Figure 3.5 are detected. As a result, the two blue

components (component 2) should be merged. To estimate the parameters of the

merged components, parameters of the component 1 and 3 are fixed. The prior and

posterior probability of the merged component also equals the summation of the

priors of two origin components. Other parameters can be estimated using the EM

algorithm for the MPPCR problem.

A summary of the proposed framework is given in Figure 3.7.

Figure 3.7: An overview of the proposed hierarchical MPPCR
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3.6 Case studies

Two case studies are considered in this section to demonstrate the performance of

the developed method. In the first part, a numerical example is provided, and in the

second part, the developed method is illustrated through an experimental example.

3.6.1 Numerical example

The purpose of this numerical example is to demonstrate the capability of the pro-

posed method in estimating the number of components. A simulated dataset is gen-

erated using the following model:

xk = Pktk + ek + µx,k

yk = Cktk + fk + µy,k

(3.47)

It is a three mixture component problem, and k has the values of 1, 2 or 3. There

are two input and two output variables in each component. The simulated number

of latent variables is two. Pk and Ck are 2 × 2 weighting matrices that are selected

randomly. tk is the latent variable vector in each component and follows a Gaussian

distribution of N (0, I). ek and fk are input and output measurement noises in each

component, respectively, and also follow Gaussian distributions with zero mean and

a variance of 0.012 , i.e., σ2
x,k = 0.012 and σ2

y,k = 0.012. µx,k and µy,k are mean values

of the input and output in each component, respectively. In each component, 600

data samples are generated and are used for estimating the number of components.

The parameters of the model are given in Table 3.1.

Table 3.1: Model parameters to generate the simulation data

π =
(

1/3 1/3 1/3
)

P1 = C1 =

(

1.77 0.7316
−0.3374 0.4883

)

, P2 = C2 =

(

0.6027 −0.1601
−0.7104 1.2871

)

P3 = C3 =

(

−0.7157 −0.9474
0.465 −0.395

)

µx,1 = µy,1 =

(

0
0

)

, µx,2 = µy,2 =

(

2
2

)

, µx,3 = µy,3 =

(

4
4

)

In order to evaluate the performance, two methods are compared. The first
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method is the developed hierarchical MPPCR method, and the second method is

the hierarchical MPPCR method without the merging step. To compare the results

of the two methods, three criteria are evaluated. The first criterion is the number

of components that are estimated. The second criterion is the Adjusted Rand Index

(ARI), and the third criterion is the Fowlkes–Mallows Index (FM index). The latter

criteria can be described as follows:

3.6.1.1 Adjusted Rand Index (ARI)

The ARI demonstrates the level of agreement between two partitions. It is usually

considered as a clustering validation criterion between the true and estimated clus-

ters. Assume i and j represent the partitions of each partitioning P1 and P2. The

formulation of ARI can be expressed as54:55

ARI =

∑

i,j

(

ni,j

2

)

−
[

∑

i

(

ni.

2

)

∑

j

(

n.j

2

)

]

/

(

n
2

)

1

2

[

∑

i

(

ni.

2

)

+
∑

j

(

n.j

2

)

]

−
[

∑

i

(

ni.

2

)

∑

j

(

n.j

2

)

]

/

(

n
2

) (3.48)

where n is the total number of objects, ni,j is the number of objects in both partitions

P1,i and P2,j, and ni. and n.j are the number of objects in partitions P1,i and P2,j,

respectively.

3.6.1.2 Fowlkes–Mallows Index (FM index)

FM index is the geometric mean of precision, i.e. the probability that two objects are

in the same estimated cluster given the same true lables, and the probability that two

objects have the same true labels given the same estimated clusters. The formulation

of FM index is as follows56:39

FM =

∑G
i=1

∑K
j=1

(

ni,j

2

)

(

∑G
i=1

(

ni.

2

)

∑K
j=1

(

n.j

2

)

)
0.5 (3.49)

The developed hierarchical MPPCR, and the hierarchical MPPCR method without

the merging step are built based on the simulated dataset. The estimated number
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of components using the developed method is three, which is the same as the true

number of components. On the other hand, the regular hierarchical MPPCR model

estimates the number of components to be four. The posterior probabilities of each

component for both models are given in Figures 3.8 and 3.9.

Figure 3.8: Estimated posterior probabilities using the developed hierarchical MP-
PCR model

Figure 3.9: Estimated posterior probabilities using the regular hierarchical MPPCR
model
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According to Figures 3.8 and 3.9, the developed model has estimated three com-

ponents, and the partitions are approximately detected. However, using the regular

hierarchical MPPCR, four components are detected. In other words, using regular

hierarchical MPPCR, component 2 is split into components 2 and 4 while using the

developed model, components 2 and 4 are merged and are formed as component 2.

In addition, for evaluating the performance of both models, the ARI and FM index

are calculated for each approach based on the true partitioning labels. For the devel-

oped model the ARI and FM index are 0.8006 and 0.8672, respectively. On the other

hand, for the regular hierarchical MPPCR model, the ARI and FM index are 0.7145

and 0.8040, respectively. Since for both indices, a value closer to 1 shows a better

agreement between the estimated and true partitions, the developed method shows

a better performance in detecting components. The results are summarized in Table

3.2.

Table 3.2: The results for the developed and regular hierarchical MPPCR

Model Estimated K ARI FM

Developed hierarchical MPPCR 3 0.8006 0.8672
Regular hierarchical MPPCR 4 0.7145 0.8040

3.6.2 Experimental example: Hybrid Tank System

An experiment is conducted on a hybrid tank system in the process control laboratory

at University of Alberta to demonstrate the performance of the proposed method in

detecting the number of operating regions, i.e., the number of mixture components.

The schematic of the system is presented in Figure 3.10. The system contains three

tanks with the same dimensions. Tank 2 is connected to tanks 1 and 3 through six

valves V1, V2, V3, V4, V6 and V8. All the tanks have individual discharge pipes, i.e.,

V5, V7, V9 at the bottom. Tanks 1 and 3 have inlet pumps to let the water flow into

the system, and all the valves can be open or closed to design the operation pattern.

The water level of tanks 1 and 2 are controlled through a cascade control that allows

to manipulate flow rates and the speed of pumps.
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Figure 3.10: The schematic diagram of the Hybrid Tank System

In this experiment, valves V1, V2, V3, V4 are open to make the water flow possible

at high water levels. In addition, valve V7 is also open to make the water level of

tank 2 stable. The experiment is conducted, and 500 sampling data are collected

in three operating regions, around set points given in Table 3.3. Collected sampling

data points are presented in Figure 3.11. Note that the values are normalized. In

operating region 1, the flow is limited to tank 3. In operating region 2, tank 3 and 2

have flow, and in the operating region 3 the flow enters all the three tanks. In order

to determine the number of operating regions, steady state parts of the dataset are

separated. The water level of tank 3 is selected as an output, and the flow rate of

tanks 1 and 3, and the water level of tank 1 are selected as inputs. The developed

hierarchical MPPCR is applied on the dataset. As a result, the number of operating

regions, i.e., mixture components, is estimated as 3, and ARI and FM index values are

0.9849 and 0.99, respectively. This indicates a high agreement between the estimated

and true mixture components.
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Table 3.3: The hybrid tank system operating regions

Region Tank 3 water level Tank 1 water level

1 30 0
2 50 0
3 65 65

Figure 3.11: Collected dataset

3.7 Conclusion

In this chapter, we proposed a hierarchical MPPCR model which automatically de-

termines the number of components in a multi-mode system. Since, in most available

methods a priori information about the possible range of the number of components

is required, if this information is not available, these methods may be too time con-

suming and inaccurate. This chapter is based on a hierarchical framework that starts

with the minimum possible number of components that may be split into more com-

ponents based on the MML criterion. In addition, a merging step added to the

hierarchical MPPCR has improved the performance. We presented two case studies

which demonstrated the improved performance of the developed model.
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Chapter 4

Optimality Assessment

Performance of the processes may deviate from the initial design over time due to

disturbances and uncertainties. Because of the great importance of optimality, it

is necessary to develop systematic methods for online optimality assessment based

on the operating process data. Some processes may have multiple operating modes

caused by the set point change of the critical process variables in order to achieve dif-

ferent product demands. On the other hand, operating region in each operating mode

can alter because of uncertainties. In this chapter, we will propose an optimality as-

sessment approach for multi-mode processes with multiple operating regions. Kernel

density based method for offline mode detection is adopted and improved in order to

recognize noise from transition, identify true labels, and also improve the accuracy

of estimation of the mode change instant. Then a modified mixture discriminant

analysis (MclustDA) method based on the detected labels is employed to build the

predictive classifier and incorporated with process knowledge to increase precision of

the online mode estimation. In each steady state operating mode, developed hier-

archical MPPCR in chapter 3 is employed for estimating the number of operating

regions. The developed mixture semi-supervised probabilistic principle component

regression with missing inputs in chapter 2 is trained to detect operating regions and

local optimality value of each region, and build predictive model for online assessment

in the case of missing inputs as well as outputs. In addition, for transitions, dynamic

PCA is utilized for transition grades analysis as well as prediction of the optimality

value. In online assessment, the operating mode, operating region and optimality
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value are predicted, and in the case of non-optimum performance, the causal vari-

ables are detected using adopted probabilistic framework through sequential forward

floating search (SFFS) method. Finally, the proposed method is applied on Tennessee

Eastman benchmark process to evaluate the performance.

4.1 Introduction

Process operating performance assessment including both optimality and safety is

known as an important issue in process industry and has attracted attentions in both

academia and industry. Since performance of processes may deteriorate over time,

due to disturbances or process condition changes, assessment of the performance in

online operating processes is necessary.57

Safety assessment is one of the important ingredients of process performance as-

sessment. Many studies have considered safety analysis based on qualitative and

quantitative methods58 59 60 61 62 . As a parallel study, Process monitoring including

fault detection and diagnosis is well known and has been studied extensively63 64 65 66 67

. Moreover, many methods have been developed for process optimization68 69 70 71 72

. In such methods, the ultimate goal is to find the optimal conditions to run the

process. On the other hand, due to the process disturbances and other uncertainties,

the process performance will depart from the optimum. Therefore, it is necessary

to continuously monitor process performance. This type of analysis has been named

optimality assessment. Although various aspects of safety analysis have been studied

extensively, optimality assessment has not been well studied.

Recently, some studies57 73 74 75 have been conducted on opitmality assessment.

For instance, Ye et al. studied online probabilistic safety and optimality assessment

for multimode processes.57 They used the Gaussian mixture model (GMM) to find

the characteristics of steady state modes. Safety and optimality indices were defined

and calculated based on the process knowledge and data distributions. To classify

the obtained optimality (OI) and safety indices (SI) into different performance levels,

a hierarchical-level classification was proposed, and for each class, margin analysis
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was proposed. Finally, the performance was predicted during the online assessment.

However, there are some restrictions associated with this method. For example, in

many cases safety and optimality indices are not available frequently, and it is neces-

sary to develop a predictive model to estimate their value continuously. In addition,

each operation mode is assumed to follow a Gaussian distribution that may not hap-

pen in practice. Also, the proposed method does not consider the cause diagnosis of

non-ideal performance in the system.

In another work by Liu and his co-workers, optimality assessment was studied by

introducing the comprehensive economic index (CEI) as an optimality index.73 They

partitioned the dataset into different grades based on the value of their CEI. They

developed a model for each performance grade using the total projection to latent

structure (T-PLS) method. They also developed a non-optimum cause identifica-

tion method based on variable contributions. In further work, the same researchers

extended the optimality assessment for multimode processes and worked on transi-

tions as well as steady state modes.74 Very recently, another work extended finite

gaussian mixture model based gaussian process regression (FGMM-GPR) method to

non-Gaussian multimode processes.75 In this work, in addition to steady state modes,

transitions and non-optimum cause identification were studied. The mentioned stud-

ies have covered optimality assessment, however some limitations are associated with

these methods. First, the number of mixture components in each operating mode is

considered to be known whereas usually it is not available in practice. Second, in

many cases, not all input and output data points are available to assess the perfor-

mance due to the sensor failure or delays in measuring some variables. Therefore,

any proposed method should be able to deal with the missing outputs and inputs due

to large measurement delays and mesurement failure. Third, it is assumed that the

operating modes are labeled. However, in practice the labels are not always available,

and unsupervised techniques should be employed to estimate them.

There are some important issues associated with optimality assessment of indus-

trial processes. First, some of the processes have multiple operating modes due to

the operating condition changes, different product demands, etc. This issue leads to
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different steady state modes and the transitions between steady state modes. The

steady state modes are the major parts of the operating process, and the main prod-

ucts with the desired charecteristics are produced in these stages. On the other hand,

transitions are short periods between steady state modes that have dynamic fea-

tures, and main products cannot be obtained from the transitions. Second, in most

processes, each main operating mode, i.e. steady state mode, does not follow a uni-

modal Gaussian distribution due to the uncertainties in industrial processes. In other

words, change of operating mode is usually based on the production demand with

different components, component ratio, rate of production and so on that is specified

by changing the operating points of main operational variables.74 On the other hand,

in each operating mode, there are several operating regions that are caused by the

uncertainties. Third, in many practical processes, the optimality related variables

have slower rates of measurement compared to the process variables, and they are

always not available. In addition, some input variables may not be always available

due to the measurement device failure.

In this chapter, a novel method for optimality assessment based on Probabilis-

tic Principal Component Regression (PPCR) is proposed. It is first described for

the unimodal processes that are more common in practice and then is extended to

multiple operating mode processes. For unimodal processes, the developed method

consists of two stages: offline training and online assessment. In offline training, the

steady state data including process variables as well as optimality index are collected.

Depending on the process, the definition of OI can vary. For example, depending on

the process OI can be operation costs, profit, product quality and so on. To have

online estimation of OI, the aim is to build a predictive model of OI based on the

process variables. Since each operating mode usually has multiple operating regions,

and the datasets contain simultaneous missing inputs as well as outputs, the devel-

oped Mixture Semisupervised PPCR (MSPPCR) with missing inputs is employed

for modeling. However, since the number of operating regions is usually unknown,

the developed hierarchical Mixtures of PPCR is employed to estimate the number

of operating regions. MSPPCR model describes the Gaussian distribution of OI in
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each operating region, based on which the representative value of OI in each oper-

ating region can be obtained. By comparison of the local indices of each operating

region, their optimality condition is analyzed. In online assessment, the operating

region of new data point is estimated based on its posterior probability. Based on the

constructed model, OI is predicted using Bayesian inference to evaluate the process

performance. When the process performance is non-optimum, diagnosing the cause

of the problem helps steering the process to a better operation performance. The

probabilistic contribution analysis based on missing variable76 approach is adopted

to address this issue. We utilize sequential floating forward search (SFFS) method

instead of a branch and bound method to ease the solution.

For multiple operating mode processes, it is assumed that the data points are un-

labeled with respect to the operating modes. In other words, the number of operating

modes and the operating mode of each data point are unknown. To estimate the la-

bels of the dataset, critical process variables governing the change of operating modes

are selected and named as scheduling variables. Based on the selected scheduling vari-

ables, a local kernel density based approach for offline mode detection77 is adopted

and improved to differentiate noise from transition, detect true labels, and also en-

hance the precision of the estimation of the mode change instant. In order to estimate

the operating modes in online assessment, Mixture Discriminant Analysis (MDA) is

built based on the labeled data set. In addition, to improve the accuracy of online

mode identification, the process knowledge is incorporrated with the MDA results.

When the steady state modes and transitions are detected, optimality assessmnet

of steady state modes follows the same procedure as uni-modal processes while for

transitions Dynamic PCR (DPCR) model is built, and the performance grades are

compared based on the DPCR loading matrices.78

The rest of this chapter is arranged as follows: In section 4.2, the proposed op-

timality assessment strategy for steady state modes is described. In section 4.3, the

assessment method for the transitions are studied. In section 4.4, the mode identifi-

cation method for multiple operating mode processes is described. In section 4.5, our

proposed approach is tested on Tennessee Eastman (TE) process. Conclusions are
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presented in section 4.6.

4.2 Steady State Modes

4.2.1 Steady State Definition

Steady state modes are the main parts of the operating process where no essential

change in the critical process variables, flowsheet configuration, product demand and

so on happens. The main products with the desired characteristics are produced in

these operating modes. The process unit is quasi steady state, and as a result its

main components are at steady state. Note that the steady state from the process

perspctive means the process variables change within a small range, and the slope of

their change is small78.79

4.2.2 Offline Training

In offline training, the number of operating regions as well as the model of the training

dataset using developed MSPCR model is characterized. In the next step, based on

the obtained Gaussian distributions for the OI, the local OI values of each operating

region is obtained. For example, a scatter plot of an operating mode with three

operating regions projected into two variables is presented in Figure 4.1. In this

system, each operating region is characterized utilizing a Gaussian distribution. Since

each region follows a Gaussian distribution, the local OI of each region equals the

mean value of its distribution.
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Figure 4.1: Scatter plot of variables (Illustrative example for operating regions)

Furthermore, based on the process knowledge, some classes for optimality values

are defined, and the obtained operating regions are assigned to their corresponding

classes. Note that the OI definitions depend on the considered process. Commonly,

the OI can be operation cost, product quality, profits, etc.

4.2.2.1 Data Modeling

Let us assume X = [x(1) x(2) ... x(n)] ∈ Rp×n is the available dataset of the process

variables with fast rate of measurement, where n is the number of data points and p is

the number of process variables. On the other hand, the critical variables in optimality

assessment is the OI that commonly has slower rate of measurement compared with

the available process variables. To address this issue, a predictive model should be

built for the OI. Assume Y = [y(1) y(2) ... y(n1)] ∈ Rn1×1 is the availale OI values,

where n1 is the number of labeled data points. Since the number of operating regions

for modeling is unknown, it is estimated based on the complete dataset using the

developed hierarchical MPPCR. In case of existence of missing values, the developed

MSPPCR is employed to build predictive model where the input is X and the output

is Y as mentioned above.

68



4.2.2.2 Analysis of OI

The definition of the OI depends on the considered operating process, and may vary

in different processes. It can be product quality, operation costs, profit, etc. In

the modeling part, the probabilistic predictive model of the OI based on the process

variables is built. As a result, the Gaussian distribution for the OI in each operating

region k is as follows:

fk(y) ∼ N(µy,k, CkC
T
k + σ2

y,kI) (4.1)

In order to find the representative OI (called as the local OI) in each operating region,

its expected value should be found as follows:57

OIk = E(y) =

∫

fk(y)ydy (4.2)

Since we have the Gaussian distribution of y, the above expected value is equal to

the mean value of the obtained Gaussian distribution for y, so:

OIk = µy,k (4.3)

There are not specific rules to define classes for optimality criteria. It is completely

dependent on the process that we are studying.57 It mainly depends on two criteria:

first, definition and nature of the OI, second; the possible range for the OI. Based on

these criteria, the optimality classes can be defined.

4.2.3 Online Assessment

In online assessment, the operating region of the new data point is analyzed based

on its posterior probability in each operating region. In the next step, the OI value is

predicted based on the developed MSPCR model and Baye’s rule, and its performance

class is determined. Finally, if the performance is far from the optimum, the cause

will be detected.

4.2.3.1 Operating Region and OI Estimation

The posterior probability of each operating region can be estimated as:

p(k|xnew,Θ) =
p(xnew|k,Θ)p(k|Θ)

p(xnew|Θ)
(4.4)
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Then the estimated latent variable t̂k,new in each operating region is as follows:

t̂k,new = (σ2
x,kI + P T

k Pk)
−1P T

k (xnew − µx,k) (4.5)

The predicted OI in each operating region is as follows:

ŷk,new = Ck t̂k,new + µy,k

= Ck(σ
2
x,kI + P T

k Pk)
−1P T

k (xnew − µx,k) + µy,k

(4.6)

The predicted value of OI over all K operating regions is:

ÔI(xnew) = ŷnew =
K
∑

k=1

p(k|xnew,Θ)ŷk,new (4.7)

Finally, one can find the optimality class of the new data points by comparing the

obtained values for OI of the new data point with the defined classes in offline training.

4.2.3.2 Non-optimum cause diagnosis

When the process performance is non-optimum, it is beneficial to find the causal

variables. One can use probabilistic contribution analysis technigue based on the

missing variables. So far, this method has been applied for fault detection76,24 out-

lier detection,80 etc. In this chapter, we will adopt this method for cause diagnosis

in optimality assessment.

The adopted cause diagnosis method in optimality assessment is based on the

comparison between the detected optimum operating region in offline training and

the new data point with non-optimum performance. In offline training, performance

of each operating region is determined based on its OI value, and its corresponding

performance class is found. The most optimal region with respect to OI is called the

reference region for optimality. When the predicted new data point performance is

not optimal, it is treated as an abnormal data point from the reference optimal region

detected in offline training, and the probabilistic cause detection method is applied

on it.

The probabilistic framework for cause detection based on the missing variable ap-

proach has been applied on PPCA in Ref.24 The authors proposed a single criterion
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for abnormal behavior detection instead of using T 2 and SPE criteria.63 Following,

the proposed method by Chen et al24 is described and will be adopted to our prob-

lem. Let us assume that in online assessment a new data point with non-optimum

performance is detected. Therefore, the Mahalanobis distance of the new data point

from the reference region will be larger than χ2
r(β):

M2 = (xnew − µx,ref )
TC−1

ref (xnew − µx,ref ) > χ2
r(β) (4.8)

where χ2
r(β) is the β-fractile of the chi-square distribution with r degree of freedom,

xnew is the new data point in online assessment, µx,ref is the mean of Gaussian

distribution of the reference region, and Cref is the covariance matrix of the reference

region that equals to PrefP
T
ref + σ2

x,refI. Missing variable approach in PPCA was

introduced in Ref.24 According to this method, new non-optimum data point, and

the mean and covariance of the reference region are partitioned into observed and

missing parts as follows:

x̂T
new =

(

x̂T
o x̂T

m

)

(4.9)

µ̂x,ref =

(

µo

µm

)

(4.10)

Ĉx,ref =

(

Coo Com

Cmo Cmm

)

(4.11)

where indices of o and m stand for the observed and missing parts, respectively. The

conditional probability of xm given xo follows a Gaussian distribution of xm|xo ∼

N(zm, Qm), where zm and Qm are as follows:

zm = µm + CmoC
−1
oo (xo − µo) (4.12)

Qm = Cmm − CmoC
−1
oo Com (4.13)

The conditional distribution of the complete vector x̂new is Gaussian x̂new|x̂o ∼

N(z,Q), where

z =

(

x̂o

zm

)

(4.14)

Q =

(

0 0
0 Qm

)

(4.15)
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The expected value of M2 with respect to the conditional distribution of the complete

vector given observed variables x̂new|x̂o ∼ N(z,Q) is as follows:

E(M2) = E((x̂new − µ̂x,ref )
T Ĉ−1

x,ref (x̂new − µ̂x,ref ))

= Tr(Ĉ−1
x,ref [(z − µ̂x,ref )(z − µ̂x,ref )

T +Q])
(4.16)

In this approach, each variable of xnew is assumed to be missing, and the expected

value of the Mahalanobis distance from the reference mode E(M2) is recalculated.

If the missing variable contributes significantly to the abnormal event, E(M2) will

have a considerable decrease compared to M2. Moreover, if the value of E(M2) is

less than the defined threshold χ2
r(β), it is concluded that the missing variable is the

cause of problem. Since this approach evaluates each single variable, it does not find

the joint contribution of the multiple causal variables.

Recently Kariwala et al. has developed the above mentioned method for the

case that the cause is a group of measured variables.76 This approach starts with

considering single variables as missing and calculating E(M2). In the next steps,

the number of selected missing variables is increased until the re-calculated value of

E(M2) becomes less than confidence bound χ2
r(β). Therefore, the aim is to find the

minimum number of missing variables in which E(M2) is less than the threshold.

One of the obstacles of this method is finding a set of missing variables from all

variables, that is very time-consuming using the exhaustive search method. Kariwala

et al. proposed upward branch and bound method to solve this problem.76 Although

this method gives the optimal solution, it becomes time-consuming when dealing with

large systems.

In addition to the exhaustive search and branch and bound method, there are

several subset selection methods such as sequential forward selection (SFS), sequential

backward selection (SBS), plus l- take away r selection, sequential forward floating

search (SFFS), sequential backward floating search (SBFS) , etc.81 Several subset

selection methods are compared in Ref82.83 The authors concluded that the sequential

forward floating search (SFFS) method has almost the same performance as branch

and bound algorithm and requires lower computational time. In this chapter, we use

SFFS algorithm to find causal variables.
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SFFS method

SFFS algorithm detects the optimum subset of features by adding a new feature in

each step to the selected subset in the last step and removing some of the features

added in the last steps to the subset in order to avoid local optimum.84 SFFS method

has been extensively studied in Ref,85 we will briefly review the algorithm in the

following sections.

Preliminaries

Let us assume Y = {yi : 1 ≤ i ≤ D} is the set of D available features, and the

aim is to choose the subset of r features such as Xr = {xi : 1 ≤ i ≤ r, xi ∈ Y }.

Feature selection criterion function is J , and the goal is to find a subset of k features

that maximizes J . Individual significance S0(yi) is defined as the J(yi) when only ith

feature yi is used, i = 1, 2, ..., D.

Let us assume we have already selected the subset of k features Xk. The sig-

nificance Sk−1(xj) for xj, where j = 1, 2, ..., k, in the selected subset Xk is defined

as:

Sk−1(xj) = J(Xk)− J(Xk − xj) (4.17)

The significance Sk+1(fj) for fj in the unselected subset Y − Xk, where Y − Xk =

{fi : i = 1, 2, ..., D − k, fi ∈ Y, fi 6= xl for all xl ∈ Xk} with respect to the selected

subset Xk is defined as:

Sk+1(fj) = J(Xk + fj)− J(Xk) (4.18)

The feature xj from the selected subset Xk is called the most significant feature in

the set Xk if:
Sk−1(xj) = max

1≤i≤k
Sk−1(xi)

⇒ J(Xk − xj) = min
1≤i≤k

J(Xk − xi)
(4.19)

The feature xj from Xk is called the least significant feature in the set Xk if:

Sk−1(xj) = min
1≤i≤k

Sk−1(xi)

⇒ J(Xk − xj) = max
1≤i≤k

J(Xk − xi)
(4.20)
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The feature fj from the unselected subset Y −Xk is called the most significant feature

with respect to the set Xk if:

Sk+1(fj) = max
1≤i≤D−k

Sk+1(fi)

⇒ J(Xk + fj) = max
1≤i≤D−k

J(Xk + fi)
(4.21)

The feature fj from the unselected subset Y −Xk is called the least significant feature

with respect to the set Xk if:

Sk+1(fj) = min
1≤i≤D−k

Sk+1(fi)

⇒ J(Xk + fj) = min
1≤i≤D−k

J(Xk + fi)
(4.22)

SFFS Algorithm

Suppose we have already selected the subset of k features Xk from the complete set

of Y = {yj|j = 1, 2, ..., D}. The goal is to find r features that maximize the criterion

function of J . Note that the algorithm starts by setting k = 0 and X0 = ∅

Step1 (Inclusion): In this step, the most significant feature xk+1 with respect to

Xk from Y −Xk is added to the set Xk to form Xk+1, i.e. Xk+1 = Xk + xk+1

Step2 (Conditional exclusion): Detect the least significant feature xl in Xk+1. If

xl is xk+1 that was added in step 1, then set k = k+ 1 and go back to step 1. If xl is

not xk+1, remove xr from Xk+1, and form a new subset X
′

k, i.e. X
′

k = Xk+1−xr, such

that J(X
′

k) > J(Xk). If k = 2, set Xk = X
′

k, and return to step 1, esle go to step 3.

Step2 (Continuation of conditional exclusion): Find the least significant feature

xs in the set X
′

k. If J(X
′

k − xs) ≤ J(Xk−1), set Xk = X
′

k, and j(Xk) = J(X
′

k) and

return to step 1. Else if J(X
′

k − xs) > J(Xk−1) then remove xs from X
′

k and reduce

the selected subset to X
′

k−1, i.e. X
′

k−1 = X
′

k − xs, and set k = k − 1. If now k = 2,

then set Xk = X
′

k and j(Xk) = J(X
′

k) and return to step 1, else repeat step 3.

SFFS Algorithm for Cause Diagnosis

The complete set is xnew = Y = {yj|j = 1, 2, ..., p} that includes all measured varaia-

bels of xnew. The aim is to find the minimum number of missing variables such that

the re-calculated value of E(M2) is less than confidence bound χ2
r(β). Suppose we
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have selected a subset of k missing variables Xk, the criterion function in this problem

is as follows:

J(Xk) = M2 − EŶ |Xk
(M2) (4.23)

where EŶ |Xk
(M2) is the expected value of M2 conditioning on the selected subset be

missing, i.e., Xk. The algorithm starts with k = 1 and is as follows:

1. Find k features from Y that is called Xk using SFFS algorithm that maximizes

J(Xk).

2. If EŶ |Xk
(M2) is less than confidence bound, χ2

r(β), Xk is the final set of causes,

else k = k + 1 and go to step 1.

4.3 Transition Modeling

4.3.1 Transition Definition

Transitions mainly happen in processes with multiple opeationg modes between two

steady state modes. In this thesis, it is assumed that the changes of operating modes

are supervised. In other words, the modes are altered because of change in production

demand, deliberate process condition changes and so on. Because of the supervised

nature of operating mode changes, critical process variables governing the change

of operating modes are known in each process. These variables have a key role in

detecting operating modes in performance assessment and are named as scheduling

variables.

In an operating multi-mode process, main products with desired charecteristics

are produced in steady state modes, and the transitions mostly produce subprod-

ucts with varying features. Several methods are proposed in literature to assess the

dynamic behavior of transitions. For instance, Yu approximated the behavior of

the transitions using finite mixture models (FMM).86 In another work, transitions

are modeled based on the weighted sum of sub-PCA models.87 In another study,

transition behaviors are approximated using weighted sum of steady state PCA mod-

els before and after the transition.88 Srinivasan and his co-workers have proposed

dynamic PCA (DPCA) model for analyzing the transitions behavior.78 They have
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utilized similarity index between DPCA loading matrices to find similar transitions.

For the purpose of optimality assessment, this method has some advantages. First,

this method provides a dynamic model for transitions that is independent of steady

state models. Second, transitions have their own loading matrices that can be utilized

for comparison purposes. As a result, DPCA is employed in this work for transitions

analysis.

4.3.2 Transition Grades Analysis

Assume there are Ti,j transitions from steady state operating mode i to j. For

each transition t between i,j, X t
i,j = [xt

i,j(1) xt
i,j(2) ... xt

i,j(n
t
i,j)]

T ∈ Rnt
i,j×p and

Y t
i,j = [yti,j(1) yti,j(2) ... yti,j(n

t
i,j)]

T ∈ Rnt
i,j×1 are the available datasets of process

variables, and optimality index, respectively, where nt
i,j presents the number of sam-

ples in transition t between i,j.

Since the transitions are defined based on the scheduling variables, these variables

are seperated for analysis of the dynamic loading matrix of the transitions. As a

result, X
t(s)
i,j = [x

t(s)
i,j (1) x

t(s)
i,j (2) ... x

t(s)
i,j (nt

i,j)]
T ∈ Rnt

i,j×N(s) denotes the dataset based

on the scheduling variables, where s stands for the scheduling variables, and N(s)

denotes the number of the scheduling variables.

DPCA considers the autocorrelation in the variables as well as their time varying

features by incorporating time lagged information in the data matrix.78 As a result

the extended data matrix of X at time r is named as Xdelay and formulated as:89

Xdelay(l) =
[

X(r) X(r − 1) ... X(r − l)
]

(4.24)

where l denotes the order of time dependency. In order to find the DPCA projection to

the latent variables, original PCA is applied on the extended data matrix Xdelay(l) ∈

Rn×p(l+1) as follows:

Xdelay(l) = TDP
T
D + ED (4.25)

where TD ∈ Rn×k denotes the latent variables, PD ∈ Rp×k loading matrix and ED ∈

Rn×p(l+1) residuals of the DPCA. Note that the l order and number of principal

components k can be estimated based on the method developed in.89
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In this work, for each transition t from operating mode i to j, the extended

data matrix X
t(s)
i,j (l) =

[

X
t(s)
i,j (r) X

t(s)
i,j (r − 1) ... X

t(s)
i,j (r − l)

]

is constructed, and

its corresponding loading matrix based on Equation 4.25 is estimated and shown

as P
t(s)
i,j . For each two transitions S and T between operating modes i and j, the

similarity indices are computed as follows:78

Sλ
DPCA(S, T ) =

∑k
n=1

∑k
m=1 λ

S
nλ

T
m cos2 θnm

∑k
n=1 λ

S
nλ

T
n

(4.26)

where k is the number of principal components, λS
n and λT

m denote the nth and mth

eigenvalues in transitions S and T covariance matrix, and cos2 θnm presents the cosine

of the angles between nth and mth principal components of S and T .

When the similarity indices are computed, each two transitions S and T with the

same initial and final operating modes are put in the same transition grade if their

similarity index is larger than a threshold:

Sλ
DPCA(S, T ) > θT (4.27)

where θT denotes trend-deviation.78

4.3.3 Transition Predictive Modeling

The predictive model is built based on the complete training dataset. Let us again

assume for each transition t between i,j, X t
i,j = [xt

i,j(1) xt
i,j(2) ... xt

i,j(n
t
i,j)]

T ∈ Rnt
i,j×p

and Y t
i,j = [yti,j(1) yti,j(2) ... yti,j(n

t
i,j)]

T ∈ Rnt
i,j×1 are the available datasets of process

variables, and optimality index, respectively. Similar to transition grade analysis,

DPCA model is built. However, the extended data matrix, i.e. X t
i,j,delay(l) ∈ Rn×p(l+1)

is based on all process variables. As a result, for each transition t between operating

modes i , j, the DPCA is built as follows:

X t
i,j,delay(l) = T t

i,jP
t
i,j

T
+ Et

i,j (4.28)

When DPCA is built, the regression step is applied on detected latent variables as

follows:

Y t
i,j,delay(l) = T t

i,jC
t
i,j

T
+ F t

i,j (4.29)
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where Ct
i,j ∈ R1×k and F t

i,j ∈ Rn×1 denote regression matrix between Y t
i,j(l) ∈ Rn×1

and T t
i,j ∈ Rn×k and residuals for the regression step, respectively.

4.3.4 Online Assessment

In online assessment, the operating mode of each data point including steady state

and transitions is estimated based on the mode identification method that is discussed

in the next section. If a data point belongs to transition, its corresponding grade is

also identified. Let us assume the new data point belongs to the grade p of the

transition between mode i and j. Its corresponding optimality index is estimated as:

ÔI(xnew) =

∑Kp
ij

k=1 ÔI
p

k(xnew)

Kp
ij

(4.30)

whereKp
ij denotes the number of historical transitions in grade p between modes i and

j, ÔI
p

k(xnew) presents the estimated value of each model in grade p between modes i

and j, and ÔI(xnew) is the final estimated value. A similar approach to Equation 4.30

for estimating transitions is proposed in.75 However, they have utilized the historical

value of transitions instead of ÔI
p

k(xnew) that is based on the DPCA based regression

model.
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4.4 Mode Identification

In application, some of the processes have multiple operating modes due to the change

in production demand, characteristics, and so on. Therefore, applying the method

developed in section 4.2 may result in unsatisfactory performance in multi-mode pro-

cesses. In order to extend the proposed algorithm to multi-mode systems, a mode

identification step should be considered to detect the steady state modes as well as

transitions, and then employ the methods discussed in sections 4.2 and 4.3. The

mode identification consisits of labeling the operating modes and building the predic-

tive classifier based on the estimated labels.

4.4.1 Operating Modes Labeling

Srinivasan et al. have extensively studied multi-mode process behaviors.78 They

have proposed two-step clustering method based on PCA to label the steady state

modes and transitions. Although this method introduces a general approach for

mode identification, determining several tuning parameters is required, and it has

high complexity to be applied in real applications.77

Multiple PCA based approach is proposed by Zhao et al.87 and Yao and his co-

worker88 for labeling the modes. In these methods, several sub-PCA models are

built, and the membership indices are defined with respect to each sub model that

leads to identification of operating modes. The transitions are formulated based

on weighted average of steady state modes that may not be able to describe the

transitions behavior presicely. Another PCA based method is proposed by Tan et

al.90 that starts with several sub-PCA models, and determines the operating modes

based on the similarity index between different sub-PCA loading matrices. Transitions

are seperated into several segments that are described by a sub-PCA model. Since

transitions usually have dynamic behavior, a sub PCA model may not result in an

acceptable estimation of their behaviour.

Recently Quinones-Grueiro et al.77 have proposed an offline mode identification

method based on a local kernel density estimation for monitoring application. This
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method is based on density based clustering (DENCLUE) method and is modified to

integrate the process sequence information to improve the accuracy. Readers can refer

to91 92 for a detailed description of DENCLUE approach. In this thesis, the proposed

offline mode identification by Quinones-Grueiro et al.77 is adopted and improved for

optimality assessment. This algorithm provides an efficient procedure for operating

modes labeling without the requirement of knowing the number of modes as a prior

knowledge.

4.4.1.1 Scheduling Variables

In this chapter, it is assumed that the operating mode changes are due to supervised

production demands or process condition changes. In other words, some specific

variables are responsible for the operating mode changes that are known in each

considered process. These variables have a critical role in determining operating

modes and are called scheduling variables. For the mode identification purposes,

these variables are considered for the analysis.

4.4.1.2 Offline Mode Identification

Suppose the dataset for the mode identification that includes scheduling variables only

is Xs ∈ Rn×s where n is the number of samples and s is the number of scheduling

variables. In the first step, dataset is segmented into different windows with the length

of T . The segmented window length can be selected77 based on the process dynamics.

However, in this chapter its value is suggested as TSmin that is the minimum period

of a steady state mode. In other words, a steady state section of the process can

be assumed as an operating mode if it lasts at least for a minimum period. This

minimum period is called dwell time and shown as TSmin,
78 and its specific value for

each process can be provided by the process engineers.

After dataset is segmented, for the data points in each window the density function

is evaluated as follows:

f̂(x) =
1

nhx

n
∑

i=1

K(
x− xi

hx

) (4.31)
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where K represents the kernel function that should be non-negative, symmetric, with

the constraint of
∫

K(x)dx = 1.93 Gaussian kernel is utilized since it can provide a

smooth transition. Assume z is a s dimensional data point:

K(z) =
1

(2π)s/2
exp

(

−
zT z

2

)

(4.32)

Considering z =
x− xi

hx

, one can obtain:

K(
x− xi

hx

) =
1

(2π)s/2
exp

(

−
(x− xi)

T (x− xi)

2h2
x

)

(4.33)

where hx represents the bandwidth parameter which is defined based on the nearest

neighbor density approach.93 In other words, h presents the smoothness of the density

estimation. In the original formulation of the kernel density estimation, h value is

fixed for all data points while the nearest neighbor density approach determines a

specific h value for each x based on its distance to the kth nearest neighbor:77

hx = dist(x, xkth) (4.34)

where xkth is the kth nearest neighbor of x. In this approach k has a great influence on

the estimated distributions. In other words, large values for k may lead to detecting

fewer operating modes while low values may result in detecting more operating modes.

As a result, a range of minimum and maximum values (maximum k is suggested as

TSmin/2
77) for k is considered, and the procedure is repeated until the number of

estimated modes become constant, and then the smallest k with the constant number

of modes is selected as the final k value. If it does not happen, the best value for k

is selected based on the cluster validation indices77 94 .

Based on the defined density function, the corresponding density attractors of each

data point x∗ that are the local maxima of the density function for each data point

are computed91 92 . The density attractors are computed using an iterative procedure

that is called Fast Hill Climbing and is derived by setting the first derivatives of f̂(x)

to zero95 :

x(l+1) =

∑n
t=1 K(

x(l) − xt

h
)xt

∑n
t=1 K(

x(l) − xt

h
)

(4.35)
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where x(l) is the current iteration and x(l+1) is the updated value. For each data point,

the procedure starts with x(l) = x and continues until [f̂(x(l))−f̂(x(l−1))]/f̂(x(l)) < ε.95

If all the data points in a window converge to the same density attractor, the

window is considered as steady state. Otherwise, it is assumed as a transition part.

Note that the length of each window is selected as TSmin, therefore each window can

represent a steady state mode.

In order to detect the same steady state modes, it is proposed by Quinones-Grueiro

et al.77 to compare the summation of distance between two density attractors of

the neighboring windows and the distance of the two density attractors with each

other. Assume the distance of each density attractor xat with its kth neighbor xkth is

dist(xat, xkth), the criterion to integrate two windows i and j is as follows:77

dist(xati , xatj) ≤ dist(xati , xkthi
) + dist(xatj , xkthj

) (4.36)

where kth is considered to have the same value as k in Equation 4.34.77 In this

application, since the aim is to find the labels of each data point, in addition to the

neighbors, all the initial and final windows of steady state modes are compared to

each other based on the criterion in Equation 4.36 to detect final steady state modes,

transitions, and noise. To illsutrate, consider the example provided in Figure 4.2.

It shows a time series data that is segmented into 10 windows with the length of

TSmin. In each window, the density attractors are computed, and the steady state

and non-steady state parts are detected based on the density attractors variation.

When each window is studied separately, their relationship is investigated based on

Equation 4.36. In this example, windows (1,2), (4,5,6) and (8,9,10) are compared,

and since they obey the Equation 4.36, they are considered as the same steady state

modes. In the subsequent step, windows 2 and 4 are compared. It is assumed that

windows 2 and 4 obey the Equation 4.36, and they belong to the same steady state

mode. Therefore, it results in considering window 3 as noise instead of transition

between two different modes. In the final step, windows 6 and 8 are compared. Since

they do not belong to the same steady state mode, window 7 is a transition between

two different modes. As a result, this time series consists of 2 steady state modes
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(red and green boxes) and one transition.

Figure 4.2: Offline mode identification example

In order to find the exact start and end time of the transitions, each transition part

is segmented into shorter length windows to investigate the dynamics more clearly.

The length Ttr is assumed to be 2-3 times of the number of process variables, and is

known as the minimum transition mode length.90 To illustrate, window 7 in Figure

4.2 is segmented into 7 sub windows that is shown in Figure 4.3. Similar to the above

mentioned mode identification process, the density attractors with the new window

size is estimated, and the transitions and steady states are detected. In this example,

window 71 belongs to the steady state mode (red box), and windows 76 and 77 belong

to the other steady state mode (green box). Final transition consists of windows 72,

73, 74 and 75.

Figure 4.3: Transition mode identification example: window 7

The overal offline mode identification algorithm is described in Figure 4.4.
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4.4.2 Online Mode Detection

4.4.2.1 Building Predictive Classifier

In online assessment, the corresponding operating mode of each new data point is

estimated to select the proper modeling and analysis approach. As a result, a predic-

tive classifier is built based on the estimated lables in the offline mode identification

step. There are a number of classification methods such as decision tree classifiers,96

Bayesian classifiers,97 support vector machines,98 discriminant analysis99 100 and so

on that can be selected based on the application. In this thesis, mixture discriminant

analysis (MDA) method that is the extension of discriminant analysis (DA) method

is investigated. In DA method, each class is considered as a Gaussian distribution,

and the covariance is considered as the same for different classes. This results in rep-

resenting each class by its centre and applying the classification based on the closest

centre.101 However, in many problems, one Gaussian distribution cannot represent a

class perfectly. As a result, it has been extended to MDA that considers a mixture

Gaussian distribition for each class. This method has some benefits including mod-

eling non-gaussian classes, building non-linear boundaries between classes and so on.

Let us assume Xs ∈ RN×s is the data points based on scheduling variables where

N is the number of data points, and s is the number of scheduling variables. Consider

Xs,new contains K classes, and each class k follows a mixture Gaussian distribution

with Rk components. As a result, the probability of Xs given each operating mode k

is as follows:101

p(Xs | G = k) =

Rk
∑

r=1

πkrp(Xs | µkr,Σ) (4.37)

where πkr is the mixing proportions of each component with the constraint of
∑Rk

r=1 πkr =

1. Similar to DA, in MDA it is also assumed that for all mixture compoenents the

covariance matrices are the same as Σ. Therefore, the posterior probability of each

class k is as follows:

p(G = k | X) =

∑Rk

r=1 πkrp(X | µkr,Σ)Πk
∑K

l=1

∑Rl

r=1 πlrp(X | µlr,Σ)Πl

(4.38)
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Finally the parameters are estimated using the EM algorithm.101

The above mentioned MDA method is associated with two limitations. First,

the number of Gaussian components is assumed to be known as a prior knowledge.

Second, the covariance of all components is assumed to be the same that may decrease

the flexibility of model building. Fraley and Raftery32 have integrated MDA with

model based clustering (Mclust) that is called MclustDA. In this approach, the above

mentioned limitations are addressed. To address the first limitation, the covariance

matrix of each component Σkr is parametrized through eigenvalue decomposition as

follows:102

Σkr = λkrDkrAkrD
T
kr (4.39)

where Dkr presents the matrix of eigenvectors, Akr is a diagonal matrix of the values

proportional to the eigenvalues and λkr is the corresponding constant.

The second limitation is tackled by considering a range of possible number of

mixtures of components, and selecting the best parsimonious model based on BIC

criterion. The overal procedure is as follows:32

1. A maximum number of components in each class, and a set of mixture model

candidates (based on the covariance matrix form) are selected.

2. For each class hierarchical agglomeration is applied to find the approximate clas-

sification up to the maximum number of components.

3. The EM algorithm is applied on the MclustDA problem for each model candidate

and each number of clusters. The initial value for the EM algorithm is the results of

the step 2.

4. The best model structure and number of components is selected based on the BIC

criterion. The MCLUST package exists in R programming language, and it is used

in this thesis for simulation studies.103

To summarize, after offline mode identification, the classification model of each oper-

ating mode including steady state modes and transition grades is built based on the

MclustDA method. Note that each transition has different grades that is considered

as a class and is modeled by a mixture Gaussian distribution.
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4.4.2.2 Online Mode Estimation

For online prediction of the operating modes, the process knowledge is incorporrated

to increase the accuracy of the prediction.75 In other words, instead of computing

posterior distributions of all operating modes for each data point, the posterior of

related operating modes are computed as follows:

1. If the current operating mode of the data point is steady state mode i, for the

next point, the posterior probability of mode i, and all the transitions from mode i

are computed.

2. If the current data point is in the grade p of transition ij, i.e., {ij}p, the posterior

probability of {ij}p and steady state mode j are computed.

Finaly the data point is classified to the operating mode with the highest poste-

rior probability. Note that considering each single data point may lead to incorrect

solution in noisy environments. In this case, it is suggested to evaluate a window of

the data points that provides more robust estimation of the operating mode change.
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The schematic diagram of the proposed method for operating optimality assess-

ment is given in Figure 4.5.

Figure 4.5: Schematic diagram of the proposed method for operating optimality
assessment
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4.5 Tennessee Eastman benchmark process

TE benchmark process has been broadly used for evaluation of many methods in

process control, soft sensor design, monitoring, etc. The model was first developed

based on the industrial process of TE chemical company by Downs and Vogel.26 The

process contains five major units: a reactor, a product condenser, a vapor-liquid sep-

arator, a recycle compressor and a product stripper. The function of TE process is to

manufacture two main products that are G and H, from four reactants A, C, D and

E. However, F might be produced under non-ideal situations as a by-product. All the

reactions are exotehrmic and irreversible. The products including main products and

by-products are in liquid phase, and the reactants are in gaseous phase. The process

has 12 manipulated variables, 41 measured variables in which 22 process variables

are measured continuously, and 19 components variables are measured at a slow rate.

There are six operating modes based on the three different G/H mass ratios and pro-

duction rates.26 Figure 4.6 presents the schematic of the process. In order to have

stable process, the decentralized control strategy is applied on the open loop process

that was developed by Ricker.27
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Figure 4.6: The schematic diagram of Tennessee Eastman process22

To evaluate the performance of the proposed method for optimality assessment

of multi-mode processes, three different operating modes with G/H mass ratio of the

50/50, 10/90 and 40/60 are simulated. Corresponding to the change of operating

mode, product component ratio (G/H), set point of the level and temperature of the

reactor are changed. The selected set points are shown in Table 4.1. In addition,

in each operating mode two uncertainities are added that result in having several

operating regions in the vicinity of the base operating mode. The uncertainties are

stated in Table 4.2.

The operation cost is selected as OI that is defined according to Ref26 as follows:

Total operation cost= (purge cost)(purge rate)+(product steam costs)(product rate)

+(compressor costs)(compressor work)+(steam costs)(steam rate)
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Table 4.1: Properties of stable operating modes

Stable mode G/H mass ratio Reactor level (%) Reactor temperature (◦C)

1 50/50 65 122.9
2 10/90 50 130
3 40/60 55 135

Table 4.2: process uncertainties

Process variable Type

1 B composition ( stream 4 ) Step
2 Reactor pressure Step

Offline Training

To apply the proposed optimality assessmnet approach, OI, and 22 commonly mea-

sured variables are collected. The process is simulated for 2260 and 970 hours with the

sampling period of 0.1 hour for offline training, and online assessment, respectively.

The process contains three main steady state operating modes by adjusting the main

operating variables stated in Table 4.1, and in each operating mode there are three

operating regions caused by uncertainties stated in Table 4.2. The dataset contains

all steady state modes and transitions. In order to evaluate transition grades, two

trajectories are simulated for transitions between mode 1 and 3. The first one is

changing set points directly, and the second one is changing set points twice. In other

words, set points change from initial value to the middle value, and then change to

the final value. In addition, since in real application, input and output variables may

contain missing values, it is assumed that 10 percent of the offline training data set,

including inputs and output, is missing completely at random.

The scheduling variables are selected as reactor level, and reactor temperature

since they are measured continuously and are critical variables in operating mode

change. After that, offline mode identification is applied to find the labels of the

dataset. The window size that equals the minimum period of a steady state mode

TSmin is selected as 100. In addition, clustering is repeated for k values between 5

to 50, and finally the results for k from 20 to 50 became consistent. As a result, 20
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is selected for k value. The detected labels and the true labels are compared, and

the ARI and FM index values are computed as 0.9922 and 0.9949, respectively. This

result indicates a high agreement between the detected and true labels. In the subse-

quent step, transition grade analysis is applied on the detected transitions to detect

transition grades. Trend deviation θT is selected as 0.95. The analysis results in two

transition grades from operating mode 3 to 1 and one grade from operating 1 to 3.

Note that for other transitions such as from operating mode 2 to 3, one trajectory is

simulated, so transition analysis is not required. The offline training data projected

into two variables of the A and C feed (stream 4) and recycle flow (stream 8) are

shown in Figure 4.7. To clarify, the approximated boundary of each operating mode

is shown in the figure. After that, based on the detected labels, predictive classifier

is built based on the scheduling variables.

Figure 4.7: Two dimensional plot of the offline training data

In the next step, the number of operating regions in each steady state operating

mode is estimated based on the developed hierarchical MPPCR method. As a result,

three operating regions are estimated in each operating mode that is the same as the

true values. After that, the developed MSPPCR model with the missing inputs is

applied to build the predictive model of the steady state operating modes. When
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the model is constructed, the local OI value of each operating region is computed.

The defined levels for the OI values are stated in Table 4.3. Note that optimality

levels are defined as worse with a larger number of level. Based on the defined level

and the local OI values for each operating mode, corresponding performance levels

for each mode are found. The local OI values and levels for each operating mode are

given in Table 4.4. Based on the obtained levels, the mode 1 has the most optimal

performance in comparison with the operating modes 2, and 3. In addition, the most

optimal region is the operating region 3 of the mode 1, and the least optimal region is

the operating region 1 of the mode 3. In addition, transition models are built based

on DPCR method.

Table 4.3: Defined OI levels

OI range ($hr−1) Optimality level
100-140 1
141-180 2
181-220 3

Above 221 4

Table 4.4: Local OI levels

mode 1 mode 2 mode 3
Operating
region

Local OI
($hr−1)

Optimality
level

Local OI
($hr−1)

Optimality
level

Local OI
($hr−1)

Optimality
level

1 142.96 2 256.67 4 309.71 4
2 179.57 2 186.22 3 275.07 4
3 119.96 1 205.61 3 256.44 4

Online Assessment

In online assessment, the operating modes are predicted based on the predictive

classifier built in offline training. The computed clasification error for online mode

detection that is the number of incorrect estimated devided by the total number of

assessment data points is 0.0079, which indicates a high accuracy of mode detection.

Based on the estimated modes, the OI values are predicted using the constructed

models including DPCR and MSPPCR in offline training. The comparison plot of
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predicted and real values for the OI is given in Figure 4.8. Since the emplyed models

vary along the process, the corresponding models are stated in the figure. In addition,

RMSE and R2 values are computed as 0.3678 and 0.8588, respectively. Based on the

results, the constructed model has a high accuracy in predictiong the OI values, i.e. it

has high values for R2 test and low values for RMSE. The offline mode identification,

online mode detection and prediction results are summarized in Table 4.5.

Figure 4.8: Comparison of predicted and real values of OI

Table 4.5: Summary of the results

Results
Offline mode identification ARI=0.9922, FM index=0.9949
Online mode detection Classification error=0.0079

Prediction RMSE=0.3670, R2=0.8588

The optimality levels can be detected based on the criteria stated in Table 4.3.

The estimated optimality levels are shown in Figure 4.9. According to Figure 4.8,

the process starts with optimum opetration and then jumps to the level 2 of opti-

mality. The 1383th sampling data point is selected to find the cause of non-optimum

performance. Based on the previous estimations, this data point belongs to operating
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region 3 of operating mode 1. Based on Table 4.4, operating region 1 has the lowest

OI level in mode 1, therefore it is selected as the reference mode for non-optimum

cause detection. The distance of this data point from the reference mode is 218.29

that is greater than χ2
22(0.95) (χ2

22(0.95)= 33.924). Based on the method described

in section 4.2.3.2, the causes of non-optimum performance are detected. After ap-

plying this method, 10 causal variables are found that are stated in Table 6. They

are ordered from the most to least effective causes by using the numbers of 1 to 10,

respectively. Their contribution percentage is also shown in Figure 4.10. When these

10 variables are assumed to be missing, the distance from the reference mode becomes

28.68 that is less than χ2
22(0.95) that indicates the process is steered to the optimum

performance.

Figure 4.9: Estimated OI levels

The new data point is originated from the third operating region of the operating

mode 1, and in this operating region reactor pressure is changed as an uncertainty.

Non-optimum cause identification results has also expressed the variables that have

strong relationships with the reactor pressure. The rate constant of the reaction and

as a result reaction rate is dependent on the temperature that is coupled with pressure

based on Arrhenius’ equation.74 Therefore, when the reactor pressure deviates from

the optimal set point, the ratio of the reactants and products flowing to other subpro-
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cesses deviates from the reference operating region. Subsequently, there will be some

adjustments in the next subprocesses due to the happened changes that are indicated

in stripper pressure, product seperator pressure, product seperator temperature, and

seperator cooling water outlet temperature. Consequently, due to the change of the

amount of product and reactants flowing in the process, reactor feed rate, recycle

flow, compressor work, D feed and stripper level will be affected. This procedure of

causality detection gives insight of what variables are coupled with each other in the

process and how to make changes to return the process to the optimum region.

Table 4.6: Non-optimality cause variables at sample 1383

Order Variable number Variable name
1 7 Reactor pressure
2 16 Stripper pressure
3 13 Product seperator pressure
4 6 Reactor feed rate
5 5 Recycle flow
6 20 Compressor work
7 11 Product seperator temperature
8 22 Seperator cooling water outlet temperature
9 2 D feed
10 15 Stripper level

Figure 4.10: Contribution percentage of the causal variables at sample 1383
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4.6 Conclusion

In this chapter, a novel framework for operating optimality assessment and non-

optimum cause diagnosis is proposed. The operating modes are detected using im-

proved DENCLUE based method, and the MclustDA method is employed for pre-

dictive mode classifier building. In each steady state mode, MSPPCR model is used

for OI analysis in each operating region as well as predictive model building. In

transitions, DPCR model is employed for transition grade analysis and buildig pre-

dictive model. In online assessment, operating mode of the new data point is es-

timated, and the optimality is assessed. Adopted probabilistic framework through

SFFS is employed for diagnosing causal variables of the non-optimum performance.

TE benchmark process is presented that has confirmed the applicability of the pro-

posed method.
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Chapter 5

Conclusions

In this chapter, the conclusions inferred from the chapters of the thesis are discussed,

and some recommendations for future research in this area are given.

5.1 Summary

The main focus of this thesis is introducing a general framework for optimality as-

sessment in multi-mode systems with non-Gaussian behavior utilizing probabilistc

principal component regression (PPCR) model. The main contributions of this thesis

can be summarized as:

Chapter 1 provides the motivation and challenges in optimality assessment of in-

dustrial processes. It also provides a review of the outline and contributions of each

chapter of the thesis.

In chapter 2 high dimensionality of the process datasets as well as their multi-

modal feature is addressed by introducing mixture PPCR (MPPCR) framework.

Commonly, in industrial processes, outputs have slower rate of measurement com-

pared to inputs, which results in missing output values for the corresponding inputs.

In addition, due to sensor failure or delays in analysis of some variables, inputs also

contain missing values. In order to overcome the mentioned problems, the mixture

semi-supervised PPCR (MSPPCR) model is extended under the expectation maxi-

mization (EM) framework in order to improve the efficiency of predictive model build-

ing in the case of simultaneous missing inputs and outputs completely at random in
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datasets. The main significance of this chapter is the utilization of all the available

information of the dataset to construct the predictive model. The developed model

is applied on numerical and simulation examples and also industrial sulfur content

in naphta hydrotreater dataset, and all have confirmed the improved performance of

the proposed model.

Since different operating regions in an operating mode are caused by uncertainties,

a prior knowledge for the number of operating regions does not exist. In chapter 3

MPPCR model is extended under divisive hierarchical framework in order to estimate

the number of operating regions in non-Gaussian stable operating modes. Maximum

a posteriori (MAP) estimation under EM framework is utilized for parameter estima-

tion in order to utilize prior knowledge. Compared to the traditional methods, since

in the proposed method the number of mixture components is estimated by splitting

and merging procedure, a prior knowledge of the possible number of components is

not required. In addition, performance of the proposed method is improved because

of utilizing minimum message length (MML) criterion for selection that is capable

of detecting overlapped components as well as proposing the merging step for highly

overlapped components in order to control splitting steps. Finally, the improved per-

formance of the proposed method is demonstrated under a numerical example and

also experimental hybrid tank system.

In chapter 4, a probabilsitic framework for operating optimality assessment and

non-optimum cause diagnosis for multi-mode processes with non-Gaussian behavior is

established. Density based clustering (DENCLUE) method is adopted and improved

for detecting and labeling operating modes, and a modified mixture discriminant

analysis (MclustDA) is utilized for building the predictive classifier. The optimality

analysis and modeling in each steady state operating mode is based on MSPPCR

model. In addition, due to the dynamic characteristic of transitions, dynamic princi-

pal component regression (DPCR) is selecetd for their grade analysis and predictive

modeling. For non-optimum cause diagnosis a probabilistic framework through se-

quential forward floating search (SFFS) method is adopted. The applicability of the

proposed framework is demonstrated through a simulation example that has validated
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the performance.

5.2 Recommendations for future work

The first chapter focus on dealing with simultaneous missing values in both inputs and

outputs in MPPCR model. The missing values are considered to follows missing com-

pletely at random (MCAR) procedure, and it is solved through the EM framework.

However, missing data can also be considered as missing not at random (MNAR) or

missing at random (MAR) in practical problems.104 In other words, for future work

three types of missing data can be incorporated based on a prior knwoledge.

Divisive hierarchical approach with merging step is proposed in chapter 3 in or-

der to estimate the number of mixture components. In this approach the number of

offspring is assumed to have a user defined value, and in this thesis it is selected to

have a fixed value of 2. Christopher M. Bishop and Michael E. Tipping38 introduced

a visulaization approach to determine the proper number of components in each step.

However, it has some limitations due to its human driven nature and restricting the

number of latent variables to 2. For future research, intoducing an interactive method

for selecting the number of offspring at each step can help to enhance the accuracy

and reduce the computational time.

In chapter 3, a mode identification step based on scheduling variables is con-

sidered in order to seperate operating modes and perform analysis and predictive

model building on each of them separately. Extending MPPCR model in order to

have two type of mixture components based on the scheduling variables for operating

mode detection as well as the whole dataset for operating region detection that are

caused by uncertainties as a future research can significantly reduce the complexity

and computational time.
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