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ABSTRACT Modern power systems have been expanding significantly including the integration of high
voltage direct current (HVDC) systems, bringing a tremendous computational challenge to transient stability
simulation for dynamic security assessment (DSA). In this work, a practical method for energy control
center with the machine learning (ML) based synchronous generator model (SGM) and dynamic equivalent
model (DEM) is proposed to reduce the computational burden of the traditional transient stability (TS)
simulation. The proposed ML-based models are deployed on the field programmable gate arrays (FPGAs)
for faster-than-real-time (FTRT) digital twin hardware emulation of the real power system. The Gated
Recurrent Unit (GRU) algorithm is adopted to train the SGM and DEM, where the training and testing
datasets are obtained from the off-line simulation tool DSAToolsTM/TSAT®. A test system containing
15 ACTIVSg 500-bus systems interconnected by a 15-terminal DC grid is established for validating the
accuracy of the proposed FTRT digital twin emulation platform. Due to the complexity of emulating large-
scale AC-DC grid, multiple FPGA boards are applied, and a proper interface strategy is also proposed
for data synchronization. As a result, the efficacy of the hardware emulation is demonstrated by two case
studies, where an FTRT ratio of more than 684 is achieved by applying the GRU-SGM, while it reaches
over 208 times for hybrid computational-ML based digital twin of AC-DC grid.

INDEX TERMS AC-DC grid, digital twin, dynamic equivalents, faster-than-real-time, field programmable
gate arrays, gated recurrent unit, machine learning, parallel processing, power system stability, real-time
systems, recurrent neural networks, synchronous generator.

I. INTRODUCTION

Transient stability (TS) simulation plays a paramount role
in dynamic security assessment of power systems. With the
increasing size and complexity of modern power systems, the
TS simulation requires considerable computational effort [1].
The commonly used security indices for a large-scale trans-
mission network are obtained from TS simulations, which
provide critical data for analyzing the system stability such

as rotor angles, bus voltages, and frequencies. The current
industry practice is able to accelerate the TS simulation
in real-time execution due to the availability of the high-
performance hardware [2]. However, the existing solutions
for TS simulation are based on the numerical solutions of
model equations that represent the dynamic process of the
nonlinear system components.

In the last few decades, dynamic equivalencing has been
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adopted for dealing with the large-scale systems for TS sim-
ulation, which divides the system into “study zone” where the
dynamic phenomena occur and “external system” where the
system part needs to be replaced [2]. The dynamic equivalent
model is obtained by reducing the number of generator and
the network nodes. Currently, the main approaches of dy-
namic equivalencing are largely classified into the following
three directions: 1) Coherency methods [1], [3]–[5], which
are achieved by replacing a coherent group of machines in
the external system with an equivalent generator and attach-
ing it to a common bus. 2) Modal methods [6]–[8], which
focus on the less damped modes. The linear equivalents are
obtained by applying reduction techniques that eliminate the
high damped modes. Meanwhile, the modal methods are
also cooperated with the coherency methods to identify the
coherent groups [8]. 3) Estimation methods [10]–[13], which
basically utilize measurements or simulation based results to
estimate the parameters of the equivalent model.

Although valuable contributions have been made, the com-
putational requirements are still heavy by the aforementioned
approaches, such as the eigenvalue analysis, diagonalization
of the modal approach, or identification of the coherency
groups. In this work, machine learning (ML) based dynamic
equivalent models are proposed for both synchronous gener-
ator and external networks for TS emulation. Artificial neural
network (ANN) based power system dynamic equivalencing
has been previously proposed in [14]; however, traditional
ANN-based equivalent models are relatively simple, and
cannot meet the requirements for long-term prediction for
a large-scale network. Therefore, the Gated Recurrent Unit
(GRU) algorithm is utilized, which is a variant of the Long
Short-Term Memory (LSTM) network that has a higher
accuracy in representing the non-linear parts for dynamic
equivalencing [15].

Although compared with ANN-based algorithms, the
GRU-based dynamic equivalent model requires more hard-
ware resources and inferencing time, these shortcomings can
be effectively minimized by the FPGA. The reconfigurability
of FPGAs enables each system component to be designed
according to its function [16]. The proposed FTRT emulation
can therefore operate as a digital twin of the real power
system to predict its performance and provide remedial
solutions after detection of a disturbance. Meanwhile, the
sufficient hardware resources in the latest Xilinx Virtex®

UltraScale+TM series boards allow the entire AC-DC grid to
be deployed on the platform after proper system partitioning
and allocation. As a result, the hybrid computational-ML
based digital twin of AC-DC grid can be executed 208 times
faster than real-time mode.

The paper is expanded as follows: Section II introduces
the background of TS simulation and the multi-mass shaft
synchronous generator model. The detailed training proce-
dures and validation of the proposed GRU-SGM is specified
in Section II. Section III demonstrates GRU-DEM for a large-
scale AC-DC grid and the interface strategy. The hardware
design of the proposed algorithms on FPGA boards is given
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FIGURE 1. Five-mass torsional shaft system.

in Section VI. The FTRT emulation results and subsequent
analysis are provided in Section V. Section VI presents the
conclusion and the application of GRU-based equivalent
models.

II. PART I: MACHINE LEARNING BASED MODELING OF
SYNCHRONOUS GENERATOR
A. TRANSIENT STABILITY PROBLEM
TS simulation is essentially analyzing the rotor-angle, volt-
age, and frequency stability of synchronous generators. The
dynamics of generators and their auxiliary controllers are
represented by a set of nonlinear differential-algebraic equa-
tions (DAEs) given below:

dX(t)
dt = F (X(t),V(t),u(t)), (1)
G(X(t),V(t)) = 0, (2)

where X is the vector of the state variables, V refers to
the bus voltage vector, and u represents the vector of inputs
from the generator controllers such as mechanical torque
(Tm). The initial conditions are provide in (3), which can be
obtained by steay-state estimation.

X0 = X(t0). (3)

B. DETAILED SYNCHRONOUS GENERATOR
COMPUTATIONAL MODEL
To achieve a high accuracy, a detailed 17th-order multi-mass
synchronous machine model (SGM) is chosen as the training
target for the ML-based SGM, which includes four electri-
cal equations consisting two windings on d-axis and two
damping windings on q-axis, and an excitation system with
three DAEs. In addition, a five-mass shaft system composed
of the four-mass-turbine shaft connecting with the generator
rotating shaft is also applied for training the ML-based SGM,
as shown in Fig. 1. The ten mechanical equations for the
multi-mass torsional shaft model can be written as:

dδ1
dt

= ωR ·∆ω1(t), (4)

d∆ω1

dt
=

[K12(δ2(t)− δ1(t))− Te(t)−D1 ·∆ω1(t)]

2H1
,

(5)
dδn
dt

= ωR ·∆ωn(t), (6)
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d∆ωn
dt

=
1

2Hn
[Tn(t) +Kn+1

n (δn+1(t)− δn(t)−Kn
n−1

(δn(t)− δn−1(t))−Dn∆ωn(t)],
(7)

dδ5
dt

= ωR ·∆ω5(t), (8)

d∆ω5

dt
=

[T5(t)−K45(δ5(t)− δ4(t))−D5∆ω5(t)]

2H5
, (9)

where the subscript n in (6) and (7) represents to Mass 2-
4, and variables with subscript 1 constitute the mechanical
functions of the generator shaft. T5, and Tn are the me-
chanical torques of steam turbines, which are obtained from
the governor system. The electrical equations describing the
generator are given as

dψfd
dt

= ωR · [efd(t)−Rfdifd(t)], (10)

dψ1d

dt
= −ωR ·R1di1d(t), (11)

dψ1q

dt
= −ωR ·R1qi1q(t), (12)

dψ2q

dt
= −ωR ·R2qi2q(t), (13)

The excitation system model is comprised of the power sys-
tem stabilizer (PSS) and automatic voltage regulator (AVR),
the corresponding equations are given below.

dv1
dt

=
[vt(t)− v1(t)]

TR
, (14)

dv2
dt

= Kstab · ˙∆ω(t)− v2(t)

Tω
, (15)

dv3
dt

=
[T1 · dv2/dt+ v2(t)− v3(t)]

T2
. (16)

where the time-varying variables in (4)-(13) contribute to
vectors U(t) and X(t) in (2), and the remaining coefficients
such as ωR, H1−5, D1−5, Rfd, R1d, R1q , R2q , TR, Kstab,
Tω , T1, and T2 are constant parameters of generators and the
excitation system, which can be found in [17].

C. MACHINE LEARNING STRATEGY
The commonly used machine learning strategies for model-
ing the components in modern power systems are discussed,
including traditional artificial neural network (ANN) and
recurrent neural network (RNN). Recently, a widespread
ML method named convolutional neural network (CNN)
has witnessed an increase in many applications. Compared
with CNN, the RNN has better performance than CNN
regarding ML modeling of time-series signals because of its
effectiveness and long-term prediction ability. Even though
many newer applications of transform in natural language
processing (NLP) have emerged in recent years, considering
the features of the power system, hardware resource con-
sumption, and latency, it is more efficient to utilize RNN

TABLE 1. Comparison of various ML strategies

Features ANN CRNN GRU LTSM

Accuracy ⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

Complexity ⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆⋆

Resource Consumption ⋆⋆⋆⋆ ⋆ ⋆⋆ ⋆⋆⋆

Long-Term Prediction No No Yes Yes
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FIGURE 2. Lumped GRU model of synchronous generator.

with a more straightforward structure for ML modeling in
this paper.

The complexity and accuracy of ANN [18], [19], convo-
lutional recurrent neural network (CRNN) [20], GRU [21],
and long short-term memory (LSTM) [22] for modeling
power electronic devices are compared in the literature [24].
Meanwhile, the techniques mentioned above are compared in
Table 1. ANN has the lowest accuracy and the most hardware
resource consumption, which is not considered for hardware
design. As for RNNs (CRNN, GRU, and LTSM), the more
accurate it is, the more complex the structure and resource
consumption it needs, resulting in a longer execution time.
Although CRNN has acceptable accuracy and complexity
for hardware emulation, the capability of long-term predic-
tion makes it not suitable for transient stability simulation.
GRU is a relatively low-resource-consumption RNN with
reasonably high accuracy, which is more accurate than ANN
and CRNN, close to LSTM, but the resource consumption
is much smaller than LSTM. GRU is a substitute for LSTM
with long-term predictive capability, which makes it suitable
for time-series prediction (e.g., traffic flow prediction [23]).
Since the forget gate and the input gate in LSTM are replaced
by a single update gate in GRU, resulting in lower complexity
for GRU. After a trade-off between accuracy and hardware
resource consumption, the GRU is selected as the main
training method for ML-based synchronous generator model
and dynamic equivalent model. The working principles of the
GRU method are given below:

1) Update process: the update matrix Z is calculated by
input X and previous state Ht−1, as given below:

Z = σ(Wz[X,H
t−1] +Bz). (17)
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FIGURE 3. Partitioned GRU model of synchronous generator.

GRU is assisted by the update gate in determining how
much information from the previous and the present time-
step should be transmitted into current state. It is quite
important since the GRU may choose to replicate all previous
information to minimize the risk of disappearing gradients.

2) Reset process:

R = σ(Wr[X,H
t−1] +Br), (18)

where the reset matrix R is obtained from input X and
previous state Ht−1. This matrix R has the same equation as
the update gate matrix Z, but its parameters and applications
are different. This gate is used to select how much of the past
or current information to forget.

3) Current memory process:

Ht−1
r = Ht−1R, (19)

H′ = tanh(Wh[X,H
t−1
r ] +B). (20)

The previously acquired reset gate processes the historical
information Ht−1 to get Ht−1

r , which determines the past
information to be maintained and abandoned. Then, the cur-
rent memory H′ is constructed by the processed historical
information and the current input X, as shown in (20) where
the hyperbolic tangent activation function is used.

4) Final transfer memory process:

Ht = ZHt−1 + (I− Z)H′. (21)

Ht, a vector that stores information from the current unit,
is computed and passed on to the next unit. The update
gate matrix Z, which decides what information needs to be
gathered in the current memory content H′ and the prior time
step Ht−1, must be used in this procedure.

A lumped GRU model with inputs and outputs is depicted
in Fig. 2, which may be developed without specific expertise.
According to (4)-(16), the input vector X can be defined as:

X = [T1−5, δ1−5,∆ω1−5, ifd, i1d, i1q, i2q, v1, v2, v3, vt]
T .

(22)
Since the proposed GRU-SGM is conducted on the FPGA
boards, the sequence length, hidden size, and layers that may
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FIGURE 4. GRU structure for each part (mechanical, electrical, and
excitation) of synchronous generator.

influence the hardware resource consumption should be prop-
erly defined. In this work, the lumped model is divided into
three parts depending on machine operation knowledge, as
illustrated in Fig. 3. As for the hyper-parameter optimization,
we choose the model hyper-parameters based on experience.
Then we train the model, evaluate its accuracy and start the
process again. In the beginning, based on experience the
hidden size ranges from 20 to 100, and the hidden layer is
decided as 1 or 2 to reduce the hardware consumption. After
modifying the hyperparameters during the training process,
the layer number is one, hidden size is 30 and the sequence
length is three for GRU-SGM. The structure of an unrolled
GRU model is shown in Fig. 4.

The partitioned model enables the three portions to be
calculated in parallel and thus lower the hide size, saving
hardware resource usage and speeding up execution without
compromising accuracy. And this division is based on ex-
pertise and has no bearing on accuracy. The GRU model of
the mechanical part of the machine can be trained based on
the input and output variables of (4)-(9). The GRU can then
represent the current and flux linkage parts, in the same way
as (10)-(13). In terms of excitation system, the effect of the
third GRU model is similar to that of (14)-(16).

D. DATASETS AND TRAINING
Taking the IEEE 39-bus system for example, the training
data is obtained from several three-phased to ground faults,
as given in Fig. 5. As aforementioned, the ML-based model
is trained to represent the 17th-order synchronous generator,
which contains 5-mass torsional shaft and excitation system.
Due to the various generation levels and control parameters,
each generator should be trained independently. Three differ-
ent faults are simulated in the offline simulation tool TSAT®

to provide the dataset for training a single generator. Since
the fault locations have significant impacts on the dynamics
of generator state variables, the fault buses are chosen from
closest to furthest, which are located at Bus 39, 15, and
29 for training the Gen 10. As a result, there are 30 three-
phase-to-ground faults to be simulated in total to train the ten
generators in the IEEE 39-bus system.

The training data set comprises data on both normal and
abnormal operating circumstances since the system includes
a fault state. The model’s input and output contain substantial
variations; therefore, a data set with a wide range of varia-
tions is highly essential for GRU model training. In practice,
1 ms is chosen as the time-step, and a 20-second dataset
is captured, which means the dataset of each fault contains
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10,000 points. As a result, there are 30,000 points in total
to train a single generator. 70% of it is utilized for training,
while the remaining 30% is used for testing. For the training
of the GRU model, it is not necessary to input all the training
data obtained into the program, which will result in the
training time being too long. After shuffling the training data,
the data processing program samples the data set at regular
intervals and sends it to the training program so that the
obtained data set ensures generality and dramatically reduces
the size. The same data set will send to the training program
several times (epoch numbers) to obtain an accurate GRU-
based model. Meanwhile, Adam algorithm [25] is chosen as
an adaptive learning rate optimization method to minimize
the errors during training processes.

The estimated offline simulation time for a three-phase-to-
ground fault is ranging from 7-8 s based on our lab computer
equipped with AMD® Ryzen 9 3950X CPU. Theoretically,
the total time for obtaining the dataset of the generators is
less than 240 s. Meanwhile, the TSAT® allows simulating
several contingencies in sequence without time delay. The
estimated time for Part I and Part II can be realized by
uploading a file with contingency information to TSAT®.
The proposed models are trained in a 196-node cluster after
GRU parameter design, where each node contains two Intel®

Silver 4216 Cascade Lake central processing units (CPUs).
As mentioned, the lumped GRU model is divided into three
parts, resulting in a partitioned GRU model. Since the inputs
and outputs of each generator parts are independent, the three

R1 XL1

BC1

2
BC1

2

R2 XL2

BC2

2
BC2

2

Bus1 Bus2

FIGURE 6. Transmission line π model.

parts of the partitioned GRU-SGM are trained in parallel to
save the training time. Meanwhile, the training time for the
mechanical part is a little bit long. To obtain a complete
generator model, the electrical part and control system part
should wait the mechanical part to finish, the total training
time for the synchronous machine cost about 8 h training
on a cluster node requiring within 10 GB memory. Then,
the training results, weights and bias of the GRU models, are
obtained and saved in Pytorch framework.

E. HYBRID COMPUTATIONAL-ML SOLUTION SCHEME
FOR TS SIMULATION
The network transients of TS simulation are typically calcu-
lated in the form of nodal equations. The main components
in the AC network include transmission lines, compensators,
and loads, which are represented by the admittance matrix
solved at constant frequency.The transmission lines in TS
simulation are modeled using a lumped π model, as given in
the Fig. 6. R, X, and B refer to the resistance, reactance, and
susceptance of the transmission line. The element Y (1, 2) in
the admittance matrix can be calculated as:

Y (1, 2) = − 1

R1 + jXL1
= Y (2, 1), (23)

Y (2, 2) =
1

R1 + jXL1
+

1

R2 + jXL2
+
j(BC1 +BC2)

2
.

(24)
Meanwhile, the fixed compensators and loads can be ex-
pressed as:

YLoad =
PLoad + j · (QLoad)

V 2
Bus

. (25)

Then the network equation for TS simulation can be obtained
as: [

IML
m

Ir

]
=

[
Ymm Ymr

Yrm Yrr

][
EML
m

Er

]
, (26)

where the subscript m refer to the generator nodes with
current injection, r represents the remaining nodes without
synchronous generators, the superscript ML denotes the
variables that are calculated from GRU-SGM. Due to the
absence of current injection in the non-generator buses, the
current vector of the remaining nodes Ir = [0] and IML

m can
be derived as

IML
m = Yreduced ·EML

m , (27)

where Yreduced is expanded as Ymm − YmrY
−1
rr Yrm. It

is noticed that the generator voltages EML
m are not directly
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TABLE 2. Relative errors of rotor angles under various systems

System Gen. 25 Epoch 50 Epoch 75 Epoch 100 Epoch

IEEE 39-bus 10 11.43% 5.93% 1.36% 0.65%
IEEE 118-bus 54 16.13% 8.03% 1.50% 0.94%

ACTIVSg 500-bus 90 13.35% 6.69% 1.39% 0.84%

known, which are evaluated by the state variables after
each step of integration. The relationship between generator
voltages and currents can be expressed by the following
equations.

EML
D = IML

D · u1 + IML
Q · u3 + u5, (28)

EML
Q = IML

D · u2 + IML
Q · u4 + u6, (29)

where u1−6 can be obtained by the acquirement of state
variables, which are given in [17]. Thus, the emulation pro-
cedure for the hybrid computational-ML based AC-DC grid
is illustrated in Fig. 7.

F. INFERENCING FROM THE TRAINED MODEL
As mentioned, some tests have been done in the training
process. Although these GRU models are optimized and
elevated by the test datasets, they should be further tested by
the practical application operation. The trained GRU-SGM is
tested on a standard IEEE 39-bus system containing ten gen-
erators and validated by the offline simulation tool TSAT®.
The accuracy of the proposed model is related to the epoch of
training. Fig. 8 (a)-(c) provides the rotor angles of Gen 10 of a
three-phase-to-ground fault at Bus 5, and 21 lasting 150 ms
of various epoch numbers. The representation of the three-
phase fault in TS simulation is given in Fig. 9. Va and Ia refer
to the voltage and current of the ground loop. The equivalent
fault impedance Zef is zero when a three-phase-to-ground
fault occurs. The state variables ∆ω1, ψfd, ψ1d, ψ1q , ψ2q ,
and v3 are also illustrated in Fig. 8 (c)-(h). The zoomed-in
plots in Fig. 8 indicate that with the epoch number increasing
the higher accuracy can be obtained. Meanwhile, to further
demonstrate the accuracy of GRU-SGM for TS emulation,
the relative errors of rotor angles from various generators
under different epoch numbers are given in Fig. 10. The
accuracy of the proposed model is illustrated by the relative
errors which are calculated by the following formula:

ϵ =
|δGRU − δTSAT |

δTSAT
× 100%. (30)

Fig. 10 and zoomed-in plots in Fig. 8 (a), (d), and (h)
indicate that with the epoch number increasing the higher
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FIGURE 9. Representation of three-phase-to-ground fault in power system
stability studies.

accuracy can be obtained. In order to test the generalization
ability, the proposed SGM is also applied on other power
transmission systems under various evaluation conditions
that differ from the training datasets, as given in Table 2. As
for IEEE 39-bus system 200ms three-phase-to-ground faults
are tested under various epoch numbers on the remaining 9
buses that are not included in the training dataset. In IEEE
118-bus system and 500-bus system, 250 ms and 270 ms
three-phase-to-ground faults are tested under various epoch
numbers on 10 buses that are not considered in the training
dataset, respectively. The relative errors given in Table 2
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TABLE 3. Hardware resource occupation of various methods

Module Latency BRAM DSP FF LUT
NR 1526 Tclk 18 1296 287589 338067
RK4 199 Tclk 16 315 29709 45721

GRU-SGM 146 Tclk 42 116 13058 17064
Network 269 Tclk 16 534 43928 57664
XCVU9P – 4320 6840 2364480 1182240

are the maximum relative errors among the 17 GRU-SGM
output variables of the 9 or 10 three-phase faults in each
system. Although the epoch number, and the subsequent
networks would influence the accuracy of the trained model,
the relative errors of GRU-SGM in various power systems are
less than 1% after 100 epoch. And a minimum error of 0.65%
can be obtained on the IEEE 39-bus system. Therefore, the
accuracy can be guaranteed by the GRU method for dynamic
security analysis.

Meanwhile, the GRU-based synchronous generator mod-
els and computational models are also executed on the Xilinx
Virtex® UltraScale+TM VCU118 board containing XCVU9P
FPGA to validated the efficiency. For the computational
model, both the implicit Newton-Raphson (NR) method and
explicit 4th-order Runge-Kutta (RK4) method are adopted
for calculating the 17th-order DAEs. The hardware resource
utilization and the latencies of various calculation strategies
are provided in Table 3. The proposed GRU-SGM has sig-
nificant advantages in resource consumption and execution
time compared with NR method and RK4. Under the FPGA
frequency of 100MHz, the latency is defined in clock cycles
which is 10 ns. Therefore, an FTRT ratio of 1ms

146×10ns = 684
can be reached by applying the GRU-SGM.

III. PART II: MACHINE LEARNING BASED DYNAMIC
EQUIVALENCING FOR HYBRID AC-DC GRID
With the system scale becoming larger, despite the availabil-
ity of high-performance hardware, the most time-consuming
part of TS simulation is still solving the nonlinear DAEs
of the synchronous generator. The dynamic equivalencing
is therefore proposed to reduce the execution time, which

South Carolina 500-Bus System: ACTIVSg500 

Study Zone (System-1)

MMC 2

MMC 4
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Bus 392
‘Greenville’

Bus 392
‘Greenville’

Bus 392
‘Greenville’

P + jQ

ED , EQ

GRU-DEM

System-14

GRU-DEM
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System-15

GRU-DEM

System-4

GRU-DEM

System-2

FIGURE 11. Hybrid computational-ML based test system of large-scale
AC-DC grid.

is achieved by reducing the number of generator and the
network nodes. The basic idea of dynamic equivalents for
TS simulation is through the dynamic respond measurements
to create an equivalent system that replaces a part of original
system, where the equivalent models can be linear or non-
linear. In this section, an GRU-based dynamic equivalents
is proposed, which replaces the conventional procedures of
dynamic equivalencing.

The external system refers to a nonlinear dynamic system
with generators, excitors, and loads, which is replaced by the
dynamic equivalent model (DEM) using machine learning
techniques. The internal system represents the area that need
to be analyzed in details, which is also called as study
zone. The key issues of the proposed GRU-based dynamic
equivalents are the quality of selected input/output signals,
and the interface strategy between external area and study
zone.

A. DATASETS AND TRAINING
The proposed GRU-based dynamic equivalent model is ap-
plied to a hybrid AC-DC grid, which contains fifteen AC-
TIVSg 500-bus systems and a fifteen terminal (15-T) HVDC
grid, as given in Fig. 11 (a). The modular multilevel converter
(MMC) 1 is treated as rectifier station, which provides the
dynamic power to the 15-T HVDC grid and the external
systems. The 500-bus System-1 is defined as the study zone,
while the remaining fourteen 500-bus systems are replaced
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by the GRU-based dynamic equivalent model, as shown
in Fig. 11. Meanwhile, the GRU-SGM is also applied to
System-1 to represent the synchronous generators. As the
500-bus system contains 90 generators, the training time for
synchronous generators will be extremely long. In order to
reduce the training time, the 90 generators are divided into
5 groups depending on the output power, e.g., 0-200 MW ,
200-400 MW , ..., and 800-1000 MW . The generators in
each group share the same control system and mechanical
system parameters. Therefore, only 5 GRU-SGMs need to be
trained in a 500-bus system, and the differences among the
generators in each group are the mechanical torques. After a
disturbance in study zone, the output current at Bus 412 starts
to oscillate, and the oscillation will spread to the following
external systems through the HVDC grid. Fig. 11 illustrates
that the inverter stations provide dynamic P+jQ loads to
the external systems at the boundary buses. In return, the
external systems modeled by GRU-DEM provide the point
of common coupling (PCC) voltages to the DC grid in the
same manner.

Due to the relatively small size of the measurement values
at the boundary buses between the DC grid and DEM, the
datasets have significant impacts on the accuracy of the
equivalent results, and therefore, a large number of con-
tingencies in the study zone need to be included. In this
work, the three-phase-to-ground faults occur at 90 buses are
simulated off-line to obtain the real and imaginary compo-
nents of the boundary nodes power and voltages. Meanwhile,
for those contingencies that are cleared around the critical
clearing time (CCT), the simulation result is highly sensitive
to the error. The fault durations ranging from 50 ms-240 ms
are simulated for training GRU to guarantee the accuracy of
the proposed dynamic equivalent model, which means there
are 20 various fault durations are simulated on each bus with
a step of 10 ms. Therefore, the results of 1800 contingencies
are collected from the off-line simulation tool for training the
GRU-DEM. Due to the complexity of the 500-bus system, the
maximum offline simulation time of a three-phase-to-ground
fault is 27 s, which means about 14 h is needed for obtaining
the training dataset. This time can be significantly reduced by
considering the off-line simulation on a CPU cluster.

Although the structure of GRU-DEM is similar to that
of the GRU-SGM, the hyper-parameters (hidden size, the
number of layers, etc.) are different. The GRU structure for

TABLE 4. Relative errors of GRU-DEM

Output Variables 25 Epoch 50 Epoch 75 Epoch 100 Epoch
ED 14.06% 8.13% 1.21% 0.78%
EQ 13.13% 9.85% 2.81% 0.70%
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FIGURE 13. Relative errors of GRU-DEM under various training epochs.

DEM is illustrated in Fig. 12, where the input vector X for
GRU-DEM can be defined as:

X = [P (t), Q(t), P (t−∆t), Q(t−∆t), P (t−2∆t), Q(t−2∆t)]T .
(31)

Due to the complexity of the 500-bus system and the rel-
atively small size of input data, the GRU-based model for
DEM should increase much more hidden neurons (100 for
DEM system), and the number of layers is two instead.
With this comes increased data requirements. Nevertheless,
the chosen auto-learning-rate optimization method, Adam
algorithm [25], still works for this GRU-based model, and
the training process costs about 30 h in one cluster node.
Since the 500-bus systems have the same topology and con-
trol parameters, once one GRU-DEM system is trained and
tested, other GRU-DEM systems can be trained and tested
with their own datasets in the same GRU model to shrink
the training time. Meanwhile, taking the data collection time
into consideration, the total time for training the GRU-SGM
is about 14 + 30 = 44h. In order to further demonstrate
the relationship between epoch numbers and model accuracy,
the relative errors under various epochs are illustrated in
Fig. 13 after a three-phase-to-ground fault lasting 150 ms in
the study zone. Meanwhile, 10 three-phase-to-ground faults
lasting 270ms are emulated in System-1 under various epoch
numbers. The maximum relative errors of output value Ed
and Eq among the 10 faults are given in Table 4, which
indicates that the accuracy of the proposed GRU-DEM can
be guaranteed after 100 epochs.

B. DC GRID MODELING
In order to reflect the dynamic process of the 15-T HVDC
grid, the electromagnetic transient (EMT) simulation with
a time-step of 200 µs is adopted. Since the less hardware
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resource is preferred for hardware design, the average value
model (AVM) is applied to emulate MMC stations to obtain a
higher FTRT ratio. The configuration of a three-phase MMC
interconnecting with AC and DC grid is given in Fig. 14 (a),
which contains N half-bridge submodules (HBSMs) and an
arm inductor on each arm. A brief introduction of MMC
AVM is presented here, further information can be found
in [26]- [27]. Each HBSM can be modeled as a controlled
voltage source to simplify the calculation as shown in Fig. 14
(b). Assuming that the capacitor voltages are well balanced,
which means the average values of capacitor voltages are
equal. The equivalent voltage source of an arbitrary submod-
ule can be expressed as

Vave = Vcap1 = ... = VcapN =
Vdc
N
, (32)

VSMi = K(i) · Vdc
N
, (33)

where K(i) refers to the switching function that takes the
value 1 when the submodule capacitor is inserted and 0 when
the submodule is bypassed. Then the output voltage on each
arm can be derived as

Varm =
N∑
i=1

K(i) · Vdc
N

+ Larm
dIarm
dt

, (34)

The well-balanced condition in the AVM yields no circu-
lating current, resulting in the differential term in (34) can
be neglected. The output voltage on each phase can be
calculated as

Va,b,c =
N∑
i=1

(Ku(i)−Kl(i)) ·
Vdc
N

+ Larm
dIarm
dt

, (35)

where Ku(i) and Kl(i) represent the upper and lower arms
switching functions, respectively.

Since the EMT simulation is adopted in the DC system, the
reactive components such as the capacitor and inductor are
expressed by ordinary differential equations, which should
be discretized before numerical calculating. Trapezoidal rule

is utilized for this purpose in HVDC grid so that a discrete-
time Norton equivalent circuit is generated. The impedances
of the capacitor and inductor and the corresponding current
sources of the Norton equivalent circuit are given as:

ZCeq =
∆t
2C , (36)

ICeq(t) = −IC(t−∆t)− 2C
∆t · VC(t−∆t), (37)

ZLeq =
2L
∆t , (38)

ILeq(t) = IL(t−∆t) + ∆t
2L · VL(t−∆t). (39)

Due to the adoption of the small time-step, the one-step
integration method is able to guarantee the accuracy of EMT
simulation, which also reduces the computational burden
compared with higher order integration methods.

C. INTERFACE STRATEGY OF HYBRID
COMPUTATIONAL-ML BASED DYNAMIC SYSTEM
EQUIVALENCING
Since the DC grid undergoes the EMT simulation and the
TS simulation is applied on the 500-bus System-1 in the
study zone, it would be impractical to take the two types of
simulation model running compatible instantly. Meanwhile,
the generators of System-1 applies the GRU-SGM while the
remaining 500-bus systems are represented by the GRU-
DEM. An interface strategy should be designed properly at
the boundary buses. As illustrated in Fig. 11, the DC grid
provide PCC voltage in D-Q frame to the AC system, while
the TS simulation part provide current to the rectifier station.
Therefore, from the AC system point of view, the DC grid can
be simplified as a dynamic voltage source interconnecting
with the network equations. The DC grid provide the PCC
voltage to the network, resulting in the non-zero value at the
boundary bus. And (27) can be further expanded as[

IML
i

IDCb

]
=

[
Yii Yib

Ybi Ybb

][
EML
i

EDCb

]
, (40)

where the subscript i is the generator nodes that are repre-
sented by the ML-based SGM, the superscriptDC represents
the variables coming from DC grid, and b refers to the
boundary node of AC and DC grids which is Bus 412 in the
study zone. As the PCC voltage calculated by the HVDC grid
in D- and Q- axis are already known, the current injection
at the boundary bus can be derived as a complex matrix
equations.

IDCb = YbiE
ML
i + YbbE

DC
b . (41)

As mentioned, the generator voltages EML
i are not directly

known after solving the GRU-DEM, the relationship between
generator voltages and currents can be expressed in (28) and
(29). Obviously, the only unknown vector in (40) is IDCb ,
and therefore, the output current at the boundary bus can be
solved and is sent to DC grid to keep the EMT emulation
going on. The hardware emulation procedure of the AC-DC
grid digital twin is similar to that of the IEEE 39-bus system
as given in Fig. 7, where the Step 2 is replaced by solving the
MMC AVM and GRU-DEM/SGM.
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TS emulation.

IV. DIGITAL TWIN HARDWARE EMULATION FOR
HYBRID AC-DC GRID
The FTRT emulation of the large-scale AC-DC grid with
proposed GRU-DEM is realized on the integrated Xilinx
Virtex® UltraScale+TM FPGA platform as shown in Fig. 15,
which includes two VCU118 boards containing XCVU9P
FPGA, two VCU128 boards featuring XCVU37P FPGA,
and a Xilinx Alveo U250 acceleration card equipped with
Alveo U250 FPGA. The detailed computational model of the
study zone and the 15-T HVDC grid are executed on U250
FPGA, and the GRU-SGM is also utilized for representing
the synchronous generators in the study zone. Four GRU-
based dynamic equivalent systems can be executed in parallel
on a VCU128 board, meanwhile, each VCU118 board is able
to accommodate three dynamic equivalent systems.

The reconfigurability of FPGAs allows the hardware re-
sources to be adjusted to accommodate and represent a prac-
tical system, and enables each circuit part or subsystem to be
designed as a hardware module. Recently, the Xilinx Vivado®

packages provide the high-level sysnthesis (HLS) tool to sim-
plify the hardware design cycle, which transforms the system
functions written in C/C++ code to intellectual property (IP)
which contains corresponding input/output ports in hardware
design language (HDL) format. After IP generation, each
circuit part is converted to a hardware module and exported to
Vivado® for block-level design. According to the correlation
among the subsystems, the hardware modules are designed to
be calculated in parallel or series, and the data exchange is re-
alized by connecting the input/output ports among hardware
modules.

As illustrated in Fig. 15, after synthesis and block design,
the bit files are generated and downloaded to the target
FPGAs via the PCIe or the Joint Test Action Group (JTAG)
interface. Since multiple FPGA boards are assembled, data
communication is required for emulating such a complex
testing system. Several communication ports are provided
on the Xilinx Virtex® UltraScale+ series FPGA boards/card,

TABLE 5. Details of major hardware modules of the large-scale AC-DC grid

Module Latency BRAM DSP FF LUT
Available hardware resources

VCU118 – 4320 6840 2364480 1182240
VCU128 – 4032 9024 2607360 1303680

U250 – 5376 12288 3456000 1728000
DEM on FPGA (100MHz)

GRU-DEM 937 Tclk 116 1872 233467 273579
ACTIVSg 500-bus system on FPGA (100MHz)

GRU-SGM 146 Tclk 42 116 13058 17064
Network 196 Tclk 16 678 48921 54732
Update 21 Tclk 0 35 5635 6185

HVDC system on FPGA (100MHz)
MMCmodel 96 Tclk 0 16 2582 3270
PQcontrol 86 Tclk 0 62 5829 6320

HVDCNetwork 93 Tclk 0 30 3675 4830
Total_VCU118 – 8.06% 82.11% 29.62% 69.42%
Total_VCU128 – 11.51% 82.98% 35.82% 83.94%

Total_U250 – 12.95% 90.48% 35.42% 92.04%

such as Quad Small Form-factor Pluggable (QSFP), Samtec®

FireFly interfaces and traditional Ethernet jacks. Both the
QSFP and FireFly interfaces can provide maximum bidirec-
tional communication rate of 4×28 Gbps. Due to the absence
of Samtec® FireFly interface on the Alveo U250 acceleration
card, the QSFP interface is applied to the FTRT emulation
platform. Owing to the fewer data required of the proposed
DEM-DC grid interface, the PCC voltages and dynamic
power are chosen as the communication data. Meanwhile, the
calculated data from the FPGA boards is in digital format,
which is transferred to analog data through the digital-to-
analogic (DAC) board and displayed on the oscilloscope.

The latency and hardware resource utilization of each
hardware module are provided in Table 5, where the latency
is given in clock cycles which are defined as 10 ns under
the FPGA frequency of 100 MHz. Since the similar Ul-
traScale+ series FPGAs are equipped on the aforementioned
boards/card, the proposed DEM module has the same latency
and hardware resource occupation on them. The execution
time of DEM is calculated as 937 × 10ns = 9.37µs. As the
time-step of the AC system is chosen as 1 ms, the FTRT
ratio can be expressed as 1ms

9.37µs = 106.72. The RK4, GRU,
Network, and Update modules denote the functions in study
zone. The GRU can be solved in parallel with the latency
of 167Tclk, and the overall latency of the study zone is
146+196+21 = 363Tclk. Then the FTRT ratio of the study
zone is over 1ms

363×10ns = 275. Similarly, the DC grid part are
fully parallelized with the largest latency of 96Tclk, meaning
with an EMT emulation time-step of 200 µs, the FTRT ratio
reaches over 200µs

96×10ns = 208. Although an FTRT ratio of 260
can be achieved in the study zone, the overall FTRT ratio is
determined by the EMT part, since the AC grids should wait
for the DC grid to finish to update the communication data at
the interfaces. Therefore, the total FTRT ratio of the testing
system is over 208.
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FIGURE 17. FTRT emulation results of interface data: (a) output currents at
Bus 412 of study zone, (b) output voltages of GRU-DEM.

V. HARDWARE EMULATION RESULTS AND VALIDATION
The hardware emulation of the integrated AC-DC grid was
conducted on the FPGA-based FTRT digital twin platform as
mentioned above, and the emulation results of the proposed
GRU-based synchronous generator and dynamic equivalent
model were validated by comparing with the results from the
off-line simulation tool DSAToolsTM/TSAT®.

A. CASE 1: THREE-PHASE-TO-GROUND FAULT
In dynamic security analysis, the three-phase-to-ground
faults usually induce the most severe disturbances. Mean-
while, the emulation results for those contingencies that are
cleared around the CCT are usually highly sensitive to the
error, and therefore, a three-phase-to-ground fault on the
study zone lasting 300 ms is taken into considered in this
part. Under steady-state, the study zone delivers 850 MW
to the remaining 500-bus systems via the 15-T HVDC grid,
and each system receives about 50 MW . At the time of 1
s, a three-phase fault takes place at Bus 413 with a duration
of 300 ms. Since the fault location is close to the PCC Bus
412, the fault will cause serious oscillation and spread to the

following systems. The emulation results of G1 to G10 are
provided in Fig. 16. When the fault encounters, the generator
rotor angles experience a drastic oscillation lasting about 3 s.
A significant voltage drop occurs right after the occurrence
the three-phase fault as given in Fig. 16 (c) and (d). In
the meantime, the abnormal rotor angles induce a severe
oscillation on the generator frequencies, and the frequency
of G3 exceed the ±1% threshold as shown in Fig. 16 (e) and
(f).

To validate the accuracy of the proposed GRU-DEM, the
interface data is also provided in Fig. 17. The oscillating
currents in D-Q frame at Bus 412 are send to the rectifier
station and delivered to the subsystems that are emulated by
DEM. Due to the 14 subsystems connected to the HVDC
grid, the output voltage of each DEM system is not as severe
as the output current from the study zone as shown in Fig. 17
(b). The zoomed-in plots in Fig. 17 and Fig. 16 (c)-(d)
indicate that the FTRT emulation results match up with that
of the TSAT®, which proves that the proposed GRU-SGM
and DEM is as accurate as the transient stability simulation
of the full system in TSAT®.

B. CASE 2: GENERATION REDUCTION

The proposed dynamic equivalent model was trained by sev-
eral three-phase faults, and the accuracy can be guaranteed
as mentioned above. In the dynamic security analysis, the
system may encounter several kinds of contingencies. In
this section, a long-term generation reduction is emulated on
the FTRT platform and validated by the off-line simulation
tool. The generation reduction disturbance is emulated by
reducing the mechanical torque of the GRU-SGM. As given
in Fig. 1, the synchronous generator is driven by five steam-
turbine. According to (4)-(9), the mechanical torque can be
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FIGURE 19. FTRT emulation results of interface data: (a) output currents at
Bus 412 of study zone, (b) output voltages of GRU-DEM.

expressed as:

Tm(t) = T1(t) + T2(t) + T3(t) + T4(t) + T5(t). (42)

At the time of 1 s, the mechanical torque in G1 suddenly
reduce 90% of its normal operation without recovered. Since
T1−5(t) are the inputs of GRU-SGM, changing the mechan-
ical torque will not affect the performance of the proposed
model. The imminent impacts including serious disturbance
to the rotor angles, generator voltages, and frequencies, as
given in Fig. 18. The frequencies of synchronous generators
keep decreasing and cannot be restored. Due to the ±1%
threshold of the frequencies in dynamic security assessment,
the abnormal frequencies are detected after 10 s, which may
cause serious impacts on the system. With the 208 FTRT
ratio, the hardware emulation platform is able to predict the
upcoming disturbance and take remedial actions.

Similarly, the interface data is also provided to validate the
accuracy of the proposed DEM under generation reduction,
as given in Fig. 19. Fig. 19 (a) indicates that the reduced
generation causes output current at Bus 412 unstable. The
zoomed-in plots in Fig. 19 (b) proves that the proposed DEM
still has high accuracy under the contingencies except three-

phase faults. Therefore, the proposed GRU-SGM and DEM
executed on the FTRT emulation platform can be utilized on
large-scale AC-DC grid for dynamic security analysis.

C. CASE 3: LOAD CHANGE

To further demonstrate the accuracy of the proposed GRU-
DEM and GRU-SGM, a sudden load change fault is also
tested, as given in Fig. 20. The load change disturbance is
emulated by changing the PLoad and QLoad values in (25).
At 1 s, a load of 400 MW is suddenly removed in the study
zone, causing the instability to the AC system which cannot
be recovered. As can be seen in Fig. 20 (e) and (f), the
frequencies keep rising and eventually they are far beyond
the maximum allowed 1 % threshold. The dashed lines refer
to the results from the off-line simulation tool TSAT®, while
the solid lines represent the results from the proposed GRU-
SGM. The zoomed-in figures in Fig. 20 (e) and (f) prove that
the GRU-SGM is still accurate during the severe load change
fault.

Meanwhile, in such an integrated network, the distur-
bances after sudden load change also spread to the following
14 subsystems through the 15-T HVDC grid. Fig. 21 (a)
shows that the sudden load change causes severe oscillation
at the boundary bus. Since the responses of the fourteen
subsystems modeled in GRU-DEM are similar after the load
change, only the output voltages of System 2 are provided
in Fig. 21 (b). It indicates that the output voltages calculated
from the proposed GRU-DEM are matched with the results
from TSAT®. As mentioned, the acceleration of digital twin
hardware emulation is more than 208 times faster than real-
time, which means the proposed FTRT emulation equipped in
the energy control center has sufficient time to deal with dy-
namic security assessment to initiate proper control actions.
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VI. CONCLUSION
This paper proposed the ML based synchronous genera-
tor model and dynamic equivalent model for implementing
an FTRT digital twin of a large-scale AC-DC grid. The
GRU-based ML strategy is able to emulate the multi-mass
synchronous machine with high accuracy. Compared with
traditional iterative method, the GRU-based machine model
has significant advantages in resource consumption and exe-
cution time during hardware implementation. Meanwhile, the
GRU-based ML method is also applied to create a dynamic
equivalent system. Since the GRU-DEM replaces the com-
plex computational model in the external system, the execu-
tion time of emulating the hybrid AC-DC grid is accelerated.
The utilization of the FPGA boards containing the high-speed
communication interfaces enabled emulating a large-scale
power system in parallel, and a 208 FTRT ratio was achieved.
Furthermore, two case studies were emulated to validate the
accuracy of the proposed model with contingencies that differ
from the training datasets. The FTRT hardware emulation
results of the integrated AC-DC grid are highly matched
with those of the off-line simulation results from TSAT®.
Therefore, the GRU-SGM and DEM executed on the FPGA-

based FTRT emulation platform can help predict upcoming
disturbances and initiate remedial actions, which is signifi-
cantly meaningful in an energy control center application.
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