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Thls thesis dedals with the problem of finding the RN
minimum cost path between two pOints on a plane, for which

an 1nhomogeneous cost is defined/ It is a problem in the

calculus of variations and requires the minimization of a

l

cost- distance integral. The solving of the~result1ng Euler-
Lagrange equations is av01ded by representing the integral
w1th an obJective function whigh ‘can then be minimized us1ng
a variety of mathematical optimization techniques The

decision variables for thlS ObJeCthe function define the
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location of the linKs of a descritized path and therefore a.

) % v

minimum f the function provides the minimum cost path This
|

method can be used for dnfferent cost surfaces and for paths

subJected to both linear and non- linear constraints.-

The case studies preséhted consider a number of
surfaces ‘and constraints The' cost surface represented by
C(x y)=Kexp(-Ax2- By2) is used as a theoretical mode | to
demonstrate the interaction between cost and distance.

Minimum time paths for the velocity surfaces of Wardrop -

- (1969), and‘Angel and Hyman (1972b). are calculated In

addition three cases deal with 1mpostng lihear and non-
linear constraints on the path .

Current literature eXplores the use of transformation

methods to derive minimum cost paths Puu (1978b) considers .

.transforming the cost surface into another surface which

upon distance equals.cost. The minimumfdistance path defined
: | .
iv

y
2
s
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as the geodesic is showh toﬂﬁepresent the minimum cost path:
The relationship between the geodesic and the minimum cost

" path is explored and discussion ofvthp tran;igggatjon me thod

- ’ N /

N

isoprdyided.
1t s genéraily conc luded that solving path related -
v+ ,problems by minimizinq objédtiég functions is realistic and

‘feasible.

~
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.Chapter 1 The Minimum Cost Path Problem °

1.1 Introduétion 1
Locaffng Optimal paths in geographic space is a problem
often encountered by man and much energy is directed towards
its solution. Nearly every person undertaking travel seeks
to optimize some factor such as trazsl'fime, distance, cost,
br even available scenery. Attempts at path optimizétion are
evident in the type and location of transportation ‘
facilities man has constructed. krom the short cuts seen in
student trave]lpatterns on university camp;ses,'to |
interconnected modern airline routes, man éftempts to find
more efficient transportation routes. With increasing energyv'
costs of providing both facilities'and-transport, the
opfimal location of fransportation routes is of increasing
interest to the geographer, planner, and engfneer.

Optimal paths have been observed in the movement Of;
nearly all nétural phenomena such aé the passage of light
J through variou§&meaia, the meanderipg of streams, anima]l
; paths of 1ea§fwénér9y expenditure, and avalanche pathé oh
mountain siopes. In the past the theoretical ana]ysis_of
these paths has been Jeft more to the physicist_and
méthematiéian than to the géographer. The mathematical
analysis required to éXplain the locatioh oF~optiha1 paths
has been beyond the interest and capabilities of most
geographers. Current geography, however, requires the

1 .
methods of other disciplines to advance its own theoretical

1 :



bASQV The main body of theory concerning nﬁg}mum cost paths
occurs in physics and mathematics. As shown Angel and
Hyman (1976) and more recently by Puu\(1978 a,b.c), the
application of optimal patﬁitheory is- of incbeasing concern
to geégfaphefs. |

This study is concerned with the methodoloéy of finding
optimal baths.connect:nd two points on a plane. Optimal, in
this sense, is defined in terms of’minimizing some functibn
of tramspbrta£1¢n cost. The design of this thesis is as
follows. Chapter 1 describes the minimum path problem.
Chapter 2 develops tHe theoretical framework for finding
minimum cost paths and;provides a brief review of the
literature. Chapter %/éxp]ains the techniques of |
mSThematical‘optimizétion used to find theijnimumvcost
path. Examples of both ungoﬁgtrained and constrained minimum
cqst paths are presented in Chapter 4. %he relatioﬁship
bétween geodesics and minimum cost paths is examined th

Chapter 5. The concduding Chapter 6 provides a discussion on

.the further deVelopment of mihihum cost path methodologies.

%



1.2 The minimum cost path o

The opt1ma1 path problem concerns locatwng a path of
minimum cost connecting two points on a plane ‘Before such a
path can be calculated two criterialmust‘be met. Eirst, the’
path-must be ‘free to locate anywhere on the Euclidean plane
representing a general physical surface. Secondly, a coSt’
surface which prov1des a transportat1on cost for every point
on the p]ane must be def1ned Many types of transportat1on
cost variables have been modelled and these can represent
the cost surface. Angel and Hyman (1976) usestravel velocity
as the inverse of a cost surface Qaeiablem Turner (1971)
uses a combination of constructlon aoo land acqu1s1t10n cost‘
var1ab1es and Warntz (1965) uses population potential as a
‘land acqu1st1on cost var1able Concelvably. a comb1nat1on of
travel, construction and-time costs, such as W1]sonfs,(1974)
"generalized cost function", cou]d be incorporated into the
cost surface. This research does not concentrate on fhe
developmeht of cost surfaces; it assumes them to be given.
Rather, it pursues the problem of finding minimum cost paths

\

for such suhfaces.

Once a cost surface and a pafh have beeghdefined, the
totai cost of the path can be'calculated For the
homogeneous or constant valued cost surface the total cost
‘1s calculated by mult1p1y1ng -the distance of the path by the
cost per. unit d1stance. The cost of a path for the S

inhomogeneous or non constant valued cost surface is

oalculated similarly. Rather than multiplying.the totai

AN
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~distance of the path by one cost, each part of the path must
be multiplied by the cost attributed to that part andAgummed>w
for the_totél. This calculation is equivalent to finding the

perpendicular cross-sectional area above fhe path. which

extends between the plane and the cOst‘surféce. ~.

v On a geBgraphic b]ane.for which a homdgeneous cost
surfacé5ﬂs defined'thé miniQO cost paths are straight
lines. Figure 1 demohgtiates two paths for a homoQéneoug
cost surfacé. The constant value of thfs surface is g{ven by
the forgulétion C(x,y)=K,‘where x and y are coordihates and
K is‘a constant équal to 5.0., The parameteré "A", "B", and
. "BC" which are all equal to 0.0 are used to formulate more
complex coéf sﬁrfaces discussed later. Two paths are
demonstrated in this figure. Path 1'consist$ of, two 1inks
with a total length "DIST" of 7.80 and a total &t “CosT"
of 39.02. Path 2 connects the two innts‘withva straight
" 1ine of length 5.86,ahd cost of.28.28. Each of these costs
can be derived by multiplying the distance by the constant
-value of the cost surface. Fqure 2 illustrates the.aréa.ér
total cbst ofieach path. Pafh 2, the straight line,‘fs the
path with the'least'aréavand cost. -

| ‘Minjmum cost-pafﬁs fbr 5nhomogenéous cost surfécés‘are
usually not straight.’Figure =sﬁ§ws two paths on an |
inﬁomogeneoUS?COSt surfaégf/?i; surface ié“projected ontég'
the plane by an isoﬁap in which isocost lines jokn‘pbihts of-
equa1 cost ber unit distance{ In’addition-to tHe'variab]e

cost sufface each path is subjected to a éonstaht base coét-

<]

1
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shown by the symbol "BC" in tidure 3. This base cost
represents cost'which'can be applted as a constant
throughout the length of the path; such‘as those‘arising A
" from road surfacing, the cost‘oftwire, or‘even energy usage.
The isocost lines do not reflect the base cost. The total
Cost (area)_ofaa path is dertved from two costs; the base
cost multiplied. by the path_distance and the cost |
| contributed‘by theecost surface. For - instance, if costs'ared
in dollars andtdtstancelis%in Kilometers, therdirect_path 1
is 5. 66vkm long and costs $30.60 at an average‘cost of'
- $5.41 per km. Path 2, whwch avo1ds the hwgh cost center, is .
10.42 Km ~long w1th a total cost of $12 25 gtv1ng aniaverage
k cost of $1 18, per km. In the cost versus d1stance plot in’
j,F1gure 4 the area for path 2 is less than that for path 1
'demonstratxng,that pathv2\1s less costly]thanApath 1, Evenl
though pathré is of éreater diStance‘than.path_1l.the‘lower
cost perfuntt distance results inva:lower total cost.
Intu1t1vely, minimum cost paths fo]low 11nes of least
| res1stance The 1nct1nat1on for people to take short. cuts
. supports the 1east res1stance pn1nc1p1e Even 1f the cost
'cr1ter1on 1s changed from d1stance or travel twme to one of
comfort the least res1stance pr1nc1p1e st1]1 holds
Mounta1nous 1andscapes result in roads that w1nd through
“fmounta1n passes The s]ope and s1nuos1ty of such roads 1s 2
ﬁ'measure of the res1stance prov1ded by the landscape |

' t.Accord1ng to Burghardt(1969) 1n1t1a1 pr1m1t1ve roads:ﬂocatedh

'f;'to 1nter connect_admtnlstrat1ve centers in the most

[



’f short h1gh cost area are: more econom1ca] than those tak1ng a‘vv

10 -

efficient manner possible. The Banff-Jasper Highway
connect1ng the two towns was a dirt road cdﬁgtra1ned to 1‘
locations that a]lowed for easy river cr0551ngs and
avo1dance-;f steep gradients. The 1ocat1on howeVer WasA
éft]y through trees, avo1d1ng the more ‘scenic locat1ons
The upgraded h1ghway, w1th a higher construct1on budget
prov1ded a more scenxc route. If scenery were consldered-toy '
beithe optimtaation griterton‘the‘newthighway could be
con51dered to be more cost effecttve Opt1mum paths w1th1n
urban env1ronments often, re]ate costs to travel time. Ring

roads around urban centers are located to trade of f the costr

land acqu1s1t1on w1th the ab111ty of the road to ease

e congest1on Regardless of the type many paths |

'resutt from attempts to opt1m1ze some real or perce1ved

cost

Locat1ng a m1n1mum cost path 1s not a tr1v1al problem
Intuitive methods can resu]t in . non- opt1ma] paths because '
the chosen path often accumulates too much cost by be1ng
ettheq too long or too short In. add1t1on opt1ma1“paths
often trade d1stance and cost Somet1mes paths travers1ng a“v

1onger but less costly route The reverse may a]so be true.

Only s1nce Werner and Bouk1d1s (1963) have 1ntu1t1ve methods

| been g1ven theoret1ca1 and mathemat1ca1 express1on The

: prov1s1on of such expre551ons has not reduced the problem to._'

‘i:j a. tr1v1al one for the1r analysas requ1res the solut1on of

d1fflcu1t part1al d1fferent1al equattons Modern numerlcat O

NN
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me thods and computers have a]lowed workers such as Turner
(1971) to ana]yse app11ed eng1neer1ng problems and prov1de

-the geographer w{{;\\he tools to ana]yse a wide - range of

optimal path problems. ’ /

<h ) .
- T

g

11



‘Chapter 2 Known Solution Methods

“

>

2.1° Early mathemat1oal development of path problems |

In their fundamental dtssertat1on What is Mathematics?,

iCourant and Robb1ns (1941) demonstrated that early
'hmathemat1cs was developed from the geometry of p01ntsA
l1nes. and surfaces tn geometry many max1mum and m1n1mum
prob lems concern1ng l1nes (paths) have been}formulated and
: the solution of these problems‘has led to the: mathematics
‘~dusep today The follow1ng d1scuss1on presents .SOme of the
'kclass1cal path problems Khown for. the last twenty centur1es
o . The GreeKs accepted w1thout proof that the shortest

4 :path between two pofnts on a plane is a- stratght l1ne

, s :
'Although many theorems in the Eucltdean geometry depended on

;th1s observat1on the Greeks found no reason to doubt thts,
:ax1om Perhaps the Pythagorean theorem may have served as an

1ntu1t1ve proof The Eucl1dean geometry was not only an i

"-academlc exerctse for the Greeks but also a tool for

N

“expla1n1ng natural phenomena Heron, an Alexandr1an ltv1ng
in. the f1rst century, showed that the angle of 1nc1dence of
a reflected llght ray was equal to the reflecttve angle
;-Courant and Robb1ns cons1dered th1s dtscovery to be "theﬂ
‘germ of the theoryvof geometr1c;l opt1cs '

| The(contr1but1on towards m1n1mum path theor1es by , |
':problems concerntng l1ght rays 1s exten51ve Dur1ng the late

rfrenna1ssance, Snell (1591-1626) formulated the law of ,;ﬁ

;refract1on Wthh descr1bes the path locatlon of a l1ght ray

B )

ped
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. as it passes from one medium to another. His law states that
4 sin'A/sin‘B=u7} ‘uhereéA and B are the angles the light ray
‘maKeS'wtth the erpendicutar interface, and u and v are the
' velocittes of the light in the ‘two mediums Lat§§ in the
‘seventeenth century Fermat used the ca]cu]us to prove that
the refracted path of Snell was 1ndeed the shortest time
path through the ‘two media. Fermat extended th1s ana]ys1s to.
11ght trave]1ng through many med1a of 1nf1n1te]y sma]]
thlcknesses and developed his pr1nc1p1e.of geometric
opt1cs Losch (1954) used thls~refraction'1aw to descrtbei
. the 1ocat1on of the 1east cost transportat1on route in a
 sea/land 1nterface ' | _». e
Fermat was not the only mathematician who contr1buted

to the ca]culus and m1n1mum path prob]ems in the 17 th
century The famous‘"brach1stochrone problem posed by
| dohann Berhou111 for hls 1ncompetant older‘brother John
created even more 1nterest in minimum path'problems
"Imagine a part1cle consgra1ned to s]1de w1thout frtct1on
| along a certa1n curve Jo1n1ng a po1nt A ‘to a 1ower po1nt B
If fhe partlcle is allowed ‘to fal] under 1nf1uence of C,
grav1ty alone, along wh1ch such curve W11] the t1me requ1red3ﬁ
. for the é%scent be 1east° (Courant and Robb1ns, page 379 .
quot1ng ACTA ERUDITRUM a* 17" th century sc1ent1f1c Journal)

"A The problems of ;ermat and Bernou111 were recogn1zed in |
'the1r time as not be1ng solvable by d1fferent1a1 ca]culus .

wh1ch requ1red known funct1ons (or curves) for its

'_operatIOn Euqenvand Lagrange (17~6E1813) found a“general



L T

G

‘14

>

-

 method for. determ1n1ng paths- wh1ch minimize some varwable(s)

L

such a
7.

Fermat’ s pr1nc1ple Their method, called the calculus of

var1at1o.s was one of the most 1mportant developments for

the applled mathemat1cs and can be found in the solut1on

\methods for many"opt1cal mechanical, phys1cal, and

N

the ell1ptlcal geometryr

: cartographtc problems

yﬁ Geodes1cs have been in use 1n cartography for many

centuries, yet.thelrvcontr1but1on to gpat1al analysys has

until recent]y been Jimited mainly because the calculation

- of geodesics:on‘surfaces other than a‘plane or a sphere

requires~a calculus of -variations approach. The geodesic is

u

time in the."brach1stochrone problem or d1stanoe in '

-

the shortest. path between two potnts on a surface. Geodes1csr

’ o

form the basis for understandtng and def1n1ng many non-

B
Euclldean geometrles Bernard Riemann (1826 186%) dtscovered
the ell1pt1c geometry, in whlch the geode51cs are stra1ght

l1nese The earth is an ell1p501d and the great c1rcle curves

or geode51cs on the surface ‘are def1ned as stra1ght l1nes 1n”

‘7’7/"’( Q.' B : " . ¥ ‘l,:(_\‘

2.2 General mathemat1cal formulat1on .

Ex1st1ng general mathematical formulat1ons for def1n1ng.

m1n1mum cost paths may - be separated 1nto two types f1rst,_,,

cont1nuous path fo 'ylat1ons requ1r1ng cont1nuous cost

ﬁ_surface and secgndly, d1screte path formulat1ons whlch have\

been developed for both d1screte and cont1nuous cost

8

| surfaces Werner and BouKidisg (1963) prov1de the most



general formulat1on Their development is incorporated into

the following d1scuss1on | h

2.2.1 Continuous path formuletions

For a 2-dimensional geographic plane described by x and
y coordinates, the cost at any point plix,y) is given as:
C=f(x,y) ... (1) Define a continuoue path s between two
pqints on the geographic plane as an infinite number of
connected links of length ds “where

ds= ‘ﬂdx }2 + (dy) ................... P R (2)

-

The total cost T of a path constructed between two points

- pf:
T(S)i/gi(x,y)ds, £

P

»oxf "’ ’ B
v/;(x 27 1+(dy/dx)2 dx ... e (3)

Xo

P (x o.y ) and Py (X, .y, ) is given by:

Werner and Boukidis (1963) recognized that the'minimization

of (3) requires a calculus of variations approach. Equation

(3) can be. generalized as: - g
N

Minimize Ti/;(xpy.y’)dx, ......... R TT (4)

Xo

where y’ =dy/dx. The solution to this equation is given by

the Euler partial differentia] equation

F/dy - d(éF/ay')/dx S0t P (5)

Werner and Bouk1dls (1963) provide a deta1led development
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A more rigorous solution description for the general
'
equation (4) was given by Howard et al. (1968). The
I3 ’| ' '\ ‘
coordinate variables are placed in parametric form as x(t)

and y(t). The parameter t could be defined as travel time.

Then, equation (4) becomes:

t.
Minimize T=j(%FX(t).y(t),i(t),§(t))df, ................. (6)

t

4

where i(t)=dx/dt, and y(t)=dy/dt. The solutionvof (6) is

given by the Eule}-Lagrange equations:

d XC(x,y) =“§2+§2 oF _ )
- dt V§2+§2 - X, ... e SR (7.1).

E )./Ct(X,Y) - ,).(24.}./2 .B_F ‘
dt «§2+92 OY 1 i . e (7.2)

which are the conditions for an optimal trajectory as

developed by Pontryagin (1961). This approach, called the
optimum curvature principle by Howard et al. (1968), was

~developed for the”bptimum 1oc§tion of highways.

2.2.2 Discrete fonmb]ationsA f

Genera]ly not all cést surfaces or paths can be
repr?sented in continous form. Werner and BouKidis (1963)
sqggést that continuous problems ére specific cases.of the
more general discrete formulation. The ihtegral of equationvi

(3) becomes a summation. The total cost from point P(x,,Y, )



to P(&H{%ﬂ)=P(x',x ) is defined as:
:'ln—l
T= ) ClX,yl 8% 2 + Ay2 (8)
1
=
. where nw=humber of tinks, AX; =X 07X and ' AYLEX¥fX . As
AX, . Ay, approaches zero (8) approaches the continuous

formulation (3). The path s is defined by the points
P(xi,yi), t=1,...,n. This discrete formu1eti0nvis more
general than the oontinuous one because of the diffebenti‘
ways the cost surface can be defined; The‘cost Cix,y)
defined at a point P(x,y) can be rephesented ina number.ofl
ways: ' | o

- by a continuous function as defined by (1)

- by contiguous areas of constant cost (cost planes)

- by a hatbix of costs representing Qatues at points
P(x,y) in the region of 1hterest. The solution methodo]ogy
eppropriate to minimizing (8) depends on the characteristics
of the cost surface. \ , , L 3 \

If the cost surface Clx,y) is:smooth the Euler Lagrange
eguations (7.1) and (7.2) may be used to find the minim
path. Not a]] cost surfaces provide for simple ana]yt1ca1
- solutions to the Euler-Lagrange equat1ons SO numerwcal
‘ techn1ques as suggested by Howard et al. (1968) must be used.
Rankin (1979) deve]oped an art1llary me thod torsols the
Euler—Légrange equations His method utilizes the bouSﬁary

: conditions that requ1re the solution to pass through both

end potnts By shoot1ng from one point to the other with



different angles and path lengths, and integrating the
Euler-Lagrange eqoations using a 4'th drder Runga-Kutta
‘atgorithm, Rankin’s’method converges to.an extremum path.
This path is then examined for a possible minimim.

A general method for finding minimum cost paths on cost
surfaces deftned by contiguous areas of constant cost has
been presented by Werner (1968). He extends Snell’'s
,,refract1on principle and the appl1cat1on of Losch<to\a path
travers1ng a number of cost p]anes and proves that a unique
set of refractton angles exist for the minimum cost path.
Wardrop.(1969) a]so uses the refraction method in’

, calculat1ng opt1mum‘paths for cont1nuous cost med1a

Minimum path algor1thms provide solu(ton paths for cost
surfaces represeﬁted/at dtscrete po1nts Each link between‘
. two points on the geograph1c plane is given a value
proportional to the cost of connecting the two. points. A
' matrix of costs is,constructed Where -a node (or'element)
(1,3) of the matrix prov1des the cost of the 11nk connect1ng
the point P( XY, ) with P{x a,y.). Two types of algorithm are
descr1bed by Steenbr1nk' the tree building a]gortthms wh1chA
build the shortest tree from each node to all other nodes,
and matr1x algorithms, which calculate the shortest paths
between all nodes and all ‘other nodes and store the paths in
matr1x form. Moore (1959) devetoped the earlier tree
bui]ding algorithms 'Fol1owing this: "once through" tree
-building algorithms were . pub]1shed by D1JKstra (1959) and

}Wh1t1ng and Htllter (1960) . Eff101ent matrix algorJthms were



developed by Floyd (1962), Dantzig (1966) and Farbey et al.
(1967). One algorithm developed by Murchland (1967) allows
for a change in.one link without recomputing[aji the .'
shortest paths Steenbrink discussed heuristic.procedures
which provide very good solutions with efficieht use of

computer resources. computer resources. Dne such algorithm

. developed by Murch]and (1967) allows for a change in one

1ink without recomputing aii the shortest paths. Steenbrink

also mentions the use of dynamicvprogramming as is

. 1ncorporated into the soiution procedures described by

Turner (1971) Goodchild(1977) recentiy deve loped heuristic

procedures to find minimum cost paths through iattices

defined in an urban setting

2.2.3 Alternative Methods, ;
Alternative me thods for finding optimum paths have been

developed by geographers ahd engineers in order to soive

specific problems within their respective disciplines

Surface transformation me thods arerthe mos t impor tant of the

alternate methods for geographers because they have a solid

basis within cartography The engineer, who is more

_interested in practica] applications of the optimum path
‘methodoiogy, has deveioped complete computer systems for the

analysis of cost data and fea51ble paths

" The soap film experimentSvof the Belgium physicist

Plateau (1801-1883) providedngeherai insights in solving

calculus of variations problems. Plateau observed'that'soap_v
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.K)
films suspended between surtaces and or edges minimized
their areas. Courant and Robbins (19415 demonstrate a wide
range of geometrica],'topological and variationat.problems
solved by soap f1lm analogies. Steiner’s problem and it's
three-dimensional extensions are easily solved An
_ experiment‘to solve the problem of this thesis”could also be
‘designhed using soap films. A film is suspended between the
closed area bounded by‘the plane, the cost surface, and two
perpendtcular edges above‘the end points. After the soap
.film is stabilized, the contact by the film on the plane
should trace the minimum cost path.

Minimum paths for radially symmetric cost surfaces have
'received recent attention by Angel and Hyman (1972at; and
Puu (1978 a,b,c). They have transformed\the velocity (cast)(
surface into another surface where upon the geodes1c | |

corresponds to ‘the minimum time (cost) path The1r methods
‘are d1scussed AN Chapter 5 |

A systems approach emp]oytng a w1de range of a]gortthms
has been used for opt1ma1 route locat1on by eng1neers in _
both North America; and Europe. Howard et al. (1968) suggest
that the1r opt1mum curvature pr1nc1ple can be 1ncorporated
g within an eng1neer1ng system such as "TIES" (Tota]
Integrated Englneerlng System) descr1bed by ‘Schureman (1955t,
or the Massachusetts Institue of Technology ICES (Integratedg
Civil Eng1neer1ng System) as descr1bed by Ross and

Schemakcer (1965) Dynam1c programmtng techn1ques are used

to solve thesEuJer tagrange equations 1n,thesevsystems._More -
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recent systems such as. OECD (Road Research Group in Parls)
developed in Paris, and GCARS (Generalized Computer A1ded
Route Select1on System) developed_by Turner and Miles (1971).
utilize a comblnatibn of minimUm'cost algorlthms and dynamlc
programmind methodsT The CCARS system.uses the.oncebthrough |
algorithm ofVWhiting and Hillier (1 960)’in conjunction with
an objettive funct1on whlch consists of a utility surfacel
‘ lcalculated with a comb1nat10n of trend surfaces represent1ng
local cost factors and the distance calculated from a
networK of 1nterconnected l1nKs

L

2.3 Discussion
TR o , o S
- Unt1l now, the‘existing methods have been mentioned,
+

but no attempt has been made to evaluate them as’ to the1r

su1tab1l1ty to solve theorettcal and emp1r1cal geographlc B
’ ﬁproblems The follow1ng discussion considers the methodology
cchoosen for this thes1s A common set.of criteria uhich'can ’

be used to evaluate these methods 1s d1ff1cul%§t§ obtain,

R

E because the ex1st1ngvmethods-are ta1lored_to svl euspecific

types of problem

The first of the methodolog1es is conta1ned W1th1n the‘ 'h"

Lmathemat1cal development g1ven.byJWerperkand BOUKldls (1963);g'
and Howard et al ‘(1968l ‘Although’the Euler?Lagrange‘_
equat1ons (7 1) and (7. 2) prov1de a good theoret1cal -
'def1n1t10n of the locatlon of the m1n1mum cost path the f

’exact solutton of these equat1ons 1s generally very

' ;dtffncult Th1s is supported by Courant and Robbins: (1941)
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It is usually very d1ff1cult\ and sometimes
1mposs1ble to solve variational problems-expl1c1tly,in '
‘terms of formulas or geometrical constructions involving
simple elements. ilnstead‘ one isdotten satlsfied ‘with
merely prov1ng the ex1stence of a solut1on under certain
cond1tlons and afterwards 1nvestlgat1ng propert1es of the
| solution. In many cases, when such an.ex1stence‘proof ’
turns out to'be more'or less dlftlcult‘ lt iS'stimulating
to reallze the mathemat1cal condltlons of the problem by
fcorrespondlng phy51cal dev1ces ~or rather to con51der |
"the mathemat1cal problem as an 1nterpretat10n of a
phy51cal phenomenon The ex1stence of the phy51cal 3
"phenomenon then represents the solut1on of the
mathemat1cal problem (Courant and Robbtns page 386)

Howard‘et al‘(1968) prov1de a famlly of solut1ons to the -

, Euler Lagrange equat1ons for an exponent1al cost model by

‘numer1cal 1ntegrat1on of the obJect1ve funct1on (6) is an

eas1er problem. Generally, however the solut1on of these

- equat1ons for a geograph1c appl1cat1on is too ted1ous The
use of soap f1lm eXper1ments to prov1de solut1ons to these l*~

~equatlons also has pract1cal problems because a phys1cal

representat1on of the cost surface RE dlff1cult to |

//

' construct If constralnts are placed on path locat1on newq -

: Euler Lagrange equat1ons may have to be developed from flrst

3
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principles. Rankin (1979),mentions that considerable .
modtfcation tothjs method must be made before he can
tncorporate.COnstraints into his numericaT method The lack
of ]1terature explortng this problem area 1nd1cates ‘the.
*d1ff1culty w1th thls purely theorettcal approach o
| ~ The representatton of both conttnuous and dtscrete cost
"surfaces_byvmany,planes of/constant cost values as
psuggested by.Werner t1968) demands the acceptance of two
A,assumptions F1rst1y. Werner (1968) .assumes that. the )
geograph1ca] cost surface may be adequately represented by a
tset of these conttguous cost planes Secondl;, he assumes
ithat the refracted path at the 1nterface between two cost
.planes is acceptable and real1st1c for many types of paths
For paths represent1ng roads through landscapes w1th sma]]
1var1attons 1n cost the method ts proven to be adequate by
:Werner and Bouk1d15(1963) However. some cost surfaces
represent1ng trave] time wtth1n an urban env1ronment may be
ivery d1ff1cu1t to approx1mate w1th constant cost planes Theh
secost surface may have very steep gradlents and if the numberh
’ of cost p]anes represent1ng thts surface is smatl the f
"‘refract1on ang]e of the path may be very 1arge By i
:1ncreas1ng the number of cost p]anes the path may ]ocate 1ntj;”
a d1fferent regton Werner s method also requ1res that the
set of p]anes to- be traversed by the mlntmum cost path be‘
known before the-refract1on angles can be calcu]ated Th1s_”

| requ1rement may be met by the,so]utton methods proposed in

t'thts the51s In add1t10n Werner<5uggests that constra1nts R
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‘must be cons1dered but he'does‘not<incorporate them into
. his solut1on methodology Werner concludes that h1s |
part1cular "model provides- only baslc concepts on wh1ch to
develop a theoret1cal approach | | |

The most general of all solut1on methodolog1es are

found in ‘minimum path algortthms Dnce the surface is

o represented by po1nt to po1nt costs a var1ety of algorlthms

‘can be used to calculate the m1n1mum cost paths The use of

these algor1thms by engjneers.1nd1cates the1r\advantage 1n@h

‘;;being'suitable.for solving practical«problems.'The |

| ~d1sadvantages of using. m1n1mum path algor1thms are \
threefold F1rstly,_for very large problems the computat1on

:costs of some algor1thms are unreasonable, even though a

. varlety of heur1st1c techn1ques can be used to prov1de o
ff1c1ency (see Steenbr1nk (1974) Chapter 7) Secondly, the_ A

solut1on vector is restr1cted to the gr1d po1nts def1n1ng

the cost surface hence the~m1n1mum cost path is no more

prec1se than the dens1ty of the gr1d The third d1sadvantage

'.conCerns constra1n1ng the path to. certa1n cr1ter1a such as

| slope rad1us of curvature or . other factors E1ther the : r,é
Jm1n1mum path algor1thm or the cost matrtx must be mod1f1ed

‘,to 1ncorporate thls type of constralnt . |

| The systems TIES and GCARS have been used to resolve

- many emp1r1cal englneerlng problems concernlng minimum cost

paths The GCARS method uses the m1n1mum path algor1thms ‘

Qd1scussed above and menttons the _same concern for ],

computat1onal eff1c1ency W1th large gr1ds The TIES system '
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general framework which is suitable for theoretjcal\

25

_uses minimum path algorithms in conjunction with numerical

integration of the cost integral to define alternatiye

o
minimum cost paths. The expansion of”these §&stems into a

&

geographic application is a software evaluation problem

: beyond?the scope of this thesis.

2,4 The mathematical optﬁmization formulatlon

As1de from ‘the GCARS system descr1bed by Turner (1971)

» there have been very few attempts made to use a mathematical

'opt1m1zat1on approach to solve. the ba51c m1n1mum cost path -

problem Steenbrtnk (1974) suggested that a d1screte

” formulat1on such. as presented by “an equatwon s1m1lar to (39
-can be very eas1ly solved us1ng dynam1c programmlng if the"

_ path can be represented as a- sequence of connected po1nts

The use of mathematlcal opt1m1zat1on to solve m1n1mum cost

‘ path problems espec1ally related to road locat1on was.
':dtscussed in the two sympos1a of  the Plann1ng and Transport

'Reasearch and Computat1on (1969 and 1971) and 1n1t1ally by

v

o o Werner and Bouk1d1s 11963).

o~ -
A mathemat1cal opt1m12at1on formulat1on of the m1n1mum

path is g1ven by.

ot |
Minimize F;EE:C(P P T (9)
1=0
N . . . ) N . N . .
:where C(P ) C(xl,y ) and D ,J(x X, )2 +( 7-y )2.,.and n

‘equals the number of l1nks connect1ng P(x ,y ) and P(xf,n l.
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"quation (9) is known‘as anvobjectiye function, the meaning
~of which can be'expreseed as: "which pointswPi,i=ﬁ,..-,n
m1n1m1ze the value of F (or the cost)"; A general treatment
of thts objective funct1on is given in the next chapter -
_The ,use of mathemat1ca1 opt1m1zat1on has merit. By\
~minimizing the discrete’ vers1on of equation (3) there is .no
need to solve the Euler- Lagrange equat1ons (7. 1T and (7.2):
- The obJecttve funct1on is: f]ex1bte The genera1 cost surface
C(x y) . may conta1n any combtnatton of cdst surfaces @s 1ong
aeheach surface is cont1nuous]y d1fferent1able for every : al

po1nt (x y) The path def1ned by n l1nks can also be
) o_1nc1ude costs dependent on on]y the path/;Both

nonl1near cqnstratnts 1mposed on the pafﬁ\ca be
jfh accord1ng to well developed opt1mtzatton
ogy Flnally, dtfferent objecttve funct1ons can be e

ed to accommodate a w1de vartety ofpath- m1ngmtzat1on

- &
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Chapter 3 The Objective Function:wimplementaton and Solution

e
A

3.1 Mathematical optimization - . = ‘s
The minimization of the obJectlve funct1on (3) may be

ach1eved through the use of non- ltnear mathemat1cal
a

_opt1m1zat1on technigues. A general 1ntroduct1on to

mathematical optimization can be found ‘in Aok1(1971).

Steenbrink(1974), or in a Varief§ of text books. Steenbrink

formulates the general mathematical opt1m1zat1on problem as

—

fol]ows | . ‘ ';~1 - _" .
"It 1s des1red to determ1ne values for n var1ables

., Xs in such a way that the vaTue of a functton

1.,.. n

- of these yvariables (E(xyaux5)) is as Targe or-as
: - ¥ B . ’ N )

’

small as\bossible. Thevvariables Xy 0o Xy are‘calledﬂ

dec1s1on variables or instrument var1ables ' The
functton F(x ,:.ﬁ,xn) is cal]ed the obJectlve
funct1on; The obJectlve funct1on must be max1m1zed or
t m1n1mtzed ~ | '
B Moreover there (may) ex1st certa1n | 4

. a

”reTat1onsh1ps between ‘the dec1s1on var1ables and/or
7 .
.the dec1s1on vartables or funct1ons of the dec151on o
- var1ab1es wh1ch must sat1sfy some 1nequaT1t1es or'

ll

equa11t1es These are calTed constra1nts '

7The m1n1m1zat1on problem is genera]]y formulated as:
r:M1n1m1ze F(x,,i;.;xn).yt.;};;(g;.;.;;:..t}..;p.,f;;...;w(JOT"

subJect.to,gj( i..éf.xh)SO J f,nc, Y

'~,_27_,



and hkfx1,...,xn)=0, K=1;neq;~ ...... f........:..t..:“...L11)
»where nc equals the number of ihequa]ityAconstraints and neq
eque]s tH%‘numbéruof edua]ity constraints. -3 |

The prcblem is expressed in‘yector notatton as:

minimize F(X), s.t. G(X)SO, H(X)=0, .., ....... U L 12)
“where X=}1,...,x The bonditicns for minimizing this
i 1 ‘ ) oA
objective function hre seperated into unconstrained and

-

n:

constrained types. | ~ L,
¢ /

The conb1t1ons for der1v1ng a m1n1mumjof an A
unconstra1ned ob3ect1ve funct1on are now exahlﬁéﬂf Def1ne X=
as an opt1ma1 vector of dec1s1on vartables that m1n¢m1zes
(10) vThe necessary cond1tlons fo the m1n1mum X* requ1ne -

¢
that every part1a1 der1vat1ve of F with respect to X ,i=t,n

be equal to. zé?o The vector of part1a1 der1vat1ves is -t

called the'grad1ent ‘and is g1ven by » _ y‘ A
TE(K)=(3F /3%, ..., OF /3%y ). i B S 1E

For a-cdnvex'F X* is-a" local énd a glcbé] m?nimum if and

only if the grad1ent is qual to zero. F 1s convex i f- for

’ ) N > ! R A

FHIXy ) <AF(X1)+<1®x)F(x ), {Ff osxs1 ; Z‘ SR <
If F ts s“r1ct1y convex and- the grad1ent is. equal to zero; :
then X* is a un1que globa] m1n1mum F s str1ct]yhconvex_1f | -
for any XI,X o R | o :
| F(AX1+(1 -A) Xy JNF (X )+(1-A)F(x ), if 0CNCT.
‘W'- The euff1c1ent cond1tmons for a local m1n1mum cen be

tested by der1v1ng the Hess1an matr1x of d1men51on (an)

| Th1s matr1x 1s ca]cu]ated by taktng al] the part1a1

S
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derivatives of the gradient at X* which are given by:
HESS(X*)= oF2/ dx, X, e e e (14)

where i=1,n"and j=1,n. A local minimum can be declared if
the Hessian matrix is positive definite. A symmetric matrix

is positive definite if and only if all eigenvalues are

greater than zero. A positive semidefinite matrix requires

a]l(eigenvalues to be greater or egual to zero. If the
Hessian matrix is positive semidefinite at %*, no decision
on whether X* is a local minimum can be made. vInstead the
eigenvalues of the Hessians evaanted in the ne1ghborhood of
X* must be examined. If the e1genva1ues of these Hessians |
are all non-negative, then a 1oca1 minimum can st111 be
claimed. A more complete discussion of the cond1tlons

required for 1oca1 and global minimization is found'in

ASteenbr1nK(1974) Aoki(1971), and Hauer(13974).

For general m1n1m1zat1on problems with constra1nts, the
obJect1ve f ncj1on (10) and constraints (11)'are ‘combined
with the use of Lagrangian'multipliers to give the
unconstrained formulation:
minimize K(X,L,Ub=F(X)+LTa(X)+UTHX), ... 0008 oL, (15)
where L=]1,...,1nc and U-u1,...uneq. Given that X* is a
local minimum which satisfies the equal1ty and/1nequa111y
constraints givenkby (31) and at X* e suitable_constraint‘

qualification holds.}then there exist 1izo, i=1,nc, such

that the following conditions hold:
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and L'G(X¥)=0, .......oooni.... A (16)
where L and U are as defined in (15). These equations.are |
known as the Kuhn-Tucker conditions defined by Kuhn and
Tucker (1851).

Aoki(19871) classified the methods of minimizing or

maximizing an objective function into three categories:

(1) Methods using only the functional yalues, called
direct méthods.\

(2) Methods making use of the first-order derivatives
as well. ’ :

(3) Methods which also requiré Know1edgé of second-

order derivatives. Aoki(1971). ™

Generally, the solution methods used. depend on the
characteristics Qf“the objective function. Direct methods
are used for objeqtigéé?unctions for which the first and
second derivatives are difficult to calculate. First-order
derivative methods, commonly Known as gradieht methods,
offer the most flex1b111ty for solv1ng problems which haQe‘
difficult solutions and~1mposed constra1nts - Méthods .
utilizing second der1vat1v§§ require an objective function
‘and constraints with existihg'second-defivatives, Moét '
methods 1ocate’stationary points and the convexjty

conditions must be examined at these points before local or

o fv

global miﬁima can be claimed.
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following conditions occur:
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Several optimization techniques using gradient methods
have been programmed by Hauer(1974). These methods utilize
the first order derivatives of thefobjeqtiVe functibn in an
iterative procedure. An initial approximate solution X andsa

search direction equal to the negative reciprocal of the

~gradient is given to the program. The next approximate

kY

solution X is found with the recursion

X(k+1)=X(k)+t (K)D(K), k=0,1,2,3,....; where K is the

| iteration, D is the feasible search direction and t is a

scalar determining thg step size. After each iteration a ‘new

" feasible search direction is determined from the gradient at

X(K). The procedure stops at a stationary point if the
L
- (1) if the gradient beomes sufficiently close to zero

for X(k) in an unconstrained region-

“x

(2) if any search direction results in ayq%n-decrease
in the value of the objective function
{3) if no significant decrease,in F can be achieved
in a fixed‘numberaof itefatioh54
. ot .
jFor constrained minimization the Kuhn-Tucker conditions at
the stafionary pdlgt are examined. If the conditiops (16)
are satisfied, and if the objective function and the
inequality constraints are convex, while the‘équality
constraints are affiﬁe.»the statjonary point is declared a

global minimum at the constraints. For unconstrained —
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minimization, the gradient and the Hessian at the_stationary
~point are examined for a local minimum.
The advantages of using the gradient methods for our

application can be summarized as follows:

(1) The objective function is smooth and convergence
occurs in a few iterations. |

(2) The computer algorlthms available concentrate on
grad1ent methods |

(3) Constra1nts can be 1ncorporated into the so]ut1on

procedures

'A.more complete description of these methods‘isﬁfound in

Acki(1871) and Hauer(1974).

3.2 Mode111ng the m1n1mum cost path as an ob3ect1ve funct1on
The objective function- ( ’ F= z:C . may clearly
‘represent the theoretical problem, but 1t.1s not a
_particulary useful function for optimization.‘Tbe locational
Variables P ‘...,ﬁ] as defined in sect1on 2.4 are too |
.general and must be represented by a set of decision
variables wh1ch can be man1pu1ated There are many. p0551b1e
ways of comb1n1ng the x and y coord1nates of the locat1ona1
variables 1nto this set and not all me thods prov1de ‘good
solut1ons of\the obJect1ve funct1on Th1s sectlon addresses
the’ problem of choos1ng a set of dec1s1on Var1ables wh1ch

'Gprov1de opt1mum paths and at the same time sat1sfy the -
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operational requirements of the solution methodology.
3.2.1 The two link path and the objecttvekfunction

The technique of isodapanes developed by Weber (1909)
may be used to demonstrate the objective function. ‘
' Isodapanes are lines of equal total cost from’tWo fixed
points én the plane to a variaoje third point. If-the
objective function (95 is restricted to a stng]e 1ocationat
~variable, then the contours of the funct1on correspond to
Weber’ s 1sodapanes lsodapanes were used by Smith (1966) to
find locations which minimize the tota] transportation'cost

¥

of 'raw materials and finished produCts Similary, the

- contours can be used as a graph1ca1 togl to f1nd the

1ocat1on on the plane where the objective funct1on is at a
- minimum. The general form of the objective funct1on with a

s1ngle locat1ona] var1ab1e P(x y) is g1ven by

¢

F(x.y)=Co(x yd‘JtX-x )2+(y-y )2+
Cflx, y).J X=xg )2+ (y- yf)2 e e ,' ...... t"i‘(17)‘

iwhereECo(x,y) is the average cost above the f]rst 1ink and
-‘Cf(va) is the average cost above the last 11nK in the path.
{Th1s average cost is expla1ned in the Sectlon 3. 2 2. The 7“
dec1s1on var1ables of this obJect1ve functlon are the x and
Yy coord1nates of the th1rd point. DhJect1ve funct1ons for a
' homogeneous and an 1nhomogeneous cost surface are now
cons1dered | |

F1gure 5 presents the e]l1pt1ca1 contours (1sodapanes)
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for an objective function with a homogeneous cost sur face”
Clx, y)‘5 0. This cost surface is plotted in F1gure 1. A
point- anywhere on the stra1ght line: between the two end
.po1nts Tocated at P(-2,2) and P(2 -2) prov1des an opt1mum
solution for the two T1nk path Subst1tut1ng the values in

(17) the obJect1ve function becomes

Flx,y)=5.0( y[x2) 2132 +\ﬁx-2)z+(y+2)z); e 18)
Us1ng the property of distance and the “tr tanguTar |
1nequaT1ty,.1t can be shown that th1s obJect1ve funct1on is
’convex The obJect1ve funct1on is the sum of two distance

; functions mu1t1p11ed.by a constant The distance function»1s
convex and‘the sum- of two d1stance functions multiptied by a
constant is also convex: 1ndlcat1ng a convex objective
vfunctlon The part1cular m1n1mum found for the objective ¢
function in F1gure 5 is at Plx,y)=(0.3696,-0. 3696)

- Figure 6 demonstrates the contours of. the two l1nk‘
obJect1ve funct1on for: the cost surface shown in. F1gure 3
The cost surface is g1ven by _ | j : |

(x y)=10. Oexp(-O 2x2 0. 8y2)+1 0, ....L;TL.;.;s,.;;t,....(19)

' The base cost 1s 1ncorporated 1nto th1s cost surface and is

‘ g1ven the vaTue of 1.0. The obJect1ve funct1on now becomes

if'F(x,y)=to { x yTT'\ﬂx+2)24( -2)2 )" B ‘f;f' | T'l. . '/(y
o cflxyl \ﬂx 2)2+(y+2)2 1, ..;..7;;;.,5..,:§,.1.(20>'

,where Colx, y) and Cf f"

e the average costs of the f1rst A
'uandtlastsTJnk evalu e :\STng the cost surface descr1bed by'

1

AN



BAN

i

35

CFlayeas 0d

R=
B=

. C(X.Y) PRRAMETERS:

5.00
0.oc
0.00

=y

0.00
28.28
5.66

~ Figure 5 Contour
T Thel

s and two 1in

,O’

. - o0
K path for objective funct

ion



36

o . .
i L ;
o

Figure 6 G?htt))ursf and two 1ink path for objective function
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(19) above. The fixed end points are'located at_P(-2,2);and
P(2,-2). A mfﬁlmum value%oftthe objective'function ls-found
-at P(X'y ‘(-4"1129 -2. OlSAl‘ The Hessian evaluated
numer1cally at’ th1s po1nt is: |
0. 8174378 0. 1114070
‘ O 1114070 2. 24761ﬂ9 }
The e1genvalues for th1s Hess1an are 0 8088115 2. 256241
“1nd1cat1ng that the matrlx 1s postt1ve deflnlte and that the
"fm1n1mum found is a local m1n1mum Because the cost surface
is. symmetr1c about the axes. another local minimum’ can be
T'found in the other p1t shown by the contours It is B
speculated that these two Td%rl m1n1ma'belong.to theiset of
"global m1n1ma for this obJect1ve funct1on For large le_or
ﬁflyl the cost surface approaches“the value of 1.0. ln‘this’ |
r'reg1on of the plane th1s part1cular obJecttve functlon
v'ffibehaves l1ke the d1stance funct1on with 1ncrea51ng value A -
m1n1mum 1n this regton 1s unllkely »
Clearly,.the opt1mal solutlons for the two l1nK |
'_robJecttve functlons w1th both homogeneous and 1nhomogeneous‘t_

J

cost surfaces can be found graph1cally Such 1s not the case

. /
. for: paths w1th more than one locat1onal var1able The

- obJect1ve functlon surface for these paths extends 1nto a

e space of more than the three d1men51ons wh1ch 1s not eas1ly
1 v1suallzed The contour1ng of- such surfaces is v1rtually
1mposs1ble and the numer1cal solutton techn1ques outl1ned

'above are requ1red

v

i
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3.2.2 Variable x and y decision variables
An obv1ous cho1ce for the decision var1ab1es are the x

and y coordlnates of the Tocat1ona1 var1ab1es as descr1bed

in the two T1nk method above By al]ow1ng each (x,y) pair to -

3locate free]y on the geograph1c plane one can argue that
some locat1on of such patrs shou]d sat%sfy the ob3ect1ve
function and produce a minimum cost path. The ob3ect1ve N

funct1on ustng these.dec1snon var1abTes_1s g1ven by:

F(X Y)-}E}Ch&x,,y +BC)(‘f|_H - X, )2+ ,-y )?_,}..i,ggTh

‘where n- 1s the number of TTnKs 1n the path ‘x and y are the -
:coordmates, X=x, ,.'. x -%Y yI ,...,y ; and BC is'the base
cost Ca equals the average post of ]1nk i and is g1ven by:

}:C ...y ) /m, where X.. ,Ax X )j/m and

j=1 |‘ J‘ +]\

Y '(y -y )J/m For a\n Tlnk path 2n decision var1ab1es

‘are requ1red

o

E The x y dec1s1on var1able method is 1TTustrated 1n
}F1gure 7 The cost surface and end po1nts are the same as
ifor F1gure 6 The number of T1nKs n in: th1s path is 8 and
, the{cost of each l1nK 1s averaged at m 5 The number of
: fdeC1s1on var1ab1es-1s 14 The solutlon found 1n F1gure 7 1s%f.‘

a loca] m1n1mum because the e1genvalues of the Hess1an are =

's.aTT pos1tTve

iT 3 2 3 The var1ab1e P and theta method

A second method for def1n1ng the dec1s1on var1ab1es of -
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ob jé hction is proposed. Let the path be defIned
5‘by”"-ff} 5§r of equal but variable length l1nks Eet

,-P()‘(ov,yb) . )

F1gure 8 A f1ve 11nk path w1th equal but var1ab1e 11nk
length o o S ! .

o
~

yThe decxson var1ables for thls representat1on are the angles.

vtheta t, coaty and ‘the 11nk 1ength r. The coord1nates x
[ ;
'and y of the locat1onal varwab]es P(x y) are g1ven by
| xi. =X, +r Z cos t :
: DR :
oy, o zsm ¢ e 22)

Q=
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':where n equals the number of l1nhs |
In order to 1ncorporate the decision var1ab1es t, and r
into the objective function special attent1on is glven to'
the re]ationship‘between the last 1inkland r. N steps of r
and respecive angles t defines the 1ocation of a]]_ltﬁﬁ; of
‘the. path, including the last. If the path is to reach the
end po1nt wtth last I1nk of .length r ‘exactly, then r must be N
'set to the 1ength of the Jast ltnK Th1s is ach1eved thnb\uh'
the use of a quadrat1c penalty funct1on added to the . )
obJect1ve funct1on The m1n1mum of - the squared d1fference
| between the 1ength of r and the 1ength of the last 1link
occurs when the two lengths are equa], and the contr1but1on
' of the pena]ty functlon to the total value of the obJect1ve
funct1on 1s zero. Thls method 1s theoret1caW1y sound but 1tv
v ha§>a few pract1ca1 problems As the opt1m1zatvon proceeds,::

N the 1ength of rois acted upongby two - forces The opt1mumv
’ \\v» ;

"p reg1on of the path requ1res one length of r and the penalty B

;?'funct1on requ1res another When the path 1s located near the

| opt1mum small changes inr requ1red to zero- the penalty ‘
tfunct1on do’ not cause large changes in- the value of the |
’“obJect1ve funct1on and ‘often-a* stat1onary po1nt resu]ted.
‘Fortunately, the solutlon at th1s stat1onary pownt is c]ose
to a local m1n1mum because the grad1ent is near zero .

The var1ab1e l1nk length method d1scussed above is

'1ncorporated 1nto the follow1ng obJect1ve functlon i e



7
LoONd

n-1
FAT, r)‘:E:(Gatxi,y.)+BC)r -
B U . | ) ’\\u'({}" .
/A 0
' W(J'x "X Z#T(y%f%_ﬂz - rLi.;....;...;i..,(ZB)

where n is the number of links ih the path, Ca is as defined

<

| in Section 3.2. 2 r 1s the ,1ink length T=tr,...1t are the

‘ ang]es each po1nt makes )4h the x-axis (see Flgure 8)

s base cost of each 1ink and w is a constant we1ght

further explanat1on of the obJectlve funct1on (23)

{requ1red The 1ast term is actually a pena]ty funct1on ‘added

to the cost of the path. For a large enough value of w, -the

'ﬂlength.of P owill be setiequal,toxthe length_of the last

1ink. In order that the-penalty'functionldoesinot conribute ;

3 -

to the cost'part\of'the objective functionL the last link

obJectlve functgon o "1] ;1‘1{

and r must have the same value. Through a series of
exper1ments a we1ght of w= 10.0 was chosen Th1s we1ght

brought r close enough to the length of the 1ast 11nk such
"

that at the m1n1mum the pena]ty funct1on contr1buted very ff

l1tt1e to the value of the obJectlve functven Th1s we1ght

a

of w 1s used for alI future ca]cu]at1ons for tggfvar1able r

N
F1gure 8 111ustrates a path calcu]ated us1ng the

o var1ab1e r and theta method The problem posed is the spme

Lo

as that for Flgure 7 For ‘the. 8 11nK path the vanlable r-

| and,theta method,requ1res 8,dec1s1on;var1ab1es. Thebpath .

i

~ demonstrates the equal length of links. THE path in Figure 9 '

is declaréd a local minimum.
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C(X.Y) PARAMETERS:

K= 10.00
Rz 0.20
B-* 0.80
PRTH= 1.
BC:= 1.00

o , COST=" 12.37
DIST=  10.45

.- /} M \
Figure 9 A path calculated usifg the,r and theta method

o
&



3.2.4 A comparison of the two methods

The variable x,y, and r and theta methoos can best be
.compared by two numerical experiments. The first experiment
_1s designed to compare the location of the path calculated

using each method. Figure 10 illustrates that fhe paths

| calculated with each method are located in the same region
of the plane. The only noticable difference in this figure
is the cost contributed to each path. The variable x y
method provides a path with 0.02 less cost. This d1fference
in cost can be explained by the path shown in Figure 7
‘wh1ch is calculated using the x,y method. In the‘h1gh]y
curved regions of .the path the link length is shorter. In
the more stra1ght reg1ons the link length increases. As a
| result tpe %,y method produces paths which are smoother in
their curved extents. This smoothness may result in more 2
cost effective paths. The second experiment illustrates the
- performance of each method for calculat1ng paths with
1ncreas1ng number of ]1nks. Figure 11 clearly indicates that
the cost of: the path for eachgmethod converges as the number
of links 1ncrease At 10 1inKs\ for example, the cost o
becomes v1rtually 1dentica1 Howe: r, the number of
iterations required to ca]cu]ate the path for increasing
number of links is radically different. Figure 12 shows that
for the variab]e}xﬂywmethodf.the"number of iterations
increases at 10 to the power of a constént times the number

of links. The veariable r and ihefa method converges at a
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C(X.Y) PRRAMETERS:

K= 10.00
A= 0.20
B=-. 0.80C
‘
PRATH= 1.
BC: 1.0C

C0ST= 12.31
DIST= 10.43

.- PRTH= 2.
T BC= 1.00
£0sST=-  "12.33

~ . .
-— ; -
st -
L S, - i
v

PIsST= 10.43 ..

Figure

10 Paths calculated using the x,y and r, theta
" methods ' '
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relatively constant number of iterations regardless of how
many 1inKs were chosen in the path ? |

A possible exp]anat1on for the d1fference in the number
of 1terat1ons requ1red for convergence in each of the two
methods is found in the re]at1onsh1p of the dec1s1on
variables to one another ln the var1ab1e X,y method the x
vand'y for. each 1ocattona] variable effects‘onlylthe adjacent
links. As a result a chanoe in x or.y at,each‘iteration
effects the-location_of onty two links. Many}iterations arev
required to transmit the‘change down altithe ]inks of the’
path. In the variable r and theta method a>change'jn the -
orientation of the f1rst 11nk for example effects the
locatlon of the 1ast Tink. Th1s observatton is supported by
the re]at1onsh1p deflned in formu]atton (22). Because the
variable r and theta method prov1des v1rtua11y the same |
so]ut1on for paths with greater than 9 11nks and for fewer
1terat1ons, it appears thatv1t is the prefered method»for
'ca1culattngjntntmun-cost pathst Dther‘numerical experiments,

have suppor ted this observation.

3. 2 5 Numer1ca] 1ntegrat10n analysts N

The obJect1ve funct1ons (21) and»(23) are‘jn»partd
numerical 1ntegrat1ons, Conf1dence in it's abt]ity tp
appr0ximate'a continuous integration is demonstrated}byz
Fioure313' The cost sunface 1s represented by .

C(x y)-10 Oexp( 0. 2x2 0 8y2?). Four paths between the same,v

end po1nts were ca]culated w1th 2,4,8 and 16 llnks Ther'5
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C(X.Y) PARAMETERS:

) ' K= 10.00
’ A= 0.20
B=  0.80
- - - ' Y : PATHs 1.
' | BC:  1.00

CoST=  16.72
DIST=  9.59

Figure 13 Paths calculated with 2, 4, 8, and 16 Tinks
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distance, cost, F value, number of iterations and CPU time

for each path were calculated and.presented in Table 1.

_....-_..—-__-__-----—_-__.._-—--..._——'_.___..___-..—.--_-__-_--..-.._-_

Number lPath'D]stance Cost l F  |Number of. |CPU [
of links (area) ‘value |iteratiops|seconds
| alssar elnaal eiear 71 0.0s4)
LAl 2] s reeesl 2w e[ 0. i40]
|~ 8 | 3| 10.434] 12.358| 12.360] 24 ) 0.309] -
I""Qé"I"Z{ITé’i]ﬁ“]é’é%éi'15'5551'"'éé’"']"({iéﬁ

‘Table 1 Comparison ;praths with varying ndmber Of_links

A The paths plotted 1n F1gure 13 all. ]ocate w1th1n closel
' prox1m1ty of each other The paths w1th greater %han "two .
' l1pks are very s1m11ar in both cost and d1stance as:. can be-

observed in Table 1. The d1fference in the prec1s1on of the
1ntegrat1on between paths with 8 or 16 11nks 1nd1cates thath

the ch01ce for the number of 11nKs is a subJect1ve dec1s1on;f

L@

’ 1F1gure 11 111ustrates that the cost approaches an asymptote}

;as the number of 11nKs 1ncrease A path ca]culated w1th 10
11nks appears to fall w1th1n the asymptotlc poﬂtton of the o
curVe The d1stance and cost of the: path calcu]at1ng us1ng
'Rank1n s (1979) method was 10 404 and 12: 247 respectwve]y

"Th1s compares favourab]y w1th the 16 link path
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3.2.6'Dther solution.criteria
> A solution to the objective functions (21) and (23)

‘must sat1sfy other numeric and‘graphtc cgﬂter1a before it

can be accepted as a reasonable solut1on The numeric

'criteria_nequires thefsamenvalue o} or paths with the |
1 same optvmum solut1on and d1fferent sta t1ng so]ut1ons, ‘and
._the same value of F for symmetr1ca1 solutlons Graphlc |
'cr1ter1a 1s found in the locat1on of the path The numeric
'crlter1a may 1nd1cate an opt1ma1 so]ut1on but the solut1on
may not make any graphlc sense. All ~solutions must be'
vwsuatly exam1ned F1gure 14 shows two dlfferent start1ng
'asolut1ons which converge to tpe same opt1mum so]ut1on The
. cost surface is g1ven by C(x y)-10 Oexp( 0.2x2- 0 8y?).
t paths p]otted are path 1 w1th opt1mum solut1on path 2 and
v'path 3 w1th opt1mum path 4 Path 2 and path 4 are 1dent1ca1
as 1nd1cated by the values of F and path d1stance |
| Somet1mes there may be more than one equ1va1ent -KL?;.

h_solut1on to a partlcular prob]em Intu1t1vely, if both the

’_'ucost funct1on and the beg1nn1ng and end po1nts are symmetr1c

Lo

'Vabout an- axls, there shou]d be two symmetr1ca1 solut1ons
1F1gure 15 demonstrates two v1rtua11y 1dent1cal solut1ons for

a cost surface g1ven by C(x y)-10 Oexp( 0 9x2 0 1y2)
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A= 0.20
B=  0.80
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 BC=  1.00

COST= . 20,53

DIST=  11.24.
ST | PATHE 2.
L. ' - BC= 1.00

C0ST=  16.74
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- BCz 1.00
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Figure 14 Two initial solutions - one optimum solution
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€OST= - 15.17
DIST=  12.45

o
i
PATHs 2.
BC= © 1.00

COST= ~ 15.17

LoVl

Rz~ 0.90

B:z 0.10
PATHs . . 1.

BC= 1.00

K= . 10.00

DIST=  12.45 .
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3.3 Constra1ned solut1on pafhs

" Not all minimum pgih probfems can be eXpressed by the
objective ‘functions - (21) and (23). Some mrn1mum path
i problems require thaﬁ‘the solution path be restricted to
4eertaih areas Oflthe’gebgrabHiC'blane either by natural or -
AhandiMpbsed barriers. vOther paths may'bevsubjected to
penaLt1es 1mposed by the geograph1c space they traverse In
some cases such prob]ems can. be formulated by subJect1ng |
':these obJectjve funct1ons to constra1nts¢ These,conetra1nts
v‘are'expressed in two ways:. firstkkfhrough the use bf lihear |
constra1nts, and second1y, through the use of pena]ty

-functlons s

L1near constra1nts formulated by equatlon (15) are used

¢for f1nd1ng minimum paths constra1ned by Innear‘barr1ers.oﬁr _

>

B4

the_x,yyp]ane;'For‘each locational Variap1e there exists a
region beyond which the;cbnstraints are violated. Inside
:-tbjs region*the minimization~proceeds"as‘ﬁf,ndbconstraints

exist. Figure 25 in'Chapteq 4 demonStrates‘a,bonStrained';

:path{ber~effﬁcieni optimization, starting solutions within .

,dtbeafeasib[e3regjbn*bf the surfaee are preferred. These are

'known’aS‘feasible‘eoiutions,‘Hauer (1974) expresses linéér';}’

straintS‘as.a;]ihear system descrgbed'by’
' he matrix'A'and;vector B,'andltheedeci%ion
zesenting';he X,Y cbordinaigslof the}bath;

N tbdbe'restrfcied to certain rebiohs of

2
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the plane.

Constraining the bath by adding'an'artificia11y high
'cqst’to‘the cost'sﬁrface inithe_region of intereet may be
achieved through the’hse of eenalty functions. This
R techn1que suggested by Werner (1968) is concerned w1th us1ng
; a’ funct1on to force a part1cular 1ocat1ona] var1ab1e to
\locate outside the range of 1nfluence The use of penalty

funct1ons can be 1ncorporated into’ any cost surface and no

spec1a] opt1m1zat1on procedure is requ1red
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Chapter 4 Examples of Minimum Cost Paths
, v ) .

The locat1on of minimum cost patns 1s‘as conJectured in
previous chapters gererally not achieved through intuitive
insights. By presentlng examples of minimum cost paths thts

| chapter demonstrates two points.- First, that the problem of
where to locate minimum cost paths'isrnot trivial'and. ]
second, that the‘meﬁhod can be used to solve different typés
< .

\’,"-\

i .
!

" of minimum cost path problems. |
; The examples presentéed in this chapter are divided into '
threebsections Section 4.1 presents a variety of problems

J
. explortng some general relatlonsh1ps between the cost

/

: surface the end poqnts and the. m1n1mum cost path The
second sect1on concentrates on f1nd1ng mtnymum cost paths -
for ‘cost surfaces which are .derived from the current » ‘
l1terature By prdV1d1ng 1dent1cal examples the methods
used in thls the51s are supported Sectton 4.3 explores the
effect of s1mple constraints on path locatton The. examples |

‘ which- use constra1nts further support the use of
mathemat1cal opt1m1zatton In all examples presented the
number of l1nks was Kept at lO and the ‘penalty weight w of
the ob3ect1ve funct1on was set at 10 0. '

._Od.l Variatlons bnﬂone:cost surface< | )

During the”testing phase' of the m'athematical \ |

“,opt1m1zatlon an . elltpt1cal negat1ve exponent1al cost surface _

e on

prov1ded many character1stlcs of a generallzed cost surface

¢

. ) ‘ N
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effect of cost on path loéation. The surface i§;gefined by:

Clx,y) sKexpl=AXZ-By2), ... '.ueeuniiiinineaes (24)

where K,A, and B are positive constant Tﬁe behaviour of
this surface is ideal for presenting.p db]ems within this
section. At C(x,y) = K at x=y=0. For pogitive A and B with
large |x| or large |yl: Clx,y) approaches 0. The cost
function C(x,y) is defined everywhere/in the plane implying
that a path can locate anywhere without creating -
discontinuity problems. ;” ‘A:" ; *
4.1.1 Cost surface orientation ‘

Figure 16 presents foﬁr paths, the end pdihts of which
are located along the x;axis. The major axis of the
"ellipiical cost surface is located on the y-axis. The §
ability’of a minimum coét path to avoid the higher cost
areas is diminished as the end points approach the center of
the cost surface. To avoid fhe high cost center, the path -
must initially traverse through the high cogt region. In ~
other words it soméiimes is cheaper to traverse a high cost

region than to avoid it. The cos versusudﬁstanCe plot in

Figure 17 illustrates the cost frofile of the path. In

regions outside the high cost areas of the cost surface the

paths are virtually Straightilines due to the nearly

i

homogeneous nature of the surface.

S
/ o

-/
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C(X.Y) PARARETERS:

K= 10.00
A= 0.80

. B=z 0.20

* X _ * X ¥
\\\\ \\\ // //’/
' \\‘\\ \\\ /'///
\)
"
Figure 16 Four paths traversing ‘the cost

3
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surface




: 91 ®4nbi gy ut syjed Joy
1uLtod pus suo wouy mUCMHwWDmeLm> umoomompmmoLam—Amgnmwu

-

00

_ JINHLSIQ ,
00°02 08*L1} . 00°91 08°21 go*ot 0s°'L 00°S8 082 00°q,
L — 1 - L i - 4 1 1 vq
i T'
o
o
) 4 | 4 L4 A 4 . ® )

a ’ .7 fe
\\ e - no
\\ \\ ” 0

v’ - e UL S
\\ ’ \\\ ||||\|| vlm
€ Lze--"" o
.-z o

2=
. —\\

SViHv g =
o
o
, 3INB1SIA 7/ 1803 r
3 Lo
o
..:l.s\ . o

1803




Path |Base |Cost Distance |[Cost/Distance |Sinuosity
# |Cost : Ratio
2 | s.0| a359] 400 10.e0 | oo
1| e0| eass| e8| 65 | i
3 |60 saes| 1323 sa2 | 1w
s | el woeral | eaa T 0

Table 2 Cost and distance analysis for Figure 16

Table 2 provides numerical information for cost and
distance variables: concerning the paths in Figure 16. For
_ each minimum cost path the base cost the total cost (area)
:distance and the two ratios, cost d1v1ded by distance and
sinuosity, are given. The sinuosity ratio is a measure of
path curvature and is'calclated by dividing”the path
distance by the straight line distance between the two end
points. The -ratio is always greater than or equal to 1. 0.
Taoie,2»iilustrates that as the end points are located
furtner away from the high cost center, the-oost/distance
and the sinuosity ratio decrease. Path 2, which cannot avoio
the high cost of the center, chooses a virtually straight
_path resu]ting in a sinuosity ratio of 1.00. This |
illustrates the fact that the decision of whether to go'
through or to avoid the high cost regions of thg surface is
dependent on both the starting and ending points of the path
and the shape of the cost surface. | ;5
| ihe purpose of the next exampie is to illustrate the

effect that the orientation of the cost surface has on path



3

location.—the major axis of the surface is now centered on

the x-axis. The end points remain the same as in Figure 16,

e e o i T P U

Path |Base |Cost Bistance Cost/Distance |Sinuosity
# |Cost 4 Ratio
2 | 60| a7.46|  a.00| 1186 | 1.0
3 | e.0f 3695 6.0t 6.5 | 1.0
1| s a2n|ess|  aze | 120
4 | e.0f 5383 1307 a2z | il
5 | e.0f es.1a|  te.e0] a8 | 105

T R o o E e e m o w rh oo mt oo = = wm®,-e-oe-mmeoeoe=-me"eo e

Table 3 Cost and distance analysis.}or Figure, 18

‘The effect of the orientation is illustrated by

comparing paths in Figures 16 and 18. In .both cases the .

.cost/distance and the sinuosity ratio decrease as the end

'points locate away from the center. HoWeVer, the

re]attonsh1p between the end points and the high cost
reg1ons result 1n different: cost/d1stance profiles as

demonstrated in F1gures 17 and 19. The most 1llustrat1ve,

_profile is that for path 2 (F1gure 16) shown in F1gure 17

and path 3 (Figure 18) shown in Figure 19. Both paths have

the same end points. Path 2 is 1ocated directly through the’

_center No effort is made to deviate to a 1ower cost reg1on;

The or1entatlon of the cost surface suggests that such a
deviation would be of 11ttle beneftt' because the d1stance

trave]ed to gain th1s reg1on is too 1arge and too cost1y

- Path 3 in F1gure 18 however, does deviate to a lower cost
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Figure 18 Four paths avoiding the high cost regions
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region and the extra distance'ot this path over the direct
path 2 resulted in a cost sav1ng of 10 51. The orientation
.of the surface allowed the higher dev1at1on to be

profitable.

- 4f1.2‘The’effect'of cost . on path'curvatUre

The dec1s1on of whether to go around a h1gh cost reg1on
“of the cost surface or through it must be made based on the

calculation of the minimum cost path, The purpose of the
‘paths in Fxgure 20 is to demonstrate the effect of the cost
on path curvature The maximum curvature of the minimum cost

'path occurs in the region where avo1d1ng hlgh cost is still

- possible. The cost/d1stance profile. g1ven 1n F1gure 21

indicates the relattve areas occup1ed by each path,

s
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| Figure 20  The effect of cost on path c__Qr‘v‘a't'u"r;é 5
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S
[Path Base [Cost  [Distance [Cost/Distamce [5imuoeiiy.]
»#' Cost o . Ratio

2 | el | e e T
3| a o| 1854 a2| ase | T e
N N Y R TR A
4 | a0l 2888 ae0| ses i
s | a0l 3273 5o Tea I
6 | 4.0 saes|  aes| Cras | TTINET
7| | ssiaa) T aler| T 12
1s | acol Tasise] T aloo) T Telee T T e

___—_—-.--_—..s.._——_—______--__—---___.._____-..-—-_--_--__—_

- Table 4 Cost and. d1stance analysis for F1gure 20

The curvature of the paths is given by the 51nuos1ty
rat1o in. Tab]e 4, Some paths have a 1ow s1nuoswty rat1o ‘
‘because they are 1n a nearly homogeneous reg1on of the cost o
p]ane Others have a lower s1nuos1ty ratio because they
cannot dev1ate to the 1ow cost regwons Th1s observat1on can
be made from paths 2 and 8. These paths approach a stra1ght
11ne even though they are in d1fferent reg1ons of the cost
surface The effect of the’ cost surface in path 2 s g
negl1g1ble as it contr1butes on]y 0. 63 to the total cost
‘ bPath 8 cannot avo1d the hlgh cost regton of the surface and
chooses a path whrch dev1ates only 0.02 coord1nate d1stance
at X= O from a stra1ght 11ne Path 5 the longest path, has

7. end po1nts the pos1t1on of wh1ch allows for the avo1dance of

the h1gh cost areas
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' 4.1.3 Varying the-base‘cost : |

| One of the more interesting examples which can be used
to 1llustrate the re]at1onsh1p between cost {area) and
¥dlstance is prov1ded by Figure 22. The base cost is
"1ncreased progress1ve1y until it dominates the cost surfaCe..
The examp]e ver1f1es the obv1ous A‘miﬂlion dollar oer mile
divided htghway 1s less effected by var1at1ons in local
tosts than a smal] country road which winds around every
slough The higher the .base- cost the stra1ghter the minjmum

cost path ceterts partbus

~—-—-~.__....-s—_———----..__-___'__-__..----——_~—_--_....__--_—-—-

Path |Base |Cost . |Distance Cost/Dtstance Sinuosity
# fCost | - | S . Ratio

o | | e T e Y
3 700 Ta2i00| T Teee| e et
4 ao] w0 IR
R G T e e BN
5 | ie.0] 1aes| T5iee| Taoe T o

—c-————_-_-_—-————,—--—-\‘-——-_-—‘--.——-——-——-—_-—-———-—_-——-—-—

Table 5 Cost and d1stance analy51s for Figure 22 o

The,majoraobserVation‘for this~ekamp1e is shown by the
‘.‘stnuos1ty ratlo As the base cost 1ncreases the-sinuostty y\‘

,ratto decreases 1nd1cat1ng that

. ute w1th h1gher base ‘
. 5
-cost 1s Iess 1nfluenced by the ,ost ¥ rface

1

|4 2 Rad1a11y symmetr1c cost surfaces

The use of radtally symmetr1c surfaces to represent |
g , - : SRR S

-
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9
C(X.Y) PARAMETERS:
K= 10.00
1 A= 0.20
- B= 0.80
'bb
PRTHs 1.
BC= 8.00
COST= 67.04
DIST= 6.56
o ‘ . - .
/’,/r/l\\'lfli . PRTH" 2.
1.00
12.32
) 10.43
3. o
2.00
22.00
, 9.09
4.
4.00
38.70
7.77
n 5.
16.00
114.86
DIST= 5.69
1 ‘lt
[ .-
) .
£
4 ]
e

"Fi‘gvur*e‘ 22 The iﬁbrea‘sfn‘g base cost (BC) examiple.‘ .
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some cost variable within an urban setting has been given
. . ' | '

recent ‘attention by Wardrop (1969), Angel and,Hyman'
(1970,1972,1876), Zitron(1974), and Puu(1978a,1978b). The

\

cost variable, usually measured as the inverse of velocity,
is a function of the distance r from the city center. In
order to provide a mode! of velocity that is both
mqthemafically‘expedient and functional within the'UFban
-setting, the authors hawe aséumed that the‘ve]ocify“ﬁsf‘
distributed symmetricalay from the center.kwhis assumption
may not be valid for all cities, but as Angel and Hyman
(1976) poidt out it iésuseful to illustrate a methodology

' which derives minimum cbst pathg. Presenting radially
;ymmetrig'exémples'in this section has one purpose. The
'e;amples shown:arevwell Known in the current literature. By
é%mpériﬁg the paihs generated by the mathematical
optimization to those found in the literature, the merits of

. o~
both hethods can be evaluated.

- (1969) -varies the velocity as the ¥Stance away from the

center. The'velocity is given by;V(r)=KE~ where K/ié a

N

&constant and r is the d1stance from the city center In this
the51s, the 1nverse of veloc1ty prov1des a suxtable

. wformulafwon of the cost (t1me)‘surface, ‘which becomes: |
c(xpy)=1}Krf>,.;....; ..................... YT }.i...(zs)

"wheﬁe'r=«[x2fy2 . In order to dupliqate Wardrop' s example, a
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partial family of paths radiating from the point P(1,0) is }
shown in -Figure 24. This family is virtually identical to
Wardrop’s. Path 1 is in the form of a semi-circle from the
point P(-1,0) to P(1,0). This path can be used as Q further

validation of the mathematical optimization method.

‘4.2;2 Angel and Hyman’'s velocity surface ]

fhe velocity surface used by Angel and Hyman (1976) was
obtained from an empirical study of travel times by the
SELNEC Transportation Study (1968) for the city of
Manchester Great Britain The velocity, expressed as’ a
function of r, the d1stance from the city center 1s given
by: | |
Vir)= A-Bxexp(-Kxr), ....... ';..1 ........................ (26)
where A, B, and K are constants. For this)example A=24.9,
B=16.9 and K=0.56. ]he'travel velocity at the city center is |
8 miles per hour. The veloctty'approaches 24.9 as the
distance from the center increases. The time surface, which
is used to represent“the cost surface is as in Wardrop’s
example, the inverse of the velocityQ
| Angel and Hyman (1976) generate a family of minimum
cost paths rad1at1ng from a po1nt, and in this the51s the
same end po1nt was choosen. The family of m1n1mum cost paths
(Figure 25) corresponds to the paths found in Angel and
Hyman' s work. A1l paths except the one from the center‘curve
away from the high cost regions of the cost surface

Apart from presentwng their: famﬁ]y of m1n1mum cost

P



\

C(X,Y) PARARMETERS:

Figure 24 Minimum time paths for Wardrop’s velocity surface
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CtX.,Y) PRRAMETERS:

K= 0.56
A= 24.90

B= ‘!6.90

[
vk

F1gure 25 M1n1mum time paths for Angel and Hyman s veloc1ty
surface . : _

n
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Daths, neither Wardrop (1969) and Angel and Hyman (1976)
provide much discussion on the path locations. This thesis

does not part with their tradition The paths shown in

‘thures 24 and 25 are used soley to demonstrate that the

mathematical optimization method can duplicate their minimum
cost paths. This demonStratjon is significant, for the .
equivalence of the minimum cos{\baths illustrates that

different methods can be used tg)so]ve the problem) In

- addition, these examples provide a. framework for discussion

otdthe transformation method which is discussed in chapter.

5 ' &

4.3 Constrained minimum cost paths

Some problems requ1re that m1n1mum cost paths be

'restrlcted to specxftc regtons of the geographic plane. For

this type of problem, the use of. constra1nts to locate ‘such
m1n1mum cost paths seems approprtate Th1s section presents
examp]es of m1ntmum cost paths constratned by linear and -

non-linear constraints »Minimum cost pathd restricted to

.yregtons of the plane by stratght 11ne boundar1es are der1ved'

]

| by 1mpos1ng linear constratnts on the obJecttve funct1on

The barrter and corrtdor examples given below demonstrate :

ltnear constralnts Non llnear constralnts, lnvoked by
- .

: pena]ty functlons may be used for exctudlng paths from :
'.‘regtons which can not be demarcated by stra1ght 11nes The

.‘vm1n1mum dtstance from a p01nt constratnt is prov1ded as an fr .

<A

'example
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4

4.3.1 The barrter problem
| The barrter problem is best presented by the foTTQw1ng
hypothettcal case. Given a. cost surface within two countrJes

divided by an TnternationaT boundary-and the requirement
.that aTT paths originating and termtnattng in one country
.‘must remain in that country, then the minimum cost path 1s
consfratned by tge border The exampTe in thure 26 1nvoTve -
two countries; say Canada and the U.S.A., with a cost
surface travers1ng the border‘g1ven by y=-1 The path 1
constra1ned by the 1nternattona1 border is 1 1 t1mes as
‘expens1ve as the mtntmum cost path 2. ATthough no cost
surface is prov1ded by the road map of Br1t1sh CoTumbta the
.htghway between Prtnceton and CranbrooK is a potent1aT real
world exampTe of such.a constratnt in. ‘action.’ H1ghway #3 1s‘
forced to locate to the south of mountatn ra@ges and TaKes

:

but is constratned to stay 1n Canada by Fhe 1nternat1ona1 -~i,a

‘border.

4.3.2 M1n1mum cost paths conta1ned W1th1n a corrtdor e ‘
The Tocatton df transportatton fac111t1es w1th1n a 7f.i:~ .

corr1dor 1s common 1n both urban and rural setttngs

- Constra1nts on the dtmen51ons of the corr1dor may restrt;"’

:‘the optthm Tocatton of m1n1mum cost paths The examp:

| thure 21 111ustrates a corrtdbr deftned w1th1n two sﬁ‘w

. lines at yE+1 and y‘—T As 1n the prev1ous example l1near_g.“».,

hconstra1nts may be applted go the obJect1ve functton such
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< I ~ CIX.Y) PARAMETERS:
K= . 10.00
A= 0.80.
B= ~ 0.20
7
. PATH= 1. :
BC= 2.00 i
CoST= 19.49 |
DIST- 4.8)
PATHe © 2.
BC= 2.00
_€0ST= 17.60 -~
DIST=  6.61
/ - N
lL-"—-P'AHU .
/ .
.. o

CONSTRAINT

. CONSTRAINT

ek

A‘g 'FiguEe12§ Péth,qohst?éined

by a barrier ‘
! . \ .
e ‘



C(X.Y) PARRHETERS:
K= 10.00
| - } R=  0.20
o 2 . B=-. 0.80

CONSTRAINT

%
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- Figure 27 Two-paths contained within a corridor ™+
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that the optimum path will jocate within the corridor.
4.3.3 Fixed distance penalty*functions /
Some types of constra1nts cannot be expresseg l1nearly
and may be 1ncorporated into the obJectlve functlon through

the add1t1on of penalty funct1ons In praETTEe\these penalfy

gffunct1ons are extreme add1t1ons to cost W1th1n certa1n -

reg1ons of the plane and a path traver51ng these reg1ons

| would be subJected to v1rtually an’ 1nf1n1te cost . The?

example chosen assumes two po1nts and a path W1th the

" restr1ct1on that the path must never be located closer than

‘a f1xed d1stance (radlus) from e1ther p01nt Th1s s1tuat1on

could artse if a p1pellne was not allowed to ‘locate w1th1n a

‘ given d1stance of an Esk1mo v1llage The penalty jﬁhct1ons

are appl1ed in the follow1ng manner The cost is added to

: the obJect1ve functlon by the penalty o
) 'exp(25 0fr-d)), (27)

f”'where r is the rad1us and d 1s the d1stance of the path’ from

- a part1cular po1nt (v1llage) If (r- d) 1s pos1t1ve the addéd

S

| ﬂcost becomes large and 1f (r d) 1s negat1ve the added cost

C s v1rtdally zero Hence the path would focate outs1de the ;::l

“"l'reg1on def1ned by the p01nt and the rad1us

F}gure 28 contalns a cost surface w1th two constralnts -‘

11mposed Paths 1 and 2 are calculated q@gh a base cost (BC)

9Vof 4.0 and Paths 3 4, and 5 are’ calculated w1th a base cost

' 'path is dependent on the startina solut1on Tf tha cfgnf,nn~,:.#~

”f;d:of 8 OnlylPath 5 1s unconstra1ned The locat1on of each
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COX,Y)-PARAMETERS :

. . D K= 10.00
% e ] - : A= Q-ZO
’ B= 0.80
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1.

4.00
45.67  {
 5.99-

2.
4.00
38.70

_Figure 28 Paths constrained by circujar regions .
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rsolutlon is located between the constra1nts. then a- locall
| m1n1mum was found in the same region. S1mllarlyr{1f the

%start1ng solutlon is located on one side of the constra1nt

a local minimum is found on’ the same 51de Before the )

”0pt1mal path can be declared both local m1n1ma must be

;found and compared Path 1 located between thd constra1nts

cons%ga1nt cost 38 70. Ih th1s case’ Path 2 1s a better local

m1n1mum and therefore the opttmal path For Paths 3 and 4

“cost FQ 11 and Path 4 to the top of the. constra1nt cost

‘:69p57T The unconstralned opttmal path/1s located a$ in Path

Yy
5 andla~s1m1lar symmetr1c path ex1sts between Paths 3 and 4

‘This unconstralned path 1nd1cates that the constra1nts do

JPeStPTCt the locat1on of the opttmal path.

, ,
The locat1on of a m1n1mum cost path for th1s example

(L\

fcannot besleft ent1rely to the opt1m1zat1on As shown the
.j;opt1mlzat1on routlnes converge on a var1ety of paths"“

»1depend1ng on the locatton of the starttng solut1on and all

| ~ o
'cost‘45 67 while Path 2 located to the top of one - .

_the ﬂttuatlon is. 1n reverse Path 3, between the constra1nts’

- -

. J

’ﬁffcomblnattons of paths through the constra1ned reglons must

'"f }be tested Dnly three feas1ble comb1nat1ons of paths ex1st

:5'j1n thls example, around each of the constra1nts and between

"‘ettherefore only two combinatlons of paths requ1red test1ng

‘.;.Other problems may requ1re the use of both comb1nator1al and

Tffopt1m1zat1on techn1ques for a solut1on These types of

‘a’tbthem In f1gure 28 the placement ofethe constra1nts W1th.f_=,_:-»

o,pespect to: the end po1nts and the cost sur*ace 1s synnetr1c’edtxﬁ



T

~

problems may be topics for
’ )

future research.
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LrhfP( o,xl,z ) and/P(xf,n ,z ) on a general 3 d1mens1onal

ChapterVS Geodesics and Minimum Cost Paths
\ . . .
This chapter considers the geodesic as an important

contributjon to the‘understanding'ot‘the mihimum'cOst path

problem in two ways First, the geodestc defined as the
curve of the shortest length may represent m1n1mum cost

;paths for problems in which" ‘the cosf criterion is synonomous

© o

with d1stance Th1s use of the geodes1c is well Known to

: geographers and cartographers and thereﬁore presents‘few new
problems Sect1on 5. 1 dlscusses the calculat1on of the , ‘-2fc}
-geode51c Secondly, the methods of Warntz(1968) Angel and |

‘Hyman (1972a, 1972b, 1976) and Puu (1977 19783 1978b) use the

R

-
geode51c as a concept for der1V1ng mgnlmum cost paths on:

: trancformed cost surfaces The1r type of appl1ca€%on of the
Fgeodes1c 1s accord1ng torHarvey (1969) of 1nterest Sect1on
‘5 2 dlscusses the transformatlon method w1th reference to '35;_
.'the geodes1c and the mathemat1cal opt1mlzatlon method used E

$

in thls ﬁhe51s R e
S o

" 5.1Calculatidg the geodesic - - T
}';";v5 1. 1 Def1n1t1on and obJect1ve funct1on T:‘*ii;(~wgf S :/"} fh
“ The salculat1on of the geode51c between two po1nts ,f‘r ;
reo

a‘:gsurface z(x y) 1s the path represented by s(x Y, z) Whlch;_g;?‘”

“m1n1mlzes ‘frf”iriﬁ'



: 84,
AP -
Sijim;, S I (28)
. R . -
_ - e .
where‘ds=‘/(dx)2‘+tdy)2 fidz)z‘. Thbs problem also requ1res -a .
caIculus -of var1at1ons approach and the solution to the
appropr1ate Euler equatlons for most surfaces cannot be
found analytrca]ly For general cases, some numer1cal
technique must be used to evaluate the 1ntegral-and-fhe
optimization techntqueslemployeduin thisfthesis‘are- ;h
appropriate. . ".‘ . f» ' E o - ﬁt~£7~
~The integral (28) may be formutatedas:; t;"tggr .
B o n-l : | ' . | o : R
minimize F Zé)ﬁxi+-l-xi 2ty v 2 sz 2 ) F AT (29

‘ where n equals the number of 11nks in the’ dlscrete path .

: represent1ng s. The objective functlon is opt1m1zed using

,the variable r method and is represented by e '7*
_ R s . . o
. ‘F(T r)- :E:‘Jp2 _{} Uz )z T SR R f‘.f-rl

where zle ‘z(x'k\,y+l ) and z, '-z(x _,y ‘), The”

representatlon of T raX, y,.and W 1s deflned in, Sect1on

\

t73 2 3 Because the mult1p11er effect of the cost term is. ok
ffabsent from the obJect1ve funct1on 1ts opt1m1zatlon 1s less
|,f;d,ff1cu1t than calculat1ng the mtnlmum cost path e ;;:Ti'“at,}=3'”
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5.1.2 Geodesic examples
Great circles calculated between two pointg on a sphere
are ggodesjcs. Because of their im;oftaqf CIQ§Sical role in
cartography, the first example illustrates a Qeodeg%c ona
hemisphere. The second exam?le demqnstra}e§ the geodésic on
a cone. | | | '
The great circle curve from Edmonton toALondon is shown’

4

; -
in Figure 29. The contours of the surface correspond to the ' 2

!

[

latitude. The projectioh of both the latitudes and the
geodesic'on the equatorial p]ane-js analagous‘fo an . _
orthograph}c projection. (It was not'derived by conventdénai '
means, using theltrénsformation~edbationé.) Both Edmonton
and L&ndon are connected to the pole‘vfa meridians which are
also great‘ci}cﬁes. According to the Atlas of‘ATberta, the’
-actual distance?between Edmonton and London is 6,796
Kilometers. The geodesic distance-calculafed by the
‘optimization routines is 6,825 kilometers. This 29 kilometer
difference requires. an explanation.
A nqufr of'ebro§s resulted n the formulation of the
Edmonton to London gdéat ciréle. The x and y coordinates
which are located on tRé“éﬁUébeialdplane were rounded to
the nearest hundred kilometeré. The second»préb]em concerned
’, representing the radius of the earth. The earth is a geoid
whiéh bulges at the‘equator. The radius calquléted as the
edista&ce from the équétoria] plane to the pole is smaller
} N

\\7
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Figure 29 The Edmonton - London geocje_si"ct i
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vthan.that on the eguatorial plane; This smallerdradias}nould.
result in a shorter great geoid distance. IR |

The geode51c shown in Flgure 30 is oalculated from
P(-lh ' to P(+1, +1) for a conic surface given by | o
 Zix,y)=1.5 m L (3
Fortunately, the geode51cs for thlS cone ‘can be expressed
analytlcally \kppend1x I contalns the analyttcal solutton to ~
the Euler equations. The theorettcal dtstance calculated ‘
analytically in~this example 1s 3, 901; The d1stance of 3.899
- was calculated by the opttmlzat1on routtnes, which
demonstrates thetr prec1seness Another way of calculating
the distance would be to develop the cone on a plane‘and
measure the straight line distance-(geodesic) between the -
two polnts -The etgenvalues of the Hessian for ‘the. obJect1ve

function ape all p051t1ve, 1ndlcat1ng that thts geodesic is

a local mtmmum.-

.(‘
Voe

5.1.3 Thé~geodestd‘and.minimum cost path compared.

During the preliminary stages of this research the
mipimum cost path was often compared to the‘ﬁeodesic. TWo
tfeasons invalidate’this comoarison.'First, the'geodesic,is
measured in(terms of distance, the minimum cost path inJ |
terms of area. Secondly, the g odesic is(located on a
‘ sur face Whereasdthe minimum cost oath ls Jocated on the x,y .
plane. A‘demonstration of the locatlon of -the paths relatth

to the surface contodrs can be .made by projecting the

geodesictonto the x,y plane. Figure 31 presents the minimum

|

/
-/

-~



. | B :

2,

~

COX.Y) PR ~r1ErERs:'\
- e

&



cost path (path 1) and the geodeswc (path 2). For'this :

Ub:partlcular example the two are prOJected d1fferently ontG ~

R the X, y plane In add1t1on the geodes1c is about three r<

'.t1mes as long as the m1n1mum cos{/path For radlally
.‘symmetr1c surfaces w1th one end p01nt at the center the
'prOJectlon of the geode51c onto the x y plane correspends to

the m1n1mum cost path as can be observed n Flgure 32.

“'»‘Generally,.however the prOJected geodes1c does not '

'correspond W1th the mlnlmum cost path
. _ R o

.

“ ‘;"5 1 e Geodes1cs as\Qmmum -cost paths(

Some types of nimum path problems can be formulated
*Jto m1n1m1ze dlstance rather than cost In order to glve
‘geograph1cal meanlng to the geodes1c w1th1n th1s context the

':x,;y; and z coord1nates must all be of the same. phys1cal

‘;fgdlmen51on and scale Th1s cond1t1on restr1cts the use of the

xﬁ'~{:d1stance measure as a substltute for cost to appl1cat1ons

"“flcalculat1ng the great c1rcle d1stance on, the globe as’

“?for whtch a 3 dlmens1onal surface is: def1ned such as

Y

s

"hdemonstrated above Thls class of problem 1s 51gn1f1cant

";tjtfrom a purely theoretwcal p01nt of v1ew however and

'7.;Q}warrants some eXploratlon

A theoretlcal example of thls problem is presented in ‘

) {the followwng scenarlo Assume a; s1nuous landscape in elther

}T:the x or the y d1rect10n The problem 1s to determ1ne the '

:ﬁlflocat1on of a m1n1mum length path between two p01nts on. the'

*;f,fsurface Examples of such problems can be found 1n the
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process of locating new-plpellnes or ut1l1ty corr1dors
? Flgure 33 demongtrates three geodes1cs for a surface'
given by , | | _
CZix,y)= 4sin(0. lx)cos(y)+4 P i lf..(32)
The geodes1c represented by path 1 is calculated from the |
| po1nt P(x, y zl-( 6,6, 1. 83) to’ (6 -4,2, 52) Pathé2 is |
calculated from (-8,-5, 3 19). to (8,5, 4‘81) and'path 3 ls,"
}calculated from.(-8 -6, 1. 24) to (-8 6,1.24), Each of these
geode51cs seems to locate in reg1ons of the surface where
"the change 1n_the z»coord1nate is small. This: is espec1ally‘
dnoticable-in’path 3. A path generated above a stra1ght line
on the x, y plane generates a d1stance of 26 16 whereas the
’.length of the geodes1c is 22. 10 A result such as th1s |
1llustrates that it is somet1mes shorter to walk around a
h1ll then over 1t | |
5,2”Transformatlons geodes1cs and m1n1mum cost paths
The previous sect1on demonstrated the geode51c as an
»alternatlve to the minimum cost path For some problems,_
such as f1nd1ng great c1rcles on the globe the geode51c may
be the only fea51ble form of the m1n1mum cost path The'“~ |
natural extens1on to th1s observatlon 1s to f1nd the ;”-l’
';'_cond1t10ns for wh1ch the geode51c can be substltuted for the)
:‘ minimum cost path The observat1ons 1n the prev1ous sectlon
11mply that the geodes1c wh1ch represents length must also
egrepresent cost The surface on wh1ch the geode51c 1s

.calculated must therefore equate cost and d1stance The :
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Figure 33 Three geodesics.on a sinuous. surface -
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‘type of cost sur face considered by-this thesis'does not meet»
this condi tion. The z values of this surface 1nd1cate cost
at some coord#hate locat1on X and y. 1f thts cost surface 1s
to be used to derlve the cost geodeswc. al] x,y, and z- |
-coordinates mus t deptct locations 1n the cost space This
ltmpltes that the cost surface mUSt be transformed to &
three- d1men51onal cost space if 1t 1s to be used for
calculattng geodes1cs
The purpose of thls sect1on 1s to summartze and d1scuss

the resu]ts of the transform tion research of Warntz (1968,

‘.Angel and Hyman (1972a, 1972b v1976) and Puu (1977 1978a
. ‘19;8b)' Thelr research addresses(the_problem of transformtng

}7the cost surface 1nto another ~surface where upon the

geodesic corresponds to the minimum cost path.

R

o ,f- . A : o e g
JZS 2 1 Puu s contr1but10n o - .

" The theme of the - transformatton method is presented by:
quu (1978b) | VQ o
The concept of a- cost surface |
-~ The opttmal paths qin genera] “turn out to be.

'hjcurved Dw1ng to thts the natura] quest1on has been

:_posed whether it is p0551b1e to map the ortg1na1

ct:reglon R, 'onto some other reg1on S 1n such a way
'\tffdthat the curved paths are mapped onto stratght 11nes :

'-'51n some sense and SO that dtstance 1n ‘the image

' r;reg1on equa]s cost
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. “; . .
\ . . Cow
.

‘possibittttesrof mapptng R‘onto some other plane
reg1on S by conformal mapp1ngs. Qhat is, by comp lex
analyt1c funct1ons w1th nonvan1sh1ng der1vat1ves
. . Ange] and- Hyman (1970 1972, 1976) on the other hand
"gu1ded by conJecture by Warnt%’ 1967);‘explore_the
.poss1b111t1es,of mapping R onto a curvedisurface‘s,
embedded in;threerdimensionat eucttdean space, where
the imagesbof the optima1<paths are./stratghtﬁ in the
r'sense of be1ng geodes1c Their discussion'toodts
onf1ned to- cbnformal maps, character1zed by the
- facts that ang]es are preserved and that
1‘7magn1f1cat1on i's 1ndependent of direction.
The reasons why d1scuss1ons are conf1ned to
.,conformal maps are never_stated, but I am going to
,demonstrate that, tn fact' conformal- mapping is the

onty type that Works w1th dsmtiropic transpomtatton

T 95

/ problems Angel and Hyman, moreover 'onty disCuss_the,

“specmal case of - surfaces of revolut1on They"suggeSt o

‘ that the method has a much greater degree of
’-genera]aty than Wardrop s. but the exact f1eld of |
napp11cat1on never becomes clearA In/fact the generat

'

y_assumpt1ons they use turn out to be too restr1ct1ve

'Puu then cont1nues W1th theorems and conclus1ons to

A*“demonstrate three concepts concern1ng the transformat1on

-

'D"\*‘

Puu concludes that "the cost for any 1sotrop1c :

LR
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plane An 1sotrop1c transportat1on problem is a model in
. - ¢ 4-? . .

-yhich the cost of transportation or movement is defined at a

~point. The cost surfaces explored by'Warntz Wardrdp Angel

-
N

and Hyman..and 1n this thes1s are all 1sotrop1c “ )

transportat1on models Puu s transformed cost surface is the

7 conformal map of these 1sotrop1c models Next Puu develops B

the necessary condtttons whlch must be met by the cost
surfaces such that the‘geodes1c on the transformed cost
surface corresponds to the m1n1mum cost path He verifies:’
that the surfaces Used by Anggl and . Hyman meet the necessary~

cond1t1ons for a transformatlon and dupllcates the1r

examples L . .

) @

Puu s f1nal conclusion states that 1t is "always v

poss1ble to f1nd a LJocal) g%st surface such that d1stances
equal cost in an 1sotrop transportat1on problem He®
observes that from these local effects nothlng can be

concluded about the global nature of - the cost surfaces whtch

i

generally can have many folds and complex curvatures

L

5 2 2 The three steps 1n the transformat1on process

0

The actual“calculat1on of m1n1mum cost paths qf1ng the

<

transformat1on methodology is a three step process ~The = .
ftrst step requ1res the formulat1on of the transformatton'
Wthh maps ‘the or1g1nal cost surface 1nto one in whlch
d1stance equals cost The second step requ1res the
calculat1on of the geodes1c on the transformed surface Thel'-

¢ -

RO
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thﬁrd step uses the reverse transformatton'to map the
(

geodes1c into the m1n1mum cost path on the or1g1naT

geograph1c pTane These three steps warrant some d1scuss1on .

because us1ng th1s process AngeT and Eyman and Puu f1nd”
minimum cost paths for only two cost surfaces | o
The conformaT transformat1ons for a sped1f1c'costﬂ
surface where cost. is expressed as a funct1on of x “and Y is:
1n ‘general not eas11y achweved Even 1f the surface has th1s
1sotrop1c characterlst1c, the transformatmon requ1res the f‘
| app11cat1on of Gauss1an dtfferent1a1 geometry Accord1ng to
Tobler»(1961) th1s is a very d1ff1cu]t topac and best :
avo1ded These d1ff1cu1t1es are ev1dent in the worK of Ange]

and Hyman (1972 b) and Puu (1978 b) Both authors have :

‘transformed the same. surfaces The rad1aTTy symmetr1c

veloc1ty surface of Wardrop (1969), wh1ch is demonstrated in

Sect1on 4 2.1° becomes a. 8y11nder when transformed The -

5

fQ»veToc1ty surface V(r) Ar2 + B where A and B are constants, "

and Ry 1s the d1stance from the c1ty center is transformed
1nto the sphere ATthough PJ: (1978b) prov1des the necessary
cond1t1ons wh1ch must be- met by the cost surfaceﬂbefore 1t
can}be transformed from the reg1on R to the reglon S h1s

-v

- tw;’examples stop at thezrad1aTTy symmetr1c cost surfaces of

. . 2

Angel and Hyman He shows that these surfaces aTso meef the

necessary cond1t1ons for the transformat1on but - 1nd1catesf

-4

that the transformat1ons themse]ves are d1ff1cu1t to~a-
‘%chteve 30 uev R ‘“'~ff{ l o

el e A P :
The second step in f1nd1ng the m1n1mum cost path

. ;
7/ “

o
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requ1res ‘that the geodesic on the transformed surface be
found The methods,1llustrated in Section 5.1 of-th1s thesis
can be;used once anﬁandlytic form of the surface i§ given. .
Angel and Hyman, and Puu provide analytic surfaces for which
the geodesic are well known. The cylinder produces helices
and the sphere produces great'cdrclesf Genera]]y however ,
the geodesics arc not easily found by intuitiJ% or analytic.
"methods. Angel and Hyman F1970i use Huygens (1812) method
for‘calculating.geodesics Isochrones lines of equal value
from a point ‘are constructed using the or1g1na1 cost
sur face. The family of geodesics from this point is normal
to each i sochrone. Angle and Hyman (1972) state that
Huygen’s construction requ1res considerable adaptat1on
before it can be a practical Method for computing minimum
cost paths for general surfaces. |
| The‘third'gtep concerns mapping the geodesic“back into
: the origina] geographic plane from the cost space such that‘
a minimum cost path can be plotted. This mapp1ng depends on’
i the initial transformat1on if it exists, then an inverse
transformat1on should be found which can map the geodesic
into the minimum cost path. No attempt has yet been made to
use this inverse mapping method. ' '
The difficulties in applying the three step f
transformation method is.illustrated by Anged and Hyman's
(197§.b) velocity surface. Although their surface is
dradially symmetric the {ransformation codld not be-achieved

‘analytically and required numerical méfhods. Once the
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transformed surface was derived, the geodesics could not be

found and the transformation-was used only to 1llustra € he_

form of the time surface. Angel andgHyman used Huygen’ s':
'\co?struction'té plot the isdchrones for this velocity
surface. Minimum cost ‘paths és shown.in Figure 25 Qefe drawn
perpendicular to fhése i sochrones. ﬂ
5.2.3 Results of the transformat1on me thods

- One result of Angel and Hyman's (1972 b) transformat1on

process is the proof that the minimum cost path of the
»

Ay B

original surface corresponds to the geodes1c on the o ”“ﬂ«-g]

transformed surface!/Th1s mathemat1ca] proof clearly ]1nks f
\the minimum cost path to that of the geodesic. There are
theoretical advantages‘ih providing‘this link. The intuitive
| conjecture of Warntz (1965) waé shown to be true. "A
transférmation“ekists which will map a realistic
distribution of transportatign costs on the Euclidean plané
into a curved surface with,unifbrm transport facility"
(Angel and Hyman (1972 b). The validation of this conjecture
providedlnew iﬁgetus to the transformation methods. Warntz’s
example of minimum land acquis?tion routes in the United
States is used as reference in much geégraphic |

transportation and path research. According fovHarvéy (1969)

this research is important because the geographic“concepf of

distance can no longer‘be viewed as the two dimensional
Euclidean distahce, but must be extended to more dimensions

to take into account the activities which may effect this

—h
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“distance The transformation methods contribute‘to this.
expioration of the distance theory in geography

| There are however maJor difficulties in pursuing the
‘transformation methods for der1v1ng minimum cost paths The
difficulty 1ies in the mathematicai conditions Wh1ch must be
met by the cost surface. Although Puu (1978 b) prov1des the
necessary conditions, he proQides no example beyond"those of
Wardrop}(iésg), and Angel and Hyman i1972 b). Alsc, no
exampie of'transforming-a non-symmetric cost surface is‘
found. Puu indicates that transformation can always'take
place locally for an isotropic cost sur face, but he suggests
that prov1ding the actua] transformations and geode51c is
very difficult. Thus, if non-radially symmetric cost surface'

such as the ones used in Chapter 4 are to be transformed,

major mathematical research must be attempted.
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Chapter 6 Conclusion

This thesls solves two problems in the calCulus ot“
variations the minimum cost path problem and the problem 6t
‘and1ng the geodes1c on a given surface For each of these
problems an obJect1ve ‘function is formulated and. analyzed
and a number of case stud1es are performed Thls chapter
summarizes the results of using mathematlcal optlthatton \

- techniques to solve these -problems.

6.1 The methOdology
Perhaps the most 51gn1f1cant contribution of th1s

'the51s to m1n1mum ‘path research 1s found in th\&:ethodology

representat1on of the cost 1ntegral by an obJecttve functton -:ﬂ

is not'new, the development of the. r and theta method and -
the use of constratnts have not yet been explored in.the

Nllterature This sectlon dtscusses the mer1ts and
disadvantages of us1ng the mathemat1cal opttmlzatlon method
tp solve the Euler- Lagrange equations. |

=

6.1.1 The method works

Representing the cost distancde- nd the distance -

tntegral by an objective function which'is‘then minimized’is |

a- technique that works. Two'analyses'referred to in thls B
thesis .support this“conclusion The traJectory method of

Rankln (1979) calculated aﬁs1m1lar m1n1mUm path to that

A
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.caTcuTated with thé‘varjable.r,and_theta hethod Jhts
comparisonAis°presentedltnlsectton 3‘5'5 The second
analysis is shown in sect1on 5.1, 2 The Tength of -the '{V
geode51c is calculated us1ng both anaTytlc and opttm12at1onv.‘~
me thods . The resuTts d1ffered by a dtstance of 0. 002 Thus S

' otwo 1ndependant methods were used to vertfy the . I
representatton ‘of the 1ntegra]s (3) and 28) by the

_ ob3ect1ve functton (23) and (30) respect1ve1y

Conftdence 1n the vartabTe r and theta obJectwve
funct1on prov1des many eneftts for m1n1mum cost path

: 'research Many d1fferen path problems can be posed and |

solved as demonstrated in Chapter 4 The method 1s flextble.i

and can deaT w1th the 1nteract1on of the end po1nts cost

= surface and base cost The vary1ng base cost probTem shown%,,
N in sect1on 4, 1. 3 is-an exampTe of . th1s 1nteract10n :The‘a? g
current path Ttterature haS'shown fam1T1es of m1n1munupaths-
| for radtaTTy symmetr1c surfaces, but has not presented
problems ih wh1ch the base cost 1nteracts ‘with the cost
surface. In addition, . the. method ver1f1es the obv1ous |
minimum cost paths, such as the stra1ght line’ of the
homogeﬁeous cost surface and the geode51c 11nes of S

r]ongwtude from Edmonton to the not th poTe and from London tob, T

? B

the poTe | 7
M1n1m121ng a non- T1near obJectlve functton w1th many

var1abTes also presents some probTems regardtng the

‘acceptance of a minimum soTut1on ATthough there are strong

o 1nd1cat10ns that the obJectwve functlons are convex ,the 5
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.m1n1m1zatlon of some specific problems resulted in solutions
whtch could not be accepted as optlmum For example the

| cost surface represented by Clx, y) Kexp(-Ax2- ByZ)-becomes
vwrtually zero for large | x| or- |y| The dertvat1ves of |
C(x y) w1th respect to x or Y in. th1s reg1on are also near

' zero, “1f no base cost is added to thls functlon a path has,

V1rtually zero cost and can locate anywhere in the plane A

'.4

zero gradtent is one of the necessary cond1t1ons for T

ﬂ:ivaccepttng a m1n1mum cost path Hauer s (1974) algorlthm

’s‘tnd1oated a zero grad1ent for . %olut1ons with large lxl or
Iyl but 51mple 1ntu1t1ve reason1ng 1nd1cated that such

sl solut1ons are mean1ngless in realtty The solutton methods

| could not d1fferent1ate between a zero grad1ent and a zero
der1vat1ve of the cost sUrface The He551an however for F
th1s case 1s not p051t1ve definite and no: local m1n1mum 1s
cla1med The add1t1on of a. base cost resulted in. more:

reasonable m1n1mum paths

B. 1 2 The constratnts | R o ‘
B The der1vat10n of the. m1n1mum path whlch is. subJected
to some’ type of locatlonal constratnt is sometlmes very |
d1ff1cult Current l1teraTure av01ds the d1scuss1on ot thts ;

tOplC enttrely and the examples presented 1n th1s thes1s

Were of a very s1mple exploratory nature The reason for the'n

d1ff1culty l1es more in the pract1cal than 1n the

theoret1cal nature of constra1nts It 1s easy to draw a l1ne,,t"u

over Whlch the m1n1mum path cannot cross, but 1t ls_more SR

Bl
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d1ff1cult to formulate thls constra1nt 1nto the solutlon

':procedures of “the opt1m1zat1on These d1ff1cult1es are
' overcome for two types oflconstratnts' The. 51mple l1near
.;1nequal1ty constra1nt and the representat1on of a -

'constra1ned reg1on by penalty functtons The examples T

presented 1n ﬁect1on 4.3 1llustrate 1n1t1al success at the

-

huse of constralnts

- The locat1onal constra1nts expressed as l1near

.
3
5

t¥1nequallty constra1nts presented the fewest problems to
.‘Hauer s (1974) algorlthms Prov1ded that the 1n1t1al

| start1ng solutlons were. w1th1n the fe351ble or unconstra1ned
'reg1on the solutlon was - found ea51ly D1ff1culty, however,,
was’ encountered in applytng these l1near constra1nts to the
"var1able r and theta oblect1ve functlon The dec1ston |
"var1ables for: th1s method are not ea51ly SUbJeCted to
:constra1nt 1mposed on ‘the locat1on of ‘the path Instead the ‘v

v;var1able X,y ob3ect1ve funct1on formulat1on is used

'fjre locat1onal constra1nts could not be expressed by

Ql1near constratnts and penalty funct1on were applled
L Sectlon 4, 3 3 presented an example 1n wh1ch two c1rcular o
'ireglons of the plane were subJected to a cost penalty The f«"‘
“f“m1n1mum paths were located outs1de thts regIOn 1nd1cat1ng |
-'r-that the penaltf funct1oh\worked There 1s however a

'ff;topolog1cal problem related to th1s problem The m1n1mum}r’l;‘

/

'7:}path 1s found by an 1terat1ve procedure wh1ch depends upon
- the start1ng solutlon A starttng solutlon between the two f’_;;f

"Eepenal1zed reglons resulted 1n a m1n1mum path also located 1n
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the same region Simtlarly,'if‘the ;tarttng solution is
located on one or the other side of the penaT1zed region, | 'a\
then the m1n1mum path is Tocated w1th1n ‘the same regton S
'vConce1vably, if the number of such pena11zed reéﬁons 1s‘
- large, the number of . solut1on paths wh1ch must be tested is
dependent on the number of poss1b1e feaswble paths through
'Tt_these reg1ons This is a combinatorial problem and each
feasible path must be der1ved from the opt1m1zat1on | .
,However ngen a part1cu1ar start1ng solution andvthe'useTof
.i‘a penalty functton; the minimum-pathgreflected.the‘topoTogy
‘ofkthe Starttng soTutton The acceptance of th1s solut1on as .f
rthe global opt1mum one can not be. made DnTy if all p0351b1e
so]ut1on topolog1es are tested could such e dec1$1on be
Mreached - »”t S ,f~_'*“v:‘“ | |

e

‘f,6 2 The transformat1on method

The T1m1ted anaTys1s and d1scuss1on of the d
itransformat1on methods gtven in. th1s thes1s 1s Just1f1ed for
:two reasons. One the me thods are d1ff1cuTt in terms of the
;eXpTanatory mathemat}bs\requ1red and further deveTopment of
.these methods is out of the scope of th1s the51s Two théi-;"

‘cab1l1ty of the transformat1on method to solve the var1ety of tfl”;ﬁ5

»rtproblems posed in ChaPter 4 of th1s thes1s has not been e

5‘rtshown, 1ndwcat1ng that it is. st111 1n a deveTopment stage

v:‘{The mentlon of these methods 1n Chapter 5 1s howevervﬁ

'firelevent because the caTcuTatton of the geodes1c 1s a topxc

T.that 1s d1scussed 1n the current transformat1on 11terature



_[1 mounta1nous enV1ronments

*:«i 1nc]ude the th1rd d1mens1on

;l, 1resu1t from th1s thes1s
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6.3 FutUre‘research-

6.3.1 The COst'surface" o
| Th1s thes1s represents cost by a cont1nuous funct1on of"

X and y. Angel and Hyman (1972 b) prov1de a. rough f1t for

the1r negat1ve exponent1a1 surface and refer to the work of

C]ark (1951) for. further support It 1s recogn1zed that the

reaT cost space is 1n genera] very comp]ex and any . surface

represent1ng th1s space may conta1n many 1rregu1ar1t1es In N t
( h
order to sat1sfy the oont1nu1ty cond1t1on requ1red by . the

opt1m1zat1on procedures onTy T1m1ted opt1ons are open for

.) represent1ng reaT1st1c cost surfaces

f

A p1ecew1se cont1nuous costasurface representlng loca] B
reg1ons may p0551b1y be worked 1nto the soTutlon procedures
A redes1gn of the dec1s1on var1ables in the ob3ect1ve"
iunct1on may be 1n order for th1s approach F1naTTy a three
d1mens1onal representat1on of cost represented by C(x Y z)

1s exp]ored by Werner and Bouk1d1s (1963) and Steenbrtnk

(1974) The type of cost surface is- very real1st1c for

Aga1n the dec151on var1ab1es of

the ob3ect1ve functlon must be mod1f1ed or expanded to

~‘;16 3 2 The use of COﬂStPalntS T
| Two 1mmed1ate prOJects concern1ng constra1nts can

e

The f1rst prOJect coqu cons1st of

¢
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eXpanding‘the use of ljnearaconstralntsube$bnd those
,-preSented in“Sections 4.3.1 and 4. 3.2: The seCOnd proﬁect

,could 1nvest1gate the genera] use of penalty funct1ons to«"'
represent a wider range of non- llnear constralnts than is.

given 1n Séé%lon 4.3.3. - The topolog1cal problem dlscussed

;earl1er may be part of thlS prOJect

.y

.. B. 3 3 Other path problems

Chapter 4 and 5. demonstrated the fea51blllty of u51ng
h} ob3ect1ve functlons to f1nd m1n1mum cost paths and | |

'geode51cs By mod1fy1ng these functlons a var1ety of other

- }; path related. problems may be solved Typlcally, these

7'problems may deal w1th the m1n1mlzatlon or max1mlzatlon of

brn some 1nteractlon between a path and a surface The attentton*

Vglven to such path problems 1n current geographlc llteraturehv'

Tt

’1nd1cates that both the problems and the1r solutlon :

hmethodologles requ1re further attentlon The USe of the
- mathematlcal opt1m1zat10n methodology to sofve 1hese
r_probl%ms is as shown in th1s the51s both real1st1c and

- ) “_‘13_ 0

4f]feas1ble -._’ ’.;»",’ ;prfy_ :’;,yfpf'./;“
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Find the Geodesic on a cone given by: .
Z{x,y)s1.5¢/x2+y2 '. ...... Ce e «...:7.(33)

In spherical coordinates:
x=r 5in(8) cos(f) |

yzr sin(B). sin @ o g\\\

;‘z;r\cogéﬂ)

For a cone 8 =:a constant

| Lét'sin(8)=C¥ and cos(8)=8 ._then:

x= O¢r cos(ﬁ)-and dX:Cy(cos(ﬂ) dr - r sin(g) dﬁ)‘
~y=Qr sin(@) and Qy ({{cos (Y dr -.r sin(d) dﬁ)
z 5r and. dz= 8 dr | |

: If the dlstance of a geode51c is. s: then
dsz‘- dx?2 +. dy2 + dzz"A |
wh1ch 1mp11es ds=((y? r2+(dr/dﬂ)2 %' do. .;..; ...... L...(34)

In order to minimize the integral .

- from point a to b, the following Euler equation must be

sbived:

/

- »d,;/dg:cxr'( (r2/r, 2)-1), R el ,-_ Leea.(36)

\
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where r, is a constant.
Set r/r =sec(u) then, i

' dr/d@=r, sec(u)tan(u)(du/dw)- _ (#
and ¥ r r2/r 2)*1)P5‘=CYr eec(u)tan( t
which implies r=r sec{X(@-@,)} is a so]utwon to the Euler
equat1on (36) If ris subst1tuted into (34) and 1ntegrated

the fol]ow1ng results
~dsz(grz pz +ldr/ag)z) o,
| dP/d¢;CYP'COSGC{X(G"GO)}COt“}Tgfgo)}.vv

and;dsqyz h 2{sec?(u )+sec2(u)tan2 u)} dﬂ
(T, secz(u)dﬁ |
b'wh1ch 1mpl1es that 5= o(r‘./?sec2 u)dg, |
=y tan{OU @B, )] L 37)

In order to calculate the length of the geodes1c of the cone-
‘ (33) from P(x y)-(-1 tf to (1 1), and ﬁ in equation
(37) must be found It s argued that the geodes1c from .
o P(x y)'(-1 0) to (+1 0) has the same length Fdr thns case.
:t‘r -1 6414 e ’5 . , o
A H/2 . R
AfThe 1ength for th1s geodes1c is sz 3 901 : e-d

i~y



