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Abstract

Modern geo-position system (GPS) enabled smart phones are generating an increas-

ing volume of information about their users, including geo-located search, move-

ment, and transaction data. While this kind of data is increasingly rich and offers

many grand opportunities to identify patterns and predict behaviour of groups and

individuals, it is not immediately obvious how to develop a framework for extract-

ing plausible inferences from these data.

In our case, we have access to a large volume of real user data from the Poynt

smart phone application, and we have developed a generic and layered system ar-

chitecture to incrementally find aggregate items of interest within that data. This

includes time and space correlations, e.g., are people searching for dinner and a

movie; distributions of usage patterns and platforms, e.g., geographic distribution

of Android, Apple, and BlackBerry users; and clustering to identify relatively com-

plex search and movement patterns we call “consumer trajectories.”

Our pursuit of these kinds of patterns has helped guide our development of con-

ceptual tools and visualization tools in aid of investigating the geo-located data,

and finding both interesting and useful patterns in that data, in a hypothesis-driven

process. Included in our system architecture is the ability to consider the difference

between exploratory and explanatory searches on data patterns, as well as the de-

ployment of multiple visualization methods that can provide alternatives to help ex-

pose patterns. Here we provide examples of formulating hypotheses on geo-located

behaviour, and how visual analytics can help formulate hypotheses, and confirm or

deny the value of such hypotheses as they emerge.
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Chapter 1

Introduction

The popular smart phone application, “Poynt”1, provides about 20 million gps-

enabled smart phone users with the ability to access a variety of data, including

business and private phone numbers, restaurants, events, movies, and gas stations,

all indexed by geo-location of the handset user.

Each individual use of one of these geo-located searches creates a search record

(described below), which provides that user’s location, time of search, and category

of search (e.g., movie, restaurant, and a variety of others). Our task is to investigate

a potential framework for deploying analytics on the user search records, to find

potential business value.

Broadly speaking, the potential business value lying behind the rapidly accumu-

lating search records (about 20,000,000 records per day) is that associated with a

variety of user profiling initiatives, e.g., the suggestions of Amazon. The difference

here is that, in addition to preferences for products (e.g., books, movies), there is

extra information in terms of time and place of request across the spectrum of busi-

ness places, personal phone numbers, events, movies, restaurants, etc. Monetizing

the potential value of these data is similar to the challenge of online advertising

placement.

In the general analytics research community that considers geo-located data and

events, the focus of value has been in identifying geographic trajectories based on

large volumes of geo-coded data (e.g., [5]). What is more interesting in the Poynt

data context is the development of analytic methods to identify what we refer to as

1see http://www.poynt.com
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“consumer trajectories,” which are a combination of geo-location trajectories and

consumer interest patterns, as evident in the classes of search that a Poynt user can

conduct.

In general, the identification of consumer trajectories is now the whole focus of

our Poynt analytics framework. We will complete our scientific research by clarify-

ing the framework, and providing initial solutions to the challenges of identifying

consumer trajectories.

We will focus on refining the identification of possibly valuable business hy-

potheses based on identifying general patterns of consumer trajectories. Specifi-

cally, by incrementally varying constrained geo-extent and time extent, we conduct:

1. explanatory search to confirm visual understanding of expected hypotheses

(e.g., movie nights on Friday and Saturday);

2. exploratory search to find “interesting” phenomena, then constraint adjust-

ments to find supporting evidence for possible hypotheses.

1.1 Statements of Contributions

The hypothesis of our research is that a data artifact called consumer trajectories

can be identified within the Poynt data, by the development and use of a variety of

data filtering and visualization tools. Our search for consumer trajectories within

the Poynt data has driven our development of a variety of tools, and the contribution

of our research is the incremental development and testing of those tools, and the

development of a method of their use to expose what we have conceived as the basic

components of consumer trajectories.

The tools include the development of filtering and selection methods on the

Poynt data, to select geographic regions and temporal regions, visualization meth-

ods (Cartesian, Storyline), and the use of interactive visual analytics using Webbles.

The methods of use include the distinction between a user’s exploratory and

explanatory use of the tools, as exposed in the case studies on finding a variety of

correlations on Poynt user data, beginning with the simplest hypotheses on where
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and when people search for movies, all the way to semantic classification of key-

word searches, all displayed in both Cartesian and Storyline pictures.

1.2 Thesis Outline

This dissertation is organized in four parts. The first part is entirely contained in

Chapter 2 which gives the description of related work, especially most important

to our research. In the second part, we present the methodology adopted in our

research of commercial geo-position data visual analytics, with a framework for

hypothesis-driven analysis introduced in Chapter 3 and the visualization approaches

utilized in the framework, Cartesian Geography Map and Storyline, described in

Chapter 4. Part three explains the case studies and discusses the corresponding

results. Chapter 5 showcases a typical example of the application of exploratory and

explanatory searches, as well as a case study on the comparison of different source

devices. In Chapter 6 we explore the investigation of Poynt Data with the Webble

Dashboard, a software component based system which uses multiple linked views

and allows interactions via direct manipulation. Finally, Chapter 7 summarizes our

work and contributions, and suggests possible future directions.
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Part I

Related Work
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Chapter 2

A Survey of Work on Geo-position
Data Visual Analytics

In this chapter, we give the description of the related work in several areas that are

associated with our research of geo-position data visual analytics.

2.1 Analysis of Geo-located Data

2.1.1 Identifying Geographic Trajectories

There are researches focusing on the identification of geographic trajectories with

large volumes of geo-coded data [5, 23].

Farrahi and Gatica-Perez [5] proposed an unsupervised methodology to dis-

cover users’ location routines, from the location dataset of the Reality Mining

project [4], with the help of probabilistic topic models. In the raw location data,

a user’s location is represented by its nearest cell tower. The authors assigned “lo-

cation labels” (home, work, out) to users’ locations, and applied a novel bag rep-

resentation for location sequences to capture both fine-grain and coarse-grain time

factors, as well as transitions of location labels. Location routines (patterns of loca-

tion label transitions over time, e.g., “going from home to work between 9-11 am,”

“going from work to out in the evening,” and “at work early in the morning,”) were

mined as latent topics by the topic models. Specifically, Latent Dirichlet Allocation

(LDA) identifies daily location routines dominating the entire user group’s activ-

ities, while Author Topic Model (ATM), taking into account both user and topic,

detects routines shown by certain subgroups of users.
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Zheng and Xie [23] develop models for generic and personalized travel rec-

ommendations by mining a large volume of user-generated GPS location traces.

Specifically, the TBHG (Tree-Based Hierarchical Graph) is introduced to learn his-

tories of user travel sequences, based on which a HITS (Hypertext Induced Topic

Search)-based inference model is used to infer top popular locations and travel se-

quences in a given geo-region for the generic travel recommendation. On the other

hand, the personalized travel recommendation for a user is achieved by first calcu-

lating correlation between locations with the travel experiences of the user and the

visited location traces of others, and then building an item-based CF (Collaborative

Filtering) model with the calculated correlation incorporated, to predict the user’s

interests in unvisited locations, and finally making the personalized recommenda-

tion for that user.

The data for analysis in [5, 23] differ from normal commercial geo-position

data created by users of smartphone mobile applications (e.g., the Poynt data), in

that user locations in [5, 23] are periodically and densely collected with fine time

granularity (in seconds), thus are massive and nearly of equal size per user, but the

total number of users is small (around 100); on the other hand, the Poynt data is

the opposite: with millions of users using the application, the record set of one user

represents all his/her search behaviours, hence it varies from user to user in set size

and the distribution of associated records over time. In addition, the data in [5, 23]

are simple logs of location traces with no extra attributes contained, while the Poynt

dataset is rich in attributes to describe consumer search behaviours in the Poynt app.

2.1.2 Analyzing Geo-tagged Social Media Data

Twitter, a popular micro-blogging and social networking application, has accumu-

lated enormous amount of geo-tagged data with texts (status updates, or “tweets”),

which provides valuable data sources for researches in many areas, e.g., Natural

Language Processing, Social Network Analysis. Many researches have been con-

ducted which apply Twitter data for geo-located data analysis [2, 11, 9].

Brennan et al. [2] studied how individuals contribute to the spread of flu-like

illness based on interpersonal interactions, with the help of status updates created by
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travelling Twitter users. Specifically, by focusing on those who tweeted from two or

more airports and are identified by a binary Support Vector Machine (SVM) as sick

passengers, estimated are a number of latent variables indicating flu signals, e.g., the

volume of sick passengers, and the number of people they physically encountered.

Based on the inferred latent variables, a regularized regression model is learned

for the prediction of flu spread, which outperforms the baseline model ignoring

people’s health states. The paper shows that the latent features learned on the basis

of Twitter data can help improve the predictions of flu prevalence in a given area.

Kamath et al. [11] analyzed the spatio-temporal dynamics of Twitter hashtags

based on a sample of 2 billion geo-tagged tweets, for understanding meme diffu-

sion and information propagation. Specifically, the authors investigated how loca-

tion, time, and distance impact hashtag adoption. Also examined was the spatial

propagation of hashtags in terms of their focus, entropy, and spread. As a result,

this study shows that the physical distance between locations strongly constrain the

adoption of hashtags, and hashtags are mostly a local phenomenon with long-tailed

life spans. The authors also discovered that how fast a hashtag will reach its peak

is determined by its purpose and global awareness, and hashtags exhibit spatial and

temporal locality since they normally spread over small geographical areas but at

high speeds.

Hong et al. [9] proposed a method which models topical diversity, geographical

diversity, and user interest distribution, in order to uncover geographical topical pat-

terns in different languages and users’ common topics of interest from geo-tagged

Twitter messages. Statistical topic models are utilized to combine tweet content and

geographic locations, and sparse coding techniques are adopted for an efficient and

effective implementation. The model can be applied to applications including user

profiling, content recommendation, and by outperforming several state-of-the-art

algorithms, has demonstrated its effectiveness in the task of location predictions of

new messages.

There are also researches based on geo-located data created by Youtube users.

For example, Brodersen et al. [3] conducted an analysis of the properties of geo-

graphical popularity of YouTube videos on a corpus of over 20 millions geo-coded
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YouTube videos. New measures (e.g., view focus, view entropy) were applied to

quantify video popularity distribution across different geographic regions. The au-

thors investigated how social sharing impacts the spatial popularity of a video and

how the popularity of a video geographically evolves over its lifetime, and found

that Youtube video consumption displays strong geographic locality of interest.

2.2 Exploratory Visual Analytics

Researches in exploratory visual analytics correlate closely with our development

of the framework for visual analysis of commercial geo-position data. While the

research area of exploratory visual analytics extensively covers a variety of topics,

in this section, we focus on multiple linked views [20, 15] as well as interaction and

direct manipulation [7, 20, 15, 16], which facilitate the process of visual exploration

of data.

Multiple linked views can serve as the base visualization framework of ex-

ploratory visual analytics. Sjöbergh and Tanaka [20] introduced a software com-

ponent based system, the Digital Dashboard, which utilizes multiple linked views

for visual exploration of data. In the system, each view is a pluggable visualization

component, and all views are interactive and connected. When visually exploring

data, the adoption of multiple linked views enables that interactions in one view,

e.g., selections or groupings of visualized content, are automatically reflected in

other views, since all views are “linked”. Roberts [15] surveyed the area of Co-

ordinated Multiple Views (CMV), namely Multiple Linked Views. This paper in-

troduced Coordinated Multiple Views as a specific exploratory visualization tech-

nique, benefiting from which users may find insightful relationships and features

from target data.

Interaction is indispensable to visual exploration techniques. As described in

[15], a large variety of interaction strategies are integrated by CMV systems, in

which users can interact with data in various ways. Indirect manipulation and di-

rect manipulation are the two styles of interaction. Indirect manipulation includes

dynamic queries which enables users to interact with sliders, menus and buttons
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to filter data and constrain how the information is displayed, while direct manip-

ulation techniques allow users to manipulate with visualization displays directly

(e.g., filter or select elements from the visualization). The principle approach of

direct manipulation is brushing, where selecting (and highlighting) elements in one

display concurrently makes the corresponding information in other linked displays

highlighted. Shneiderman [16] presented a task by data type taxonomy as design

guidelines for visual information exploration tasks. The taxonomy connects each

of the seven data types (1-, 2-, 3-dimensional data, temporal and multi-dimensional

data, and tree and network data) with the appropriate tasks to explore data of this

type, selected from a repertoire of seven tasks (overview, zoom, filter, details-on-

demand, relate, history, and extract) which are supported by direct manipulation.

Sjöbergh and Tanaka [20] introduced the Digital Dashboard, which allows interac-

tion through direct manipulation in all view components. Goebel et al. [7] focused

on semantically-coupled direct manipulation under complex natural and unnatu-

ral knowledge model contexts. The paper argues that, due to the growing volume

and increasing complexity of data, the role of direct manipulation guided by the

semantics of multi-scale models becomes increasingly critical in providing users

with tools to build and debug complex scientific models.

In our development of a hypothesis-driven framework for commercial geo-

position data visual analytics, we distinguish the roles played by “Exploratory

search” and “Explanatory search”. In this regard, not only can multiple linked

views and interaction techniques help with the exploratory process searching for

insightful features of data to propose new hypotheses (“Exploratory search”), but

also facilitate the collection of evidence to confirm or deny proposed hypotheses

(“Explanatory search”). We also believe that the Digital Dashboard by Sjöbergh

and Tanaka [20] holds the most promise for supporting more sophisticated interac-

tive visual analytics.
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2.3 Spatio-temporal Data Visualization

Visualization is a key part in visual exploration of data. Many researches about

spatio-temporal data visualization have been conducted to integrate time and lo-

cation (i.e., latitude and longitude) in a two-dimensional (2D) or three-dimensional

(3D) visualization space [17, 18, 13, 6, 12], in addition to rendering them separately

(which we do not cover in this section).

In a 3D integrated visualization of spatio-temporal data, latitude, longitude and

time are plotted as three independent dimensions in a 3D chart. For instance, the

space-time cube method (STC) [13, 6] represents time as an additional dimension to

the 2D geo-spatial map plane. Kapler and Wright [12] presented a prototype called

GeoTime for displaying and tracking events, objects and activities in a combined

spatial and temporal 3D view, and demonstrated its effectiveness when applied to

the analysis of complex past and future events within a geographic context. The

advantage of 3D integrated visualization is that the time graph does not occlude

the 2D map, since time and location are plotted in separate dimensions. However,

inherently in a 3D view of spatio-temporal data, time is difficult to be aligned with

location, and the perception of depth is a problem. Also, space-time paths (line seg-

ments connecting events) plotted in a 3D view are often ambiguous. As more data

are visualized in a 3D view, its inherent problems bring more confusion hindering

the understanding and analysis of the visualization result.

On the other hand, attention has been drawn to designing innovative 2D inte-

grated views of spatio-temporal data, so that the inherent problems of 3D visual-

ization could be avoided. Shrestha et al. [17, 18] proposed a novel approach called

Storygraph, which integrates time and location in a 2D visualization space based on

parallel coordinates [10]. Compared to 3D methods, Storygraph reduces cluttering

and occlusion, and helps track time in case of clustered events. Based on Story-

graph, a storyline is built by connecting all the events of an individual sequentially,

in order to track the movement of characters and the interactions between them

over time. Storyline helps discover relationships and patterns among spatially and

temporally scattered events.
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Storygraph-based storyline is suitable for visualizing spatio-temporal consumer

trajectories in our framework, since this 2D approach avoids the inherent problems

of 3D integrated visualization and is easy to implement. Although it still suffers oc-

clusion and cluttering to some extent when data gets dense, we consider the adop-

tion of the strategy Frequency Plots proposed by Artero et al. [1], suggested by

the measures taken by Shrestha et al. [18] to alleviate the issue of cluttering and

overplotting in Storygraph.
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Chapter 3

A Framework for Hypothesis-driven
Visual Data Analysis

The volume of individual search records created by the Poynt application is under-

standably very high: even with one sample of just five weeks of historical data, we

have over 178 million records. From the technical viewpoint, analytics researchers

could, without business guidance, produce at least 178 million analytic outcomes,

which would render the analytics process useless. Of course the alternative is to

guide the development of analytics for Poynt by ensuring there is a top down busi-

ness model that guides the search for analytics consequences of interest. In this

chapter, we will explain how such a framework is developed.

The basic idea is to create an analytics framework which is guided by business-

relevant hypotheses, e.g., “People who search for movies are most active on the

afternoons of weekends.” In the case of this hypothesis, we would want to deploy

an analytics process that could aggregate the dataset to either confirm or refute the

hypothesis. In this case, if we find a trend that movie searches are clustered around,

say Friday, Saturday or Sunday afternoons, then we have provided the basis for the

business model to exploit that hypothesis (e.g., by increasing the price of movie

advertising within that time frame).

Overall, we believe that a Poynt analytics framework should be to develop ana-

lytics tools that help confirm or refute potentially valuable business hypotheses. In

our initial development of such a framework, we have focused on two categories of

analytics hypotheses:
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1. hypotheses about the behaviour of individual users in one single category of

search (e.g., time distribution of all users in movie searches);

2. hypotheses about correlations amongst multiple search categories by individ-

ual users (e.g., how many times does an individual searching for a movie also

search for a nearby restaurant).

We believe that we can develop such categories of business model driven hy-

potheses, expanding these as appropriate, and then construct an analytic tool kit that

helps confirm or deny such hypotheses in data. In this way, business decisions can

be decoupled from the need for analytics knowledge.

3.1 Poynt Geo-search Data

As briefly mentioned in Chapter 1, the local mobile search application, Poynt, pro-

vides a location-based local search service for users to query about nearby movies,

restaurants, businesses, gas prices, events and many other varieties. For example,

Figure 3.1 showcases several typical use cases of the application.

All user search behaviours are collected by the Poynt corporation in the form of

search records, in order to keep track of what was searched for, where and when, by

whom. The volume of individual search records created by the approximately 20

million Poynt users is understandably very high. Three datasets are granted to us

by the Poynt corporation for analysis purpose, which, numbering around 531 mil-

lion search records in total, respectively cover the three periods of five consecutive

weeks from May 29/2011, October 30/2011, and April 29/2012.

3.2 Exploratory and Explanatory Searches

In proposing new hypotheses and collecting evidence to confirm or deny proposed

ones, the framework should take into account both explanatory and exploratory

searches.

Explanatory search is to confirm/refute our understanding of expected hypothe-

ses (e.g., movie nights are typically on Friday and Saturday). Exploratory search
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(a) Searching for nearby movie theaters: 1. click over the search category “Movies”; 2.
click over “Theaters Near You”; 3. the nearby theaters are listed by distance (ascendingly
ordered).

(b) Searching for nearby “barbeques” businesses: 1. click over the search category “Busi-
nesses”; 2. type in the query keyword “barbeques”; 3. the nearby businesses related to
“barbeques” are listed by distance (ascendingly ordered).

Figure 3.1: Typical use cases of the Poynt application. (cont.)
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(c) Searching for nearby best gas price: 1. click over the search category “Gas”; 2. click
over “Best Price”; 3. the nearby gas stations are listed by price (ascendingly ordered).

Figure 3.1: Typical use cases of the Poynt application.

is to find “interesting” phenomena, after which potential hypotheses can be formu-

lated and pursued.

3.3 Filtering of Poynt Data to Focus Evidence Com-
pilation

Any analytics framework requires us to identify appropriate subsets of the raw data,

so that our analytics work can be focused on categories of hypotheses. This provides

a more efficient and effective analysis, especially considering the computational

complexity of analyzing the large volume of spatio-temporal Poynt search records.

Based on our framework development to date, we have adopted the following

filtering constraints, for the purpose of targeting subsets of search records for ex-

perimental usage:

• Time Span: temporal scope restricting when target records are generated.

• Region: constraint controlling the two spatial attributes of target records,

latitude (LAT ) and longitude (LON ). A target region is described in the

form of a bounding rectangle, represented by two corner points, SW (South

West corner) and NE (North East corner).
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• Search Category: categories of search records, i.e., Movie, Restaurant, Gas,

Yellow Pages and Event.

• User Group: constraint to target the group of users. We currently use Search

Density (SD) as the measure to select target users. It is defined as the num-

ber of search records by an individual user within a certain time span. By

setting a range of record numbers and a time span, we obtain a scope of

search density, e.g., users who search between one to ten times in the same

category in time span (week=5, year=2011), and can thus target those users

whose corresponding search density falls within that scope. In the definition

of search density, records by an individual user could also be further specified

by search type and region if necessary. Any record whose user is in the target

user group belongs to our filtered sub-dataset.

• Source Device: types of mobile devices held by users, i.e., Android, Black-

berry, and iPhone.

Generally speaking, we could gather a subset of search records for certain ex-

perimental usage (e.g., geo-related hypotheses on gas search), by using a combina-

tion of filtering constraints (Figure 3.2). The selection of filtering constraints is not

independent of the hypothesis to be investigated: searching for common patterns

supporting the idea of “dinner and a movie” could well involve different filtering

constraints than something like “how far will some one drive for cheap gas?” In

the current framework, the selection of these constraints is an approximation to a

business hypothesis, in the sense that the subset of data selected by these constraints

is that data from which a hypothesis is supported or refuted.

3.4 Examples of Simple Hypothesis Investigation

3.4.1 Hypothesis One

Hypothesis One is in the first category of hypotheses about the distribution of indi-

vidual searches in one category. For example if we hypothesize that movie searches

are most active on weekends. This example investigates how records of one search
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Figure 3.2: Choosing sub-datasets with combinations of filtering constraints.

type are distributed across the hours within one week, to show the corresponding

peak searching periods during that week. Note that the graph version of the movie

search distribution (Figure 3.3) confirms a hypothesis about movie searches most-

active in the afternoon of a day and peaking on Friday and Saturday afternoons (as

marked by red circle in the diagram).

3.4.2 Hypothesis Two

Hypothesis Two is in the second category which covers hypotheses on correlations

amongst different search categories. For instance, what an individual might search

for, movies or events, in 30 minutes after looking up nearby restaurants? The ex-

ample discusses the possible correlation of one search category (Movie or Event)

to the other (Restaurant). We simply suppose that a search α is “correlated” to a

search β (both α and β are made by the same individual) if α is conducted within

certain time window t after β. The “correlation rate” of search category A to cat-

egory B (CRA-B) in certain time span s is defined as the percentage of searches in

category A that are conducted within s and correlated to some search in category B.

Note that A-B differs from B-A in correlation direction. Therefore, the correlations

between A and B can be measured bidirectionally by CRA-B and CRB-A.
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Figure 3.3: Hourly number distribution of movie searches within one week.

In the preliminary experiment, we choose two target pairs of search categories,

[Movie, Restaurant] and [Event, Restaurant], and examine only the unidirectional

correlations of Movie (M) or Event (E) to Restaurant (R), i.e, M-R and E-R. Time

window t and time span s are set to twenty minutes and one hour respectively.

Therefore correlation rate is computed for every hour across the entire target week.

In Figure 3.4, the hourly number distributions of searches in total and searches cor-

related to any R search are visualized respectively in blue and red curves for the

investigation of the correlations M-R and E-R. It indicates that the search category

Movie is more closely correlated to Restaurant than Event in the afternoons, espe-

cially on Friday and Saturday. But the graph presentation in Figure 3.4 is immedi-

ately a challenge to interpret; it is clear we need to identify appropriate visualization

methods to clearly and quickly interpret for each type of hypotheses.

3.5 Consumer Trajectories

Under the context of spatio-temporal search data analysis, a consumer trajectory is

a chronologically ordered sequence of search records generated by one individual

user. Given a subset of search records filtered by a combination of constraints (dis-

cussed in Section 3.3), a set of consumer trajectories can be identified by group-
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Figure 3.4: Investigate the correlations Movie-Restaurant and Event-Restaurant:
the distribution of searches in total (blue) and the distribution of searches correlated
to any Restaurant search (red) over the hours in one week.

ing records by individual user and ordering each group of records into sequence

chronologically. Therefore we can vary the geo-extent, time frame, search type,

etc., to look for identifying features relevant to the target hypothesis among the cor-

responding consumer trajectories. Practically, we would normally restrict that one

consumer trajectory involves at least two records under the specified constraints.

Of course the challenge is to find appropriate selection, clustering, and visualiza-

tion techniques to support a human user’s confirmation of consumer trajectories.
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Chapter 4

Visualization Approaches

The Poynt data in our case studies provide the basis for identifying consumer tra-

jectories built on various subsets of search records, filtered by combinations of con-

straints representing the intuitive semantics of consumer trajectory components (as

described in Section 3.5). Three major attributes, record transaction time, region

(latitude and longitude), and node label type, are involved with the target data to be

visualized.

Generally speaking, we are interested in visual evidence that exhibit spatial

and/or temporal patterns for the exploratory and explanatory investigations of se-

mantic hypotheses. In the framework of hypothesis-driven visual data analysis, we

need multiple visualization schemes to depict the target data from different perspec-

tives, to reveal unexpected features, and to aid exploratory searches for proposing

new hypotheses. Exploiting the data with multiple visualizations throughout the

constraint space could also focus and amplify evidence that help confirm or refute

proposed hypotheses during explanatory searches.

Specifically, we use two fundamentally different visualization approaches: the

Cartesian Geography Map and the Storyline Visualization.

4.1 Cartesian Geography Map

A Cartesian Geography Map visualizes a target set of consumer trajectories un-

der the context of a conventional geography map. Each search record is marked

by its normalized latitude and longitude in the first quadrant of a rectangular co-
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ordinate system where the horizontal and vertical axes represent longitude and lat-

itude respectively. Both axes are bounded by the minimum and maximum values

of the corresponding attributes (LONmin/LATmin and LONmax/LATmax) from

the target dataset. Therefore, the origin of the coordinate system in a Cartesian

Geography Map represents (LONmin, LATmin) and the top-right corner denotes

(LONmax, LATmax). Node label types of the involved search records are distin-

guished in the map by their predefined node colors. Search record nodes in one

consumer trajectory are connected by grey trajectory lines. An example of Carte-

sian Geography Map is shown in Figure 4.1a which visualizes consumer trajectories

under the target region enclosed by the blue rectangle in Figure 4.1b.

Obviously, it is straightforward to observe the spatial distribution of target con-

sumer trajectories in a Cartesian geography map. The drawback, however, is the

lack of temporal traces in one single map. To investigate how the target con-

sumer trajectories distribute over time, we have to first divide the time span into

sub-partitions with certain time granularity (e.g., by day or six-hour interval), then

apply multiple Cartesian geography maps to visualize respectively the subsets of

consumer trajectories on the divided time span sub-partitions. This makes the ap-

proach inappropriate for temporal pattern related hypothesis analysis.

4.2 Storyline Visualization

To incorporate in one visualizing diagram how consumer trajectories distribute over

time, we introduce Storyline, a visualization approach which is based on a method

named “Storygraph” proposed by Shrestha et al. [17, 18].

4.2.1 Storygraph

Storygraph is a 2D diagram consisting of two parallel vertical axes Vα ⊂ < (on the

left) and Vβ ⊂ < (on the right), and an orthogonal horizontal axis H ⊂ < [18]. In

our case, Vα and Vβ represent, respectively, the latitude and longitude coordinates

of a point on a Storygraph plane, while H represents time. All three of the axes are

bounded at both ends by the minimum and maximum values of the corresponding
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(a) The corresponding Cartesian geography map.

(b) The geography map of the target region (in the blue rectangle).

Figure 4.1: An example of Cartesian Geography Map.

23



attributes in the dataset. Values in the axes are in ascending order from left to right

horizontally and bottom to top vertically.

Obviously Storygraph is suitable for visualizing spatio-temporal search records.

We normally refer to a node representing a search record plotted in Storygraph as

an event because it indicates where and when a consumer search was conducted.

Figure 4.2 illustrates how two events in a regular 2D Cartesian map, both coded with

the same location coordinates (lon, lat) but with different timestamps t and t + 1,

are presented in Storygraph. The line segment connecting the two points on the

vertical axes, lat ∈ Vα and lon ∈ Vβ , indicates the location coordinates (lon, lat)

of the corresponding Storygraph event nodes on it. We refer to this type of lines

in Storygraph as location lines. Location lines are important to Storygraph in that

any event node plotted without it in Storygraph loses the location information and

represents some event occurred at certain time with unknown location coordinates.

As shown in Figure 4.2, the coordinates of an event (lon, lat, t) on a Storygraph

plane are determined by the intersection of its location line and the vertical line

x = t which indicates the event time t. The function f(lon, lat, t) → (x, y) which

maps an event (lon, lat, t) to the coordinate (x, y) on a 2D Storygraph plane can be

formally written as follows:

x = t (4.1)

y =
(lon− lat)(x− Tmin)

Tmax − Tmin
+ lat (4.2)

where Tmin and Tmax are respectively the minimum and maximum timestamps of

the dataset.

Figure 4.2 also shows the advantage of Storygraph over Cartesian Geography

Map when visualizing data with the temporal attribute.

4.2.2 Generating Storygraph-based Storylines

As described in Section 3.5, a consumer trajectory is a chronologically ordered se-

quence of search records (events) by one individual user. Based on Storygraph,

the Storyline visualization of a target consumer trajectory is constructed by sequen-

tially connecting all involved events visualized in Storygraph with trajectory lines,
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Figure 4.2: Cartesian versus Storygraph [18].

thus telling a story about the spatio-temporal events of the user. Therefore the main

components of a consumer trajectory visualized in Storyline include the Storygraph

nodes and the corresponding location lines for all involved events, as well as the tra-

jectory lines connecting adjacent nodes. Algorithm 1 describes how to construct a

Storygraph-based Storyline visualization given a set of target search records. In

this algorithm, transparency level is used to help indicate the relative densities of

components that overlap in the visualization.

In the original scenario of Storyline based on Storygrah by Shrestha et al. [17,

18], event nodes and connecting lines are distinctly colored by individual user to

help visualize the movements of characters and the interactions amongst them on

events. We introduce a node label, by which Storygraph nodes of consumer trajec-

tories are colored, to Storyline as an extra dimension (in addition to location and

time) created for the attribute semantically matching the hypothesis under analysis

(e.g., search type, source device, and semantic cluster). Unlike the original authors,

we are more interested in the application of Storyline to discover general visual pat-

terns shown spatially and/or temporally under assorted contexts of node labels over

large numbers of users, instead of single user’s behaviors.

Figure 4.3a showcases an example of Storygraph-based Storyline Visualization

where location lines are colored in light blue and trajectory lines in grey. We can

see that, as with the increase of the number of target consumer trajectories to be

visualized, the problem of occlusion, cluttering and color mixture turns visual con-
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Algorithm 1 Construct Storygraph-based Storyline visualization.
Given: a set of target search records
Preprocess the original set of search records:
group records by individual user and order each group of records chronologically,
thus constructing S, the set of target consumer trajectories to be visualized (each
group of time-ordered records is a consumer trajectory of the individual user);
retrieve the minimum and maximum values of the attributes latitude, longitude
and transaction time of all records in S: LATmin/LATmax, LONmin/LONmax,
Tmin/Tmax.

prevx ← 0, prevy ← 0
for each consumer trajectory ct in S do

for each search record r (lat, lon, t, label) in ct do
Normalize lat, lon, and t respectively such that lat and lon are nor-
malized to the interval [1, L], and t is normalized to the interval [1,W ]
(all rounded to the nearest integer):

latnorm ←
[

lat−LATmin

LATmax−LATmin
(L− 1)

]
+ 1

lonnorm ←
[

lon−LONmin

LONmax−LONmin
(L− 1)

]
+ 1

tnorm ←
[

t−Tmin

Tmax−Tmin
(W − 1)

]
+ 1

Compute the pixel coordinate (currx, curry) of the current trajectory
node r (according to Equations 4.1, 4.2):

currx ← tnorm
curry ←

[
currx−Tmin

Tmax−Tmin
(lonnorm − latnorm)

]
+ latnorm

if prevx 6= 0 and prevx 6= currx and prevy 6= curry then
Draw trajectory line segment joining pixels (prevx, prevy) and
(currx, curry) with the RGB color and transparency level pre-
defined for trajectory line;

end if
prevx ← currx, prevy ← curry

Draw Storygraph location line segment joining pixels (1, latnorm) and
(W, lonnorm) with the RGB color and transparency level pre-defined
for Storygraph location line;
Draw trajectory node centered at pixel (currx, curry) with the RGB
color and transparency level pre-defined for trajectory node of the type
label;

end for
end for
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fusion in the visualization. Storygraph location lines in particular contribute the

most. Under such circumstances, hiding location lines helps alleviate the issue

without losing much of the involved events’ location information (see Figure 4.3b).

This is useful, since events in one consumer trajectory normally align with each

other around the hidden location lines and the trajectory lines connecting them give

a close sense of the event location (if the user rarely moves) or the user movement,

especially with the property of the Poynt data whose consumers exhibit geographi-

cal locality to some extent while conducing searches. Therefore we normally hide

Storygraph location lines in Storyline visualization when the target data is dense in

the 2D visualizing space.

4.3 Augmenting Storyline with Frequency Plots

When the target dataset scales up drastically, hiding location lines in a normal

Storygraph-based Storyline visualization (Section 4.2) is not enough to ensure a vi-

sually satisfactory result for hypothesis analysis. Since Algorithm 1 simply draws

consumer trajectory components in Storyline overlapping each other under certain

transparency levels, the issues of occlusion, cluttering and color mixture created

by the overlapping of trajectory lines and Storygraph event nodes (without location

lines) cannot be ignored. Figure 4.4a exhibits such a problematic example.

Based on the above motivation, a strategy named Frequency Plots [1] is intro-

duced to augment normal Storygraph-based Storyline (described in Section 4.2)

when confronting the cluttering and occlusion issues caused by scaled-up data. The

idea of Frequency Plots is to associate the content to be drawn, in our case as-

sorted consumer trajectory components in Storyline, with frequency information

in a pixel-wise manner in order to reflect the relative density of involved compo-

nents in the visualization space. Specifically, for each pixel, the color indicates the

type of the most-frequent component on the spot (if any), and the lightness is set

proportionally to the corresponding frequency value so that in general components

associated with higher frequency superimpose those with lower frequency in terms

of pixel lightness.
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(a) Storygraph-based Storyline with location lines.

(b) Storygraph-based Storyline with location lines hidden.

(c) Corresponding Cartesian Geography Map.

Figure 4.3: Examples of Storygraph-based Storyline with or without location lines.
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Considering that the method of Frequency Plots is applied to large dense data,

location lines of Storygraph event nodes are normally hidden in a Frequency Plots

augmented Storyline visualization. Therefore the consumer trajectory components

to be visualized in a Storyline augmented by Frequency Plots are Storygraph event

nodes of different label types and trajectory line, and the frequency information is

cumulatively gathered pixel-wise by component type (note that event nodes of dif-

ferent labels are considered as components of different types, thus their frequency

information are computed separately). In addition, it is inappropriate to mix up

the frequency information of event node and trajectory line when applying Fre-

quency Plots since they are components of two different general classes and the

reflected “relative density” should be in terms of other components in the same

class. Therefore, in the actual implementation of Frequency Plots augmented Sto-

ryline, we handle event node and trajectory line separately with Frequency Plots in

two independent layers under the same discreet screen system. To render the final

Storyline output, we have to make a decision on which layer of the two shows on

top. Practically speaking, event node is more important than trajectory line since

the latter is for auxiliary purpose to indicate transition or connectivity, and general

patterns involved with event node labels (e.g., search categories, source devices) are

of most interest. Therefore, a Frequency Plots augmented Storyline visualization is

constructed with the layer of event nodes superimposed on that of trajectory lines.

Figure 4.4b shows an example of a Frequency Plots augmented Storyline, which,

compared to its corresponding normal Storyline visualization (Figure 4.4a), reduces

visual occlusion and cluttering, and exhibits relatively clearer clusters of consumer

trajectories.

Besides, the individual layer of trajectory lines in Figure 4.4b is shown in Fig-

ure 4.4c. When the data is extremely dense, the layer of trajectory lines could be

completely covered by the layer of event nodes in a Frequency Plots augmented

Storyline. Under such circumstances, we could check the layer of trajectory lines

individually if necessary since it helps provide a general sense about where strong

patterns of node labels reside in the visualization space.

In summary, the strategy of Frequency Plots helps avoid the issue of color mix-
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ture in a normal Storyline, which relies on simple transparency levels to reflect rela-

tive density, and alleviates occlusion by selectively displaying the “most important”

content (in terms of component pixel-wise frequency). In addition to the above, we

enable interactive zooming in Storyline visualization, which allows the analysis of

selected subareas with finer granularity and helps alleviate the problems of clutter-

ing and occlusion. Note it is clear that general methods for removing visual clutter

will provide motivation for the development of dynamic interactive rendering (e.g.,

[21, 7, 8]).

Details about building a Storyline visualization augmented by Frequency Plots

is described in Algorithm 2. An example augmenting Figure 4.4a is shown in Fig-

ure 4.4b. Our contribution to the original usage of Frequency Plots by Artero et al.

[1] is applying Frequency Plots for visualization augmentation under the context of

multiple types of components to be visualized (e.g., event nodes of different label

types, trajectory line) in ARGB color space.

4.4 Questions Answered by the Visualizations

This section summarizes the kinds of questions that the selection, filtering and vi-

sualization tools can address.

4.4.1 Search Category Selection and Comparison

From the original relational database, the search category selection tool chooses

target Poynt search categories (e.g., Figure 4.5). By default, consumer trajecto-

ries built on the data of the selected search categories are visualized in a Cartesian

geography map over the entire time span and spatial region of the dataset.

4.4.2 Spatial Abstraction and Comparison

After target search categories are selected, the geographic selection tool defines a

region that can be mapped to a Cartesian visualization, so as to show the spatial

distribution of the consumer trajectories built on the Poynt user queries of the target

search categories in the chosen region (e.g., Figure 4.6).
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(a) Storyline normal.

(b) Storyline augmented by Frequency Plots.

(c) individual Storyline layer of trajectory lines.

Figure 4.4: An example of Storyline augmented by Frequency Plots.
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Algorithm 2 Construct Storyline visualization augmented by Frequency Plots.

REQUIRE:
S: the set of target consumer trajectories to be visualized;
LATmin/LATmax, LONmin/LONmax, Tmin/Tmax: the minimum and maximum
values of the attributes latitude, longitude and transaction time of all records in
S.

[Step 1] Initialize pixel color matrix GL×W , whose dimension L and W are de-
fined by the plot’s pixel resolution (L is determined by the vertical resolution, W
is determined by the horizontal resolution), with zeros:

Let G[p][q] = 0, for p = 1, . . . , L and q = 1, . . . ,W

[Step 2] Normalize each record r (lat, lon, t, label) in S to
(latnorm, lonnorm, tnorm, label) such that lat and lon are normalized to the
interval [1, L], and t is normalized to the interval [1,W ] (all rounded to the
nearest integer):

latnorm ←
[

lat−LATmin

LATmax−LATmin
(L− 1)

]
+ 1

lonnorm ←
[

lon−LONmin

LONmax−LONmin
(L− 1)

]
+ 1

tnorm ←
[

t−Tmin

Tmax−Tmin
(W − 1)

]
+ 1

[Step 3] Visualize S with normalized records: draw consumer trajectory nodes
(Storygraph event nodes) and trajectory lines

3.1 compute pixel frequency matrix of trajectory lines P tjlnL×W and pixel fre-
quency matrix by node label type P typeL×W×K (K is the number of record
node label types)
Let P tjln[i][j] = 0, for i = 1, . . . , L and j = 1, . . . ,W
Let P type[i][j][k] = 0, for i = 1, . . . , L, j = 1, . . . ,W and k = 1, . . . , K
prevx ← 0, prevy ← 0
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for each consumer trajectory ct in S do
for each search record r (latnorm, lonnorm, tnorm, label) in ct do

compute the pixel coordinate (currx, curry) of the current node r (ac-
cording to Equations 4.1, 4.2):

currx ← tnorm
curry ←

[
currx−Tmin

Tmax−Tmin
(lonnorm − latnorm)

]
+ latnorm

P type[L+1−curry ][currx][label] ← P type[L+1−curry ][currx][label] + 1
if prevx 6= 0 then

Use the Bresenham algorithm to compute the coordinates (tx, ty) of
all pixels in the line segment joining pixels prev : (prevx, prevy)
and curr : (currx, curry); for each position (tx, ty) computed, in-
crement the corresponding pixel frequency in matrix P tjln:

P tjln[L+1−ty ][tx] = P tjln[L+1−ty ][tx] + 1
end if
prevx ← currx, prevy ← curry

end for
end for

3.2 update G with P tjln and P type
for each P tjln[i][j] 6= 0, with i = 1, . . . , L and j = 1, . . . ,W do

compute alpha (color lightness of pixel (j, L + 1 − i)) proportionally to
P tjln[i][j];
set G[i][j] with ARGB color value determined by alpha and the pre-defined
RGB color value of trajectory line;

end for
for each matrix index pair (i, j) satisfying ∃k′ ∈ [1, K] such that P type[i][j][k′] 6=
0, with i = 1, . . . , L and j = 1, . . . ,W do

label type← {k | ∀k′ ∈ [1, K] : P type[i][j][k′] ≤ P type[i][j][k]}
compute alpha (color lightness of pixel (j, L + 1 − i)) proportionally to
P type[i][j][label type];
set G[i][j] with ARGB color value determined by alpha and the RGB color
value pre-defined for trajectory node of the type label type;

end for

[Step 4] Display the resulting Storyline visualization augmented by Frequency
Plots stored in matrix G
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(a) Choosing target search categories from the search category selection tool (Yellow
Pages, Movie, and Restaurant are selected).

(b) The consumer trajectories built on the data of the selected search categories (over
the entire time span and spatial region of the dataset) are visualized in a Cartesian
geography map by default.

Figure 4.5: An example of Poynt search category selection.
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(a) Choosing the target region around New York City from the geographic selection
tool by inputting the latitude and longitude scopes.

(b) The consumer trajectories built on the data of the selected search categories (Yel-
low Pages, Movie, and Restaurant) in the chosen region are visualized in a Cartesian
geography map.

Figure 4.6: An example of region selection (under Yellow Pages, Movie and
Restaurant search categories).
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This spatial abstraction can be further refined by restricting the kinds of target

source devices with the source device selection tool (e.g., Figure 4.7).

4.4.3 Temporal Abstraction and Comparison

After target search categories are selected, the temporal selection tool can be used

to set a time span that can be mapped to a Storyline visualization, so as to show the

temporal distribution of the consumer trajectories built on the Poynt user queries of

the target search categories within the selected time span (e.g., Figure 4.8).

Furthermore, like the spatial distribution tool, alternative selections of other

attributes (e.g., source device) can be further selected, to show the temporal distri-

bution of the consumer trajectories built on the selected data.

4.4.4 Yellow Pages Keyword Cluster Selection and Comparison

The semantic distribution of keywords used in Yellow Pages search can be investi-

gated by using a variety of clustering methods on keyword data, to visually inves-

tigate how different keyword clusters impact both spatial and temporal distribution

of Poynt user key word search behaviour. In our cases studies, we did not pursue

many alternative key word classifications, but have created Yellow Pages keyword

clusters by hand (see Section 6.2.1 for details).

When the category Yellow Pages is selected as the only search category, we

can further choose target Yellow Pages keyword clusters from the Yellow Pages

keyword cluster selection tool, and show the spatial and temporal distributions of

the consumer trajectories built on the Poynt user data of the selected keyword clus-

ters (by default over the entire time span and spatial region of the dataset) (e.g.,

Figure 4.9).
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(a) Choosing target source devices from the source device selection tool (Android,
BlackBerry, iPhone are selected).

(b) The consumer trajectories built on the data of the selected search categories (Yel-
low Pages, Movie and Restaurant) in the chosen region and further refined by the
chosen source devices (Android, BlackBerry, iPhone) are visualized in a Cartesian
geography map.

Figure 4.7: An example of spatial abstraction further refined by restricting the kinds
of target source devices.
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(a) Choosing the target time span (Tuesdays and Wednesdays ignoring weeks) from
the temporal selection tool.

(b) The consumer trajectories built on the data of the selected search categories (Yel-
low Pages, Movie and Restaurant) within the chosen time span are visualized in a
Storyline visualization.

Figure 4.8: An example of time span selection (under Yellow Pages, Movie and
Restaurant search categories).
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(a) Choosing target Yellow Pages keyword clusters from
the Yellow Pages keyword cluster selection tool (“Food
and Restaurants”, “Automotive”, and “Shopping” are
selected).

(b) The consumer trajectories built on the Poynt
user data of the selected keyword clusters are vi-
sualized in a Cartesian geography map (by de-
fault in the entire spatial region of the dataset).

(c) The consumer trajectories built on the Poynt
user data of the selected keyword clusters are vi-
sualized in a Storyline visualization (by default
over the entire time span of the dataset).

Figure 4.9: An example of Yellow Pages keyword cluster selection.
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Part III

Case Studies and Discussions
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Chapter 5

Case Studies to Confirm Evidence for
Consumer Trajectories

In this chapter, we experiment on target data in the form of consumer trajectories

and visualize them in Cartesian Geography Map and Storygraph-based Storyline,

in order to tell spatio-temporal stories and analyze more complex hypotheses about

the data with exploratory and explanatory searches.

5.1 A Glimpse of the Experimental Data

The dataset of Poynt search records based on which target consumer trajectories are

constructed for experiment temporally spans five consecutive weeks, Week of May

29 to Week of June 26, in the year 2011. The general geographic region in our case

studies (the area enclosed by the blue rectangle in Figure 4.1b, LAT [38, 44] and

LON [−80,−73]) mainly involves two states in the northeast US, Pennsylvania and

New York, and southern Ontario in Canada. Covered are several metropolitan areas

including New York City, Toronto, Washington, and Philadelphia.

5.2 Exploratory and Explanatory Searches

Exploratory and explanatory searches (Section 3.2) are important to the framework

of hypothesis-driven visual data analysis. In this section, we show with an example

how exploratory and explanatory searches are alternated and interleaved during the

processes of proposing new hypotheses and confirming/refuting proposed ones.
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First we start with a simple hypothesis: “People who search for movies are most

active on the afternoons of the weekend.” It is explanatory search since we have an

expected answer in mind (“the afternoons of the weekend”) before the investigation.

This question has already been answered in Section 3.4.1 by checking the hourly

distribution of movie searches within one week. From the histogram in Figure 3.3,

we conclude that movie searches are most-active in the afternoon of a day and peak

on Friday and Saturday afternoons. Therefore the explanatory search ends with our

proposed hypothesis refuted.

Next, we would like to compare how users with different source devices (e.g.,

Android and BlackBerry) behave on movie search during one of its peak periods,

Friday afternoons. This is an exploratory search triggered on the previous explana-

tory search. Among the visualization results, we first notice an evident difference

from the Cartesian geography maps that Android users (Figure 5.1a) exhibit strong

trajectory connectivity between metropolitan centers. This may indicate that An-

droid users tend to move more actively in long distances than BlackBerry users

during the peak period of Movie search, which we then propose as a new hypothe-

sis and try to confirm with more evidence. This is a typical example that shows how

interesting phenomena appearing unexpectedly during exploration may help invoke

explanatory searches with new hypothesis inspired by the exploratory findings.

(a) Android. (b) BlackBerry.

Figure 5.1: Cartesian Geography Map visualizations of movie searches by An-
droid/BlackBerry users on Friday afternoons.
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On the other hand, there are large numbers of vertical trajectory lines existing

only in the Storyline visualization of Android users (Figure 5.2a), which indicates

that those involved movie searches are abnormally made within extremely short

time interval by the same individual users at multiple locations that are distant from

each other geographically. Further investigation shows that these abnormal con-

sumer trajectories belong to only a few Android users who make an abnormally

high number of searches periodically (e.g., about 12,000 movie searches per week),

and the involved searches are normally conducted by one individual user within

short time intervals at different locations far away from each other geographically

(e.g., searches conducted around New York City and Philadelphia, respectively,

in just two minutes). The strong trajectory connectivity shown exclusively in the

Cartesian map of Android users also results from these abnormal users. Apparently

we should ignore these abnormal users when analyzing consumer behaviors. In all

the following experiment sections, the records associated with abnormal Android

users are filtered out from target data whenever applicable, in order to avoid the

corresponding noise that they create in the analysis of consumer behaviors.

(a) Android. (b) BlackBerry.

Figure 5.2: Storyline visualizations of movie searches by Android/BlackBerry users
on Friday afternoons.

Figure 5.3 shows the visualizations after abnormal users are removed from An-

droid users. As we can see in Figure 5.3a and Figure 5.3b, the strong trajectory

connectivity in Figure 5.1a and the prevailing vertical trajectory lines in Figure 5.2a

disappear accordingly. Besides, after the removal of abnormal users, there is no

significant difference between Android and BlackBerry users in terms of active
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long-distance movements in both visualizations. Therefore our second explana-

tory search terminates by denying the proposed hypothesis. Meanwhile, supported

to some extent is the exploratory search for the comparison of Android and Black-

Berry users on movie search during the peak period, by comparing Figure 5.1b with

Figure 5.3a and Figure 5.2b with Figure 5.3b. The observation is that Android users

are mostly active across the metropolitan areas from the US side, while BlackBerry

users mainly gather around Toronto, then New York City.

(a) Cartesian geography map. (b) Storyline.

Figure 5.3: Visualizations of movie searches by Android users (with abnormal users
removed) on Friday afternoons.

As you can see in the above example, the co-display of both a Cartesian and

Storyline visualization provides two different perspectives on the same selection of

data and helps reveal unexpected features. We have implemented a graphical tool

assisting with the interactive investigation of Poynt data in exploratory and explana-

tory searches. It enables dynamic selection of filtering constraints and interactive

zooming over the rendered Cartesian and Storyline visualizations. As we further

develop our tools for managing multiple visualization methods, we will work to

extend the repertoire of dynamic interactions to support the idea of exploratory

and explanatory visual analytics. In this regard, the visualization architecture of

Sjöbergh and Tanaka, Webbles [19], holds the most promise for supporting more

sophisticated interactive visual analytics.
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5.3 Comparison of Different Source Devices

The idea of comparing the behaviours of users with different source devices (e.g.,

Android versus BlackBerry) has been briefly investigated as an example of ex-

ploratory searches in Section 5.2, which helps reveal the existence of abnormal

Android users. In this section, we make the comparison and investigate the be-

haviours of users with different source devices in a more comprehensive manner.

The records associated with abnormal Android users are filtered out from the data

for the experiment, in order to avoid the corresponding noise created in the analysis

of consumer behaviors.

5.3.1 Exploratory Search

We first explore the features exhibited by different source device groups under a sin-

gle target search category (Yellow Pages, Movie or Restaurant). Figure 5.4 shows

the results of both Cartesian Geography Map and Frequency Plots augmented Sto-

ryline visualizations exploring how Android (green), BlackBerry (blue) and iPhone

(red) users behave differently under each single search category in the entire target

region. First, it is obvious that iPhone users only account for a very small pro-

portion of the target data over the three search categories, hence the comparison

is mainly made between Android and BlackBerry devices. Apparently BlackBerry

users prevail in southern Ontario from the Canadian side for all three search cate-

gories, while Movie and Restaurant searches in the US, except certain areas around

New York City, are more prevalent with Android users, and BlackBerry users in the

US only act much more actively in YP searches.

The dominance of BlackBerry users in southern Ontario from the Canadian side

matches well the fact that the company BlackBerry, formerly known as Research In

Motion (RIM), is headquartered in Waterloo, Ontario, Canada. Besides, the obser-

vation that BlackBerry users are more active in Yellow Pages searches in both the

US and the Canadian side may indicate that BlackBerry devices are more popular

for business or work-related use.
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(a) Yellow Pages Cartesian. (b) Yellow Pages Storyline.

(c) Movie Cartesian. (d) Movie Storyline.

(e) Restaurant Cartesian. (f) Restaurant Storyline.

Figure 5.4: The comparison of different source devices under single search type
over the entire target region by the results of Cartesian Geography Map and Fre-
quency Plots augmented Storyline visualizations (Android (green), BlackBerry
(blue), iPhone (red)).
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5.3.2 Explanatory Search

Previously in Section 5.2, visual inference refuted the hypothesis that “Android

users tend to move more actively in long distances than BlackBerry users during

the peak period of Movie search,” as the result of the explanatory search exam-

ple, which fails to differentiate Android from BlackBerry in terms of the con-

sumer behaviors of geographical movement activeness in Movie searches. How-

ever, from the exploratory results in this section (shown in Figure 5.4), there are

many more grey consumer trajectory lines shown in the Cartesian geography map

of YP search (Figure 5.4a) than that of Movie search (Figure 5.4c), which indicates

stronger spatial transitions among consumers’ YP search behaviors. Also consider-

ing the exploratory indication noted above (that BlackBerry devices are more pop-

ular for business or work-related use since they are more active in YP searches),

we are interested in distinguishing the characteristics of Android and BlackBerry

users exhibited in YP searches from the perspective of geographical transitions,

thus proposing the following hypothesis and starting the corresponding explanatory

search: “BlackBerry users are geographically more active than Android users when

searching for Yellow Pages businesses.”

Figure 5.5 shows the Cartesian Geography Map visualizations of YP searches

with single brand of source device targeted (Android or BlackBerry) over the en-

tire target region, for comparing the difference in geographical transition activeness

between Android and BlackBerry users in the explanatory search. From the re-

sults, BlackBerry (Figure 5.5b) exhibits stronger trajectory connectivity between

metropolitan areas than Android (Figure 5.5a), which supports the proposed hy-

pothesis.

Digging further, we continue the explanatory search with a zoomed-in focus on

the region from the city Toronto in southern Ontario in Canada, all the way south to

the city Buffalo in the US, as shown in Figure 5.6a. The small region is specifically

selected to span the border area between Canada and the US, with the Canadian

side dominated by BlackBerry users and the US part mostly covered by Android

users. The distinguishing difference of geographical distribution between Android

(green) and BlackBerry (blue) devices is shown in both the Cartesian Geography
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(a) Android. (b) BlackBerry.

Figure 5.5: Cartesian Geography Map visualizations of YP searches with Android
and BlackBerry respectively targeted over the entire target region for the compari-
son of geographical transition activeness between Android and BlackBerry users.

Map (Figure 5.6a) and Storyline (Figure 5.6b) visualizations.

Figure 5.7 shows the results of a similar comparison between Android and

BlackBerry users for the explanatory search as Figure 5.5, with a zoomed-in fo-

cus on the selected region spanning the border area between Canada and the US

(specifically from the city Toronto in southern Ontario in Canada, all the way south

to the city Buffalo in the US). We can see from Figure 5.7 that in YP searches, An-

droid users (Figure 5.7a) have much fewer grey trajectory lines indicating weaker

geographical transition activeness than BlackBerry users (Figure 5.7b), considered

as the supportive evidence to the target hypothesis.
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(a) Cartesian Geography Map.

(b) Storyline (augmented by Frequency Plots).

Figure 5.6: YP searches of Android (green) and BlackBerry (blue) users in the
selected small region spanning the border area between Canada and the US, from
the city Toronto in southern Ontario in Canada, all the way south to the city Buffalo
in the US.
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(a) Android.

(b) BlackBerry.

Figure 5.7: Cartesian Geography Map visualizations of YP searches with Android
and BlackBerry respectively targeted over the selected region covering the border
area between Canada and the US, for the comparison of geographical transition
activeness between Android and BlackBerry users.
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Chapter 6

Utilizing the Webble Dashboard for
Poynt Data

6.1 The Webble Dashboard and Searches on Spatio-
temporal Data

6.1.1 Webble World and the Digital Dashboard

Webble World1 [14] is a framework built for users to share, configure and combine

pluggable software modules, i.e., Webbles, which encapsulate both content and

functionalities as web resources. The purpose of Webble World is to practice and

study the evolution of human knowledge, with Webble objects serving as smart

containers of digital knowledge based on the philosophy of memes [22]. In general,

Webbles are reusable, editable, compoundable software components which wrap

content and functionalities to be plugged in at runtime. A Webble object evolves

every time users of Webble World reuse/edit and republish it.

The Digital Dashboard [20, 19] is an application of Webble World in exploratory

visual analytics, which uses multiple linked views of data. Each view is a plugged-

in Webble visualization component. All views in the Digital Dashboard are interac-

tive with their respective visualization result via direct manipulation [16, 15], and

are connected in the sense that interactions in one view, e.g., selections or groupings

of visualized content, are automatically reflected in other linked views.

We generally refer to the Digital Dashboard with plugged-in Webble visualiza-

1see http://www.meme.hokudai.ac.jp/WebbleWorldPortal
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tion components as the “Webble Dashboard.” The Webble Dashboard is suitable for

visual exploration tasks in that the framework based on pluggable software compo-

nents makes it easy to incorporate Webbles for new visualization methods and to

prototype new interfaces. It also allows interactions with multiple linked views

which is convenient for exploratory searches. Directly interacting with the visual-

ization results is very useful for exploring interesting properties of data that emerge

in a visualization. For problems that deal with sparse, low quality and high dimen-

sional data (and are thus difficult to model), interactive visual exploration of the

data with the Webble Dashboard helps in hypothesis generation and exposing ideas

on how to model or analyze the data, and works more effectively when done by

domain experts to exploit their domain knowledge and intuitions.

6.1.2 Exploring Spatio-temporal Data with the Webble Dash-
board

The Webble Dashboard with components specifically built for visual exploration of

spatio-temporal data (e.g., Poynt data) is shown in Figure 6.1. The visualization

components, based on content and functionality, can be generally categorized into

the following groups:

• spatial: the Cartesian Geography Map visualization

• temporal: the 24-hour clock view and the histogram of record transaction

time

• spatio-temporal: the Storygraph visualization

• other: mainly histograms indicating data distribution over certain attributes,

e.g., search category, source device, and YP query keyword in Poynt data

There are procedures to follow when we conduct visual exploration on target

spatio-temporal data; in other words, we interact in a rational sequence of inter-

actions by view category (e.g., spatial or temporal) with each view component to

select multiple data groups for comparison. This helps the user to identify possible
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Figure 6.1: The Webble Dashboard with view components specifically built for the
visual exploration of Poynt spatio-temporal data.

distinguishing differences exhibited in other linked views. In our case, here are the

repertoire of possible interactions:

1. interact with the temporal or spatio-temporal views to select different tem-

poral intervals for comparison, for instance, different days of the week (e.g.,

weekdays against weekends, Mondays and Tuesdays versus Fridays and Sat-

urdays) and various time slots in a day (e.g., morning versus noon versus

evening), and then observe the spatial view and other plugged-in histograms.

2. interact with the spatial view to select different regions for comparison, for in-

stance, different countries (e.g., Canada versus the US) or cities (e.g., Toronto

versus New York City) and downtown areas against corresponding outskirts

in selected cities, and then observe the temporal/spatio-temporal views and

other plugged-in histograms.

3. interact with each of the other histogram views to select different value groups

of the corresponding attribute for comparison, for instance, different search

categories (e.g., Movie versus YP) and different source devices (e.g., An-

droid versus BlackBerry) in Poynt data, and then observe the temporal/spatio-

temporal/spatial views.
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6.2 Investigating Poynt Data with the Webble Dash-
board

Since the Poynt data is typically spatio-temporal data with extra search category

dependent attributes, it is interesting to investigate it for distinguishing features and

patterns with the Webble Dashboard. Specifically, we concentrate on hypotheses

associated with the semantics of Yellow Pages (YP) query keywords, and features

involving user movement distances.

6.2.1 Yellow Pages Keyword Semantics

During the preliminary exploratory search on the semantics of YP user query key-

words, we notice that certain query keywords are sensitive to certain times or loca-

tions. Temporally, for instance, “hotel,” “bar,” “liquor store” and “taxi” are mostly

queried during the evening, while higher percentages of “Starbucks,” “Tim Hor-

tons” and “McDonalds” occur in the morning. Some interesting yet unexpected

findings include that gym and fitness related queries, e.g., “ymca” and “planet fit-

ness,” are more actively made during weekdays rather than weekends. Spatially,

for example, “Sears,” “Home Depot” and “Walmart” are searched more frequently

around city outskirts or suburbs, while “parking” and “LCBO” are mostly searched

in downtown areas. We also find it not surprising that some query keywords exhibit

geographical locality in their geo-spatial distributions, e.g., “CIBC” and “LCBO”

are queried only in Canada, while “Bank of America” is only from the US side. But

there still are interesting discoveries beyond our expectations, e.g., “Dairy Queen”

and “Ikea” are searched more in Canada than in the US.

Motivated by the above preliminary explorations of the spatio-temporal charac-

teristics shown among YP query keywords, we are interested in further clustering

YP query keywords semantically, and observe potential patterns amongst keyword

groups with different semantics.
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Creating Yellow Pages Keyword Semantic Groups

When a user searches for the information of some business entity in the nearby

neighborhood, if the query is well-formed and has mappings of nearby business

entities returned by the app, the user can click over any entry in the returned listings

to obtain its corresponding information (phone call, map route, web link, etc.).

Normally, YP query keywords are nouns (e.g., “pizza,” “post office,” “hotels”) or

business named entities (e.g., “pizza hut,” “cibc”). Categorized as follows are the

problematic instances in the raw YP query keywords which have no mappings of

nearby business entities returned by the Poynt app:

1. the keyword contains ill-formed units with typos, symbols, number signs.

E.g., “papa jogbs,” “cfgj$$$,” “drn0i0.”

2. the keyword consists of well-formed units, but no nearby business entities

are found, as either all the units combined together do not make much sense

semantically and could not be mapped to any valid business entity by the

app, or there are business entities mapped, but none of them are located in the

nearby neighborhood of where the user types in the query.

An important circumstance not covered by the above categorization is that even

if what a user types in has nearby business entities mapped by the app, the returned

listings may not contain any entry relevant enough to what the user originally in-

tends to search for, suggested by no subsequent click action, which implies the

user’s negative feedback to the YP search results.

The target data that we expect for the experiments associated with YP keyword

semantic groups are well-formed YP search keywords with “valid” semantics in the

sense that not only there are mappings of nearby business entities returned for each

keyword input, but the listings do actually contain what the user originally intends

to search for, which could be confirmed by the user’s click behaviors over the listed

YP business entries. It is difficult to tell the quality of the returned YP search re-

sults without knowing the user’s click actions afterwards as an implicit source of

positive feedback. Fortunately, we have a special category of Poynt data collected,

Clickthru, recording users’s click actions in certain sections of the app (mainly in
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YP and Restaurant). Based on Clickthru data, we could “verify” YP search data

by focusing only on those chronologically immediately followed by a click action

of the same user. For example, Table 6.1 lists several YP search records followed

by a Clickthru record of the type map, all conducted chronologically within a short

time frame by the same individual. The last YP search record with the query key-

word “wilmington trust bank” is therefore verified by the user’s map click behavior

and selected as a target for the experiments. Normally, the YP search records se-

lected by the verification of Clickthru data have query keywords with more precise

identification of nouns or business entities.

* several YP search records by one individual
transaction date longitude latitude query keyword results
11-06-24 13:07:38 -75.7165 39.4496 “wimimgton ytrust babk” 0
11-06-24 13:08:16 -75.7165 39.4496 “wimimgton trust” 0
11-06-24 13:13:10 -75.7165 39.4496 “wilmington trust bak” 0
11-06-24 13:20:35 -75.7165 39.4496 “wilmington trust bank” 20
* a Clickthru record indicating the same user’s map click action
transaction date longitude latitude click section type
11-06-24 13:21:25 -75.7165 39.4496 YP map

Table 6.1: An example of YP search records verified by Clickthru data.

Based on the Clickthru-verified YP search records, we create mappings from

the query keywords to their semantic categories with the help of the Yelp Business

Search API2. The Yelp Business Search API recognizes business named entities

with a hierarchical semantic category structure and we choose its topmost level as

our general categories for building keyword semantic groups. Also considered by

the Yelp API when mapping a query keyword to a semantic category is where the

keyword was searched for, which means that one same keyword queried at different

locations may be mapped to different semantic categories due to assorted local busi-

ness distributions in their respective surroundings. Given access to the Yelp API,

we send each keyword with its corresponding location coordinates in the target YP

search data and get the category information of the first business returned by the

API (if any). If there is no category information obtained, we then normalize the
2see http://www.yelp.com/developers/documentation/v2/search api
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keyword using Google “didyoumean,”3 and resend the normalized candidate to the

API. If there is still no category information retrieved, we remove the first word in

the keyword and send it to the API as the final trial. After the above procedures,

all keywords without category information in the end are assigned with the group

label “NO CATEGORY INFO.” Table 6.2 lists all top-level semantic categories of

the Yelp Business Search API that are utilized for creating YP keyword seman-

tic groups and the distributions of the target Clickthru-verified YP search records

among them.

Yelp top-level category Category number Percentage
Shopping c1 25.20%
Restaurants c2 18.64%
Food c3 9.46%
Automotive c4 7.62%
Hotels and Travel c5 6.49%
Active Life c6 4.16%
Financial Services c7 3.83%
Beauty and Spas c8 3.73%
Health and Medical c9 2.99%
Home Services c10 2.76%
Local Services c11 2.19%
Nightlife c12 1.90%
Pets c13 1.56%
Arts and Entertainment c14 1.37%
Public Services and Government c15 1.23%
Education c16 0.76%
Event Planning and Services c17 0.58%
Professional Services c18 0.46%
Real Estate c19 0.39%
Religious Organizations c20 0.29%
Mass Media c21 0.10%
Local Flavor c22 0.05%
NO CATEGORY INFO c23 4.23%

Table 6.2: The Yelp top-level semantic categories and the distribution of the target
Clickthru-verified YP search records among them.

As the final step to the creation of YP keyword semantic groups, the Yelp top-

level categories are manually grouped in terms of semantic similarity. All the group-
3see https://developers.google.com/custom-search/json-api/v1/overview
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ing details are shown in Table 6.3, including the mappings of the created semantic

groups to their corresponding Yelp top-level categories, and the distributions of

the target Clickthru-verified YP search records among the created semantic groups

(based on the category-wise percentage figures in Table 6.2).

Keyword semantic group Yelp category number(s) Percentage
Food and Restaurants c2, c3 28.10%
Shopping c1 25.20%
Services c17, c7, c10, c11, c18, c15 11.05%
Automotive c4 7.62%
Life and Entertainment c6, c14, c21, c12 7.53%
Beauty and Health c8, c9 6.72%
Hotels and Travel c5 6.49%
Pets c13 1.56%
Education c16 0.76%
Local Flavour and Real Estate c19, c22 0.44%
Religious Organization c20 0.29%
NO CATEGORY INFO c23 4.23%

Table 6.3: The mappings of the manually created keyword semantic groups to their
corresponding Yelp top-level categories, and the distribution of the target Clickthru-
verified YP search records among the manually created semantic groups.

Experiments

We first start with an exploratory search which focuses on singular keyword seman-

tic group from Table 6.3. Revealed are several simple temporal patterns that make

sense and are consistent with the semantics of the group. For example, the seman-

tic group “Services” distributes evenly over weekdays and exhibits minor drops on

weekends, while “Hotels and Travel” behaving similarly to “Services” on week-

days shows an increase on weekends. In addition, “Automotive” and “Services”

have relatively larger ratios during weekdays than other groups.

As we search further with multiple keyword groups involved, we choose three

targets from the created keyword semantic groups (see Table 6.3), “Automotive,”

“Life and Entertainment,” and “Beauty and Health,” which have similar sizes (all

around 6% to 8% of the target data) yet cover totally different semantic topics. We

separately compare the selected groups’ temporal distributions around downtown
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areas and corresponding outskirts in terms of days of the week in the Storygraph

component. Figure 6.2 displays the visualization results of the exploratory search

on the relevant Webble components, which compare downtown areas (marked by

a blue shadow) and corresponding outskirts (marked by a red shadow) in the two

cities Toronto and New York City respectively. It shows that activities of the three

target groups in both cities have longer temporal segments in the evening till mid-

night in downtown areas than around outskirts. Also, downtown areas on Sundays

exhibit distinguishing early-morning activities right after midnight, which are con-

tinuing extensions of activities from late night of previous Saturdays. Among the

selected groups, “Life and Entertainment” contributes the most to all the above dif-

ferentiations between downtown areas and corresponding outskirts. It is most active

in downtown areas during the second half of each day of the week till late, especially

on Fridays and Saturdays, which matches well the semantics of the group. Be-

sides, geographically speaking, “Life and Entertainment” in downtown New York

City is relatively more evenly distributed during the second half of each day of the

week, while downtown Toronto exhibits more distinguishing differences between

Fridays/Saturdays and other days of the week in terms of the group’s peaking ac-

tivities.

Normally we expect some interesting phenomenon to appear unexpectedly dur-

ing an exploratory search, based on which we could conduct corresponding ex-

planatory searches with certain hypotheses inspired by those exploratory observa-

tions. The processes of the explanatory searches to reach the confirmation or refu-

tation of the proposed hypotheses, in return, provide valuable assistance to the con-

tinuance and conclusion of the exploratory search. For example, previously in the

experiment section “Exploratory and Explanatory Searches” (Section 5.2), the ex-

ploratory search comparing how Android and BlackBerry users behave during one

of movie search’s peak periods reveals an unexpected difference in the Cartesian

geography maps that Android users exhibit strong trajectory connectivity between

metropolitan centers. Accordingly we hypothesize that Android users tend to move

more actively in long distances than BlackBerry users during the peak period of

movie search. In the explanatory search for the confirmative or refutative evidence,
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(a) Toronto downtown area versus outskirts.

(b) New York City downtown area versus outskirts.

Figure 6.2: The exploration of the temporal features of the selected keyword se-
mantic groups (“Automotive,” “Life and Entertainment,” “Beauty and Health”) in
the Storygraph component, comparing downtown areas (in the blue shadow) and
corresponding outskirts (in the red shadow) in the two cities Toronto and New York
City respectively.
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we notice abnormal Android users from the Storyline visualizations, who contribute

to the strong trajectory connectivity shown exclusively in the Cartesian map of An-

droid users, and by comparing the visualization results after the removal of abnor-

mal Android users, the proposed hypothesis is refuted. The exploratory search also

benefits from the removal of abnormal Android users after which a preliminary con-

clusion about the geographic difference between Android and BlackBerry users is

reached.

However, often nothing beyond our expectations stands out during exploratory

searches. Under such circumstances, the observed characteristics and patterns are

the conclusion of the exploration, with no explanatory searches initiated. Most

likely the observations are self-explanatory and consistent with the semantics of

the target data artifacts. The exploratory investigation regarding multiple YP key-

word semantic groups in this section is a typical example which triggers no ex-

planatory searches and is concluded with the observation that the keyword semantic

group “Life and Entertainment” contributes the most to the differentiations between

downtown areas and corresponding outskirts. What the keyword group “Life and

Entertainment” covers semantically, e.g., “night life,” “bar,” “night club,” explains

the observed temporal features that actitivies in downtown areas span longer tempo-

rally in the evening till midnight and exhibit distinguishing early-morning activities

right after midnight on Sundays. And when compared with the other two target

groups, “Life and Entertainment” is most active in downtown areas during the sec-

ond half of each day of the week till late, especially on Fridays and Saturdays.

6.2.2 User Movement Distances

We are also interested in investigating the characteristics of geographic movements

across search behaviors in consumer trajectories, by individual user. Since the

Poynt search data is discrete, the actual movement trace between two search records

cannot be determined for calculating the exact movement distance. Due to this un-

certainty, we simplify the movement distance between two search records to be the

geographic length of the line segment connecting the corresponding nodes in the

Cartesian geography map.
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Labeling Search Records by User Movement Status

We label target search records in terms of user movement status to help indicate the

state of movement that the corresponding user was in when conducting a search,

e.g., querying about hotels in a travelling trip (under the state of long-distance

movements), or looking for a restaurant and movie theater for movie night in an ev-

eryday neighborhood around home (under the state of short-distance movements).

Specifically, for each search record we calculate the average movement distance

(avgmd), the average of the movement distance from the record appearing imme-

diately before it in the consumer trajectory (if any) to this record and the distance

from this record to the one immediately after it in the consumer trajectory (if any).

According to the corresponding value of avgmd, each search record is categorized

into one of the following four groups of user movement status:

• NO-MOVE: no movement (avgmd = 0)

• ONE-BLOCK: movement within one street block (avgmd is in the distance

scope of one street block)

• INTRA-CITY: movement within a city (avgmd exceeds one-block distance

and is in the distance scope of multiple street blocks in a city)

• INTER-CITY: movement between cities (avgmd exceeds multiple-block dis-

tance)

Experiments Exploring Features of User Movements

We are interested in exploring and comparing the spatio-temporal features exhib-

ited when users are searching under the status of either short-distance or long-

distance movements. Preliminarily, we choose the two movement status groups,

ONE-BLOCK and INTER-CITY, to represent the user states of short-distance move-

ments and long-distance movements respectively.

Figure 6.3a displays the visualization results of the exploratory search compar-

ing the differences in the spatio-temporal features shown between ONE-BLOCK
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(marked in blue) and INTER-CITY (marked in red) on the related Webble compo-

nents.

From the zoomed-in Cartesian geography map component (Figure 6.3b), it

shows that the routes connecting towns/cities are mainly covered by red INTER-

CITY nodes, and they also extend to the central parts of the major metropolitan

areas, which are dense gatherings of nodes mostly covered by blue ONE-BLOCK

nodes. Also note that the majority of ONE-BLOCK nodes are centralized around

urban regions, while INTER-CITY nodes are more scattered across the entire map.

On the other hand, temporally speaking, the Storygraph view (Figure 6.3c) sug-

gests that INTER-CITY events distribute mainly during the daytime (around 6 a.m.

to 6 p.m. typically) and few occur late at night or early in the morning around mid-

night, while ONE-BLOCK generally has a longer temporal span for each day of the

week which normally starts early in the morning from midnight or lasts late in the

evening till midnight, and it even remains active for the whole night in certain re-

gions. The temporal features about INTER-CITY and ONE-BLOCK are interesting

observations based on which some explanatory search is suggested.

Extended Experiments on Explanatory Searches

In addition to the Cartesian geography map and the Storygraph components based

on which the geographical and temporal features are revealed as the results of the

previous exploratory search about user movement statuses, the Webble Dashboard

(see Figure 6.3a) also contains a histogram component which indicates the distri-

bution of records categorized as ONE-BLOCK or INTER-CITY movement status

over different search categories (see Figure 6.4 enlarged for details). It shows that

Movie, Gas and Event searches are much more frequent under the status of ONE-

BLOCK (short-distance movements) than INTER-CITY (long-distance movements),

while YP reaches an approximately equal division of shares by ONE-BLOCK and

INTER-CITY. The difference in the distribution of movement status groups ONE-

BLOCK and INTER-CITY over different search categories sheds an intriguing clue

which inspires us to start explanatory searches about the characteristics of target

search categories in terms of user movements.
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(a) All relevant Webble Dashboard components.

(b) The Cartesian geography map zoomed in for details.

Figure 6.3: The visualization results of the exploratory search on the relevant Web-
ble Dashboard views regarding the spatio-temporal features of user movements:
ONE-BLOCK movement (blue) and INTER-CITY movement (red) represent the
user states of short-distance movements and long-distance movements respectively.
(cont.)
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(c) The Storygraph component.

Figure 6.3: The visualization results of the exploratory search on the relevant Web-
ble Dashboard views regarding the spatio-temporal features of user movements:
ONE-BLOCK movement (blue) and INTER-CITY movement (red) represent the user
states of short-distance movements and long-distance movements respectively.

Figure 6.4: The histogram component indicating the distribution of records cat-
egorized as ONE-BLOCK or INTER-CITY movement status over different search
categories.
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In the extended experiments on corresponding explanatory searches, we include

all four groups of user movement status, with NO-MOVE/ONE-BLOCK represent-

ing short-distance movements and INTRA-CITY/INTER-CITY representing long-

distance movements, and select two typical search categories with distinguishingly

different ONE-BLOCK and INTER-CITY distributions in Figure 6.4, Movie and YP,

as the target search categories.

We hypothesize that users tend to search for movies around the second half of

the day and lasting late till the midnight in short-distance movements, while YP

businesses are more typical of daytime queries (around 6 a.m. to 6 p.m. typically),

when users are moving in relatively longer distances.

Figure 6.5a shows the visualization results of the explanatory search for the

proposed hypothesis on the relevant Webble Dashboard components. The tem-

poral distribution of YP and Movie searches shown in the Storygraph component

(Figure 6.5b), together with the distribution of YP and Movie searches over differ-

ent user movement status groups shown in the histogram component (Figure 6.5c,

with NO-MOVE/ONE-BLOCK representing short-distance movements and INTRA-

CITY/INTER-CITY representing long-distance movements in the experiment), are

the confirmative evidence which support the proposed hypothesis. In addition,

there exhibits a resemblance of the spatial features shown in the Cartesian geog-

raphy maps between YP/Movie search (in Figure 6.5d) and the long-distance/short-

distance movement status (in Figure 6.3b).

The characteristics of YP and Movie searches in terms of user movements (dis-

cussed in the above explanatory search) conforms with the real-life cases that people

search for movies before a movie night in a familiar everyday neighborhood around

home (under the state of short-distance movements); and people query about busi-

ness entities in a relatively new environment on the go (under the state of long-

distance movements).

6.2.3 Limitation of Investigation with the Webble Dashboard

While the Webble Dashboard enables easy deployment of visualization components

and rapid interactivity, the total volume of data allowed for analysis is restricted
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(a) All relevant Webble Dashboard components.

(b) The Storygraph component.

Figure 6.5: The visualization results of the explanatory search on the relevant Web-
ble Dashboard views about the characteristics of the search categories Movie (red)
and YP (blue) in terms of user movements. (cont.)
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(c) The histogram component indicating the distribution of Movie and YP
records over different user movement statuses.

(d) The Cartesian geography map.

Figure 6.5: The visualization results of the explanatory search on the relevant Web-
ble Dashboard views about the characteristics of the search categories Movie (red)
and YP (blue) in terms of user movements.
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since the system runs on the web browser end. The available memory space is

therefore much smaller than what is provided for an application running locally in

the RAM or remotely on a server. This limitation could be alleviated by the filtering

of data to focus on a relatively smaller portion that can be loaded integrally by the

system.

69



Part IV

Conclusions
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

Our approach to the visual analysis of a large volume of geo-located individual

search records requires the development of a conceptual framework that provides

a systematic method of filtering and selection, in order to focus our search for se-

mantically relevant data artifacts. In our case, our overall goal is to identify time

sequence components we call “consumer trajectories,” which we hypothesize as

clustered time-series events of individual users correlated with some category of

search (e.g., a sequence of search records by an individual user searching for inex-

pensive fuel).

This kind of framework requires a variety of filtering and visualization tech-

niques, organized in a system that supports a kind of hypothesis-driven process of

visually identifying interesting data artifacts within selected data, and then using

a variety of data selection and visualization techniques to adjust the parameters of

those artifacts, in order to further support them, or to dismiss them as semantically

unsupported. This can typically be done by changing the selection of data related

to any particular artifact hypothesis, for example, extending the geographic region

in which it is contained, or viewing the same data across a number of different time

segments.

Our framework further acknowledges that no one visualization method will suf-

fice to provide alternative views for the same data artifacts, so we compare two

fundamentally different visualization methods, based on a Cartesian coordinate dis-
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play, or a Storyline display. In this way, two quite different views of the same data

provide a human user with a broader view to confirm visual inferences about in-

teresting data artifacts. In addition, the case studies demonstrate the effectiveness

of combining “exploratory” and “explanatory” searches in our hypothesis-driven

framework for visual analysis tasks.

Furthermore, our adoption of the Webble Dashboard implementation creates

a highly interactive environment for visual exploration of data, in which the shift

and movement between “explanatory” and “exploratory” searches have a broader

repertoire of visual actions which are rapid and more informative.

7.2 Review of Contributions

We have developed a variety of tools for selecting and filtering the original Poynt

data, and demonstrated their use in case study scenarios for identifying increas-

ingly complex individual and aggregate Poynt user activities, culminating in the

identification of consumer trajectories, i.e., the visual display of focused Poynt user

activities, localized in space and time, and heuristically alleged to represent specific

consumer goal activities.

In Section 3.3, we noted how selection of spatial regions and time duration can

provide the basis for visualizing both spatial and temporal properties of the Poynt

data, for drawing exploratory inferences about spatial distribution and temporal dis-

tribution. We noted that the tools provide the flexibility to explore the Poynt data

space, and are even more useful when combined with the direct interaction of the

Webble Dashboard system (Section 6.1).

In Part III, we demonstrated how the interleaving of exploratory and explanatory

uses of the tools, while still localized subjectively in the mind of the user, can

reveal data artifacts that would otherwise be unexposed, e.g., as in the detection of

artificial movement of Android users (Section 5.2). The incremental stories of the

development of the case studies (Sections 5.3, 6.2) show how one can formulate and

then test hypotheses on components of consumer trajectories (e.g., classify Poynt

user movements in small spatial clusters, like NO-MOVE, ONE-BLOCK, INTER-

72



CITY, etc., in Section 6.2.2), and how variation in Yellow Pages search terms can

change the categories in which Poynt users search, and so help determine another

component of consumer trajectories (Section 6.2.1).

Overall, the contributions are about how the tools can be used, within an emerg-

ing methodology of “explore” and “explain”, to identify consumer trajectories, us-

ing multiple visualizations, side by side, with interaction as a mechanism to fo-

cus attention on data artifacts of interest. These data artifacts would otherwise re-

main unidentified by ordinary relational query languages on the half a billion Poynt

records.

7.3 Future Work

As is obvious, while we have a complete prototype that provides access to our 531

million geo-located search records, we have only begun to investigate the possi-

ble emergent relationships amongst that volume of data, beginning with the idea

of finding semantic data artifacts we call “consumer trajectories.” We are continu-

ing our work with simultaneous refinement and improvement of the framework, as

well as deeper exploration of more sophisticated semantic artifacts, hypothesized

as consumer behaviour.

For future work, one promising direction is designing interactions for complex

filtering constraints (e.g., Search Density and User Group), in order to facilitate

exploratory and explanatory visual analytics for complex hypotheses. On the other

hand, we are interested in automating some interactive visual exploration processes,

e.g., building a program which explores the constraint space to generate all visu-

alization results and automatically focuses on “interesting” differences exhibited

amongst them, with the help of image processing techniques.

We also plan to evaluate the process of hypothesis-driven visual analysis in

our framework, based on accuracy and speed of hypothesis confirmation. Formal

evaluation requires more precise formulation of hypothesis spaces, and measures of

coverage achieved with analytics tools.
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